00101756: Modern Statistical Modeling Homework 1 Due: May 9, 2023

1. Let **X** be an $n \times p$ matrix of rank r, and $m = \min(n, p)$. For any k < r, denote

$$\mathbf{X}_k = \sum_{j=1}^k d_j \mathbf{u}_j \mathbf{v}_j^T,$$

where $d_1 \ge d_2 \ge \cdots \ge d_m \ge 0$ are the singular values of **X**, and **u**_j and **v**_j the left and right singular vectors corresponding to d_j , respectively.

(a) Show that X_k is the best rank-k approximation to X in the sense that

$$\min_{\operatorname{rank}(\mathbf{Y})=k} \|\mathbf{X} - \mathbf{Y}\|_2 = \|\mathbf{X} - \mathbf{X}_k\|_2 \quad (= d_{k+1}).$$

- (b) Show that the statement is still true if the matrix 2-norm is replaced by the Frobenius norm. Give an expression for $\|\mathbf{X} \mathbf{X}_k\|_F$.
- 2. Let X_1, \ldots, X_n be a random sample from the uniform distribution over the unit ℓ_2 -ball in \mathbb{R}^p .
 - (a) Find the median distance M from the origin to the closest data point. What are the values of M for a sample of size 10^6 and p = 1, ..., 15?
 - (b) Find the mean distance D from the origin to the closest data point. What are the values of D for a sample of size 10^6 and p = 1, ..., 15?
- 3. Prove Theorem 19.5 in UML by following Exercises 19.1–19.4.
- 4. Consider a linear model with *p* parameters, fit to a training sample $(x_1, y_1), \ldots, (x_n, y_n)$ with the OLS estimate $\hat{\beta}$. Suppose we have a test sample $(x_{n+1}, y_{n+1}), \ldots, (x_{n+m}, y_{n+m})$ from the same population. Denote $R_{tr}(\beta) = n^{-1} \sum_{i=1}^{n} (y_i \beta^T \mathbf{x}_i)^2$ and $R_{te}(\beta) = m^{-1} \sum_{i=1}^{m} (y_{n+i} \beta^T \mathbf{x}_{n+i})^2$. Show that

$$E\{R_{tr}(\widehat{\boldsymbol{\beta}})\} \leq E\{R_{te}(\widehat{\boldsymbol{\beta}})\},\$$

where the expectations are taken over all (x_i, y_i) .

- 5. Consider the linear model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ with $E\boldsymbol{\varepsilon} = \mathbf{0}$ and $\operatorname{Var}(\boldsymbol{\varepsilon}) = \sigma^2 \mathbf{I}_n$.
 - (a) Show that a linear estimator $\mathbf{c}^T \mathbf{y}$ is the BLUE of $\mathbf{h}^T \boldsymbol{\beta}$ for some \mathbf{h} if and only if $\text{Cov}(\mathbf{c}^T \mathbf{y}, \mathbf{d}^T \mathbf{y}) = 0$ for all \mathbf{d} with $E(\mathbf{d}^T \mathbf{y}) = 0$.
 - (b) Find **h** such that $\mathbf{h}^T \boldsymbol{\beta}$ is estimable and $\operatorname{Var}(\mathbf{h}^T \hat{\boldsymbol{\beta}}) / \|\mathbf{h}\|_2^2$ is minimized or maximized, where $\hat{\boldsymbol{\beta}}$ is a solution to the normal equation.
- 6. Consider the simple linear model $y_i = \alpha + \beta x_i + \varepsilon_i$, i = 1, ..., n, where x_i are fixed and ε_i are i.i.d. with $E\varepsilon_i = 0$ and $Var(\varepsilon_i) = \sigma^2$. Find a sufficient condition using the Lindeberg–Feller central limit theorem such that the OLS estimate $\hat{\beta}$ is asymptotically normal. Give the normalized form of $\hat{\beta}$ and its limiting distribution.
- 7. Consider the ANCOVA model

$$y_{ij} = \mu + \alpha_i + \gamma x_{ij} + \varepsilon_{ij}, \quad j = 1, \dots, n_i, \quad i = 1, \dots, k,$$

where ε_{ii} are i.i.d. $N(0, \sigma^2)$.

- (a) Suppose you want to test $H_0: \alpha_1 = \cdots = \alpha_k$. Express H_0 in the form of $\mathbf{H}^T \boldsymbol{\beta} = \boldsymbol{\xi}$ and show that $\mathcal{C}(\mathbf{H}) \subset \mathcal{C}(\mathbf{X}^T)$, where $\mathbf{X} = (x_{ij})$ is the design matrix.
- (b) Explicitly obtain a test statistic for testing H_0 .
- (c) Find the distribution of the test statistic in part (b) when H_0 is true and when H_0 is not true. Check that the noncentrality parameter is zero if and only if H_0 is true.
- 8. Consider the two-way ANOVA model

$$y_{ij} = \mu + \alpha_i + \gamma_j + \varepsilon_{ij}, \quad i = 1, \dots, k, \quad j = 1, \dots, m,$$

where ε_{ij} are i.i.d. $N(0, \sigma^2)$.

- (a) Find a necessary and sufficient condition for $c_0\mu + \sum_{i=1}^k c_i\alpha_i + \sum_{j=1}^m c_{k+j}\gamma_j$ to be estimable.
- (b) Use Scheffé's method to obtain simultaneous confidence intervals of level 1α for $\sum_{i=1}^{k} c_i \alpha_i$ with $\sum_{i=1}^{k} c_i = 0$.
- (c) Use Tukey's method to obtain simultaneous confidence intervals of level 1α for $\gamma_j \gamma_{j'}$, $j \neq j'$.