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Without assuming the positivity of the amplification functions, we prove
some M-matrix criteria for the R} -global asymptotic stability of periodic
Cohen-Grossberg neural networks with delays. By an extension of the
Lyapunov method, we are able to include neural systems with multi-
ple nonnegative periodic solutions and nonexponential convergence rate
in our model and also include the Lotka-Volterra system, an important
prototype of competitive neural networks, as a special case. The stability
criteria for autonomous systems then follow as a corollary. Two numerical
examples are provided to show that the limiting equilibrium or periodic
solution need not be positive.

1 Introduction

Since the seminal work of Cohen and Grossberg (1983), many efforts
have been devoted to investigating the asymptotic behavior of the Cohen-
Grossberg neural networks. The results in Cohen and Grossberg have been
improved and extended in many directions. Ye, Michel, and Wang (1995)
proved that the Cohen-Grossberg network with transmission delays is
still globally stable as long as the delays are sufficiently small. Without
assuming the symmetry of interconnections, Wang and Zou (2002a) and
Chen and Rong (2003) provided some delay-independent conditions for
global stability. Exponential stability was discussed in Wang and Zou
(2002b), Chen and Rong (2004), and Cao and Liang (2004), where the
amplification functions were assumed to have positive lower and upper
bounds. Lu and Chen (2003) presented some new results by dropping
the upper boundedness of the amplification functions, and dropping the
positive lower bounds as well if exponential stability is not desired. The
dynamics of Cohen-Grossberg networks with discontinuous activation
functions was studied in Lu and Chen (2005).

As a model for competitive neural networks, the Cohen-Grossberg
neural network includes the Lotka-Volterra system, which is widely used
for describing the dynamics of interacting populations (see, e.g., Murray,
2002), as a special case. However, very few of the existing results for
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Cohen-Grossberg networks can be applied directly to the Lotka-Volterra
system, and some important characteristics of competitive neural networks
are excluded due to assumptions that are too restrictive. To illustrate this,
consider a simple Lotka-Volterra system,

n
J'Ci:x,-(ri—Zw,'jxj), i:l,...,n, (1.1)
j=1

where x; are population densities, ; are natural growth rates, and w;; are
interaction weights.

First, most stability analyses require the system to have a unique equi-
librium; however, this is not true for system 1.1. It is easily seen that if the
system of equations

=

n
Ti—Zw,'ijZO, i=1,...
j=1

has a unique solution with x; # 0 for all i, then system 1.1 has exactly
2" equilibria. In the existing literature, a common way to guarantee the
uniqueness of the equilibrium is to assume that the amplification functions
(x; in system 1.1) are always positive, even at an equilibrium, and this
restriction rules out the Lotka-Volterra system.

Second, many stability results involve exponential stability and thus
do not apply to the Lotka-Volterra system, since the convergence of that
system may not be exponential. A simple illustrative example is the one-
dimensional case of system 1.1 with » = 0:

¥ = —wx?.

Solving this equation with the initial condition x(0) = xo > 0 gives the exact
solution

1

X=—-,
wt + x5!

which converges to the equilibrium x = 0 at a power rate. To obtain an ex-
ponential stability result, one has to assume that the amplification functions
have positive lower bounds, which is not feasible for analyzing system 1.1
unless additional assumptions are made on the positivity of the limiting
equilibrium.

In a paper most related to this letter, Lu and Chen (2007) studied the
R’ -global convergence of a delayed Cohen-Grossberg network to a non-
negative, but not necessarily positive, equilibrium, and their results apply
as well to the Lotka-Volterra system. However, their method relies on the
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theory of nonlinear complementary problems and is difficult to be general-
ized to nonautonomous (e.g., periodic) systems.

The purpose of this letter is to investigate the R’ -global asymptotic
stability of periodic Cohen-Grossberg neural networks with delays by an
extension of the Lyapunov method. The main advantages of our method
are twofold: first, multiple equilibria or periodic solutions are allowed, and
it is not needed to prove the existence and uniqueness of the equilibrium
or periodic solution; second, our method applies equally well to the au-
tonomous case and the periodic case. Using this method, we are able to
include the Lotka-Volterra system as a special case in our results. Moreover,
the M-matrix form of our stability criteria makes them easy to verify and
leads to an intuitive interpretation.

The rest of the letter is organized as follows. In section 2, we specify our
model and make some preparations for further analysis. In section 3, we
establish our main stability results. Two numerical examples are given in
section 4, and section 5 concludes this letter.

2 Preliminaries

In this section, we specify our model and give some preliminary results
needed in further analysis. We consider a periodic Cohen-Grossberg neural
network with delays described by the system of differential equations,

() =a;i(x () | =bi(xi(t), £) + D wij(t) £ (x; (1)

j=1

+ > vgi(xt — ) + L) | i=1.....n (2.1)

j=1

where 4,(x) are amplification functions, b;(x, t) are self-inhibition terms,
fi(x) and gi(x) are activation functions, w;;(t) and v;;(t) are connection
welghts 7;j > 0 are transmission delays, and I;(t) are external inputs.
Throughout this letter, we assume a;(x), b;(x,t), fi(x), &i(x), wi;(t), vij(t),
and [;(t) are continuous, and b;(x, t), w;;(t), vij(t), and I;(t) are periodic in ¢
with period @ > 0. In addition, we make the following assumptions:

Al: a;(x) > 0 forall x > 0, and for anyﬂ >a >0,

/ ! =00 and / dx < oo.
o ai(x) a;(x)

A2: There are continuous w-periodic functions B;(t) > 0 such that

bix, ) = by ) g
xX—y =

forall x, y, and t;
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A3: There are constants F; > 0 and G; > 0 such that
Ifi(x) = fily)l < Filx—yl and |gi(x) —g&i(y)| < Gilx —yl
for all x and y.

Denote 7 = max;,; 7;;. The initial condition with system 2.1 is (IC) x;(t) =
0;(t) > 0 for —t <t < 0, where 6 : [-1, 0] — R" is continuous.

When a;(x) = x, b;j(x, t) = Bi(t)x, fi(x) = x, and g;(x) = x, system 2.1 re-
duces to a periodic Lotka-Volterra system with delays

% () = x;(t) |:_Bi (H)xi(t) + Z wij(£)x;(t)
=1

+Zv,'j(t)xj(t—ti]’)+l,'(t)i|, i=1,....n, (2.2)

j=1

for which assumptions Al to A3 are all satisfied.
When b;, w;j, vij, and I; do not depend on ¢, system 2.1 reduces to the
autonomous system

Xi(t) =ai(x;(t)) |:_bi (% (1) + Z wij fi(x;(F))
i1

j=1

+Zv,-]-gj(xj(t—t,'j))+l,-:| , i=1,...,n, (2.3)

for which assumption A2 can be replaced:
A2’: There are constants B; > 0 such that
b by _ g
x—y
for all x and y.

1

Assumption Al and the initial condition (IC) ensure that the orbits of
system 2.1 always stay in the open positive orthant, although some com-
ponents of the solution may approach zero as t — ooc. More precisely, we
have the following lemma:

Lemma 1 (Positivity). Assume assumption Al holds. The solution of system
2.1 with the IC satisfies x;(t) > 0 for all t > 0 and all i.
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Proof. Suppose there exist T > 0 and index i such that x;(T) =0 and
x;i(t) > 0for 0 < f < T. Then we have

T n
/0 { — i, D+ Y w0 fi (i ()
j=1
+ 3 (g (¢t — 7)) + L‘(t)} dt
j=1

T %) (M) 1 6:0) 1
= ! dt = / du = —/ du = —o0.
/0 a;(x;(t)) w0 @i(u) o ai(u)

But the left side is bounded since all the functions in the integrand are
continuous on [0, T], yielding a contradiction. Therefore, x;(t) > 0 for all
t > 0and all 7.

For the periodic system 2.1, we are interested in the convergence of
the system toward a periodic orbit, while for the autonomous system 2.3,
convergence to an equilibrium is desired. Adopting the terminology in Lu
and Chen (2007), we have the following definitions:

Definition 1. An w-periodic solution x*(t) of system 2.1 with x;(t) > 0 for all t
and all i is said to be R’} -globally asymptotically stable if for any IC the solution
x(t) of system 2.1 satisfies || x(t) — x*(t)|| — Oast — oo.

Definition 2. An equilibrium x* of system 2.3 with x;} > 0 for all i is said to be
R’ -globally asymptotically stable if for any IC the solution of system 2.3 satisfies
lx(t) — x*|| = Oast — oo.

We also need some basic facts about an M-matrix. This will allow the
stability criteria to be formulated in a simple form and make a variety of
tools available for checking them. For the proof of the following proposition
and many other properties of M-matrices, the reader is referred to Chapter 6
in Berman and Plemmons (1994).

Proposition 1. Let C = (c;j) € R with ¢;j <0 for all i # j. That C is a
nonsingular M-matrix is equivalent to either of the following:

a. There are positive constants &1, &, ..., &, such that Z’]Ll &jcij > 0 for all i.
b. There are positive constants n1, 0, ..., n, such that Z’;zl njcji > 0 for all
i.
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3 Stability Results

The aim of this section is to establish our stability results for the periodic
system 2.1; stability results for the Lotka-Volterra system 2.2 and the au-
tonomous system 2.3 then follow as corollaries. The Lyapunov method is a
common approach to proving the stability of an equilibrium, in which the
equilibrium is usually translated to the origin. However, system 2.3 may
have multiple equilibria, and it is not trivial at all to see which of them is
the limiting equilibrium. The LaSalle invariance principle does not require
determining the limiting equilibrium, but its conclusion is weaker, guar-
anteeing only the convergence of the system to a set of points for which
the orbit derivative equals zero. Now we show that by imposing a stronger
inequality condition on the orbit derivative, the Lyapunov method can be
extended to a form particularly suited for our purpose. Specifically, we have
the following:

Proposition 2. Suppose V :R; — Ry is continuous and x :Ry — R" is
bounded and uniformly continuous. If there is a constant ¢ > 0 such that

V(t) < —cllx(t + ©) — x(t)| 3.1)

for all t > 0, then there exists an w-periodic function x*(t) such that ||x(t) —
x*(t)| = O0ast — oo.

Proof. Integrating both sides from 0 to T gives

T
V(T) - V(0) < —c / lx(t + o) — x(B)] dt,
0
or
T 1

| e+ = xtona < v - ven
Letting T — oo, we have

/00 lx(t + w) — x(F)|| dt < %V(O) < 00.

0

Note that this can be rewritten as

Z/w |x(t + nw) — x(t + (n — Nw)|| dt < oo.
n=1 0
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By the Cauchy criterion, the sequence {x(t 4+ nw)};°, converges in L0, »].
Since x(t) is bounded and uniformly continuous, {x(f + nw)} is uniformly
bounded and equicontinuous. Then by the Arzela-Ascoli theorem, there
exists a subsequence {x(t 4+ nrw)} that converges uniformly on any compact
set in R; denote the limit function by x*(f). It is clear that x*(t) is also the
limit of {x(t + nw)} in L'[0, ], that is,

lim / lx(t + nw) — x*t)|| dt = 0.
n—00 0

It is easily seen that x(t + nw) — x*(t) uniformly on any compact set in R.
Since

X(t+ w) = lim x(t + (n + Dow) = lim x(t + nw) = x*(t),
x*(t) is w-periodic. Letting t = #y 4+ nw, where 0 < t; < w, we have
x(t) — x* (D)l = llx(to + nw) — x*(to)ll.

Then the uniform convergence of {x(t + nw)} on [0, ] implies ||x(t) —
x*(t)|| > 0ast — oo.

Remark 1. In the autonomous case, inequality 3.1 can be replaced by
V(t) < —cllx(#)|l, and the boundedness and uniform continuity need not be
assumed. Following the same argument, we obtain

00 1
f LB dt < 2V(0) < oo.
0 C
Then

lx(T) — x(9)| = H /ST x()dt| < /ST lx@®))dt -0 as S, T — oo,

and the convergence of x(t) follows immediately from the Cauchy criterion.

Although proposition 2 ensures the convergence of every orbit to a peri-
odic function, the limiting function may not be the same for different orbits.
In order to establish a global stability result, we also need to prove that
every two orbits are synchronized asymptotically. This is provided by the
following simple but essential proposition:
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Proposition 3. Suppose V : Ry — Ry is continuous and x : Ry — R" and
y : Ry — R" are bounded and uniformly continuous. If there is a constant ¢ > 0
such that

V(t) < —cllx(t) — y(®)ll
forallt > 0, then ||x(t) — y(t)|l = Oast — oo.

Proof. As in the proof of proposition 2, we obtain

fo ()~ y(®)ldt = V(0) < v

By the boundedness and uniform continuity of x(t) and y(t), one easily sees
that ||x(t) — y(t)|| - O as t — oo.

To apply propositions 2 and 3, we need to guarantee the boundedness
and uniform continuity of the solution, which are proved in the follow-
ing lemma. Denote B; = inf; B;(t), b;(0) = inf; b;(0, ), w;; = sup, |w;;(t)l,
v;j = sup, |vij(t)l, I = sup, I;(t), and the matrices B = diag(B,,..., B,),
F =diag(Fy, ..., F,), G = diag(G, ..., G,), W = (w;j), and V = (v;)).

Lemma 2 (Boundedness and uniform continuity). Assume assumptions Al
to A3 hold and the matrix

C=B-WF-VG

is a nonsingular M-matrix. Then the solution of system 2.1 with the IC is bounded
and uniformly continuous on R..

Proof. By proposition 1, that C is a nonsingular M-matrix is equivalent to
that there are positive constants i, .. ., &, such that

&B; — Y &wiiFj— Y £7v;G; >0

=1 j=1

for all i. Now let
a:miin{gi ZstU Zéjv,] }

]=mlax{|b |+sz]|f] |+sz]|g] |+|I|}
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and M; = A§; for some A > 0. If x;(f) ever exceeded M;, x;(t) would attain
M; at some time ¢ due to its continuity. Suppose x;(f)) = M; for some index
iand x;(t) < M; for all t < ty and all j. Then we have

%i(fo)

na) —bi(x;(to). to) + Y _ wij(to) f;(x; (o))

=1
+ Z vij(fo)g;(x;(fo — 7)) + Li(to)
j=1
<—(B;M; +b;(0)) + > _wij(F;M; + | £;(0)])
-1

+> ;G M; + 1850+ T;
=1

=—X (SiBi — Y &wiFj — Zé]vijcj) —b;(0)
=1 =1

+ Wil £+ Y5180 + T
j=1

j=1
<—-xo+] <0,

provided A is sufficiently large. It follows that X;(fy) < O since a;(x;(fo)) > 0.

Therefore, x;(t) cannot exceed M;, that is, x(t) is bounded. Moreover, the

right side of system 2.1 is bounded, showing that x(¢) is bounded and x(t)
is uniformly continuous.

We are now ready to prove the main result of this letter.

Theorem 1 (R’ -global asymptotic stability). Assume assumptions Al to A3
hold, and the matrix

C=B-WF-VG

is a nonsingular M-matrix. Then system 2.1 has an w-periodic solution that is
R’ -globally asymptotically stable.

Proof. By proposition 1, that C is a nonsingular M-matrix is equivalent to
that there are positive constants 1, .. ., n, such that

n n
niB; — Y njwjiFi— Y n;0;,Gi >0
=1 j=1
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for alli. Let
n n
c= mz_in niB; — X;n]-wj,-l-"]- - Z;nﬁjiGj .
j= j=

We now provide a Lyapunov function. Denote Ax;(t) = x;(t + o) — x;(t),
Afi(xi(1) = filxi(t + o)) — fi(xi(t)), Agi(xi(F)) = gi(xi(t + w)) — gi(xi(t)), and
Ab;i(xi(t), t) = bi(xi(t + w), t + w) — bi(x;(t), t). Let

n X (tHw) 1
V(t) = i d
® ;771 /xi(t) aiu) "

n t
+ Z 7]1'/ UijG]-|ij(s)|ds.
ij=1 7t

—Tij

Then we have

N ‘ Gitto) &)
V(= Zl i sgn(Axi(1)) [ai(xia T ) m(xl-(t))}

n
+ > 0 [0 GjlAx; (1) — 0G| Ax;(t — )]
ij=1

=" misgn(Axi(t)) {—Abf (). 1) + 3 wi (DAF ()
i=1

j=1

+ Zvij(t)Agj(xj(t - fij)):|

j=1

+ Z ni [vi;GjlAxj()] — vi;GjlAxj(t — 7ij)l]
ij=1

<= mBilAx(O)+ Y njwjiFilAxi(t)]

i=1 ij=1

n
+ ) Gl Ax (- ;1))
ij=1

+ ) 0 [9iGil A% (B)] — i Gl Axi(t — 70)1]
ij=1

n n n
== (nz‘Bi = njwjiFi= Y njvjiGi) |Ax; ()]
i=1 =1 =1

< —cllAx(t)]l.
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Applying proposition 2 yields the existence of an w-periodic function x*(t)
such that [|x(t) — x*(t)]| — 0 as t — oo. It is easily seen that x*(¢) is also a
solution of system 2.1.

We now show that the convergence is global. Let x(¢) and y(t) be any two
solutions of system 2.1. Denote 8x;(t) = x;(t) — yi(t), 8fi(xi(t)) = fi(xi(t)) —
fityi®), 8gi(xi(t)) = &i(xi(t)) — &i(wi(t)), and  8b;(xi(t), t) = bi(xi(t), t) —

bi(yi(f), t). Let
x;(f)
HAWQW)

Proceeding as above, we obtain V(t) < —c||8x(t)|, and it follows from propo-
sition 3 that ||x(t) — y(t)|| = 0 as t — oo, proving the uniqueness of x*(t).

+§:m/ G 18x;(s) ds.

i=1 i,j=1 t=ij

Applying theorem 1 to the Lotka-Volterra system 2.2 immediately yields
the following;:

Corollary 1. Assume that the matrix
C=B-W-V

is a nonsingular M-matrix. Then system 2.2 has an w-periodic solution that is
R’ -globally asymptotically stable.

The stability of the autonomous system 2.3 also follows as a consequence
of theorem 1. Denote the matrices B = diag(Bx, ..., B,), W = (Jw;;|), and

V = (lvij)-
Corollary 2. Assume assumptions A1, A2’, and A3 hold, and the matrix
C=B-WF -VG

is a nonsingular M-matrix. Then system 2.3 has an equilibrium that is R, -globally
asymptotically stable.

Proof. Taking an arbitrary o > 0 and applying theorem 1, we obtain the
existence of an w-periodic solution x}(t) such that ||x(t) — x}(t)|| — 0 as
t — oo. For any positive integer k, we can similarly obtain x} (f). Then
s (8) = x5 (DI = Nlx(8) = x5O + NIx(t) — x5, (B - 0 as £ — oo. Thus,

a5, (8) — x5,k (DIl = Nl (E + new) — x5, (£ 4+ kn - o/ k)|

= llx,(t + nw) — x , (t + nw)|| - 0 as n— oo,
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yielding that x;(f) = x; (t). Then we have

o Xt/ —xi) Xt e/k) =0
Fot) = lim w/k = dim w/k =0
forall t. Hence, xi(t) is a constant function and is R, -globally asymptotically
stable.

Remark 2. Corollary 2 canalsobe proved directly by defining the Lyapunov
function,

V()= Z ni |—bi(x:(t)) + Zwijfj(xj(t)) + Zvijgj(xj(t —5j)+ L
izl

=1 j=1

n t
+ Z m/t lvij|Gjlx(s)| ds.
-

ij=1
and using the proposition indicated in remark 1.

Remark 3. Lu, Xu, and Yang (2006) studied a class of Cohen-Grossberg
neural networks including the Lotka-Volterra system. However, due to
a too restrictive assumption a;(s) > 0 for s € R, their global asymptotic
stability results do not apply to the Lotka-Volterra system. Instead, the
global attracting region of the Lotka-Volterra system was estimated, as
illustrated in their example 3. In that example, simulations showed that the
unique positive equilibrium of the system is in fact globally asymptotically
stable, and how to justify this was raised as an unsolved question. This
can now be answered by our corollary 2: the criterion matrix associated
with the system in their example is a nonsingular M-matrix, and the system
therefore has an R} -globally asymptotically stable equilibrium.

Remark 4. Assuming 0 < «; < a;(u) < &;, Chen (2006) proved that under
an M-matrix condition similar to that in our corollary 2, a Cohen-Grossberg
neural network with delays has a unique equilibrium. He further obtained
an M-matrix stability condition involving «; and @;, which was shown
in the proof of his theorem 2 to be stronger than his existence condition.
Now our corollary 2 shows that his existence condition in fact suffices for
the R’} —global asymptotic stability, even when the assumption on positive
lower and upper bounds is dropped.
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4 Examples

In this section, we give two numerical examples showing that the limiting
equilibrium or periodic solution need not be positive under our stability
criteria.

4.1 Example 1. Consider the autonomous system

1(t) = 21 (H)[—4x1(t) + tanh 2 (f — 2) — 2 tanh xa(f — 1) + 1]

4.1
() = x(H)[—2x2(t) + tanh xp(f — .2) — tanh xy(f — 1) + 1]. @1)

Noting that (tanh x)’ < 1, we have G; = 1 for all i, and the criterion matrix

c 4 0 1 2 3 =2
Sloo2) {11 |11 |
A naive method for checking if a matrix is a nonsingular M-matrix is to
check if all of its leading principal minors are positive, which is the case
in this example. By corollary 2, system 4.1 has an equilibrium that is R’} -
globally asymptotically stable. The dynamical behavior of the system with

some randomly selected initial conditions is shown in Figure 1; it is clear
that the first component of the system approaches zero in the limit.

4.2 Example 2. Consider the periodic system
X1(t) =x1(H)[—(5 + cos t)x1(t) + (1 + sint) tanh xp(t — 1)
— (2 + cost)tanh x3(t — 1) + 2 + sin ],
T (t) = x(t)[—(5 + sint)xa(t) + (1 + sint) tanh xq (t — 1) (4.2)
— (1 + cost)tanh x3(t — 1) + 2 + cos £],
3(f) = x3()[— (7 + sin t)x3(t) — (1 + cost) tanh x; (t — 1)
— (1 + sint) tanh xp(t — 1) + cost],

with the criterion matrix

4 -2 -3
C=(-2 4 =2
-2 -2 6

Again, we can verify that C is a nonsingular M-matrix by checking its
leading principal minors. It follows from theorem 1 that system 4.2 has a 27 -
periodic solution that is R’} -globally asymptotically stable. The dynamical
behavior of the system with some randomly selected initial conditions is
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09 r 1

— — =X

15 20 25 30

Figure 1: Convergence of system 4.1 to an equilibrium.

shown in Figure 2, where we see that the system converges to a periodic
orbit in the plane x3 = 0.

5 Conclusion

Without assuming the positivity of the amplification functions, we have
proved some M-matrix criteria for the R’ -global asymptotic stability of
periodic Cohen-Grossberg neural networks with delays, which include
the Lotka-Volterra system as a special case. The stability criteria for
autonomous systems then follow as a corollary. Under our criteria, the
system converges to an equilibrium or periodic solution that is nonneg-
ative but need not be positive. Moreover, the system is allowed to have
multiple equilibria or periodic solutions and a nonexponential convergence
rate.

The M-matrix form of our criteria not only facilitates verification but also
gives rise to an intuitive interpretation. Roughly speaking, the results state
that the system is stable if the self-inhibition terms dominate, up to scaling
factors, the interaction effects. It is worth pointing out that our criteria are
delay independent and input independent, showing that delays and inputs
neither harm nor contribute to the stability in this case. However, inputs do
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0.8
0.6
0.4

0.2

Figure 2: Convergence of system 4.2 to a periodic orbit.

play an important role in determining the limiting equilibrium or periodic
solution.
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