00137960: Statistical Thinking Homework 2

- 1. (Programming) Suppose that $x_i \sim N(\mu, 1)$ independent, $Z_i = \sum_{j=1}^i x_j / \sqrt{i}$, and we wish to test H_0 : $\mu = 0$ vs. H_1 : $\mu > 0$. Show that the stopping rule "either Z_{20} or Z_{30} exceeds 1.645" has probability 0.074 of rejecting H_0 if H_0 is true.
- 2. For an i.i.d. sample of size *n* from the bivariate normal distribution with correlation ρ , use the delta method to show that the sample correlation coefficient $\hat{\rho}$ has the asymptotic distribution

$$\sqrt{n}(\hat{\rho}-\rho) \to_d N(0,(1-\rho^2)^2).$$

- 3. In the ulcer surgery example in Table 4.1 of Efron and Hastie, construct a test for the null hypothesis that the two treatments are equally effective, conditional on the marginals. Evaluate your test statistic on the data and conclude.
- 4. Find the Fisher information for the Cauchy distribution with density

$$f_{\theta}(x) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2}.$$

5. If $\mu \sim N_p(\mu_0, \Sigma_0)$ and $x \mid \mu \sim N_p(\mu, \Sigma)$, show that the posterior distribution of μ is

$$\mu | x \sim N_p \left(\mu_0 + (\Sigma_0^{-1} + \Sigma^{-1})^{-1} \Sigma^{-1} (x - \mu_0), (\Sigma_0^{-1} + \Sigma^{-1})^{-1} \right).$$

- 6. For a one-parameter exponential family $f_{\alpha}(x) = e^{\alpha y \psi(\alpha)} f_0(x)$, verify by direct differentiation the following relationships between derivatives of $\psi(\alpha)$ and the mean μ , variance σ^2 , and third and fourth central moments μ_3 , μ_4 of y:
 - (a) $\psi'(\alpha) = \mu;$ (b) $\psi''(\alpha) = \sigma^2;$ (c) $\psi^{(3)}(\alpha) = \mu_3;$
 - (d) $\psi^{(4)}(\alpha) = \mu_4 3(\sigma^2)^2$.
- 7. (Programming) Fit the seven-parameter exponential family with $f_0(x) \equiv 1$ and $y = (x, x^2, ..., x^7)$ to the glomerular filtration rate data (available at https://hastie.su.domains/CASI_files/DATA/gfr.txt) and reproduce Figure 5.7 of Efron and Hastie.