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SUMMARY

Compositional data are ubiquitous in many scientific endeavors. Motivated by microbiome and
metagenomic research, we consider a two-sample testing problem for high-dimensional compo-
sitional data and formulate a testable hypothesis of compositional equivalence for the means of
two latent log-basis vectors. We propose a test through the centered log-ratio transformation of
the compositions. The asymptotic null distribution of the test statistic is derived and its power
against sparse alternatives is investigated. A modified test for paired samples is also considered.
Simulations show that the proposed tests can be significantly more powerful than tests that are
applied to the raw and log-transformed compositions. Their usefulness is illustrated by applica-
tions to gut microbiome composition in obesity and Crohn’s disease.

Some key words: Basis; Centered log-ratio transformation; Compositional equivalence; Extreme value distribution;
Microbiome; Sparse alternative.

1. INTRODUCTION

Compositional data, which belong to a simplex, are ubiquitous in scientific disciplines such as
geology, economics, and genomics. This paper is motivated by microbiome and metagenomic re-
search, where the relative abundances of hundreds to thousands of bacterial taxa on a few tens to
hundreds of individuals are available for analysis (The Human Microbiome Project Consortium,
2012). Due to varying amounts of DNA generating material across different samples, sequencing
read counts are often normalized to relative abundances; the resulting data are therefore compo-
sitional (Li, 2015). One fundamental problem in microbiome data analysis is to test whether two
populations have the same microbiome composition, which can be viewed as a two-sample test-
ing problem for high-dimensional compositional data. Since the components of a composition
must sum to one, applying standard multivariate statistical methods intended for unconstrained
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data directly to compositional data may result in inappropriate or misleading inferences (Aitchi-
son, 2003).

Various methods for compositional data analysis have been developed since the seminal work
of Aitchison (1982). Most existing methods for two-sample testing, however, deal only with the
low-dimensional setting where the dimensionality is smaller than the sample size; see, e.g., the
generalized likelihood ratio tests discussed in Aitchison (2003, §7.5). In this paper, we consider
the two-sample testing problem for high-dimensional compositional data, where compositions
in the (p− 1)-dimensional simplex Sp−1 are thought of as arising from latent basis vectors
in the p-dimensional positive orthant Rp+. In microbiome studies, the basis components may
represent the true abundances of bacterial taxa in a microbial community such as the gut of
a healthy individual (Li, 2015). To circumvent the nonidentifiability issue associated with the
basis vectors, we formulate a testable hypothesis of compositional equivalence for the means of
two log-basis vectors. We then propose a test through the centered log-ratio transformation of
the compositions. The proposed test thus is scale-invariant, which is crucial for compositional
data analysis.

We emphasize here the extrinsic analysis point of view in compositional data analysis (Aitchi-
son, 1982), which leads to biologically meaningful interpretations and is in contrast to intrinsic
analysis, where interest lies solely in the composition. Classical extrinsic analysis, however, pri-
marily concerns problems where the bases are observed, and thus differs radically from the focus
of this paper.

Developing tests for the equality of two high-dimensional means has received much attention;
see, e.g., Bai & Saranadasa (1996), Srivastava & Du (2008), Srivastava (2009), Chen & Qin
(2010) and Cai et al. (2014). These existing tests, however, are not directly applicable to high-
dimensional compositional data because the required regularity conditions are generally not met.
For example, the covariance matrix of compositional data is singular, thereby violating the usual
assumptions on the eigenvalues of the covariance matrix, such as those in Cai et al. (2014). Our
assumptions are imposed on the latent log-basis vectors, which are free of the simplex constraint.
We show that, under mild conditions, the centered log-ratio variables satisfy certain desired prop-
erties, which guarantee the validity of the proposed test. Then the asymptotic null distribution
of the test statistic is derived and the power of the test against sparse alternatives is investigated.
The proposed two-sample test is further modified to accommodate paired samples. All proofs
are deferred to the Appendix.

2. A TESTABLE HYPOTHESIS OF COMPOSITIONAL EQUIVALENCE

Denote by X(k) = (X
(k)
1 , . . . , X

(k)
nk )T the observed nk × p data matrices for group k (k =

1, 2), where X(k)
i represent compositions that lie in the (p− 1)-dimensional simplex Sp−1 =

{(x1, . . . , xp) : xj > 0 (j = 1, . . . , p),
∑p

j=1 xj = 1}. We assume that the compositional vari-
ables arise from a vector of latent variables, which we call the basis. For microbiome data, the
basis components may refer to the true abundances of bacterial taxa in a microbial community.
Denote byW (k) = (W

(k)
1 , . . . ,W

(k)
nk )T the nk × pmatrices of unobserved bases, which generate

the observed compositional data via the normalization

X
(k)
ij = W

(k)
ij

/ p∑
`=1

W
(k)
i` (i = 1, . . . , nk; j = 1, . . . , p; k = 1, 2), (1)

where X(k)
ij and W (k)

ij > 0 are the jth components of X(k)
i and W (k)

i , respectively.
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Denote by Z(k)
i = (Z

(k)
i1 , . . . , Z

(k)
ip )T the log-basis vectors, where Z(k)

ij = logW
(k)
ij . Suppose

that Z(k)
1 , . . . , Z

(k)
nk (k = 1, 2) are two independent samples, each from a distribution with mean

µk = (µk1, . . . , µkp)
T and common covariance matrix Ω = (ωij). One might attempt to test the

hypotheses

H0 : µ1 = µ2 versus H1 : µ1 6= µ2. (2)

These hypotheses, however, are not testable through the observed compositional data X(k) (k =
1, 2). Clearly, a basis is determined by its composition only up to a multiplicative factor, and
the set of bases giving rise to a composition x ∈ Sp−1 forms the equivalence class W(x) =
{(tx1, . . . , txp) : t > 0} (Aitchison, 2003, p. 32). As an immediate consequence, a log-basis
vector is determined by the resulting composition only up to an additive constant, and the set
of log-basis vectors corresponding to x constitutes the equivalence class Z(x) = {(log x1 +
c, . . . , log xp + c) : c ∈ R}. We therefore introduce the following definition.

DEFINITION 1. Two log-basis vectors z1 and z2 are said to be compositionally equivalent if
their components differ by a constant c ∈ R, i.e., z1 = z2 + c1p, where 1p is the p-vector of 1s.

Now, instead of testing the hypotheses in (2), we propose to test

H0 : µ1 = µ2 + c1p for some c ∈ R versus H1 : µ1 6= µ2 + c1p for any c ∈ R, (3)

which are testable using only the observed compositional data. Clearly, H0 in (2) implies H0 in
(3), so that rejecting the latter would lead to rejection of the former. Note, however, thatH0 in (3)
neither implies nor is implied byE(X

(1)
1 ) = E(X

(2)
1 ) orE(logX

(1)
1 ) = E(logX

(2)
1 ). We do not

consider the latter two hypotheses because they are not scale-invariant, whereas we will derive
in § 3·1 an equivalent form of H0 in (3), from which its scale-invariance is obvious. Moreover,
these two hypotheses do not allow us to obtain biological interpretations in terms of the true
underlying abundances.

3. TESTS FOR COMPOSITIONAL EQUIVALENCE

3·1. The centered log-ratio transformation and an equivalent hypothesis
The unit-sum constraint entails that compositional variables must not vary independently,

making many covariance-based multivariate analysis methods inapplicable. Aitchison (1982)
proposed to relax the constraint by performing statistical analysis through log-ratios. Among
various forms of log-ratio transformations, the centered log-ratio transformation has attractive
features and has been widely used. For the observed compositional data X(k) (k = 1, 2), the
centered log-ratio matrices Y (k) = (Y

(k)
1 , . . . , Y

(k)
nk )T are defined by

Y
(k)
ij = log{X(k)

ij /g(X
(k)
i )} (i = 1, . . . , nk; j = 1, . . . , p; k = 1, 2), (4)

where g(x) = (
∏p
i=1 xi)

1/p denotes the geometric mean of a vector x = (x1, . . . , xp)
T. The

relationship (4) can be expressed in the matrix form

Y
(k)
i = G logX

(k)
i , (5)

where G = Ip − p−11p1T
p .
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Let νk = E(Y
(k)
1 ) (k = 1, 2). In view of the scale invariance of the centered log-ratios, we can

replace X(k)
i by W (k)

i in (5) and obtain

Y
(k)
i = GZ

(k)
i , (6)

and hence

νk = Gµk. (7)

The matrix G has rank p− 1 and hence a null space of dimension 1, N (G) ≡ {x ∈ Rp : Gx =
0} = {c1p : c ∈ R}. As a result, ν1 = ν2 if and only if µ1 = µ2 + c1p for some c ∈ R. There-
fore, testing the hypotheses in (3) is equivalent to testing

H0 : ν1 = ν2 versus H1 : ν1 6= ν2. (8)

Despite this equivalence, the hypotheses in (3) are meaningful only when the bases exist, which
is the case in microbiome studies. On the other hand, the hypotheses in (8) concern only the
compositions through the centered log-ratios, from which its scale invariance and testability
using the observed compositional data are evident.

3·2. A two-sample test for compositional equivalence
A natural test statistic for testing H0 in (8), and hence H0 in (3), would be based on the

differences Ȳ (1)
j − Ȳ (2)

j , where Ȳ (k)
j = n−1k

∑nk
i=1 Y

(k)
ij are the sample means of the centered

log-ratios. Moreover, it is well-known that tests against sparse alternatives based on maximum
type statistics are generally more powerful than those based on sum-of-squares type statistics
(Cai et al., 2014). Since in microbiome studies we are mainly interested in the sparse setting
where only a small number of taxa may have different mean abundances, we consider the test
statistic

Mn =
n1n2
n1 + n2

max
16j6p

(Ȳ
(1)
j − Ȳ (2)

j )2

γ̂jj
, (9)

where γ̂jj = (n1 + n2)
−1∑2

k=1

∑nk
i=1(Y

(k)
ij − Ȳ

(k)
j )2 are the pooled sample centered log-ratio

variances.
The asymptotic properties ofMn will be investigated in detail in § 4. Under suitable conditions

on the log-basis variables Z(k)
1j , we will show that the centered log-ratio variables Y (k)

1j are only
weakly dependent and satisfy certain desired properties. As a result, Mn − 2 log p+ log log p
converges in distribution to a type I extreme value or Gumbel variable; see Theorem 1. We can
then define the asymptotic α-level test

Φα = I(Mn > qα + 2 log p− log log p), (10)

where qα = − log π − 2 log log(1− α)−1 is the (1− α)-quantile of the Gumbel distribution.
The null hypothesis H0 in (3) or equivalently (8) is rejected whenever Φα = 1.

Although Mn is similar to the test statistic MI defined in Cai et al. (2014), the theoretical
analysis is radically different, in that our assumptions are not imposed on the observed variables.
Besides, the test statistic based on a linear transformation by the precision matrix proposed by
Cai et al. (2014) is not considered here, because the covariance matrix of Y (k)

1 is singular and its
precision matrix is not well defined.



Two-sample tests for compositional data 5

3·3. A paired test for compositional equivalence
So far we have been concerned with two independent samples. In practice, however, one may

be interested in comparing compositions on the same sample before and after treatment. For such
paired samples, the proposed test requires only slight modification. Now we observe a paired
sample (X

(1)
ij , X

(2)
ij ) (i = 1, . . . , n; j = 1, . . . , p), which is generated by the basis (W

(1)
ij ,W

(2)
ij );

the log-basis (Z
(1)
ij , Z

(2)
ij ) and the centered log-ratios (Y

(1)
ij , Y

(2)
ij ) are the same as defined previ-

ously. Write Dij = Y
(1)
ij − Y

(2)
ij and D̄j = n−1

∑n
i=1Dij . To test H0 in (3) or equivalently (8),

we propose the test statistic

M̃n = n max
16j6p

D̄2
j/γ̃jj ,

where γ̃jj = n−1
∑n

i=1(Dij − D̄j)
2 are the sample variances of Dij . Note that M̃n is different

fromMn defined in (9) only in the variance estimates. Under appropriate assumptions on the log-
basis differences ∆j = Z

(1)
1j − Z

(2)
1j similar to Conditions 1–5 below, we can show that M̃n −

2 log p+ log log p converges in distribution to the same Gumbel variable as in Theorem 1. Hence,
the test Φα defined in (10) is still valid with Mn replaced by M̃n.

4. THEORETICAL RESULTS

4·1. Assumptions and implications
Since we are interested in testing the latent basis structures, we will impose conditions di-

rectly on the log-basis variables. Under the assumption of common basis covariance matrix, the
two populations have a common centered log-ratio covariance matrix Γ = cov(Y

(k)
1 ) (k = 1, 2),

which, in light of (6), is given by

Γ = GΩGT. (11)

Denote the correlation matrices of Z(k)
1 and Y (k)

1 by R = (ρij) and T = (τij), respectively.
We first impose the following conditions concerning the covariance structures of the log-basis

variables:

Condition 1. 1/κ1 6 ωjj 6 κ1 for j = 1, . . . , p and some constant κ1 > 0;

Condition 2. max16i<j6p |ρij | 6 r1 for some constant 0 < r1 < 1; and

Condition 3. max16j6p
∑p

i=1 ρ
2
ij 6 r2 for some constant r2 > 0.

Conditions 1–3 are mild and standard in the high-dimensional testing literature. Condition 1
requires that the variances be bounded away from zero and infinity. Condition 2 is mild since
max16i<j6p |ρij | = 1 would imply that Ω is singular. Condition 3 is weaker than the usual as-
sumption that the maximum eigenvalue of R is bounded.

Under Conditions 1–3, the following proposition shows that similar properties are satisfied by
the centered log-ratio covariance matrix Γ and correlation matrix T .

PROPOSITION 1. Assume that Conditions 1–3 hold. Then, for sufficiently large p, the centered
log-ratio covariance matrix Γ and correlation matrix T satisfy the following properties:

(i) 1/κ2 6 γjj 6 κ2 for j = 1, . . . , p and some constant κ2 > 0;
(ii) max16i<j6p |τij | 6 r3 for some constant 0 < r3 < 1; and

(iii) max16j6p
∑p

i=1 τ
2
ij 6 r4 for some constant r4 > 0.
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We also need a moment condition on the log-basis variables and a restriction on the dimen-
sionality.

Condition 4. There exist constants η,K > 0 such that

E[exp{η(Z
(k)
1j − µkj)2/ωjj}] 6 K (j = 1, . . . , p; k = 1, 2).

Condition 5. We have n1 � n2 � n and log p = o(n1/3), where n = n1n2/(n1 + n2).

Condition 4 is a popular sub-Gaussian tail assumption that can easily be relaxed to the case of
polynomial tails. It allows us to establish the following concentration properties for the centered
log-ratio variables and the pooled sample variances.

PROPOSITION 2. Under Conditions 1 and 3–5, the centered log-ratio variables satisfy

max
i,j,k
|Y (k)
ij − νkj |/γ

1/2
jj = op(n

1/2/ log p), (12)

and the pooled sample centered log-ratio variances γ̂jj satisfy

max
j
|γ̂jj − γjj |/γjj = Op{(log p/n)1/2}. (13)

4·2. Asymptotic properties of the two-sample test
We are now in a position to state our main results concerning the asymptotic properties of the

proposed two-sample test. The validity of the test relies on the fact that certain desired properties
of the centered log-ratio variables can be related to those of the log-basis variables, which have
been established in Propositions 1 and 2. The following theorem derives the asymptotic null
distribution of Mn defined in (9).

THEOREM 1. Under Conditions 1–5, we have, under H0 in (3) or equivalently (8),

pr(Mn − 2 log p+ log log p 6 t)→ exp{−π−1/2 exp(−t/2)}, t ∈ R, n, p→∞.
Theorem 1 shows that the test Φα defined in (10) is indeed asymptotically of level α. To study

the asymptotic power of the test, we consider the alternative

H1 : µ1j 6= µ2j + c, j ∈ S; µ1j = µ2j + c, j ∈ Sc, (14)

for some c ∈ R and S ⊂ {1, . . . , p} with cardinality s, where Sc is the complement of S. This
alternative, however, is difficult to analyze since c is unknown.

We now eliminate the constant c and connect H1 in (14) to a more convenient form in terms
of ν1 and ν2. Without loss of generality, define the signal vector δ = (δ1, . . . , δp)

T by

µ1j − µ2j − c = δjω
1/2
jj

(
log p

n

)1/2

(j = 1, . . . , p), (15)

where the scaling factor ω1/2
jj (log p/n)1/2 is introduced for technical reasons which will become

clear in the proof of Theorem 2. UnderH1 in (14), we have δj 6= 0 if and only if j ∈ S. Summing
up the equations (15) and rearranging, we obtain

c = µ̄1 − µ̄2 −
1

p

p∑
j=1

δjω
1/2
jj

(
log p

n

)1/2

= µ̄1 − µ̄2 −O
{
‖δ‖1
p

(
log p

n

)1/2
}
,

where µ̄k = p−1
∑p

j=1 µkj (k = 1, 2), ‖δ‖1 =
∑p

j=1 |δj |, and we have used the fact that
maxj ωjj = O(1) by Condition 1. Since νkj = µkj − µ̄k (k = 1, 2) by (7), we see that H1 in
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(14) implies

ν1j − ν2j =

{
δjω

1/2
jj +O

(‖δ‖1
p

)}(
log p

n

)1/2

, j ∈ S,

ν1j − ν2j = O

{
‖δ‖1
p

(
log p

n

)1/2
}
, j ∈ Sc.

(16)

Compared with the usual sparse alternatives analyzed in the literature such as Cai et al. (2014),
all components in the alternative (16) are shifted by a term of order O{‖δ‖1p−1(log p/n)1/2}.
To prevent this term from interfering with signals at least of order O{(log p/n)1/2}, it suffices
to assume that ‖δ‖1 = o(p). This key observation leads to the following theorem concerning the
asymptotic power of Φα defined in (10).

THEOREM 2. Assume that Conditions 1 and 3–5 hold. Under H1 in (14), if ‖δ‖1 = o(p) and
maxj∈S |δj | >

√
2 + ε for some constant ε > 0, then pr(Φα = 1)→ 1 as n, p→∞.

Two remarks on Theorem 2 are in order. First, if the signals δi are bounded, then the condition
‖δ‖1 = o(p) holds provided the alternative (14) is sparse in the sense that s = o(p). Second, by
Theorem 3 of Cai et al. (2014), the condition maxj∈S |δj | >

√
2 + ε is minimax rate optimal for

testing sparse alternatives in the classical two-sample testing problem. Thus, the proposed test
achieves the best possible rate even though the bases are not observed.

5. SIMULATION STUDIES

We conducted simulation studies to evaluate the numerical performance of the proposed two-
sample and paired tests. For comparison, we consider counterparts applied to the raw and log-
transformed compositions, which are obtained by replacing Y (k) in the proposed tests with X(k)

and logX(k), respectively. The oracle tests based on the unobservedW (k), though impracticable,
serve as the benchmarks for comparison.

We first examine the case of two independent samples. The simulated data were generated as
follows. We first generated Z(k) from the following distributions:

(i) multivariate normal distribution, Z(k)
i ∼ Np(µ̃k,Ω);

(ii) multivariate gamma distribution, Z(k)
i = µ̃k + FU

(k)
i /
√

10, where the p× p matrix F =

QS1/2 with Q and S obtained from the singular value decomposition Ω = QSQT, and the
components of Uk were generated independently from the standard gamma distribution
with shape parameter 10.

Then W (k) and X(k) were generated through the transformation W
(k)
ij = exp(Z

(k)
ij ) and (1).

Note that µk = µ̃k in case (i) and µk = µ̃k +
√

10F1p in case (ii). The location parameters µ̃k
were set as follows. The components of µ̃1 were drawn from a uniform distribution U(0, 10).
Under H0, we took µ̃2 = µ̃1; under H1, we took

µ̃2j = µ̃1j − δjω1/2
jj

(
log p

n

)1/2

,

where the signal vector δ has a support of size s = b0·05pc, b0·1pc, and b0·5pc, with the in-
dices chosen uniformly from {1, . . . , p} and the nonzero δj drawn from U [−2

√
2, 2
√

2]. We
considered the following covariance structures:
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(i) banded covariance, Ω = D1/2AD1/2, where A has non-zero entries ajj = 1, aj−1,j =
aj,j+1 = −0·5, and D is a diagonal matrix with entries drawn from U(1, 3);

(ii) sparse covariance, Ω = diag(A1, A2), where A1 = B + εIq, A2 = Ip−q, q = b3p1/2c,
B is a symmetric matrix with lower-triangular entries drawn from the uniform distri-
bution on [−1,−0·5] ∪ [0·5, 1] with probability 0·5 and set to 0 with probability 0·5,
ε = max{−λmin(B), 0}+ 0·05, and λmin(·) denotes the smallest eigenvalue of a matrix.

The simulation settings for the case of paired samples are similar, except that Z(1)
i and Z(2)

i
are correlated and must be generated from a 2p-dimensional joint distribution. The parameters
(µ̃∗,Ω∗) of the joint distribution were specified by µ̃∗ = (µ̃T

1 , µ̃
T
2 )T and

Ω∗ =

(
1 0·3

0·3 1

)
⊗ Ω,

where µ̃k and Ω were described above.
We set the sample sizes n1 = n2 = 100 for two independent samples and n = 100 for paired

samples, with varying dimensions p = 50, 100 and 200. We repeated the simulation 1000 times
for each setting and calculated the empirical sizes and powers of four tests with significance
level α = 0·05. The results for two independent samples and paired samples are summarized
in Table 1 and 2. The proposed test has higher power than those applied to the raw and log-
transformed compositions, while controlling the size reasonably well around the nominal level
0·05, and closely mimics the performance of the oracle test. Its power gains over the tests based
on log-transformed and raw compositions tend to be more pronounced in the more challenging
scenarios with moderate dimensions and sparse signals. Its superiority does not seem to depend
on the distributions or covariance structures.

To further examine the performance of the proposed test in very high-dimensional settings, we
carried out simulations for two independent samples with dimension p = 2000 and sample sizes
n1 = n2 = 100 and 200. The results are summarized in Table 3 and indicate that the proposed
test still has approximately correct size and improved power over the two competing tests.

6. APPLICATIONS TO MICROBIOME DATA

6·1. Analysis of obesity microbiome data
We illustrate the proposed tests by applications to two microbiome datasets. We first consider

a dataset from Wu et al. (2011), which was collected in a cross-sectional study of 98 subjects
for investigating habitual diet effect on the human gut microbiome. The dataset was analyzed
by regression in Lin et al. (2014) and was found to suggest an association between obesity and
changes in gut microbiome composition. For each subject, DNA samples collected from stool
samples were analysed by 454/Roche pyrosequencing of 16S rRNA gene segments from the
V1–V2 region. An average of 9265 reads per sample were obtained, with a standard deviation
of 3864, by denoising the pyrosequences prior to taxonomic assignment. The resulting 3068
operational taxonomic units were further merged into 87 genera that were observed in at least
one sample. As suggested by Aitchison (2003) and Lin et al. (2014), zero counts were replaced by
0·5 before the count data were converted into compositional data by normalization. Demographic
information including body mass index, BMI, was recorded on the subjects.

We are interested in testing whether lean and obese individuals have the same gut microbiome
composition. To this end, we divided the subjects into a lean group (BMI < 25, n1 = 63) and
an obese group (BMI > 25, n2 = 35), and performed various two-sample tests. The proposed
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Table 1. Empirical sizes and powers (%) of two-sample tests with α = 0·05
and n1 = n2 = 100 based on 1000 replications

Banded covariance Sparse covariance
Method p = 50 p = 100 p = 200 p = 50 p = 100 p = 200

Normal, H0 Oracle 4·7 5·3 4·8 4·0 4·8 5·2
Proposed 4·6 4·9 5·1 3·7 4·5 5·3
Log 3·9 5·1 5·3 3·5 3·3 5·2
Raw 0·9 1·0 0·3 1·5 1·0 1·3

Normal, H1 Oracle 38·2 70·7 92·5 40·1 70·7 91·8
s = b0·05pc Proposed 36·5 70·5 92·2 38·0 70·2 91·0

Log 26·1 60·8 84·7 25·5 51·4 70·7
Raw 4·0 5·5 8·2 7·0 16·8 23·7

Normal, H1 Oracle 68·7 90·6 99·1 69·4 91·0 99·5
s = b0·1pc Proposed 66·9 89·9 98·9 67·6 91·0 99·5

Log 53·7 79·7 97·3 50·0 77·1 91·7
Raw 9·1 10·1 14·1 16·6 31·7 49·2

Normal Oracle 99·3 100·0 100·0 99·4 100·0 100·0
s = b0·5pc Proposed 99·2 100·0 100·0 99·7 100·0 100·0

Log 96·5 99·9 100·0 96·6 99·9 100·0
Raw 39·2 37·1 61·5 55·0 84·0 96·0

Gamma, H0 Oracle 5·6 4·4 4·7 5·9 4·8 4·8
Proposed 5·3 4·9 4·8 5·0 4·9 5·1
Log 4·7 3·6 3·7 5·0 4·7 4·5
Raw 1·6 0·8 0·2 1·6 0·6 1·1

Gamma, H1 Oracle 35·7 70·0 91·3 36·7 70·5 92·3
s = b0·05pc Proposed 36·7 71·5 91·9 36·3 68·0 92·0

Log 27·0 52·6 82·8 23·6 49·9 66·0
Raw 5·1 4·4 10·2 4·2 6·0 9·4

Gamma, H1 Oracle 68·5 91·8 99·6 69·0 91·7 99·5
s = b0·1pc Proposed 66·8 91·5 99·5 66·9 90·8 99·7

Log 52·4 78·4 96·2 50·9 75·6 90·7
Raw 11·6 9·8 17·3 10·3 13·2 17·4

Gamma Oracle 99·9 100·0 100·0 100·0 100·0 100·0
s = b0·5pc Proposed 99·9 100·0 100·0 99·5 100·0 100·0

Log 96·5 99·7 100·0 96·9 99·9 100·0
Raw 42·7 53·1 61·9 40·4 50·7 62·9

test yielded a p-value of 0·001, indicating a marked difference between the two groups. In con-
trast, the tests based on the log-transformed and raw compositions gave p-values of 0·129 and
0·261, and hence failed to detect the difference at the 0·05 level. To assess the stability of our pro-
posed test and perform power comparisons, we generated 5000 bootstrap subsamples within each
group, with the subsampling proportion varying from 0·2 to 1. For each subsampling proportion,
we obtained the empirical power as the proportion of subsamples where the null hypothesis was
rejected at the 0·05 level. The empirical power curves based on the bootstrap subsamples, pre-
sented in Fig. 1(a), show that the proposed test greatly outperforms the competitors. We further
conduct back-testing to check whether the signal disappears by breaking the association. We
generated 1000 bootstrap samples from the pooled data and then randomly divided each sample
into two groups with the same sizes as before. The histogram of p-values from our test based
on the bootstrap samples is depicted in Fig. 1(b). The p-values are distributed quite evenly, indi-
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Table 2. Empirical sizes and powers (%) of paired tests with α = 0·05 and
n = 100 based on 1000 replications

Banded covariance Sparse covariance
Method p = 50 p = 100 p = 200 p = 50 p = 100 p = 200

Normal, H0 Oracle 4·8 5·6 6·3 5·9 6·6 6·0
Proposed 4·9 5·5 6·8 5·9 6·1 6·5
Log 5·4 4·4 7·1 5·2 3·7 4·1
Raw 1·1 0·4 0·2 1·5 1·1 1·2

Normal, H1 Oracle 55·3 86·8 98·3 54·4 85·8 99·0
s = b0·05pc Proposed 52·9 86·5 98·4 54·0 84·8 98·9

Log 39·6 75·0 95·6 35·7 68·7 87·3
Raw 5·2 7·3 13·7 9·2 21·6 34·3

Normal, H1 Oracle 85·1 98·6 99·9 83·9 98·6 99·9
s = b0·1pc Proposed 82·8 98·4 99·9 82·8 98·3 99·9

Log 71·2 94·5 99·6 65·4 90·0 98·3
Raw 13·8 14·9 22·1 22·7 43·7 64·5

Normal Oracle 100·0 100·0 100·0 100·0 100·0 100·0
s = b0·5pc Proposed 100·0 100·0 100·0 100·0 100·0 100·0

Log 99·5 100·0 100·0 99·7 100·0 100·0
Raw 50·0 50·0 74·0 77·9 94·4 99·3

Gamma, H0 Oracle 4·2 6·1 7·2 5·1 6·3 7·3
Proposed 4·3 6·2 7·2 5·8 6·1 7·1
Log 4·7 4·7 5·6 5·2 4·5 5·5
Raw 1·2 0·5 0·4 1·4 1·7 2·0

Gamma, H1 Oracle 55·5 86·1 98·4 51·3 84·2 98·3
s = b0·05pc Proposed 53·9 86·2 98·4 50·1 84·0 98·0

Log 42·4 77·3 94·8 35·9 67·2 88·1
Raw 6·1 8·4 11·1 9·6 22·6 39·4

Gamma, H1 Oracle 83·8 97·7 100·0 87·9 98·2 100·0
s = b0·1pc Proposed 82·6 97·1 100·0 86·5 98·3 99·9

Log 70·8 93·0 99·8 67·8 90·8 98·4
Raw 12·0 13·2 20·7 24·0 44·0 61·5

Gamma Oracle 100·0 100·0 100·0 100·0 100·0 100·0
s = b0·5pc Proposed 100·0 100·0 100·0 100·0 100·0 100·0

Log 99·4 100·0 100·0 99·8 100·0 100·0
Raw 51·5 52·7 75·0 80·3 94·5 99·0

cating good accuracy of the asymptotics. Overall, our results confirm previous findings that lean
and obese microbiomes differ at the taxonomic and functional levels (Turnbaugh et al., 2009).

To further assess the sensitivity of the results to zero replacements, we repeated the analysis
with the zero counts replaced by 0·1 before normalization. The proposed test resulted in a p-value
of 0·0001, while the tests based on the log-transformed and raw compositions gave p-values of
0·015 and 0·080, respectively. In this case only the proposed test rejects the null hypothesis at
the 0·01 level and the inference does not seem sensitive to the zero replacement values.

6·2. Analysis of Crohn’s disease microbiome data
Crohn’s disease is a type of inflammatory bowel disease characterized by altered gut bacterial

composition, whose etiology appears multifactorial and remains poorly understood. We analyze
a dataset from a longitudinal study of 90 pediatric Crohn’s disease patients reported by Lewis
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Table 3. Empirical sizes and powers (%) of two-sample tests with α = 0·05 and p =
2000 based on 1000 replications

Banded covariance Sparse covariance
Method n1 = n2 = 100 n1 = n2 = 200 n1 = n2 = 100 n1 = n2 = 200

Normal, H0 Oracle 6·5 3·7 7·6 4·1
Proposed 6·4 3·7 7·5 4·1
Log 5·0 4·7 2·4 1·8
Raw 0·2 0·1 0·5 0·9

Normal, H1 Oracle 100·0 100·0 100·0 100·0
s = b0·05pc Proposed 100·0 100·0 100·0 100·0

Log 100·0 100·0 98·7 98·0
Raw 48·4 55·0 60·7 68·6

Gamma, H0 Oracle 7·0 6·1 6·4 6·7
Proposed 6·9 6·1 6·6 7·1
Log 4·9 4·5 2·7 2·2
Raw 0·2 0·2 0·4 0·1

Gamma, H1 Oracle 100·0 100·0 100·0 100·0
s = b0·05pc Proposed 100·0 100·0 100·0 100·0

Log 100·0 100·0 98·5 98·9
Raw 36·1 45·3 22·1 22·0

et al. (2015). Among these patients, 26 were classified as responders to anti-tumor necrosis fac-
tor therapy, where response to therapy was defined as a reduction in fecal calprotectin, FCP,
concentration to 6 250 µg/g among those with baseline FCP > 250 µg/g. Twenty-four of the re-
sponders had stool samples collected at four time points: baseline, 1 week, 4 weeks, and 8 weeks
into therapy. The bacterial composition was quantified using shotgun metagenomic sequencing
and the MetaPhlAn package (Segata et al., 2012), yielding 43 genera that appeared in at least
three samples across all time points. Since the read counts were not available, zero proportions
were replaced by half or 10% of the minimum nonzero proportions in the dataset.

To determine the effect of the therapy among responders, we applied various paired tests to
test for changes in gut microbiome composition between baseline and three later time points. As
shown in Table 4, the p-values for the comparison between baseline and week 8 from all tests
were significant or close to significant, with the strongest evidence provided by the proposed test.
The comparisons at two earlier time points did not yield decisive conclusions. These inferences
do not seem sensitive to the zero replacement strategies. The empirical power curves based on
bootstrap subsamples in Fig. 1(c) exhibit more substantial power gains of the proposed test over
the competitors with smaller sample sizes. Moreover, the histogram of p-values in Fig. 1(d)
indicates that the proposed test survives the back-testing, where the observations at two time
points were randomly interchanged for each subject in the bootstrap samples. Our results provide
further support for the effect of the therapy on gut microbiome composition through reduced
inflammation and suggest that it may take longer for the intestinal dysbiosis to be resolved.

7. DISCUSSION

We have shown that it is possible to develop tests for high-dimensional parameters of the
log-basis variables from which compositional data are derived, even though the bases are not ob-
served. In this regard, our method substantially extends the scope of the log-ratio transformation
methodology due to Aitchison (1982). The mild assumption that ‖δ‖1 = o(p) for the proposed
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Fig. 1. Analysis of two microbiome datasets. Empirical power curves of the proposed test (triangles) and the
tests based on log-transformed (dots) and raw (squares) compositions with α = 0·05 are shown in (a) for
the obesity data and (c) for the Crohn’s disease data. Histograms of p-values from the proposed test in the
back-testing are shown in (b) for the obesity data and (d) for the Crohn’s disease data, for 1000 replicates.

Table 4. The p-values of paired tests applied to the Crohn’s disease
microbiome data with zeros replaced by half or 10% of the minimum

nonzero proportions in the dataset
Zero replacement by half Zero replacement by 10%

Proposed Log Raw Proposed Log Raw

Baseline versus week 1 0·119 0·605 0·757 0·141 0·611 0·757
Baseline versus week 4 0·460 0·553 0·468 0·373 0·684 0·468
Baseline versus week 8 0·014 0·033 0·082 0·018 0·058 0·082

test to achieve the minimax optimal rate is due to the use of centered log-ratio variables as a
proxy for the latent log-basis variables, which bears a striking resemblance to an approximate
identifiability condition for large covariance estimation from compositional data considered in
Cao et al. (arXiv:1601.04397).

Our testing framework may be extended in at least two directions. First, it would be worthwhile
to exploit the covariance structure of compositional data for power enhancement, by borrowing
ideas of Cai et al. (2014). Such an extension, however, seems nontrivial owing to the singularity
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of the centered log-ratio covariance matrix. Second, in addition to the global test developed in this
paper, a multiple testing procedure with accurate error control would be helpful for identifying
specific taxa that differ significantly between groups and contribute to the outcome of interest.
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APPENDIX

We first introduce some notation. For a matrix A = (aij)p×p, denote by ‖A‖1 and ‖A‖max the ma-
trix 1-norm and entrywise `∞-norm, respectively, i.e., ‖A‖1 = max16j6p

∑p
i=1 |aij | and ‖A‖max =

max16i,j6p |aij |. Write ai· = p−1
∑p
j=1 aij and a·· = p−2

∑p
i=1

∑p
j=1 aij . We will use C1, C2, . . . > 0

to denote generic constants, whose values may vary from line to line.

Proof of Proposition 1

By Condition 3, we have

‖R‖1 6 p1/2 max
16j6p

(
p∑
i=1

ρ2ij

)1/2

6 p1/2r
1/2
2 = O(p1/2). (A1)

We write γij = ωij − ωi· − ωj· + ω··. It follows from Condition 1 and (A1) that

|ωi·| 6
1

p

p∑
j=1

|ωij | 6
1

p
max
16j6p

|ωjj |
p∑
j=1

|ρij | 6
1

p
κ1‖R‖1 = O(p−1/2), (A2)

and similarly,

|ωj·| = O(p−1/2), |ω··| = O(p−1/2). (A3)

Hence

‖Γ− Ω‖max 6 max
16i,j6p

(|ωi·|+ |ωj·|+ |ω··|) = O(p−1/2). (A4)

This and Condition 1 imply (i).
To show (ii), we write

τij =
γij

(γiiγjj)1/2
=

ωij + ε1
{(ωii + ε2)(ωjj + ε3)}1/2 ,

where ε1 = −ωi· − ωj· + ω··, ε2 = −2ωi· + ω··, and ε3 = −2ωj· + ω··. By (A2) and (A3), we have εi =
O(p−1/2) (i = 1, 2, 3). Therefore, by Condition 1,

τij =
ωij + ε1

(ωiiωjj)1/2

{
(ωii + ε2)(ωjj + ε3)

ωiiωjj

}−1/2
=

ρij +O(p−1/2)

[{1 +O(p−1/2)}{1 +O(p−1/2)}]1/2
= ρij +O(p−1/2), (A5)

which, together with Condition 2, implies (ii).
To show (iii), noting that τ2ij − ρ2ij = (τij − ρij)2 + 2ρij(τij − ρij) and using (A1) and (A5), we have

p∑
i=1

(τ2ij − ρ2ij) =

p∑
i=1

(τij − ρij)2 + 2

p∑
i=1

ρij(τij − ρij) = O(1) + 2‖R‖1O(p−1/2) = O(1).

This and Condition 3 imply (iii) and complete the proof.
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Proof of Proposition 2

We first write

Y
(k)
ij − νkj = Z

(k)
ij − µkj +

1

p

p∑
j=1

(Z
(k)
ij − µkj).

It follows from Condition 1 and Proposition 1 that

|Y (k)
ij − νkj |
γ
1/2
jj

6
ω
1/2
jj

γ
1/2
jj

(
|Z(k)
ij − µkj |
ω
1/2
jj

+
1

p

p∑
j=1

|Z(k)
ij − µkj |
ω
1/2
jj

)
6 2(κ1κ2)1/2 max

i,j,k

|Z(k)
ij − µkj |
ω
1/2
jj

. (A6)

Using Condition 4 and applying Markov’s inequality and the union bound, we have

pr

(
max
i,j,k
|Z(k)
ij − µkj |/ω

1/2
jj > t

)
6 (n1 + n2)pK exp(−ηt2)

for all t > 0. Hence, by Condition 5,

max
i,j,k
|Z(k)
ij − µkj |/ω

1/2
jj = Op{(log n+ log p)1/2} = op(n

1/2/ log p). (A7)

Combining (A6) with (A7), we arrive at (12).
To prove (13), without loss of generality, we assume µ1 = µ2 = 0. Let γ̂(k)jj denote the sample centered

log-ratio variances for population k (k = 1, 2). Note that

|γ̂(k)jj − γjj | = |ω̂
(k)
jj − 2ω̂

(k)
j· + ω̂

(k)
·· − (ωjj − 2ωj· + ω··)| 6 4 max

i,j
|ω̂(k)
ij − ωij |.

It follows from Condition 1 and Proposition 1 that

|γ̂(k)jj − γjj |
γjj

6
4

γjj
max
i,j

|ω̂(k)
ij − ωij |

(ωiiωjj)1/2
(ωiiωjj)

1/2 6 4κ1κ2 max
i,j

|ω̂(k)
ij − ωij |

(ωiiωjj)1/2
.

The proof is completed by invoking the following lemma, which recaps a concentration result in Bickel
& Levina (2008), and noting that γ̂jj = n1γ̂

(1)
jj /(n1 + n2) + n2γ̂

(2)
jj /(n1 + n2).

LEMMA A1. Under Condition 4, there exist constants C1, C2, C3, C4 > 0 such that

pr

{
max
i,j

|ω̂(k)
ij − ωij |

(ωiiωjj)1/2
> t

}
6 C1p exp(−C2nkt/2) + C3p

2 exp(−C4nkt
2/4) (t > 0; k = 1, 2).

Proof of Theorem 1

Let tp = t+ 2 log p− log log p and

M∗n = n max
16j6p

(Ȳ
(1)
j − Ȳ (2)

j )2

γjj
. (A8)

We first show that under H0 in (3) or equivalently (8), for any fixed t ∈ R,

pr(M∗n 6 tp)→ exp{−π−1/2 exp(−t/2)} (A9)

as n, p→∞. By the Bonferroni inequality, for any fixed integer m with 1 6 m 6 p/2,

2m∑
d=1

(−1)d−1
∑

16j1<···<jd6p

pr

(
d⋂
k=1

Ejk

)
6 pr(M∗n > tp) 6

2m−1∑
d=1

(−1)d−1
∑

16j1<···<jd6p

pr

(
d⋂
k=1

Ejk

)
,

where

Ej =

{
n

(Ȳ
(1)
j − Ȳ (2)

j )2

γjj
> tp

}
.
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Under H0, we write

n1/2
Ȳ

(1)
j − Ȳ (2)

j

γ
1/2
jj

=
n1/2

n1

n1∑
i=1

Y
(1)
ij − ν1j
γ
1/2
jj

− n1/2

n2

n2∑
i=1

Y
(2)
ij − ν2j
γ
1/2
jj

≡
n1+n2∑
i=1

ξij .

By Proposition 2, it suffices to consider the event {maxi,j |ξij | 6 C1(log p)−1} for some constantC1 > 0,
which occurs with probability tending to 1. Let N = (N1, . . . , Np)

T be multivariate normal with mean 0
and covariance matrix nR/n1 + nR/n2 = R. Applying Theorem 1.1 of Zaı̆tsev (1987), for any sequence
εn = o(1), we have

pr

(
d⋂
k=1

Ejk

)
= pr

(
min

16k6d

∣∣∣∣∣
n1+n2∑
i=1

ξijk

∣∣∣∣∣ > t1/2p

)

6 pr

(
min

16k6d
|Njk | > t1/2p − εn

)
+O

{
d5/2 exp

(
−C2

log p

d3

)}
6 pr

(
min

16k6d
|Njk | > t1/2p − εn

)
+O(p−C3),

and similarly,

pr

(
d⋂
k=1

Ejk

)
> pr

(
min

16k6d
|Njk | > t1/2p + εn

)
+O(p−C3).

Hence

2m∑
d=1

(−1)d−1
∑

16j1<···<jd6p

pr

{
min

16k6d
|Njk | > t1/2p + (−1)d−1εn

}
+ o(1)

6 pr(M∗n > tp)

6
2m−1∑
d=1

(−1)d−1
∑

16j1<···<jd6p

pr

{
min

16k6d
|Njk | > t1/2p + (−1)dεn

}
+ o(1).

Then (A9) is proved by applying the following lemma, which follows from the same arguments as those
for Lemma 6 of Cai et al. (2014), and letting m→∞.

LEMMA A2. Under Conditions 2 and 3, we have∑
16j1<···<jd6p

pr

(
min

16k6d
|Njk | > t1/2p ± εn

)
=

1

d!
π−d/2 exp

(
−dt

2

)
{1 + o(1)}.

Finally, consider the event {maxj |γ̂jj − γjj |/γjj 6 C4(log p/n)1/2} for some constant C4 > 0,
which occurs with probability tending to 1 by Proposition 2. Then

|Mn −M∗n| 6 n max
16j6p

(Ȳ
(1)
j − Ȳ (2)

j )2

γ̂jj
max
16j6p

|γ̂jj − γjj |
γjj

6 C4Mn

(
log p

n

)1/2

= Mno

(
1

log p

)
(A10)

by Condition 5. This, together with (A9), completes the proof.

Proof of Theorem 2

In view of (A10) with M∗n defined in (A8), it suffices to prove that, under H1 in (14),

pr(M∗n > qα + 2 log p− log log p)→ 1. (A11)
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By assumption, there exists some j0 ∈ S such that |δj0 | >
√

2 + ε. We write

n1/2
Ȳ

(1)
j0
− Ȳ (2)

j0

γ
1/2
j0j0

= n1/2
Ȳ

(1)
j0
− ν1j0

γ
1/2
j0j0

− n1/2
Ȳ

(2)
j0
− ν2j0

γ
1/2
j0j0

+ n1/2
ν1j0 − ν2j0
γ
1/2
j0j0

≡ T1 + T2 + T3.

Note that T1 = Op(1) and T2 = Op(1) by the central limit theorem. Define

T4 = n1/2
ν1j0 − ν2j0
ω
1/2
j0j0

.

It follows from (A4) and Condition 1 that

|T3 − T4| = n1/2
|ν1j0 − ν2j0 |

γ
1/2
j0j0

|γ1/2j0j0
− ω1/2

j0j0
|

ω
1/2
j0j0

= |T3|O(p−1/2).

Then, using (16) and the assumption ‖δ‖1 = o(p), we have

T3 = T4{1 +O(p−1/2)} = n1/2
δj0ω

1/2
j0j0

+ o(1)

ω
1/2
j0j0

(
log p

n

)1/2

{1 +O(p−1/2)}

= {δj0 + o(1)}(log p)1/2 >
(√

2 +
ε

2

)
(log p)1/2

for sufficiently large p. Combining these bounds, we conclude that, with probability tending to 1,

n1/2
|Ȳ (1)
j0
− Ȳ (2)

j0
|

γ
1/2
j0j0

> (qα + 2 log p− log log p)1/2.

This implies (A11) and completes the proof.
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ZAĬTSEV, A. YU. (1987). On the Gaussian approximation of convolutions under multidimensional analogues of S. N.
Bernstein’s inequality conditions. Prob. Theory Rel. Fields 74, 535–66.


