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Abstract

High-dimensional compositional data arise naturally in many applications such as metage-

nomic data analysis. The observed data lie in a high-dimensional simplex, and conventional

statistical methods often fail to produce sensible results due to the unit-sum constraint. In this

article, we address the problem of covariance estimation for high-dimensional compositional

data, and introduce a composition-adjusted thresholding (COAT) method under the assumption

that the basis covariance matrix is sparse. Our method is based on a decomposition relating

the compositional covariance to the basis covariance, which is approximately identifiable as

the dimensionality tends to infinity. The resulting procedure can be viewed as thresholding

the sample centered log-ratio covariance matrix and hence is scalable for large covariance

matrices. We rigorously characterize the identifiability of the covariance parameters, derive

rates of convergence under the spectral norm, and provide theoretical guarantees on support

recovery. Simulation studies demonstrate that the COAT estimator outperforms some existing

optimization-based estimators. We apply the proposed method to the analysis of a microbiome

dataset in order to understand the dependence structure among bacterial taxa in the human gut.
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1 Introduction

Compositional data, which represent the proportions or fractions of a whole, arise naturally in

a wide range of applications; examples include geochemical compositions of rocks, household

patterns of expenditures, species compositions of biological communities, and topic compositions

of documents, among many others. This article is particularly motivated by the metagenomic

analysis of microbiome data in order to understand the dependence structure among microbial taxa

within communities. The human microbiome is the totality of all microbes at various body sites,

whose importance in human health and disease has increasingly been recognized. Recent studies

have revealed that microbiome composition varies based on diet, health, and the environment (The

Human Microbiome Project Consortium 2012), and may play a key role in complex diseases such

as obesity, atherosclerosis, and Crohn’s disease (Turnbaugh et al. 2009; Koeth et al. 2013; Lewis

et al. 2015).

With the development of next-generation sequencing technologies, it is now possible to survey

the microbiome composition using direct DNA sequencing of either marker genes or the whole

metagenomes. After aligning these sequence reads to the reference microbial genomes, one can

quantify the relative abundances of microbial taxa. These sequencing-based microbiome studies,

however, only provide a relative, rather than absolute, measure of the abundances of community

components. The counts comprising these data (e.g., 16S rRNA gene reads or shotgun metage-

nomic reads) are set by the amount of genetic material extracted from the community or the se-

quencing depth, and analysis typically begins by normalizing the observed data by the total number

of counts. The resulting fractions thus fall into a class of high-dimensional compositional data that

we focus in this article. The high dimensionality refers to the fact that the number of taxa may be

comparable to or much larger than the sample size.

To fix the notation, we consider a microbial community with p taxa. Let W = (W1, . . . ,Wp)
T

with Wj > 0 for all j be a vector of latent variables that represent the absolute abundances of the
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p taxa, called the basis, which generate the observed data via the normalization

Xj =
Wj∑p
i=1Wi

, j = 1, . . . , p. (1)

The observed data X = (X1, . . . , Xp)
T are compositional in the sense that they satisfy the simplex

constraint

Xj > 0, j = 1, . . . , p,

p∑
j=1

Xj = 1.

Define also the basis covariance matrix Ω0 = (ω0
ij)p×p by

ω0
ij = Cov(Yi, Yj), (2)

where Yj = logWj . An important question in metagenomic studies is to understand the co-

occurrence and co-exclusion relationships between microbial taxa, which would provide valuable

insights into the complex ecology of microbial communities (Faust et al. 2012). Ideally, such re-

lationships are described by the basis covariance matrix Ω0 and could be easily estimated if the

absolute abundances W were observable. In practice, however, such absolute abundances reflect-

ing the bacterial loads are rarely available. Instead, much recent effort has focused on estimating

Ω0 based on the relative abundances X measured through 16S or metagenomic sequencing.

Owing to the difficulties arising from the simplex constraint, it has been a long-standing ques-

tion how to appropriately model, estimate, and interpret the covariance structure of compositional

data. It is well known that standard correlation analysis from the raw proportions can lead to spuri-

ous results due to the unit-sum constraint; the proportions tend to be correlated even if the absolute

abundances are independent. Such effects are biologically irrelevant and must be removed in an

analysis in order to make valid inferences about the underlying biological processes. The compo-

sitional effects are further magnified by the low diversity of microbiome data, that is, a few taxa

make up the overwhelming majority of the microbiome (Li 2015).

The pioneering work of Aitchison (1982, 2003) introduced several equivalent matrix specifica-

tions of compositional covariance structures via the log-ratio transformations. Statistical methods

based on these covariance models respect the unique features of compositional data and prove use-
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ful in a variety of applications such as geochemical analysis. A potential disadvantage of these

models, however, is that they lack a direct interpretation in the usual sense of covariances and

correlations; as a result, it is unclear how to impose certain structures such as sparsity in high

dimensions, which is crucial for our applications to microbiome data analysis.

A relationship connecting the basis and compositional covariance structures, which is due to

Aitchison (2003, Section 4.11), has recently been exploited to develop algorithms for inferring

correlation networks from metagenomic data. Friedman and Alm (2012) introduced an approxi-

mation approach, SparCC, to infer the basis correlation matrix under certain sparsity assumptions.

Their method, however, consists of a series of approximations whose behavior is difficult to ana-

lyze. In addition, the estimated covariance matrix is not guaranteed to be positive definite and the

estimated correlation coefficients may fall outside the interval [−1, 1]. Fang et al. (2015) proposed

a CCLasso method that combines a weighted least squares loss with the `1 penalty to infer the

basis correlation matrix. Ban, An, and Jiang (2015) developed a penalized estimation method, RE-

BACCA, to estimate the basis covariance by finding a sparse solution to an underdetermined linear

system. While these methods build on similar ideas and seem to work in some practical scenarios,

none of the aforementioned work provide theoretical performance guarantees or make explicit the

statistical assumptions required for their methods to work effectively. Moreover, all the existing

methods involve computationally expensive iterative procedures and do not scale to large p.

Our contributions in this article are to turn the above idea into a principled approach to sparse

covariance matrix estimation and provide statistical insights into the issue of identifiability and the

impacts of dimensionality. By exploring a decomposition relating the compositional covariance to

the basis covariance, we show that the nonidentifiability of the basis covariance vanishes asymp-

totically as the dimensionality grows under certain sparsity assumptions. In other words, Ω0 is

approximately identifiable as long as it belongs to a class of large sparse covariance matrices. This

somewhat surprising “blessing of dimensionality” allows us to develop a simple, two-step method

by first extracting a rank-2 component from the decomposition and then estimating the sparse com-

ponent Ω0 by thresholding the residual matrix. The resulting procedure can equivalently be viewed
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as thresholding the sample centered log-ratio covariance matrix, and hence is optimization-free

and scalable for large covariance matrices. We call our method composition-adjusted thresholding

(COAT), which removes the “coat” of compositional effects from the covariance structure. We

derive rates of convergence under the spectral norm and provide theoretical guarantees on sup-

port recovery. Simulation studies demonstrate that the COAT estimator outperforms some existing

optimization-based estimators. We illustrate our method by analyzing a microbiome dataset in

order to understand the dependence structure among bacterial taxa in the human gut.

A fast-expanding literature on large covariance estimation can be found for unconstrained high-

dimensional data. Bickel and Levina (2008) and El Karoui (2008) introduced regularized estima-

tors by hard thresholding for large covariance matrices that satisfy certain notions of sparsity.

Rothman, Levina, and Zhu (2009) considered a wider class of thresholding functions, and Cai and

Liu (2011) proposed adaptive thresholding procedures that take into account the variability of in-

dividual entries. Fan, Fan, and Lv (2008) and Fan, Liao, and Mincheva (2013) considered large

covariance estimation for factor-based models. The standard assumptions made in the literature,

however, do not generally hold for constrained data. Our work fills this important gap by adapt-

ing covariance thresholding methods to compositional data, a common type of constrained data in

many scientific applications.

The rest of the article is organized as follows. Section 2 reviews the covariance relationship

and addresses the issue of identifiability. Section 3 introduces the COAT methodology. Section

4 investigates the theoretical properties of the COAT estimator in terms of convergence rates and

support recovery. Simulation studies and an application to human gut microbiome data are pre-

sented in Sections 5 and 6, respectively. We conclude the article with some discussion in Section

7 and relegate all proofs to the Appendix.

2 Identifiability of the Covariance Model

We first introduce some notation. Denote by ‖ · ‖1, ‖ · ‖2, ‖ · ‖F , and ‖ · ‖max the matrix L1-

norm, spectral norm, Frobenius norm, and entrywise L∞-norm, defined for a matrix A = (aij) by
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‖A‖1 = maxj
∑

i |aij|, ‖A‖2 =
√
λmax(ATA), ‖A‖F =

√∑
i,j a

2
ij , and ‖A‖max = maxi,j |aij|,

where λmax(·) denotes the largest eigenvalue. For two matrices A = (aij) and B = (bij) of the

same dimension, define the Frobenius inner product 〈A,B〉 = tr(ATB) =
∑

i

∑
j aijbij .

In the latent variable covariance model (1) and (2), the basis covariance matrix Ω0 is the param-

eter of interest. One of the matrix specifications of compositional covariance structures introduced

by Aitchison (2003) is the variation matrix T0 = (τ 0ij)p×p defined by

τ 0ij = Var{log(Xi/Xj)}. (3)

In view of the relationship (1), we can decompose τ 0ij as

τ 0ij = Var(logWi − logWj)

= Var(Yi) + Var(Yj)− 2 Cov(Yi, Yj)

= ω0
ii + ω0

jj − 2ω0
ij, (4)

or in matrix form,

T0 = ω01
T + 1ωT0 − 2Ω0, (5)

where ω0 = (ω0
11, . . . , ω

0
pp)

T and 1 = (1, . . . , 1)T . Corresponding to the many-to-one relationship

between bases and compositions, the basis covariance matrix Ω0 is unidentifiable from the decom-

position (5), since ω01
T + 1ωT0 and Ω0 are in general not orthogonal to each other with respect to

the Frobenius inner product. In fact, using the centered log-ratio covariance matrix Γ0 = (γ0ij)p×p

(Aitchison 1982) defined by

γ0ij = Cov{log(Xi/g(X)), log(Xj/g(X))},

where g(x) = (
∏p

j=1 xj)
1/p is the geometric mean of a vector x = (x1, . . . , xp)

T , we can similarly

write

τ 0ij = Var{log(Xi/g(X))− log(Xj/g(X))}

= Var{log(Xi/g(X))}+ Var{log(Xj/g(X))} − 2 Cov{log(Xi/g(X), log(Xj/g(X))}
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= γ0ii + γ0jj − 2γ0ij,

or in matrix form,

T0 = γ01
T + 1γT0 − 2Γ0, (6)

where γ0 = (γ011, . . . , γ
0
pp)

T and 1 = (1, . . . , 1)T . Unlike (5), the following proposition shows that

(6) is an orthogonal decomposition and hence the components γ01
T +1γT0 and Γ0 are identifiable.

In addition, by comparing the decompositions (5) and (6), we can bound the difference between

Ω0 and its identifiable counterpart Γ0 as follows.

Proposition 1. The components γ01
T + 1γT0 and Γ0 in the decomposition (6) are orthogonal to

each other with respect to the Frobenius inner product. Moreover, for the covariance parameters

Ω0 and Γ0 in the decompositions (5) and (6),

‖Ω0 − Γ0‖max ≤ 3p−1‖Ω0‖1.

Proposition 1 entails that the covariance parameter Ω0 is approximately identifiable as long as

‖Ω0‖1 = o(p). In particular, suppose that Ω0 belongs to a class of sparse covariance matrices

considered by Bickel and Levina (2008),

U(q, s0(p),M) ≡

{
Ω : Ω � 0,max

j
ωjj ≤M,max

i

p∑
j=1

|ωij|q ≤ s0(p)

}
, (7)

where 0 ≤ q < 1 and Ω � 0 denotes that Ω is positive definite. Then

‖Ω0‖1 = max
i

p∑
j=1

|ω0
ij|1−q|ω0

ij|q ≤ max
i

p∑
j=1

(ω0
iiω

0
jj)

(1−q)/2|ω0
ij|q ≤M1−qs0(p),

and hence the parameters Ω0 and Γ0 are asymptotically indistinguishable when s0(p) = o(p). This

allows us to use Γ0 as a proxy for Ω0 and greatly facilitates the development of new methodology

and associated theory. The intuition behind the approximate identifiability under the sparsity as-

sumption is that the rank-2 component ω01
T + 1ωT0 represents a global effect that spreads across

all rows and columns, while the sparse component Ω0 represents a local effect that is confined to

individual entries.
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Also of interest is the exact identifiability of Ω0 over L0-balls, which has been studied by

Fang et al. (2015) and Ban, An, and Jiang (2015). The following result provides a sufficient and

necessary condition for the exact identifiability of Ω0 by confining it to an L0-ball.

Proposition 2. Suppose that Ω0 belongs to the L0-ball

B0(se(p)) ≡

Ω :
∑

(i,j) : i<j

I(ωij 6= 0) ≤ se(p)

 ,

where p ≥ 5. Then there exist no two values of Ω0 that correspond to the same T0 in (5) if and

only if se(p) < (p− 1)/2.

A counterexample is provided in the proof of Proposition 2 to show that the sparsity condition

in Fang et al. (2015), which is of the order O(p2), does not suffice. The identifiability condition

in Proposition 2 essentially requires the average degree of the correlation network to be less than

1, which is too restrictive to be useful in practice. This illustrates the importance and necessity of

introducing the notion of approximate identifiability.

3 A Sparse Covariance Estimator for Compositional Data

Suppose that (Wk,Xk), k = 1, . . . , n, are independent copies of (W,X), where the compositions

Xk = (Xk1, . . . , Xkp)
T are observed and the bases Wk = (Wk1, . . . ,Wkp)

T are latent. In Section

3.1, we rely on the decompositions (5) and (6) and Proposition 1 to develop an estimator of Ω0,

and in Section 3.2 discuss the selection of the tuning parameter.

3.1 Composition-Adjusted Thresholding

In view of Proposition 1, we wish to estimate the covariance parameter Ω0 via the proxy Γ0. To

this end, we first construct an empirical estimate of Γ0 and then apply adaptive thresholding to the

estimate.
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There are two equivalent ways to form the estimate of Γ0. Motivated by the decomposition (6),

one can start with the sample counterpart T̂ = (τ̂ij)p×p of T0 defined by

τ̂ij =
1

n

n∑
k=1

(τkij − τ̄ij)2,

where τkij = log(Xki/Xkj) and τ̄ij = n−1
∑n

k=1 τkij . A rank-2 component α̂1T + 1α̂T with

α̂ = (α̂1, . . . , α̂p)
T can be extracted from the decomposition (6) by projecting T̂ onto the subspace

A ≡ {α1T + 1αT : α ∈ Rp}, which is given by

α̂i = τ̂i· −
1

2
τ̂··,

where τ̂i· = p−1
∑p

j=1 τ̂ij and τ̂·· = p−2
∑p

i,j=1 τ̂ij . The residual matrix Γ̂ = −(T̂−α̂1T−1α̂T )/2,

with entries

γ̂ij = −1

2
(τ̂ij − α̂i − α̂j) = −1

2
(τ̂ij − τ̂i· − τ̂j· + τ̂··),

is then an estimate of Γ0. Alternatively, Γ̂ can be obtained directly as the sample counterpart of Γ0

through the expression

γ̂ij =
1

n

n∑
k=1

(γki − γ̄i)(γkj − γ̄j), (8)

where γkj = log(Xkj/g(Xk)) and γ̄j = n−1
∑n

k=1 γkj .

Now applying adaptive thresholding to Γ̂, we define the composition-adjusted thresholding

(COAT) estimator

Ω̂ = (ω̂ij)p×p with ω̂ij = Sλij(γ̂ij), (9)

where Sλ(·) is a general thresholding function and λij > 0 are entry-dependent thresholds.

In this article, we consider a class of general thresholding functions Sλ(·) that satisfy the fol-

lowing conditions:

(i) Sλ(z) = 0 for |z| ≤ λ;

(ii) |Sλ(z)− z| ≤ λ for all z ∈ R.

These two conditions were assumed by Rothman, Levina, and Zhu (2009) and Cai and Liu (2011)

along with another condition that is not required in our analysis. Examples of thresholding func-
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tions belonging to this class include the hard thresholding rule Sλ(z) = zI(|z| ≥ λ), the soft

thresholding rule Sλ(z) = sgn(z)(|z| − λ)+, and the adaptive lasso rule Sλ(z) = z(1 − |λ/z|η)+

for η ≥ 1.

The performance of the COAT estimator depends critically on the choice of thresholds. Us-

ing entry-adaptive thresholds may in general improve the performance over applying a universal

threshold. To derive a data-driven choice of λij , define

θij = Var{(Yi − µi)(Yj − µj)},

where µj = EYj . We take λij to be of the form

λij = δ

√
θ̂ij, (10)

where θ̂ij are estimates of θij , and δ > 0 is a tuning parameter to be chosen, for example, by

cross-validation. We rewrite (8) as γ̂ij = n−1
∑n

k=1 γkij , where γkij = (γki − γ̄i)(γkj − γ̄j). Then

θij can be estimated by

θ̂ij =
1

n

n∑
k=1

(γkij − γ̂ij)2. (11)

The resulting algorithm for computing the COAT estimator with a fixed δ is summarized as

follows:

1. Compute the sample centered log-ratio covariance matrix Γ̂ = (γ̂ij)p×p using (8).

2. Compute the variance estimates θ̂ij , i, j = 1, . . . , p, using (11).

3. Obtain the COAT estimator Ω̂ using (9) with λij defined by (10).

We close this subsection with a remark on the related work of Fang et al. (2015). Their method

also computes the sample centered log-ratio covariance matrix Γ̂ and relies on its closeness to its

population counterpart Γ0 = GΩ0G, where G = Ip−p−11p1Tp . This then leads to a weighted least

squares loss combined with an `1 penalization on Ω0. By contrast, our method exploits directly the

similarity of Γ0 and Ω0 provided by Proposition 1, thereby avoiding any optimization procedure.

9



3.2 Tuning Parameter Selection

The thresholds defined by (10) depend on the tuning parameter δ, which can be chosen through V -

fold cross-validation. Denote by Ω̂
(−v)

(δ) the COAT estimate based on the training data excluding

the vth fold, and Γ̂
(v)

the residual matrix (or the sample centered log-ratio covariance matrix) based

on the test data including only the vth fold. We choose the optimal value δ̂ of δ that minimizes the

cross-validation error

CV(δ) =
1

V

V∑
v=1

‖Ω̂
(−v)

(δ)− Γ̂
(v)
‖2F .

With the optimal δ̂, we then compute the COAT estimate based on the whole dataset as our final

estimate. When the positive definiteness of the covariance estimate in finite samples is required

for interpretation, we follow the approach of Fan, Liao, and Mincheva (2013) and choose δ in the

range where the minimum eigenvalue of the COAT estimate is positive.

4 Theoretical Properties

In this section, we investigate the asymptotic properties of the COAT estimator. As a distinguishing

feature of our theoretical analysis, we assume neither the exact identifiability of the parameters nor

that the degree of (approximate) identifiability is dominated by the statistical error. Instead, the

degree of identifiability enters our analysis and shows up in the resulting rate of convergence. Such

theoretical analysis is rare in the literature, but is extremely relevant for latent variable models in

the presence of nonidentifiability and is of theoretical interest in its own right. We introduce our

assumptions in Section 4.1, and present our main results on rates of convergence and support

recovery in Section 4.2.

4.1 Assumptions

Recall that Yj = logWj , µj = EYj , and θij = Var{(Yi−µi)(Yj−µj)}, and define Ykj = logWkj .

Without loss of generality, assume µj = 0 for all j throughout this section. We need to impose the

following moment conditions on the log-basis Y = (Y1, . . . , Yp)
T .
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Condition 1. There exists a constant α > 0 such that maxj E exp(αY 2
j ) ≤ 2.

Condition 2. The basis covariance matrix Ω0 belongs to the class U(q, s0(p),M) defined by (7),

where 0 ≤ q < 1, s0(p) = o(p), and log p = o(n1/5).

Condition 3. There exists a constant τ > 0 such that mini,j θij ≥ τ .

Condition 4. There exists a constant s1(p) depending on p such that

max
i,j,`

∣∣∣∣∣
p∑

m=1

EYiYjY`Ym

∣∣∣∣∣ ≤ s1(p)

and s1(p) = o(p).

Conditions 1–3 are similar to those commonly assumed in the covariance estimation literature;

see, for example, Cai and Liu (2011). Condition 1 requires that the log-basis variables be uniformly

sub-Gaussian, which is satisfied if Y is multivariate normal or bounded, and can be relaxed to a

sub-exponential or polynomial tail condition at the price of a technically more involved argument.

Condition 2 imposes some restrictions on the dimensionality and sparsity of the basis covariance

matrix Ω0. It is worth mentioning that the sparsity level condition s0(p) = o(p) is so weak that

it suffices to guarantee only approximate identifiability but allows the degree of nonidentifiability

to be large relative to the statistical error. Condition 3 is a technical assumption for adaptive

thresholding procedures. Condition 4 arises from identifiability considerations in estimating the

variances θij but is very mild. In fact, if Y is multivariate normal, then Condition 4 is implied

by the assumptions Ω0 ∈ U(q, s0(p),M) and s0(p) = o(p) in Condition 2, since from Isserlis’

theorem (Isserlis 1918) we have

max
i,j,`

∣∣∣∣∣
p∑

m=1

EYiYjY`Ym

∣∣∣∣∣ ≤ max
i,j,`

p∑
m=1

(
|ω0
ij||ω0

`m|+ |ω0
i`||ω0

jm|+ |ω0
im||ω0

j`|
)
≤ 3M2−qs0(p).

More generally, under Condition 2, Condition 4 also holds for elliptically contoured distributions,

since

EYiYjY`Ym = κ(ω0
ijω

0
`m + ω0

i`ω
0
jm + ω0

imω
0
j`),
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where κ = 1
3
EY 4

i /(ω
0
ii)

2 (Anderson 2003). Although the abundances of bacterial populations in

many applications have been found to follow log-normal distributions (Limpert, Stahel, and Abbt

2001), we will show in simulation studies that the performance of our method is not sensitive to

the distributions of the absolute abundances.

4.2 Main Results

We are now in a position to state our main results. The following theorem gives the rate of conver-

gence under the spectral norm for the COAT estimator.

Theorem 1 (Rate of convergence). Under Conditions 1–4, if the tuning parameter δ in (10) is

chosen to be

δ = C1

√
log p

n
+ C2

s0(p)

p
(12)

for sufficiently large C1, C2 > 0, then the COAT estimator Ω̂ in (9) satisfies

‖Ω̂−Ω0‖2 = Op

s0(p)
(√

log p

n
+
s0(p)

p

)1−q


uniformly on U(q, s0(p),M).

The rate of convergence provided by Theorem 1 exhibits an interesting decomposition: the

term s0(p){(log p)/n}(1−q)/2 represents the estimation error due to estimating Γ0, while the term

s0(p)(s0(p)/p)
1−q accounts for the approximation error due to using Γ0 as a proxy for Ω0. In

particular, if the approximation error is dominated by the estimation error, then the COAT estimator

attains the minimax optimal rate under the spectral norm over U(q, s0(p),M) (Cai and Zhou 2012).

It is important to note that the dimensionality p appears in both terms where it plays opposite roles.

We observe a “curse of dimensionality” in the first term, where the growth of dimensionality

contributes a logarithmic factor to the estimation error. By contrast, a “blessing of dimensionality”

is reflected by the second term in that a diverging dimensionality shrinks the approximation error

toward zero at a power rate.

The insights gained from Theorem 1 have important implications for compositional data anal-

ysis. In the analysis of many compositional datasets, the dimensionality often depends on the
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taxonomic level to be examined. For instance, in metagenomic studies, the dimensionality may

range from only a few taxa at the phylum level to thousands of taxa at the operational taxonomic

unit (OTU) level. Suppose, for simplicity, that the magnitudes of correlation signals are of about

the same order across different taxonomic levels. Then Theorem 1 indicates a tradeoff between

an accurate estimation of the covariance structure with low dimensionality and a sensible inter-

pretation in terms of the basis components with high dimensionality. This tradeoff thus suggests

the need to analyze compositional data at relatively finer taxonomic levels when a latent variable

interpretation is desired.

The proof of Theorem 1 relies on a series of concentration inequalities that take the approxi-

mation error term into account, which can be found in the Appendix. As a consequence of these

inequalities, we obtain the following result regarding the support recovery property of the COAT

estimator. Here the support of Ω0 refers to the set of all indices (i, j) with ω0
ij 6= 0.

Theorem 2 (Support recovery). Under Conditions 1–4, if the tuning parameter δ in (10) is chosen

as in (12), then the COAT estimator Ω̂ in (9) satisfies

P
(
ω̂ij = 0 for all (i, j) with ω0

ij = 0
)
→ 1. (13)

Moreover, if in addition

min
(i,j) : ω0

ij 6=0
|ω0
ij|/
√
θij ≥ Cδ (14)

for some constant C > 3/2, then

P
(
sgn(ω̂ij) = sgn(ω0

ij) for all (i, j)
)
→ 1. (15)

Theorem 2 parallels the support recovery results in Rothman, Levina, and Zhu (2009) and Cai

and Liu (2011). However, owing to the extra term s0(p)/p in the expression of δ, the assumption

(14) requires in addition that no correlation signals fall below the approximation error. In other

words, exact support recovery will break down if any correlation signal is confounded by the

compositional effect.
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We next turn to the estimator with a data-driven choice of δ as described in Section 3.2. De-

note by Ω̂(δ̂) the COAT estimator based on the optimal δ̂ chosen by V -fold cross-validation. For

simplicity, assume that δ̂ is chosen from a grid of J points δj = δ0j/J , j = 1, . . . , J , where J is

fixed and δ0 is of the form (12) for sufficiently large C1, C2 > 0. The following result provides the

rate of convergence under the Frobenius norm for Ω̂(δ̂), which coincides with that of its theoretical

counterpart Ω̂ and is minimax optimal (Cai and Zhou 2012).

Theorem 3 (Data-driven choice of δ). Under Conditions 2 and 3, if Y is multivariate normal and

s0(p) = O

{
p

(
log p

n

)1−q/2
}
, (16)

then the COAT estimator Ω̂(δ̂) with δ̂ chosen by V -fold cross-validation satisfies

‖Ω̂(δ̂)−Ω0‖2F = Op

{
ps0(p)

(
log p

n

)1−q/2
}

uniformly on U(q, s0(p),M).

By using a more involved argument, it would be possible to extend the above result to the case

of diverging J and rate of convergence under the spectral norm, which we do not pursue further.

5 Simulation Studies

We conducted simulation studies to compare the numerical performance of the COAT estimator

with that of the oracle estimator, which assumes that the basis components are observed and the

thresholding procedure is applied to the sample covariance matrix of the log-basis Y. For simplic-

ity, soft thresholding is used with both estimators. We also include in our comparison the CCLasso

(Fang et al. 2015) and REBACCA (Ban, An, and Jiang 2015) estimators. Since our goal is to

estimate the basis covariance, the performance of various estimators should be compared with that

of the oracle estimator which estimates Ω0 directly using the basis components.

5.1 Simulation Settings

The data (Wk,Xk), k = 1, . . . , n, were generated as follows. We first generated the log-basis

vectors Yk in two different ways:

14



(i) Yk are independent from the multivariate normal distribution Np(µ,Ω0);

(ii) Yk = µ+ FUk/
√

10, where FFT = Ω0 and the components of Uk are independent gamma

variables with shape parameter 10 and scale parameter 1, so that Var(Yk) = Ω0. Here the

matrix F is obtained by computing the singular value decomposition Ω0 = QSQT and letting

F = QS1/2.

Then Wk = (Wk1, . . . ,Wkp)
T and Xk = (Xk1, . . . , Xkp)

T were obtained through the transforma-

tions Wkj = eYkj and Xkj = Wkj/
∑p

i=1Wki, j = 1, . . . , p. Hence, in Case (i), Wk and Xk follow

multivariate log-normal and logistic-normal distributions (Aitchison and Shen 1980), respectively;

the distributions of Wk and Xk in Case (ii) can similarly be viewed as a type of multivariate

log-gamma and logistic-gamma distributions. In both cases, we took the the components of µ ran-

domly from the uniform distribution on [0, 10], in order to reflect the fact that compositional data

arising from metagenomic studies are often heterogeneous.

The following four models for the basis covariance matrix Ω0 were considered:

• Model 1 (Identity covariance): Ω0 = Ip.

• Model 2 (Hub covariance): The p points were randomly divided into 3 hubs and p− 3 non-

hub points. Each hub was connected to the other points with probability 0.7 while each pair

of non-hub points were connected with probability 0.2. The strength of each edge was set to

0.3 with probability 0.5 and −0.3 with probability 0.5. The diagonal entries were set large

enough so that Ω0 is positive definite.

• Model 3 (Block covariance): The p points were equally divided into 10 blocks. Each pair

of points in the same block were connected with probability 0.5 while each pair between

different blocks were connected with probability 0.2. The strengths of the off-diagonal and

diagonal entries were set as in Model 2.

• Model 4 (Sparse covariance): Ω0 = diag(A1,A2), where A1 = B + εIp1 , A2 = 4Ip2 ,

p1 = b3√pc, p2 = p − p1, and B is a symmetric matrix whose lower triangular entries are

independent from the uniform distribution on [−1,−0.5] ∪ [0.5, 1] with probability 0.3 and

15



equal to 0 with probability 0.7. We set ε = max(−λmin(B), 0) + 0.01 to ensure that A1 is

positive definite, where λmin(·) denotes the smallest eigenvalue.

To facilitate comparisons with the CCLasso and REBACCA procedures which output only the

correlation estimates, we further normalize Ω0 in Models 2–4 to correlation matrices. Model 1

is an extreme but illustrative case intended for demonstrating spurious correlations when different

transformations of the compositional data are applied. The settings of Model 2 and 3 are similar to

those in Fang et al. (2015). The setting of Model 4 is typical in the covariance estimation literature

(e.g., Cai and Liu 2011). In Sections 5.2 and 5.3, we set the sample size n = 200 and the dimension

p = 50, 100, and 200, while in Section 5.4, we set p = 500 and n = 250, 500, and 1000. We

repeated 100 simulations for each setting.

5.2 Spurious Correlations

The boxplots of sample correlations with simulated data under different transformations in Model 1

are shown in Figure 1. Clearly, the sample centered log-ratio (clr) correlations are centered around

zero and have a similar distribution to that of the sample correlations of Y. Such a similarity

tends to increase as the dimension p grows, which is consistent with Proposition 1 and provides

numerical evidence for the validity of the centered log-ratio covariance matrix Γ0 as a proxy for

Ω0. In fact, from the proof of Proposition 1 we have, when Ω0 = Ip,

‖Ω0 − Γ0‖max = max
i,j
|ω0
i· + ω0

j· − ω0
··| = p−1.

By contrast, spurious correlations are generally observed when log X or X are used to calculate

the correlations between taxa. The sample correlations of log X exhibit a severe upward bias,

while the sample correlations of X contain many outliers that would be detected as signals by a

thresholding procedure with a threshold level set close to 1. Moreover, the spurious correlations

seem to become worse with a gamma log-basis distribution, where the means of the compositional

components tend to be more heterogeneous.
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Figure 1: Boxplots of sample correlations based on simulated data under different transformations
in Model 1.

5.3 Performance Comparisons

We applied the COAT method with soft thresholding to the simulated data in Models 2–4, where

the tuning parameter δ was chosen by fivefold cross-validation. For comparison, we applied the

CCLasso and REBACCA methods to estimate the basis correlation matrix. Losses under the matrix

L1-norm, spectral norm, and Frobenius norm were used to evaluate the estimation performance, the

true positive rate and false positive rate were used to assess the performance of support recovery,

and the run time was taken as a measure of computational efficiency.

The simulation results for Models 2–4 with normal and gamma log-basis distributions are sum-

marized in Tables 1–3, respectively. For all three models, we observe that COAT performs almost

equally well as the oracle estimator and uniformly outperforms the other two competitors. More-

over, the performance of COAT gets closer to that of the oracle estimator as p grows. In particular,

CCLasso estimates are sensitive to the log-basis distributions in Models 2 and 3, and its estima-

tion losses are much larger when the log-basis follows a gamma distribution. Both CCLasso and

REBACCA show inferior performance in terms of support recovery in some scenarios, indicat-
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ing that they are not generally model selection consistent. Comparisons on run time suggest that

COAT is scalable and computationally the most efficient, whereas the run time of both CCLasso

and REBACCA increases dramatically as p grows.

When p ≥ n, the computational complexity of different methods is as follows: CCLasso is in

fact an alternating direction method of multipliers (ADMM) and has a per-iteration complexity of

O(p3). REBACCA is essentially a Lasso problem with p(p − 1)/2 variables and, if implemented

with an efficient ADMM algorithm, requires a complexity of O(np4) for the initial singular value

decomposition and a per-iteration complexity ofO(np2). By contrast, COAT is a direct method and

the dominating cost is computing the sample covariance matrix and θ̂ij , resulting in a complexity

of only O(np2). This complexity analysis is consistent with the run time reported in Tables 1–3.

To further compare the support recovery performance without selecting a threshold level, we

plot the receiver operating characteristic (ROC) curves for all methods in Models 2–4 with nor-

mal and gamma log-basis distributions in Figure 2 and 3, respectively. We observe that the ROC

curves for the COAT and oracle methods are almost indistinguishable and uniformly dominate

those for CCLasso and REBACCA, demonstrating the superiority of the COAT method. In addi-

tion, CCLasso tends to outperform REBACCA when the log-basis follows a gamma distribution,

but its performance deteriorates as p grows with a normal log-basis distribution.

Two plausible explanations for the outstanding performance of COAT are that (1) it comes with

theoretical guarantees, and (2) its computation is straightforward and introduces less computational

error. Moreover, its superiority does not seem to depend on specific model settings.

5.4 Performance in High-Dimensional Settings

To investigate the effects of high dimensionality and varying sample sizes, we applied the COAT

and oracle methods with soft thresholding to the simulated data in Models 2–4 with p = 500 and

n = 250, 500, and 1000. CCLasso and REBACCA were not included for comparison owing to

their prohibitive computational costs. Tables 4 and 5 summarize the performance of the COAT and

oracle methods with normal and gamma log-basis distributions, respectively. When the dimension-
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(c) Model 4: sparse covariance

Figure 2: ROC curves for four different methods in Models 2–4 with a normal log-basis distribu-
tion.

ality is very high, the COAT and oracle methods perform almost identically for all three models

and sample sizes, and neither of them is sensitive to the log-basis distributions. In addition, as the

sample size increases, all of the matrix losses tend to decrease.

6 Gut Microbiome Data Analysis

The gut microbiome plays a critical role in energy extraction from the diet and interacts with the

immune system to exert a profound influence on human health and disease. Despite an emerging

interest in characterizing the ecology of human-associated microbial communities, the complex
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Figure 3: ROC curves for four different methods in Models 2–4 with a gamma log-basis distribu-
tion.

interactions among microbial taxa remain poorly understood (Coyte, Schluter, and Foster 2015).

We now illustrate the proposed method by applying it to a human gut microbiome dataset described

by Wu et al. (2011), which was collected from a cross-sectional study of 98 healthy individuals

at the University of Pennsylvania. DNA from stool samples of these subjects were analyzed by

454/Roche pyrosequencing of 16S rRNA gene segments, resulting in an average of 9265 reads

per sample, with a standard deviation of 3864. Taxonomic assignment yielded 3068 operational

taxonomic units, which were further combined into 87 genera that appeared in at least one sample.

Demographic information, including body mass index (BMI), was also collected from the subjects.
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Table 4: Comparisons of means (standard errors) of performance measures for the COAT and
oracle methods in Models 2–4 with p = 500 and a normal log-basis distribution based on 100
replications.

Model 2 Model 3 Model 4

n COAT Oracle COAT Oracle COAT Oracle

Matrix L1-norm loss
250 15.42 (0.02) 15.42 (0.02) 6.82 (0.04) 6.81 (0.04) 3.37 (0.05) 3.37 (0.05)
500 15.05 (0.11) 15.06 (0.11) 6.66 (0.08) 6.66 (0.08) 3.00 (0.08) 2.99 (0.08)
1000 13.25 (0.19) 13.26 (0.18) 6.14 (0.11) 6.13 (0.11) 2.36 (0.10) 2.35 (0.10)

Spectral norm loss
250 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.99 (0.01) 0.99 (0.01)
500 0.98 (0.01) 0.98 (0.01) 0.99 (0.01) 0.99 (0.01) 0.92 (0.02) 0.92 (0.02)
1000 0.92 (0.01) 0.92 (0.01) 0.93 (0.01) 0.93 (0.01) 0.72 (0.02) 0.73 (0.02)

Frobenius norm loss
250 9.87 (0.00) 9.87 (0.00) 11.37 (0.01) 11.37 (0.01) 4.13 (0.02) 4.14 (0.02)
500 9.74 (0.02) 9.74 (0.02) 11.04 (0.02) 11.04 (0.02) 3.89 (0.03) 3.88 (0.03)
1000 9.03 (0.02) 9.03 (0.02) 9.93 (0.02) 9.92 (0.03) 3.05 (0.03) 3.04 (0.03)

True positive rate
250 0.01 (0.00) 0.01 (0.00) 0.02 (0.01) 0.02 (0.01) 0.30 (0.02) 0.29 (0.02)
500 0.08 (0.01) 0.08 (0.01) 0.14 (0.01) 0.14 (0.01) 0.60 (0.02) 0.60 (0.02)
1000 0.37 (0.01) 0.37 (0.01) 0.49 (0.01) 0.49 (0.01) 0.88 (0.01) 0.88 (0.01)

False positive rate
250 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
500 0.01 (0.00) 0.01 (0.00) 0.03 (0.00) 0.03 (0.00) 0.01 (0.00) 0.01 (0.00)
1000 0.08 (0.00) 0.08 (0.00) 0.13 (0.01) 0.13 (0.01) 0.01 (0.00) 0.01 (0.00)

Run time (seconds)
250 8.55 (0.07) 8.55 (0.08) 8.44 (0.09) 8.43 (0.08) 8.46 (0.05) 8.46 (0.06)
500 8.69 (0.06) 8.69 (0.06) 10.46 (0.10) 10.45 (0.12) 10.46 (0.11) 10.45 (0.10)
1000 9.37 (0.12) 9.36 (0.14) 11.41 (0.21) 11.40 (0.16) 11.37 (0.13) 11.28 (0.10)

We are interested in identifying and comparing the correlation structures among bacterial genera

between lean and obese subjects. We therefore divided the dataset into a lean group (BMI < 25,

n = 63) and an obese group (BMI ≥ 25, n = 35), and focused on the p = 40 bacterial genera that

appeared in at least four samples in each group. The count data were transformed into compositions

after zero counts were replaced by 0.5.
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Table 5: Comparisons of means (standard errors) of performance measures for the COAT and
oracle methods in Models 2–4 with p = 500 and a gamma log-basis distribution based on 100
replications.

Model 2 Model 3 Model 4

n COAT Oracle COAT Oracle COAT Oracle

Matrix L1-norm loss
250 15.42 (0.02) 15.42 (0.02) 6.82 (0.03) 6.82 (0.03) 3.37 (0.04) 3.37 (0.04)
500 15.08 (0.11) 15.07 (0.11) 6.67 (0.09) 6.66 (0.09) 3.02 (0.09) 3.01 (0.10)
1000 13.26 (0.21) 13.26 (0.20) 6.14 (0.11) 6.13 (0.11) 2.37 (0.09) 2.36 (0.09)

Spectral norm loss
250 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.99 (0.01) 0.99 (0.01)
500 0.98 (0.01) 0.98 (0.01) 0.99 (0.01) 0.99 (0.01) 0.92 (0.03) 0.92 (0.03)
1000 0.92 (0.02) 0.92 (0.02) 0.93 (0.01) 0.93 (0.01) 0.73 (0.03) 0.73 (0.03)

Frobenius norm loss
250 9.87 (0.00) 9.87 (0.00) 11.37 (0.01) 11.37 (0.01) 4.14 (0.02) 4.14 (0.02)
500 9.75 (0.02) 9.75 (0.02) 11.04 (0.02) 11.04 (0.02) 3.89 (0.04) 3.89 (0.04)
1000 9.03 (0.02) 9.03 (0.02) 9.93 (0.02) 9.92 (0.03) 3.07 (0.04) 3.06 (0.04)

True positive rate
250 0.01 (0.00) 0.01 (0.00) 0.02 (0.01) 0.02 (0.01) 0.29 (0.01) 0.30 (0.02)
500 0.08 (0.01) 0.08 (0.01) 0.14 (0.01) 0.14 (0.01) 0.60 (0.02) 0.60 (0.02)
1000 0.37 (0.01) 0.37 (0.01) 0.49 (0.01) 0.49 (0.01) 0.88 (0.01) 0.88 (0.01)

False positive rate
250 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
500 0.01 (0.00) 0.01 (0.00) 0.03 (0.00) 0.03 (0.00) 0.01 (0.00) 0.01 (0.00)
1000 0.08 (0.00) 0.08 (0.00) 0.13 (0.01) 0.13 (0.01) 0.01 (0.00) 0.01 (0.00)

Run time (seconds)
250 8.39 (0.11) 8.37 (0.08) 8.34 (0.05) 8.33 (0.05) 8.29 (0.05) 8.28 (0.05)
500 8.69 (0.06) 8.68 (0.10) 10.36 (0.10) 10.35 (0.11) 10.34 (0.11) 10.33 (0.10)
1000 9.41 (0.07) 9.39 (0.12) 11.41 (0.21) 11.40 (0.16) 10.18 (0.08) 10.15 (0.08)

We applied the COAT method with soft thresholding to each group, and used tenfold cross-

validation to select the tuning parameter. The resulting estimate was represented by a correlation

network among the bacterial genera with each edge representing a nonzero correlation. To as-

sess the stability of support recovery, we further generated 100 bootstrap samples for each group

and repeated the thresholding procedure on each sample. The stability of the correlation network

was measured by the average proportion of edges reproduced by each bootstrap replicate. Finally,
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Table 6: Numbers of positive and negative correlations and stability of correlation networks for
three different methods applied to the gut microbiome data.

Lean Obese

COAT CCLasso REBACCA COAT CCLasso REBACCA

Positive correlations 114 98 18 61 43 12
Negative correlations 140 95 11 80 43 9
Network stability 0.90 0.86 0.57 0.87 0.80 0.53

we retained only the edges in the correlation network that were reproduced in at least 85 boot-

strap replicates. The numbers of positive and negative correlations and the stability of correlation

networks are reported in Table 6; the results for the CCLasso and REBACCA methods are also in-

cluded for comparison. We see that COAT achieves the highest stability among the three methods

and identifies more edges based on the stability criterion. The correlation network identified by

REBACCA seems the least stable.

The correlation networks identified by the COAT method for the two groups are displayed in

Figure 4. Clearly, the networks for the lean and obese groups show markedly different architec-

ture, indicating that the obese microbiome is less modular with less complex interactions between

the modules. This phenomenon has been demonstrated by previous studies and is possibly due to

adaptation of the microbiome to low-diversity environments (Greenblum, Turnbaugh, and Boren-

stein 2012). Table 6 and Figure 4 also suggest that the gut microbial network tends to contain

more competitive (negative) interactions than cooperative (positive) ones, which seems consistent

with the recent finding that the ecological stability of the gut microbiome can be attributed to the

benefits from limiting positive feedbacks and dampening cooperative networks (Coyte, Schluter,

and Foster 2015).

A closer inspection of the correlation networks identifies Bacteroides and Prevotella as two key

genera of the gut microbiome. The abundances of these two genera are well known to distinguish

two gut microbial enterotypes, which are strongly associated with long-term dietary patterns (Aru-

mugam et al. 2011; Wu et al. 2011). The negative correlations between Bacteroides and Prevotella

(−0.372 in the lean group and−0.377 in the obese group) are well explained by the diet-dependent

26



Eggerthella

Bacteroides
Barnesiella

Butyricimonas

Odoribacter

Parabacteroides

Paraprevotella

Prevotella

Alistipes

Gemella

Granulicatella

Lactobacillus

Streptococcus

Clostridium

Anaerofustis

EubacteriumAnaerovorax

Mogibacterium

Blautia

Coprococcus

Dorea

Roseburia

Anaerotruncus

Butyricicoccus

Faecalibacterium

Oscillibacter

Ruminococcus

Subdoligranulum

Acidaminococcus

Dialister

Megasphaera

Phascolarctobacterium

Veillonella

Catenibacterium

Coprobacillus

Holdemania

Turicibacter

Parasutterella

Sutterella

Oxalobacter

Actinobacteria
Bacteroidetes
Firmicutes
Proteobacteria

Actinobacteria
Bacteroidetes
Firmicutes
Proteobacteria

(a) Lean

Eggerthella

Bacteroides

Barnesiella

Butyricimonas

Odoribacter

Parabacteroides

Paraprevotella
Prevotella

Alistipes
Gemella

Granulicatella

Lactobacillus

Streptococcus

Clostridium

Anaerofustis

Eubacterium

Anaerovorax

Mogibacterium

Blautia

Coprococcus

Dorea

Roseburia

Anaerotruncus

Butyricicoccus

Faecalibacterium

Oscillibacter

Ruminococcus

Subdoligranulum

Acidaminococcus

Dialister

Megasphaera

Phascolarctobacterium

Veillonella

Catenibacterium

Coprobacillus

Holdemania

Turicibacter

Parasutterella

Sutterella

Oxalobacter

Actinobacteria
Bacteroidetes
Firmicutes
Proteobacteria

Actinobacteria
Bacteroidetes
Firmicutes
Proteobacteria

(b) Obese

Figure 4: Correlation networks identified by the COAT method for the lean and obese groups
in the gut microbiome data. Positive and negative correlations are displayed in green and red,
respectively. The thickness of edges indicates the magnitude of correlations.
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enterotypes and the within-body separation of the two genera (Jordán et al. 2015). Moreover, recent

studies have suggested several keystone species belonging to the genus Bacteroides, through which

the structure of gut microbial communities may be influenced by small perturbations (Fisher and

Mehta 2014). Also, the Firmicutes-enriched microbiome has been found to hold greater metabolic

potential than the Bacteroidetes-enriched microbiome for more efficient energy harvest from the

diet (Turnbaugh et al. 2006). Figure 4 seems to support these findings, in view of the central posi-

tion of Bacteroides in the networks and its strong correlations with a few genera belonging to the

Firmicutes. Such patterns, however, are less clearly seen in the correlation networks identified by

the other two methods.

7 Discussion

Understanding the dependence structure among microbial taxa within communities, including the

co-occurrence and co-exclusion relationships between microbial taxa, is an important problem in

microbiome research. Such structures provide biological insights into the community dynamics

and factors that change the community structures. To overcome the difficulties arising from the

unit-sum constraint of the observed compositional data, we have developed a COAT method to

estimate the sparse covariance matrix of the latent log-basis components. Our method is based

on a decomposition of the variation matrix into a rank-2 component and a sparse component.

The resulting procedure is equivalent to thresholding the sample centered log-ratio covariance

matrix, and thus is optimization-free and scalable for large covariance matrices. Our method also

bears some resemblance to the POET method proposed by Fan, Liao, and Mincheva (2013) in that

underlying both methods is a low-rank plus sparse matrix decomposition. The rank-2 component

in our method, however, arises from the covariance structure of compositional data rather than a

factor model assumption. As a result, it can be obtained by simple algebraic operations without

computing the principal components.

Our simulation results demonstrate that COAT performs almost as well as the oracle estimator

that assumes the basis components are observed, and outperforms CCLasso and REBACCA in
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terms of both estimation and support recovery. COAT performs consistently better even when

the log-basis has a skewed distribution such as the gamma, as is often observed in microbiome

studies. Besides, COAT can be tens to hundreds of times faster than existing optimization-based

estimators. In the application to gut microbiome data, COAT leads to more stable and biologically

more interpretable results for comparing the dependence structures of lean and obese microbiomes.

We have provided conditions for the approximate and exact identifiability of the covariance

parameters, and have established rates of convergence and support recovery guarantees for the

COAT estimator. The rate of convergence under the spectral norm includes an extra term of

s0(p)(s0(p)/p)
1−q in addition to the minimax optimal rate for sparse covariance estimation. This

term represents an approximation error due to using Γ0 as a proxy for Ω0, which vanishes asymp-

totically under mild assumptions as the dimensionality increases. Although it reflects the level of

parameter identifiability and cannot be removed without more stringent assumptions on the param-

eter space, it remains an open question whether it is rate-optimal.

The sparsity assumption s0(p) = o(p) is very mild and seems to be supported by the empirical

literature on ecological networks. For instance, Rejmánek and Starý (1979) and Yodzis (1980)

showed that connectance, which is defined as the fraction of interactions in a network, may decline

considerably as the number of species increases. More recently, Dunne, Williams, and Martinez

(2002) analyzed 16 high-quality food webs and found that connectance ranges from 0.026 to 0.315,

indicating that most ecological networks are indeed sparse.

The proposed methodology may be extended in several ways. First, it would be possible to

develop an iterative optimization procedure based on the decomposition (5). For example, one

may consider the regularized estimator

Ω̂opt = arg min
Ω
{‖T̂− ω1T − 1ωT + 2Ω‖2F + Pλ(Ω)},

where ω consists of the diagonal entries of Ω and Pλ(·) is a sparsity-inducing penalty function.

Note that COAT can be viewed as a one-step approximation to Ω̂opt with an appropriately chosen

penalty function. Solving the full optimization problem is computationally more expensive but
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could improve on the performance of COAT. Another worthwhile extension would be to develop

a method that deals with zero counts directly. One may, in principle, combine the ideas presented

here with models that account for sampling and structural zeros. The issues of identifiability and

computational feasibility are the major concerns with such extensions.

Appendix: Proofs

A.1 Proof of Proposition 1

Using the fact that the centered log-ratio covariance matrix Γ0 is symmetric and has all zero row

sums (Aitchison 2003, Property 4.6), we have

〈γ01
T + 1γT0 ,Γ0〉 = tr{(γ01

T + 1γT0 )TΓ0} = tr(1γT0 Γ0) + tr(γ01
TΓ0)

= tr(γT0 Γ01) + tr(γ01
TΓ0) = 0,

that is, the components γ01
T + 1γT0 and Γ0 are orthogonal to each other.

To show the desired inequality, by the identity (4.35) of Aitchison (2003), we have

ω0
ij − γ0ij = ω0

ij − (ω0
ij − ω0

i· − ω0
j· + ω0

··) = ω0
i· + ω0

j· − ω0
··.

Therefore,

‖Ω0 − Γ0‖max ≤ max
i,j

(|ω0
i·|+ |ω0

j·|+ |ω0
··|) ≤ 3p−1‖Ω0‖1.

A.2 Proof of Proposition 2

We first claim that if α = (α1, . . . , αp)
T 6= 0, then the matrix A ≡ α1T + 1αT has at least p− 1

nonzero upper-triangular entries. To prove this, without loss of generality, assume α1 6= 0 and that

the last q entries of the first row of A are zero, where 0 ≤ q ≤ p − 1; that is, α1 + αj 6= 0 for

1 ≤ j ≤ p − q, and α1 + αp−q+1 = · · · = α1 + αp = 0. The latter implies αp−q+1 = · · · =

αp = −α1 6= 0, which gives rise to
(
q
2

)
= q(q − 1)/2 nonzero entries at positions (i, j) with

p − q + 1 ≤ i < j ≤ p. Putting these pieces together, we obtain that the number of nonzero
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upper-triangular entries in A is at least

f(q) ≡ p− q − 1 +
q(q − 1)

2
≥ f(1) = f(2) = p− 2.

To show that the lower bound p − 2 is not attainable, note that if there are only p − 2 nonzero

upper-triangular entries, then q = 1 or 2, and we have α2 + αp = · · · = αp−2 + αp = 0, which

implies α2 = · · · = αp−2 = −αp = α1 6= 0. Since p ≥ 5, this gives rise to at least one nonzero

entry at positions (i, j) with 2 ≤ i < j ≤ p− 2, which is a contradiction.

Now suppose se(p) < (p− 1)/2 and that Ω1 and Ω2 in B0(se(p)) lead to T1 = T2, that is,

(ω1 − ω2)1
T + 1(ω1 − ω2)

T = 2(Ω1 −Ω2).

Note that the right-hand side has fewer than p−1 nonzero upper-triangular entries. Then it follows

from the above claim that Ω1 = Ω2.

We prove the other direction by showing that, if se(p) ≥ (p− 1)/2, then there exist Ω1 and Ω2

in B0(se(p)) with Ω1 6= Ω2 that lead to T1 = T2. Indeed, let

Ω1 =


1 + c c1Tp1 0Tp2

c1p1 Ip1 0

0p2 0 Ip2

 , Ω2 =


1− c 0Tp1 −c1

T
p2

0p1 Ip1 0

−c1p2 0 Ip2

 ,

where p1 = b(p− 1)/2c, p2 = p− 1− p1, and 0 < |c| < 1. Then it is easy to verify that

T1 = T2 =


0 (2− c)1Tp1 (2 + c)1Tp2

(2− c)1p1 2(1p11
T
p1
− Ip1) 21p11

T
p2

(2 + c)1p2 21p21
T
p1

2(1p21
T
p2
− Ip2)

 .

This completes the proof.

A.3 Concentration Inequalities

To prepare for the proofs of Theorems 1 and 2, we first establish some useful concentration in-

equalities. For notational simplicity, the constants C1, C2, . . . below may vary from line to line.
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Lemma 1. Under Condition 1, there exist constants C1, C2 > 0 such that

P

(
max
j

∣∣∣∣∣ 1n
n∑
k=1

Ykj

∣∣∣∣∣ ≥ t

)
≤ C1pe

−C2nt2 (A.1)

and

P

(
max
i,j

∣∣∣∣∣ 1n
n∑
k=1

YkiYkj − EYiYj

∣∣∣∣∣ ≥ t

)
≤ C1p

2e−C2nt2 (A.2)

for sufficiently small t > 0. Moreover, if log p = o(n1/5), then there exists a constant C3 > 0 such

that

P

(
max
i,j,`,m

∣∣∣∣∣ 1n
n∑
k=1

YkiYkjYk`Ykm − EYiYjY`Ym

∣∣∣∣∣ ≥ ε

)
= O(p−C3) (A.3)

for every constant ε > 0.

Proof. Inequalities (A.1) and (A.2) follow, for example, from Exercise 2.27 of Boucheron, Lugosi,

and Massart (2013); see also Bickel and Levina (2008).

To prove (A.3), let Zkijlm = YkiYkjYk`Ykm and Zijlm = YiYjY`Ym. Note first that, by Condition

1 and the sub-Gaussian tail bound, for any K > 0 and i, j, `,m,

P (|Zijlm| > K) ≤ 4P (|Yj| > K1/4) ≤ 8e−α
√
K/8.

Hence,

E|Zijlm|I(|Zijlm| > K) =

∫ ∞
0

P (|Zijlm|I(|Zijlm| > K) > z) dz

= KP (|Zijlm| > K) +

∫ ∞
K

P (|Zijlm| > z) dz

≤ 8Ke−α
√
K/8 +

∫ ∞
K

8e−α
√
z/8 dz

=
8

α2
(α2K + 16α

√
K + 128)e−α

√
K/8,

which is less than ε/4 if we choose K sufficiently large. Then we have

P

(
max
i,j,`,m

∣∣∣∣∣ 1n
n∑
k=1

Zkijlm − EZijlm

∣∣∣∣∣ ≥ ε

)

≤ P

(
max
i,j,`,m

∣∣∣∣∣ 1n
n∑
k=1

ZkijlmI(|Zkijlm| ≤ K)− EZijlmI(|Zijlm| ≤ K)

∣∣∣∣∣ ≥ ε

2

)
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+ P

(
max
i,j,`,m

∣∣∣∣∣ 1n
n∑
k=1

ZkijlmI(|Zkijlm| > K)

∣∣∣∣∣ ≥ ε

4

)

≡ T1 + T2.

By Hoeffding’s inequality and the union bound,

T1 ≤ 2p4 exp

(
− nε2

8K2

)
.

Also, by Condition 1 and the sub-Gaussian tail bound,

T2 ≤ P

(
max
k,i,j,`,m

|Zkijlm| > K

)
≤ P

(
max
k,j
|Ykj| > K1/4

)
≤ 2npe−α

√
K/8.

Combining both terms, choosing K = C2(log p + log n)2 with C > 8/α, and noting log p =

o(n1/5), we arrive at

P

(
max
i,j,`,m

∣∣∣∣∣ 1n
n∑
k=1

Zkijlm − EZijlm

∣∣∣∣∣ ≥ ε

)

≤ 2p4 exp

(
− nε2

8C4(log p+ log n)4

)
+ 2(np)1−Cα/8

= O(p−C3)

for some C3 > 0. This proves (A.3) and completes the proof.

Lemma 2. Under Conditions 1–4, there exist constants C1, C2, C3 > 0 such that

P

(
max
i,j
|θ̂ij − θij| ≥ ε

)
= O(p−C3) (A.4)

and

P

(
max
i,j
|γ̂ij − ω0

ij|/
√
θ̂ij ≥ C1

√
log p

n
+ C2

s0(p)

p

)
= O(p−C3) (A.5)

for every constant ε > 0.

Proof. We first prove (A.4). Define

θ̃ij =
1

n

n∑
k=1

(γkiγkj − γ̃ij)2,
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where γ̃ij = n−1
∑n

k=1 γkiγkj . We then write

θ̂ij − θ̃ij =
1

n

n∑
k=1

{(γkiγkj − γ̃ij)− γkiγ̄j − γkj γ̄i + 2γ̄iγ̄j}2 −
1

n

n∑
k=1

(γkiγkj − γ̃ij)2

=
2

n

n∑
k=1

(γkiγkj − γ̃ij)(−γkiγ̄j − γkj γ̄i + 2γ̄iγ̄j) +
1

n

n∑
k=1

(−γkiγ̄j − γkj γ̄i + 2γ̄iγ̄j)
2.

(A.6)

Note that, by definition, γkj = Ykj − Ȳk, where Ȳk = p−1
∑p

j=1 Ykj . Define γj = Yj − Ȳ , where

Ȳ = p−1
∑p

j=1 Yj . Since Yj are uniformly sub-Gaussian by Condition 1, γj are also uniformly

sub-Gaussian. Using a truncation argument similar to that for proving (A.3), we can show that

P

(
max
i,j

∣∣∣∣∣ 1n
n∑
k=1

γ2kiγkj − Eγ2i γj

∣∣∣∣∣ ≥ C1

)
= O(p−C3)

for some C1, C3 > 0. The sub-Gaussian tails imply also that Eγ2i |γj| ≤ 1
2
(Eγ4i + Eγ2j ) = O(1).

Combining these two pieces yields

P

(
max
i,j

∣∣∣∣∣ 1n
n∑
k=1

γ2kiγkj

∣∣∣∣∣ ≥ C1

)
= O(p−C3). (A.7)

Note that

max
j
|γ̄j| = max

j

∣∣∣∣∣ 1n
n∑
k=1

γkj

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
k=1

Ykj −
1

np

n∑
k=1

p∑
i=1

Yki

∣∣∣∣∣ ≤ 2 max
j

∣∣∣∣∣ 1n
n∑
k=1

Ykj

∣∣∣∣∣ .
Also, it follows from (A.1) in Lemma 1 that

P

(
max
j

∣∣∣∣∣ 1n
n∑
k=1

Ykj

∣∣∣∣∣ ≥ C1

√
log p

n

)
= O(p−C3)

for some C1, C3 > 0. Hence,

P

(
max
j
|γ̄j| ≥ C1

√
log p

n

)
= O(p−C3). (A.8)

Inequalities (A.7) and (A.8) together imply

P

(
max
i,j

∣∣∣∣∣ 1n
n∑
k=1

γ2kiγkj γ̄j

∣∣∣∣∣ ≥ C1

√
log p

n

)
= O(p−C3). (A.9)

We can similarly bound the other terms in (A.6) and obtain

P

(
max
i,j
|θ̂ij − θ̃ij| ≥ C1

√
log p

n

)
= O(p−C3). (A.10)
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Next, write

θ̃ij − θij =
1

n

n∑
k=1

(γkiγkj − γ̃ij)2 − Var(YiYj)

=
1

n

n∑
k=1

γ2kiγ
2
kj − EY 2

i Y
2
j − {γ̃2ij − (ω0

ij)
2}

≡ T1 + T2.

To bound the term T1, we further write

T1 =
1

n

n∑
k=1

{(Yki − Ȳk)(Ykj − Ȳk)}2 − EY 2
i Y

2
j

=
1

n

n∑
k=1

(
YkiYkj − YkiȲk − YkjȲk + Ȳ 2

k

)2 − EY 2
i Y

2
j

=
1

n

n∑
k=1

Y 2
kiY

2
kj − EY 2

i Y
2
j +

2

n

n∑
k=1

YkiYkj(−YkiȲk − YkjȲk + Ȳ 2
k )

+
1

n
(−YkiȲk − YkjȲk + Ȳ 2

k )2.

Consider the event A1 on which

max
i,j,`,m

∣∣∣∣∣ 1n
n∑
k=1

YkiYkjYk`Ykm − EYiYjY`Ym

∣∣∣∣∣ ≤ ε1.

Then, on A1, we have ∣∣∣∣∣ 1n
n∑
k=1

Y 2
kiY

2
kj − EY 2

i Y
2
j

∣∣∣∣∣ ≤ ε1.

To bound the next term in T1, we write

1

n

n∑
k=1

Y 2
kiYkjȲk =

1

n

n∑
k=1

Y 2
kiYkjȲk − EY 2

i YjȲ + EY 2
i YjȲ

=
1

p

p∑
`=1

(
1

n

n∑
k=1

Y 2
kiYkjYk` − EY 2

i YjY`

)
+

1

p

p∑
`=1

EY 2
i YjY`,

which, on A1 and by Condition 4, is bounded by ε1 + s1(p)/p. We can similarly bound the other

terms in T1 and obtain, on A1,

|T1| ≤ 16ε1 + 15s1(p)/p. (A.11)
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To bound the term T2, note that

γ̃ij − ω0
ij =

1

n

n∑
k=1

(Yki − Ȳk)(Ykj − Ȳk)− EYiYj

=
1

n

n∑
k=1

YkiYkj − EYiYj +
1

n

n∑
k=1

(−YkiȲk − YkjȲk + Ȳ 2
k ). (A.12)

Consider the event A2 on which

max
i,j

∣∣∣∣∣ 1n
n∑
k=1

YkiYkj − EYiYj

∣∣∣∣∣ ≤ ε2.

To bound the next term in (A.12), we write

1

n

n∑
k=1

YkiȲk =
1

n

n∑
k=1

YkiȲk − EYiȲ + EYiȲ

=
1

p

p∑
j=1

(
1

n

n∑
k=1

YkiYkj − EYiYj

)
+

1

p

p∑
j=1

ω0
ij,

which, on A2 and by Condition 2, is bounded by ε2 + M1−qs0(p)/p. We can similarly bound the

other terms in (A.12) and obtain, on A2,

|γ̃ij − ω0
ij| ≤ 4ε2 + 3M1−qs0(p)/p. (A.13)

Note also that, on A2,

|γ̃ij + ω0
ij| ≤ |γ̃ij − ω0

ij|+ 2|ω0
ij| ≤ 4ε2 + 3M1−qs0(p)/p+ 2M.

Hence, on A2, we have

|T2| = |γ̃ij − ω0
ij||γ̃ij + ω0

ij| ≤ (4ε2 + 3M1−qs0(p)/p)(4ε2 + 3M1−qs0(p)/p+ 2M). (A.14)

Finally, it follows from Lemma 1 that the event A1 ∩ A2 occurs with probability at least 1 −

O(p−C3) for all constants ε1, ε2 > 0 and some constant C3 > 0. Combining (A.10), (A.11), and

(A.14) and noting log p = o(n), s0(p) = o(p), and s1(p) = o(p), we arrive at (A.4).

It remains to prove (A.5). We first write

γ̂ij − γ̃ij =
1

n

n∑
k=1

(γki − γ̄i)(γkj − γ̄j)−
1

n

n∑
k=1

γkiγkj
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=
1

n

n∑
k=1

(−γkiγ̄i − γkj γ̄j + γ̄iγ̄j).

Using arguments similar to those for proving (A.9), we can show that

P

(
max
i,j

∣∣∣∣∣ 1n
n∑
k=1

γkiγ̄j

∣∣∣∣∣ ≥ C1

√
log p

n

)
= O(p−C3).

We can similarly bound the other two terms and obtain

P

(
max
i,j
|γ̂ij − γ̃ij| ≥ C1

√
log p

n

)
= O(p−C3).

Taking ε2 = C1

√
(log p)/n in (A.13), we have

P

(
max
i,j
|γ̃ij − ω0

ij| ≥ C1

√
log p

n
+ C2

s0(p)

p

)
= O(p−C3).

The above two inequalities together imply

P

(
max
i,j
|γ̂ij − ω0

ij| ≥ C1

√
log p

n
+ C2

s0(p)

p

)
= O(p−C3). (A.15)

From Condition 3 and (A.4) with ε2 = τ/2, it follows that |θ̂ij| ≥ τ/2 with probability at least

1−O(p−C3). This, together with (A.15), implies (A.5) and completes the proof.

A.4 Proof of Theorem 1

By the triangle inequality, we have

‖Ω̂−Ω0‖1 ≤
p∑
j=1

|Sλij(ω0
ij)− ω0

ij|+
p∑
j=1

|Sλij(γ̂ij)− Sλij(ω0
ij)|. (A.16)

Using Conditions (i) and (ii) that define a general thresholding function, the first term above is

bounded by

p∑
j=1

|ω0
ij|I(|ω0

ij| ≤ λij) +

p∑
j=1

λijI(|ω0
ij| > λij)

=

p∑
j=1

|ω0
ij|q|ω0

ij|1−qI(|ω0
ij| ≤ λij) +

p∑
j=1

λqijλ
1−q
ij I(|ω0

ij| > λij)

≤
p∑
j=1

|ω0
ij|qλ

1−q
ij .
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On the other hand, the second term in (A.16) is bounded by

2

p∑
j=1

|γ̂ij|I(|γ̂ij| > λij, |ω0
ij| ≤ λij) + 2

p∑
j=1

|ω0
ij|I(|γ̂ij| ≤ λij, |ω0

ij| > λij)

+

p∑
j=1

|Sλij(γ̂ij)− Sλij(ω0
ij)|I(|γ̂ij| > λij, |ω0

ij| > λij)

≡ T1 + T2 + T3.

To bound the term T1, we write

T1
2
≤

p∑
j=1

|γ̂ij − ω0
ij|I(|γ̂ij| > λij, |ω0

ij| ≤ λij/2)

+

p∑
j=1

|γ̂ij − ω0
ij|I(|γ̂ij| > λij, λij/2 < |ω0

ij| ≤ λij) +

p∑
j=1

|ω0
ij|I(|γ̂ij| > λij, |ω0

ij| ≤ λij)

≡ T4 + T5 + T6.

Consider the event B1 on which |γ̂ij − ω0
ij| ≤ λij/2 for all i, j. On B1, we have

T4 ≤
p∑
j=1

|γ̂ij − ω0
ij|I(|γ̂ij − ω0

ij| > λij/2) = 0,

T5 ≤
p∑
j=1

(
λij
2

)q (
λij
2

)1−q

I(|γ̂ij| > λij, λij/2 < |ω0
ij| ≤ λij) ≤

1

21−q

p∑
j=1

|ω0
ij|qλ

1−q
ij ,

and

T6 ≤
p∑
j=1

|ω0
ij|qλ

1−q
ij .

Combining these pieces yields

T1 ≤ 2

(
1 +

1

21−q

) p∑
j=1

|ω0
ij|qλ

1−q
ij ≤ 4

p∑
j=1

|ω0
ij|qλ

1−q
ij .

We can similarly bound the terms T2 and T3 on B1:

T2 ≤ 2

p∑
j=1

(
|γ̂ij − ω0

ij|+ |γ̂ij|
)
I(|γ̂ij| ≤ λij, |ω0

ij| > λij)

≤ 2

p∑
j=1

(
λij
2

+ λij

)
I(|γ̂ij| ≤ λij, |ω0

ij| > λij) ≤ 3

p∑
j=1

|ω0
ij|qλ

1−q
ij ,
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T3 ≤
p∑
j=1

(
|γ̂ij − ω0

ij|+ |Sλij(γ̂ij)− γ̂ij|+ |Sλij(ω0
ij)− ω0

ij|
)
I(|γ̂ij| > λij, |ω0

ij| > λij)

≤
p∑
j=1

(
λij
2

+ λij + λij

)
I(|γ̂ij| > λij, |ω0

ij| > λij) ≤
5

2

p∑
j=1

|ω0
ij|qλ

1−q
ij .

Collecting all terms, we obtain, on B1,

‖Ω̂−Ω0‖1 ≤
21

2

p∑
j=1

|ω0
ij|qλ

1−q
ij . (A.17)

Next, we consider the event B2 on which |θ̂ij − θij| ≤ τ for all i, j. From Condition 3 we have,

on B2,

θ̂ij ≤ |θ̂ij − θij|+ θij ≤ τ + θij ≤ 2θij. (A.18)

Note that, by Condition 1,

θij ≤ EY 2
i Y

2
j ≤

1

2
(EY 4

i + EY 4
j ) ≤ 2

α2
. (A.19)

Taking λij = δ
√
θ̂ij with δ = C1

√
(log p)/n + C2s0(p)/p in (A.17) and applying (A.18) and

(A.19), we obtain, on B1 ∩B2,

‖Ω̂−Ω0‖1 ≤
21

2

p∑
j=1

|ω0
ij|qδ1−q

(
2

α

)1−q

≤ 21

α
s0(p)

(
C1

√
log p

n
+ C2

s0(p)

p

)1−q

.

We conclude the proof by noting that the event B1 ∩ B2 occurs with probability 1 − O(p−C3) by

Lemma 2 and that the spectral norm is bounded by the matrix L1-norm.

A.5 Proof of Theorem 2

It follows from Condition (i) and (A.5) that

P
(
ω̂ij 6= 0, ω0

ij = 0 for some i, j
)
≤ P

(
max
i,j
|γ̂ij − ω0

ij| ≥ λij

)
= P

(
max
i,j
|γ̂ij − ω0

ij|/
√
θ̂ij ≥ C1

√
log p

n
+ C2

s0(p)

p

)
= O(p−C3),

which proves (13).
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To prove (15), note that, by Condition (ii),

P
(
sgn(ω̂ij) 6= sgn(ω0

ij), ω
0
ij 6= 0 for some i, j

)
≤ P

(
|γ̂ij − ω0

ij| ≥ |ω0
ij| − λij for some i, j

)
.

Also, by taking ε = 3τ/4 in (A.4), we have, with probability 1−O(p−C3),∣∣∣∣√θ̂ij −
√
θij

∣∣∣∣ =
|θ̂ij − θij|√
θ̂ij +

√
θij

≤ 3τ/4√
τ/4 +

√
τ

=

√
τ

2
,

and hence

|ω0
ij| − λij ≥ Cδ

√
θij − δ

(√
θ̂ij −

√
θij +

√
θij

)
≥ (C − 1)δ

√
τ − δ

√
τ

2
=

(
C − 3

2

)
δ
√
τ

for all i, j. Now applying (A.15) yields

P
(
sgn(ω̂ij) 6= sgn(ω0

ij), ω
0
ij 6= 0 for some i, j

)
= O(p−C3),

which, together with (13), proves the result.

A.6 Proof of Theorem 3

By the argument of Bickel and Levina (2008, Section 3.3), it suffices to consider the procedure

where the sample is randomly split into a training set of size n1 and a test set of size n2 with

n1 � n2 � n. Denote by Ω̂1(δ) the COAT estimator based on the training set and Γ̂2 the sample

centered log-ratio covariance matrix based on the test set. Define the oracle tuning parameter

δ̂∗ = δĵ∗ with

ĵ∗ = arg min
j
‖Ω̂1(δj)−Ω0‖2F .

It follows from Lemma 2 and the proof of Theorem 1 that

‖Ω̂1(δ̂∗)−Ω0‖2F ≤ p‖Ω̂1(δ̂∗)−Ω0‖max‖Ω̂1(δ̂∗)−Ω0‖1

= pOp

(√
log p

n
+
s0(p)

p

)
Op

s0(p)
(√

log p

n
+
s0(p)

p

)1−q

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= Op

ps0(p)
(√

log p

n
+
s0(p)

p

)2−q
 . (A.20)

By the definition of δ̂, we have

‖Ω̂1(δ̂)− Γ̂2‖2F ≤ ‖Ω̂1(δ̂∗)− Γ̂2‖2F ,

or, after some algebra,

‖Ω̂1(δ̂)−Ω0‖2F − ‖Ω̂1(δ̂∗)−Ω0‖2F ≤ 2〈Ω̂1(δ̂)− Ω̂1(δ̂∗), Γ̂2 −Ω0〉.

To bound the right-hand side, note that, by Lemma A.3 of Bickel and Levina (2008),

Emax
j
|〈V, Γ̂2 − Γ0〉| = O

(√
p/n
)

for any p× p matrix V with ‖V‖F = 1. Also, by Proposition 1,

‖Γ0 −Ω0‖F ≤ p‖Γ0 −Ω0‖max = O(s0(p)).

Combining these two pieces yields

Emax
j
|〈V, Γ̂2 −Ω0〉| = O

(√
p/n+ s0(p)

)
.

Therefore, letting ‖Ω̂1(δ̂)−Ω0‖F = an and ‖Ω̂1(δ̂∗)−Ω0‖F = rn, we obtain

a2n − r2n ≤ Op

(√
p/n+ s0(p)

)
(an + rn),

or

an ≤ rn +Op

(√
p/n+ s0(p)

)
.

This, together with (A.20) and the assumption (16), implies

a2n = Op

{
ps0(p)

(
log p

n

)1−q/2
}
,

which concludes the proof.
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