Math 867 Spring 2015 Homework 1 Due: April 22, 2015

1. (Gaussian tail bound) Let $Z \sim N(0, \sigma^2)$. Show that

$$\sup_{t>0} \left(P(Z \ge t) e^{t^2/(2\sigma^2)} \right) = \frac{1}{2}$$

2. (Irrepresentable condition) Consider the covariance matrix $\Sigma = (\sigma_{ij})$ with an autoregressive Toeplitz structure: $\sigma_{ij} = \rho^{|i-j|}$ for all *i* and *j* with $0 < |\rho| < 1$. Show that the irrepresentable condition

$$\|\boldsymbol{\Sigma}_{S^c S}(\boldsymbol{\Sigma}_{SS})^{-1}\operatorname{sgn}(\boldsymbol{\beta}_S^*)\|_{\infty} \leq \alpha < 1$$

holds and identify the constant α .

3. (Model size of the Lasso) Assume what we have done in class. Prove inequality (7.9) in Bickel, Ritov and Tsybakov (2009): with probability tending to 1, the Lasso estimator $\hat{\beta}_L$ satisfies

$$\mathcal{M}(\widehat{\boldsymbol{\beta}}_L) \le \frac{64\phi_{\max}}{\kappa^2(s,3)}s,$$

where $\mathcal{M}(\boldsymbol{\beta}) = \sum_{j=1}^{p} I(\beta_j \neq 0)$ and ϕ_{\max} is the maximal eigenvalue of $\mathbf{X}^T \mathbf{X}/n$.

- 4. (Residual of the Dantzig selector) For the linear regression model, show that, with probability tending to 1, the residual $\boldsymbol{\delta} = \hat{\boldsymbol{\beta}}_D \boldsymbol{\beta}^*$ of the Dantzig selector $\hat{\boldsymbol{\beta}}_D$ satisfies $\|\boldsymbol{\delta}_{S^c}\|_1 \leq \|\boldsymbol{\delta}_S\|_1$.
- 5. (Dirichlet–multinomial regression) Derive the log-likelihood function of the Dirichlet–multinomial regression model (eq. (7) in Chen and Li (2013)).
- 6. (Coordinate descent with nonconvex penalties) In the proof of Theorem 4 in Mazumder, Friedman and Hastie (2011), the authors arrived at inequality (A.13):

$$Q(\boldsymbol{\beta}^m) - Q(\boldsymbol{\beta}^{m+1}) \ge \theta \| \boldsymbol{\beta}^{m+1} - \boldsymbol{\beta}^m \|_2^2,$$

from which they concluded that the sequence $\{\beta^k\}$ converges. Prove or disprove this claim.

7. (ADMM for group Lasso) Derive the ADMM algorithm in scaled form for the group Lasso problem

$$\min_{\boldsymbol{\beta}} \left\{ \frac{1}{2} \| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \|_{2}^{2} + \lambda \sum_{g=1}^{G} \| \boldsymbol{\beta}_{g} \|_{2} \right\},\$$

where $\boldsymbol{\beta} = (\boldsymbol{\beta}_1^T, \dots, \boldsymbol{\beta}_G^T)^T$.

8. (Bayesian elastic net) Recall that the elastic net penalty is $\lambda_1 \|\boldsymbol{\beta}\|_1 + \lambda_2 \|\boldsymbol{\beta}\|_2^2$. Derive a hierarchical representation of the Bayesian elastic net similar to eq. (5) in Park and Casella (2008).