
00103335: Deep Learning and Reinforcement Learning
Homework 2

Note. Unless otherwise noted, section and equation numbers refer to those in DL (Goodfellow et al.).

1. Consider the XOR problem described in Section 6.1.
(a) For a perceptron with MSE loss and linear output, verify that the solution is w D 0 and b D 1=2.
(b) Is the problem solvable by a perceptron with cross-entropy loss and sigmoid output? Find the

solution in this case.
(c) Is the solution for the two-layer feedforward network unique? If not, find a solution different from

the one given in the book.

2. Prove that the solutions to optimization problems (6.14) and (6.16) are the conditional mean and median
of y given x, respectively.

3. Numerical differentiation is an alternative approach to back-propagation for computing the gradient.
This can be done, for example, by applying the central difference approximation
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to each parameter of the network.
(a) Show that the remainder term is O."2/.
(b) Determine the time complexity of this algorithm and compare it with that of back-propagation.

4. It is mentioned in Section 7.5 that, “For some models, the addition of noise with infinitesimal variance
at the input of the model is equivalent to imposing a penalty on the norm of the weights.” State this
formally for a feedforward network with MSE loss and prove your claim.

5. Consider a feedforward network with one hidden layer h and regularized loss (7.48), where �.h/ D
khk1. Devise a back-propagation algorithm to solve this problem.

6. Prove that the weight scaling inference rule is exact for
(a) regression networks with conditionally normal outputs;
(b) deep networks with softmax outputs and linear hidden layers.

7. State and prove a convergence theorem for stochastic gradient descent under conditions (8.12) and
(8.13). Hint: See Robbins and Monro (1951, Ann. Math. Statist., 22, 400–407).

8. In this exercise, we establish a convergence result for gradient descent with Polyak averaging.
(a) Let v1; : : : ; vT be an arbitrary sequence of vectors. For the algorithm with initialization w.1/ D 0

and update rule
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(b) Let f be a convex, �-Lipschitz function, w� D arg minkwk�B f .w/, and xw D
PT

tD1 w.t/=T . Use
part (a) to show that the gradient descent algorithm for minimizing f with � D B=.�
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9. Represent the convolution example in Figure 9.1 (3 � 4 input, 2 � 2 kernel, “valid” convolution) as
matrix multiplication with a doubly block circulant matrix.

10. Consider the pooling example in Figure 9.9. Design a set of filters such that the max pooling unit can
learn to be invariant to (a) rotation, and (b) scaling.

11. The Hopfield network is a type of recurrent network consisting of n units with states si and update rule
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where �.x/ D 2I.x � 0/ � 1, wij D wj i , and wi i D 0. The network is updated in an asynchronous
manner, so that one unit is randomly selected and updated at each time step. Prove that the network will
eventually reach a stable state at a local minimum of the energy function

E.s/ D �
1

2

nX
iD1

nX
jD1

wij sisj C

nX
iD1

�isi :

12. Design a recurrent neural network to approximate the dynamics of the Lorenz 96 model

dxi

dt
D .xiC1 � xi�2/xi�1 � xi C F; i D 1; : : : ; n;

where F is a forcing constant and the indices are cyclic so that x�1 D xn�1, x0 D xn, and xnC1 D x1.

13. UML (Shalev-Shwartz and Ben-David) Exercise 20.1

14. UML Exercise 20.2

15. UDL (Prince) Problem 12.3

16. UDL Problem 12.6

17. UDL Problem 12.10
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