Math 12230: Spatio-Temporal Statistics for Big Data Midterm Exam 1 Due: November 18, 2015 in class

1. (10 points) Show that the variogram $2\gamma(\cdot)$ defined by

$$2\gamma(\mathbf{s}_1 - \mathbf{s}_2) = \operatorname{Var}(Z(\mathbf{s}_1) - Z(\mathbf{s}_2)), \quad \mathbf{s}_1, \mathbf{s}_2 \in \mathbb{R}^d,$$

satisfies the following properties:

(a) $2\gamma(\cdot)$ is conditionally negative definite, i.e.,

$$\sum_{i=1}^{m}\sum_{j=1}^{m}a_{i}a_{j}2\gamma(\mathbf{s}_{i}-\mathbf{s}_{j})\leq 0,$$

for all $\mathbf{s}_i \in \mathbb{R}^d$ and $a_i \in \mathbb{R}$ with $\sum_{i=1}^m a_i = 0$. (b) For any c > 0, $e^{-c\gamma(\cdot)}$ is positive definite, i.e.,

$$\sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j e^{-c\gamma(\mathbf{s}_i - \mathbf{s}_j)} \ge 0,$$

for all $\mathbf{s}_i \in \mathbb{R}^d$ and $a_i \in \mathbb{R}$.

- 2. (10 points) Let $\mathbf{Z} = (Z(\mathbf{s}_1), \dots, Z(\mathbf{s}_n))^T$, $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_n)^T$, $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)^T$, $\mathbf{B} = (b_{ij})$ with $b_{ii} = 0$, $\mathbf{C} = (c_{ij})$ with $c_{ii} = 0$, $\mathbf{\Lambda} = \operatorname{diag}(\sigma_1^2, \dots, \sigma_n^2)$, and $\mathbf{M} = \operatorname{diag}(\tau_1^2, \dots, \tau_n^2)$.
 - (a) Show that the simultaneously specified Gaussian model

$$Z(\mathbf{s}_i) = \mu_i + \sum_{j=1}^n b_{ij} (Z(\mathbf{s}_j) - \mu_j) + \varepsilon_i, \quad i = 1, \dots, n,$$

where $\varepsilon_i \sim N(0, \sigma_i^2)$, implies $\mathbf{Z} \sim N_n(\boldsymbol{\mu}, (\mathbf{I} - \mathbf{B})^{-1} \boldsymbol{\Lambda} (\mathbf{I} - \mathbf{B}^T)^{-1})$, provided $\mathbf{I} - \mathbf{B}$ is invertible. (b) Show that the conditionally specified Gaussian model

$$Z(\mathbf{s}_i) \mid \{z(\mathbf{s}_j): j \neq i\} \sim N\left(\mu_i + \sum_{j=1}^n c_{ij}(z(\mathbf{s}_j) - \mu_j), \tau_i^2\right), \quad i = 1, \dots, n,$$

implies $\mathbf{Z} \sim N_n(\boldsymbol{\mu}, (\mathbf{I} - \mathbf{C})^{-1}\mathbf{M})$, provided $\mathbf{I} - \mathbf{C}$ is invertible and $(\mathbf{I} - \mathbf{C})^{-1}\mathbf{M}$ is symmetric and positive definite.

3. (10 points) Let $\mathbf{s}_1, \ldots, \mathbf{s}_n \in A \subset \mathbb{R}^d$ be a realization of an inhomogeneous Poisson process with intensity $\lambda_{\theta}(\cdot), \theta \in \Theta$. Show that the likelihood is

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{n} \lambda_{\boldsymbol{\theta}}(\mathbf{s}_i) \exp\left\{-\int_A \lambda_{\boldsymbol{\theta}}(\mathbf{s}) \nu(d\mathbf{s})\right\},\,$$

where ν is the Lebesgue measure.

4. (15 points) Consider the change-of-support problem in a regression setting, where the response process $Y(\cdot)$ and the predictor process $X(\cdot)$ have different supports. Here the support refers to the region over which the process is averaged. Suppose data on $Y(\cdot)$ are observed at monitoring sites s_1, \ldots, s_n , and data on $X(\cdot)$ are output from a physical model as block averages

$$X(B_i) = \frac{1}{|B_i|} \int_{B_i} X(\mathbf{s}) \, d\mathbf{s}, \quad i = 1, \dots, m.$$

How would you model such data and estimate the parameters? You may summarize a state-of-the-art method from the literature (and cite the reference) or propose your own solutions.

5. (15 points) Consider a type of change-of-support problem in spatial point process modeling. Let N be a Cox process with intensity Λ(·) that depends on a Gaussian predictor process X(·). Suppose we observe N(B_i), the number of events in block B_i, i = 1,...,m, and data on X(·) at monitoring sites s₁,..., s_n. Describe an existing approach (and cite the reference) or propose your own method for modeling and parameter estimation.