00103335: Deep Learning and Reinforcement Learning Supplementary Problems for Homework 1

- 1. (Necessity of prior knowledge). Let \mathcal{X} be infinite and let \mathcal{H} be the set of all functions from \mathcal{X} to $\{0,1\}$. Prove that \mathcal{H} is not PAC learnable.
 - Note. If you drive it from the no-free-lunch theorem, state and prove your version of the theorem first.
- 2. (Asymptotic PAC). If the loss function takes values in [0, 1], show that the (ε, δ) definition of PAC learnability, i.e., for any $\varepsilon > 0$ and $\delta > 0$, there exists some m_0 such that for $m \ge m_0$,

$$\mathbb{P}_{S \sim \mathcal{D}^m} \{ R(h_S) \le \varepsilon \} \ge 1 - \delta,$$

is equivalent to the limiting statement

$$\lim_{m\to\infty} \mathop{\mathbb{E}}_{S\sim\mathcal{D}^m} R(h_S) = 0.$$