Math 867 Spring 2015 Homework 3

Due: June 24, 2015

1. (Multiple testing) In a multiple testing situation with both N_{0} and N_{1} positive, show that

$$
E\left(\frac{a}{N_{0}}\right)=\bar{\alpha} \quad \text { and } \quad E\left(\frac{b}{N_{1}}\right)=\bar{\beta}
$$

where $\bar{\alpha}$ and $\bar{\beta}$ are the average size and power of the null and non-null cases, respetively. (Refer to Figure 4.1 of Efron's book for the meanings of a and b.)
2. (Benjamini-Hochberg procedure) For $t \in(0,1]$, let $a(t)$ be the number of null cases with $p_{i} \leq t$, and let $A(t)=a(t) / t$. Verify (4.19) in Efron's book:

$$
E\{A(s) \mid A(t)\}=A(t) \quad \text { for } s \leq t
$$

3. (Two-sample mean test) Consider the test statistic in Chen and Qin (2010):

$$
T_{n}=\frac{1}{n_{1}\left(n_{1}-1\right)} \sum_{\substack{i, j=1 \\ i \neq j}}^{n_{1}} X_{1 i}^{T} X_{1 j}+\frac{1}{n_{2}\left(n_{2}-1\right)} \sum_{\substack{i, j=1 \\ i \neq j}}^{n_{2}} X_{2 i}^{T} X_{2 j}-\frac{2}{n_{1} n_{2}} \sum_{i=1}^{n_{1}} \sum_{j=1}^{n_{2}} X_{1 i}^{T} X_{2 j} .
$$

Assume

$$
\left(\mu_{1}-\mu_{2}\right)^{T} \boldsymbol{\Sigma}_{i}\left(\mu_{1}-\mu_{2}\right)=o\left(n^{-1} \operatorname{tr}\left\{\left(\boldsymbol{\Sigma}_{1}+\boldsymbol{\Sigma}_{2}\right)^{2}\right\}\right), \quad i=1,2 .
$$

Show that under H_{1},

$$
\operatorname{Var}\left(T_{n}\right)=\left\{\frac{2}{n_{1}\left(n_{1}-1\right)} \operatorname{tr}\left(\boldsymbol{\Sigma}_{1}^{2}\right)+\frac{2}{n_{2}\left(n_{2}-1\right)} \operatorname{tr}\left(\boldsymbol{\Sigma}_{2}^{2}\right)+\frac{4}{n_{1} n_{2}} \operatorname{tr}\left(\boldsymbol{\Sigma}_{1} \boldsymbol{\Sigma}_{2}\right)\right\}\{1+o(1)\}
$$

where the $o(1)$ term vanishes under H_{0}.
4. (Scaled Lasso) Show that the loss function

$$
L_{\lambda_{0}}(\boldsymbol{\beta}, \sigma)=\frac{\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|_{2}^{2}}{2 n \sigma}+\frac{\sigma}{2}+\lambda_{0}\|\boldsymbol{\beta}\|_{1}
$$

is jointly convex in $(\boldsymbol{\beta}, \sigma)$.

