00137960: Statistical Thinking Homework 3

1. If X and Y are independent random variables, prove the convolution inequality for Fisher information:

$$\frac{1}{I(X+Y)} \ge \frac{1}{I(X)} + \frac{1}{I(Y)},$$

with equality only when X and Y are normally distributed.

2. Consider the linear model

$$Y_i = \beta x_i + u_i, \qquad i = 1, \dots, n,$$

where $x_i > 0$, $u_i = \rho u_{i-1} + \varepsilon_i$, and ε_i are independent $N(0, \sigma^2)$. If $\hat{\beta}$ is the least squares estimate of β , show that Var($\hat{\beta}$) is inflated when $\rho > 0$.

3. For a sample from the Laplace distribution with density

$$f(x) = \frac{1}{2}e^{-|x-\mu|},$$

show that the MLE of μ is the sample median. Derive its asymptotic distribution.

4. For a one-parameter exponential family $f_{\mu}(y) = e^{\eta y - \psi(\eta)} f_0(y)$, show that the MLE of $\mu = E_{\eta} y$ is y, and Hoeffding's formula holds:

$$f_{\mu}(y) = f_{\nu}(y)e^{-D(y,\mu)/2}$$

- 5. (Programming) Reproduce the Poisson regression analysis for the galaxy data from Table 8.5 of Efron and Hastie (available at https://hastie.su.domains/CASI_files/DATA/galaxy.txt). Calculate the Poisson deviance residuals and the goodness-of-fit test statistic.
- 6. Derive the distributions of the following statistics for combining p-values under H_0 : $p_i \sim U(0, 1)$, $i = 1, \ldots, n$:

 - (a) $S_{\rm F} = \sum_{i=1}^{n} \log p_i$; (b) $S_{\rm P} = -\sum_{i=1}^{n} \log(1-p_i)$; (c) $S_{\rm G} = \sum_{i=1}^{n} \log\{p_i/(1-p_i)\}$; (d) $S_{\rm E} = \sum_{i=1}^{n} p_i$; (e) $S_{\rm S} = \sum_{i=1}^{n} \Phi^{-1}(p_i)$, where Φ is the standard normal cumulative distribution function;

(f)
$$S_{\mathrm{T}} = \min(p_1, \ldots, p_n)$$

State for each case whether the distribution is exact or asymptotic.

7. Complete the proof of Benjamini and Hochberg's FDR control theorem by showing that A(t) = a(t)/tis a martingale as t decreases from 1 to 0, where a(t) is the number of null cases with $p_i \leq t$.