
SAS®

9.1 Macro Language
Reference

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2004.
SAS ® 9.1 Macro Language: Reference. Cary, NC: SAS Institute Inc.

SAS® 9.1 Macro Language: Reference
Copyright © 2004, SAS Institute Inc., Cary, NC, USA
ISBN 1-59047-212-8
All rights reserved. Produced in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of this
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227–19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, January 2004
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at support.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New vii

Overview vii

New Automatic Macro Variable vii

New Comparison Operators vii

New SAS System Options viii

New Macro Statements viii

New Macro Functions viii

New Option for the %MACRO Statement viii

P A R T 1 Understanding and Using the Macro Facility 1

Chapter 1 Introduction to the Macro Facility 3
Getting Started with the Macro Facility 3

Replacing Text Strings Using Macro Variables 4

Generating SAS Code Using Macros 5

More Advanced Macro Techniques 8

Other Features of the Macro Language 10

Chapter 2 SAS Programs and Macro Processing 11
Introduction to SAS Programs and Macro Processing 11

How SAS Processes Statements without Macro Activity 12

How SAS Processes Statements with Macro Activity 14

Chapter 3 Macro Variables 19
Introduction to Macro Variables 19

Macro Variables Defined by SAS 20

Macro Variables Defined by Users 22

Using Macro Variables 25

Displaying Macro Variable Values 28

Referencing Macro Variables Indirectly 29

Manipulating Macro Variable Values with Macro Functions 30

Chapter 4 Macro Processing 33
Introduction to Macro Processing 33

Defining and Calling Macros 33

How the Macro Processor Compiles a Macro Definition 34

How the Macro Processor Executes a Compiled Macro 36

Summary of Macro Processing 40

Chapter 5 Scopes of Macro Variables 41
Introduction to the Scopes of Macro Variables 41

Global Macro Variables 42

Local Macro Variables 43

iv

Writing the Contents of Symbol Tables to the SAS Log 45

How Macro Variables Are Assigned and Resolved 45

Examples of Macro Variable Scopes 48

Chapter 6 Macro Expressions 67
Introduction to Macro Expressions 67

Defining Arithmetic and Logical Expressions 68

How the Macro Processor Evaluates Arithmetic Expressions 70

How the Macro Processor Evaluates Logical Expressions 71

Chapter 7 Macro Quoting 75
Introduction to Macro Quoting 75

Deciding When to Use a Macro Quoting Function and Which Function to Use 78

Using the %STR and %NRSTR Functions 80

Using the %BQUOTE and %NRBQUOTE Functions 84

Referring to Already Quoted Variables 85

Deciding How Much Text to Mask with a Macro Quoting Function 85

Using %SUPERQ 86

Summary of Macro Quoting Functions and the Characters They Mask 88

Unquoting Text 89

How Macro Quoting Works 91

Other Functions That Perform Macro Quoting 92

Chapter 8 Interfaces with the Macro Facility 95
Introduction to Interfaces with the Macro Facility 95

DATA Step Interfaces 96

Using SAS Language Functions in the DATA Step and Macro Facility 99

Interfaces with the SQL Procedure 100

Interfaces with the SAS Component Language 101

SAS/CONNECT Interfaces 103

Chapter 9 Storing and Reusing Macros 105
Introduction to Storing and Reusing Macros 105

Saving Macros in an Autocall Library 106

Saving Macros Using the Stored Compiled Macro Facility 108

Chapter 10 Macro Facility Error Messages and Debugging 111
General Macro Debugging Information 111

Troubleshooting Your Macros 113

Debugging Techniques 126

Chapter 11 Writing Efficient and Portable Macros 133
Introduction to Writing Efficient and Portable Macros 133

Keeping Efficiency in Perspective 133

Writing Efficient Macros 134

Writing Portable Macros 140

v

Chapter 12 Macro Language Elements 147
Introduction to Macro Language Elements 147

Macro Statements 147

Macro Functions 149

Automatic Macro Variables 154

Interfaces with the Macro Facility 156

Selected Autocall Macros Provided with SAS Software 157

Selected System Options Used in the Macro Facility 158

P A R T 2 Macro Language Dictionary 161

Chapter 13 Macro Language Dictionary 163

P A R T 3 Appendixes 315

Appendix 1 Reserved Words in the Macro Facility 317
Macro Facility Word Rules 317

Reserved Words 317

Appendix 2 SAS Tokens 319
What Are SAS Tokens? 319

List of Tokens 319

Appendix 3 Syntax for Selected Functions Used with the %SYSFUNC Function 321
Summary Descriptions and Syntax 321

Appendix 4 Recommended Reading 325
Recommended Reading 325

Glossary 327

Index 333

vi

vii

What’s New

Overview

There are several enhancements to the Macro Language Facility including a new
automatic macro variable, new comparison operators, new SAS system options, new
macro statements, new functions, and a new option for the %MACRO statement.

Note:

� This section describes the features of the SAS Macro Facility that are new or
enhanced since SAS 8.2.

� z/OS is the successor to the OS/390 operating system. SAS 9.1 is supported on
both OS/390 and z/OS operating systems and, throughout this document, any
reference to z/OS also applies to OS/390, unless otherwise stated.

�

New Automatic Macro Variable

� To take advantage of the new parallel-processing abilities in SAS, the new
read-only automatic macro variable, &SYSNCPU, contains the current number of
CPUs that SAS can use during the current SAS session. See “SYSNCPU
Automatic Macro Variable” on page 286.

New Comparison Operators

� The IN mnemonic operator is a binary comparison operator similar to that of the
DATA step, except that the operand on the right side is simply a list of values and
is not enclosed in parentheses. The IN operator compares the value of the operand
on the left side against the list of values in the operand on the right side. See
Chapter 6, “Macro Expressions,” on page 67.

� You can use the # character as an alternate spelling for the IN operator.

viii What’s New

New SAS System Options
These are the new macro system options:
� The MPRINTNEST system option enables the macro nesting information to be

displayed in the MPRINT output in the SAS log. See “MPRINTNEST System
Option” on page 219.

� The MLOGICNEST system option enables the macro nesting information to be
displayed in the MLOGIC output in the SAS log. See “MLOGICNEST System
Option” on page 215.

� The MINDELIMITER system option specifies the character to be used as the
delimiter within a list of values for the macro IN operator. See “MINDELIMITER=
System Option” on page 212.

� The MCOMPILENOTE system option specifies that a NOTE be issued to the SAS
log when the compilation of a macro is completed. See “MCOMPILENOTE System
Option” on page 208.

� The MAUTOLOCDISPLAY system option specifies that the source location of the
autocall macro be displayed in the SAS log when the autocall macro is invoked.
See “MAUTOLOCDISPLAY System Option” on page 207.

New Macro Statements
� The %ABORT statement stops the macro that is executing along with the current

DATA step, SAS job, or SAS session. See “%ABORT Statement” on page 163.
� The %RETURN statement execution causes normal termination of the currently

executing macro. See “%RETURN Statement” on page 234.
� The %COPY statement copies specified items from a SAS macro library. See

“%COPY Statement” on page 172.

New Macro Functions
� The %SYMEXIST function returns an indication of the existence of a macro

variable. See “%SYMEXIST Function” on page 248.
� The %SYMGLOBL function returns an indication as to whether a macro variable

is global in scope. See “%SYMGLOBL Function” on page 254.
� The %SYMLOCAL function returns an indication as to whether a macro variable

is local in scope. See “%SYMLOCAL Function” on page 256.

New Option for the %MACRO Statement
� SOURCE is a new option that is issued in the %MACRO statement. When used

with the existing STORE option, the SOURCE option combines and stores the
source of the compiled macro with the compiled macro code as an entry in a SAS
catalog in a permanent SAS data library. See “%MACRO Statement” on page 202.

1

P A R T1

Understanding and Using the Macro Facility

Chapter 1.Introduction to the Macro Facility 3

Chapter 2.SAS Programs and Macro Processing 11

Chapter 3.Macro Variables 19

Chapter 4.Macro Processing 33

Chapter 5.Scopes of Macro Variables 41

Chapter 6.Macro Expressions 67

Chapter 7.Macro Quoting 75

Chapter 8.Interfaces with the Macro Facility 95

Chapter 9.Storing and Reusing Macros 105

Chapter 10.Macro Facility Error Messages and Debugging 111

Chapter 11.Writing Efficient and Portable Macros 133

Chapter 12.Macro Language Elements 147

2

3

C H A P T E R

1
Introduction to the Macro
Facility

Getting Started with the Macro Facility 3

Replacing Text Strings Using Macro Variables 4
Generating SAS Code Using Macros 5

Inserting Comments in Macros 6

Macro Definition Containing Several SAS Statements 6
Passing Information into a Macro Using Parameters 7

Conditionally Generating SAS Code 8

More Advanced Macro Techniques 8
Generating Repetitive Pieces of Text Using %DO Loops 9

Generating a Suffix for a Macro Variable Reference 9
Other Features of the Macro Language 10

Getting Started with the Macro Facility

This is the macro facility language reference for SAS. It is a reference for the SAS
macro language processor and defines the SAS macro language elements. This section
introduces the SAS macro facility using simple examples and explanation.

The macro facility is a tool for extending and customizing SAS and for reducing the
amount of text you must enter to do common tasks. The macro facility enables you to
assign a name to character strings or groups of SAS programming statements. From
that point on, you can work with the names rather than with the text itself.

When you use a macro facility name in a SAS program or from a command prompt,
the macro facility generates SAS statements and commands as needed. The rest of SAS
receives those statements and uses them in the same way it uses the ones you enter in
the standard manner.

The macro facility has two components:

the macro
processor

is the portion of SAS that does the work.

the macro
language

is the syntax that you use to communicate with the macro processor.

When SAS compiles program text, two delimiters trigger macro processor activity:

&name refers to a macro variable. “Replacing Text Strings Using Macro
Variables” on page 4 explains how to create a macro variable. The
form &name is called a macro variable reference.

%name refers to a macro. “Generating SAS Code Using Macros” on page 5
explains how to create a macro. The form %name is called a macro
call.

4 Replacing Text Strings Using Macro Variables Chapter 1

The text substitution produced by the macro processor is completed before the
program text is compiled and executed. The macro facility uses statements and
functions that resemble those that you use in the DATA step. An important difference,
however, is that macro language elements can only trigger text substitution and are not
present during program or command execution.

Note: Three SAS statements begin with a % that are not part of the macro facility.
These elements are the %INCLUDE, %LIST, and %RUN statements. These statements
are documented in your Base SAS documentation. �

The following graphic explains the syntax used in this document:

Syntax Conventions

5 6
31 2PROC A11TAA ASETSTT <LIBRAR22 Y=RR librefrr >ff <MEMTYP33mtype-lis33 t)>

<DETAILSSTT || NODETN AILTT S> <other-optionrr s>;

RENAME variable55 -1= new-name-1 < 66variable-n66 =new-name-n >;

1 SAS keywords, such as statement or procedure names, appear in

bold type.

2 Values that you must spell as they are given in the syntax appear inVV

3 Optional arguments appear inside angle brackets(<>).

4 Mutually exclusive choices are joined with a vertical bar(|).

5 Values that you must supply appear in italic type.VV

6 Argument groups that you can repeat are indicated by an
ellipsis (. . .).

Replacing Text Strings Using Macro Variables

Macro variables are an efficient way of replacing text strings in SAS code. The
simplest way to define a macro variable is to use the %LET statement to assign the
macro variable a name (subject to standard SAS naming conventions), and a value.
Here is a simple example:

%let city=New Orleans;

Now you can use the macro variable CITY in SAS statements where you’d like the
text New Orleans to appear. You refer to the variable by preceding the variable name
with an ampersand (&), as in the following TITLE statement:

title "Data for &city";

The macro processor resolves the reference to the macro variable CITY, and the
statement becomes

title "Data for New Orleans";

A macro variable can be defined within a macro definition or within a statement that
is outside a macro definition (called open code).

Note: The title is enclosed in double quotation marks. In quoted strings in open
code, the macro processor resolves macro variable references within double quotation
marks but not within single quotation marks. �

A %LET statement in open code (outside a macro definition) creates a global macro
variable that is available for use anywhere in your SAS code during the SAS session in
which the variable was created. There are also local macro variables, which are
available for use only inside the macro definition where they are created. See Chapter

Introduction to the Macro Facility Generating SAS Code Using Macros 5

5, “Scopes of Macro Variables,” on page 41 for more information on global and local
macro variables.

Macro variables are not subject to the same length limits as SAS data set variables.
However, if the value you want to assign to a macro variable contains certain special
characters (for example, semicolons, quotation marks, ampersands, and percent signs)
or mnemonics (for example, AND, OR, or LT), you must use a macro quoting function to
mask the special characters. Otherwise, the special character or mnemonic might be
misinterpreted by the macro processor. See Chapter 7, “Macro Quoting,” on page 75 for
more information on macro quoting.

While macro variables are useful for simple text substitution, they cannot perform
conditional operations, DO loops, and other more complex tasks. For this kind of work,
you must define a macro.

Generating SAS Code Using Macros

Macros enable you to substitute text in a program and to do many other things. A
SAS program can contain any number of macros, and you can invoke a macro any
number of times in a single program.

To help you learn how to define your own macros, this section presents a few
examples you can model your own macros after. Each of these examples is fairly simple;
by mixing and matching the various techniques, you can create advanced, flexible
macros that are capable of performing complex tasks.

Each macro you define has a distinct name, which is subject to the standard SAS
naming conventions. (See the Base SAS language documentation for more information
on SAS naming conventions.) A macro definition is placed between a %MACRO
statement and a %MEND (macro end) statement, as follows:

%MACRO macro-name;
macro definition

%MEND macro-name;

The macro-name specified in the %MEND statement must match the macro-name
specified in the %MACRO statement.

Note: While specifying the macro-name in the %MEND statement is not required, it
is recommended. It makes matching %MACRO and %MEND statements while
debugging easier. �

Here is a simple macro definition:

%macro dsn;
Newdata

%mend dsn;

This macro is named DSN. Newdata is the text of the macro. A string inside a macro
is called constant text or model text because it is the model, or pattern, for the text that
becomes part of your SAS program.

To call (or invoke) a macro, precede the name of the macro with a percent sign (%), as
follows:

%macro-name

Although the call to the macro looks somewhat like a SAS statement, it does not
have to end in a semicolon.

6 Inserting Comments in Macros Chapter 1

For example, here is how you might call the DSN macro:

title "Display of Data Set %dsn";

The macro processor executes the macro DSN, which substitutes the constant text in
the macro into the TITLE statement. Thus, the TITLE statement becomes

title "Display of Data Set Newdata";

Note: The title is enclosed in double quotation marks. In quoted strings in open
code, the macro processor resolves macro invocations within double quotation marks
but not within single quotation marks. �

The macro DSN is exactly the same as coding the following:

%let dsn=Newdata;

title "Display of Data Set &dsn";

The result is still

title "Display of Data Set Newdata";

So, in this case, the macro approach does not have any advantages over the macro
variable approach. However, DSN is an extremely simple macro. As you will see in
later examples, macros can do much more than the macro DSN does.

Inserting Comments in Macros

All code benefits from thorough commenting, and macro code is no exception. There
are two forms you can use to add comments to your macro code.

The first form is the same as comments in SAS code, beginning with /* and ending
with */. The second form begins with a %* and ends with a ;. Here is a program that
uses both types of comments:

%macro comment;
/* Here is the type of comment used in other SAS code. */

%let myvar=abc;

%* Here is a macro-type comment.;
%let myvar2=xyz;

%mend comment;

You can use whichever type comment you prefer in your macro code, or use both
types as in the previous example.

The asterisk-style comment (* commentary ;)used in SAS code is not recommended
within a macro definition. While the asterisk-style will comment constant text
appropriately, it will execute any macro statements contained within the comment.

Macro Definition Containing Several SAS Statements
You can create macros that contain entire sections of a SAS program:

%macro plot;
proc plot;

plot income*age;
run;

Introduction to the Macro Facility Inserting Comments in Macros 7

%mend plot;

Later in the program you can invoke the macro as follows:

data temp;
set in.permdata;
if age>=20;

run;

%plot

proc print;
run;

Executing these statements produces the following program:

data temp;
set in.permdata;
if age>=20;

run;

proc plot;
plot income*age;

run;

proc print;
run;

Passing Information into a Macro Using Parameters

A macro variable defined in parentheses in a %MACRO statement is a macro
parameter. Macro parameters enable you to pass information into a macro. Here is a
simple example:

%macro plot(yvar= ,xvar=);
proc plot;

plot &yvar*&xvar;
run;

%mend plot;

You invoke the macro by providing values for the parameters, as follows:

%plot(yvar=income,xvar=age)

%plot(yvar=income,xvar=yrs_educ)

When the macro executes, the macro processor matches the values specified in the
macro call to the parameters in the macro definition. (This type of parameter is called a
keyword parameter.)

Macro execution produces the following code:

proc plot;
plot income*age;

run;

proc plot;
plot income*yrs_educ;

run;

8 More Advanced Macro Techniques Chapter 1

Using parameters has several advantages. First, you can write fewer %LET
statements. Second, using parameters ensures that the variables never interfere with
parts of your program outside the macro. Macro parameters are an example of local
macro variables, which exist only during the execution of the macro in which they are
defined.

Conditionally Generating SAS Code

By using the %IF-%THEN-%ELSE macro statements, you can conditionally generate
SAS code with a macro. Here is an example:

%macro whatstep(info=,mydata=);
%if &info=print %then

%do;
proc print data=&mydata;
run;

%end;

%else %if &info=report %then
%do;

options nodate nonumber ps=18 ls=70 fmtsearch=(sasuser);
proc report data=&mydata nowd;

column manager dept sales;
where sector=’se’;
format manager $mgrfmt. dept $deptfmt. sales dollar11.2;
title ’Sales for the Southeast Sector’;

run;
%end;

%mend whatstep;

In this example, the macro WHATSTEP uses keyword parameters, which are set to
default null values. When you call a macro that uses keyword parameters, specify the
parameter name followed by an equal sign and the value you want to assign the
parameter. Here, the macro WHATSTEP is called with INFO set to print and
MYDATA set to grocery:

%whatstep(info=print,mydata=grocery)

This produces the following statements:

proc print data=grocery;
run;

Because values in the macro processor are case sensitive, the previous program does
not work if you specify PRINT instead of print. To make your macro more robust, use
the %UPCASE macro function. For more information on this function, refer to Chapter
13, “Macro Language Dictionary,” on page 163.

For more information on macro definitions and macro parameters, see %MACRO and
%MEND in Chapter 13, “Macro Language Dictionary,” on page 163.

More Advanced Macro Techniques

After mastering the basic techniques previously discussed, you might want to learn
some more advanced macro techniques.

Introduction to the Macro Facility Generating a Suffix for a Macro Variable Reference 9

Generating Repetitive Pieces of Text Using %DO Loops

“Conditionally Generating SAS Code” on page 8 presents a %DO-%END group of
statements to conditionally execute several SAS statements. To generate repetitive
pieces of text, use an iterative %DO loop. For example, the following macro, NAMES,
uses an iterative %DO loop to create a series of names to be used in a DATA statement:

%macro names(name= ,number=);
%do n=1 %to &number;

&name&n
%end;

%mend names;

The macro NAMES creates a series of names by concatenating the value of the
parameter NAME and the value of the macro variable N. You supply the stopping value
for N as the value of the parameter NUMBER, as in the following DATA statement:

data %names(name=dsn,number=5);

Submitting this statement produces the following complete DATA statement:

data dsn1 dsn2 dsn3 dsn4 dsn5;

Note: You can also execute a %DO loop conditionally with %DO %WHILE and %DO
%UNTIL statements. See Chapter 13, “Macro Language Dictionary,” on page 163 for
details about these statements. �

Generating a Suffix for a Macro Variable Reference
Suppose that, when you generate a numbered series of names, you always want to

put the letter X between the prefix and the number. The macro NAMESX inserts an X
after the prefix you supply:

%macro namesx(name=,number=);
%do n=1 %to &number;

&name.x&n
%end;

%mend namesx;

The period is a delimiter at the end of the reference &NAME. The macro processor
uses the delimiter to distinguish the reference &NAME followed by the letter X from
the reference &NAMEX. Here is an example of calling the macro NAMESX in a DATA
statement:

data %namesx(name=dsn,number=3);

Submitting this statement produces the following statement:

data dsnx1 dsnx2 dsnx3;

See Chapter 3, “Macro Variables,” on page 19 for more information about using a
period as a delimiter in a macro variable reference.

10 Other Features of the Macro Language Chapter 1

Other Features of the Macro Language

Although subsequent sections go into far more detail on the various elements of the
macro language, this section highlights some of the possibilities, with pointers to more
information.

macro statements
This section has illustrated only a few of the macro statements, such as %MACRO
and %IF-%THEN. Many other macro statements exist, some of which are valid in
open code, while others are valid only in macro definitions. For a complete list of
macro statements, refer to “Macro Statements” on page 147.

macro functions
Macro functions are functions defined by the macro facility. They process one or
more arguments and produce a result. For example, the %SUBSTR function
creates a substring of another string, while the %UPCASE function converts
characters to uppercase. A special category of macro functions, the macro quoting
functions, mask special characters so they are not misinterpreted by the macro
processor.

There are two special macro functions, %SYSFUNC and %QSYSFUNC, that
provide access to SAS language functions or user-written functions generated with
SAS/TOOLKIT. You can use %SYSFUNC and %QSYSFUNC with new functions in
Base SAS software to obtain the values of SAS host, base, or graphics options.
These functions also enable you to open and close SAS data sets, test data set
attributes, or read and write to external files. Another special function is
%SYSEVALF, which enables your macros to perform floating-point arithmetic.

For a list of macro functions, refer to “Macro Functions” on page 149. For a
discussion of the macro quoting functions, refer to Chapter 7, “Macro Quoting,” on
page 75. For the syntax of calling selected Base SAS functions with %SYSFUNC,
refer to Appendix 3, “Syntax for Selected Functions Used with the %SYSFUNC
Function,” on page 321.

autocall macros
Autocall macros are macros defined by SAS that perform common tasks, such as
trimming leading or trailing blanks from a macro variable’s value or returning the
data type of a value. For a list of autocall macros, refer to “Selected Autocall
Macros Provided with SAS Software” on page 157.

automatic macro variables
Automatic macro variables are macro variables created by the macro processor.
For example, SYSDATE contains the date SAS is invoked. See Chapter 12, “Macro
Language Elements,” on page 147 for a list of automatic macro variables, and
Chapter 13, “Macro Language Dictionary,” on page 163 for a description of these
automatic macro variables.

macro facility interfaces
Interfaces with the macro facility provide a dynamic connection between the macro
facility and other parts of SAS, such as the DATA step, SCL code, the SQL
procedure, and SAS/CONNECT software. For example, you can create macro
variables based on values within the DATA step using CALL SYMPUT and
retrieve the value of a macro variable stored on a remote host using the
%SYSRPUT macro statement. For more information on these interfaces, refer to
Chapter 8, “Interfaces with the Macro Facility,” on page 95.

11

C H A P T E R

2
SAS Programs and Macro
Processing

Introduction to SAS Programs and Macro Processing 11

How SAS Processes Statements without Macro Activity 12
How SAS Processes Statements with Macro Activity 14

Introduction to SAS Programs and Macro Processing
This section describes the typical pattern that SAS follows to process a program.

These concepts are helpful for understanding how the macro processor works with other
parts of SAS. However, they are not required for most macro programming. They are
provided so that you can understand what is going on behind the scenes.

Note: The concepts in this section present a logical representation, not a detailed
physical representation, of how SAS software works. �

When you submit a program, it goes to an area of memory called the input stack.
This is true for all program and command sources: the SAS windowing environment,
the SCL SUBMIT block, the SCL COMPILE command, or from batch or noninteractive
sessions. The input stack shown in the following figure contains a simple SAS program
that displays sales data. The first line in the program is the top of the input stack.

12 How SAS Processes Statements without Macro Activity Chapter 2

Figure 2.1 Submitted Programs are Sent to the Input Stack

Word Scanner

DATA Step Compiler SCL Compiler Macro Processor Command Processor

Display Manager
Submit Command

SCL Submit Block
SCL Compile
Command

Batch or
Noninteractive
Submission

Display Manager
Command Line

Input Stack

data sales (drop=lastyr);
 infile inl;
 input ml-ml2 lastyr; total=ml2+lastyr;
run;
%let list=ml m7 m12 total;
proc print;
 var &list;
run;

Once a program reaches the input stack, SAS transforms the stream of characters
into individual tokens. These tokens are transferred to different parts of SAS for
processing, such as the DATA step compiler and the macro processor. Knowing how
SAS recognizes tokens and how they are transferred to different parts of SAS will help
you understand how the various parts of SAS and the macro processor work together
and how to control the timing of macro execution in your programs. The following
sections show you how a simple program is tokenized and processed.

How SAS Processes Statements without Macro Activity

The process that SAS uses to extract words and symbols from the input stack is
called tokenization. Tokenization is performed by a component of SAS called the word
scanner, as shown in Figure 2.2 on page 13. The word scanner starts at the first
character in the input stack and examines each character in turn. In doing so, the word
scanner assembles the characters into tokens. There are four general types of tokens:

Literal
a string of characters enclosed in quotation marks.

SAS Programs and Macro Processing How SAS Processes Statements without Macro Activity 13

Number
digits, date values, time values, and hexadecimal numbers.

Name
a string of characters beginning with an underscore or letter.

Special
any character or group of characters that have special meaning to SAS. Examples
of special characters include:

* / + - ** ; $ () . & % =

Figure 2.2 The Sample Program before Tokenization

Word Scanner

Input Stack

data sales (drop=lastyr);
 infile inl;
 input ml-ml2 lastyr;
 total=ml2+lastyr;
run;

The first SAS statement in the input stack in the preceding figure contains eight
tokens (four names and four special characters).

datasales(drop=lastyr);

When the word scanner finds a blank or the beginning of a new token, it removes a
token from the input stack and transfers it to the bottom of the queue.

In this example, when the word scanner pulls the first token from the input stack, it
recognizes the token as the beginning of a DATA step. The word scanner triggers the
DATA step compiler, which begins to request more tokens. The compiler pulls tokens
from the top of the queue, as shown in the following figure.

14 How SAS Processes Statements with Macro Activity Chapter 2

Figure 2.3 The Word Scanner Obtains Tokens

Compiler Word Scanner

data
sales
(drop
=
lastyr

);
 infile inl;
 input ml-ml2 lastyr;
 total=ml2+lastyr;
run;

Input Stack

The compiler continues to pull tokens until it recognizes the end of the DATA step (in
this case, the RUN statement), which is called a DATA step boundary, as shown in the
following figure. When the DATA step compiler recognizes the end of a step, the step is
executed, and the DATA step is complete.

Figure 2.4 The Word Scanner Sends Tokens to the Compiler

DATA SALES (DROP = LASTYR) ;
INFILE IN1;
INPUT M1 - M12 LASTYR ;
RUN

Compiler Word Scanner

;

Input Stack

In most SAS programs with no macro processor activity, all information that the
compiler receives comes from the submitted program.

How SAS Processes Statements with Macro Activity

In a program with macro activity, the macro processor can generate text that is
placed on the input stack to be tokenized by the word scanner. The example in this
section shows you how the macro processor creates and resolves a macro variable. To
illustrate how the compiler and the macro processor work together, the following figure
contains the macro processor and the macro variable symbol table. SAS creates the
symbol table at the beginning of a SAS session to hold the values of automatic and
global macro variables. SAS creates automatic macro variables at the beginning of a
SAS session. For the sake of illustration, the symbol table is shown with only one
automatic macro variable, SYSDAY.

SAS Programs and Macro Processing How SAS Processes Statements with Macro Activity 15

Figure 2.5 The Macro Processor and Symbol Table

%let file=inl;
data sales (drop=lastyr);
 infile &file;
 input ml-ml2 lastyr;
 total=ml2+lastyr;
run;

Compiler

Macro Processor

Input Stack

Word Scanner

Symbol Table

SYSDAY Friday

Whenever the word scanner encounters a macro trigger, it sends information to the
macro processor. A macro trigger is either an ampersand (&) or percent sign (%)
followed by a nonblank character. As it did in the previous example, the word scanner
begins to process this program by examining the first characters in the input stack. In
this case, the word scanner finds a percent sign (%) followed by a nonblank character.
The word scanner recognizes this combination of characters as a potential macro
language element, and triggers the macro processor to examine % and LET, as shown in
the following figure.

Figure 2.6 The Macro Processor Examines LET

let file=inl;
data sales (drop=lastyr);
 infile &file;
 input ml-ml2 lastyr;
 total=ml2+lastyr;
run;

Compiler

Macro Processor

Input Stack

Word Scanner

Symbol Table

SYSDAY Friday

%

When the macro processor recognizes a macro language element, it begins to work
with the word scanner. In this case, the macro processor removes the %LET statement,
and writes an entry in the symbol table, as shown in the following figure.

16 How SAS Processes Statements with Macro Activity Chapter 2

Figure 2.7 The Macro Processor Writes to the Symbol Table

Compiler

Macro Processor

Input Stack

Word Scanner

Symbol Table

SYSDAY Friday
FILE

 in1 ;
data sales (drop=lastyr);
 infile &file;
 input ml-ml2 lastyr;
 total=ml2+lastyr;
run;

From the time the word scanner triggers the macro processor until that macro
processor action is complete, the macro processor controls all activity. While the macro
processor is active, no activity occurs in the word scanner or the DATA step compiler.

When the macro processor is finished, the word scanner reads the next token (the
DATA keyword in this example) and sends it to the compiler. The word scanner triggers
the compiler, which begins to pull tokens from the top of the queue, as shown in the
following figure.

Figure 2.8 The Word Scanner Resumes Tokenization

Compiler

Input Stack

 ;
 infile &file;
 input ml-ml2 lastyr;
 total=ml2+lastyr;
run;

Word Scanner

data
sales
(drop
=
lastyr)

Macro Processor

Symbol Table

SYSDAY Friday
FILE in1

As it processes each token, SAS removes the protection that the macro quoting
functions provide to mask special characters and mnemonic operators.

If the word scanner finds an ampersand followed by a nonblank character in a token,
it triggers the macro processor to examine the next token, as shown in the following
figure.

SAS Programs and Macro Processing How SAS Processes Statements with Macro Activity 17

Figure 2.9 The Macro Processor Examines &FILE

DATA SALES (DROP = LASTYR) ;

Compiler

Input Stack

Word Scanner

Macro Processor

Symbol Table

SYSDAY Friday
FILE in1

infile

 file;
 input ml-ml2 lastyr;
 total=ml2+lastyr;
run;

&

The macro processor examines the token and recognizes a macro variable that exists
in the symbol table. The macro processor removes the macro variable name from the
input stack and replaces it with the text from the symbol table, as shown in the
following figure.

Figure 2.10 The Macro Processor Generates Text to the Input Stack

 in1 ;
 input ml-ml2 lastyr;
 total=ml2+lastyr;
run;

DATA SALES (DROP = LASTYR) ;

Compiler

Input Stack

Word Scanner

Macro Processor

Symbol Table

SYSDAY Friday
FILE in1

infile

The compiler continues to request tokens, and the word scanner continues to supply
them, until the entire input stack has been read as shown in the following figure.

18 How SAS Processes Statements with Macro Activity Chapter 2

Figure 2.11 The Word Scanner Completes Processing

DATA SALES (DROP = LASTYR) ;
INFILE IN1 ;
INPUT M1 - M12 LASTYR;
TOTAL = M12 + LASTYR;

Compiler

Input Stack

Word Scanner

Macro Processor

Symbol Table

SYSDAY Friday
FILE in1

run
;

If the end of the input stack is a DATA step boundary, as it is in this example, the
compiler compiles and executes the step. SAS then frees the DATA step task. Any
macro variables that were created during the program remain in the symbol table. If the
end of the input stack is not a step boundary, the processed statements remain in the
compiler. Processing resumes when more statements are submitted to the input stack.

19

C H A P T E R

3
Macro Variables

Introduction to Macro Variables 19

Macro Variables Defined by SAS 20
Macro Variables Defined by Users 22

Creating Macro Variables and Assigning Values 22

Using Macro Variables 25
Combining Macro Variable References with Text 27

Delimiting Macro Variable Names within Text 27

Creating a Period to Follow Resolved Text 28
Displaying Macro Variable Values 28

Referencing Macro Variables Indirectly 29
Generating a Series of Macro Variable References with a Single Macro Call 29

Using More Than Two Ampersands 30

Manipulating Macro Variable Values with Macro Functions 30

Introduction to Macro Variables
Macro variables are tools that enable you to dynamically modify the text in a SAS

program through symbolic substitution. You can assign large or small amounts of text
to macro variables, and after that, you can use that text by simply referencing the
variable that contains it.

Macro variable values have a maximum length of 65,534 characters. The length of a
macro variable is determined by the text assigned to it instead of an explicit length
declaration. So its length varies with each value it contains. Macro variables contain
only character data. However, the macro facility has features that enable a variable to
be evaluated as a number when it contains character data that can be interpreted as a
number. The value of a macro variable remains constant until it is explicitly changed.
Macro variables are independent of SAS data set variables.

Macro variables defined by macro programmers are called user-defined macro
variables. Those defined by SAS are called automatic macro variables. You can define
and use macro variables anywhere in SAS programs, except within data lines.

When a macro variable is defined, the macro processor adds it to one of the program’s
macro variable symbol tables. When a macro variable is defined in a statement that is
outside a macro definition (called open code) or when the variable is created
automatically by SAS (except SYSPBUFF), the variable is held in the global symbol
table, which SAS creates at the beginning of a SAS session. When a macro variable is
defined within a macro and is not explicitly defined as global, the variable is typically
held in the macro’s local symbol table, which SAS creates when the macro starts
executing. For more information about symbol tables, see Chapter 2, “SAS Programs
and Macro Processing,” on page 11 and Chapter 5, “Scopes of Macro Variables,” on page
41.

20 Macro Variables Defined by SAS Chapter 3

When it is in the global symbol table, a macro variable exists for the remainder of
the current SAS session. A variable in the global symbol table is called a global macro
variable. It has global scope because its value is available to any part of the SAS session.

When it is in a local symbol table, a macro variable exists only during execution of
the macro in which it is defined. A variable in a local symbol table is called a local
macro variable. It has local scope because its value is available only while the macro is
executing. Chapter 2, “SAS Programs and Macro Processing,” on page 11 contains
figures that illustrate a program with a global and a local symbol table.

You can use the %PUT statement to view all macro variables available in a current
SAS session. See %PUT in Chapter 13, “Macro Language Dictionary,” on page 163 and
also in Chapter 10, “Macro Facility Error Messages and Debugging,” on page 111.

Macro Variables Defined by SAS
When you invoke SAS, the macro processor creates automatic macro variables that

supply information related to the SAS session. Automatic variables are global except
SYSPBUFF, which is local.

To use an automatic macro variable, reference it with an ampersand followed by the
macro variable name (for example, &SYSJOBID). This FOOTNOTE statement contains
references to the automatic macro variables SYSDAY and SYSDATE:

footnote "Report for &sysday, &sysdate9";

If the current SAS session is invoked on December 17, 2002, macro variable
resolution causes SAS to receive this statement:

FOOTNOTE "Report for Tuesday, 17DEC2002";

Automatic macro variables are often useful in conditional logic such as a %IF
statement with actions determined by the value that is returned. %IF is described in
Chapter 13, “Macro Language Dictionary,” on page 163.

You can assign values to automatic macro variables that have read and write status.
However, you cannot assign a value to an automatic macro variable that has read-only
status. The following table lists the automatic macro variables that are supplied by
Base SAS software and their read/write status. They are all described in Chapter 13,
“Macro Language Dictionary,” on page 163.

Use %PUT _AUTOMATIC_ to view all available automatic macro variables.
There are also system-specific macro variables that are created only on a particular

platform. These are documented in the host companion, and common ones are listed in
Chapter 11, “Writing Efficient and Portable Macros,” on page 133. Other SAS software
products also provide macro variables, which are described in the documentation for the
product that uses them.

Table 3.1 Automatic Macro Variables by Category

Status Variable Contains

Read and Write SYSBUFFER unmatched text from %INPUT

SYSCC the current condition code that SAS returns to your
operating environment (the operating environment
condition code)

SYSCMD last unrecognized command from the command line
of a macro window

Macro Variables Macro Variables Defined by SAS 21

Status Variable Contains

SYSDEVIC name of current graphics device

SYSDMG return code that reflects an action taken on a
damaged data set

SYSDSN name of most recent SAS data set in two fields

SYSFILRC return code set by the FILENAME statement

SYSLAST name of most recent SAS data set in one field

SYSLCKRC return code set by the LOCK statement

SYSLIBRC return code set by the LIBNAME statement

SYSMSG message for display in macro window

SYSPARM value specified with the SYSPARM= system option

SYSPBUFF text of macro parameter values

SYSRC various system-related return codes

read-only SYSCHARWIDTH the character width value

SYSDATE the character value representing the date a SAS job
or session began executing (two-digit year)

SYSDATE9 the character value representing the date a SAS job
or session began executing (four-digit year)

SYSDAY day of week SAS job or session began executing

SYSENV foreground or background indicator

SYSERR return code set by SAS procedures and the DATA
step

SYSINDEX number of macros that have begun execution during
this session

SYSINFO return code information

SYSJOBID name of current batch job or userid (varies by host
environment)

SYSMACRONAME name of current executing macro

SYSMENV current macro execution environment

SYSNCPU the current number of processors that SAS may use
in computation

SYSPROCESSID the process id of the current SAS process

SYSPROCESSNAME the process name of the current SAS process

SYSPROCNAME name of current procedure being processed

SYSSCP the abbreviation of an operating system

SYSSCPL the name of an operating system

SYSSITE the number assigned to your site

SYSSTARTID the id generated from the last STARTSAS statement

SYSSTARTNAME the process name generated from the last
STARTSAS statement

22 Macro Variables Defined by Users Chapter 3

Status Variable Contains

SYSTIME the character value of the time a SAS job or session
began executing

SYSUSERID the userid or login of the current SAS process

SYSVER release or version number of SAS software executing

SYSVLONG release number and maintenance level of SAS
software

Macro Variables Defined by Users

You can create your own macro variables, change their values, and define their scope.
You can define a macro variable within a macro, and you can also explicitly define it as
a global variable, by defining it with the %GLOBAL statement. Macro variable names
must start with a letter or an underscore and can be followed by letters or digits. You
can assign any name to a macro variable as long as the name is not a reserved word.
The prefixes AF, DMS, SQL, and SYS are not recommended because they are frequently
used in SAS software for automatic macro variables. Thus, using one of these prefixes
can cause a name conflict with an automatic macro variable. For a complete list of
reserved words in the macro language, see Appendix 1, “Reserved Words in the Macro
Facility,” on page 317. If you assign a macro variable name that is not valid, an error
message is printed in the SAS log.

You can use %PUT _ALL_ to view all user-created macro variables. See %PUT in
Chapter 13, “Macro Language Dictionary,” on page 163.

Creating Macro Variables and Assigning Values
The simplest way to create and assign a value to a macro variable is to use the

macro program statement %LET, as in

%let dsname=Newdata;

DSNAME is the name of the macro variable. Newdata is the value of the macro
variable DSNAME. The value of a macro variable is simply a string of characters. The
characters can include any letters, numbers, or printable symbols found on your
keyboard, and blanks between characters. The case of letters is preserved in a macro
variable value. Some characters, such as unmatched quotation marks, require special
treatment, which is described later.

If a macro variable already exists, a value assigned to it replaces its current value. If
a macro variable or its value contains macro triggers (% or &), the trigger is evaluated
before the value is assigned. In the following example, &name is resolved to Cary and
then it is assigned as the value of city in the following statements:

%let name=Cary;
%let city=&name;

Generally, the macro processor treats alphabetic characters, digits, and symbols
(except & and %) as characters. It can also treat & and % as characters using a special
treatment, which is described later. It does not make a distinction between character
and numeric values as the rest of SAS does. (However, the %EVAL and %SYSEVALF
functions can evaluate macro variables as integers or floating point numbers. See
Chapter 13, “Macro Language Dictionary,” on page 163.)

Macro Variables Creating Macro Variables and Assigning Values 23

Macro variable values can represent text to be generated by the macro processor or
text to be used by the macro processor. Values can range in length from 0 to 65,534
characters. If you omit the value argument, the value is null (0 characters). By default,
leading and trailing blanks are not stored with the value.

In addition to the %LET statement, other features of the macro language that create
macro variables are

� iterative %DO statement

� %GLOBAL statement

� %INPUT statement

� INTO clause of the SELECT statement in SQL

� %LOCAL statement

� %MACRO statement

� SYMPUT routine and SYMPUTN routine in SCL

� %WINDOW statement.

The following table describes how to assign a variety of types of values to macro
variables.

Table 3.2 Types of Assignments for Macro Variable Values

To assign ... Use...

Constant text a character string. The following statements show several ways
that the value maple can be assigned to macro variable STREET. In
each case, the macro processor stores the five-character value maple
as the value of STREET. The leading and trailing blanks are not
stored.
%let street=maple;

%let street= maple;
%let street=maple ;
Note: Quotation marks are not required. If quotation marks are
used, they become part of the value.

Digits the appropriate digits. This example creates the macro variables
NUM and TOTALSTR:
%let num=123;
%let totalstr=100+200;
The macro processor does not treat 123 as a number or evaluate the
expression 100+200. Instead, the macro processor treats all the
digits as characters.

Arithmetic
expressions

the %EVAL function, for example,
%let num=%eval(100+200); / * produces 300 * /
use the %SYSEVALF function, for example,
%let num=%sysevalf(100+1.597); / * produces 101.597 * /
For more information, see “Macro Evaluation Functions” on page
151 and details on the functions in Chapter 13, “Macro Language
Dictionary,” on page 163.

A null value no assignment for the value argument. For example,
%let country=;

24 Creating Macro Variables and Assigning Values Chapter 3

To assign ... Use...

A macro
variable
reference

a macro variable reference, ¯o-variable. For example,
%let street=Maple;
%let num=123;
%let address=&num &street Avenue;
This example shows multiple macro references that are part of a
text expression. The macro processor attempts to resolve text
expressions before it makes the assignment. Thus, the macro
processor stores the value of macro variable ADDRESS as 123
Maple Avenue.
You can treat ampersands and percent signs as literals by using the
%NRSTR function to mask the character so that the macro
processor treats it as text instead of trying to interpret it as a
macro call. See Chapter 12, “Macro Language Elements,” on page
147 and Chapter 7, “Macro Quoting,” on page 75 for information.

A macro
invocation

a macro call, %macro-name. For example,
%let status=%wait;
When the %LET statement executes, the macro processor also
invokes the macro WAIT. The macro processor stores the text
produced by the macro WAIT as the value of STATUS.
To prevent the macro from being invoked when the %LET statement
executes, use the %NRSTR function to mask the percent sign:
%let status=%nrstr(%wait);
The macro processor stores %wait as the value of STATUS.

Macro Variables Using Macro Variables 25

To assign ... Use...

Blanks and
special
characters

macro quoting function %STR or %NRSTR around the value. This
action masks the blanks or special characters so that the macro
processor interprets them as text. See “Macro Quoting Functions”
on page 151 and Chapter 7, “Macro Quoting,” on page 75. For
example,
%let state=%str(North Carolina);
%let town=%str(Taylor%’s Pond);
%let store=%nrstr(Smith&Jones);
%let plotit=%str(

proc plot;
plot income*age;

run;);
The definition of macro variable TOWN demonstrates using %STR
to mask a value containing an unmatched quotation mark. “Macro
Quoting Functions” on page 151 and Chapter 7, “Macro Quoting,”
on page 75 discuss macro quoting functions that require unmatched
quotation marks and other symbols to be marked.
The definition of macro variable PLOTIT demonstrates using %STR
to mask blanks and special characters (semicolons) in macro
variable values. When a macro variable contains complete SAS
statements, the statements are easier to read if you enter them on
separate lines with indentions for statements within a DATA or
PROC step. Using a macro quoting function retains the significant
blanks in the macro variable value.

Value from a
DATA step

the SYMPUT routine. This example puts the number of
observations in a data set into a FOOTNOTE statement where
AGE is greater than 20:
data _null_;

set in.permdata end=final;
if age>20 then n+1;
if final then call symput(’number’,trim(left(n)));

run;
footnote "&number Observations have AGE>20";
During the last iteration of the DATA step, the SYMPUT routine
creates a macro variable named NUMBER whose value is the value
of N. (SAS also issues a numeric-to-character conversion message.)
The TRIM and the LEFT functions remove the extra space
characters from the DATA step variable N before its value is
assigned to the macro variable NUMBER.
The program generates this FOOTNOTE statement:
FOOTNOTE "Observations have AGE>20";
For a discussion of SYMPUT, including information on preventing
the numeric-character message, see Chapter 13, “Macro Language
Dictionary,” on page 163.

Using Macro Variables
After a macro variable is created, you typically use the variable by referencing it

with an ampersand preceding its name (&variable-name), which is called a macro
variable reference. These references perform symbolic substitutions when they resolve
to their value. You can use these references anywhere in a SAS program. To resolve a
macro variable reference that occurs within a literal string, enclose the string in double

26 Using Macro Variables Chapter 3

quotation marks. Macro variable references that are enclosed in single quotation marks
are not resolved. Compare the following statements that assign a value to macro
variable DSN and use it in a TITLE statement:

%let dsn=Newdata;
title1 "Contents of Data Set &dsn";
title2 ’Contents of Data Set &dsn’;

In the first TITLE statement, the macro processor resolves the reference by replacing
&DSN with the value of macro variable DSN. In the second TITLE statement, the
value for DSN does not replace &DSN. SAS sees the following statements:

TITLE1 "Contents of Data Set Newdata";
TITLE2 ’Contents of Data Set &dsn’;

You can refer to a macro variable as many times as you need to in a SAS program.
The value remains constant until you change it. For example, this program refers to
macro variable DSN twice:

%let dsn=Newdata;
data temp;

set &dsn;
if age>=20;

run;

proc print;
title "Subset of Data Set &dsn";

run;

Each time the reference &DSN appears, the macro processor replaces it with
Newdata. Thus, SAS sees these statements:

DATA TEMP;
SET NEWDATA;
IF AGE>=20;

RUN;

PROC PRINT;
TITLE "Subset of Data Set NewData";

RUN;

Note: If you reference a macro variable that does not exist, a warning message is
printed in the SAS log. For example, if macro variable JERRY is misspelled as JERY,
the following produces an unexpected result:

%let jerry=student;
data temp;

x="produced by &jery";
run;

This produces the following message:

WARNING: Apparent symbolic reference JERY not resolved.

�

Macro Variables Combining Macro Variable References with Text 27

Combining Macro Variable References with Text

It is often useful to place a macro variable reference next to leading or trailing text
(for example, DATA=PERSNL&YR.EMPLOYES, where &YR contains two characters
for a year), or to reference adjacent variables (for example, &MONTH&YR). This
enables you to reuse the same text in several places or to reuse a program because you
can change values for each use.

To reuse the same text in several places, you can write a program with macro
variable references representing the common elements. You can change all the locations
with a single %LET statement, as shown:

%let name=sales;
data new&name;

set save.&name;
more SAS statements
if units>100;

run;

After macro variable resolution, SAS sees these statements:

DATA NEWSALES;
SET SAVE.SALES;
more SAS statements
IF UNITS>100;

RUN;

Notice that macro variable references do not require the concatenation operator as
the DATA step does. SAS forms the resulting words automatically.

Delimiting Macro Variable Names within Text

Sometimes when you use a macro variable reference as a prefix, the reference does
not resolve as you expect if you simply concatenate it. Instead, you might need to
delimit the reference by adding a period to the end of it.

A period immediately following a macro variable reference acts as a delimiter. That
is, a period at the end of a reference forces the macro processor to recognize the end of
the reference. The period does not appear in the resulting text.

Continuing with the example above, suppose that you need another DATA step that
uses the names SALES1, SALES2, and INSALES.TEMP. You might add the following
step to the program:

/* first attempt to add suffixes--incorrect */
data &name1 &name2;

set in&name.temp;
run;

After macro variable resolution, SAS sees these statements:

DATA &NAME1 &NAME2;
SET INSALESTEMP;

RUN;

None of the macro variable references have resolved as you intended. The macro
processor issues warning messages, and SAS issues syntax error messages. Why?

Because NAME1 and NAME2 are valid SAS names, the macro processor searches for
those macro variables rather than for NAME, and the references pass into the DATA
statement without resolution.

28 Displaying Macro Variable Values Chapter 3

In a macro variable reference, the word scanner recognizes that a macro variable
name has ended when it encounters a character that is not allowed in a SAS name.
However, you can use a period (.) as a delimiter for a macro variable reference. For
example, to cause the macro processor to recognize the end of the word NAME in this
example, use a period as a delimiter between &NAME and the suffix:

/* correct version */
data &name.1 &name.2;

SAS now sees this statement:

DATA SALES1 SALES2;

Creating a Period to Follow Resolved Text

Sometimes you need a period to follow the text resolved by the macro processor. For
example, a two-level data set name needs to include a period between the libref and
data set name.

When the character following a macro variable reference is a period, use two periods.
The first is the delimiter for the macro reference, and the second is part of the text. For
example,

set in&name..temp;

After macro variable resolution, SAS sees this statement:

SET INSALES.TEMP;

You can end any macro variable reference with a delimiter, but the delimiter is
necessary only if the characters that follow can be part of a SAS name. For example,
both of these TITLE statements are correct:

title "&name.--a report";
title "&name--a report";

They produce:

TITLE "sales--a report";

Displaying Macro Variable Values

The simplest way to display macro variable values is to use the %PUT statement,
which writes text to the SAS log. For example, the statements

%let a=first;
%let b=macro variable;
%put &a ***&b***;

write

first ***macro variable***

You can also use a %PUT statement to view available macro variables. %PUT
provides several options that allow you to view individual categories of macro variables.
%PUT is described in Chapter 13, “Macro Language Dictionary,” on page 163.

The system option SYMBOLGEN displays the resolution of macro variables. For this
example, assume that macro variables PROC and DSET have the values GPLOT and
SASUSER.HOUSES, respectively.

Macro Variables Generating a Series of Macro Variable References with a Single Macro Call 29

options symbolgen;
%let title "%upcase(&proc) of %upcase(&dset)";

The SYMBOLGEN option prints to the log:

SYMBOLGEN: Macro variable PROC resolves to gplot
SYMBOLGEN: Macro variable DSET resolves to sasuser.houses

For more information on debugging macro programs, see Chapter 10, “Macro Facility
Error Messages and Debugging,” on page 111.

Referencing Macro Variables Indirectly
The macro variable references shown so far have been direct macro references that

begin with one ampersand: &name. However, it is also useful to be able to indirectly
reference macro variables that belong to a series so that the name is determined when
the macro variable reference resolves. The macro facility provides indirect macro
variable referencing, which enables you to use an expression (for example, CITY&N) to
generate a reference to one of a series of macro variables. For example, you could use
the value of macro variable N to reference a variable in the series of macro variables
named CITY1 to CITY20. If N has the value 8, the reference would be to CITY8. If the
value of N is 3, the reference would be to CITY3.

Although for this example the type of reference you want is CITY&N, the following
example will not produce the results that you expect, which is the value of &N
appended to CITY:

%put &city&n; /* incorrect */

This produces a warning message saying that there is no macro variable CITY
because the macro facility has tried to resolve &CITY and then &N and concatenate
those values.

When you use an indirect macro variable reference, you must force the macro
processor to scan the macro variable reference more than once and resolve the desired
reference on the second, or later, scan. To force the macro processor to rescan a macro
variable reference, you use more than one ampersand in the macro variable reference.
When the macro processor encounters multiple ampersands, its basic action is to
resolve two ampersands to one ampersand. For example, to append the value of &N to
CITY and then reference the appropriate variable name, you use:

%put &&city&n; /* correct */

Assuming that &N contains 6, when the macro processor receives this statement, it
performs the following steps:

1 resolves && to &

2 passes CITY as text
3 resolves &N into 6

4 returns to the beginning of the macro variable reference, &CITY6, starts resolving
from the beginning again, and prints the value of CITY6.

Generating a Series of Macro Variable References with a Single
Macro Call

Using indirect macro variable references, you can generate a series of references with
a single macro call by using an iterative %DO loop. The following example assumes that

30 Using More Than Two Ampersands Chapter 3

the macro variables CITY1 through CITY10 contain the respective values Cary, New
York, Chicago, Los Angeles, Austin, Boston, Orlando, Dallas, Knoxville, and Asheville:

%macro listthem;
%do n=1 %to 10; &&city&n
%end;

%mend listthem;

%put %listthem;

This program writes the following to the SAS log:

Cary New York Chicago Los Angeles Austin Boston
Orlando Dallas Knoxville Asheville

Using More Than Two Ampersands
You can use any number of ampersands in an indirect macro variable reference,

although using more than three is rare. Regardless of how many ampersands are used
in this type of reference, the macro processor performs the following steps to resolve the
reference. For example,

%let var=city;
%let n=6;
%put &&&var&n;

1 It resolves the entire reference from left-to-right. If a pair of ampersands (&&) is
encountered, the pair is resolved to a single ampersand, then the next part of the
reference is processed. In this example, &&&VAR&N becomes &CITY6.

2 It returns to the beginning of the preliminary result and starts resolving again
from left-to-right. When all ampersands have been fully processed, the resolution
is complete. In this example, &CITY6 resolves to Boston, and the resolution
process is finished.

Note: A macro call cannot be part of the resolution during indirect macro variable
referencing. �

TIP: In some cases, using indirect macro references with triple ampersands increases
the efficiency of the macro processor. For more information see Chapter 11, “Writing
Efficient and Portable Macros,” on page 133.

Manipulating Macro Variable Values with Macro Functions
When you define macro variables, you can include macro functions in the expressions

to manipulate the value of the variable before the value is stored. For example, you can
use functions that scan other values, evaluate arithmetic and logical expressions, and
remove the significance of special characters such as unmatched quotation marks.

To scan for words in macro variable values, use the %SCAN function. For example,

%let address=123 maple avenue;
%let frstword=%scan(&address,1);

The first %LET statement assigns the string 123 maple avenue to macro variable
ADDRESS. The second %LET statement uses the %SCAN function to search the source
(first argument) and retrieve the first word (second argument). Because the macro

Macro Variables Manipulating Macro Variable Values with Macro Functions 31

processor executes the %SCAN function before it stores the value, the value of
FRSTWORD is the string 123. (The %SCAN function is discussed in Chapter 13,
“Macro Language Dictionary,” on page 163.)

For more information about macro functions, see Chapter 12, “Macro Language
Elements,” on page 147.

32

33

C H A P T E R

4
Macro Processing

Introduction to Macro Processing 33

Defining and Calling Macros 33
How the Macro Processor Compiles a Macro Definition 34

How the Macro Processor Executes a Compiled Macro 36

Summary of Macro Processing 40

Introduction to Macro Processing
This section describes macro processing and shows the typical pattern that SAS

follows to process a program containing macro elements. For most macro programming,
you do not need this level of detail. It is provided to help you understand what is going
on behind the scenes.

Defining and Calling Macros
Macros are compiled programs that you can call in a submitted SAS program or from

a SAS command prompt. Like macro variables, you generally use macros to generate
text. However, macros provide additional capabilities:

� Macros can contain programming statements that enable you to control how and
when text is generated.

� Macros can accept parameters. This enables you to write generic macros that can
serve a number of uses.

To compile a macro, you must submit a macro definition. The general form of a
macro definition is

%MACRO macro-name;
<macro_text>

%MEND <macro_name>;

where macro_name is a unique SAS name that identifies the macro and macro_text is
any combination of macro statements, macro calls, text expressions, or constant text.

When you submit a macro definition, the macro processor compiles the definition and
produces a member in the session catalog. The member consists of compiled macro
program statements and text. The distinction between compiled items and noncompiled
(text) items is important for macro execution. Examples of text items include:

� macro variable references
� nested macro calls

34 How the Macro Processor Compiles a Macro Definition Chapter 4

� macro functions, except %STR and %NRSTR
� arithmetic and logical macro expressions
� text to be written by %PUT statements
� field definitions in %WINDOW statements
� model text for SAS statements and SAS windowing environment commands.

When you want to call the macro, you use the form
%macro_name

How the Macro Processor Compiles a Macro Definition
When you submit a SAS program, the contents of the program goes to an area of

memory called the input stack. The example program in the following figure contains a
macro definition, a macro call and a PROC PRINT step. This section illustrates how the
macro definition in the example program is compiled and stored.

Figure 4.1 The Macro APP

Input Stack

%macro app(goal);
 %if &sysday=Friday %then
 %do;
 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;
%app(10000)
proc print;
run;

Using the same process described in Chapter 2, “SAS Programs and Macro
Processing,” on page 11 the word scanner begins tokenizing the program. When the
word scanner detects % followed by a nonblank character in the first token, it triggers
the macro processor. The macro processor examines the token and recognizes the
beginning of a macro definition. The macro processor pulls tokens from the input stack
and compiles until the %MEND statement terminates the macro definition (Figure 4.2
on page 35).

During macro compilation, the macro processor
� creates an entry in the session catalog.
� compiles and stores all macro program statements for that macro as macro

instructions.
� stores all noncompiled items in the macro as text.

Note: Text items are underlined in the illustrations in this section. �

If the macro processor detects a syntax error while compiling the macro, it checks the
syntax in the rest of the macro and issues messages for any additional errors it finds.

Macro Processing How the Macro Processor Compiles a Macro Definition 35

However, the macro processor does not store the macro for execution. A macro that the
macro processor compiles but does not store is called a dummy macro.

Figure 4.2 Macro APP in the Input Stack

 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;
%app(10000)
proc print;
run;

Macro Catalog

Compiler
Symbol Table

SYSDAY Friday

Macro Processor

Input Stack

APP Macro

%macro app(goal);
 %if &sysday=Friday %then
 %do;
 data thisweek;
 set lastweek;

Word Scanner

In this example, the macro definition is compiled and stored successfully (see the
following figure). For the sake of illustration, the compiled APP macro looks like the
original macro definition that was in the input stack. The entry would actually contain
compiled macro instructions with constant text. The constant text in this example is
underlined.

Figure 4.3 The Compiled Macro APP

%app(10000)
proc print;
run;

Macro Catalog

Compiler
Symbol Table

SYSDAY Friday

Input Stack

APP Macro

%macro app(goal);
 %if &sysday=Friday %then
 %do;
 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;

Word Scanner

Macro Processor

36 How the Macro Processor Executes a Compiled Macro Chapter 4

How the Macro Processor Executes a Compiled Macro

Macro execution begins with the macro processor opening the SASMACR catalog to
read the appropriate macro entry. As the macro processor executes the compiled
instructions in the macro entry, it performs a series of simple repetitive actions. During
macro execution, the macro processor

� executes compiled macro program instructions

� places noncompiled constant text on the input stack

� waits for the word scanner to process the generated text

� resumes executing compiled macro program instructions.

To continue the example from the previous section, the following figure shows the
lines remaining in the input stack after the macro processor compiles the macro
definition APP.

Figure 4.4 The Macro Call in the Input Stack

%app(10000)
proc print;
run;

Input Stack

The word scanner examines the input stack and detects % followed by a nonblank
character in the first token. It triggers the macro processor to examine the token.

Figure 4.5 Macro Call Entering Word Queue

Macro Catalog

Compiler
Symbol Table

SYSDAY Friday

Macro Processor

Input Stack

APP Macro

%macro app(goal);
 %if &sysday=Friday %then
 %do;
 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;

Word Scanner

 app (10000)
proc print;
run;

%

Macro Processing How the Macro Processor Executes a Compiled Macro 37

The macro processor recognizes a macro call and begins to execute macro APP, as
follows:

1 The macro processor opens the session catalog and creates a local symbol table
with an entry for the parameter GOAL.

2 The macro processor removes the tokens for the macro call from the input stack
and places the parameter value in the GOAL entry in the APP symbol table.

3 The macro processor encounters the compiled %IF instruction and recognizes that
the next item will be text containing a condition.

4 The macro processor places the text &sysday=Friday on the input stack ahead of
the remaining text in the program (see the following figure) and waits for the word
scanner to tokenize the generated text.

Figure 4.6 Text for %IF Condition on Input Stack

Macro Catalog

Compiler

Input Stack

APP Macro

Word Scanner Symbol Table

SYSDAY Friday

APP Symbol Table

GOAL 10000

Macro Processor

&sysday=Friday
proc print;
run;

%macro app(goal);
 %if &sysday=Friday %then
 %do;
 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;

5 The word scanner starts tokenizing the generated text, recognizes an ampersand
followed by nonblank character in the first token, and triggers the macro processor.

6 The macro processor examines the token and finds a possible macro variable
reference, &SYSDAY. The macro processor first searches the local APP symbol
table for a matching entry and then the global symbol table. When the macro
processor finds the entry in the global symbol table, it replaces macro variable in
the input stack with the value Friday (see the following figure).

7 The macro processor stops and waits for the word scanner to tokenize the
generated text.

38 How the Macro Processor Executes a Compiled Macro Chapter 4

Figure 4.7 Input Stack after Macro Variable Reference Is Resolved

Macro Catalog

Compiler

Input Stack

APP Macro

Word Scanner Symbol Table

SYSDAY Friday

APP Symbol Table

GOAL 10000

Macro Processor

Friday=Friday
proc print;
run;

%macro app(goal);
 %if &sysday=Friday %then
 %do;
 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;

8 The word scanner then read Friday=Friday from the input stack.

9 The macro processor evaluates the expression Friday=Friday and, because the
expression is true, proceeds to the %THEN and %DO instructions.

Figure 4.8 Macro Processor Receives the Condition

Macro Catalog

Compiler

Input Stack

APP Macro

Word Scanner Symbol Table

SYSDAY Friday

APP Symbol Table

GOAL 10000

Macro Processor

proc print;
run;

%macro app(goal);
 %if &sysday=Friday %then
 %do;
 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;

Friday
=
Friday

10 The macro processor executes the compiled %DO instructions and recognizes that
the next item is text.

11 The macro processor places the text on top of the input stack and waits for the
word scanner to begin tokenization.

12 The word scanner reads the generated text from the input stack, and tokenizes it.

Macro Processing How the Macro Processor Executes a Compiled Macro 39

13 The word scanner recognizes the beginning of a DATA step, and triggers the
compiler to begin accepting tokens. The word scanner transfers tokens to the
compiler from the top of the stack.

Figure 4.9 Generated Text on Top of Input Stack

Macro Catalog

Compiler

Input Stack

APP Macro

Word Scanner Symbol Table

SYSDAY Friday

APP Symbol Table

GOAL 10000

Macro Processor

thisweek
;
set
lastweek
;

 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
proc print;
run;

DATA

%macro app(goal);
 %if &sysday=Friday %then
 %do;
 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;

14 When the word scanner detects & followed by a nonblank character (the macro
variable reference &GOAL), it triggers the macro processor.

15 The macro processor looks in the local APP symbol table and resolves the macro
variable reference &GOAL to 10000. The macro processor places the value on top
of the input stack, ahead of the remaining text in the program.

Figure 4.10 The Word Scanner Reads Generated Text

 10000;
 then bonus = .03;
 else bonus = 0;
proc print;
run;

Macro Catalog

Compiler

Input Stack

APP Macro

Word Scanner Symbol Table

SYSDAY Friday

APP Symbol Table

GOAL 10000

Macro Processor

if
totsales
>

DATA THISWEEK;
SET LASTWEEK;

%macro app(goal);
 %if &sysday=Friday %then
 %do;

 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;

40 Summary of Macro Processing Chapter 4

16 The word scanner resumes tokenization. When it has completed tokenizing the
generated text, it triggers the macro processor.

17 The macro processor resumes processing the compiled macro instructions. It
recognizes the end of the %DO group at the %END instruction and proceeds to
%MEND.

18 the macro processor executes the %MEND instruction, removes the local symbol
table APP, and macro APP ceases execution.

19 The macro processor triggers the word scanner to resume tokenization.
20 The word scanner reads the first token in the input stack (PROC), recognizes the

beginning of a step boundary, and triggers the DATA step compiler.
21 The compiled DATA step is executed, and the DATA step compiler is cleared.
22 The word scanner signals the PRINT procedure (a separate executable not

illustrated), which pulls the remaining tokens.

Figure 4.11 The Remaining Statements are Compiled and Executed

DATA THISWEEK ;
 SET LASTWEEK;
 IF TOTSALES > 10000
 THEN BONUS = .03 ;
 ELSE BONUS = 0 ;

 print;
run;

Compiler

Input Stack

Word Scanner Symbol Table

SYSDAY Friday

APP Symbol Table

GOAL 10000

Macro Processor

proc

Macro Catalog

APP Macro

%macro app(goal);
 %if &sysday=Friday %then
 %do;
 data thisweek;
 set lastweek;
 if totsales > &goal
 then bonus = .03;
 else bonus = 0;
 %end;
%mend app;

Summary of Macro Processing
The previous sections illustrate the relationship between macro compilation and

execution and DATA step compilation and execution. The relationship contains a
pattern of simple repetitive actions. These actions begin when text is submitted to the
input stack and the word scanner begins tokenization. At times the word scanner waits
for the macro processor to perform an activity, such as searching the symbol tables or
compiling a macro definition. If the macro processor generates text during its activity,
then it pauses while the word scanner tokenizes the text and sends the tokens to the
appropriate target. These tokens might trigger other actions in parts of SAS, such as
the DATA step compiler, the command processor, or a SAS procedure. If this is the case,
the macro processor waits for these actions to be completed before resuming its activity.
When the macro processor stops, the word scanner resumes tokenization. This process
continues until the entire program has been processed.

41

C H A P T E R

5
Scopes of Macro Variables

Introduction to the Scopes of Macro Variables 41

Global Macro Variables 42
Local Macro Variables 43

Writing the Contents of Symbol Tables to the SAS Log 45

How Macro Variables Are Assigned and Resolved 45
Examples of Macro Variable Scopes 48

Changing the Values of Existing Macro Variables 48

Creating Local Variables 50
Forcing a Macro Variable to Be Local 54

Creating Global Macro Variables 57
Creating Global Variables Based on the Value of Local Variables 58

Special Cases of Scope with the CALL SYMPUT Routine 58

Example Using CALL SYMPUT with Complete DATA Step and a Nonempty Local Symbol
Table 59

Example Using CALL SYMPUT with an Incomplete DATA Step 62

Example Using CALL SYMPUT with a Complete DATA Step and an Empty Local Symbol
Table 64

Example Using CALL SYMPUT with SYSPBUFF and an Empty Local Symbol Table 64

Introduction to the Scopes of Macro Variables

Every macro variable has a scope.* A macro variable’s scope determines how it is
assigned values and how the macro processor resolves references to it.

Two types of scopes exist for macro variables: global and local. Global macro
variables exist for the duration of the SAS session and can be referenced anywhere in
the program–either inside or outside a macro. Local macro variables exist only during
the execution of the macro in which the variables are created and have no meaning
outside the defining macro.

Scopes can be nested, like boxes within boxes. For example, suppose you have a
macro A that creates the macro variable LOC1 and a macro B that creates the macro
variable LOC2. If the macro B is nested (executed) within the macro A, LOC1 is local to
both A and B. However, LOC2 is local only to B.

Macro variables are stored in symbol tables, which list the macro variable name and
its value. There is a global symbol table, which stores all global macro variables. Local
macro variables are stored in a local symbol table that is created at the beginning of the
execution of a macro.

* Earlier macro facility documentation often used the term "referencing environment" instead of scope.

42 Global Macro Variables Chapter 5

You can use the %SYMEXIST function to indicate whether or not a macro variable
exists. See “%SYMEXIST Function” on page 248 for more detailed information.

Global Macro Variables

The following figure illustrates the global symbol table during execution of the
following program:

%let county=Clark;

%macro concat;
data _null_;

length longname $20;
longname="&county"||" County";
put longname;

run;
%mend concat;

%concat

Calling the macro CONCAT produces the following statements:

data _null_;
length longname $20;
longname="Clark"||" County";
put longname;

run;

The PUT statement writes the following to the SAS log:

Clark County

Figure 5.1 Global Symbol Table

GLOBAL SYSDATE
SYSDAY

COUNTY

05FEB97
Wednesday

Clark

…

Global macro variables include the following:

Scopes of Macro Variables Local Macro Variables 43

� all automatic macro variables except SYSPBUFF. See Chapter 13, “Macro
Language Dictionary,” on page 163 for more information on SYSPBUFF and other
automatic macro variables.

� macro variables created outside of any macro.
� macro variables created in %GLOBAL statements. See “Creating Global Macro

Variables” on page 57 for more information on the %GLOBAL statement.
� most macro variables created by the CALL SYMPUT routine. See “Special Cases

of Scope with the CALL SYMPUT Routine” on page 58 for more information on the
CALL SYMPUT routine.

You can create global macro variables any time during a SAS session or job. Except
for some automatic macro variables, you can change the values of global macro
variables any time during a SAS session or job.

In most cases, once you define a global macro variable, its value is available to you
anywhere in the SAS session or job and can be changed anywhere. So, a macro variable
referenced inside a macro definition is global if a global macro variable already exists
by the same name (assuming the variable is not explicitly defined as local with the
%LOCAL statement or in a parameter list). The new macro variable definition simply
updates the existing global one. The following are exceptions that prevent you from
referencing the value of a global macro variable:

� when a macro variable exists both in the global symbol table and in the local
symbol table, you cannot reference the global value from within the macro that
contains the local macro variable. In this case, the macro processor finds the local
value first and uses it instead of the global value.

� if you create a macro variable in the DATA step with the SYMPUT routine, you
cannot reference the value with an ampersand until the program reaches a step
boundary. See Chapter 4, “Macro Processing,” on page 33 for more information on
macro processing and step boundaries.

You can use the %SYMGLOBL function to indicate whether or not an existing macro
variable resides in the global symbol table. See the “%SYMGLOBL Function” on page
254 for more detailed information.

Local Macro Variables
Local macro variables are defined within an individual macro. Each macro you

invoke creates its own local symbol table. Local macro variables exist only as long as a
particular macro executes. When the macro stops executing, all local macro variables
for that macro cease to exist.

The following figure illustrates the local symbol table during the execution of the
following program.

%macro holinfo(day,date);
%let holiday=Christmas;
%put *** Inside macro: ***;
%put *** &holiday occurs on &day, &date, 2002. ***;

%mend holinfo;

%holinfo(Wednesday,12/25)

%put *** Outside macro: ***;
%put *** &holiday occurs on &day, &date, 2002. ***;

The %PUT statements write the following to the SAS log:

44 Local Macro Variables Chapter 5

*** Inside macro: ***
*** Christmas occurs on Wednesday, 12/25, 2002. ***

*** Outside macro: ***
WARNING: Apparent symbolic reference HOLIDAY not resolved.
WARNING: Apparent symbolic reference DAY not resolved.
WARNING: Apparent symbolic reference DATE not resolved.
*** &holiday occurs on &day, &date, 2002. ***

As you can see from the log, the local macro variables DAY, DATE, and HOLIDAY
resolve inside the macro, but outside the macro they do not exist and therefore do not
resolve.

Figure 5.2 Local Symbol Table

HOLINFO DAY
DATE

HOLIDAY

Thursday
12/25
Christmas

A macro’s local symbol table is empty until the macro creates at least one macro
variable. A local symbol table can be created by any of the following:

� the presence of one or more macro parameters

� a %LOCAL statement

� macro statements that define macro variables, such as %LET and the iterative
%DO statement (assuming the variable does not already exist globally or a
%GLOBAL statement is not used).

Note: Macro parameters are always local to the macro that defines them. You
cannot make macro parameters global. (Although, you can assign the value of the
parameter to a global variable. See “Creating Global Variables Based on the Value of
Local Variables” on page 58.) �

When you invoke one macro inside another, you create nested scopes. Because you
can have any number of levels of nested macros, your programs can contain any
number of levels of nested scopes.

You can use the %SYMLOCAL function to indicate whether or not an existing macro
variable resides in an enclosing local symbol table. See the “%SYMLOCAL Function” on
page 256 for more detailed information.

Scopes of Macro Variables How Macro Variables Are Assigned and Resolved 45

Writing the Contents of Symbol Tables to the SAS Log
While developing your macros, you might find it useful to write all or part of the

contents of the global and local symbol tables to the SAS log. To do so, use the %PUT
statement with one of the following options:

ALL describes all currently defined macro variables, regardless of scope.
This includes user-defined global and local variables as well as
automatic macro variables. Scopes are listed in the order of
innermost to outermost.

AUTOMATIC describes all automatic macro variables. The scope is listed as
AUTOMATIC. All automatic macro variables are global except
SYSPBUFF. See Chapter 12, “Macro Language Elements,” on page
147 and Chapter 13, “Macro Language Dictionary,” on page 163 for
more information about specific automatic macro variables.

GLOBAL describes all user-defined global macro variables. The scope is listed
as GLOBAL. Automatic macro variables are not listed.

LOCAL describes user-defined local macro variables defined within the
currently executing macro. The scope is listed as the name of the
macro in which the macro variable is defined.

USER describes all user-defined macro variables, regardless of scope. The
scope is either GLOBAL, for global macro variables, or the name of
the macro in which the macro variable is defined.

For example, consider the following program:

%let origin=North America;

%macro dogs(type=);
data _null_;

set all_dogs;
where dogtype="&type" and dogorig="&origin";
put breed " is for &type.";

run;

%put _user_;
%mend dogs;

%dogs(type=work)

The %PUT statement preceding the %MEND statement writes to the SAS log the
scopes, names, and values of all user-generated macro variables:

DOGS TYPE work
GLOBAL ORIGIN North America

Because TYPE is a macro parameter, TYPE is local to the macro DOGS, with value
work. Because ORIGIN is defined in open code, it is global.

How Macro Variables Are Assigned and Resolved
Before the macro processor creates a variable, assigns a value to a variable, or

resolves a variable, it searches the symbol tables to determine whether the variable

46 How Macro Variables Are Assigned and Resolved Chapter 5

already exists. The search begins with the most local scope and, if necessary, moves
outward to the global scope. The request to assign or resolve a variable comes from a
macro variable reference in open code (outside a macro) or within a macro.

The following figure illustrates the search order the macro processor uses when it
receives a macro variable reference that requests a variable be created or assigned. The
figure below illustrates the process for resolving macro variable references. Both these
figures represent the most basic type of search and do not apply in special cases, such
as when a %LOCAL statement is used or the variable is created by CALL SYMPUT.

Figure 5.3 Search Order When Assigning or Creating Macro Variables

Request to
 create variable or

assign a variable value

From open code

Change
variable
value in
global
symbol

table

Does variable exist in
global symbol table?

Create
variable

in
global

 symbol
table

From within a macro

Does variable exist in
local symbol table?

Does variable exist in
global symbol table?

Change
variable

value
in global
symbol

table

Create
variable
in local
symbol

table

Change
variable

value

Continue checking
next available scope

Change
variable

value
in local
symbol

table

Does variable exist in
next available scope?

YES NO YES NO

YES NO

YES NO

.

.

.

Scopes of Macro Variables How Macro Variables Are Assigned and Resolved 47

Figure 5.4 Search Order When Resolving Macro Variable References

Request to
 resolve variable

From open code

Resolve
variable

Does variable exist in
global symbol table?

Issue
warning
message

From within a macro

Does variable exist in
local symbol table?

Does variable exist in
global symbol table?

Resolve
variable

Issue
warning
message

Resolve
variable

Continue checking
next available scope

Resolve
variable

Does variable exist in
next available scope?

YES NO YES NO

YES NO

YES NO

.

.

.

48 Examples of Macro Variable Scopes Chapter 5

Examples of Macro Variable Scopes

Changing the Values of Existing Macro Variables
When the macro processor executes a macro program statement that can create a

macro variable (such as a %LET statement), the macro processor attempts to change
the value of an existing macro variable rather than create a new macro variable. The
%GLOBAL and %LOCAL statements are exceptions.

To illustrate, consider the following %LET statements. Both statements assign
values to the macro variable NEW:

%let new=inventry;
%macro name1;

%let new=report;
%mend name1;

Suppose you submit the following statements:

%name1

data &new;

These statements produce the following statement:

data report;

Because NEW exists as a global variable, the macro processor changes the value of
that variable rather than creating a new one. The macro NAME1’s local symbol table
remains empty.

The following figure illustrates the contents of the global and local symbol tables
before, during, and after NAME1’s execution.

Scopes of Macro Variables Changing the Values of Existing Macro Variables 49

Figure 5.5 Snapshots of Symbol Tables

GLOBAL

GLOBAL

GLOBAL

Before NAME1 executes

While NAME1 executes

After NAME1 executes

SYSDATE
SYSDAY

NEW

15AUG97
Friday

inventry
…

SYSDATE
SYSDAY

NEW

15AUG97
Friday

report

…

SYSDATE
SYSDAY

NEW

15AUG97
Friday

report

…

NAME1

50 Creating Local Variables Chapter 5

Creating Local Variables
When the macro processor executes a macro program statement that can create a

macro variable, the macro processor creates the variable in the local symbol table if no
macro variable with the same name is available to it. Consider the following example:

%let new=inventry;
%macro name2;

%let new=report;
%let old=warehse;

%mend name2;

%name2

data &new;
set &old;

run;

After NAME2 executes, the SAS compiler sees the following statements:

data report;
set &old;

run;

The macro processor encounters the reference &OLD after macro NAME2 has
finished executing; thus, the macro variable OLD no longer exists. The macro processor
is not able to resolve the reference and issues a warning message.

The following figure illustrates the contents of the global and local symbol tables at
various stages.

Scopes of Macro Variables Creating Local Variables 51

Figure 5.6 Symbol Tables at Various Stages

GLOBAL

GLOBAL

GLOBAL

Before NAME2 executes

While NAME2 executes

After NAME2 executes

SYSDATE
SYSDAY

NEW

15AUG97
Friday

inventry
…

SYSDATE
SYSDAY

NEW

15AUG97
Friday

report

…

SYSDATE
SYSDAY

NEW

15AUG97
Friday

report

…

NAME2 OLD warehse

52 Creating Local Variables Chapter 5

But suppose you place the SAS statements inside the macro NAME2, as in the
following program:

%let new=inventry;
%macro name2;

%let new=report;
%let old=warehse;
data &new;

set &old;
run;

%mend name2;

%name2

In this case, the macro processor generates the SET statement during the execution
of NAME2, and it locates OLD in NAME2’s local symbol table. Therefore, executing the
macro produces the following statements:

data report;
set warehse;

run;

The same rule applies regardless of how many levels of nesting exist. Consider the
following example:

%let new=inventry;
%macro conditn;

%let old=sales;
%let cond=cases>0;

%mend conditn;

%macro name3;
%let new=report;
%let old=warehse;
%conditn

data &new;
set &old;
if &cond;

run;
%mend name3;

%name3

The macro processor generates these statements:

data report;
set sales;
if &cond;

run;

CONDITN finishes executing before the macro processor reaches the reference
&COND, so no variable named COND exists when the macro processor attempts to
resolve the reference. Thus, the macro processor issues a warning message and
generates the unresolved reference as part of the constant text and issues a warning
message. The following figure shows the symbol tables at each step.

Scopes of Macro Variables Creating Local Variables 53

Figure 5.7 Symbol Tables Showing Two Levels of Nesting

GLOBAL

GLOBAL

GLOBAL

Early execution of
NAME3, before
CONDITN executes

While NAME3 and
CONDITN execute

Late execution of
NAME3, after
CONDITN executes

SYSDATE
SYSDAY

NEW

15AUG97
Friday

report
…

SYSDATE
SYSDAY

NEW

15AUG97
Friday

report

…

SYSDATE
SYSDAY

NEW

15AUG97
Friday

report

…

NAME3 OLD sales

NAME3 OLD warehse

NAME3 OLD sales

CONDITN COND = cases>0

Notice that the placement of a macro invocation is what creates a nested scope, not
the placement of the macro definition. For example, invoking CONDITN from within

54 Forcing a Macro Variable to Be Local Chapter 5

NAME3 creates the nested scope. It is not necessary to define CONDITN within
NAME3.

Forcing a Macro Variable to Be Local
At times you need to ensure that the macro processor creates a local macro variable

rather than changing the value of an existing macro variable. In this case, use the
%LOCAL statement to create the macro variable.

Explicitly make all macro variables created within macros local when you do not
need their values after the macro stops executing. Debugging the large macro programs
is easier if you minimize the possibility of inadvertently changing a macro variable’s
value. Also, local macro variables do not exist after their defining macro finishes
executing, while global variables exist for the duration of the SAS session. Therefore,
local variables use less overall storage.

Suppose you want to use the macro NAMELST to create a list of names for a VAR
statement, as shown here:

%macro namelst(name,number);
%do n=1 %to &number;

&name&n
%end;

%mend namelst;

You invoke NAMELST in this program:

%let n=North State Industries;

proc print;
var %namelst(dept,5);
title "Quarterly Report for &n";

run;

After macro execution, the SAS compiler sees the following statements:

proc print;
var dept1 dept2 dept3 dept4 dept5;
title "Quarterly Report for 6";

run;

Scopes of Macro Variables Forcing a Macro Variable to Be Local 55

The macro processor changes the value of the global variable N each time it executes
the iterative %DO loop. (After the loop stops executing, the value of N is 6, as described
in " %DO" in Chapter 13, “Macro Language Dictionary,” on page 163.) To prevent
conflicts, use a %LOCAL statement to create a local variable N, as shown here:

%macro namels2(name,number);
%local n;
%do n=1 %to &number;

&name&n
%end;

%mend namels2;

Now execute the same program:

%let n=North State Industries;

proc print;
var %namels2(dept,5);
title "Quarterly Report for &n";

run;

The macro processor generates the following statements:

proc print;
var dept1 dept2 dept3 dept4 dept5;
title "Quarterly Report for North State Industries";

run;

The following figure shows the symbol tables before NAMELS2 executes, while
NAMELS2 is executing, and when the macro processor encounters the reference &N in
the TITLE statement.

56 Forcing a Macro Variable to Be Local Chapter 5

Figure 5.8 Symbol Tables for Global and Local Variables with the Same Name

GLOBAL

GLOBAL

GLOBAL

Before NAMELS2 executes

While NAMELS2 executes
(at end of last iteration
of %DO loop)

After NAMELS2 executes

NAMELS2

SYSDATE
SYSDAY

15AUG97
Friday…

North State IndustriesN

SYSDATE
SYSDAY

15AUG97
Friday…

North State IndustriesN

SYSDATE
SYSDAY

15AUG97
Friday…

North State IndustriesN

NAME
NUMBER

N

dept
5
6

Scopes of Macro Variables Creating Global Macro Variables 57

Creating Global Macro Variables

The %GLOBAL statement creates a global macro variable if a variable with the same
name does not already exist there, regardless of what scope is current.

For example, in the following program, the macro CONDITN contains a %GLOBAL
statement that creates the macro variable COND as a global variable:

%macro conditn;
%global cond;
%let old=sales;
%let cond=cases>0;

%mend conditn;

Here is the rest of the program:

%let new=inventry;

%macro name4;
%let new=report;
%let old=warehse;
%conditn
data &new;

set &old;
if &cond;

run;
%mend name4;

%name4

Invoking NAME4 generates these statements:

data report;
set sales;
if cases>0;

run;

Suppose you want to put the SAS DATA step statements outside NAME4. In this
case, all the macro variables must be global for the macro processor to resolve the
references. You cannot add OLD to the %GLOBAL statement in CONDITN because the
%LET statement in NAME4 has already created OLD as a local variable to NAME4 by
the time CONDITN begins to execute. (You cannot use the %GLOBAL statement to
make an existing local variable global.)

Thus, to make OLD global, use the %GLOBAL statement before the variable
reference appears anywhere else, as shown here in the macro NAME5:

%let new=inventry;

%macro conditn;
%global cond;
%let old=sales;
%let cond=cases>0;

%mend conditn;

%macro name5;
%global old;
%let new=report;
%let old=warehse;

58 Creating Global Variables Based on the Value of Local Variables Chapter 5

%conditn
%mend name5;

%name5

data &new;
set &old;
if &cond;

run;

Now the %LET statement in NAME5 changes the value of the existing global
variable OLD rather than creating OLD as a local variable. The SAS compiler sees the
following statements:

data report;
set sales;
if cases>0;

run;

Creating Global Variables Based on the Value of Local Variables
To use a local variable such as a parameter outside a macro, use a %LET statement

to assign the value to a global variable with a different name, as in this program:

%macro namels3(name,number);
%local n;
%global g_number;
%let g_number=&number;
%do n=1 %to &number;

&name&n
%end;

%mend namels3;

Now invoke the macro NAMELS3 in the following the program:

%let n=North State Industries;

proc print;
var %namels3(dept,5);
title "Quarterly Report for &n";
footnote "Survey of &g_number Departments";

run;

The compiler sees the following statements:

proc print;
var dept1 dept2 dept3 dept4 dept5;
title "Quarterly Report for North State Industries";
footnote "Survey of 5 Departments";

run;

Special Cases of Scope with the CALL SYMPUT Routine
Most problems with CALL SYMPUT involve the lack of an explicit step boundary

between the CALL SYMPUT statement that creates the macro variable and the macro
variable reference that uses that variable. (See Chapter 13, “Macro Language
Dictionary,” on page 163 for details about CALL SYMPUT.) However, a few special

Scopes of Macro Variables Special Cases of Scope with the CALL SYMPUT Routine 59

cases exist that involve the scope of a macro variable created by CALL SYMPUT. These
cases are good examples of why you should always assign a scope to a variable before
assigning a value rather than relying on SAS to do it for you.

Two rules control where CALL SYMPUT creates its variables:
1 CALL SYMPUT creates the macro variable in the current symbol table available

while the DATA step is executing, provided that symbol table is not empty. If it is
empty (contains no local macro variables), usually CALL SYMPUT creates the
variable in the closest nonempty symbol table.

2 However, there are three cases where CALL SYMPUT creates the variable in the
local symbol table, even if that symbol table is empty:

� Beginning with SAS Version 8, if CALL SYMPUT is used after a PROC SQL,
the variable will be created in a local symbol table.

� If the macro variable SYSPBUFF is created at macro invocation time, the
variable will be created in the local symbol table.

� If the executing macro contains a computed %GOTO statement, the variable
will be created in the local symbol table. A computed %GOTO statement is
one that uses a label that contains an & or a % in it. That is, a computed
%GOTO statement contains a macro variable reference or a macro call that
produces a text expression. Here is an example of a computed %GOTO
statement:

%goto &home;

The symbol table that is currently available to a DATA step is the one that exists
when SAS determines that the step is complete. (SAS considers a DATA step to be
complete when it encounters a RUN statement, a semicolon after data lines, or the
beginning of another step).

In simplest terms, if an executing macro contains a computed %GOTO statement, or
if the macro variable SYSPBUFF is created at macro invocation time, but the local
symbol table is empty, CALL SYMPUT behaves as though the local symbol table was
not empty, and creates a local macro variable.

You might find it helpful to use the %PUT statement with the _USER_ option to
determine what symbol table the CALL SYMPUT routine has created the variable in.

Example Using CALL SYMPUT with Complete DATA Step and a Nonempty
Local Symbol Table

Consider the following example, which contains a complete DATA step with a CALL
SYMPUT statement inside a macro:

%macro env1(param1);
data _null_;

x = ’a token’;
call symput(’myvar1’,x);

run;
%mend env1;

%env1(10)

data temp;
y = "&myvar1";

run;

When you submit these statements, you receive an error message:

WARNING: Apparent symbolic reference MYVAR1 not resolved.

60 Special Cases of Scope with the CALL SYMPUT Routine Chapter 5

This message appears because the DATA step is complete within the environment of
ENV1 (that is, the RUN statement is within the macro) and because the local symbol
table of ENV1 is not empty (it contains parameter PARAM1). Therefore, the CALL
SYMPUT routine creates MYVAR1 as a local variable for ENV1, and the value is not
available to the subsequent DATA step, which expects a global macro variable.

To see the scopes, add a %PUT statement with the _USER_ option to the macro, and
a similar statement in open code. Now invoke the macro as before:

%macro env1(param1);
data _null_;

x = ’a token’;
call symput(’myvar1’,x);

run;

%put ** Inside the macro: **;
%put _user_;

%mend env1;

%env1(10)

%put ** In open code: **;
%put _user_;

data temp;
y = "&myvar1"; /* ERROR - MYVAR1 is not available in open code. */

run;

When the %PUT _USER_ statements execute, they write the following information to
the SAS log:

** Inside the macro: **
ENV1 MYVAR1 a token
ENV1 PARAM1 10

** In open code: **

The MYVAR1 macro variable is created by CALL SYMPUT in the local ENV1 symbol
table. The %PUT _USER_ statement in open code writes nothing to the SAS log,
because no global macro variables are created.

The following figure shows all of the symbol tables in this example.

Scopes of Macro Variables Special Cases of Scope with the CALL SYMPUT Routine 61

Figure 5.9 The Symbol Tables with the CALL SYMPUT Routine Generating a
Complete DATA Step

GLOBAL

GLOBAL

GLOBAL

Before ENV1 executes

While ENV1 executes

After ENV1 executes

ENV1

SYSDATE
SYSDAY

15AUG97
Friday…

SYSDATE
SYSDAY

15AUG97
Friday…

SYSDATE
SYSDAY

15AUG97
Friday…

PARAM1
MYVAR1

10
a token

62 Special Cases of Scope with the CALL SYMPUT Routine Chapter 5

Example Using CALL SYMPUT with an Incomplete DATA Step
In the macro ENV2, shown here, the DATA step is not complete within the macro

because there is no RUN statement:

%macro env2(param2);
data _null_;

x = ’a token’;
call symput(’myvar2’,x);

%mend env2;

%env2(20)
run;

data temp;
y="&myvar2";

run;

These statements execute without errors. The DATA step is complete only when SAS
encounters the RUN statement (in this case, in open code). Thus, the current scope of
the DATA step is the global scope. CALL SYMPUT creates MYVAR2 as a global macro
variable, and the value is available to the subsequent DATA step.

Again, use the %PUT statement with the _USER_ option to illustrate the scopes:

%macro env2(param2);
data _null_;

x = ’a token’;
call symput(’myvar2’,x);

%put ** Inside the macro: **;
%put _user_;

%mend env2;

%env2(20)

run;

%put ** In open code: **;
%put _user_;

data temp;
y="&myvar2";

run;

When the %PUT _USER_ statement within ENV2 executes, it writes the following to
the SAS log:

** Inside the macro: **
ENV2 PARAM2 20

The %PUT _USER_ statement in open code writes the following to the SAS log:

** In open code: **
GLOBAL MYVAR2 a token

The following figure shows all the scopes in this example.

Scopes of Macro Variables Special Cases of Scope with the CALL SYMPUT Routine 63

Figure 5.10 The Symbol Tables with the CALL SYMPUT Routine Generating an
Incomplete DATA Step

GLOBAL

GLOBAL

GLOBAL

Before ENV2 executes

While ENV2 executes

After ENV2 executes

ENV2

SYSDATE
SYSDAY

15AUG97
Friday…

SYSDATE
SYSDAY

15AUG97
Friday…

SYSDATE
SYSDAY

15AUG97
Friday…

PARAM2 20

MYVAR2 a token

64 Special Cases of Scope with the CALL SYMPUT Routine Chapter 5

Example Using CALL SYMPUT with a Complete DATA Step and an Empty
Local Symbol Table

In the following example, ENV3 does not use macro parameters. Therefore, its local
symbol table is empty:

%macro env3;
data _null_;

x = ’a token’;
call symput(’myvar3’,x);

run;

%put ** Inside the macro: **;
%put _user_;

%mend env3;

%env3

%put ** In open code: **;
%put _user_;

data temp;
y="&myvar3";

run;

In this case, the DATA step is complete and executes within the macro, but the local
symbol table is empty. So, CALL SYMPUT creates MYVAR3 in the closest available
nonempty symbol table—the global symbol table. Both %PUT statements show that
MYVAR3 exists in the global symbol table:

** Inside the macro: **
GLOBAL MYVAR3 a token

** In open code: **
GLOBAL MYVAR3 a token

Example Using CALL SYMPUT with SYSPBUFF and an Empty Local Symbol
Table

In the following example, the presence of the SYSPBUFF automatic macro variable
causes CALL SYMPUT to behave as though the local symbol table were not empty,
even though the macro ENV4 has no parameters or local macro variables:

%macro env4 /parmbuff;
data _null_;

x = ’a token’;
call symput(’myvar4’,x);

run;

%put ** Inside the macro: **;
%put _user_;
%put &syspbuff;

%mend env4;

%env4

%put ** In open code: **;

Scopes of Macro Variables Special Cases of Scope with the CALL SYMPUT Routine 65

%put _user_;
%put &syspbuff;

data temp;
y="&myvar4"; /* ERROR - MYVAR4 is not available in open code */

run;

The presence of the /PARMBUFF specification causes the SYSPBUFF automatic
macro variable to be created. So, when you call macro ENV4, CALL SYMPUT creates
the macro variable MYVAR4 in the local symbol table (that is, in ENV4’s), even though
the macro ENV4 has no parameters and no local variables.

The results of the %PUT statements prove this—the score of MYVAR4 is listed as
ENV4, and the reference to SYSPBUFF does not resolve in the open code %PUT
statement because SYSPBUFF is local to ENV4:

** Inside the macro: **
ENV4 MYVAR4 a token

** In open code: **
WARNING: Apparent symbolic reference SYSPBUFF not resolved.

For more information about SYSPBUFF, see Chapter 13, “Macro Language
Dictionary,” on page 163.

66

67

C H A P T E R

6
Macro Expressions

Introduction to Macro Expressions 67

Defining Arithmetic and Logical Expressions 68
Operands and Operators 68

How the Macro Processor Evaluates Arithmetic Expressions 70

Evaluating Numeric Operands 70
Evaluating Floating Point Operands 70

How the Macro Processor Evaluates Logical Expressions 71

Comparing Numeric Operands in Logical Expressions 71
Comparing Floating Point or Missing Values 72

Comparing Character Operands in Logical Expressions 72

Introduction to Macro Expressions

There are three types of macro expressions: text, logical, and arithmetic. A text
expression is any combination of text, macro variables, macro functions, or macro calls.
Text expressions are resolved to generate text. Here are some examples of text
expressions:

� &BEGIN

� %GETLINE

� &PREFIX.PART&SUFFIX

� %UPCASE(&ANSWER)

Logical expressions and arithmetic expressions are sequences of operators and
operands forming sets of instructions that are evaluated to produce a result. An
arithmetic expression contains an arithmetic operator. A logical expression contains a
logical operator. The following table show examples of simple arithmetic and logical
expressions:

Arithmetic Expressions Logical expressions

1 + 2 &DAY = FRIDAY

4 * 3 A < a

4 / 2 1 < &INDEX

00FFx - 003Ax &START NE &END

68 Defining Arithmetic and Logical Expressions Chapter 6

Defining Arithmetic and Logical Expressions

You can use arithmetic and logical expressions in specific macro functions and
statements (see the following table). The arithmetic and logical expressions in these
functions and statements enable you to control the text generated by a macro when it is
executed.

Table 6.1 Macro Language Elements that Evaluate Arithmetic and Logical
Expressions

%DOmacro-variable=expression %TO expression<%BY expression>;

%DO %UNTIL(expression);

%DO %WHILE(expression);

%EVAL (expression);

%IF expression %THEN statement;

%QSCAN(argument,expression<,delimiters>)

%QSUBSTR(argument,expression<,expression>)

%SCAN(argument,expression,<delimiters>)

%SUBSTR(argument,expression<,expression>)

%SYSEVALF(expression,conversion-type)

You can use text expressions to generate partial or complete arithmetic or logical
expressions. The macro processor resolves text expressions before it evaluates the
arithmetic or logical expressions. For example, when you submit the following
statements, the macro processor resolves the macro variables &A, &B, and
&OPERATOR in the %EVAL function, before it evaluates the expression 2 + 5:

%let A=2;
%let B=5;
%let operator=+;
%put The result of &A &operator &B is %eval(&A &operator &B).;

When you submit these statements, the %PUT statement writes this line to the log:

The result of 2 + 5 is 7.

Operands and Operators
Operands in arithmetic or logical expressions are always text. However, an operand

that represents a number can be temporarily converted to a numeric value when an
expression is evaluated. By default, the macro processor uses integer arithmetic, and
only integers and hexadecimal values that represent integers can be converted to a
numeric value. Operands that contain a period character, for example 1.0, are not
converted. The exception is the %SYSEVALF function, which interprets a period
character in its argument as a decimal point and converts the operand to a floating
point value on your operating system.

Note: The values of numeric expressions are restricted to the range of –2**64 to
2**64–1. �

Macro Expressions Operands and Operators 69

Operators in macro expressions are a subset of those in the DATA step (Table 6.2 on
page 69). However, in the macro language, there is no MAX or MIN operator, and it
does not recognize ’:’, as does the DATA step. The order in which operations are
performed when an expression is evaluated is the same in the macro language as in the
DATA step. Operations within parentheses are performed first.

Note: Expressions in which comparison operators surround a macro expression, as
in 10<&X<20, might or might not be the equivalent of a DATA step compound
expression (depending on what the expression resolves to). To be safe, write the
connecting operator explicitly, as in the expression 10<&X AND &X<20. �

Table 6.2 Macro Language Operators

Operator Mnemonic Precedence Definition Example

** 1 exponentiation 2**4

+ 2 positive prefix +(A+B)

- 2 negative prefix -(A+B)

^~ NOT 3 logical not* NOT A

* 4 multiplication A*B

/ 4 division A/B

+ 5 addition A+B

- 5 subtraction A-B

< LT 6 less than A<B

<= LE 6 less than or
equal

A<=B

= EQ 6 equal A=B

IN 6 equal to one of
a list**

A#B C D E

= ^= ~= NE 6 not equal* A NE B

> GT 6 greater than A>B

>= GE 6 greater than or
equal

A>=B

& AND 7 logical and A=B & C=D

| OR 8 logical or A=B | C=D

*The symbol to use depends on your keyboard.

** List elements are delimited by blanks. See “MINDELIMITER= System Option” on page 212 for
more information.

CAUTION:
Integer expressions that contain exponential, multiplication, or division operators and that
use or compute values outside the range -9,007,199,254,740,992 to
9,007,199,254,740,992 might get inexact results. �

70 How the Macro Processor Evaluates Arithmetic Expressions Chapter 6

How the Macro Processor Evaluates Arithmetic Expressions

The macro facility is a string handling facility. However, in specific situations, the
macro processor can evaluate operands that represent numbers as numeric values.
When the macro processor evaluates an expression that contains an arithmetic operator
and operands that represent numbers, it temporarily converts the operands to numeric
values and performs the integer arithmetic operation. The result of the evaluation is
text.

Evaluating Numeric Operands
By default, arithmetic evaluation in most macro statements and functions is

performed with integer arithmetic. The exception is the %SYSEVALF function. See
“Evaluating Floating Point Operands” on page 70 for more information. The following
macro statements illustrate integer arithmetic evaluation:

%let a=%eval(1+2);
%let b=%eval(10*3);
%let c=%eval(4/2);
%let i=%eval(5/3);
%put The value of a is &a;
%put The value of b is &b;
%put The value of c is &c;
%put The value of I is &i;

When you submit these statements, the following messages appear in the log:

The value of a is 3
The value of b is 30
The value of c is 2
The value of I is 1

Notice the result of the last statement. If you perform division on integers that
would ordinarily result in a fraction, integer arithmetic discards the fractional part.

When the macro processor evaluates an integer arithmetic expression that contains a
character operand, it generates an error. Only operands that contain characters that
represent integers or hexadecimal values are converted to numeric values. The
following statement shows an incorrect usage:

%let d=%eval(10.0+20.0); /*INCORRECT*/

Because the %EVAL function supports only integer arithmetic, the macro processor
does not convert a value containing a period character to a number, and the operands
are evaluated as character operands. This statement produces the following error
message:

ERROR: A character operand was found in the %EVAL function or %IF
condition where a numeric operand is required. The condition was:
10.0+20.0

Evaluating Floating Point Operands
The %SYSEVALF function evaluates arithmetic expressions with operands that

represent floating point values. For example, the following expressions in the
%SYSEVALF function are evaluated using floating point arithmetic:

Macro Expressions Comparing Numeric Operands in Logical Expressions 71

%let a=%sysevalf(10.0*3.0);
%let b=%sysevalf(10.5+20.8);
%let c=%sysevalf(5/3);
%put 10.0*3.0 = &a;
%put 10.5+20.8 = &b;
%put 5/3 = &c;

The %PUT statements display the following messages in the log:

10.0*3.0 = 30
10.5+20.8 = 31.3
5/3 = 1.6666666667

When the %SYSEVALF function evaluates arithmetic expressions, it temporarily
converts the operands that represent numbers to floating point values. The result of the
evaluation can represent a floating point value, but as in integer arithmetic
expressions, the result is always text.

The %SYSEVALF function provides conversion type specifications: BOOLEAN,
INTEGER, CEIL, and FLOOR. For example, the following %PUT statements return 1,
2, 3, and 2 respectively:

%let a=2.5;
%put %sysevalf(&a,boolean);
%put %sysevalf(&a,integer);
%put %sysevalf(&a,ceil);
%put %sysevalf(&a,floor);

These conversion types tailor the value returned by %SYSEVALF so that it can be
used in other macro expressions that require integer or Boolean values.

CAUTION:
Specify a conversion type for the %SYSEVALF function. If you use the %SYSEVALF
function in macro expressions or assign its results to macro variables that are used
in other macro expressions, then errors or unexpected results might occur if the
%SYSEVALF function returns missing or floating point values. To prevent errors,
specify a conversion type that returns a value compatible with other macro
expressions. See “%SYSEVALF Function” on page 273 for more information on using
conversion types. �

How the Macro Processor Evaluates Logical Expressions
A logical, or Boolean, expression returns a value that is evaluated as true or false. In

the macro language, any numeric value other than 0 is true and a value of 0 is false.

Comparing Numeric Operands in Logical Expressions
When the macro processor evaluates logical expressions that contain operands that

represent numbers, it converts the characters temporarily to numeric values. To
illustrate how the macro processor evaluates logical expressions with numeric operands,
consider the following macro definition:

%macro compnum(first,second);
%if &first>&second %then %put &first is greater than &second;
%else %if &first=&second %then %put &first equals &second;

72 Comparing Character Operands in Logical Expressions Chapter 6

%else %put &first is less than &second;
%mend compnum;

Invoking the COMPNUM macro with these values

%compnum(1,2)
%compnum(-1,0)

displays these results in the log:

1 is less than 2
-1 is less than 0

The results show that the operands in the logical expressions were evaluated as
numeric values.

Comparing Floating Point or Missing Values

You must use the %SYSEVALF function to evaluate logical expressions containing
floating point or missing values. To illustrate comparisons with floating point and
missing values, consider the following macro that compares parameters passed to it
with the %SYSEVALF function and places the result in the log:

%macro compflt(first,second);
%if %sysevalf(&first>&second) %then %put &first is greater than &second;
%else %if %sysevalf(&first=&second) %then %put &first equals &second;
%else %put %sysevalf(&first is less than &second);

%mend compflt;

Invoking the COMPFLT macro with these values

%compflt (1.2,.9)
%compflt (-.1,.)
%compflt (0,.)

places these values in the log:

1.2 is greater than .9
-.1 is greater than .
0 is greater than .

The results show that the %SYSEVALF function evaluated the floating point and
missing values.

Comparing Character Operands in Logical Expressions
To illustrate how the macro processor evaluates logical expressions, consider the

COMPC macro. Invoking the COMPC macro compares the values passed as parameters
and places the result in the log.

%macro compchar(first,second);
%if &first>&second %then %put &first comes after &second;
%else %put &first comes before &second;

%mend compchar;

Invoking the macro COMPCHAR with these values

%compchar(a,b)
%compchar(.,1)
%compchar(Z,E)

Macro Expressions Comparing Character Operands in Logical Expressions 73

prints these results in the log:

a comes before b
. comes before 1
Z comes after E

When the macro processor evaluates expressions with character operands, it uses the
sort sequence of the host operating system for the comparison. The comparisons in
these examples work with both EBCDIC and ASCII sort sequences.

A special case of a character operand is an operand that looks numeric but contains a
period character. If you use an operand with a period character in an expression, both
operands are compared as character values. This can lead to unexpected results. So
that you can understand and better anticipate results, look at the following examples.

If you invoke the COMPNUM macro, shown earlier, with these values

%compnum(10,2.0)

then these values are written to the log:

10 is less than 2.0

Because the %IF-THEN statement in the COMPNUM macro uses integer evaluation,
it does not convert the operands with decimal points to numeric values. The operands
are compared as character strings using the host sort sequence, which is the
comparison of characters with smallest-to-largest values. For example, lowercase letters
might have smaller values than uppercase, and uppercase letters might have smaller
values than digits.

CAUTION:
The host sort sequence determines comparison results. If you use a macro definition on
more than one operating system, comparison results might differ because the sort
sequence of one host operating system might differ from the other system. Refer to
“The SORT Procedure” in SAS Procedures Guide for more information on host sort
sequences. �

74

75

C H A P T E R

7
Macro Quoting

Introduction to Macro Quoting 75

Understanding Why Macro Quoting Is Necessary 76
Overview of Macro Quoting Functions 77

Passing Parameters That Contain Special Characters and Mnemonics 77

Deciding When to Use a Macro Quoting Function and Which Function to Use 78
Using the %STR and %NRSTR Functions 80

Using Unmatched Quotation Marks and Parentheses with %STR and %NRSTR 81

Using % Signs with %STR 81
Examples Using %STR 82

Examples Using %NRSTR 82
Using the %BQUOTE and %NRBQUOTE Functions 84

Examples Using %BQUOTE 84

Referring to Already Quoted Variables 85
Deciding How Much Text to Mask with a Macro Quoting Function 85

Using %SUPERQ 86

Examples Using %SUPERQ 86
Using the %SUPERQ Function to Prevent Warning Messages 86

Using the %SUPERQ Function to Enter Macro Keywords 87
Summary of Macro Quoting Functions and the Characters They Mask 88

Unquoting Text 89

Example of Unquoting 90
What to Do When Automatic Unquoting Does Not Work 91

How Macro Quoting Works 91

Other Functions That Perform Macro Quoting 92
Example Using the %QSCAN Function 93

Introduction to Macro Quoting

The macro language is a character-based language. Even variables that appear to be
numeric are generally treated as character variables (except during expression
evaluation). Therefore, the macro processor enables you to generate all sorts of special
characters as text. But because the macro language is composed of some of the same
special characters, an ambiguity often arises. The macro processor must know whether
to interpret a particular special character (for example, a semicolon or % sign) or a
mnemonic (for example, GE or AND) as text or as a symbol in the macro language.
Macro quoting functions resolve these ambiguities by masking the significance of
special characters so that the macro processor does not misinterpret them.

The following special characters and mnemonics might require masking when they
appear in text strings:

76 Understanding Why Macro Quoting Is Necessary Chapter 7

blank) = LT

; (| GE

+ AND GT

^ — OR IN

~ * NOT %

, (comma) / EQ &

’ < NE #

“ > LE

Understanding Why Macro Quoting Is Necessary
Macro quoting functions tell the macro processor to interpret special characters and

mnemonics as text rather than as part of the macro language. If you did not use a
macro quoting function to mask the special characters, the macro processor or the rest
of SAS might give the character a meaning you did not intend. Here are some examples
of the kinds of ambiguities that can arise when text strings contain special characters
and mnemonics:

� Is %sign a call to the macro SIGN or a phrase “percent sign”?

� Is OR the mnemonic Boolean operator or the abbreviation for Oregon?

� Is the quote in O’Malley an unbalanced single quotation mark or just part of the
name?

� Is Boys&Girls a reference to the macro variable &GIRLS or a group of children?

� Is GE the mnemonic for “greater than or equal” or is it short for General Electric?

� Which statement does a semicolon end?

� Does a comma separate parameters, or is it part of the value of one of the
parameters?

Macro quoting functions enable you to clearly indicate to the macro processor how it
is to interpret special characters and mnemonics.

Here is an example, using the simplest macro quoting function, %STR. Suppose you
want to assign a PROC PRINT statement and a RUN statement to the macro variable
PRINT. Here is the erroneous statement:

%let print=proc print; run;; /* ERROR */

This code is ambiguous. Are the semicolons that follow PRINT and RUN part of the
value of the macro variable PRINT, or does one of them end the %LET statement? If
you do not tell the macro processor what to do, it interprets the semicolon after PRINT
as the end of the %LET statement. So the value of the PRINT macro variable would be

proc print

The rest of the characters (RUN;;) would be simply the next part of the program.
To avoid the ambiguity and correctly assign the value of PRINT, you must mask the

semicolons with the macro quoting function %STR, as follows:

%let print=%str(proc print; run;);

Macro Quoting Passing Parameters That Contain Special Characters and Mnemonics 77

Overview of Macro Quoting Functions
The following macro quoting functions are most commonly used:
� %STR and %NRSTR
� %BQUOTE and %NRBQUOTE
� %SUPERQ

For the paired macro quoting functions, the function beginning with NR affects the
same category of special characters that are masked by the plain macro quoting
function as well as ampersands and percent signs. In effect, the NR functions prevent
macro and macro variable resolution. To help you remember which does which, try
associating the NR in the macro quoting function names with the words “not resolved”
— that is, macros and macro variables are not resolved when you use these functions.

The macro quoting functions with B in their names are useful for macro quoting
unmatched quotation marks and parentheses. As a help for remembering this, try
associating B with “by itself”.

The %SUPERQ macro quoting function is unlike the other macro quoting functions
in that it does not have a mate and works differently. See “%SUPERQ Function” on
page 244 for more information.

The macro quoting functions can also be divided into two types, depending on when
they take effect:

compilation
functions

cause the macro processor to interpret special characters as text in a
macro program statement in open code or while compiling
(constructing) a macro. The %STR and %NRSTR functions are
compilation functions.

execution
functions

cause the macro processor to treat special characters that result
from resolving a macro expression as text (such as a macro variable
reference, a macro invocation, or the argument of an implicit
%EVAL function). They are called execution functions because
resolution occurs during macro execution or during execution of a
macro program statement in open code. The macro processor
resolves the expression as far as possible, issues any warning
messages for macro variable references or macro invocations it
cannot resolve, and quotes the result. The %BQUOTE and
%NRBQUOTE functions are execution functions.

The %SUPERQ function takes as its argument a macro variable name (or a macro
expression that yields a macro variable name). The argument must not be a reference
to the macro variable whose value you are masking. That is, do not include the &
before the name.

Note: Two other execution macro quoting functions exist: %QUOTE and
%NRQUOTE. They are useful for unique macro quoting needs and for compatibility
with older macro applications. For more information on these two macro quoting
functions, refer to Chapter 13, “Macro Language Dictionary,” on page 163. �

Passing Parameters That Contain Special Characters and Mnemonics
Using an execution macro quoting function in the macro definition is the simplest

and best way to have the macro processor accept resolved values that might contain
special characters. However, if you discover that you need to pass parameter values

78 Deciding When to Use a Macro Quoting Function and Which Function to Use Chapter 7

such as or when a macro has not been defined with an execution macro quoting
function, you can do so by masking the value in the macro invocation. The logic of the
process is as follows:

1 When you mask a special character with a macro quoting function, it remains
masked as long as it is within the macro facility (unless you use the “%UNQUOTE
Function” on page 305).

2 The macro processor constructs the complete macro invocation before beginning to
execute the macro.

3 Therefore, you can mask the value in the invocation with the %STR function.
Although the masking is not needed when the macro processor is constructing the
invocation, the value is already masked by a macro quoting function when macro
execution begins and therefore does not cause problems during macro execution.

For example, suppose a macro named ORDERX does not use the %BQUOTE function.
You can pass the value or to the ORDERX macro with the following invocation:

%orderx(%str(or))

However, placing the macro quoting function in the macro definition makes the
macro much easier for you to invoke.

Deciding When to Use a Macro Quoting Function and Which Function
to Use

Use a macro quoting function anytime you want to assign to a macro variable a
special character that could be interpreted as part of the macro language. The following
table describes the special characters to mask when used as part of a text string and
which macro quoting functions are useful in each situation.

Table 7.1 Special Characters and Macro Quoting Guidelines

Special
Character... Must Be Masked...

Quoted by All
Macro Quoting
Functions? Remarks

+-*/<>=^| ~ #
LE LT EQ NE
GE GT AND OR
NOT IN

to prevent it from being treated
as an operator in the argument
of an explicit or implicit
%EVAL function

yes AND, OR, IN, and
NOT need to be
masked because they
are interpreted as
mnemonic operators
by an implicit %EVAL
and by %SYSEVALF.

blank to maintain, rather than ignore,
a leading, trailing, or isolated
blank

yes

; to prevent a macro program
statement from ending
prematurely

yes

, (comma) to prevent it from indicating a
new function argument,
parameter, or parameter value

yes

Macro Quoting Deciding When to Use a Macro Quoting Function and Which Function to Use 79

Special
Character... Must Be Masked...

Quoted by All
Macro Quoting
Functions? Remarks

’ " () if it might be unmatched no Arguments that
might contain
quotation marks and
parentheses should be
masked with a macro
quoting function so
that the macro facility
interprets the single
and double quotation
marks and
parentheses as text
rather than macro
language symbols or
possibly unmatched
quotation marks or
parentheses for the
SAS language. With
%STR, %NRSTR,
%QUOTE, and
%NRQUOTE,
unmatched quotation
marks and
parentheses must be
marked with a %
sign. You do not have
to mark unmatched
symbols in the
arguments of
%BQUOTE,
%NRBQUOTE, and
%SUPERQ.

%name &name (depends on what the
expression might resolve to)

no %NRSTR,
%NRBQUOTE, and
%NRQUOTE mask
these patterns. To use
%SUPERQ with a
macro variable, omit
the ampersand from
name.

The macro facility allows you as much flexibility as possible in designing your
macros. You need to mask a special character with a macro quoting function only when
the macro processor would otherwise interpret the special character as part of the
macro language rather than as text. For example, in this statement you must use a
macro quoting function to mask the first two semicolons to make them part of the text:

%let p=%str(proc print; run;);

80 Using the %STR and %NRSTR Functions Chapter 7

However, in the macro PR, shown here, you do not need to use a macro quoting
function to mask the semicolons after PRINT and RUN:

%macro pr(start);
%if &start=yes %then

%do;
%put proc print requested;
proc print;
run;

%end;
%mend pr;

Because the macro processor does not expect a semicolon within the %DO group, the
semicolons after PRINT and RUN are not ambiguous, and they are interpreted as text.

Although it is not possible to give a series of rules that cover every situation, the
following sections describe how to use each macro quoting function. Table 7.4 on page
89 provides a summary of the various characters that might need masking and of which
macro quoting function is useful in each situation.

Note: You can also perform the inverse of a macro quoting function — that is,
remove the tokenization provided by macro quoting functions. For an example of when
the %UNQUOTE function is useful, see “Unquoting Text” on page 89. �

Using the %STR and %NRSTR Functions
If a special character or mnemonic affects the way the macro processor constructs

macro program statements, you must mask the item during macro compilation (or
during the compilation of a macro program statement in open code) by using either the
%STR or %NRSTR macro quoting functions.

These macro quoting functions mask the following special characters and mnemonics:

blank) = NE

; (| LE

+ # LT

^ — AND GE

~ * OR GT

, (comma) / NOT

’ < IN

“ > EQ

In addition to these, %NRSTR masks & and %.

Note: If an unmatched single or double quotation mark or a left or right parenthesis
is used with %STR or %NRSTR, these characters must be preceded by a percent sign
(%). �

When you use %STR or %NRSTR, the macro processor does not receive these
functions and their arguments when it executes a macro. It receives only the results of

Macro Quoting Using % Signs with %STR 81

these functions because these functions work when a macro compiles. This means by
the time the macro executes, the string is already masked by a macro quoting function.
Therefore, %STR and %NRSTR are useful for masking strings that are constants, such
as sections of SAS code. In particular, %NRSTR is a good choice for masking strings
that contain % and & signs. However, these functions are not so useful for masking
strings that contain references to macro variables because it is possible that the macro
variable could resolve to a value not quotable by %STR or %NRSTR. For example, the
string could contain an unmarked, unmatched left parenthesis.

Using Unmatched Quotation Marks and Parentheses with %STR and
%NRSTR

If the argument to %STR or %NRSTR contains an unmatched single or double
quotation mark or an unmatched left or right parenthesis, precede each of these
characters with a % sign. The following table shows some examples of this technique.

Table 7.2 Examples of Marking Unmatched Quotation Marks and Parentheses with
%STR and %NRSTR

Notation Description Example Quoted Value Stored

%’ unmatched single quotation
mark

%let
myvar=%str(a%’);

a’

%" unmatched double quotation
mark

%let
myvar=%str(title
%’’first);

title ‘‘first

%(unmatched left parenthesis %let myvar=%str
(log%(12);

log(12

%) unmatched right
parenthesis

%let myvar=%str
(345%));

345)

Using % Signs with %STR
In general, if you want to mask a % sign with a macro quoting function at

compilation, use %NRSTR. There is one case where you can use %STR to mask a %
sign: when the % sign does not have any text following it that could be construed by the
macro processor as a macro name. The % sign must be marked by another % sign.
Here are some examples.

Table 7.3 Examples of Masking % Signs with %STR

Notation Description Example Quoted Value Stored

’%’ % sign before a matched
single quotation mark

%let
myvar=%str(’%’);

’%’

%%%’ % sign before an unmatched
single quotation mark

%let
myvar=%str(%%%’);

%’

82 Examples Using %STR Chapter 7

Notation Description Example Quoted Value Stored

""%% % sign after a matched
double quotation mark

%let
myvar=%str(""%%);

""%

%%%% two % signs in a row %let
myvar=%str(%%%%);

%%

Examples Using %STR
The %STR function in the following %LET statement prevents the semicolon after

PROC PRINT from being interpreted as the ending semicolon for the %LET statement:

%let printit=%str(proc print; run;);

As a more complex example, the macro KEEPIT1 shows how the %STR function
works in a macro definition:

%macro keepit1(size);
%if &size=big %then %str(keep city _numeric_;);
%else %str(keep city;);

%mend keepit1;

Call the macro as follows:

%keepit1(big)

This produces the following statement:

keep city _numeric_;

When you use the %STR function in the %IF-%THEN statement, the macro
processor interprets the first semicolon after the word %THEN as text. The second
semicolon ends the %THEN statement, and the %ELSE statement immediately follows
the %THEN statement. Thus, the macro processor compiles the statements as you
intended. However, if you omit the %STR function, the macro processor interprets the
first semicolon after the word %THEN as the end of the %THEN clause and the next
semicolon as constant text. Because only a %THEN clause can precede a %ELSE
clause, the semicolon as constant text causes the macro processor to issue an error
message and not compile the macro.

In the %ELSE statement, the %STR function causes the macro processor to treat the
first semicolon in the statement as text and the second one as the end of the %ELSE
clause. Therefore, the semicolon that ends the KEEP statement is part of the
conditional execution. If you omit the %STR function, the first semicolon ends the
%ELSE clause and the second semicolon is outside the conditional execution. It is
generated as text each time the macro executes. (In this example, the placement of the
semicolon does not affect the SAS code.) Again, using %STR causes the macro
KEEPIT1 to compile as you intended.

Here is an example that uses %STR to mask a string that contains an unmatched
single quotation mark. Note the use of the % sign before the quotation mark:

%let innocent=%str(I didn%’t do it!);

Examples Using %NRSTR
Suppose you want the name (not the value) of a macro variable to be printed by the

%PUT statement. To do so, you must use the %NRSTR function to mask the & and
prevent the resolution of the macro variable, as in the following example:

Macro Quoting Examples Using %NRSTR 83

%macro example;
%local myvar;
%let myvar=abc;
%put %nrstr(The string &myvar appears in log output,);
%put instead of the variable value.;

%mend example;

%example

This code writes the following text to the SAS log:

The string &myvar appears in log output,
instead of the variable value.

If you did not use the %NRSTR function or if you used %STR, the following
undesired output would appear in the SAS log:

The string abc appears in log output,
instead of the variable value.

The %NRSTR function prevents the & from triggering macro variable resolution.
The %NRSTR function is also useful when the macro definition contains patterns

that the macro processor would ordinarily recognize as macro variable references, as in
the following program:

%macro credits(d=%nrstr(Mary&Stacy&Joan Ltd.));
footnote "Designed by &d";

%mend credits;

Using %NRSTR causes the macro processor to treat &STACY and &JOAN simply as
part of the text in the value of D; the macro processor does not issue warning messages
for unresolvable macro variable references. Suppose you invoke the macro CREDITS
with the default value of D, as follows:

%credits()

Submitting this program generates the following FOOTNOTE statement:

footnote "Designed by Mary&Stacy&Joan Ltd.";

If you omit the %NRSTR function, the macro processor attempts to resolve the
references &STACY and &JOAN as part of the resolution of &D in the FOOTNOTE
statement. The macro processor issues these warning messages (assuming the
SERROR system option, described in Chapter 13, “Macro Language Dictionary,” on
page 163, is active) because no such macro variables exist:

WARNING: Apparent symbolic reference STACY not resolved.
WARNING: Apparent symbolic reference JOAN not resolved.

Here is a final example of using %NRSTR. Suppose you wanted to have a text string
include the name of a macro function: This is the result of %NRSTR. Here is the
program:

%put This is the result of %nrstr(%nrstr);

You must use %NRSTR to mask the % sign at compilation, so the macro processor
does not try to invoke %NRSTR a second time. If you did not use %NRSTR to mask the
string %nrstr, the macro processor would complain about a missing open parenthesis
for the function.

84 Using the %BQUOTE and %NRBQUOTE Functions Chapter 7

Using the %BQUOTE and %NRBQUOTE Functions

%BQUOTE and %NRBQUOTE mask values during execution of a macro or a macro
language statement in open code. These functions instruct the macro processor to
resolve a macro expression as far as possible and mask the result, issuing any warning
messages for macro variable references or macro invocations it cannot resolve. These
functions mask all the characters that %STR and %NRSTR mask with the addition of
unmarked percent signs; unmatched, unmarked single and double quotation marks;
and unmatched, unmarked opening and closing parentheses. That means that you do
not have to precede an unmatched quotation mark with a % sign, as you must when
using %STR and %NRSTR.

The %BQUOTE function treats all parentheses and quotation marks produced by
resolving macro variable references or macro calls as special characters to be masked at
execution time. (It does not mask parentheses or quotation marks that are in the
argument at compile time .) Therefore, it does not matter whether quotation marks and
parentheses in the resolved value are matched; each one is masked individually.

The %NRBQUOTE function is useful when you want a value to be resolved when
first encountered, if possible, but you do not want any ampersands or percent signs in
the result to be interpreted as operators by an explicit or implicit %EVAL function.

If the argument of the %NRBQUOTE function contains an unresolvable macro
variable reference or macro invocation, the macro processor issues a warning message
before it masks the ampersand or percent sign (assuming the SERROR or MERROR
system option, described in is in effect). To suppress the message for unresolved macro
variables, use the %SUPERQ function (discussed later in this section) instead.

Because the %BQUOTE and %NRBQUOTE functions operate during execution and
are more flexible than %STR and %NRSTR, %BQUOTE and %NRBQOUTE are good
choices for masking strings which contain macro variable references.

Examples Using %BQUOTE
In the following statement, the %IF-%THEN statement uses %BQUOTE to prevent

an error if the macro variable STATE resolves to OR (for Oregon), which the macro
processor would interpret as the logical operator OR otherwise:

%if %bquote(&state)=%str(OR) %then %put Oregon Dept. of Revenue;

Note: This example works if you use %STR, but it is not robust or good
programming practice. Because you cannot guarantee what &STATE is going to resolve
to, you need to use %BQUOTE to mask the resolution of the macro variable at
execution time, not the name of the variable itself at compile time. �

In the following example, a DATA step creates a character value containing a single
quotation mark and assigns that value to a macro variable. The macro READIT then
uses the %BQUOTE function to enable a %IF condition to accept the unmatched single
quotation mark:

data test;
store="Susan’s Office Supplies";
call symput(’s’,store);

run;

%macro readit;
%if %bquote(&s) ne %then %put *** valid ***;

Macro Quoting Deciding How Much Text to Mask with a Macro Quoting Function 85

%else %put *** null value ***;
%mend readit;

%readit

When you assign the value Susan’s Office Supplies to STORE in the DATA step,
enclosing the character string in double quotation marks enables you to use an
unmatched single quotation mark in the string. SAS stores the value of STORE as

Susan’s Office Supplies

The CALL SYMPUT routine assigns that value (containing an unmatched single
quotation mark) as the value of the macro variable S. If you do not use the %BQUOTE
function when you reference S in the macro READIT, the macro processor issues an
error message for an invalid operand in the %IF condition.

When you submit the code, the following is written to the SAS log:

*** valid ***

Referring to Already Quoted Variables

Items that have been masked by a macro quoting function, such as the value of
WHOSE in the following program, remain masked as long as the item is being used by
the macro processor. When you use the value of WHOSE later in a macro program
statement, you do not need to mask the reference again.

/* Use %STR to mask the constant, and use a % sign to mark */
/* the unmatched single quotation mark. */
%let whose=%str(John%’s);

/* You don’t need to mask the macro reference, since it was */
/* masked in the %LET statement, and remains masked. */
%put *** This coat is &whose ***;

Deciding How Much Text to Mask with a Macro Quoting Function

In each of the following statements, the macro processor treats the masked
semicolons as text:

%let p=%str(proc print; run;);
%let p=proc %str(print;) %str(run;);
%let p=proc print%str(;) run%str(;);

The value of P is the same in each case:

proc print; run;

The results of the three %LET statements are the same because when you mask text
with a macro quoting function, the macro processor quotes only the items that the
function recognizes. Other text enclosed in the function remains unchanged. Therefore,
the third %LET statement is the minimalist approach to macro quoting. However,
masking large blocks of text with a macro quoting function is harmless and actually
results in code that is much easier to read (such as the first %LET statement).

86 Using %SUPERQ Chapter 7

Using %SUPERQ

The %SUPERQ function locates the macro variable named in its argument and quotes
the value of that macro variable without permitting any resolution to occur. It masks
all items that might require macro quoting at macro execution. Because %SUPERQ
does not attempt any resolution of its argument, the macro processor does not issue any
warning messages that a macro variable reference or a macro invocation has not been
resolved. Therefore, even when the %NRBQUOTE function enables the program to
work correctly, you can use the %SUPERQ function to eliminate unwanted warning
messages from the SAS log. %SUPERQ takes as its argument either a macro variable
name without an ampersand or a text expression that yields a macro variable name.

%SUPERQ retrieves the value of a macro variable from the macro symbol table and
quotes it immediately, preventing the macro processor from making any attempt to
resolve anything that might occur in the resolved value. For example, if the macro
variable CORPNAME resolves to Smith&Jones, using %SUPERQ prevents the macro
processor from attempting to further resolve &Jones. This %LET statement
successfully assigns the value Smith&Jones to TESTVAR:

%let testvar=%superq(corpname);

Examples Using %SUPERQ
This example shows how the %SUPERQ function affects two macro invocations, one

for a macro that has been defined and one for an undefined macro:

%macro a;
%put *** This is a. ***;

%mend a;

%macro test;
%put *** Enter two values: ***;
%input;
%put *** %superq(sysbuffr) ***; /* Note absence of ampersand */

%mend test;

Suppose you invoke the macro TEST and respond to the prompt as shown:

%test
*** Enter two values: ***
%a %x

The second %PUT statement simply writes the following line:

*** %a %x ***

It does not invoke the macro A, and it does not issue a warning message that %X was
not resolved. See Chapter 13, “Macro Language Dictionary,” on page 163 for a
description of SYSBUFFR.

The following two examples compare the %SUPERQ function with other macro
quoting functions.

Using the %SUPERQ Function to Prevent Warning Messages
The sections about of the %NRBQUOTE function show that it causes the macro

processor to attempt to resolve the patterns &name and %name the first time it
encounters them during macro execution. If the macro processor cannot resolve them, it

Macro Quoting Examples Using %SUPERQ 87

quotes the ampersand or percent sign so that later uses of the value do not cause the
macro processor to recognize them. However, if the MERROR or SERROR option is in
effect, the macro processor issues a warning message that the reference or invocation
was not resolved.

The macro FIRMS3, shown here, shows how the %SUPERQ function can prevent
unwanted warning messages:

%macro firms3;
%global code;
%put Enter the name of the company;
%input;
%let name=%superq(sysbuffr);
%if &name ne %then %let code=valid;
%else %let code=invalid;
%put *** &name is &code ***;

%mend firms3;

Suppose you invoke the macro FIRMS3 twice and respond with the companies shown
here:

A&A Autos
Santos&D’Amato

After the macro executes, the following is written to the SAS log:

*** A&A Autos is valid ***
*** Santos&D’Amato is valid ***

Using the %SUPERQ Function to Enter Macro Keywords

Suppose you create an online training system in which users can enter problems and
questions that another macro prints for you later. The user’s response to a %INPUT
statement is assigned to a local macro variable and then to a global macro variable.
Because the user is asking questions about macros, he or she may enter all sorts of
macro variable references and macro calls as examples of problems, as well as
unmatched, unmarked quotation marks and parentheses. If you mask the response
with %BQUOTE, you have to use a few %PUT statements to warn the user about
responses that cause problems. If you use the %SUPERQ function, you need fewer
instructions. The macros ASK1 and ASK2 show how the macro code becomes simpler as
you change macro quoting functions.

The macro ASK1, below, shows how the macro looks when you use the %BQUOTE
function:

%macro ask1;
%global myprob;
%local temp;
%put Describe the problem.;
%put Do not use macro language keywords, macro calls,;
%put or macro variable references.;
%put Enter /// when you are finished.;
%do %until(%bquote(&sysbuffr) eq %str(///));

%input;
%let temp=&temp %bquote(&sysbuffr);

%end;
%let myprob=&temp;

%mend ask1;

88 Summary of Macro Quoting Functions and the Characters They Mask Chapter 7

The macro ASK1 does not include a warning about unmatched quotation marks and
parentheses. You can invoke the macro ASK1 and enter a problem as shown:

%ask1
Describe the problem.
Do not use macro language keywords, macro calls,
or macro variable references.
Enter /// when you are finished.
Why didn’t my macro run when I called it? (It had three
parameters, but I wasn’t using any of them.) It ran
after I submitted the next statement.
///

Notice that both the first and second lines of the response contain an unmatched,
unmarked quotation mark and parenthesis. %BQUOTE can handle these characters
during execution.

The macro ASK2, shown here, modifies the macro ASK1 by using the %SUPERQ
function. Now the %INPUT statement accepts macro language keywords and does not
attempt to resolve macro calls and macro variable references:

%macro ask2;
%global myprob;
%local temp;
%put Describe the problem.;
%put Enter /// when you are finished.;
%do %until(%superq(sysbuffr) eq %str(///)); /* No ampersand */

%input;
%let temp=&temp %superq(sysbuffr); /* No ampersand */

%end;
%let myprob=&temp;

%mend ask2;

You can invoke the macro ASK2 and enter a response as shown:

%ask2
Describe the problem.
Enter /// when you are finished.
My macro ADDRESS starts with %MACRO ADDRESS(COMPANY,
CITY);. I called it with %ADDRESS(SMITH-JONES, INC., BOSTON),
but it said I had too many parameters. What happened?
///

The response contains a macro language keyword, a macro invocation, and
unmatched parentheses.

Summary of Macro Quoting Functions and the Characters They Mask

Different macro quoting functions mask different special characters and mnemonics
so the macro facility interprets them as text instead of as macro language symbols.

The following table divides the symbols into categories and shows which macro
quoting functions mask which symbols.

Macro Quoting Unquoting Text 89

Table 7.4 Summary of Special Characters and Macro Quoting Functions

By Item

Group Items Macro Quoting Functions

A + — */<>= ^|~;, # blank AND OR
NOT EQ NE LE LT GE GT IN

all

B &% %NRSTR, %NRBQUOTE, %SUPERQ,
%NRQUOTE

C unmatched’ “() %BQUOTE, %NRBQUOTE,
%SUPERQ, %STR*, %NRSTR*,
%QUOTE*, %NRQUOTE*

By Function

Function Affects Groups Works at

%STR A, C* macro compilation

%NRSTR A, B, C* macro compilation

%BQUOTE A, C macro execution

%NRBQUOTE A, B, C macro execution

%SUPERQ A, B, C macro execution (prevents
resolution)

%QUOTE A, C* macro execution. Requires
unmatched quotation marks
and parentheses to be marked
with a percent sign (%).

%NRQUOTE A, B, C* macro execution. Requires
unmatched quotation marks
and parentheses to be marked
with a percent sign (%).

*Unmatched quotation marks and parentheses must be marked with a percent sign (%) when used
with %STR, %NRSTR, %QUOTE, and %NRQUOTE.

Unquoting Text
To unquote a value means to restore the significance of symbols in an item that was

previously masked by a macro quoting function.
Usually, after an item has been masked by a macro quoting function, it retains its

special status until one of the following occurs:
� You enclose the item with the %UNQUOTE function (described in Chapter 13,

“Macro Language Dictionary,” on page 163.

90 Example of Unquoting Chapter 7

� The item leaves the word scanner and is passed to the DATA step compiler, SAS
procedures, or other parts of SAS, when the item is part of generated SAS
statements.

� The item is returned as an unquoted result by the %SCAN, %SUBSTR, or
%UPCASE function. (To retain a value’s masked status during one of these
operations, use the %QSCAN, %QSUBSTR, or %QUPCASE function. See “Other
Functions That Perform Macro Quoting” on page 92 for more details.)

As a rule, you do not need to unquote an item because it is automatically unquoted
when the item is passed from the word scanner to the rest of SAS. Under two
circumstances, however, you might need to use the %UNQUOTE function to restore the
original significance to a masked item:

� when you want to use a value with its restored meaning later in the same macro
in which its value was previously masked by a macro quoting function.

� when, as in a few cases, masking text with a macro quoting function changes the
way the word scanner tokenizes it, producing SAS statements that look correct but
that the SAS compiler does not recognize.

Example of Unquoting
The following example illustrates using a value twice: once in macro quoted form and

once in unquoted form. Suppose the macro ANALYZE is part of a system that enables
you to compare the output of two statistical models interactively. First, you enter an
operator to specify the relationship you want to test (one result greater than another,
equal to another, and so forth). The macro ANALYZE tests the macro quoted value of
the operator to verify that you have entered it correctly, uses the unquoted value to
compare the values indicated, and writes a message. Match the numbers in the
comments to the paragraphs below.

%macro analyze(stat);
data _null_;

set out1;
call symput(’v1’,&stat);

run;

data _null_;
set out2;
call symput(’v2’,&stat);

run;

%put Preliminary test. Enter the operator.;
%input;
%let op=%bquote(&sysbuffr);
%if &op=%str(=<) %then %let op=%str(<=);
%else %if &op=%str(=>) %then %let op=%str(>=);
%if &v1 %unquote(&op) &v2 %then

%put You may proceed with the analysis.;
%else

%do;
%put &stat from out1 is not &op &stat from out2.;
%put Please check your previous models.;

%end;
%mend analyze;

Macro Quoting How Macro Quoting Works 91

You mask the value of SYSBUFFR with the %BQUOTE function, which masks resolved
items including unmatched, unmarked quotation marks and parentheses (but excluding
the ampersand and percent sign).

The %IF condition compares the value of the macro variable OP to a string to see
whether the value of OP contains the correct symbols for the operator. If the value
contains symbols in the wrong order, the %THEN statement corrects the symbols.
Because a value masked by a macro quoting function remains masked, you do not need
to mask the reference &OP in the left side of the %IF condition.

Because you can see the characters in the right side of the %IF condition and in the
%LET statement when you define the macro, you can use the %STR function to mask
them. Masking them once at compilation is more efficient than masking them at each
execution of ANALYZE.

To use the value of the macro variable OP as the operator in the %IF condition, you
must restore the meaning of the operator with the %UNQUOTE function.

What to Do When Automatic Unquoting Does Not Work
When the macro processor generates text from an item masked by a macro quoting

function, you can usually allow SAS to unquote the macro quoted items automatically.
For example, suppose you define a macro variable PRINTIT as follows:

%let printit=%str(proc print; run;);

Then you use that macro variable in your program like this:

%put *** This code prints the data set: &printit ***;

When the macro processor generates the text from the macro variable, the items
masked by macro quoting functions are automatically unquoted, and the previously
masked semicolons work normally when they are passed to the rest of SAS.

In rare cases, masking text with a macro quoting function changes the way the word
scanner tokenizes the text. (The word scanner and tokenization are discussed in
Chapter 2, “SAS Programs and Macro Processing,” on page 11 and Chapter 4, “Macro
Processing,” on page 33.) For example, a single or double quotation mark produced by
resolution within the %BQUOTE function becomes a separate token. The word scanner
does not use it as the boundary of a literal token in the input stack. If generated text
that was once masked by the %BQUOTE function looks correct but SAS does not accept
it, you might need to use the %UNQUOTE function to restore normal tokenization.

How Macro Quoting Works

When the macro processor masks a text string, it masks special characters and
mnemonics within the coding scheme, and prefixes and suffixes the string with a
hexadecimal character, called a delta character. The prefix character marks the
beginning of the string and also indicates what type of macro quoting is to be applied to
the string. The suffix character marks the end of the string. The prefix and suffix
characters preserve any leading and trailing blanks contained by the string. The
hexadecimal characters used to mask special characters and mnemonics and those used
for the prefix and suffix characters may vary and are not portable.

There are more hexadecimal combinations possible in each byte than are needed to
represent the symbols on a keyboard. Therefore, when a macro quoting function
recognizes an item to be masked, the macro processor uses a previously unused
hexadecimal combination for the prefix and suffix characters.

92 Other Functions That Perform Macro Quoting Chapter 7

Macro functions, such as %EVAL and %SUBSTR, ignore the prefix and suffix
characters. Therefore, the prefix and suffix characters do not affect comparisons.

When the macro processor is finished with a macro quoted text string, it removes the
macro quoting-coded substitute characters and replaces them with the original
characters. The unmasked characters are passed on to the rest of the system.
Sometimes you might see a message about this unmasking, as in the following example:

/* Turn on SYMBOLGEN so you can see the messages about unquoting. */
options symbolgen;

/* Assign a value to EXAMPLE that contains several special */
/* characters and a mnemonic. */
%let example = %nrbquote(1 + 1 = 3 Today’s Test and More);

%put *&example*;

When this program is submitted, the following appears in the SAS log:

SYMBOLGEN: Macro variable EXAMPLE resolves to 1 + 1 = 3 Today’s
Test and More

SYMBOLGEN: Some characters in the above value which were subject
to macro quoting have been unquoted for printing.

* 1 + 1 = 3 Today’s Test and More *

As you can see, the leading and trailing blanks and special characters were retained
in the variable’s value. While the macro processor was working with the string, the
string actually contained coded characters that were substituted for the “real”
characters. The substitute characters included coded characters to represent the start
and end of the string. This preserved the leading and trailing blanks. Characters were
also substituted for the special characters +, =, and ’, and the mnemonic AND. When the
macro finished processing and the characters were passed to the rest of SAS, the coding
was removed and the real characters were replaced.

“Unquoting Text” on page 89 provides more information on what happens when a
masked string is unquoted. Chapter 13, “Macro Language Dictionary,” on page 163
describes the SYMBOLGEN system option.

Other Functions That Perform Macro Quoting
Some macro functions are available in pairs, where one function starts with the

letter Q:
� %SCAN and %QSCAN
� %SUBSTR and %QSUBSTR
� %UPCASE and %QUPCASE
� %SYSFUNC and %QSYSFUNC.

The Qxxx functions are necessary because by default, macro functions return an
unquoted result, even if the argument was masked by a macro quoting function. The
%QSCAN, %QSUBSTR, %QUPCASE, and %QSYSFUNC functions mask the returned
value at execution time. The items masked are the same as those masked by the
%NRBQUOTE function.

Macro Quoting Example Using the %QSCAN Function 93

Example Using the %QSCAN Function
The following macro uses the %QSCAN function to assign items in the value of

SYSBUFFR (described in Chapter 13, “Macro Language Dictionary,” on page 163) as
the values of separate macro variables. The numbers in the comments correspond to
the explanations in the list that follows the macro code.

%macro splitit;
%put What character separates the values?; u

%input;
%let s=%bquote(&sysbuffr); v

%put Enter three values.;
%input;
%local i;
%do i=1 %to 3; w

%global x&i;
%let x&i=%qscan(%superq(sysbuffr),&i,&s); x

%end;
%mend splitit;

%splitit
What character separates the values?
#
Enter three values.
Fischer Books#Smith&Sons#Sarah’s Sweet Shoppe y

1 This question asks you to input a delimiter for the %QSCAN function that will not
appear in the values you are going to enter.

2 Masking the value of SYSBUFFR with the %BQUOTE function enables you to
choose a quotation mark or parenthesis as a delimiter if necessary.

3 The iterative %DO loop creates a global macro variable for each segment of
SYSBUFFR and assigns it the value of that segment.

4 The %SUPERQ function masks the value of SYSBUFFR in the first argument of
the %QSCAN function. It prevents any resolution of the value of SYSBUFFR.

5 The %QSCAN function returns macro quoted segments of the value of
SYSBUFFR. Thus, the unmatched quotation mark in Sarah’s Sweet Shoppe and
the &name pattern in Smith&Sons do not cause problems.

94

95

C H A P T E R

8
Interfaces with the Macro
Facility

Introduction to Interfaces with the Macro Facility 95

DATA Step Interfaces 96
CALL EXECUTE Routine Timing Details 96

Example of Using CALL EXECUTE Incorrectly 97

Example of Common Problem with CALL EXECUTE 98
Using SAS Language Functions in the DATA Step and Macro Facility 99

Interfaces with the SQL Procedure 100

INTO Clause 100
Controlling Job Execution 100

Interfaces with the SAS Component Language 101
How Macro References Are Resolved by SCL 102

Referencing Macro Variables in Submit Blocks 102

Considerations for Sharing Macros between SCL Programs 102
Example Using Macros in an SCL Program 102

SAS/CONNECT Interfaces 103

Example Using %SYSRPUT to Check the Value of a Return Code on a Remote Host 104

Introduction to Interfaces with the Macro Facility
An interface with the macro facility is not part of the macro processor but rather a

SAS software feature that enables another portion of the SAS language to interact with
the macro facility during execution. For example, a DATA step interface enables you to
access macro variables from the DATA step. Macro facility interfaces are useful
because, in general, macro processing happens before DATA step, SQL, SCL, or
SAS/CONNECT execution, so the connection between the macro facility and the rest of
SAS is not usually dynamic. But by using an interface to the macro facility, you can
dynamically connect the macro facility to the rest of SAS.

Note: The %SYSFUNC and %QSYSFUNC macro functions enable you to use SAS
language functions with the macro processor. The %SYSCALL macro statement enables
you to use SAS language CALL routines with the macro processor. While these
elements of the macro language are not considered true macro facility interfaces, they
are discussed in this section. See Chapter 13, “Macro Language Dictionary,” on page
163 for more information on these macro language elements. �

While this section includes some examples, you can find additional examples for each
item in Chapter 13, “Macro Language Dictionary,” on page 163.

96 DATA Step Interfaces Chapter 8

DATA Step Interfaces
DATA step interfaces consist of eight tools that enable a program to interact with the

macro facility during DATA step execution. Because the work of the macro facility
takes place before DATA step execution begins, information provided by macro
statements has already been processed during DATA step execution. You can use one of
the DATA step interfaces to interact with the macro facility during DATA step
execution. You can use DATA step interfaces to do the following:

� pass information from a DATA step to a subsequent step in a SAS program
� invoke a macro based on information available only when the DATA step executes
� resolve a macro variable while a DATA step executes
� delete a macro variable
� pass information about a macro variable from the macro facility to the DATA step.

The following table lists the DATA step interfaces by category and their uses.

Table 8.1 DATA Step Interfaces to the Macro Facility

Category Tool Description

Execution CALL EXECUTE routine resolves its argument and executes the
resolved value at the next step boundary
(if the value is a SAS statement) or
immediately (if the value is a macro
language element).

Resolution RESOLVE function resolves the value of a text expression
during DATA step execution.

Deletion CALL SYMDEL routine deletes the indicated macro variable
named in the argument.

Information SYMEXIST function returns an indication as to whether the
macro variable exists.

Read or Write SYMGET function returns the value of a macro variable
during DATA step execution.

Information SYMGLOBL function returns an indication as to whether the
macro variable is global in scope.

Information SYMLOCAL returns an indication as to whether the
macro variable is local in scope.

Read or Write CALL SYMPUT routine assigns a value produced in a DATA step
to a macro variable.

CALL EXECUTE Routine Timing Details
CALL EXECUTE is useful when you want to execute a macro conditionally. But you

must remember that if CALL EXECUTE produces macro language elements, those
elements execute immediately. If CALL EXECUTE produces SAS language statements,
or if the macro language elements generate SAS language statements, those statements
execute after the end of the DATA step’s execution.

Note: Because macro references execute immediately and SAS statements do not
execute until after a step boundary, you cannot use CALL EXECUTE to invoke a macro

Interfaces with the Macro Facility CALL EXECUTE Routine Timing Details 97

that contains references for macro variables that are created by CALL SYMPUT in that
macro. �

Here are two examples that illustrate the timing problems that users frequently
have with CALL EXECUTE.

Example of Using CALL EXECUTE Incorrectly
In this example, the CALL EXECUTE routine is used incorrectly:

data prices; /* ID for price category and actual price */
input code amount;
datalines;

56 300
99 10000
24 225
;

%macro items;
%global special;
%let special=football;

%mend items;

data sales; /* incorrect usage */
set prices;
length saleitem $ 20;
call execute(’%items’);
saleitem="&special";

run;

In the DATA SALES step, the assignment statement for SALEITEM requires the
value of the macro variable SPECIAL at DATA step compilation. CALL EXECUTE does
not produce the value until DATA step execution. Thus, you receive a message about an
unresolved macro variable, and the value assigned to SALEITEM is &special.

In this example, it would be better to eliminate the macro definition (the %LET
macro statement is valid in open code) or move the DATA SALES step into the macro
ITEMS. In either case, CALL EXECUTE is not necessary or useful. Here is one version
of this program that works:

data prices; /* ID for price category and actual price */
input code amount;
datalines;

56 300
99 10000
24 225
;

%let special=football; /* correct usage */

data sales;
set prices;
length saleitem $ 20;
saleitem="&special";

run;

The %GLOBAL statement isn’t necessary in this version. Because the %LET
statement is executed in open code, it automatically creates a global macro variable.

98 CALL EXECUTE Routine Timing Details Chapter 8

(See Chapter 5, “Scopes of Macro Variables,” on page 41 for more information about
macro variable scopes.)

Example of Common Problem with CALL EXECUTE

This example shows a common pattern that causes an error.

/* This version of the example shows the problem. */

data prices; /* ID for price category and actual price */
input code amount;
cards;

56 300
99 10000
24 225
;
data names; /* name of sales department and item sold */

input dept $ item $;
datalines;

BB Boat
SK Skates
;

%macro items(codevar=); /* create macro variable if needed */
%global special;
data _null_;

set names;
if &codevar=99 and dept=’BB’ then call symput(’special’, item);

run;
%mend items;

data sales; /* attempt to reference macro variable fails */
set prices;
length saleitem $ 20;
if amount > 500 then

call execute(’%items(codevar=’ || code || ’)’);
saleitem="&special";

run;

In this example, the DATA SALES step still requires the value of SPECIAL during
compilation. The CALL EXECUTE routine is useful in this example because of the
conditional IF statement. But as in the first example, CALL EXECUTE still invokes
the macro ITEMS during DATA step execution — not during compilation. The macro
ITEMS generates a DATA _NULL_ step that executes after the DATA SALES step has
ceased execution. The DATA _NULL_ step creates SPECIAL, and the value of
SPECIAL is available after the _NULL_ step ceases execution, which is much later
than when the value was needed.

This version of the example corrects the problem:

/* This version solves the problem. */

data prices; /* ID for price category and actual price */
input code amount;
datalines;

56 300
99 10000

Interfaces with the Macro Facility Using SAS Language Functions in the DATA Step and Macro Facility 99

24 225
;

data names; /* name of sales department and item sold */
input dept $ item $;
cards;

BB Boat
SK Ski
;
%macro items(codevar=); /* create macro variable if needed */

%global special;
data _null_;

set names;
if &codevar=99 and dept=’BB’ then

call symput(’special’, item);
run;

%mend items;

data _null_; /* call the macro in this step */
set prices;
if amount > 500 then

call execute(’%items(codevar=’ || code || ’)’);
run;

data sales; /* use the value created by the macro in this step */
set prices;
length saleitem $ 20;
saleitem="&special";

run;

This version uses one DATA _NULL_ step to call the macro ITEMS. After that step
ceases execution, the DATA _NULL_ step generated by ITEMS executes and creates the
macro variable SPECIAL. Then the DATA SALES step references the value of
SPECIAL as usual.

Using SAS Language Functions in the DATA Step and Macro Facility

The macro functions %SYSFUNC and %QSYSFUNC can call SAS language functions
and functions written with SAS/TOOLKIT software to generate text in the macro
facility. %SYSFUNC and %QSYSFUNC have one difference: the %QSYSFUNC masks
special characters and mnemonics and %SYSFUNC does not. For more information
about these functions, see the %QSYSFUNC and %SYSFUNC topics in Chapter 13,
“Macro Language Dictionary,” on page 163.

%SYSFUNC arguments are a single SAS language function and an optional format,
as shown in the following examples:

%sysfunc(date(),worddate.)
%sysfunc(attrn(&dsid,NOBS))

You cannot nest SAS language functions within %SYSFUNC. However, you can nest
%SYSFUNC functions that call SAS language functions, as in the following statement:

%sysfunc(compress(%sysfunc(getoption(sasautos)),%str(%)%(%’)))

100 Interfaces with the SQL Procedure Chapter 8

This example returns the value of the SASAUTOS= system option, using the
COMPRESS function to eliminate opening parentheses, closing parentheses, and single
quotation marks from the result. Note the use of the %STR function and the
unmatched parentheses and quotation marks that are marked with a percent sign (%).

All arguments in SAS language functions within %SYSFUNC must be separated by
commas. You cannot use argument lists preceded by the word OF.

Because %SYSFUNC is a macro function, you do not need to enclose character values
in quotation marks as you do in SAS language functions. For example, the arguments
to the OPEN function are enclosed in quotation marks when the function is used alone
but do not require quotation marks when used within %SYSFUNC.

Here are some examples of the contrast between using a function alone and within
%SYSFUNC:

� dsid = open("sasuser.houses","i");

� dsid = open("&mydata","&mode");

� %let dsid = %sysfunc(open(sasuser.houses,i));

� %let dsid = %sysfunc(open(&mydata,&mode));

You can use %SYSFUNC and %QSYSFUNC to call all of the DATA step SAS
functions except DIF, DIM, HBOUND, INPUT, LAG, LBOUND, PUT, RESOLVE, and
SYMGET. In the macro facility, SAS language functions called by %SYSFUNC can
return values with a length up to 32K. However, within the DATA step, return values
are limited to the length of a data set character variable.

The %SYSCALL macro statement enables you to use SAS language CALL routines
with the macro processor, and it is described in Chapter 13, “Macro Language
Dictionary,” on page 163.

Interfaces with the SQL Procedure
Structured Query Language (SQL) is a standardized, widely used language for

retrieving and updating data in databases and relational tables. SAS software’s SQL
processor enables you to do the following:

� create tables and views
� retrieve data stored in tables
� retrieve data stored in SQL and SAS/ACCESS views
� add or modify values in tables
� add or modify values in SQL and SAS/ACCESS views.

INTO Clause
SQL provides the INTO clause in the SELECT statement for creating SAS macro

variables. You can create multiple macro variables with a single INTO clause. The
INTO clause follows the same scoping rules as the %LET statement. See Chapter 3,
“Macro Variables,” on page 19 for a summary of how macro variables are created. For
further details and examples relating to the INTO clause, see Chapter 13, “Macro
Language Dictionary,” on page 163.

Controlling Job Execution
PROC SQL also provides macro tools to do the following:

Interfaces with the Macro Facility Interfaces with the SAS Component Language 101

� stop execution of a job if an error occurs
� execute programs conditionally based on data values.

The following table provides information about macro variables created by SQL that
affect job execution.

Table 8.2 Macro Variables that Affect Job Execution

Macro Variable Description

SQLOBS contains the number of rows or observations produced by a SELECT
statement.

SQLRC contains the return code from an SQL statement. For return codes,
see SAS SQL documentation.

SQLOOPS contains the number of iterations that the inner loop of PROC SQL
processes.

Interfaces with the SAS Component Language
You can use the SAS macro facility to define macros and macro variables for a SCL

program. Then, you can pass parameters between macros and the rest of the program.
Also, through the use of the autocall and compiled stored macro facilities, macros can
be used by more than one SCL program.

Note: Macro modules can be more complicated to maintain than a program segment
because of the symbols and macro quoting that might be required. Also, implementing
modules as macros does not reduce the size of the compiled SCL code. Program
statements generated by a macro are added to the compiled code as if those lines
existed at that location in the program. �

The following table lists the SCL macro facility interfaces.

Table 8.3 SCL Interfaces to the Macro Facility

Category Tool Description

Read or Write SYMGET returns the value of a global macro variable
during SCL execution.

SYMGETN returns the value of a global macro variable as
a numeric value.

CALL SYMPUT assigns a value produced in SCL to a global
macro variable.

CALL SYMPUTN assigns a numeric value to a global macro
variable.

Note: It is inefficient to use SYMGETN to retrieve values that are not assigned with
SYMPUTN. It is also inefficient to use & to reference a macro variable that was created
with CALL SYMPUTN. Instead, use SYMGETN. In addition, it is inefficient to use
SYMGETN and CALL SYMPUTN with values that are not numeric. �

For details about these elements, see Chapter 13, “Macro Language Dictionary,” on
page 163.

102 How Macro References Are Resolved by SCL Chapter 8

How Macro References Are Resolved by SCL
An important point to remember when using the macro facility with SCL is that

macros and macro variable references in SCL programs are resolved when the SCL
program compiles, not when you execute the application. To further control the
assignment and resolution of macros and macro variables, use the following techniques:

� If you want macro variables to be assigned and retrieved when the SCL program
executes, use CALL SYMPUT and CALL SYMPUTN in the SCL program.

� If you want a macro call or macro variable reference to resolve when an SCL
program executes, use SYMGET and SYMGETN in the SCL program.

Referencing Macro Variables in Submit Blocks
In SCL, macro variable references are resolved at compile time unless they are in a

Submit block. When SCL encounters a name prefixed with an ampersand (&) in a
Submit block, it checks whether the name following the ampersand is the name of an
SCL variable. If so, SCL substitutes the value of the corresponding variable for the
variable reference in the submit block. If the name following the ampersand does not
match any SCL variable, the name passes intact (including the ampersand) with the
submitted statements. When SAS processes the statements, it attempts to resolve the
name as a macro variable reference

To guarantee that a name is passed as a macro variable reference in submitted
statements, precede the name with two ampersands (for example, &&DSNAME). If you
have both a macro variable and an SCL variable with the same name, a reference with
a single ampersand substitutes the SCL variable. To force the macro variable to be
substituted, reference it with two ampersands (&&).

Considerations for Sharing Macros between SCL Programs
Sharing macros between SCL programs can be useful, but it can also raise some

configuration management problems. If a macro is used by more than one program, you
must keep track of all the programs that use it so you can recompile all of them each
time the macro is updated. Because SCL is compiled, each SCL program that calls a
macro must be recompiled whenever that macro is updated.

CAUTION:
Recompile the SCL program. If you fail to recompile the SCL program when you update
the macro, you run the risk of the compiled SCL being out of sync with the source. �

Example Using Macros in an SCL Program
This SCL program is for an example application with the fields BORROWED,

INTEREST, and PAYMENT. The program uses the macros CKAMOUNT and CKRATE
to validate values entered into fields by users. The program calculates the payment,
using values entered for the interest rate (INTEREST) and the sum of money
(BORROWED).

/* Display an error message if AMOUNT */
/* is less than zero or larger than 1000. */

%macro ckamount(amount);
if (&amount < 0) or (&amount > 1000) then

do;

Interfaces with the Macro Facility SAS/CONNECT Interfaces 103

erroron borrowed;
msg=’Amount must be between $0 and $1,000.’;
stop;

end;
else erroroff borrowed;

%mend ckamount;

/* Display an error message if RATE */
/* is less than 0 or greater than 1.5 */

%macro ckrate(rate);
if (&rate < 0) or (&rate > 1) then

do;
erroron interest;
msg=’Rate must be between 0 and 1.5’;
stop;

end;
else erroroff interest;

%mend ckrate;

/* Open the window with BORROWED at 0 and INTEREST at .5. */
INIT:

control error;
borrowed=0;
interest=.5;

return;

MAIN:
/* Run the macro CKAMOUNT to validate */
/* the value of BORROWED. */

%ckamount(borrowed);
/* Run the macro CKRATE to validate */
/* the value of INTEREST. */

%ckrate(interest)
/* Calculate payment. */

payment=borrowed*interest;
return;

TERM:
return;

SAS/CONNECT Interfaces

The %SYSRPUT macro statement is submitted with SAS/CONNECT to a remote
host to retrieve the value of a macro variable stored on the remote host. %SYSRPUT
assigns that value to a macro variable on the local host. %SYSRPUT is similar to the
%LET macro statement because it assigns a value to a macro variable. However,
%SYSRPUT assigns a value to a variable on the local host, not on the remote host
where the statement is processed. The %SYSRPUT statement places the macro
variable in the current scope of the local host.

Note: The names of the macro variables on the remote and local hosts must not
contain a leading ampersand. �

104 Example Using %SYSRPUT to Check the Value of a Return Code on a Remote Host Chapter 8

The %SYSRPUT statement is useful for capturing the value of the automatic macro
variable SYSINFO and passing that value to the local host. SYSINFO contains
return-code information provided by some SAS procedures. Both the UPLOAD and the
DOWNLOAD procedures of SAS/CONNECT can update the macro variable SYSINFO
and set it to a nonzero value when the procedure terminates due to errors. You can use
%SYSRPUT on the remote host to send the value of the SYSINFO macro variable back
to the local SAS session. Thus, you can submit a job to the remote host and test
whether a PROC UPLOAD or DOWNLOAD step has successfully completed before
beginning another step on either the remote host or the local host.

To use %SYSRPUT, you must have invoked a remote SAS windowing environment
session by submitting the DMR option with the SAS command. For details about using
%SYSRPUT, see the SAS/CONNECT documentation.

To create a new macro variable or to modify the value of an existing macro variable
on a remote host or a server, use the %SYSLPUT macro statement.

Example Using %SYSRPUT to Check the Value of a Return Code on a
Remote Host

This example illustrates how to download a file and return information about the
success of the step. When remote processing is completed, the job checks the value of
the return code stored in RETCODE. Processing continues on the local host if the
remote processing is successful. In this example, the %SYSRPUT statement follows a
PROC DOWNLOAD step, so the value returned by SYSINFO indicates the success of
the PROC DOWNLOAD step:

/* This code executes on the remote host. */
rsubmit;

proc download data=remote.mydata out=local.mydata;
run;

/* RETCODE is on the local host. */
/* SYSINFO is on the remote host. */

%sysrput retcode=&sysinfo;
endrsubmit;

/* This code executes on the local host. */
%macro checkit;

%if &retcode = 0 %then
%do;

further processing on local host
%end;

%mend checkit;

%checkit

To determine the success or failure of a step executed on a remote host, use the
%SYSRPUT macro statement to check the value of the automatic macro variable
SYSERR.

For more details and syntax of the %SYSRPUT statement, refer to Chapter 13,
“Macro Language Dictionary,” on page 163.

105

C H A P T E R

9
Storing and Reusing Macros

Introduction to Storing and Reusing Macros 105

Saving Macros in an Autocall Library 106
Using Directories as Autocall Libraries 106

Using SAS Catalogs as Autocall Libraries 107

Calling an Autocall Macro 107
Saving Macros Using the Stored Compiled Macro Facility 108

Compiling and Storing a Macro Definition 108

Storing Autocall Macros Supplied by SAS 109
Calling a Stored Compiled Macro 109

Introduction to Storing and Reusing Macros
When you submit a macro definition, by default, the macro processor compiles and

stores the macro in a SAS catalog in the WORK library. These macros, referred to as
session compiled macros, exist only during the current SAS session. To save frequently
used macros between sessions, you can use either the autocall macro facility or the
stored compiled macro facility.

The autocall macro facility stores the source for SAS macros in a collection of
external files called an autocall library. The autocall facility is useful when you want to
create a pool of easily maintained macros in a location that can be accessed by different
applications and users. Autocall libraries can be concatenated together. The primary
disadvantage of the autocall facility is that the first time that an autocall macro is
called in a session, the macro processor compiles it. This compilation is overhead that
you can avoid by using the stored compiled macro facility.

The stored compiled macro facility stores compiled macros in a SAS catalog in a SAS
data library that you specify. By using stored compiled macros, you might save macro
compilation time in your production-level jobs. However, because these stored macros
are compiled, you must save and maintain the source for the macro definitions in a
different location.

The autocall facility and the stored compiled macro facility each offer advantages.
Some of the factors that determine how you choose to save a macro definition are how
often you use a macro, how often you change it, how many users need to execute it, and
how many compiled macro statements it has. If you are developing new programs,
consider creating macros and compiling them during your current session. If you are
running production-level jobs using name-style macros, consider using stored compiled
macros. If you are allowing a group of users to share macros, consider using the
autocall facility.

106 Saving Macros in an Autocall Library Chapter 9

Note: For greater efficiency, store only name-style macros if you use the stored
compiled macro facility. Storing statement-style and command-style macros is less
efficient. �

It is good practice, when you are programming stored compiled macros or autocall
macros, to use the %LOCAL statement to define macro variables that will be used only
inside that macro. Otherwise, values of macro variables defined outside of the current
macro might be altered. See the discussion of macro variable scopes in Chapter 5,
“Scopes of Macro Variables,” on page 41.

In general, macro and variable names in the SAS macro facility are case insensitive
and are internally changed to upper case. The values are case sensitive in the SAS
macro facility and are not changed.

When calling an autocall macro or a stored compiled macro, the macro name is
changed to upper case and passed to the catalog routines to open a member of that
name. The catalog routines are host dependent and use the default casing for the
particular host when searching for a member. Macro catalog entries should only be
made using the default casing for the host in question. Here are the host defaults:

� UNIX default is lower case.
� MVS default is uppercase.
� Windows default is lowercase.

Saving Macros in an Autocall Library
Generally, an autocall library is a directory containing individual files, each of which

contains one macro definition. In SAS 6.11 and later, an autocall library can also be a
SAS catalog (see the following section for more information about using SAS catalogs as
autocall libraries.)

Operating Environment Information: Autocall Libraries on Different Hosts The term
directory refers to an aggregate storage location that contains files (or members)
managed by the host operating system. Different host operating systems identify an
aggregate storage location with different names, such as a directory, a subdirectory, a
maclib, a text library, or a partitioned data set. For more information, see the SAS
Companion for your operating system. �

Using Directories as Autocall Libraries
To use a directory as a SAS autocall library, do the following:
1 To create library members, store the source code for each macro in a separate file

in a directory. The name of the file must be the same as the macro name. For
example, the statements defining a macro you would call by submitting %SPLIT
must be in a file named SPLIT.

Operating Environment Information: Autocall Library Member Names On
operating systems that allow filenames with extensions, you must name autocall
macro library members with a special extension, usually .SAS. Look at the
autocall macros on your system provided by SAS to determine whether names of
files containing macros must have a special extension at your site.

On MVS operating systems, you must assign the macro name as the name of
the PDS member. �

2 Set the SASAUTOS system option to specify the directory as an autocall library.
On most hosts, the reserved fileref SASAUTOS is assigned at invocation time to
the autocall library supplied by SAS or another one designated by your site. If you

Storing and Reusing Macros Calling an Autocall Macro 107

are specifying one or more autocall libraries, remember to concatenate the autocall
library supplied by SAS with your autocall libraries so that these macros will also
be available. For details, refer to your host documentation and SASAUTOS in
Chapter 13, “Macro Language Dictionary,” on page 163.

When storing files in an autocall library, remember the following:

� Although SAS does not restrict the type of material you place in an autocall
library, you should store only autocall library files in it to avoid confusion and for
ease of maintenance.

� Although SAS lets you include more than one macro definition, as well as open
code, in an autocall library member, you should generally keep only one macro in
any autocall library member. If you need to keep several macros in the same
autocall library member, keep related macros together.

Using SAS Catalogs as Autocall Libraries
In SAS 6.11 and later, you can use the CATALOG access method to store autocall

macros as SOURCE entries in SAS catalogs. To create an autocall library using a SAS
catalog, follow these steps:

1 Use a LIBNAME statement to assign a libref to the SAS library.

2 Use a FILENAME statement with the CATALOG argument to assign a fileref to
the catalog that contains the autocall macros. For example, the following code
creates a fileref, MYMACROS, that points to a catalog named
MYMACS.MYAUTOS:

libname mymacs ’SAS-data-library’;
filename mymacros catalog ’mymacs.myautos’;

3 Store the source code for each macro in a SOURCE entry in a SAS catalog.
(SOURCE is the entry type.) The name of the SOURCE entry must be the same
as the macro name.

4 Set the SASAUTOS system option to specify the fileref as an autocall library. For
more information, see SASAUTOS in Chapter 13, “Macro Language Dictionary,” on
page 163.

Calling an Autocall Macro
To call an autocall macro, the system options MAUTOSOURCE must be set and

SASAUTOS must be assigned. MAUTOSOURCE enables the autocall facility, and
SASAUTOS specifies the autocall libraries. For more information on these options, see
MAUTOSOURCE and SASAUTOS in Chapter 13, “Macro Language Dictionary,” on
page 163.

Once you have set the required options, calling an autocall macro is like calling a
macro that you have created in your current session. However, it is important that you
understand how the macro processor locates the called macro. When you call a macro,
the macro processor searches first for a session compiled macro definition. Next, the
macro processor searches for a permanently stored compiled macro. If compiled stored
macros are enabled with the MSTORED option, the macro processor opens the macro
catalog in the library specified in the SASMSTORE option. If the macro processor does
not find a compiled macro, and if MAUTOSOURCE is set, the macro processor opens
libraries specified by the SASAUTOS option in the order in which they are specified in

108 Saving Macros Using the Stored Compiled Macro Facility Chapter 9

the option. It then searches each library for a member with the same name as the
macro you invoked. When SAS finds a library member with that name, the macro
processor does the following:

1 compiles all of the source statements in that member, including any and all macro
definitions, and stores the result in the session catalog.

2 executes any open code (macro statements or SAS source statements not within
any macro definition) in that member.

3 executes the macro within it with the name you invoked.

Note: If an autocall library member contains more than one macro, the macro
processor compiles all of the macros but executes only the macro with the name you
invoked. �

Any open code statements in the same autocall library member as a macro execute
only the first time you invoke the macro. When you invoke the macro later in the same
session, the compiled macro is executed, which contains only the compiled macro
definition and not the other code the autocall macro source file might have contained.

It is not advisable to change SASAUTOS during a SAS session. If you change the
SASAUTOS= specification in an ongoing SAS session, SAS will store the new
specification only until you invoke an uncompiled autocall macro and then will close all
opened libraries and open all the newly specified libraries that it can open.

For information about debugging autocall macros, see Chapter 10, “Macro Facility
Error Messages and Debugging,” on page 111.

Saving Macros Using the Stored Compiled Macro Facility
The stored compiled macro facility compiles and saves compiled macros in a

permanent catalog in a library that you specify. This compilation occurs only once. If
the stored compiled macro is called in the current or later sessions, the macro processor
executes the compiled code.

Compiling and Storing a Macro Definition

To compile a macro definition in a permanent catalog, you must first create the source
for each stored compiled macro. To store the compiled macro, use the following steps:

1 Use the STORE option in the %MACRO statement. Optionally, you can use the
SOURCE option to store the source code with the compiled code. In addition, you
can optionally assign a descriptive title for the macro entry in the SAS catalog, by
specifying the DES= option. For example, the %MACRO statement in the
following definition shows the STORE, SOURCE, and DES= options:

%macro myfiles / store source
des=’Define filenames’;

filename file1 ’external-file-1’;
filename file2 ’external-file-2’;

%mend;

CAUTION:
Save your macro source code. You cannot recreate the source statements from a
compiled macro. Therefore, you must save the original macro source statements

Storing and Reusing Macros Calling a Stored Compiled Macro 109

if you want to change the macro. For all stored compiled macros, you should
document your macro source code well. You can save the source code with the
compiled code using the SOURCE option on the %MACRO statement or you can
save the source in a separate file. If you save the source in a separate file, it is
recommended that you save the source code in the same catalog as the compiled
macro. In this example, save it to

mylib.sasmacro.myfiles.source

�

Note: To retrieve the source of a compiled stored macro, see “%COPY
Statement” on page 172. �

2 Set the MSTORED system option to enable the stored compiled macro facility. For
more information, see “MSTORED System Option” on page 221.

3 Assign the SASMSTORE option to specify the SAS data library that contains or
will contain the catalog of stored compiled SAS macros. For example, to store or
call compiled macros in a SAS catalog named MYLIB.SASMACR, submit these
statements:

libname mylib ’SAS-data-library’;
options mstored sasmstore=mylib;

For more information, see “SASMSTORE= System Option” on page 236.

4 Submit the source for each macro that you want to compile and permanently store.

You cannot move a stored compiled macro to another operating system. You can,
however, move the macro source code to another operating system where you can then
compile and store it. You might need to recompile these macros if you use them in a
different release of SAS. For more information, see your host companion.

Storing Autocall Macros Supplied by SAS
If you use the macros in the autocall library supplied by SAS, you can save macro

compile time by compiling and storing those macros in addition to ones you create
yourself. Many of the macros related to Base SAS software that are in the autocall
library supplied by SAS can be compiled and stored in a SAS catalog named SASMACR
by using the autocall macro COMPSTOR that is supplied by SAS. For more
information, see COMPSTOR in Chapter 13, “Macro Language Dictionary,” on page 163.

Calling a Stored Compiled Macro
Once you have set the required system options, calling a stored compiled macro is

just like calling session compiled macros. However, it is important that you understand
how the macro processor locates a macro. When you call a macro, the macro processor
searches for the macro name using this sequence:

1 the macros compiled during the current session

2 the stored compiled macros in the SASMACR catalog in the specified library (if
options MSTORED and SASMSTORE= are in effect)

3 each autocall library specified in the SASAUTOS option (if options SASAUTOS=
and MAUTOSOURCE are in effect).

You can display the entries in a catalog containing compiled macros. For more
information, see Chapter 10, “Macro Facility Error Messages and Debugging,” on page
111.

110

111

C H A P T E R

10
Macro Facility Error Messages
and Debugging

General Macro Debugging Information 111

Encountering Errors 112
Developing Bug-free Macros 112

Troubleshooting Your Macros 113

Solving Macro Variable Resolution Problems 115
Solving Problems with Macro Variable Scope 116

Solving Open Code Statement Recursion Problems 117

Solving Problems with Macro Functions 118
Solving Unresolved Macro Problems 118

Solving the “Black Hole” Macro Problem 118
Resolving Timing Issues 119

Example of a Macro Statement Executing Immediately 120

Resolving Macro Resolution Problems Occurring During DATA Step Compilation 120
Solving Problems with the Autocall Facility 122

Fixing Autocall Library Specifications 122

Fixing Autocall Macro Definition Errors 123
File and Macro Names for Autocall 123

Displaying Information about Stored Compiled Macros 124
Solving Problems with Expression Evaluation 125

Debugging Techniques 126

Using System Options to Track Problems 126
Tracing the Flow of Execution with MLOGIC 126

Nesting Information Generated by MLOGICNEST 127

Examining the Generated SAS Statements with MPRINT 127
Nesting Information Generated by MPRINTNEST 127

Storing MPRINT Output in an External File 128
Examining Macro Variable Resolution with SYMBOLGEN 129

Using the %PUT Statement to Track Problems 130

General Macro Debugging Information

Because the macro facility is such a powerful tool, it is also complex, and debugging
large macro applications can be extremely time-consuming and frustrating. Therefore,
it makes sense to develop your macro application in a way that minimizes the errors
and that makes the errors that do occur as easy as possible to find and fix. The first
step is to understand what kind of errors can occur and when they manifest
themselves. Then, develop your macros using a modular, layered approach. Finally, use
some built-in tools such as system options, automatic macro variables, and the %PUT
statement to diagnose errors.

112 Encountering Errors Chapter 10

Note: To receive certain important warning messages about unresolved macro
names and macro variables, be sure the system options SERROR and MERROR are in
effect. See Chapter 13, “Macro Language Dictionary,” on page 163 for more information
about these system options. �

Encountering Errors
When the word scanner processes a program and finds a token in the form of & or %,

it triggers the macro processor to examine the name token that follows the & or %.
Depending on the token, the macro processor initiates one of the following activities:

� macro variable resolution
� macro open code processing
� macro compilation
� macro execution.

An error can occur during any one of these stages. For example, if you misspell a
macro function name or omit a necessary semicolon, that is a syntax error during
compilation. Syntax errors occur when program statements do not conform to the rules
of the macro language. Or, you might refer to a variable out of scope, causing a macro
variable resolution error. Execution errors (also called semantic errors) are usually errors
in program logic. They can occur, for example, when the text generated by the macro
has faulty logic (statements not executed in the right order or in the way you expect).

Of course, even if your macro code is perfect, that does not guarantee that you will
not encounter errors caused by plain SAS code. For example, you might encounter a
libref that is not defined, a syntax error in open code (that is, outside of a macro
definition), or a typo in the code your macro generates. Typically, error messages with
numbers are plain SAS code error messages. Error messages generated by the macro
processor do not have numbers.

Developing Bug-free Macros
When programming in any language, it is good technique to develop your code in

modules. That is, instead of writing one massive program, develop it piece by piece, test
each piece separately, then put the pieces together. This technique is especially useful
when developing macro applications because of the two-part nature of SAS macros:
macro code and the SAS code generated by the macro code.

Another good idea is to proofread your macro code for common mistakes before you
submit it.

The following list outlines some key items to check for:
� the names in the %MACRO and %MEND statements match, and there is a

%MEND for each %MACRO.
� the number of %DO statements matches the number of %END statements.
� %TO values for iterative %DO statements exist and are appropriate.
� all statements end with semicolons.
� comments begin and end correctly and do not contain unmatched single quotation

marks.
� macro variable references begin with & and macro statements begin with %.
� macro variables created by CALL SYMPUT are not referenced in the same DATA

step in which they are created.
� statements that execute immediately (such as %LET) are not part of conditional

DATA step logic.

Macro Facility Error Messages and Debugging Troubleshooting Your Macros 113

� single quotation marks are not used around macro variable references (such as in
TITLE or FILENAME statements). When used in quoted strings, macro variable
references resolve only in strings marked with double quotation marks.

� macro variable values do not contain any keywords or characters that could be
interpreted as mathematical operators. (If they do contain such characters, use
the appropriate macro quoting function.)

� macro variables, %GOTO labels, and macro names do not conflict with reserved
SAS and host environment keywords.

Troubleshooting Your Macros
The following table lists some problems you might encounter when working with the

macro facility. Because many of these problems do not cause error messages to be
written to the SAS log, solving them can be difficult. For each problem, the table gives
some possible causes and solutions.

Table 10.1 Commonly Encountered Macro Problems

Problem Cause(s) Explanation

SAS windowing environment
session stops responding after
you submit a macro definition.
You type and submit code but
nothing happens.

� Syntax error in %MEND
statement

� Missing semicolon,
parenthesis, or quotation
mark

� Missing %MEND
statement

� Unclosed comment

The %MEND statement is not
recognized and all text is
becoming part of the macro
definition.

SAS windowing environment
session stops responding after
you call a macro.

An error in invocation, such as
forgetting to provide one or
more parameters, or forgetting
to use parentheses when
invoking a macro that is
defined with parameters.

The macro facility is waiting
for you to finish the invocation.

The macro does not compile
when you submit it.

A syntax error exists
somewhere in the macro
definition.

Only syntactically correct
macros are compiled.

The macro does not execute
when you call it or partially
executes and stops.

� A bad value was passed
to the macro (for
example, as a
parameter).

� A syntax error exists
somewhere in the macro
definition.

A macro successfully executes
only when it receives the
correct number of parameters
that are of the correct type.

The macro executes but the
SAS code gives bad results or
no results.

Incorrect logic in the macro or
SAS code.

114 Troubleshooting Your Macros Chapter 10

Problem Cause(s) Explanation

Code runs fine if submitted as
open code, but when generated
by a macro, the code does not
work and issues strange error
messages.

� Tokenization is not as
you intended.

� A syntax error exists
somewhere in the macro
definition.

Rarely, macro quoting
functions alter the tokenization
of text enclosed in them. Use
the %UNQUOTE function.

See %UNQUOTE in Chapter
13, “Macro Language
Dictionary,” on page 163.

A %MACRO statement
generates “invalid statement”
error.

� The MACRO system
option is turned off.

� A syntax error exists
somewhere in the macro
definition.

For the macro facility to work,
the MACRO system option
must be on. Edit your SAS
configuration file accordingly.

The following table lists some common macro error and warning messages. For each
message, some probable causes are listed, and pointers to more information are
provided.

Macro Facility Error Messages and Debugging Solving Macro Variable Resolution Problems 115

Table 10.2 Common Macro Error Messages and Causes

Error Message Possible Causes For More Information

Apparent invocation of
macro xxx not resolved.

� You have misspelled the
macro name.

� MAUTOSOURCE system
option is turned off.

� MAUTOSOURCE is on,
but you have specified an
incorrect path in the
SASAUTOS= system
option.

� You are using the
autocall facility but have
given the macro and file
different names.

� You are using the
autocall facility but
didn’t give the file the
.sas extension.

� There is a syntax error
within the macro
definition.

� Check the spelling of the
macro name.

� “Solving Problems with
the Autocall Facility” on
page 122.

� “Developing Bug-free
Macros” on page 112.

Apparent symbolic
reference xxx not
resolved.

� You are trying to resolve
a macro variable in the
same DATA step as the
CALL SYMPUT that
created it.

� You have misspelled the
macro variable name.

� You are referencing a
macro variable that is
not in scope.

� You have omitted the
period delimiter when
adding text to the end of
the macro variable.

� “Resolving Timing
Issues” on page 119.

� Check the spelling of the
macro variable.

� “Solving Problems with
Macro Variable Scope” on
page 116.

� “Solving Macro Variable
Resolution Problems” on
page 115.

� “Generating a Suffix for
a Macro Variable
Reference” in Chapter 1,
“Introduction to the
Macro Facility,” on page
3.

Solving Macro Variable Resolution Problems
When the macro processor examines a name token that follows an &, it searches the

macro symbol tables for a matching macro variable entry. If it finds a matching entry, it
pulls the associated text from the symbol table and replaces &name on the input stack.
When a macro variable name is passed to the macro processor but the processor does
not find a matching entry in the symbol tables, it leaves the token on the input stack
and generates this message:

WARNING: Apparent symbolic reference NAME not resolved.

116 Solving Problems with Macro Variable Scope Chapter 10

The unresolved token is transferred to the input stack for use by other parts of SAS.

Note: You receive the WARNING only if the SERROR system option is on. �

To solve these problems, check that you’ve spelled the macro variable name right and
that you are referencing it in an appropriate scope.

When a macro variable resolves but does not resolve to the correct value, you can
check several things. First, if the variable is a result of a calculation, ensure that the
correct values were passed into the calculation. And, ensure that you have not
inadvertently changed the value of a global variable. (See “Solving Problems with
Macro Variable Scope” on page 116 for more details about variable scope problems.)

Another common problem is adding text to the end of a macro variable but forgetting
to add a delimiter that shows where the macro variable name ends and the added text
begins. For example, suppose you want to write a TITLE statement with a reference to
WEEK1, WEEK2, and so on. You set a macro variable equal to the first part of the
string, then supply the week’s number in the TITLE statement:

%let wk=week;

title "This is data for &wk1"; /* INCORRECT */

When these statements compile, the macro processor looks for a macro variable
named WK1, not WK. To fix the problem, add a period (the macro delimiter) between
the end of the macro variable name and the added text, as in the following statements:

%let wk=week;

title "This is data for &wk.1";

CAUTION:
Do not use AF, DMS, or SYS as prefixes with macro variable names. The letters AF,
DMS, and SYS are frequently used by SAS as prefixes for automatic variables. SAS
does not prevent you from using AF, DMS, or SYS as a prefix for macro variable
names. However, using these strings as prefixes might create a conflict between the
names you specify and the name of an automatic macro variable (including automatic
macro variables in later SAS releases).

If a name conflict occurs, SAS might not issue a warning or error message,
depending on the details of the conflict. Therefore, the best practice is to avoid using
the strings AF, DMS, or SYS as the beginning characters of macro names and macro
variable names. �

Solving Problems with Macro Variable Scope
A common mistake that occurs with macro variables concerns referencing local macro

variables outside of their scopes. As described in Chapter 5, “Scopes of Macro
Variables,” on page 41 macro variables are either global or local. Referencing a variable
outside of its scope prevents the macro processor from resolving the variable reference.
For example, consider the following program:

%macro totinv(var);
data inv;

retain total 0;
set sasuser.houses end=final;
total=total+&var;
if final then call symput("macvar",put(total,dollar14.2));

run;

Macro Facility Error Messages and Debugging Solving Open Code Statement Recursion Problems 117

%put **** TOTAL=&macvar ****;
%mend totinv;

%totinv(price)
%put **** TOTAL=&macvar ****; /* ERROR */

When you submit these statements, the %PUT statement in the macro TOTINV
writes the value of TOTAL to the log, but the %PUT statement that follows the macro
call generates a warning message and writes the text TOTAL=&macvar to the log, as
follows:

TOTAL= $1,240,800.00
WARNING: Apparent symbolic reference MACVAR not resolved.
**** TOTAL=&macvar ****

The second %PUT statement fails because the macro variable MACVAR is local to the
TOTINV macro. To correct the error, you must use a %GLOBAL statement to declare
the macro variable MACVAR.

Another common mistake that occurs with macro variables concerns overlapping
macro variable names. If, within a macro definition, you refer to a macro variable with
the same name as a global macro variable, you affect the global variable, which might
not be what you intended. Either give your macro variables distinct names or use a
%LOCAL statement to explicitly define a local macro variable. See “Forcing a Macro
Variable to Be Local” on page 54 for an example of this technique.

Solving Open Code Statement Recursion Problems
Recursion is something calling itself. Open code recursion is when your open code

erroneously causes a macro statement to call another macro statement. This is referred
to as a recursive reference. The most common error that causes open code recursion is a
missing semicolon. In the following example, the %LET statement is not terminated by
a semicolon:

%let a=b /* ERROR */
%put **** &a ****;

When the macro processor encounters the %PUT statement within the %LET
statement, it generates this error message:

ERROR: Open code statement recursion detected.

Open code recursion errors usually occur because the macro processor is not reading
your macro statements as you intended. Careful proofreading can usually solve open
code recursion errors, because this type of error is mostly the result of typos in your
code, not errors in execution logic.

To recover from an open code recursion error, first try submitting a single semicolon.
If that does not work, try submitting the following string:

*’; *"; *); */; %mend; run;

Continue submitting this string until the following message appears in the SAS log:

ERROR: No matching %MACRO statement for this %MEND statement.

If the above method does not work, close your SAS session and restart SAS. Of
course, this causes you to lose any unsaved data, so be sure to save often while you are
developing your macros, and proofread them carefully before you submit them.

118 Solving Problems with Macro Functions Chapter 10

Solving Problems with Macro Functions
Some common causes of problems with macro functions include the following:
� misspelling the function name
� omitting the opening or closing parenthesis
� omitting an argument or specifying an extra argument.

If you encounter an error related to a macro function, you might also see other error
messages, generated by the invalid tokens left on the input stack by the macro processor.

Consider the following example. The user wants to use the %SUBSTR function to
assign a portion of the value of the macro variable LINCOLN to the macro variable
SECONDWD. But a typo exists in the second %LET statement, where %SUBSTR is
misspelled as %SUBSRT:

%macro test;
%let lincoln=Four score and seven;
%let secondwd=%subsrt(&lincoln,6,5); /* ERROR */
%put *** &secondwd ***;
%mend test;

%test

When the erroneous program is submitted, the following appears in the SAS log:

WARNING: Apparent invocation of macro SUBSRT not resolved.

The error messages clearly point to the function name, which is misspelled.

Solving Unresolved Macro Problems
When a macro name is passed to the macro processor but the processor does not find

a matching macro definition, it generates the following message:

WARNING: Apparent invocation of macro NAME not resolved.

This error could be caused by the misspelling of the name of a macro or a macro
function, or it could be caused by an error in a macro definition that caused the macro
to be compiled as a dummy macro. A dummy macro is a macro that the macro
processor partially compiles but does not store.

Note: You receive this warning only if the MERROR system option is on. �

Solving the “Black Hole” Macro Problem
When the macro processor begins compiling a macro definition, it reads and

compiles tokens until it finds a matching %MEND statement. If you omit a %MEND
statement or cause it to be unrecognized by omitting a semicolon in the preceding
statement, the macro processor does not stop compiling tokens. Every line of code you
submit becomes part of the macro.

Resubmitting the macro definition and adding the %MEND statement does not
correct the error. When you submit the corrected definition, the macro processor treats
it as a nested definition in the original macro definition. The macro processor must find
a matching %MEND statement to stop compilation.

Note: It is a good practice to use the %MEND statement with the macro name, so
you can easily match %MACRO and %MEND statements. �

Macro Facility Error Messages and Debugging Resolving Timing Issues 119

If you recognize that SAS is not processing submitted statements and you are not
sure how to recover, submit %MEND statements one at a time until the following
message appears in the SAS log:

ERROR: No matching %MACRO statement for this %MEND statement.

Then recall the original erroneous macro definition, correct the error in the %MEND
statement, and submit the definition for compilation.

There are other syntax errors that can create similar problems, such as unmatched
quotation marks and unclosed parentheses. Often, one of these syntax errors leads to
others. Consider the following example:

%macro rooms;
/* other macro statements */
%put **** %str(John’s office) ****; /* ERROR */

%mend rooms;

%rooms

When you submit these statements, the macro processor begins to compile the macro
definition ROOMS. However, the single quotation mark in the %PUT statement is not
marked by a percent sign. Therefore, during compilation the macro processor interprets
the single quote as the beginning of a literal token. It does not recognize the closing
parenthesis, the semicolon at the end of the statement, or the %MEND statement at
the end of the macro definition.

To recover from this error, you must submit the following:

’);
%mend;

If the above methods do not work, try submitting the following string:

*’; *"; *); */; %mend; run;

Continue submitting this string until the following message appears in the SAS log:

ERROR: No matching %MACRO statement for this %MEND statement.

Obviously, it is easier to catch these errors before they occur. You can avoid subtle
syntax errors by carefully checking your macros before submitting them for compilation.
Refer to “Developing Bug-free Macros” on page 112 for a syntax checklist.

Note: Another cause of unexplained and unexpected macro behavior is using a
reserved word as the name of a macro variable or macro. For example, since SAS
reserves names starting with SYS, you should not create macros and macro variables
with names beginning with SYS. Most host environments have reserved words too. For
example, on PC-based platforms, the word CON is reserved for console input. Check
Appendix 1, “Reserved Words in the Macro Facility,” on page 317 for reserved SAS
keywords. Check your SAS companion for host environment reserved words. �

Resolving Timing Issues

Many macro errors occur because a macro variable resolves at a different time than
when the user intended or a macro statement executes at an unexpected time. A prime
example of the importance of timing is when you use CALL SYMPUT to write a DATA
step variable to a macro variable. You cannot use this macro variable in the same
DATA step where it is defined; only in subsequent steps (after the DATA step’s RUN
statement).

120 Resolving Timing Issues Chapter 10

The key to preventing timing errors is to understand how the macro processor works.
In simplest terms, the two major steps are compilation and execution. The compilation
step resolves all macro code to compiled code. Then the code is executed. Most timing
errors occur because the user expects something to happen during compilation that
doesn’t actually occur until execution or, conversely, expects something to happen later
but is actually executed right away.

Here are two examples to help you understand why the timing of compilation and
execution can be important.

Example of a Macro Statement Executing Immediately
In the following program, the user intends to use the %LET statement and the

SR_CIT variable to indicate whether a data set contains any data for senior citizens:

data senior;
set census;
if age > 65 then
do;

%let sr_cit = yes; /* ERROR */
output;

end;
run;

However, the results differ from the user’s expectations. The %LET statement is
executed immediately, while the DATA step is only being compiled–before the data set is
read. Therefore, the %LET statement executes regardless of the results of the IF
condition. Even if the data set contains no observations where AGE is greater than 65,
SR_CIT is always yes.

The solution is to set the macro variable’s value by a means that is controlled by the
IF logic and does not execute unless the IF statement is true. In this case, the user
should use CALL SYMPUT, as in the following correct program:

%let sr_cit = no;
data senior;

set census;
if age > 65 then
do;

call symput ("sr_cit","yes");
output;

end;
run;

When this program is submitted, the value of SR_CIT is set to yes only if an
observation is found with AGE greater than 65. Note that the variable was initialized
to no. It is generally a good idea to initialize your macro variables.

Resolving Macro Resolution Problems Occurring During DATA Step
Compilation

In the previous example, you learned you had to use CALL SYMPUT to conditionally
assign a macro variable a value in a DATA step. So, you submit the following program:

%let sr_age = 0;
data senior;

set census;
if age > 65 then
do;

Macro Facility Error Messages and Debugging Resolving Timing Issues 121

call symput("sr_age",age);
put "This data set contains data about a person";
put "who is &sr_age years old."; /* ERROR */

end;
run;

If AGE was 67, you’d expect to see a log message like this one:

This data set contains data about a person
who is 67 years old.

However, no matter what AGE is, the following message is sent to the log:

This data set contains data about a person
who is 0 years old.

When the DATA step is being compiled, &SR_AGE is sent to the macro facility for
resolution, and the result is passed back before the DATA step executes. To achieve the
desired result, submit this corrected program instead:

%let sr_age = 0;
data senior;

set census;
if age > 65 then
do;

call symput("sr_age",age);
stop;

end;
run;

data _null_;
put "This data set contains data about a person";
put "who is &sr_age years old.";

run;

Note: Use double quotation marks in statements like PUT, because macro variables
do not resolve when enclosed in single quotation marks. �

Here is another example of erroneously referring to a macro variable in the same
step that creates it:

data _null_;
retain total 0;
set mydata end=final;
total=total+price;
call symput("macvar",put(total,dollar14.2));
if final then put "*** total=&macvar ***"; /* ERROR */

run;

Submitting these statements writes the following lines to the SAS log:

WARNING: Apparent symbolic reference MACVAR not resolved.

*** total=&macvar ***

As this DATA step is tokenized and compiled, the & causes the word scanner to
trigger the macro processor, which looks for a MACVAR entry in a symbol table.
Because such an entry does not exist, the macro processor generates the warning
message. Because the tokens remain on the input stack, they are transferred to the

122 Solving Problems with the Autocall Facility Chapter 10

DATA step compiler. During DATA step execution, the CALL SYMPUT statement
creates the macro variable MACVAR and assigns a value to it. However, the text
&macvar in the PUT statement occurs because the text has already been processed
while the macro was being compiled. If you were to resubmit these statements, then
the macro would appear to work correctly, but the value of MACVAR would reflect the
value set during the previous execution of the DATA step. This can be misleading.

Remember that in general, the % and & trigger immediate execution or resolution
during the compilation stage of the rest of your SAS code.

For more examples and explanation of how CALL SYMPUT creates macro variables,
see “Special Cases of Scope with the CALL SYMPUT Routine” on page 58.

Solving Problems with the Autocall Facility
The autocall facility is an efficient way of storing and using production (debugged)

macros. When a call to an autocall macro produces an error, the cause is one of two
things:

� an erroneous autocall library specification

� an invalid autocall macro definition.

If the error is the autocall library specification and the MERROR option is set, SAS
can generate any or all of the following warnings:

WARNING: No logical assign for filename FILENAME.
WARNING: Source level autocall is not found or cannot be opened.

Autocall has been suspended and OPTION NOMAUTOSOURCE has
been set. To use the autocall facility again, set OPTION
MAUTOSOURCE.

WARNING: Apparent invocation of macro MACRO-NAME not resolved.

If the error is in the autocall macro definition, SAS generates a message like the
following:

NOTE: Line generated by the invoked macro "MACRO-NAME".

Fixing Autocall Library Specifications
When an autocall library specification causes an error, it is because the macro

processor cannot find the member containing the autocall macro definition in the
library or libraries specified in the SASAUTOS system option.

To correct this error, follow these steps.

1 If the unresolved macro call created an invalid SAS statement, submit a single
semicolon to terminate the invalid statement. This enables SAS to correctly
recognize subsequent statements.

2 Look at the value of the SASAUTOS system option by printing the output of the
OPTIONS procedure or by viewing the OPTIONS window in the SAS windowing
environment. (Or, edit your SAS configuration file or SAS autoexec file.) Verify
each fileref or directory name. If you find an error, submit a new OPTIONS
statement or change the SASAUTOS setting in the OPTIONS window.

3 Check the MAUTOSOURCE system option. If SAS could not open at least one
library, it sets the NOMAUTOSOURCE option. If NOMAUTOSOURCE is present,
reset MAUTOSOURCE with a new OPTIONS statement or the OPTIONS window.

4 If the library specifications are correct, check the contents of each directory to
verify that the autocall library member exists and that it contains a macro
definition of the same name. If the member is missing, then add it.

Macro Facility Error Messages and Debugging Solving Problems with the Autocall Facility 123

5 Set the MRECALL option with a new OPTIONS statement or the OPTIONS
window. By default, the macro processor searches only once for an undefined
macro. Setting this option causes the macro processor to search the autocall
libraries for the specification again.

6 Call the autocall macro. This includes and submits the autocall macro source.

7 Reset the NOMRECALL option.

Note: Some host environments have environment variables or system-level logical
names assigned to the SASAUTOS library; check your SAS companion for more
information on details about how the SASAUTOS library specification is handled in
your host environment. �

Fixing Autocall Macro Definition Errors
When the autocall facility locates an autocall library member, the macro processor

compiles any macros in that library member and stores the compiled macros in the
catalog containing stored compiled macros. For the rest of your SAS session, invoking
one of those macros retrieves the compiled macro from the WORK library. Under no
circumstances does the autocall facility use an autocall library member when a
compiled macro with the same name already exists. Thus, if you invoke an autocall
macro and discover you made an error when you defined it, you must correct the
autocall library member for future use and compile the corrected version directly in
your program or session.

To correct an autocall macro definition in a windowing environment, do the following:

1 Use the INCLUDE command to bring the autocall library member into the SAS
Program Editor window. If the macro is stored in a catalog SOURCE entry, use
the COPY command to bring the program into the Program Editor window.

2 Correct the error.

3 Store a copy of the corrected macro in the autocall library with the FILE command
for a macro in an external file or with a SAVE command for a macro in a catalog
entry.

4 Submit the macro definition from the Program Editor window.

The macro processor then compiles the corrected version, replacing the incorrect
compiled macro. The corrected, compiled macro is now ready to execute at the next
invocation.

To correct an autocall macro definition in an interactive line mode session, do the
following:

1 Edit the autocall macro source with a text editor.

2 Correct the error.

3 Use a %INCLUDE statement to bring the corrected library member into your SAS
session.

The macro processor then compiles the corrected version, replacing the incorrect
compiled macro. The corrected, compiled macro is now ready to execute at the next
invocation.

File and Macro Names for Autocall
When you want to use a macro as an autocall macro, you must store the macro in a

file with the same name as the macro. Also, the file extension must be .sas (if your
operating system uses file extensions). If you experience problems with the autocall

124 Displaying Information about Stored Compiled Macros Chapter 10

facility, be sure the macro and file names match and the file has the right extension
when necessary.

Displaying Information about Stored Compiled Macros

To display the list of entries in a catalog containing compiled macros, you can use the
Catalog window or the CATALOG procedure. The following PROC step displays the
contents of a macro catalog in a SAS data library identified with the libref MYSASLIB:

libname mysaslib ’SAS-data-library’;
proc catalog catalog=mysaslib.sasmacr;

contents;
run;
quit;

You can also use PROC CATALOG to display information about autocall library
macros stored in SOURCE entries in a catalog. You cannot use PROC CATALOG or the
Explorer window to copy, delete, or rename stored compiled macros.

You can use the MCOMPILENOTE system option to issue a note to the log upon the
completion of the compilation of any macro. For more information, see
“MCOMPILENOTE System Option” on page 208.

In SAS 6.11 and later, you can use PROC SQL to retrieve information about all
compiled macros. For example, submitting these statements produces output similar to
the following output:

proc sql;
select * from dictionary.catalogs

where memname in (’SASMACR’);

Output 10.1 Output from PROC SQL Program for Viewing Compiled Macros

Library Member Member Object Object
Name Name Type Name Type

Date Object
Object Description Modified Alias
--
WORK SASMACR CATALOG FINDAUTO MACRO

05/28/96

SASDATA SASMACR CATALOG CLAUSE MACRO
Count words in clause 05/24/96

SASDATA SASMACR CATALOG CMPRES MACRO
CMPRES autocall macro 05/24/96

SASDATA SASMACR CATALOG DATATYP MACRO
DATATYP autocall macro 05/24/96

SASDATA SASMACR CATALOG LEFT MACRO
LEFT autocall macro 05/24/96

To display information about compiled macros when you invoke them, use the SAS
system options MLOGIC, MPRINT, and SYMBOLGEN. When you specify the SAS
system option MLOGIC, the libref and date of compilation of a stored compiled macro
are written to the log along with the usual information displayed during macro
execution.

Macro Facility Error Messages and Debugging Solving Problems with Expression Evaluation 125

Solving Problems with Expression Evaluation
The following macro statements use an implicit %EVAL function:

%DO %IF-%THEN %SCAN

%DO %UNTIL %QSCAN %SYSEVALF

%DO %WHILE %QSUBSTR %SUBSTR

In addition, you can use the %EVAL function to perform an explicit expression
evaluation.

The most common errors that occur while evaluating expressions are the presence of
character operands where numeric operands are required or ambiguity about whether a
token is a numeric operator or a character value. Chapter 6, “Macro Expressions,” on
page 67 discusses these and other macro expression errors.

Quite often, an error occurs when a special character or a keyword appears in a
character string. Consider the following program:

%macro conjunct(word=);
%if &word = and or &word = but or &word = or %then /* ERROR */

%do %put *** &word is a conjunction. ***;

%else
%do %put *** &word is not a conjunction. ***;

%mend conjunct;

In the %IF statement, the values of WORD being tested are ambiguous — they could
also be interpreted as the numeric operators AND and OR. Therefore, SAS generates
the following error messages in the log:

ERROR: A character operand was found in the %EVAL function or %IF
condition where a numeric operand is required. The condition
was:word = and or &word = but or &word = or

ERROR: The macro will stop executing.

To fix this problem, use the quoting functions %BQUOTE and %STR, as in the
following corrected program:

%macro conjunct(word=);
%if %bquote(&word) = %str(and) or %bquote(&word) = but or

%bquote(&word) = %str(or) %then
%do %put *** &word is a conjunction. ***;

%else
%do %put *** &word is not a conjunction. ***;

%mend conjunct;

In the corrected program, the %BQUOTE function quotes the result of the macro
variable resolution (in case the user passes in a word containing an unmatched
quotation mark or some other odd value), and the %STR function quotes the
comparison values AND and OR at compile time, so they are not ambiguous. You do not
need to use %STR on the value BUT, because it is not ambiguous (not part of the SAS
or macro languages). See Chapter 7, “Macro Quoting,” on page 75 for more information
about using macro quoting functions.

126 Debugging Techniques Chapter 10

Debugging Techniques

If you cannot identify your problem in “Troubleshooting Your Macros” on page 113,
you can use the techniques described in this section to pinpoint the location of the error.

Using System Options to Track Problems
The SAS system options MLOGIC, MLOGICNEST, MPRINT, MPRINTNEST, and

SYMBOLGEN can help you track the macro code and SAS code generated by your
macro. Messages generated by these options appear in the SAS log, prefixed by the
name of the option responsible for the message.

Note: Whenever you use the macro facility, use the following macro options:
MACRO, MERROR, and SERROR. SOURCE is a system option that is helpful when
using the macro facility. It is also helpful to use the SOURCE2 system option when
using the %INCLUDE. �

Although the following sections discuss each system option separately, you can, of
course, combine them. However, each option can produce a significant amount of
output, and too much information can be as confusing as too little. So, use only those
options you think you might need and turn them off when you are done debugging.

Tracing the Flow of Execution with MLOGIC
The MLOGIC system option traces the flow of execution of your macro, including the

resolution of parameters, the scope of variables (global or local), the conditions of macro
expressions being evaluated, the number of loop iterations, and the beginning and end
of each macro execution. Use the MLOGIC option when you think a bug lies in the
program logic (as opposed to simple syntax errors).

Note: MLOGIC can produce a lot of output, so use it only when necessary, and turn
it off when debugging is finished. �

In the following example, the macro FIRST calls the macro SECOND to evaluate an
expression:

%macro second(param);
%let a = %eval(¶m); &a

%mend second;

%macro first(exp);
%if (%second(&exp) ge 0) %then

%put **** result >= 0 ****;
%else

%put **** result < 0 ****;
%mend first;

options mlogic;
%first(1+2)

Submitting this example with option MLOGIC shows when each macro starts
execution, the values of passed parameters, and the result of the expression evaluation.

MLOGIC(FIRST): Beginning execution.
MLOGIC(FIRST): Parameter EXP has value 1+2
MLOGIC(SECOND): Beginning execution.

Macro Facility Error Messages and Debugging Using System Options to Track Problems 127

MLOGIC(SECOND): Parameter PARAM has value 1+2
MLOGIC(SECOND): %LET (variable name is A)
MLOGIC(SECOND): Ending execution.
MLOGIC(FIRST): %IF condition (%second(&exp) ge 0) is TRUE
MLOGIC(FIRST): %PUT **** result >= 0 ****
MLOGIC(FIRST): Ending execution.

Nesting Information Generated by MLOGICNEST
MLOGICNEST allows the macro nesting information to be written to the SAS log in

the MLOGIC output. The setting of MLOGICNEST does not imply the setting of
MLOGIC. You must set both MLOGIC and MLOGICNEST in order for output (with
nesting information) to be written to the SAS log.

For more information and an example, see “MLOGICNEST System Option” on page
215.

Examining the Generated SAS Statements with MPRINT
The MPRINT system option writes to the SAS log each SAS statement generated by

a macro. Use the MPRINT option when you suspect your bug lies in code that is
generated in a manner you did not expect.

For example, the following program generates a simple DATA step:

%macro second(param);
%let a = %eval(¶m); &a

%mend second;

%macro first(exp);
data _null_;

var=%second(&exp);
put var=;

run;
%mend first;

options mprint;
%first(1+2)

When you submit these statements with option MPRINT, these lines are written to
the SAS log:

MPRINT(FIRST): DATA _NULL_;
MPRINT(FIRST): VAR=
MPRINT(SECOND): 3
MPRINT(FIRST): ;
MPRINT(FIRST): PUT VAR=;
MPRINT(FIRST): RUN;

VAR=3

The MPRINT option shows you the generated text and identifies the macro that
generated it.

Nesting Information Generated by MPRINTNEST
MPRINTNEST allows the macro nesting information to be written to the SAS log in

the MPRINT output. This has no effect on the MPRINT output that is sent to an
external file. For more information, see “MFILE System Option” on page 211.

128 Using System Options to Track Problems Chapter 10

The setting of MPRINTNEST does not imply the setting of MPRINT. You must set
both MPRINT and MPRINTNEST in order for output (with the nesting information) to
be written to the SAS log.

For more information and an example, see “MPRINTNEST System Option” on page
219.

Storing MPRINT Output in an External File

You can store text that is generated by the macro facility during macro execution in
an external file. Printing the statements generated during macro execution to a file is
useful for debugging macros when you want to test generated text in a later SAS
session.

To use this feature, set both the MFILE and MPRINT system options on and also
assign MPRINT as the fileref for the file to contain the output generated by the macro
facility:

options mprint mfile;
filename mprint ’external-file’;

The external file created by the MPRINT system option remains open until the SAS
session terminates. The MPRINT text generated by the macro facility is written to the
log during the SAS session and to the external file when the session ends. The text
consists of program statements generated during macro execution with macro variable
references and macro expressions resolved. Only statements generated by the macro
are stored in the external file. Any program statements outside the macro are not
written to the external file. Each statement begins on a new line with one space
separating words. The text is stored in the external file without the
MPRINT(macroname): prefix, which is displayed in the log.

If MPRINT is not assigned as a fileref or if the file cannot be accessed, warnings are
written to the log and MFILE is turned off. To use the feature again, you must specify
MFILE again.

By default, the MPRINT and MFILE options are off.
The following example uses the MPRINT and MFILE options to store generated text

in the external file named TEMPOUT:

options mprint mfile;
filename mprint ’TEMPOUT’;

%macro temp;
data one;

%do i=1 %to 3;
x&i=&i;

%end;
run;

%mend temp;

%temp

The macro facility writes the following lines to the SAS log and creates the external
file named TEMPOUT:

MPRINT(TEMP): DATA ONE;
NOTE: The macro generated output from MPRINT will also be written

to external file ’/u/local/abcdef/TEMPOUT’ while OPTIONS
MPRINT and MFILE are set.

MPRINT(TEMP): X1=1;
MPRINT(TEMP): X2=2;

Macro Facility Error Messages and Debugging Using System Options to Track Problems 129

MPRINT(TEMP): X3=3;
MPRINT(TEMP): RUN;

When the SAS session ends, the file TEMPOUT contains:

DATA ONE;
X1=1;
X2=2;
X3=3;
RUN;

Note: Using MPRINT to write code to an external file is a debugging tool only. It
should not be used to create SAS code files for purposes other than debugging. �

Examining Macro Variable Resolution with SYMBOLGEN

The SYMBOLGEN system option tells you what each macro variable resolves to by
writing messages to the SAS log. This option is especially useful in spotting quoting
problems, where the macro variable resolves to something other than what you
intended because of a special character.

For example, suppose you submit the following statements:

options symbolgen;

%let a1=dog;
%let b2=cat;
%let b=1;
%let c=2;
%let d=a;
%let e=b;
%put **** &&&d&b ****;
%put **** &&&e&c ****;

The SYMBOLGEN option writes these lines to the SAS log:

SYMBOLGEN: && resolves to &.
SYMBOLGEN: Macro variable D resolves to a
SYMBOLGEN: Macro variable B resolves to 1
SYMBOLGEN: Macro variable A1 resolves to dog
**** dog ****

SYMBOLGEN: && resolves to &.
SYMBOLGEN: Macro variable E resolves to b
SYMBOLGEN: Macro variable C resolves to 2
SYMBOLGEN: Macro variable B2 resolves to cat
**** cat ****

Reading the log provided by the SYMBOLGEN option is easier than examining the
program statements to trace the indirect resolution. Notice that the SYMBOLGEN
option traces each step of the macro variable resolution by the macro processor. When
the resolution is complete, the %PUT statement writes the value to the SAS log.

When you use SYMBOLGEN to trace the values of macro variables that have been
masked with a macro quoting function, you might see an additional message about the
quoting being “stripped for printing.” For example, suppose you submit the following
statements, with SYMBOLGEN set to on:

130 Using the %PUT Statement to Track Problems Chapter 10

%let nickname = %bquote(My name’s O’Malley, but I’m called Bruce);
%put *** &nickname ***;

The SAS log contains the following after these statements have executed:

SYMBOLGEN: Macro variable NICKNAME resolves to
My name’s O’Malley, but I’m called Bruce

SYMBOLGEN: Some characters in the above value which were
subject to macro quoting have been
unquoted for printing.

*** My name’s O’Malley, but I’m called Bruce ***

You can ignore the unquoting message.

Using the %PUT Statement to Track Problems
Along with using the SYMBOLGEN system option to write the values of macro

variables to the SAS log, you might find it useful to use the %PUT statement while
developing and debugging your macros. When the macro is finished, you can delete or
comment out the %PUT statements. The following table provides some occasions where
you might find the %PUT statement helpful in debugging, and an example of each:

Table 10.3 Example %PUT Statements That Are Useful when Debugging Macros

Situation Example

show a macro variable’s value %PUT ****&variable-name****;

check leading or trailing blanks in a variable’s
value

%PUT ***&variable-name***;

check double-ampersand resolution, as during a
loop

%PUT ***variable-name&i =
&&variable-name***;

check evaluation of a condition %PUT ***This condition was met.***;

As you recall, macro variables are stored in symbol tables. There is a global symbol
table, which contains global macro variables, and a local symbol table, which contains
local macro variables. During the debugging process, you might find it helpful on
occasion to print these tables to examine the scope and values of a group of macro
variables. To do so, use the %PUT statement with one of the following options:

ALL describes all currently defined macro variables, regardless of scope.
This includes user-generated global and local variables as well as
automatic macro variables.

AUTOMATIC describes all automatic macro variables. The scope is listed as
AUTOMATIC. All automatic macro variables are global except
SYSPBUFF.

GLOBAL describes all user-generated global macro variables. The scope is
listed as GLOBAL. Automatic macro variables are not listed.

LOCAL describes user-generated local macro variables defined within the
currently executing macro. The scope is listed as the name of the
macro in which the macro variable is defined.

USER describes all user-generated macro variables, regardless of scope.
For global macro variables, the scope is GLOBAL; for local macro
variables, the scope is the name of the macro.

Macro Facility Error Messages and Debugging Using the %PUT Statement to Track Problems 131

The following example uses the %PUT statement with the argument _USER_ to
examine the global and local variables available to the macro TOTINV. Notice the use
of the user-generated macro variable TRACE to control when the %PUT statement
writes values to the log.

%macro totinv(var);
%global macvar;
data inv;

retain total 0;
set sasuser.houses end=final;
total=total+&var;
if final then call symput("macvar",put(total,dollar14.2));

run;

%if &trace = ON %then
%do;

%put *** Tracing macro scopes. ***;
%put _USER_;

%end;
%mend totinv;

%let trace=ON;
%totinv(price)
%put *** TOTAL=&macvar ***;

When you submit these statements, the first %PUT statement in the macro TOTINV
writes the message about tracing being on and then writes the scope and value of all
user generated macro variables to the SAS log.

*** Tracing macro scopes. ***
TOTINV VAR price
GLOBAL TRACE ON
GLOBAL MACVAR $1,240,800.00
*** TOTAL= $1,240,800.00 ***

See Chapter 5, “Scopes of Macro Variables,” on page 41 for a more detailed discussion
of macro variable scopes.

132

133

C H A P T E R

11
Writing Efficient and Portable
Macros

Introduction to Writing Efficient and Portable Macros 133

Keeping Efficiency in Perspective 133
Writing Efficient Macros 134

Use Macros Wisely 134

Use Name Style Macros 135
Avoid Nested Macro Definitions 135

Assign Function Results to Macro Variables 136

Turn Off System Options When Appropriate 137
Use the Stored Compiled Macro Facility 137

Centrally Store Autocall Macros 138
Other Useful Efficiency Tips 138

Storing Only One Copy of a Long Macro Variable Value 138

Writing Portable Macros 140
Using Portable SAS Language Functions with %SYSFUNC 140

Example Using %SYSFUNC 141

Using Portable Automatic Variables with Host-Specific Values 141
Examples Using SYSSCP and SYSSCPL 142

Example Using SYSPARM 143
SYSPARM Details 144

SYSRC Details 144

Macro Language Elements with System Dependencies 144
Host-Specific Macro Variables 145

Naming Macros and External Files for Use with the Autocall Facility 146

Introduction to Writing Efficient and Portable Macros
The macro facility is a powerful tool for making your SAS code development more

efficient. But macros are only as efficient as you make them. There are several
techniques and considerations for writing efficient macros. If you intend to extend the
power of the macro facility by creating macros that can be used on more than one host
environment, there are additional considerations for writing portable macros.

Keeping Efficiency in Perspective
Efficiency is an elusive thing, hard to quantify and harder still to define. What works

with one application might not work with another, and what is efficient on one host
environment might be inefficient on a different system. However, there are some
generalities that you should keep in mind.

134 Writing Efficient Macros Chapter 11

Usually, efficiency issues are discussed in terms of CPU cycles, elapsed time, I/O hits,
memory usage, disk storage, and so on. This section does not give benchmarks in these
terms because of all the variables involved. A program that runs only once needs
different tuning than a program that runs hundreds of times. An application running
on a mainframe has different hardware parameters than an application developed on a
desktop PC. You must keep efficiency in perspective with your environment.

There are different approaches to efficiency, depending on what resources you want
to conserve. Are CPU cycles more critical than I/O hits? Do you have lots of memory
but no disk space? Taking stock of your situation before deciding how to tune your
programs is a good idea.

The area of efficiency most affected by the SAS macro facility is human efficiency —
how much time is required to both develop and maintain a program. Autocall macros
are particularly important in this area because the autocall facility provides code
reusability. Once you develop a macro that performs a task, you can save it and use it
not only in the application you developed it for, but also in future applications without
any further work. A library of reusable, immediately callable macros is a boon to any
application development team.

The Stored Compiled Macro Facility (described in Chapter 9, “Storing and Reusing
Macros,” on page 105) might reduce execution time by enabling previously compiled
macros to be accessed during different SAS jobs and sessions. But it is a tool that is
efficient only for production applications, not during application development. So the
efficiency techniques you choose depend not only on your hardware and personnel
situation, but also on the stage you have reached in your application development
process.

Also, remember that incorporating macro code into a SAS application does not
automatically make the application more efficient. When designing a SAS application,
concentrate on making the basic SAS code that macros generate more efficient. There
are many sources for information on efficient SAS code, including SAS Programming
Tips: A Guide to Efficient SAS Processing.

Writing Efficient Macros

Use Macros Wisely
An application that uses a macro to generate only constant text is inefficient. In

general, for these situations consider using a %INCLUDE statement. Because the
%INCLUDE statement does not have to compile the code first (it is executed
immediately), it might be more efficient than using a macro (especially if the code is
executed only once). If you use the same code repeatedly, it might be more efficient to
use a macro because a macro is compiled only once during a SAS job, no matter how
many times it is called.

However, using %INCLUDE requires you to know exactly where the physical file is
stored and specify this name in the program itself. Because with the autocall facility all
you have to remember is the name of the macro (not a full pathname), the gain in
human efficiency might more than offset the time gained by not compiling the macro.
Also, macros provide additional programming features, such as parameters, conditional
sections, and loops, as well as the ability to view macro variable resolution in the SAS
log.

So, be sure to use a macro only when necessary. And, balance the various efficiency
factors and gains (how many times you use the code, CPU time versus ease-of-use) to
reach a solution that is best for your application.

Writing Efficient and Portable Macros Avoid Nested Macro Definitions 135

Use Name Style Macros
Macros come in three invocation types: name style, command style, and statement

style. Of the three, name style is the most efficient. This is because name style macros
always begin with a %, which immediately tells the word scanner to pass the token to
the macro processor. With the other two types, the word scanner does not know
immediately whether the token should be sent to the macro processor or not. Therefore,
time is wasted while the word scanner determines this.

Avoid Nested Macro Definitions
Nesting macro definitions inside other macros is usually unnecessary and inefficient.

When you call a macro that contains a nested macro definition, the macro processor
generates the nested macro definition as text and places it on the input stack. The word
scanner then scans the definition and the macro processor compiles it. If you nest the
definition of a macro that does not change, you cause the macro processor to compile the
same macro each time that section of the outer macro is executed.

As a rule, you should define macros separately. If you want to nest a macro’s scope,
simply nest the macro call, not the macro definition.

As an example, the macro STATS1 contains a nested macro definition for the macro
TITLE:

/* Nesting a Macro Definition--INEFFICIENT */
%macro stats1(product,year);

%macro title;
title "Statistics for &product in &year";
%if &year>1929 and &year<1935 %then

%do;
title2 "Some Data Might Be Missing";

%end;
%mend title;

proc means data=products;
where product="&product" and year=&year;
%title

run;
%mend stats1;

%stats1(steel,2002)
%stats1(beef,2000)
%stats1(fiberglass,2001)

Each time the macro STATS1 is called, the macro processor generates the definition
of the macro TITLE as text, recognizes a macro definition, and compiles the macro
TITLE. In this case, STATS1 was called three times, which means the TITLE macro
was compiled three times. With only a few statements, this takes only micro-seconds;
but in large macros with hundreds of statements, the wasted time could be significant.

The values of PRODUCT and YEAR are available to TITLE because its call is within
the definition of STATS1; therefore, it is unnecessary to nest the definition of TITLE to
make values available to TITLE’s scope. Nesting definitions is also unnecessary
because no values in the definition of the TITLE statement are dependent on values
that change during the execution of STATS1. (Even if the definition of the TITLE
statement depended on such values, you could use a global macro variable to effect the
changes, rather than nest the definition.)

136 Assign Function Results to Macro Variables Chapter 11

The following program shows the macros defined separately:

/* Separating Macro Definitions--EFFICIENT */
%macro stats2(product,year);

proc means data=products;
where product="&product" and year=&year;
%title

run;
%mend stats2;

%macro title;
title "Statistics for &product in &year";
%if &year>1929 and &year<1935 %then

%do;
title2 "Some Data Might Be Missing";

%end;
%mend title;

%stats2(cotton,1999)
%stats2(brick,2002)
%stats2(lamb,2001)

Here, because the definition of the macro TITLE is outside the definition of the
macro STATS2, TITLE is compiled only once, even though STATS2 is called three
times. Again, the values of PRODUCT and YEAR are available to TITLE because its
call is within the definition of STATS2.

Note: Another reason to define macros separately is because it makes them easier to
maintain, each in a separate file. �

Assign Function Results to Macro Variables
It is more efficient to resolve a variable reference than it is to evaluate a function.

Therefore, assign the results of frequently used functions to macro variables.
For example, the following macro is inefficient because the length of the macro

variable THETEXT must be evaluated at every iteration of the %DO %WHILE
statement:

/* INEFFICIENT MACRO */
%macro test(thetext);

%let x=1;
%do %while (&x > %length(&thetext));

.

.

.
%end;

%mend test;

%test(Four Score and Seven Years Ago)

A more efficient method would be to evaluate the length of THETEXT once and
assign that value to another macro variable. Then, use that variable in the %DO
%WHILE statement, as in the following program:

/* MORE EFFICIENT MACRO */
%macro test2(thetext);

%let x=1;

Writing Efficient and Portable Macros Use the Stored Compiled Macro Facility 137

%let length=%length(&thetext);
%do %while (&x > &length);

.

.

.
%end;

%mend test2;

%test(Four Score and Seven Years Ago)

As another example, suppose you want to use the %SUBSTR function to pull the
year out of the value of SYSDATE. Instead of using %SUBSTR repeatedly in your code,
assign the value of the %SUBSTR(&SYSDATE, 6) to a macro variable, then use that
variable whenever you need the year.

Turn Off System Options When Appropriate

While the debugging system options, such as MPRINT and MLOGIC, are very
helpful at times, it is inefficient to run production (debugged) macros with this type of
system option set to on. For production macros, run your job with the following
settings: NOMLOGIC, NOMPRINT, NOMRECALL, and NOSYMBOLGEN.

Even if your job has no errors, if you run it with these options turned on you incur
the overhead that the options require. By turning them off, your program runs more
efficiently.

Note: Another approach to deciding when to use MPRINT versus NOMPRINT is to
match this option’s setting with the setting of the SOURCE option. That is, if your
program uses the SOURCE option, it should also use MPRINT. If your program uses
NOSOURCE, then run it with NOMPRINT as well. �

Note: If you do not use autocall macros, use the NOMAUTOSOURCE system option.
If you do not use stored compiled macros, use the NOMSTORED system option. �

Use the Stored Compiled Macro Facility

The Stored Compiled Macro Facility reduces execution time by enabling macros
compiled in a previous SAS job or session to be accessed during subsequent SAS jobs
and sessions. Therefore, these macros do not need to be recompiled. Use the Stored
Compiled Macro Facility only for production (debugged) macros. It is not efficient to use
this facility when developing a macro application.

CAUTION:
Save the source code. Because you cannot re-create the source code for a macro from
the compiled code, you should keep a copy of the source code in a safe place, in case
the compiled code becomes corrupted for some reason. Having a copy of the source is
also necessary if you intend to modify the macro at a later time. �

See Chapter 9, “Storing and Reusing Macros,” on page 105 for more information on
the Stored Compiled Macro Facility.

Note: The compiled code generated by the Stored Compiled Macro Facility is not
portable. If you need to transfer macros to another host environment, you must move
the source code and recompile and store it on the new host. �

138 Centrally Store Autocall Macros Chapter 11

Centrally Store Autocall Macros
When using the autocall facility, it is most efficient in terms of I/O to store all your

autocall macros in one library and append that library name to the beginning of the
SASAUTOS system option specification. Of course, you could store the autocall macros
in as many libraries as you wish–but each time you call a macro, each library is
searched sequentially until the macro is found. Opening and searching only one library
reduces the time SAS spends looking for macros.

However, it might make more sense, if you have hundreds of autocall macros, to have
them separated into logical divisions according to purpose, levels of production, who
supports them, and so on. As usual, you must balance reduced I/O against ease-of-use
and ease-of-maintenance.

Although all autocall libraries in the concatenated list are opened and left open
during a SAS job or session the first time you call an autocall macro, any library that
did not open the first time is tested again each time an autocall macro is used.
Therefore, it is extremely inefficient to have invalid pathnames in your SASAUTOS
system option specification. You see no warnings about this wasted effort on the part of
SAS, unless no libraries at all will open.

Other efficiency tips involving the autocall facility include the following:
� Do not store nonmacro code in autocall library files.
� Do not store more than one macro in each autocall library file.

Although these two practices are allowed by SAS and do work, they contribute
significantly to code-maintenance effort and therefore are less efficient.

Other Useful Efficiency Tips
Some other efficiency techniques you can try include the following:
� Reset macro variables to null if the variables are no longer going to be referenced.
� Use triple ampersands to force an additional scan of macro variables with long

values, when appropriate. See “Storing Only One Copy of a Long Macro Variable
Value” on page 138 for more information.

� Adjust the values of the MSYMTABMAX and MVARSIZE system options to fit
your situation. In general, increase the values if disk space is in short supply;
decrease the values if memory is in short supply. MSYMTABMAX affects the space
available for storing macro variable symbol tables; MVARSIZE affects the space
available for storing values of individual macro variables. See Chapter 13, “Macro
Language Dictionary,” on page 163 for a description of these system options.

Storing Only One Copy of a Long Macro Variable Value
Because macro variables can have very long values, the way you store macro

variables can affect the efficiency of a program. Indirect references using three
ampersands enable you to store fewer copies of a long value.

For example, suppose your program contains long macro variable values that
represent sections of SAS programs, as shown here:

%let pgm=%str(data flights;
set schedule;
totmiles=sum(of miles1-miles20);
proc print;
var flightid totmiles;);

Writing Efficient and Portable Macros Storing Only One Copy of a Long Macro Variable Value 139

Because you want the SAS program to end with a RUN statement, you write the
macro CHECK:

%macro check(val);
/* first version */&val

%if %index(&val,%str(run;))=0 %then %str(run;);
%mend check;

First, the macro CHECK generates the program statements contained in the
parameter VAL (a macro variable that is defined in the %MACRO statement and
passed in from the macro call). Then, the %INDEX function searches the value of VAL
for the characters run;. (The %STR function causes the semicolon to be treated as
text.) If the characters are not present, the %INDEX function returns 0. The %IF
condition becomes true, and the macro processor generates a RUN statement.

To use the macro CHECK with the variable PGM, assign the parameter VAL the
value of PGM in the macro call:

%check(&pgm)

As a result, SAS sees these statements:

data flights;
set schedule;
totmiles=sum(of miles1-miles20);

proc print;
var flightid totmiles;

run;

The macro CHECK works properly. However, the macro processor assigns the value
of PGM as the value of VAL during the execution of CHECK. Thus, the macro processor
must store two long values (the value of PGM and the value of VAL) while CHECK is
executing.

To make the program more efficient, write the macro so that it uses the value of
PGM rather than copying the value into VAL, as shown here:

%macro check2(val); /* more efficient macro */&&&val
%if %index(&&&val,%str(run;))=0 %then %str(run;);

%mend check2;

%check2(pgm)

The macro CHECK2 produces the same result as the macro CHECK:

data flights;
set schedule;
totmiles=sum(of miles1-miles20);

proc print;
var flightid totmiles;

run;

However, in the macro CHECK2, the value assigned to VAL is simply the name PGM,
not the value of PGM. The macro processor resolves &&&VAL into &PGM and then
into the SAS statements contained in the macro variable PGM. Thus, the long value is
stored only once.

140 Writing Portable Macros Chapter 11

Writing Portable Macros
If your code runs in two different environments, you have essentially doubled the

worth of your development effort. But portable applications require some planning
ahead. For more details about any host-specific feature of SAS, refer to the SAS
documentation for your host environment.

Using Portable SAS Language Functions with %SYSFUNC
You can use the %SYSFUNC macro function to access SAS language functions to

perform most host-specific operations, such as opening or deleting a file. You can find
more information on these and other functions in the description of %SYSFUNC in
Chapter 13, “Macro Language Dictionary,” on page 163.

Using %SYSFUNC to access portable SAS language functions can save you a lot of
macro coding (and is therefore not only portable but also more efficient). The following
table lists some common host-specific tasks and the functions that perform those tasks.

Table 11.1 Portable SAS Language Functions and Their Uses

Task
SAS Language
Function(s)

assign and verify existence of fileref and physical file FILENAME,
FILEREF,
PATHNAME

open a file FOPEN, MOPEN

verify existence of a file FEXIST, FILEEXIST

list available files FILEDIALOG

get information about a file FINFO, FOPTNAME,
FOPTNUM

write data to a file FAPPEND, FWRITE

read from a file FPOINT, FREAD,
FREWIND, FRLEN

close a file FCLOSE

delete a file FDELETE

open a directory DOPEN

return information about a directory DINFO, DNUM,
DOPTNAME,
DOPTNUM, DREAD

close a directory DCLOSE

read a host-specific option GETOPTION

interact with the File Data Buffer (FDB) FCOL, FGET, FNOTE,
FPOS, FPUT, FSEP

Writing Efficient and Portable Macros Using Portable Automatic Variables with Host-Specific Values 141

Task
SAS Language
Function(s)

assign and verify librefs LIBNAME, LIBREF,
PATHNAME

get information about executed host environment commands SYSRC

Note: Of course, you can also use other functions, such as ABS, MAX, and
TRANWRD, with %SYSFUNC. A few SAS language functions are not available with
%SYSFUNC. See Chapter 13, “Macro Language Dictionary,” on page 163 for more
details. �

Example Using %SYSFUNC
The following program deletes the file identified by the fileref MYFILE:

%macro testfile(filrf);
%let rc=%sysfunc(filename(filrf,physical-filename));
%if &rc = 0 and %sysfunc(fexist(&filrf)) %then

%let rc=%sysfunc(fdelete(&filrf));
%let rc=%sysfunc(filename(filrf));

%mend testfile;

%testfile(myfile)

Using Portable Automatic Variables with Host-Specific Values
The portable automatic macro variables are available under all host environments,

but the values are determined by each host. The following table lists the portable
macro variables by task. The “Type” column tells you if the variable can be changed
(Read/Write) or can only be inspected (Read Only).

Table 11.2 Portable Automatic Macro Variables with Host-Specific Results

Task Automatic Macro Variable Type

list the name of the current graphics device on
DEVICE=.

SYSDEVIC read and write

list of the mode of execution (values are FORE
or BACK). Some host environments allow only
one mode, FORE.

SYSENV read-only

list the name of the currently executing batch
job, userid, or process. For example, on UNIX,
SYSJOBID is the PID.

SYSJOBID read-only

list the last return code generated by your host
environment, based on commands executed
using the X statement in open code, the X
command in the SAS windowing environment,
or the %SYSEXEC (or %TSO or %CMS) macro
statements.

The default value is 0.

SYSRC read and write

142 Using Portable Automatic Variables with Host-Specific Values Chapter 11

Task Automatic Macro Variable Type

list the abbreviation of the host environment
you are using.

SYSSCP read-only

list a more detailed abbreviation of the host
environment you are using.

SYSSCPL read-only

retrieve a character string that was passed to
SAS by the SYSPARM= system option.

SYSPARM read and write

Examples Using SYSSCP and SYSSCPL

The macro DELFILE uses the value of SYSSCP to determine the platform that is
running SAS and deletes a TMP file. FILEREF is a macro parameter that contains a
filename. Because the filename is host-specific, making it a macro parameter enables
the macro to use whatever filename syntax is necessary for the host environment.

%macro delfile(fileref);
/* Unix */

%if &sysscp=HP 800 or &sysscp=HP 300 %then %do;
X ‘‘rm &fileref..TMP’’;

%end;

/* VMS */
%else %if &sysscp=VMS %then %do;

X ‘‘DELETE &fileref..TMP;*’’);
%end;

/* DOS-LIKE platforms */
%else %if &sysscp=OS2 or &sysscp=WIN %then %do;

X ‘‘DEL &fileref..TMP’’;
%end;

/* CMS */
%else %if &sysscp=CMS %then %do;

X ‘‘ERASE &fileref TMP A’’;
%end;

%mend delfile;

Here is a call to the macro DELFILE in a PC environment that deletes a file named
C:\SAS\SASUSER\DOC1.TMP:

%delfile(c:\sas\sasuser\doc1)

In this program, note the use of the portable %SYSEXEC statement to carry out the
host-specific operating system commands.

Now, suppose you know your macro application is going to run on some version of
Microsoft Windows. It could be Windows NT, Windows 95, or Windows 3.1. Although
these host environments use similar host environment command syntax, some
terminology differs between them, different system options are available, and so on.
The SYSSCPL automatic macro variable provides information about the name of the
host environment, similar to the SYSSCP automatic macro variable. However,
SYSSCPL provides more information and enables you to further tailor your macro code.
Here is an example using SYSSCPL.

%macro whichwin; /* Discover which OS is running. */
%if &sysscpl=WIN_32S %then

%do;
%let flavor=32-bit version of Windows;

Writing Efficient and Portable Macros Using Portable Automatic Variables with Host-Specific Values 143

%let term=directory;
%end;

%else %if &sysscpl=WIN_95 %then
%do;

%let flavor=Windows 95;
%let term=folder;

%end;

%else %if &sysscpl=WNT_NT %then
%do;

%let flavor=Windows NT;
%let term=folder;

%end;

%else %put *** You must be running a 16-bit version of Windows. ***;
%mend whichwin;
%macro direct; /* Issue directions to the user. */

%whichwin
%put This program is running under &flavor;
%put Please enter the &term your SAS files are stored in:;
.
. more macro code
.

%mend direct;

Example Using SYSPARM

Suppose the SYSPARM= system option is set to the name of a city. That means the
SYSPARM automatic variable is set to the name of that city. You can use that value to
subset a data set and generate code specific to that value. Simply by making a small
change to the command that invokes SAS (or to the configuration SAS file), your SAS
job will perform different tasks.

/* Create a data set, based on the value of the */
/* SYSPARM automatic variable. */
/* An example data set name could be MYLIB.BOSTON. */
data mylib.&sysparm;

set mylib.alltowns;
/* Use the SYSPARM SAS language function to */
/* compare the value (city name) */
/* of SYSPARM to a data set variable. */

if town=sysparm();
run;

When this program executes, you end up with a data set that contains data for only
the town you are interested in, and you can change what data set is generated before
you start your SAS job.

Now suppose you want to further use the value of SYSPARM to control what
procedures your job uses. The following macro does just that:

%macro select;
%if %upcase(&sysparm) eq BOSTON %then

%do;
proc report ... more SAS code;

title "Report on &sysparm";

144 Macro Language Elements with System Dependencies Chapter 11

run;
%end;

%if %upcase(&sysparm) eq CHICAGO %then
%do;

proc chart ... more SAS code;
title "Growth Values for &sysparm";

run;
%end;

.

. /* more macro code */

.
%mend select;

SYSPARM Details

The value of the SYSPARM automatic macro variable is the same as the value of the
SYSPARM= system option, which is equivalent to the return value of the SAS language
function SYSPARM. The default value is null. Because you can use the SYSPARM=
system option at SAS invocation, you can set the value of the SYSPARM automatic
macro variable before your SAS session begins.

SYSRC Details

The value of the SYSRC automatic macro variable contains the last return code
generated by your host environment. The code returned is based on commands you
execute using the X statement in open code, the X command a windowing environment,
or the %SYSEXEC macro statement (as well as the nonportable %TSO and %CMS
macro statements). Use the SYSRC automatic macro variable to test the success or
failure of a host environment command.

Note: While it does not generate an error message in the SAS log, the SYSRC
automatic macro variable is not useful under all host environments. For example,
under some host environments, the value of this variable is always 99, regardless of the
success or failure of the host environment command. Check the SAS companion for
your host environment to see if the SYSRC automatic macro variable is useful for your
host environment. �

Macro Language Elements with System Dependencies
Several macro language elements are host-specific, including the following:

any language element that relies on the sort sequence
Examples of such expressions include %DO, %DO %UNTIL, %DO %WHILE,
%IF-%THEN, and %EVAL.

For example, consider the following program:

%macro testsort(var);
%if &var < a %then %put *** &var is less than a ***;
%else %put *** &var is greater than a ***;

%mend testsort;

%testsort(1)
/* Invoke the macro with the number 1 as the parameter. */

Writing Efficient and Portable Macros Host-Specific Macro Variables 145

On EBCDIC systems, such as z/OS, and VSE, this program causes the following
to be written to the SAS log:

*** 1 is greater than a ***

But on ASCII systems (such as OpenVMS, UNIX, or Windows), the following is
written to the SAS log:

*** 1 is less than a ***

MSYMTABMAX=
The MSYMTABMAX system option specifies the maximum amount of memory
available to the macro variable symbol tables. If this value is exceeded, the symbol
tables are stored in a WORK file on disk.

MVARSIZE=
The MVARSIZE system option specifies the maximum number of bytes allowed for
any macro variable stored in memory. If this value is exceeded, the macro variable
is stored in a WORK file on disk.

%SCAN and %QSCAN
The default delimiters that the %SCAN and %QSCAN functions use to search for
words in a string are different on ASCII and EBCDIC systems. The default
delimiters are

ASCII systems blank . < (+ & ! $ *); ^ − / , % |

EBCDIC
systems

blank . < (+ | & ! $ *); − / , % ¦ ¢

%SYSEXEC, %TSO, and %CMS
The %SYSEXEC, %TSO, and %CMS macro statements enable you to issue an host
environment command.

%SYSGET
On some host environments, the %SYSGET function returns the value of host
environment variables and symbols.

SYSPARM=
The SYSPARM= system option can supply a value for the SYSPARM automatic
macro variable at SAS invocation. It is useful in customizing a production job. For
example, to create a title based on a city as part of noninteractive execution, the
production program might contain the SYSPARM= system option in the SAS
configuration file or the command that invokes SAS. See “SYSPARM Details” on
page 144 for an example using the SYSPARM= system option in conjunction with
the SYSPARM automatic macro variable.

SASMSTORE=
The SASMSTORE= system option specifies the location of stored compiled macros.

SASAUTOS=
The SASAUTOS= system option specifies the location of autocall macros.

Host-Specific Macro Variables
Some host environments create unique macro variables. The following tables list

some commonly used host-specific macro variables. Additional host-specific macro
variables might be available in future releases. See your SAS companion for more
details.

146 Naming Macros and External Files for Use with the Autocall Facility Chapter 11

Table 11.3 Host-Specific Macro Variables for z/OS

Variable Name Description

SYS99ERR SVC99 error reason code

SYS99INF SVC99 info reason code

SYS99MSG YSC99 text message corresponding to the SVC error or info reason
code

SYS99R15 SVC99 return code

SYSJCTID value of the JCTUSER field in the JCT control block

SYSJMRID value of the JMRUSEID field in the JCT control block

SYSUID the TSO userid associated with the SAS session

Table 11.4 Host-Specific Macro Variables for OpenVMS

Variable Name Description

VMSSASIN value of the SYSIN= system option or the name of the noninteractive
file that was submitted

Naming Macros and External Files for Use with the Autocall Facility
When naming macros that will be stored in an autocall library, you should consider

the following:
� Every host environment has file naming conventions. If the host environment uses

file extensions, use .sas as the extension of your macro files.
� Although SAS names can contain underscores, some host environments do not

allow them in the names of external files. Some host environments that disallow
underscores do allow the pound sign (#) and might automatically replace the #
with _ when the macro is used.

� Some host environments have reserved words, such as CON and NULL. Do not
use reserved words when naming autocall macros or external files.

� Some hosts have host-specific autocall macros. Do not define a macro with the
same name as these autocall macros.

� Macro catalogs are not portable. Remember to always save your macro source code
in a safe place.

147

C H A P T E R

12
Macro Language Elements

Introduction to Macro Language Elements 147

Macro Statements 147
Macro Statements That Perform Automatic Evaluation 149

Macro Functions 149

Macro Character Functions 150
Macro Evaluation Functions 151

Macro Quoting Functions 151

Compilation Quoting Functions 152
Execution of Macro Quoting Functions 152

Quotation Marks and Parentheses without a Match 153
Other Macro Functions 153

Automatic Macro Variables 154

Interfaces with the Macro Facility 156
Selected Autocall Macros Provided with SAS Software 157

Required System Options for Autocall Macros 157

Using Autocall Macros 158
Selected System Options Used in the Macro Facility 158

Introduction to Macro Language Elements
The SAS macro language consists of statements, functions, and automatic macro

variables. This section defines and lists these elements. Also covered are the interfaces
to the macro facility provided by Base SAS software, the SQL procedure, and SAS
Component Language as well as selected autocall macros and macro system options.
Each element is discussed in Chapter 13, “Macro Language Dictionary,” on page 163.

Macro Statements
A macro language statement instructs the macro processor to perform an operation.

It consists of a string of keywords, SAS names, and special characters and operators,
and it ends in a semicolon. Some macro language statements are allowed only in macro
definitions, but you can use others anywhere in a SAS session or job, either inside or
outside macro definitions (referred to as open code). The following table lists macro
language statements that you can use in both macro definitions and open code.

148 Macro Statements Chapter 12

Table 12.1 Macro Language Statements Allowed in Macro Definitions and Open
Code

Statement Description

%* comment designates comment text.

%COPY copies specified items from a SAS library.

%DISPLAY displays a macro window.

%GLOBAL creates macro variables that are available during the execution of an
entire SAS session.

%INPUT supplies values to macro variables during macro execution.

%LET creates a macro variable and assigns it a value.

%MACRO begins a macro definition.

%PUT writes text or the values of macro variables to the SAS log.

%SYMDEL deletes the indicated macro variable named in the argument.

%SYSCALL invokes a SAS call routine.

%SYSEXEC issues operating system commands.

%SYSLPUT defines a new macro variable or modifies the value of an existing
macro variable on a remote host or server.

%SYSRPUT assigns the value of a macro variable on a remote host to a macro
variable on the local host.

%WINDOW defines customized windows.

The following table lists macro language statements that you can use only in macro
definitions.

Table 12.2 Macro Language Statements Allowed in Macro Definitions Only

Statement Description

%ABORT stops the macro that is executing along with the current DATA step,
SAS job, or SAS session.

%DO begins a %DO group.

%DO, Iterative executes statements repetitively, based on the value of an index
variable.

%DO %UNTIL executes statements repetitively until a condition is true.

%DO %WHILE executes statements repetitively while a condition is true.

%END ends a %DO group.

%GOTO branches macro processing to the specified label.

%IF-%THEN/%ELSE conditionally processes a portion of a macro.

%label: identifies the destination of a %GOTO statement.

%LOCAL creates macro variables that are available only during the execution
of the macro where they are defined.

Macro Language Elements Macro Functions 149

Statement Description

%MEND ends a macro definition.

%RETURN causes normal termination of the currently executing macro.

Macro Statements That Perform Automatic Evaluation
Some macro statements perform an operation based on an evaluation of an

arithmetic or logical expression. They perform the evaluation by automatically calling
the %EVAL function. If you get an error message about a problem with %EVAL when a
macro does not use %EVAL explicitly, check for one of these statements. The macro
statements that perform automatic evaluation are:

%DO macro-variable=expression %TO expression <%BY expression>;

%DO %UNTIL(expression);

%DO %WHILE(expression);

%IF expression %THEN action;

For details about operands and operators in expressions, see Chapter 6, “Macro
Expressions,” on page 67.

Macro Functions

A macro language function processes one or more arguments and produces a result.
You can use all macro functions in both macro definitions and open code. Macro
functions include character functions, evaluation functions, and quoting functions. The
macro language functions are listed in the following table.

Table 12.3 Macro Functions

Function Description

%BQUOTE, %NRBQUOTE mask special characters and mnemonic operators in a resolved value
at macro execution.

%EVAL evaluates arithmetic and logical expressions using integer arithmetic.

%INDEX returns the position of the first character of a string.

%LENGTH returns the length of a string.

%QUOTE, %NRQUOTE mask special characters and mnemonic operators in a resolved value
at macro execution. Unmatched quotation marks (“ ”) and
parentheses (()) must be marked with a preceding %.

%SCAN, %QSCAN search for a word specified by its number. %QSCAN masks special
characters and mnemonic operators in its result.

%STR, %NRSTR mask special characters and mnemonic operators in constant text at
macro compilation. Unmatched quotation marks (“ ”) and
parentheses (()) must be marked with a preceding %.

150 Macro Character Functions Chapter 12

Function Description

%SUBSTR, %QSUBSTR produce a substring of a character string. %QSUBSTR masks special
characters and mnemonic operators in its result.

%SUPERQ masks all special characters and mnemonic operators at macro
execution but prevents resolution of the value.

%SYMEXIST returns an indication as to whether the named macro variable exists.

%SYMGLOBL returns an indication as to whether the named macro variable is
global in scope.

%SYMLOCAL returns an indication as to whether the named macro variable is
local in scope.

%SYSEVALF evaluates arithmetic and logical expressions using floating point
arithmetic.

%SYSFUNC, %QSYSFUNC execute SAS functions or user-written functions. %QSYSFUNC
masks special characters and mnemonic operators in its result.

%SYSGET returns the value of a specified host environment variable.

%SYSPROD reports whether a SAS software product is licensed at the site.

%UNQUOTE unmasks all special characters and mnemonic operators for a value.

%UPCASE, %QUPCASE convert characters to uppercase. %QUPCASE masks special
characters and mnemonic operators in its result.

Macro Character Functions

Character functions change character strings or provide information about them. The
following table lists the macro character functions.

Table 12.4 Macro Character Functions

Function Description

%INDEX returns the position of the first character of a string.

%LENGTH returns the length of a string.

%SCAN, %QSCAN search for a word that is specified by a number. %QSCAN masks
special characters and mnemonic operators in its result.

%SUBSTR, %QSUBSTR produce a substring of a character string. %QSUBSTR masks special
characters and mnemonic operators in its result.

%UPCASE, %QUPCASE convert characters to uppercase. %QUPCASE masks special
characters and mnemonic operators in its result.

For macro character functions that have a Q form (for example, %SCAN and
%QSCAN), the two functions work alike except that the function beginning with Q
masks special characters and mnemonic operators in its result. Use the function
beginning with Q when an argument has been previously masked with a macro quoting
function or when you want the result to be masked (for example, when the result may
contain an unmatched quotation mark or parenthesis). For details, see Chapter 7,
“Macro Quoting,” on page 75.

Macro Language Elements Macro Quoting Functions 151

Many macro character functions have names corresponding to SAS character
functions and perform similar tasks (such as %SUBSTR and SUBSTR). But, macro
functions operate before the DATA step executes. Consider this DATA step:

data out.%substr(&sysday,1,3); /* macro function */
set in.weekly (keep=name code sales);
length location $4;
location=substr(code,1,4); /* SAS function */

run;

Running the program on Monday creates the data set name OUT.MON, as shown:

data out.MON; /* macro function */
set in.weekly (keep=name code sales);
length location $4;
location=substr(code,1,4); /* SAS function */

run;

Suppose that the IN.WEEKLY variable CODE contains the values cary18593 and
apex19624. The SAS function SUBSTR operates during DATA step execution and
assigns these values to the variable LOCATION, cary and apex.

Macro Evaluation Functions
Evaluation functions evaluate arithmetic and logical expressions. They temporarily

convert the operands in the argument to numeric values. Then, they perform the
operation specified by the operand and convert the result to a character value. The
macro processor uses evaluation functions to do the following:

� make character comparisons
� evaluate logical (Boolean) expressions
� assign numeric properties to a token, such as an integer in the argument of a

function.

For more information, see Chapter 6, “Macro Expressions,” on page 67. The following
table lists the macro evaluation functions.

Table 12.5 Macro Evaluation Functions

Function Description

%EVAL evaluates arithmetic and logical expressions using integer arithmetic.

%SYSEVALF evaluates arithmetic and logical expressions using floating point
arithmetic.

%EVAL is called automatically by the macro processor to evaluate expressions in the
arguments to the statements that perform evaluation in the following functions:

%QSCAN(argument, n<, delimiters>)

%QSUBSTR(argument, position<, length>)

%SCAN(argument, n<, delimiters>)

%SUBSTR(argument, position<, length>)

Macro Quoting Functions
Macro quoting functions mask special characters and mnemonic operators so the

macro processor interprets them as text instead of elements of the macro language.

152 Macro Quoting Functions Chapter 12

The following table lists the macro quoting functions, and also describes the special
characters they mask and when they operate. (Although %QSCAN, %QSUBSTR, and
%QUPCASE mask special characters and mnemonic operations in their results, they
are not considered quoting functions because their purpose is to process a character
value and not simply to quote a value.) For more information, see Chapter 7, “Macro
Quoting,” on page 75.

Table 12.6 Macro Quoting Functions

Function Description

%BQUOTE, %NRBQUOTE mask special characters and mnemonic operators in a resolved value
at macro execution. %BQUOTE and %NRBQUOTE are the most
powerful functions for masking values at execution time because
they do not require that unmatched quotation marks (“ ”) and
parentheses (()) be marked.

%QUOTE, %NRQUOTE mask special characters and mnemonic operators in a resolved value
at macro execution. Unmatched quotation marks (“ ”) and
parentheses (()) must be marked with a preceding %.

%STR, %NRSTR mask special characters and mnemonic operators in constant text at
macro compilation. Unmatched quotation marks (“ ”) and
parentheses (()) must be marked with a preceding %.

%SUPERQ masks all special characters and mnemonic operators at macro
execution but prevents resolution of the value.

%UNQUOTE unmasks all special characters and mnemonic operators for a value.

Compilation Quoting Functions
%STR and %NRSTR mask special characters and mnemonic operators in values

during compilation of a macro definition or a macro language statement in open code.
For example, the %STR function prevents the following %LET statement from ending
prematurely. It keeps the semicolon in the PROC PRINT statement from being
interpreted as the semicolon for the %LET statement.

%let printit=%str(proc print; run;);

Execution of Macro Quoting Functions
%BQUOTE, %NRBQUOTE, %QUOTE, %NRQUOTE, and %SUPERQ mask special

characters and mnemonic operators in values during execution of a macro or a macro
language statement in open code. Except for %SUPERQ, these functions instruct the
macro processor to resolve a macro expression as far as possible and mask the result,
issuing warning messages for any macro variable references or macro invocations they
cannot resolve. %SUPERQ protects the value of a macro variable from any attempt at
further resolution.

Of the quoting functions that resolve values during execution, %BQUOTE and
%NRBQUOTE are the most flexible. For example, the %BQUOTE function prevents the
following %IF statement from producing an error if the macro variable STATE resolves
to OR (for Oregon). Without %BQUOTE, the macro processor would interpret the
abbreviation for Oregon as the logical operator OR.

%if %bquote(&state)=nc %then %put North Carolina Dept. of Revenue;

%SUPERQ fetches the value of a macro variable from the macro symbol table and
masks it immediately, preventing the macro processor from attempting to resolve any

Macro Language Elements Other Macro Functions 153

part of the resolved value. For example, %SUPERQ prevents the following %LET
statement from producing an error when it resolves to a value with an ampersand, like
Smith&Jones. Without %SUPERQ, the macro processor would attempt to resolve
&Jones.

%let testvar=%superq(corpname);
/* No ampersand in argument to %superq. */

(%SUPERQ takes as its argument either a macro variable name without an
ampersand or a text expression that yields a macro variable name.)

Quotation Marks and Parentheses without a Match
Syntax errors result if the arguments of %STR, %NRSTR, %QUOTE, and

%NRQUOTE contain a quotation mark or parenthesis that does not have a match. To
prevent these errors, mark these quotation marks and parentheses by preceding them
with a percent sign. For example, to store the value 345) in macro variable B, write

%let b=%str(345%));

If an argument of %STR, %NRSTR, %QUOTE, or %NRQUOTE contains a percent
sign that precedes a quotation mark or parenthesis, use two percent signs (%%) to
specify that the argument’s percent sign does not mark the quotation mark or
parenthesis. For example, to store the value TITLE "20%"; in macro variable P, write

%let p=%str(TITLE "20%%";);

If the argument for one of these functions contains a character string with the
comment symbols /* and -->, use a %STR function with each character. For example,
consider the statements:

%let instruct=Comments can start with %str(/)%str(*).;
%put &instruct;

They write the following line to the log:

Comments can start with /*

Note: Unexpected results can occur if the comment symbols are not quoted with a
quoting function. �

For more information about macro quoting, see Chapter 7, “Macro Quoting,” on page
75.

Other Macro Functions
Seven other macro functions do not fit into the earlier categories, but they provide

important information. The following table lists these functions.

Table 12.7 Other Macro Functions

Function Description

%SYMEXIST returns an indication as to whether the named macro variable exists.

%SYMGLOBL returns an indication as to whether the named macro variable is
global in scope.

154 Automatic Macro Variables Chapter 12

Function Description

%SYMLOCAL returns an indication as to whether the named macro variable is
local in scope.

%SYSFUNC, %QSYSFUNC execute SAS language functions or user-written functions within the
macro facility.

%SYSGET returns the value of the specified host environment variable. For
details, see the SAS Companion for your operating environment.

%SYSPROD reports whether a SAS software product is licensed at the site.

The %SYSFUNC and %QSYSFUNC functions make the most of the functions from
Base SAS software and the SAS Component Language available to the macro facility.
Consider these examples:

• /* in a DATA step or SCL program */
dsid=open("sasuser.houses","i");

• /* in the macro facility */
%let dsid = %sysfunc(open(sasuser.houses,i));

For more information about each of these functions, see Chapter 13, “Macro
Language Dictionary,” on page 163.

Automatic Macro Variables
Automatic macro variables are created by the macro processor and they supply a

variety of information. They are useful in programs, for example to check the status of
a condition before executing code. When you use automatic macro variables, you
reference them the same way that you do macro variables that you create, for example
&SYSLAST or &SYSJOBID.

CAUTION:
Do not create macro variable names that begin with SYS. The three-letter prefix SYS is
reserved for use by SAS for automatic macro variables. For a complete list of
reserved words in the macro language, see Appendix 1, “Reserved Words in the
Macro Facility,” on page 317. �

For example, suppose you want to include today’s day and date in a FOOTNOTE
statement. Write the statement to reference the automatic macro variables SYSDAY
and SYSDATE9, as shown here:

footnote "Report for &sysday, &sysdate9";

If you run the program on June 15, 2001, macro variable resolution causes SAS to
see this statement:

FOOTNOTE "Report for Friday, 15JUN2001";

All automatic variables except for SYSPBUFF are global and are created when you
invoke SAS. The following table lists the automatic macro variables and describes their
READ and WRITE status.

Macro Language Elements Automatic Macro Variables 155

Table 12.8 Automatic Macro Variables

Variable Read and Write Status

SYSBUFFR read and write

SYSCC read and write

SYSCHARWIDTH read-only

SYSCMD read and write

SYSDATE read-only

SYSDATE9 read-only

SYSDAY read-only

SYSDEVIC read and write

SYSDMG read and write

SYSDSN read and write

SYSENV read-only

SYSERR read-only

SYSFILRC read and write

SYSINDEX read-only

SYSINFO read-only

SYSJOBID read-only

SYSLAST read and write

SYSLCKRC read and write

SYSLIBRC read and write

SYSMACRONAME read-only

SYSMENV read-only

SYSMSG read and write

SYSNCPU read-only

SYSPARM read and write

SYSPBUFF read and write

SYSPROCESSID read-only

SYSPROCESSNAME read-only

SYSPROCNAME read-only

SYSRC read and write

SYSSCP read-only

SYSSCPL read-only

SYSSITE read-only

SYSSTARTID read-only

SYSSTARTNAME read-only

SYSTIME read-only

SYSUSERID read-only

156 Interfaces with the Macro Facility Chapter 12

Variable Read and Write Status

SYSVER read-only

SYSVLONG read-only

Interfaces with the Macro Facility
The DATA step, the SAS Component Language, and the SQL procedure provide

interfaces with the macro facility. The following tables list the elements that interact
with the SAS macro facility.

The DATA step provides elements that enable a program to interact with the macro
facility during DATA step execution.

Table 12.9 Interfaces to the DATA Steps

Element Description

EXECUTE routine resolves an argument and executes the resolved value at the next
step boundary.

RESOLVE function resolves the value of a text expression during DATA step execution.

SYMDEL routine deletes the indicated macro variable named in the argument.

SYMEXIST function returns an indication as to whether the named macro variable exists.

SYMGET function returns the value of a macro variable to the DATA step during DATA
step execution.

SYMGLOBL function returns an indication as to whether the named macro variable is
global in scope.

SYMLOCAL function returns an indication as to whether the named macro variable is
local in scope.

SYMPUT routine assigns a value produced in a DATA step to a macro variable.

The SAS Component Language (SCL) provides two elements for using the SAS macro
facility to define macros and macro variables for SCL programs.

Table 12.10 Interfaces to the SAS Component Language

Element Description

SYMGETN returns the value of a global macro variable as a numeric value.

SYMPUTN assigns a numeric value to a global macro variable.

The SQL procedure provides a feature for creating and updating macro variables
with values produced by the SQL procedure.

Table 12.11 Interfaces to the SQL Procedure

Element Description

INTO assigns the result of a calculation or the value of a data column.

For more information, see Chapter 8, “Interfaces with the Macro Facility,” on page 95.

Macro Language Elements Required System Options for Autocall Macros 157

Selected Autocall Macros Provided with SAS Software
SAS supplies libraries of autocall macros to each SAS site. The libraries you receive

depend on the SAS products licensed at your site. You can use autocall macros without
having to define or include them in your programs.

When SAS is installed, the autocall libraries are included in the value of the
SASAUTOS system option in the system configuration file. The autocall macros are
stored as individual members, each containing a macro definition. Each member has
the same name as the macro definition it contains.

Although the macros available in the autocall libraries supplied by SAS are working
utility programs, you can also use them as models for your own routines. In addition,
you can call them in macros you write yourself.

To explore these macro definitions, browse the commented section at the beginning of
each member. See the setting of SAS system option SASAUTOS, to find the location of
the autocall libraries. To view the SASAUTOS value, use one of the following:

� the OPTIONS command in the SAS windowing environment to open the
OPTIONS window

� the OPTIONS procedure

� the VERBOSE system option
� the OPLIST system option.

For details about these options, refer to “SAS System Options,” in SAS Language
Reference: Dictionary.

The following table lists selected autocall macros.

Table 12.12 Selected Autocall Macros

Macro Description

CMPRES and QCMPRES compresses multiple blanks and removes leading and trailing blanks.
QCMPRES masks the result so special characters and mnemonic
operators are treated as text instead of being interpreted by the
macro facility.

COMPSTOR compiles macros and stores them in a catalog in a permanent SAS
library.

DATATYP returns the data type of a value.

LEFT and QLEFT left-aligns an argument by removing leading blanks. QLEFT masks
the result so special characters and mnemonic operators are treated
as text instead of being interpreted by the macro facility.

SYSRC returns a value corresponding to an error condition.

TRIM and QTRIM trims trailing blanks. QTRIM masks the result so special characters
and mnemonic operators are treated as text instead of being
interpreted by the macro facility.

VERIFY returns the position of the first character unique to an expression.

Required System Options for Autocall Macros
To use autocall macros, you must set two SAS system options:

MAUTOSOURCE

158 Using Autocall Macros Chapter 12

activates the autocall facility. NOMAUTOSOURCE disables the autocall facility.

SASAUTOS=library-specification | (library-specification-1..., library-specification-n)
specifies the autocall library or libraries. For more information, see the SAS
companion for your operating system.

If your site has installed the autocall libraries supplied by SAS and uses the
standard configuration of SAS software supplied by SAS, you need only to ensure that
the SAS system option MAUTOSOURCE is in effect to begin using the autocall macros.

Although the MAUTOLOCDISPLAY system option is not required, it displays the
source location of the autocall macros in the SAS log when the autocall macro is invoked.
For more information, see “MAUTOLOCDISPLAY System Option” on page 207.

Using Autocall Macros
To use an autocall macro, call it in your program with the statement %macro-name.

The macro processor searches first in the WORK library for a compiled macro definition
with that name. If the macro processor does not find a compiled macro and if the
MAUTOSOURCE is in effect, the macro processor searches the libraries specified by the
SASAUTOS option for a member with that name. When the macro processor finds the
member, it does the following:

1 compiles all of the source statements in that member, including all macro
definitions

2 executes any open code (macro statements or SAS source statements not within
any macro definition) in that member

3 executes the macro with the name you invoked.

After the macro is compiled, it is stored in the WORK.SASMACR catalog and is
available for use in the SAS session without having to be recompiled.

You can also create your own autocall macros and store them in libraries for easy
execution. For more information, see Chapter 9, “Storing and Reusing Macros,” on page
105.

Selected System Options Used in the Macro Facility
The following table lists the SAS system options that apply to the macro facility.

Table 12.13 System Options Used in the Macro Facility

Option Description

CMDMAC controls command-style macro invocation.

IMPLMAC controls statement-style macro invocation.

MACRO controls whether the SAS macro language is available.

MAUTOLOCDISPLAY displays the source location of the autocall macros in the SAS log
when the autocall macro is invoked.

MAUTOSOURCE controls whether the macro autocall feature is available.

MCOMPILENOTE issues a NOTE to the SAS log upon the completion of the
compilation of a macro.

MERROR controls whether the macro processor issues a warning message
when a macro-like name (%name) does not match a compiled macro.

Macro Language Elements Selected System Options Used in the Macro Facility 159

Option Description

MFILE determines whether MPRINT output is routed to an external file.

MINDELIMITER specifies the character to be used as the delimiter for the macro IN
operator.

MLOGIC controls whether macro execution is traced for debugging.

MLOGICNEST allows the macro nesting information to be displayed in the MLOGIC
output in the SAS log.

MPRINT controls whether SAS statements generated by macro execution are
traced for debugging.

MPRINTNEST allows the macro nesting information to be displayed in the MPRINT
output in the SAS log.

MRECALL controls whether the macro processor searches the autocall libraries
for a member that was not found during an earlier search.

MSTORED controls whether stored compiled macros are available.

MSYMTABMAX specifies the maximum amount of memory available to the macro
variable symbol table(s).

MVARSIZE specifies the maximum size for in-memory macro variable values.

SASAUTOS specifies one or more autocall libraries.

SASMSTORE specifies the libref of a SAS library containing a catalog of stored
compiled SAS macros.

SERROR controls whether the macro processor issues a warning message
when a macro variable reference does not match a macro variable.

SYMBOLGEN controls whether the results of resolving macro variable references
are displayed for debugging.

SYSPARM controls whether the macro processor searches the autocall libraries
for a member that was not found during an earlier search.

160

161

P A R T2

Macro Language Dictionary

Chapter 13.Macro Language Dictionary 163

162

163

C H A P T E R

13
Macro Language Dictionary

%ABORT Statement

Stops the macro that is executing along with the current DATA step, SAS job, or SAS session

Type: Macro statement

Restriction: Allowed in macro definitions only

Syntax

%ABORT <ABEND | RETURN <n>> ;

Arguments

ABEND
causes abnormal termination of the current macro and SAS job or session. Results
depend on the method of operation:

� batch mode and noninteractive mode

� stops processing immediately

� sends an error message to the SAS log that states that execution was
terminated by the ABEND option of the %ABORT macro statement

� does not execute any subsequent statements or check syntax

� returns control to the operating environment; further action is based on
how your operating environment and your site treat jobs that end
abnormally.

� windowing environment and interactive line mode

� causes your macro, windowing environment, and interactive line mode to
stop processing immediately and return you to your operating environment.

164 %ABORT Statement Chapter 13

RETURN
causes abnormal termination of the current macro and SAS job or session. Results
depend on the method of operation:

� batch mode and noninteractive mode

� stops processing immediately

� sends an error message to the SAS log that states that execution was
terminated by the RETURN option of the %ABORT macro statement

� does not execute any subsequent statements or check syntax

� returns control to the operating environment with a condition code
indicating an error.

� windowing environment and interactive line mode

� causes your macro, windowing environment, and interactive line mode to
stop processing immediately and return you to your operating environment.

n
is an integer value that enables you to specify a condition code that SAS returns to
the operating environment when it stops executing. The range of values for n
depends on your operating environment.

Without Arguments

If you specify no argument, the %ABORT macro statement produces these results
under the following methods of operation:

� batch mode and noninteractive mode

� stops processing the current macro and DATA step and writes an error
message to the SAS log. Data sets can contain an incomplete number of
observations or no observations, depending on when SAS encountered the
%ABORT macro statement.

� sets the OBS= system option to 0.

� continues limited processing of the remainder of the SAS job, including
executing macro statements, executing system option statements, and syntax
checking of program statements.

� creates output data sets for subsequent DATA and PROC steps with no
observations.

� windowing environment

� stops processing the current macro and DATA step

� creates a data set that contains the observations that are processed before
the %ABORT macro statement is encountered

� prints a message to the log that an %ABORT macro statement terminated
the DATA step

� continues processing any DATA or PROC steps that follow the %ABORT
macro statement.

� interactive line mode

� stops processing the current macro and DATA step. Any further DATA steps
or procedures execute normally.

Macro Language Dictionary %BQUOTE and %NRBQUOTE Functions 165

Details
The %ABORT macro statement causes SAS to stop processing the current macro and
DATA step. What happens next depends on

� the method you use to submit your SAS statements
� the arguments you use with %ABORT
� your operating environment.

The %ABORT macro statement usually appears in a clause of an %IF-%THEN macro
statement that is designed to stop processing when an error condition occurs.

Note: The return code generated by the %ABORT macro statement is ignored by
SAS if the system option ERRORABEND is in effect. �

Note: When you execute an %ABORT macro statement in a DATA step, SAS does
not use data sets that were created in the step to replace existing data sets with the
same name. �

%BQUOTE and %NRBQUOTE Functions

Mask special characters and mnemonic operators in a resolved value at macro execution

Type: Macro quoting functions
See also:

“%QUOTE and %NRQUOTE Functions” on page 230
“%SUPERQ Function” on page 244

Syntax
%BQUOTE (character string | text expression)

%NRBQUOTE (character string | text expression)

Details
The %BQUOTE and %NRBQUOTE functions mask a character string or resolved value
of a text expression during execution of a macro or macro language statement. They
mask the following special characters and mnemonic operators:

’ " () + − * / < > = ^ ~ ; , blank
AND OR NOT EQ NE LE LT GE GT

In addition, %NRBQUOTE masks

& %

%NRBQUOTE is most useful when the resolved value of an argument may contain
� strings that look like macro variable references but are not, so the macro processor

should not attempt to resolve them when it next encounters them.
� macro invocations that you do not want the macro processor to attempt to resolve

when it next encounters them.

166 %BQUOTE and %NRBQUOTE Functions Chapter 13

Note: The maximum level of nesting for the macro quoting functions is 10. �

Tip
You can use %BQUOTE and %NRBQUOTE for all execution-time macro quoting
because they mask all characters and mnemonic operators that can be interpreted as
elements of macro language. Quotation marks (’ ") do not have to be marked.
Parentheses (()) must match in the text supplied to these functions.

For a description of quoting in SAS macro language, see Chapter 7, “Macro Quoting,”
on page 75.

Comparisons
� %BQUOTE and %NRBQUOTE do not require that you mark quotation marks but

matching parentheses are required.
� %NRBQUOTE and the %SUPERQ function mask the same items. However,

%SUPERQ does not attempt to resolve a macro variable reference or a macro
invocation that occurs in the value of the specified macro variable. %NRBQUOTE
does attempt to resolve such references.

Example

Example 1: Quoting a Variable This example tests whether a filename passed to the
macro FILEIT starts with a quotation mark. Based on that evaluation, the macro
creates the correct FILE command.

%macro fileit(infile);
%if %bquote(&infile) NE %then

%do;
%let char1 = %bquote(%substr(&infile,1,1));
%if %bquote(&char1) = %str(%’)

or %bquote(&char1) = %str(%")
%then %let command=FILE &infile;
%else %let command=FILE "&infile";

%end;
%put &command;

%mend fileit;

%fileit(myfile)
%fileit(’myfile’)

Executing this program writes to the log:

FILE "myfile"
FILE ’myfile’

Macro Language Dictionary CMDMAC System Option 167

CMDMAC System Option

Controls command-style macro invocation

Type: System option
Valid in:

Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

Default: NOCMDMAC
PROC OPTIONS GROUP= MACRO

Syntax
CMDMAC | NOCMDMAC

CMDMAC
specifies that the macro processor examine the first word of every windowing
environment command to see whether it is a command-style macro invocation.

Note: When CMDMAC is in effect, SAS searches the macro libraries first and
executes any member it finds with the same name as the first word in the windowing
environment command that was issued. This can produce unexpected results. �

NOCMDMAC
specifies that no check be made for command-style macro invocations. If the macro
processor encounters a command-style macro call when NOCMDMAC is in effect, it
treats the call as a SAS command and produces an error message if the command is
not valid or is not used correctly.

Details
The CMDMAC system option controls whether macros defined as command-style
macros can be invoked with command-style macro calls or if these macros must be
invoked with name-style macro calls. These two examples illustrate command-style and
name-style macro calls, respectively:

� macro-name parameter-value-1 parameter-value-2

� %macro-name(parameter-value-1, parameter-value-2)

When you use CMDMAC, processing time is increased because the macro facility
searches the macros compiled during the current session for a name corresponding to
the first word on the command line. If the MSTORED option is in effect, the libraries
containing compiled stored macros are searched for a name corresponding to that word.
If the MAUTOSOURCE option is in effect, the autocall libraries are searched for a
name corresponding to that word. If the MRECALL system option is also in effect,
processing time can be increased further because the search continues even if a word
was not found in a previous search.

Regardless of which option is in effect, you can use a name-style invocation to call
any macro, including those defined as command-style macros.

168 %CMPRES and %QCMPRES Autocall Macros Chapter 13

Tip
Name-style macros are the more efficient choice for invoking macros because the macro
processor searches only for a macro name corresponding to a word following a percent
sign.

%CMPRES and %QCMPRES Autocall Macros

Compress multiple blanks and remove leading and trailing blanks

Type: Autocall macros
Requires: MAUTOSOURCE system option

Syntax
%CMPRES (text | text expression)

%QCMPRES (text | text expression)

Note: Autocall macros are included in a library supplied by SAS Institute. This
library might not be installed at your site or might be a site-specific version. If you
cannot access this macro or if you want to find out if it is a site-specific version, see
your SAS Software Consultant. For more information, see Chapter 9, “Storing and
Reusing Macros,” on page 105. �

Details
The CMPRES and QCMPRES macros compress multiple blanks and remove leading
and trailing blanks. If the argument might contain a special character or mnemonic
operator, listed below, use %QCMPRES.

CMPRES returns an unquoted result, even if the argument is quoted. QCMPRES
produces a result with the following special characters and mnemonic operators
masked, so the macro processor interprets them as text instead of as elements of the
macro language:

& % ’ " () + − * / < > = ^ ~ ; , blank
AND OR NOT EQ NE LE LT GE GT

Examples

Example 1: Removing Unnecessary Blanks with %CMPRES

%macro createft;
%let footnote="The result of &x &op &y is %eval(&x &op &y).";
footnote1 &footnote;
footnote2 %cmpres(&footnote);

%mend createft;

data _null_;
x=5;

Macro Language Dictionary %* Macro Comment Statement 169

y=10;
call symput(’x’,x); /* Uses BEST12. format */
call symput(’y’,y); /* Uses BEST12. format */
call symput(’op’,’+’); /* Uses $1. format */

run;

%createft

The CREATEFT macro generates two footnote statements.

FOOTNOTE1 "The result of 5 + _________10 is _________15.";
FOOTNOTE2 "The result of 5 + 10 is 15.";

Example 2: Contrasting %QCMPRES and %CMPRES

%let x=5;
%let y=10;
%let a=%nrstr(%eval(&x + &y));
%put QCMPRES: %qcmpres(&a);
%put CMPRES: %cmpres(&a);

The %PUT statements write the following lines to the log:

QCMPRES: %eval(&x + &y)
CMPRES: 15

%* Macro Comment Statement
Designates comment text

Type: Macro statement
Restriction: Allowed in macro definitions or open code

Syntax
%*commentary;

commentary
is a descriptive message of any length.

Details
The macro comment statement is useful for describing macro code. Text from a macro
comment statement is not constant text and is not stored in a compiled macro. Because
a semicolon ends the comment statement, the comment cannot contain internal
semicolons unless the internal semicolons are enclosed in quotation marks. Macro
comment statements are not recognized when they are enclosed in quotation marks.

Macro comment statements are complete macro statements and are processed by the
macro facility. Quotation marks within a macro comment must match.

Only macro comment statements and SAS comments of the form /*commentary*/ in
macro definitions or open code may be used to hide macro statements from processing
by the macro facility.

170 %* Macro Comment Statement Chapter 13

Comparisons
SAS comment statements of the form *commentary; or comment commentary; are
complete SAS statements. Consequently, they are processed by the tokenizer and macro
facility and cannot contain semicolons or unmatched quotation marks. SAS comment
statements of the form *commentary; or comment commentary; are stored as
constant text in a compiled macro. These two types will execute any macro statements
within a comment. SAS recommends not to use these within a macro definition.

SAS comments in the form /*commentary*/ are not tokenized, but are processed as
a string of characters. These comments can appear anywhere a single blank can appear
and can contain semicolons or unmatched quotation marks. SAS comments in the form
/*commentary*/ are not stored in a compiled macro.

Example

Example 1: Contrasting Comment Types This code defines and invokes the macro
VERDATA, which checks for data errors. It contains a macro comment statement and
SAS comments in the form /*commentary*/ and *commentary;.

%macro verdata(in thresh)
*%let thresh = 5;
/* The preceding SAS comment does not hide the %let statement

as does this type of SAS comment.
%let thresh = 6;

*/
%if %length(&in) > 0 %then %do;

%* infile given;
data check;

/* Jim’s data */
infile ∈
input x y z;

* check data;
if x<&thresh or y<&thresh or z<&thresh then list;

run;
%end;
%else %put Error: No infile specified;

%mend verdata;

%verdata(ina, 0)

When you execute VERDATA, the macro processor generates the following:

DATA CHECK;
INFILE INA;
INPUT X Y Z;

* CHECK DATA;
IF X<5 OR Y<5 OR Z<5 THEN LIST;

RUN;

Macro Language Dictionary %COMPSTOR Autocall Macro 171

%COMPSTOR Autocall Macro

Compiles macros and stores them in a catalog in a permanent SAS library

Type: Autocall macro
Requires: MAUTOSOURCE system option

Syntax
%COMPSTOR (PATHNAME=SAS-data-library)

SAS-data-library
is the physical name of a SAS data library on your host system. The COMPSTOR
macro uses this value to automatically assign a libref. Do not enclose
SAS-data-library in quotation marks.

Note: Autocall macros are included in a library supplied by SAS. This library might
not be installed at your site or might be a site-specific version. If you cannot access this
macro or if you want to find out if it is a site-specific version, see your SAS Software
Consultant. For more information, see Chapter 9, “Storing and Reusing Macros,” on
page 105. �

Details
The COMPSTOR macro compiles the following autocall macros in a SAS catalog named
SASMACR in a permanent SAS data library. This saves the overhead of compiling
these macros when they are called for the first time in a SAS session. You can use the
COMPSTOR macro as an example of how to create compiled stored macros. For more
information on the SAS supplied autocall macros or about using stored compiled
macros, see Chapter 9, “Storing and Reusing Macros,” on page 105.

%CMPRES

%DATATYP

%LEFT

%QCMPRES

%QLEFT

%QTRIM

%TRIM

%VERIFY

172 %COPY Statement Chapter 13

%COPY Statement

Copies specified items from a SAS macro library

Type: Macro statement
Restriction: Allowed in macro definitions or open code
See also:

“%MACRO Statement” on page 202
“SASMSTORE= System Option” on page 236

Syntax
%COPY macro-name< /options(s)>

macro-name
name of the macro that the %COPY statement will use.

option(s)
can be one or more of the following options:

LIBRARY= <libref>
LIB=

specifies the libref of a SAS data library that contains a catalog of stored compiled
SAS macros. If no library is specified, the libref specified by the SASMSTORE=
option is used.

Restriction: This libref cannot be WORK.

OUTFILE=<fileref> | <’external file’>
OUT=

specifies the output destination of the %COPY statement. The value can be a
fileref or an external file.

SOURCE
SRC

specifies that the source code of the macro will be copied to the output destination.
If the OUTFILE= option is not specified, the source is written to the SAS log.

Example

In the following example, the %COPY statement writes the stored source code to the
SAS log:

/* commentary */ %macro foobar(arg) /store source
des="This macro does not do much";

%put arg = &arg;
* this is commentary!!!;
%* this is macro commentary;
%mend /* commentary; */; /* Further commentary */
NOTE: The macro FOOBAR completed compilation without errors.

%copy foobar/source;

Macro Language Dictionary %DATATYP Autocall Macro 173

%macro foobar(arg) /store source
des="This macro does not do much";
%put arg = &arg;
* this is commentary!!!;
%* this is macro commentary;
%mend /* commentary; */;

%DATATYP Autocall Macro

Returns the data type of a value

Type: Autocall macro
Requires: MAUTOSOURCE system option

Syntax
%DATATYP (text | text expression)

Note: Autocall macros are included in a library supplied by SAS. This library
might not be installed at your site or might be a site-specific version. If you cannot
access this macro or if you want to find out if it is a site-specific version, see your SAS
Software Consultant. �

Details
The DATATYP macro returns a value of NUMERIC when an argument consists of digits
and, optionally, a leading plus or minus sign, a decimal, or a scientific or floating-point
exponent (E or D in uppercase or lowercase letters). Otherwise, it returns the value
CHAR.

Note: %DATATYP does not identify hexadecimal numbers. �

Example

Example 1: Determining the Data Type of a Value

%macro add(a,b);
%if (%datatyp(&a)=NUMERIC and %datatyp(&b)=NUMERIC) %then %do;

%put The result is %sysevalf(&a+&b).;
%end;
%else %do;

%put Error: Addition requires numbers.;
%end;
%mend add;

You can invoke the ADD macro as:

%add(5.1E2,225)

The macro then writes this message to the SAS log:

The result is 735.

174 %DISPLAY Statement Chapter 13

Similarly, you can invoke the ADD macro as:

%add(0c1x, 12)

The macro then writes this message to the SAS log:

Error: Addition requires numbers.

%DISPLAY Statement
Displays a macro window

Type: Macro statement
Restriction: Allowed in macro definitions or open code
See also: “%WINDOW Statement” on page 309

Syntax
%DISPLAY window<.group><NOINPUT><BLANK>

<BELL><DELETE>;

window <.group>
names the window and group of fields to be displayed. If the window has more than
one group of fields, give the complete window.group specification. If a window
contains a single unnamed group, specify only window.

NOINPUT
specifies that you cannot input values into fields displayed in the window. If you omit
the NOINPUT option, you can input values into unprotected fields displayed in the
window. Use the NOINPUT option when the %DISPLAY statement is inside a macro
definition and you want to merge more than one group of fields into a single display.
Using NOINPUT in a particular %DISPLAY statement causes the group displayed to
remain visible when later groups are displayed.

BLANK
clears the display. Use the BLANK option to prevent fields from a previous display
from appearing in the current display. This option is useful only when the %DISPLAY
statement is inside a macro definition and when it is part of a window.group
specification. When the %DISPLAY statement is outside a macro definition, the
display is cleared automatically after the execution of each %DISPLAY statement.

BELL
rings your terminal’s bell, if available, when the window is displayed.

DELETE
deletes the display of the window after processing passes from the %DISPLAY
statement on which the option appears. DELETE is useful only when the %DISPLAY
statement is inside a macro definition.

Details
You can display only one group of fields in each execution of a %DISPLAY statement. If
you display a window containing any unprotected fields, enter values into any required
fields and press ENTER to remove the display.

Macro Language Dictionary %DO Statement 175

If a window contains only protected fields, pressing ENTER removes the display.
While a window is displayed, you can use commands and function keys to view other
windows, change the size of the current window, and so on.

%DO Statement

Begins a %DO group

Type: Macro statement
Restriction: Allowed in macro definitions only
See also: “%END Statement” on page 180

Syntax
%DO;

text and macro language statements

%END;

Details
The %DO statement designates the beginning of a section of a macro definition that is
treated as a unit until a matching %END statement is encountered. This macro section
is called a %DO group. %DO groups can be nested.

A simple %DO statement often appears in conjunction with %IF-%THEN/%ELSE
statements to designate a section of the macro to be processed depending on whether
the %IF condition is true or false.

Example

Example 1: Producing One of Two Reports This macro uses two %DO groups with the
%IF-%THEN/%ELSE statement to conditionally print one of two reports.

%macro reportit(request);
%if %upcase(&request)=STAT %then

%do;
proc means;

title "Summary of All Numeric Variables";
run;

%end;
%else %if %upcase(&request)=PRINTIT %then

%do;
proc print;

title "Listing of Data";
run;

%end;
%else %put Incorrect report type. Please try again.;
title;

%mend reportit;

176 %DO, Iterative Statement Chapter 13

%reportit(stat)
%reportit(printit)

Specifying stat as a value for the macro variable REQUEST generates the PROC
MEANS step. Specifying printit generates the PROC PRINT step. Specifying any
other value writes a customized error message to the SAS log.

%DO, Iterative Statement
Executes a section of a macro repetitively based on the value of an index variable

Type: Macro statement
Restriction: Allowed in macro definitions only
See also: “%END Statement” on page 180

Syntax
%DO macro-variable=start %TO stop <%BY increment>;

text and macro language statements

%END;

macro-variable
names a macro variable or a text expression that generates a macro variable name.
Its value functions as an index that determines the number of times the %DO loop
iterates. If the macro variable specified as the index does not exist, the macro
processor creates it in the local symbol table.

You can change the value of the index variable during processing. For example,
using conditional processing to set the value of the index variable beyond the stop
value when a certain condition is met ends processing of the loop.

start
stop

specify integers or macro expressions that generate integers to control the number of
times the portion of the macro between the iterative %DO and %END statements is
processed.

The first time the %DO group iterates, macro-variable is equal to start. As
processing continues, the value of macro-variable changes by the value of increment
until the value of macro-variable is outside the range of integers included by start
and stop.

increment
specifies an integer (other than 0) or a macro expression that generates an integer to
be added to the value of the index variable in each iteration of the loop. By default,
increment is 1. Increment is evaluated before the first iteration of the loop.
Therefore, you cannot change it as the loop iterates.

Example

Example 1: Generating a Series of DATA Steps This example illustrates using an
iterative %DO group in a macro definition.

Macro Language Dictionary %DO %UNTIL Statement 177

%macro create(howmany);
%do i=1 %to &howmany;

data month&i;
infile in&i;
input product cost date;

run;
%end;

%mend create;

%create(3)

When you execute the macro CREATE, it generates these statements:

DATA MONTH1;
INFILE IN1;
INPUT PRODUCT COST DATE;

RUN;
DATA MONTH2;

INFILE IN2;
INPUT PRODUCT COST DATE;

RUN;
DATA MONTH3;

INFILE IN3;
INPUT PRODUCT COST DATE;

RUN;

%DO %UNTIL Statement

Executes a section of a macro repetitively until a condition is true

Type: Macro statement

Restriction: Allowed in macro definitions only

See also: “%END Statement” on page 180

Syntax

%DO %UNTIL (expression);
text and macro language statements

%END;

expression
can be any macro expression that resolves to a logical value. The macro processor
evaluates the expression at the bottom of each iteration. The expression is true if it
is an integer other than zero. The expression is false if it has a value of zero. If the
expression resolves to a null value or a value containing nonnumeric characters, the
macro processor issues an error message.

178 %DO %WHILE Statement Chapter 13

These examples illustrate expressions for the %DO %UNTIL statement:

� %do %until(&hold=no);

� %do %until(%index(&source,&excerpt)=0);

Details

The %DO %UNTIL statement checks the value of the condition at the bottom of each
iteration. Thus, a %DO %UNTIL loop always iterates at least once.

Example

Example 1: Validating a Parameter This example uses the %DO %UNTIL statement
to scan an option list to test the validity of the parameter TYPE.

%macro grph(type);
%let type=%upcase(&type);
%let options=BLOCK HBAR VBAR;
%let i=0;
%do %until (&type=%scan(&options,&i) or (&i>3)) ;

%let i = %eval(&i+1);
%end;
%if &i>3 %then %do;

%put ERROR: &type type not supported;
%end;
%else %do;

proc chart;type sex / group=dept;
run;

%end;
%mend grph;

When you invoke the GRPH macro with a value of HBAR, the macro generates these
statements:

PROC CHART;
HBAR SEX / GROUP=DEPT;
RUN;

When you invoke the GRPH macro with a value of PIE, then the %PUT statement
writes this line to the SAS log:

ERROR: PIE type not supported

%DO %WHILE Statement

Executes a section of a macro repetitively while a condition is true

Type: Macro statement

Restriction: Allowed in macro definitions only

See also: “%END Statement” on page 180

Macro Language Dictionary %DO %WHILE Statement 179

Syntax
%DO %WHILE (expression);

text and macro program statements

%END;

expression
can be any macro expression that resolves to a logical value. The macro processor
evaluates the expression at the top of each iteration. The expression is true if it is an
integer other than zero. The expression is false if it has a value of zero. If the
expression resolves to a null value or to a value containing nonnumeric characters,
the macro processor issues an error message.

These examples illustrate expressions for the %DO %WHILE statement:

� %do %while(&a<&b);

� %do %while(%length(&name)>20);

Details
The %DO %WHILE statement tests the condition at the top of the loop. If the condition
is false the first time the macro processor tests it, the %DO %WHILE loop does not
iterate.

Example

Example 1: Removing Markup Tags from a Title This example demonstrates using the
%DO %WHILE to strip markup (SGML) tags from text to create a TITLE statement:

%macro untag(title);
%let stbk=%str(<);
%let etbk=%str(>);
/* Do loop while tags exist */

%do %while (%index(&title,&stbk)>0) ;
%let pretag=;
%let posttag=;
%let pos_et=%index(&title,&etbk);
%let len_ti=%length(&title);

/* Is < first character? */
%if (%qsubstr(&title,1,1)=&stbk) %then %do;

%if (&pos_et ne &len_ti) %then
%let posttag=%qsubstr(&title,&pos_et+1);

%end;
%else %do;

%let pretag=%qsubstr(&title,1,(%index(&title,&stbk)-1));
/* More characters beyond end of tag (>) ? */

%if (&pos_et ne &len_ti) %then
%let posttag=%qsubstr(&title,&pos_et+1);

%end;
/* Build title with text before and after tag */

%let title=&pretag&posttag;
%end;

title "&title";

180 %END Statement Chapter 13

%mend untag;

You can invoke the macro UNTAG as

%untag(<title>Total <emph>Overdue </emph>Accounts</title>)

The macro then generates this TITLE statement:

TITLE "Total Overdue Accounts";

If the title text contained special characters such as commas, you could invoke it with
the %NRSTR function.

%untag(
%nrstr(<title>Accounts: Baltimore, Chicago, and Los Angeles</title>))

%END Statement

Ends a %DO group

Type: Macro statement
Restriction: Allowed in macro definitions only

Syntax
%END;

Example

Example 1: Ending a %DO group This macro definition contains a %DO %WHILE loop
that ends, as required, with a %END statement:

%macro test(finish);
%let i=1;
%do %while (&i<&finish);

%put the value of i is &i;
%let i=%eval(&i+1);

%end;
%mend test;

%test(5)

Invoking the TEST macro with 5 as the value of finish writes these lines to the SAS
log:

The value of i is 1
The value of i is 2
The value of i is 3
The value of i is 4

Macro Language Dictionary %EVAL Function 181

%EVAL Function

Evaluates arithmetic and logical expressions using integer arithmetic

Type: Macro evaluation function
See also: “%SYSEVALF Function” on page 273

Syntax
%EVAL (arithmetic or logical expression)

Details
The %EVAL function evaluates integer arithmetic or logical expressions. %EVAL
operates by converting its argument from a character value to a numeric or logical
expression. Then, it performs the evaluation. Finally, %EVAL converts the result back
to a character value and returns that value.

If all operands can be interpreted as integers, the expression is treated as arithmetic.
If at least one operand cannot be interpreted as numeric, the expression is treated as
logical. If a division operation results in a fraction, the fraction is truncated to an
integer.

Logical, or Boolean, expressions return a value that is evaluated as true or false. In
the macro language, any numeric value other than 0 is true and a value of 0 is false.

%EVAL accepts only operands in arithmetic expressions that represent integers (in
standard or hexadecimal form). Operands that contain a period character cause an
error when they are part of an integer arithmetic expression. The following examples
show correct and incorrect usage, respectively:

%let d=%eval(10+20); /* Correct usage */
%let d=%eval(10.0+20.0); /* Incorrect usage */

Because %EVAL does not convert a value containing a period to a number, the
operands are evaluated as character operands. When %EVAL encounters a value
containing a period, it displays an error message about finding a character operand
where a numeric operand is required.

An expression that compares character values in the %EVAL function uses the sort
sequence of the operating environment for the comparison. Refer to “The SORT
PROCEDURE” in the Base SAS Procedures Guide for more information on operating
environment sort sequences.

All parts of the macro language that evaluate expressions (for example, %IF and
%DO statements) call %EVAL to evaluate the condition. For a complete discussion of
how macro expressions are evaluated, see Chapter 6, “Macro Expressions,” on page 67.

Comparisons
%EVAL performs integer evaluations, but %SYSEVALF performs floating point
evaluations.

182 %EVAL Function Chapter 13

Examples

Example 1: Illustrating Integer Arithmetic Evaluation These statements illustrate
different types of evaluations:

%let a=1+2;
%let b=10*3;
%let c=5/3;
%let eval_a=%eval(&a);
%let eval_b=%eval(&b);
%let eval_c=%eval(&c);

%put &a is &eval_a;
%put &b is &eval_b;
%put &c is &eval_c;

Submitting these statements prints to the SAS log:

1+2 is 3
10*3 is 30
5/3 is 1

The third %PUT statement shows that %EVAL discards the fractional part when it
performs division on integers that would result in a fraction:

Example 2: Incrementing a Counter The macro TEST uses %EVAL to increment the
value of the macro variable I by 1. Also, the %DO %WHILE statement implicitly calls
%EVAL to evaluate whether I is greater than the value of the macro variable FINISH.

%macro test(finish);
%let i=1;
%do %while (&i<&finish);

%put the value of i is &i;
%let i=%eval(&i+1);

%end;
%mend test;

%test(5)

Executing this program writes these lines to the SAS log:

The value of i is 1
The value of i is 2
The value of i is 3
The value of i is 4

Example 3: Evaluating Logical Expressions Macro COMPARE compares two numbers.

%macro compare(first,second);
%if &first>&second %then %put &first > &second;
%else %if &first=&second %then %put &first = &second;
%else %put &first<&second;

%mend compare;

%compare(1,2)
%compare(-1,0)

Executing this program writes these lines to the SAS log:

Macro Language Dictionary EXECUTE Routine 183

1 < 2
-1 < 0

EXECUTE Routine

Resolves its argument and executes the resolved value at the next step boundary

Type: DATA step routine

Syntax
CALL EXECUTE (argument);

argument
can be one of the following:

� a character string, enclosed in quotation marks. Argument within single
quotation marks resolves during program execution. Argument within double
quotation marks resolves while the DATA step is being constructed. For
example, to invoke the macro SALES, you can use the following code:

call execute(’%sales’);

� the name of a DATA step character variable whose value is a text expression or
a SAS statement to be generated. Do not enclose the name of the DATA step
variable in quotation marks. For example, to use the value of the DATA step
variable FINDOBS, which contains a SAS statement or text expression, you can
use the following code:

call execute(findobs);

� a character expression that is resolved by the DATA step to a macro text
expression or a SAS statement. For example, to generate a macro invocation
whose parameter is the value of the variable MONTH, you use the following
code:

call execute(’%sales(’||month||’)’);

Details
If an EXECUTE routine argument is a macro invocation or resolves to one, the macro
executes immediately. However, any SAS statements produced by the EXECUTE
routine do not execute until after the step boundary has been passed.

Note: Because macro references execute immediately and SAS statements do not
execute until after a step boundary, you cannot use CALL EXECUTE to invoke a macro
that contains references for macro variables that are created by CALL SYMPUT in that
macro. See Chapter 8, “Interfaces with the Macro Facility,” on page 95, for an
example. �

Comparisons
Unlike other elements of the macro facility, a CALL EXECUTE statement is available
regardless of the setting of the SAS system option MACRO|NOMACRO. In both cases,

184 EXECUTE Routine Chapter 13

EXECUTE places the value of its argument in the program stack. However, when
NOMACRO is set, any macro calls or macro functions in the argument are not resolved.

Examples

Example 1: Executing a Macro Conditionally The following DATA step uses CALL
EXECUTE to execute a macro only if the DATA step writes at least one observation to
the temporary data set.

%macro overdue;
proc print data=late;

title "Overdue Accounts As of &sysdate";
run;

%mend overdue;

data late;
set sasuser.billed end=final;
if datedue<=today()-30 then

do;
n+1;
output;

end;
if final and n then call execute(’%overdue’);

run;

Example 2: Passing DATA Step Values Into a Parameter List CALL EXECUTE passes
the value of the DATE variable in the DATES data set to macro REPT for its DAT
parameter, the value of the VAR1 variable in the REPTDATA data set for its A
parameter, and REPTDATA as the value of its DSN parameter. After the DATA
NULL step finishes, three PROC GCHART statements are submitted, one for each of
the three dates in the DATES data set.

data dates;
input date $;

datalines;
10nov97
11nov97
12nov97
;

data reptdata;
input date $ var1 var2;

datalines;
10nov97 25 10
10nov97 50 11
11nov97 23 10
11nov97 30 29
12nov97 33 44
12nov97 75 86
;

%macro rept(dat,a,dsn);
proc chart data=&dsn;

title "Chart for &dat";
where(date="&dat");

Macro Language Dictionary %GLOBAL Statement 185

vbar &a;
run;

%mend rept;

data _null_;
set dates;
call execute(’%rept(’||date||’,’||’var1,reptdata)’);

run;

%GLOBAL Statement

Creates macro variables that are available during the execution of an entire SAS session

Type: Macro statement

Restriction: Allowed in macro definitions or open code

See also: “%LOCAL Statement” on page 199

Syntax
%GLOBAL macro-variable(s);

macro-variable(s)
is the name of one or more macro variables or a text expression that generates one or
more macro variable names. You cannot use a SAS variable list or a macro
expression that generates a SAS variable list in a %GLOBAL statement.

Details
The %GLOBAL statement creates one or more global macro variables and assigns null
values to the variables. Global macro variables are variables that are available during
the entire execution of the SAS session or job.

A macro variable created with a %GLOBAL statement has a null value until you
assign it some other value. If a global macro variable already exists and you specify
that variable in a %GLOBAL statement, the existing value remains unchanged.

Comparisons
� Both the %GLOBAL statement and the %LOCAL statement create macro

variables with a specific scope. However, the %GLOBAL statement creates global
macro variables that exist for the duration of the session or job. The %LOCAL
statement creates local macro variables that exist only during the execution of the
macro that defines the variable.

� If you define both a global macro variable and a local macro variable with the
same name, the macro processor uses the value of the local variable during the
execution of the macro that contains the local variable. When the macro that
contains the local variable is not executing, the macro processor uses the value of
the global variable.

186 %GOTO Statement Chapter 13

Example

Example 1: Creating Global Variables in a Macro Definition

%macro vars(first=1,last=);
%global gfirst glast;
%let gfirst=&first;
%let glast=&last;
var test&first-test&last;

%mend vars;

When you submit the following program, the macro VARS generates the VAR
statement and the values for the macro variables used in the title statement.

proc print;
%vars(last=50)
title "Analysis of Tests &gfirst-&glast";

run;

SAS sees the following:

PROC PRINT;
VAR TEST1-TEST50;
TITLE "Analysis of Tests 1-50";

RUN;

%GOTO Statement

Branches macro processing to the specified label

Type: Macro statement
Alias: %GO TO
Restriction: Allowed in macro definitions only
See also: “%label Statement” on page 196

Syntax
%GOTO label;

label
is either the name of the label that you want execution to branch to or a text
expression that generates the label. A text expression that generates a label in a
%GOTO statement is called a computed %GOTO destination.*

The following examples illustrate how to use label:
�

%goto findit; /* branch to the label FINDIT */

* A computed %GOTO contains % or & and resolves to a label.

Macro Language Dictionary %IF-%THEN/%ELSE Statement 187

�

%goto &home; /* branch to the label that is */
/* the value of the macro variable HOME */

CAUTION:
No percent sign (%) precedes the label name in the %GOTO statement. The syntax of the
%GOTO statement does not include a % in front of the label name. If you use a %,
the macro processor attempts to call a macro by that name to generate the label. �

Details
Branching with the %GOTO statement has two restrictions. First, the label that is the
target of the %GOTO statement must exist in the current macro; you cannot branch to
a label in another macro with a %GOTO statement. Second, a %GOTO statement
cannot cause execution to branch to a point inside an iterative %DO, %DO %UNTIL, or
%DO %WHILE loop that is not currently executing.

Example

Example 1: Providing Exits in a Large Macro The %GOTO statement is useful in large
macros when you want to provide an exit if an error occurs.

%macro check(parm);
%local status;
%if &parm= %then %do;

%put ERROR: You must supply a parameter to macro CHECK.;
%goto exit;

%end;

more macro statements that test for error conditions

%if &status > 0 %then %do;
%put ERROR: File is empty.;
%goto exit;

%end;

more macro statements that generate text

%put Check completed successfully.;
%exit: %mend check;

%IF-%THEN/%ELSE Statement

Conditionally process a portion of a macro

Type: Macro statement
Restriction: Allowed in macro definitions only

Syntax
%IF expression %THEN action;

188 %IF-%THEN/%ELSE Statement Chapter 13

<%ELSE action;>

expression
is any macro expression that resolves to an integer. If the expression resolves to an
integer other than zero, the expression is true and the %THEN clause is processed.
If the expression resolves to zero, then the expression is false and the %ELSE
statement, if one is present, is processed. If the expression resolves to a null value or
a value containing nonnumeric characters, the macro processor issues an error
message. For more information, see Chapter 6, “Macro Expressions,” on page 67.

The following examples illustrate using expressions in the %IF-%THEN statement:
� %if &name=GEORGE %then %let lastname=smith;

� %if %upcase(&name)=GEORGE %then %let lastname=smith;

� %if &i=10 and &j>5 %then %put check the index variables;

action
is either constant text, a text expression, or a macro statement. If action contains
semicolons (for example, in SAS statements), then the first semicolon after %THEN
ends the %THEN clause. Use a %DO group or a quoting function, such as %STR, to
prevent semicolons in action from ending the %IF-%THEN statement. The following
examples show two ways to conditionally generate text that contains semicolons:

� %if &city ne %then %do;
keep citypop statepop;

%end;
%else %do;

keep statepop;
%end;

� %if &city ne %then %str(keep citypop statepop;);
%else %str(keep statepop;);

Details
The macro language does not contain a subsetting %IF statement. Thus, you cannot
use %IF without %THEN.

Expressions that compare character values in the %IF-%THEN statement uses the
sort sequence of the host operating system for the comparison. Refer to “The SORT
PROCEDURE” in the Base SAS Procedures Guide for more information on host sort
sequences.

Comparisons
Although they look similar, the %IF-%THEN/%ELSE statement and the IF-THEN/
ELSE statement belong to two different languages. In general, %IF-%THEN/%ELSE
statement, which is part of the SAS macro language, conditionally generates text.
However, the IF-THEN/ELSE statement, which is part of the SAS language,
conditionally executes SAS statements during DATA step execution.

The expression that is the condition for the %IF-%THEN/%ELSE statement can
contain only operands that are constant text or text expressions that generate text.
However, the expression that is the condition for the IF-THEN/ELSE statement can

Macro Language Dictionary %IF-%THEN/%ELSE Statement 189

contain only operands that are DATA step variables, character constants, numeric
constants, or date and time constants.

When the %IF-%THEN/%ELSE statement generates text that is part of a DATA step,
it is compiled by the DATA step compiler and executed. On the other hand, when the
IF-THEN/ELSE statement executes in a DATA step, any text generated by the macro
facility has been resolved, tokenized, and compiled. No macro language elements exist
in the compiled code. “Example 1: Contrasting the %IF-%THEN/%ELSE Statement
with the IF-THEN/ELSE Statement” illustrates this difference.

For more information, see Chapter 2, “SAS Programs and Macro Processing,” on page
11, and Chapter 6, “Macro Expressions,” on page 67.

Examples

Example 1: Contrasting the %IF-%THEN/%ELSE Statement with the IF-THEN/ELSE
Statement In the SETTAX macro, the %IF-%THEN/%ELSE statement tests the value
of the macro variable TAXRATE to control the generation of one of two DATA steps.
The first DATA step contains an IF-THEN/ELSE statement that uses the value of the
DATA step variable SALE to set the value of the DATA step variable TAX.

%macro settax(taxrate);
%let taxrate = %upcase(taxrate);
%if &taxrate = CHANGE %then

%do;
data thisyear;

set lastyear;
if sale > 100 then tax = .05;
else tax = .08;

run;
%end;

%else %if &taxrate = SAME %then
%do;

data thisyear;
set lastyear;
tax = .03;
run;

%end;
%mend settax;

When the value of the macro variable TAXRATE is CHANGE, then the macro generates
the following DATA step:

DATA THISYEAR;
SET LASTYEAR;
IF SALE > 100 THEN TAX = .05;
ELSE TAX = .08;

RUN;

When the value of the macro variable TAXRATE is SAME, then the macro generates
the following DATA step:

DATA THISYEAR;
SET LASTYEAR;
TAX = .03;

RUN;

Example 2: Conditionally Printing Reports In this example, the %IF-%THEN/%ELSE
statement generates statements to produce one of two reports.

190 IMPLMAC System Option Chapter 13

%macro fiscal(report);
%if %upcase(&report)=QUARTER %then

%do;
title ’Quarterly Revenue Report’;
proc means data=total;

var revenue;
run;

%end;
%else

%do;
title ’To-Date Revenue Report’;
proc means data=current;

var revenue;
run;

%end;
%mend fiscal;

%fiscal(quarter)

When invoked, the macro FISCAL generates these statements:

TITLE ’Quarterly Revenue Report’;
PROC MEANS DATA=TOTAL;
VAR REVENUE;
RUN;

IMPLMAC System Option

Controls statement-style macro invocation

Type: System option
Valid in:

Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

Default: NOIMPLMAC
PROC OPTIONS GROUP= MACRO

Syntax
IMPLMAC | NOIMPLMAC

IMPLMAC
specifies that the macro processor examine the first word of every submitted
statement to see whether it is a statement-style macro invocation.

Macro Language Dictionary %INDEX Function 191

Note: When IMPLMAC is in effect, SAS searches the macro libraries first and
executes any macro it finds with the same name as the first word in the SAS
statement that was submitted. This can produce unexpected results. �

NOIMPLMAC
specifies that no check be made for statement-style macro invocations. This is the
default. If the macro processor encounters a statement-style macro call when
NOIMPLMAC is in effect, it treats the call as a SAS statement. SAS produces an
error message if the statement is not valid or if it is not used correctly.

Details
The IMPLMAC system option controls whether macros defined as statement-style
macros can be invoked with statement-style macro calls or if these macros must be
invoked with name-style macro calls. These examples illustrate statement-style and
name-style macro calls, respectively:

� macro-name parameter-value-1 parameter-value-2;

� %macro-name(parameter-value-1, parameter-value-2)

When you use IMPLMAC, processing time is increased because SAS searches the
macros compiled during the current session for a name corresponding to the first word
of each SAS statement. If the MSTORED option is in effect, the libraries containing
compiled stored macros are searched for a name corresponding to that word. If the
MAUTOSOURCE option is in effect, the autocall libraries are searched for a name
corresponding to that word. If the MRECALL system option is also in effect, processing
time can be increased further because the search continues even if a word was not
found in a previous search.

Regardless of which option is in effect, you can call any macro with a name-style
invocation, including those defined as statement-style macros.

Note: If a member in an autocall library or stored compiled macro catalog has the
same name as an existing windowing environment command, SAS searches for the
macro first if CMDMAC is in effect. Unexpected results can occur. �

Tip
Name-style macros are a more efficient choice to use when you invoke macros because
the macro processor searches only for the macro name that corresponds to a word that
follows a percent sign.

%INDEX Function

Returns the position of the first character of a string

Type: Macro function

Syntax
%INDEX (source, string)

192 %INPUT Statement Chapter 13

source
is a character string or text expression.

string
is a character string or text expression.

Details
The %INDEX function searches source for the first occurrence of string and returns the
position of its first character. If string is not found, the function returns 0.

Example

Example 1: Locating a Character The following statements find the first character V
in a string:

%let a=a very long value;
%let b=%index(&a,v);
%put V appears at position &b..;

Executing these statements writes the following line to the SAS log:

V appears at position 3.

%INPUT Statement

Supplies values to macro variables during macro execution

Type: Macro statement

Restriction: Allowed in macro definitions or open code

See also:
“%PUT Statement” on page 225
“%WINDOW Statement” on page 309
“SYSBUFFR Automatic Macro Variable” on page 264

Syntax
%INPUT<macro-variable(s)>;

no argument
specifies that all text entered is assigned to the automatic macro variable
SYSBUFFR.

macro-variable(s)
is the name of a macro variable or a macro text expression that produces a macro
variable name. The %INPUT statement can contain any number of variable names
separated by blanks.

Macro Language Dictionary INTO Clause 193

Details
The macro processor interprets the line submitted immediately after a %INPUT
statement as the response to the %INPUT statement. That line can be part of an
interactive line mode session, or it can be submitted from within the Program Editor
window during a windowing environment session.

When a %INPUT statement executes as part of an interactive line mode session, the
macro processor waits for you to enter a line containing values. In a windowing
environment session, the macro processor does not wait for you to input values.
Instead, it simply reads the next line that is processed in the program and attempts to
assign variable values. Likewise, if you invoke a macro containing a %INPUT
statement in open code as part of a longer program in a windowing environment, the
macro processor reads the next line in the program that follows the macro invocation.
Therefore, when you submit a %INPUT statement in open code from a windowing
environment, ensure that the line that follows a %INPUT statement or a macro
invocation that includes a %INPUT statement contains the values you want to assign.

When you name variables in the %INPUT statement, the macro processor matches
the variables with the values in your response based on their positions. That is, the
first value you enter is assigned to the first variable named in the %INPUT statement,
the second value is assigned to the second variable, and so on.

Each value to be assigned to a particular variable must be a single word or a string
enclosed in quotation marks. To separate values, use blanks. After all values have been
matched with macro variable names, excess text becomes the value of the automatic
macro variable SYSBUFFR.

Example

Example 1: Assigning a Response to a Macro Variable In an interactive line mode
session, the following statements display a prompt and assign the response to the
macro variable FIRST:

%put Enter your first name:;
%input first;

INTO Clause

Assigns values produced by PROC SQL to macro variables

Type: SELECT statement, PROC SQL

Syntax
INTO : macro-variable-specification-1 < ..., : macro-variable-specification-n>

macro-variable-specification
names one or more macro variables to create or update. Precede each macro variable
name with a colon (:). The macro variable specification can be in any one or more of
the following forms:

: macro-variable

194 INTO Clause Chapter 13

specify one or more macro variables. Leading and trailing blanks are not trimmed
from values before they are stored in macro variables. For example,

select style, sqfeet
into :type, :size
from sasuser.houses;

:macro-variable-1 − : macro-variable-n <NOTRIM>
:macro-variable-1 THROUGH : macro-variable-n <NOTRIM>
:macro-variable-1 THRU : macro-variable-n <NOTRIM>

specifies a numbered list of macro variables. Leading and trailing blanks are
trimmed from values before they are stored in macro variables. If you do not want
the blanks to be trimmed, use the NOTRIM option. NOTRIM is an option in each
individual element in this form of the INTO clause, so you can use it on one
element and not on another element. For example,

select style, sqfeet
into :type1 - :type4 notrim, :size1 - :size3
from sasuser.houses;

:macro-variable SEPARATED BY ’character(s) ’<NOTRIM>
specifies one macro variable to contain all the values of a column. Values in the list
are separated by character(s). This form of the INTO clause is useful for building a
list of items. Leading and trailing blanks are trimmed from values before they are
stored in the macro variable. If you do not want the blanks to be trimmed, use the
NOTRIM option. You can use the DISTINCT option on the SELECT statement to
store only the unique column (variable) values. For example,

select distinct style
into :types separated by ’,’
from sasuser.houses;

Details
The INTO clause for the SELECT statement can assign the result of a calculation or
the value of a data column (variable) to a macro variable. If the macro variable does not
exist, INTO creates it. You can check the PROC SQL macro variable SQLOBS to see
the number of rows (observations) produced by a SELECT statement.

The INTO clause can be used only in the outer query of a SELECT statement and
not in a subquery. The INTO clause cannot be used when you are creating a table
(CREATE TABLE) or a view (CREATE VIEW).

Macro variables created with INTO follow the scoping rules for the %LET statement.
For more information, see Chapter 5, “Scopes of Macro Variables,” on page 41.

Values assigned by the INTO clause use the BEST12. format.

Comparisons
In the SQL procedure, the INTO clause performs a role similar to the SYMPUT routine.

Examples

Example 1: Storing Column Values in Explicitly-Declared Macro Variables This
example is based on the data set SASUSER.HOUSES and stores the values of columns
(variables) STYLE and SQFEET from the first row of the table (or observation in the
data set) in macro variables TYPE and SIZE. The %LET statements strip trailing

Macro Language Dictionary INTO Clause 195

blanks from TYPE and leading blanks from SIZE because this type of specification with
INTO does not strip those blanks by default.

proc sql noprint;
select style, sqfeet

into :type, :size
from sasuser.houses;

%let type=&type;
%let size=&size;

%put The first row contains a &type with &size square feet.;

Executing this program writes to the SAS log:

The first row contains a RANCH with 1250 square feet.

Example 2: Storing Row Values in a List of Macro Variables This example creates two
lists of macro variables, TYPE1 through TYPE4 and SIZE1 through SIZE4, and stores
values from the first four rows (observations) of the SASUSER.HOUSES data set in
them. The NOTRIM option for TYPE1 through TYPE4 retains the trailing blanks for
those values.

proc sql noprint;
select style, sqfeet

into :type1 - :type4 notrim, :size1 - :size4
from sasuser.houses;

%macro putit;
%do i=1 %to 4;

%put Row&i: Type=**&&type&i** Size=**&&size&i**;
%end;

%mend putit;

%putit

Executing this program writes these lines to the SAS log:

Row1: Type=**RANCH ** Size=**1250**
Row2: Type=**SPLIT ** Size=**1190**
Row3: Type=**CONDO ** Size=**1400**
Row4: Type=**TWOSTORY** Size=**1810**

Example 3: Storing Values of All Rows in one Macro Variable This example stores all
values of the column (variable) STYLE in the macro variable TYPES and separates the
values with a comma and a blank.

proc sql;
select distinct quote(style)

into :types separated by ’, ’
from sasuser.houses;

%put Types of houses=&types.;

Executing this program writes this line to the SAS log:

Types of houses=CONDO, RANCH, SPLIT, TWOSTORY

196 %label Statement Chapter 13

%label Statement

Identifies the destination of a %GOTO statement

Type: Macro statement
Restriction: Allowed in macro definitions only
See also: “%GOTO Statement” on page 186

Syntax
%label: macro-text

label
specifies a SAS name.

macro-text
is a macro statement, a text expression, or constant text. The following examples
illustrate each:

� %one: %let book=elementary;

� %out: %mend;

� %final: data _null_;

Details
� The label name is preceded by a %. When you specify this label in a %GOTO

statement, do not precede it with a %.
� An alternative to using the %GOTO statement and statement label is to use a

%IF-%THEN statement with a %DO group.

Example

Example 1: Controlling Program Flow In the macro INFO, the %GOTO statement
causes execution to jump to the label QUICK when the macro is invoked with the value
of short for the parameter TYPE.

%macro info(type);
%if %upcase(&type)=SHORT %then %goto quick; /* No % here */

proc contents;
run;
proc freq;

tables _numeric_;
run;

%quick: proc print data=_last_(obs=10); /* Use % here */
run;

%mend info;

%info(short)

Invoking the macro INFO with TYPE equal to short generates these statements:

Macro Language Dictionary %LENGTH Function 197

PROC PRINT DATA=_LAST_(OBS=10);
RUN;

%LEFT and %QLEFT Autocall Macro
Left-align an argument by removing leading blanks

Type: Autocall macro
Requires: MAUTOSOURCE system option

Syntax
%LEFT(text | text expression)

%QLEFT(text | text expression)

Note: Autocall macros are included in a library supplied by SAS. This library might
not be installed at your site or might be a site-specific version. If you cannot access this
macro or if you want to find out if it is a site-specific version, see your SAS Software
Consultant. For more information, see Chapter 9, “Storing and Reusing Macros,” on
page 105. �

Details
The LEFT macro and the QLEFT macro both left-align arguments by removing leading
blanks. If the argument might contain a special character or mnemonic operator, listed
below, use %QLEFT.

%LEFT returns an unquoted result, even if the argument is quoted. %QLEFT
produces a result with the following special characters and mnemonic operators masked
so the macro processor interprets them as text instead of as elements of the macro
language:

& % ’ " () + − * / < > = ^ ~ ; , blank
AND OR NOT EQ NE LE LT GE GT

Example

Example 1: Contrasting %LEFT and %QLEFT In this example, both the LEFT and
QLEFT macros remove leading blanks. However, the QLEFT macro protects the
leading & in the macro variable SYSDAY so it does not resolve.

%let d=%nrstr(&sysday);
%put *&d* *%qleft(&d)* *%left(&d)*;

The %PUT statement writes the following line to the SAS log:

* &sysday * *&sysday * *Tuesday *

%LENGTH Function
Returns the length of a string

198 %LET Statement Chapter 13

Type: Macro function

Syntax
%LENGTH (character string | text expression)

Details
If the argument is a character string, %LENGTH returns the length of the string. If
the argument is a text expression, %LENGTH returns the length of the resolved value.
If the argument has a null value, %LENGTH returns 0.

Example

Example 1: Returning String Lengths The following statements find the lengths of
character strings and text expressions.

%let a=Happy;
%let b=Birthday;

%put The length of &a is %length(&a).;
%put The length of &b is %length(&b).;
%put The length of &a &b To You is %length(&a &b to you).;

Executing these statements writes to the SAS log:

The length of Happy is 5.
The length of Birthday is 8.
The length of Happy Birthday To You is 21.

%LET Statement

Creates a macro variable and assigns it a value

Type: Macro statement

Restriction: Allowed in macro definitions or open code

See also: “%STR and %NRSTR Functions” on page 239

Syntax
%LET macro-variable =<value>;

macro-variable
is either the name of a macro variable or a text expression that produces a macro
variable name. The name can refer to a new or existing macro variable.

Macro Language Dictionary %LOCAL Statement 199

value
is a character string or a text expression. Omitting value produces a null value (0
characters). Leading and trailing blanks in value are ignored. To make them
significant, enclose value with the %STR function.

Details
If the macro variable named in the %LET statement already exists, the %LET statement
changes the value. A %LET statement can define only one macro variable at a time.

Example

Example 1: Sample %LET Statements These examples illustrate several %LET
statements:

%macro title(text,number);
title&number "&text";

%mend;

%let topic= The History of Genetics ; /* Leading and trailing */
/* blanks are removed */

%title(&topic,1)

%let subject=topic; /* &subject resolves */
%let &subject=Genetics Today; /* before assignment */
%title(&topic,2)

%let subject=The Future of Genetics; /* &subject resolves */
%let topic= &subject; /* before assignment */
%title(&topic,3)

When you submit these statements, the TITLE macro generates the following
statements:

TITLE1 "The History of Genetics";
TITLE2 "Genetics Today";
TITLE3 "The Future of Genetics";

%LOCAL Statement

Creates macro variables that are available only during the execution of the macro where they are
defined

Type: Macro statement
Restriction: Allowed in macro definitions only
See also: “%GLOBAL Statement” on page 185

Syntax
%LOCAL macro-variable(s);

200 %LOCAL Statement Chapter 13

macro-variable(s)
is the name of one or more macro variables or a text expression that generates one or
more macro variable names. You cannot use a SAS variable list or a macro
expression that generates a SAS variable list in a %LOCAL statement.

Details
The %LOCAL statement creates one or more local macro variables. A macro variable
created with %LOCAL has a null value until you assign it some other value. Local
macro variables are variables that are available only during the execution of the macro
in which they are defined.

Use the %LOCAL statement to ensure that macro variables created earlier in a
program are not inadvertently changed by values assigned to variables with the same
name in the current macro. If a local macro variable already exists and you specify that
variable in a %LOCAL statement, the existing value remains unchanged.

Comparisons
� Both the %LOCAL statement and the %GLOBAL statement create macro

variables with a specific scope. However, the %LOCAL statement creates local
macro variables that exist only during the execution of the macro that contains the
variable, and the %GLOBAL statement creates global macro variables that exist
for the duration of the session or job.

� If you define a local macro variable and a global macro variable with the same
name, the macro facility uses the value of the local variable during the execution of
the macro that contains that local variable. When the macro that contains the local
variable is not executing, the macro facility uses the value of the global variable.

Example

Example 1: Using a Local Variable with the Same Name as a Global Variable

%let variable=1;

%macro routine;
%put ***** Beginning ROUTINE *****;
%local variable;
%let variable=2;
%put The value of variable inside ROUTINE is &variable;
%put ***** Ending ROUTINE *****;

%mend routine;

%routine
%put The value of variable outside ROUTINE is &variable;

Submitting these statements writes these lines to the SAS log:

***** Beginning ROUTINE *****
The value of variable inside ROUTINE is 2
***** Ending ROUTINE *****
The value of variable outside ROUTINE is 1

Macro Language Dictionary %LOWCASE and %QLOWCASE Autocall Macros 201

%LOWCASE and %QLOWCASE Autocall Macros

Change uppercase characters to lowercase

Type: Autocall macros
Requires: MAUTOSOURCE system option

Syntax
%LOWCASE (text | text expression)

%QLOWCASE (text | text expression)

Note: Autocall macros are included in a library supplied by SAS. This library
might not be installed at your site or might be a site-specific version. If you cannot
access this macro or if you want to find out if it is a site-specific version, see your SAS
Software Consultant. For more information, see Chapter 9, “Storing and Reusing
Macros,” on page 105. �

Details
The LOWCASE and QLOWCASE macros change uppercase alphabetic characters to
their lowercase equivalents. If the argument might contain a special character or
mnemonic operator, listed below, use %QLOWCASE.

LOWCASE returns a result without quotation marks, even if the argument has
quotation marks. QLOWCASE produces a result with the following special characters
and mnemonic operators masked so the macro processor interprets them as text instead
of as elements of the macro language:

& % ’ " () + − * / < > = ^ ~ ; , blank
AND OR NOT EQ NE LE LT GE GT

Example

Example 1: Creating a Title with Initial Letters Capitalized

%macro initcaps(title);
%global newtitle;
%let newtitle=;
%let lastchar=;
%do i=1 %to %length(&title);

%let char=%qsubstr(&title,&i,1);
%if (&lastchar=%str() or &i=1) %then %let char=%qupcase(&char);
%else %let char=%qlowcase(&char);
%let newtitle=&newtitle&char;
%let lastchar=&char;

%end;
TITLE "&newtitle";

%mend;

%initcaps(%str(sales: COMMAND REFERENCE, VERSION 2, SECOND EDITION))

202 %MACRO Statement Chapter 13

Submitting this example generates the following statement:

TITLE "Sales: Command Reference, Version 2, Second Edition";

%MACRO Statement

Begins a macro definition

Type: Macro statement
Restriction: Allowed in macro definitions or open code
See also:

“%MEND Statement” on page 209
“SYSPBUFF Automatic Macro Variable” on page 289

Syntax
%MACRO macro-name <(parameter-list)></ option(s)>;

macro-name
names the macro. A macro name must be a SAS name, which you supply; you cannot
use a text expression to generate a macro name in a %MACRO statement. In
addition, do not use macro reserved words as a macro name. (For a list of macro
reserved words, see Appendix 1, “Reserved Words in the Macro Facility,” on page 317.)

parameter-list
names one or more local macro variables whose values you specify when you invoke
the macro. Parameters are local to the macro that defines them. You must supply
each parameter name; you cannot use a text expression to generate it. A parameter
list can contain any number of macro parameters separated by commas. The macro
variables in the parameter list are usually referenced in the macro.

parameter-list can be
<positional parameter-1><. . . ,positional parameter-n>
<keyword-parameter=<value> <. . . ,keyword-parameter-n=<value>>>

positional-parameter-1 <. . . ,positional-parameter-n>
specifies one or more positional parameters. You can specify positional
parameters in any order, but in the macro invocation, the order in which you
specify the values must match the order you list them in the %MACRO
statement. If you define more than one positional parameter, use a comma to
separate the parameters.

If at invocation you do not supply a value for a positional parameter, the
macro facility assigns a null value to that parameter.

keyword-parameter=<value> <. . . ,keyword-parameter-n=<value>>
names one or more macro parameters followed by equal signs. Optionally,
you can specify default values after the equal signs. If you omit a default
value after an equal sign, the keyword parameter has a null value. Using
default values enables you to write more flexible macro definitions and
reduces the number of parameters that must be specified to invoke the

Macro Language Dictionary %MACRO Statement 203

macro. To override the default value, specify the macro variable name
followed by an equal sign and the new value in the macro invocation.

Note: You can define an unlimited number of parameters. If both positional
and keyword parameters appear in a macro definition, positional parameters
must come first. �

option(s)
can be one or more of these optional arguments:

CMD
specifies that the macro can accept either a name-style invocation or a
command-style invocation. Macros defined with the CMD option are sometimes
called command-style macros.

Use the CMD option only for macros you plan to execute from the command line
of a SAS window. The SAS system option CMDMAC must be in effect to use
command-style invocations. If CMDMAC is in effect and you have defined a
command-style macro in your program, the macro processor scans the first word of
every SAS command to see whether it is a command-style macro invocation. When
the SAS system option NOCMDMAC option is in effect, the macro processor treats
only the words following the % symbols as potential macro invocations. If the
CMDMAC option is not in effect, you still can use a name-style invocation for a
macro defined with the CMD option.

DES=’text’
specifies a description (up to 40 characters) for the macro entry in the macro
catalog. Enclose the description in quotation marks. This description appears in
the CATALOG window when you display the contents of the catalog containing the
stored compiled macros. The DES= option is especially useful when you use the
stored compiled macro facility.

PARMBUFF
PBUFF

assigns the entire list of parameter values in a macro call, including the
parentheses in a name-style invocation, as the value of the automatic macro
variable SYSPBUFF. Using the PARMBUFF option, you can define a macro that
accepts a varying number of parameter values.

If the macro definition includes both a set of parameters and the PARMBUFF
option, the macro invocation causes the parameters to receive values and also
causes the entire invocation list of values to be assigned to SYSPBUFF.

To invoke a macro defined with the PARMBUFF option in a windowing
environment or interactive line mode session without supplying a value list, enter
an empty set of parentheses or more program statements after the invocation to
indicate the absence of a value list, even if the macro definition contains no
parameters.

STMT
specifies that the macro can accept either a name-style invocation or a
statement-style invocation. Macros defined with the STMT option are sometimes
called statement-style macros.

The IMPLMAC system option must be in effect to use statement-style macro
invocations. If IMPLMAC is in effect and you have defined a statement-style
macro in your program, the macro processor scans the first word of every SAS
statement to see whether it is a statement-style macro invocation. When the
NOIMPLMAC option is in effect, the macro processor treats only the words

204 %MACRO Statement Chapter 13

following the % symbols as potential macro invocations. If the IMPLMAC option is
not in effect, you still can use a name-style invocation for a macro defined with the
STMT option.

SOURCE
SRC

combines and stores the source of the compiled macro with the compiled macro
code as an entry in a SAS catalog in a permanent SAS data library. The SOURCE
option requires that the STORE option and the MSTORED option be set. You can
use the SASMSTORE= option to identify a permanent SAS data library. You can
store a macro or call a stored compiled macro only when the MSTORED option is
in effect. (For more information, see Chapter 9, “Storing and Reusing Macros,” on
page 105.)

Note: The source code saved by the SOURCE option begins with the %MACRO
keyword and ends with the semi-colon following the %MEND statement. �

CAUTION:
The SOURCE option cannot be used on nested macro definitions (macro definitions
contained within another macro). �

STORE
stores the compiled macro as an entry in a SAS catalog in a permanent SAS data
library. Use the SAS system option SASMSTORE= to identify a permanent SAS
data library. You can store a macro or call a stored compiled macro only when the
SAS system option MSTORED is in effect. (For more information, see Chapter 9,
“Storing and Reusing Macros,” on page 105.)

Details
The %MACRO statement begins the definition of a macro, assigns the macro a name,
and optionally can include a list of macro parameters, a list of options, or both.

A macro definition must precede the invocation of that macro in your code. The
%MACRO statement can appear anywhere in a SAS program, except within data lines.
A macro definition cannot contain a CARDS statement, a DATALINES statement, a
PARMCARDS statement, or data lines. Use an INFILE statement instead.

By default, a defined macro is an entry in a SAS catalog in the WORK library. You
also can store a macro in a permanent SAS catalog for future use. However, in SAS 6
and earlier, SAS does not support copying, renaming, or transporting macros.

You can nest macro definitions, but doing so is rarely necessary and is often
inefficient. If you nest a macro definition, then it is compiled every time you invoke the
macro that includes it. Instead, nesting a macro invocation inside another macro
definition is sufficient in most cases.

Examples

Example 1: Using the %MACRO Statement with Positional Parameters In this
example, the macro PRNT generates a PROC PRINT step. The parameter in the first
position is VAR, which represents the SAS variables that appear in the VAR statement.
The parameter in the second position is SUM, which represents the SAS variables that
appear in the SUM statement.

%macro prnt(var,sum);
proc print data=srhigh;

var &var;
sum ∑

run;

Macro Language Dictionary %MACRO Statement 205

%mend prnt;

In the macro invocation, all text up to the comma is the value of parameter VAR; text
following the comma is the value of parameter SUM.

%prnt(school district enrollmt, enrollmt)

During execution, macro PRNT generates these statements:

PROC PRINT DATA=SRHIGH;
VAR SCHOOL DISTRICT ENROLLMT;
SUM ENROLLMT;

RUN;

Example 2: Using the %MACRO Statement with Keyword Parameters In the macro
FINANCE, the %MACRO statement defines two keyword parameters, YVAR and XVAR,
and uses the PLOT procedure to plot their values. Because the keyword parameters are
usually EXPENSES and DIVISION, default values for YVAR and XVAR are supplied in
the %MACRO statement.

%macro finance(yvar=expenses,xvar=division);
proc plot data=yearend;

plot &yvar*&xvar;
run;

%mend finance;

� To use the default values, invoke the macro with no parameters.

%finance

The macro processor generates this SAS code:

PROC PLOT DATA=YEAREND;
PLOT EXPENSES*DIVISION;

RUN;

� To assign a new value, give the name of the parameter, an equals sign, and the
value:

%finance(xvar=year)

Because the value of YVAR did not change, it retains its default value. Macro
execution produces this code:

PROC PLOT DATA=YEAREND;
PLOT EXPENSES*YEAR;

RUN;

Example 3: Using the %MACRO Statement with the PARMBUFF Option The macro
PRINTZ uses the PARMBUFF option to enable you to input a different number of
arguments each time you invoke it:

%macro printz/parmbuff;
%let num=1;
%let dsname=%scan(&syspbuff,&num);
%do %while(&dsname ne);

proc print data=&dsname;
run;
%let num=%eval(&num+1);
%let dsname=%scan(&syspbuff,&num);

%end;

206 MACRO System Option Chapter 13

%mend printz;

This invocation of PRINTZ contains four parameter values, PURPLE, RED, BLUE, and
TEAL although the macro definition does not contain any individual parameters:

%printz(purple,red,blue,teal)

As a result, SAS receives these statements:

PROC PRINT DATA=PURPLE;
RUN;
PROC PRINT DATA=RED;
RUN;
PROC PRINT DATA=BLUE;
RUN;
PROC PRINT DATA=TEAL;
RUN;

Example 4: Using the %MACRO Statement with the SOURCE Option The SOURCE
option combines and stores the source of the compiled macro with the compiled macro
code. Use the %COPY statement to write the source to the SAS log. For more
information about viewing or retrieving the stored source, see “%COPY Statement” on
page 172.

/* commentary */ %macro foobar(arg) /store source
des="This macro does not do much";

%put arg = &arg;
* this is commentary!!!;
%* this is macro commentary;
%mend /* commentary; */; /* Further commentary */
NOTE: The macro FOOBAR completed compilation without errors.

%copy foobar/source;
%macro foobar(arg) /store source
des="This macro does not do much";
%put arg = &arg;
* this is commentary!!!;
%* this is macro commentary;
%mend /* commentary; */;

MACRO System Option

Controls whether the SAS macro language is available

Type: System option

Valid in:
Configuration file

SAS invocation

Default: MACRO

PROC OPTIONS GROUP= MACRO

Macro Language Dictionary MAUTOLOCDISPLAY System Option 207

Syntax
MACRO | NOMACRO

MACRO
enables SAS to recognize and process macro language statements, macro calls, and
macro variable references.

NOMACRO
prevents SAS from recognizing and processing macro language statements, macro
calls, and macro variable references. The item generally is not recognized, and an
error message is issued. If the macro facility is not used in a job, a small
performance gain can be made by setting NOMACRO because there is no overhead of
checking for macros or macro variables.

MAUTOLOCDISPLAY System Option

Displays the source location of the autocall macros in the log when the autocall macro is invoked

Type: System option
Valid in:

Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

Default: NOMAUTOLOCDISPLAY
PROC OPTIONS GROUP= MACRO

Syntax
MAUTOLOCDISPLAY | NOMAUTOLOCDISPLAY

MAUTOLOCDISPLAY
enables MACRO to display the autocall macro source location in the log when the
autocall macro is invoked.

NOMAUTOLOCDISPLAY
prevents the autocall macro source location from being displayed in the log when the
autocall macro is invoked. NOMAUTOLOCDISPLAY is the default.

Details
When both MAUTOLOCDISPLAY and MLOGIC options are set, only the MLOGIC
listing of the autocall source location is displayed.

208 MAUTOSOURCE System Option Chapter 13

MAUTOSOURCE System Option

Controls whether the autocall feature is available

Type: System option

Valid in:
Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

Default: MAUTOSOURCE

PROC OPTIONS GROUP= MACRO

Syntax
MAUTOSOURCE | NOMAUTOSOURCE

MAUTOSOURCE
causes the macro processor to search the autocall libraries for a member with the
requested name when a macro name is not found in the WORK library.

NOMAUTOSOURCE
prevents the macro processor from searching the autocall libraries when a macro
name is not found in the WORK library.

Details
When the macro facility searches for macros, it searches first for macros compiled in the
current SAS session. If the MSTORED option is in effect, the macro facility next
searches the libraries containing compiled stored macros. If the MAUTOSOURCE
option is in effect, the macro facility next searches the autocall libraries.

MCOMPILENOTE System Option

Issues a NOTE to the log upon the completion of the compilation of a macro

Type: System option

Valid in:
Configuration file
OPTIONS window
OPTIONS Statement
SAS invocation

Default: NONE

PROC OPTIONS GROUP= MACRO

Macro Language Dictionary %MEND Statement 209

Syntax
MCOMPILENOTE=<NONE | NOAUTOCALL | ALL>

NONE
prevents any NOTE from being written to the log.

NOAUTOCALL
prevents any NOTE from being written to the log for AUTOCALL macros, but does
issue a NOTE to the log upon the completion of the compilation of any other macro.

ALL
issues a NOTE to the log upon the completion of the compilation of any macro.

Details
The NOTE confirms that the compilation of the macro was completed. When the option
is on and the NOTE is issued, the compiled version of the macro is available for
execution. A macro can successfully compile, but still contain errors or warnings that
will cause the macro to not execute as the you intended.

Examples

A macro can actually compile and still contain errors. Here is an example of the
NOTE without errors:

option mcompilenote=noautocall;
%macro mymacro;
%mend mymacro;

Output to the log:

NOTE: The macro MYMACRO completed compilation without errors.

Here is an example of the NOTE with errors:

%macro yourmacro;
%end;
%mend your macro;

Output to the log:

ERROR: There is no matching %DO statement for the %END statement.
This statement will be ignored.

NOTE: The macro YOURMACRO completed compilation with errors.

%MEND Statement

Ends a macro definition

Type: Macro statement
Restriction: Allowed in macro definitions only

210 MERROR System Option Chapter 13

Syntax
%MEND <macro-name>;

macro-name
names the macro as it ends a macro definition. Repeating the name of the macro is
optional, but it is useful for clarity. If you specify macro-name, the name in the
%MEND statement should match the name in the %MACRO statement; otherwise,
SAS issues a warning message.

Example

Example 1: Ending a Macro Definition

%macro disc(dsn);
data &dsn;

set perm.dataset;
where month="&dsn";

run;
%mend disc;

MERROR System Option

Controls whether the macro processor issues a warning message when a macro reference cannot
be resolved

Type: System option
Valid in:

Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

Default: MERROR
PROC OPTIONS GROUP= MACRO

Syntax
MERROR | NOMERROR

MERROR
issues the following warning message when the macro processor cannot match a
macro reference to a compiled macro:

WARNING: Apparent invocation of macro %text not resolved.

Macro Language Dictionary MFILE System Option 211

NOMERROR
issues no warning messages when the macro processor cannot match a macro
reference to a compiled macro.

Details
Several conditions can prevent a macro reference from resolving. These conditions
appear when

� a macro name is misspelled

� a macro is called before being defined

� strings containing percent signs are encountered. For example:

TITLE Cost Expressed as %Sales;

If your program contains a percent sign in a string that could be mistaken for a
macro keyword, specify NOMERROR.

MFILE System Option

Determines whether MPRINT output is routed to an external file

Type: System option

Valid in:
Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

Requires: MPRINT option
Default: NOMFILE

PROC OPTIONS GROUP= MACRO

See also: “MPRINT System Option” on page 217

Syntax
MFILE | NOMFILE

MFILE
routes output produced by the MPRINT option to an external file. This is useful for
debugging.

NOMFILE
does not route MPRINT output to an external file.

Details
The MPRINT option must also be in effect to use MFILE, and an external file must be
assigned the fileref MPRINT. Macro-generated code that is displayed by the MPRINT

212 MINDELIMITER= System Option Chapter 13

option in the SAS log during macro execution is written to the external file referenced
by the fileref MPRINT.

If MPRINT is not assigned as a fileref or if the file cannot be accessed, warnings are
written to the SAS log and MFILE is set to off. To use the feature again, you must
specify MFILE again and assign the fileref MPRINT to a file that can be accessed.

MINDELIMITER= System Option

Specifies the character to be used as the delimiter for the macro IN operator

Type: System option

Valid in:
Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

Default: a blank
PROC OPTIONS GROUP= MACRO

Syntax
MINDELIMITER=<”option”>

option
is a character enclosed in double or single quotation marks. The character will be
used as the delimiter for the macro IN operator. Here is an example:

double quotation marks

mindelimiter=’’,’’;

or single quotation marks

mindelimiter=’,’;

Details
The option value is retained in original case and can have a maximum length of one
character. The default value of the MINDELIMITER option is a blank.

You can use the # character instead of IN.

Note: When the IN or # operator is used in a macro, the delimiter that is used at
the execution time of the macro is the value of the MINDELIMITER option at the time
of the compilation of the macro. �

Example
The following is an example using a specified delimiter in an IN operator:

Macro Language Dictionary MLOGIC System Option 213

%put %eval(a in d,e,f,a,b,c); /* should print 0 */

%put %eval(a in d e f a b c); /* should print 1 */

option mindelimiter=’,’;
%put %eval(a in d,e,f,a,b,c); /* should print 1 */

%put %eval(a in d e f a b c); /* should print 0 */

SAS Log Output
NOTE: Copyright (c) 2003 by SAS Institute Inc., Cary, NC, USA.
NOTE: SAS (r) Proprietary Software Version 9.01 (TS A0)

Licensed to SAS Institute Inc., Site 0000000001.
NOTE: This session is executing on the WIN_NT platform.

NOTE: SAS initialization used:
real time 1.02 seconds
cpu time 0.63 seconds

%put %eval(a in d,e,f,a,b,c); /* should print 0 */

0

%put %eval(a in d e f a b c); /* should print 1 */

1

option mindelimiter=’,’;
%put %eval(a in d,e,f,a,b,c); /* should print 1 */

1

%put %eval(a in d e f a b c); /* should print 0 */

0

MLOGIC System Option

Controls whether macro execution is traced for debugging

Type: System option
Valid in:

Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

Default: NOMLOGIC
PROC OPTIONS GROUP= MACRO

214 MLOGIC System Option Chapter 13

Syntax
MLOGIC | NOMLOGIC

MLOGIC
causes the macro processor to trace its execution and to write the trace information
to the SAS log. This option is a useful debugging tool.

NOMLOGIC
does not trace execution. Use this option unless you are debugging macros.

Details
Use MLOGIC to debug macros. Each line generated by the MLOGIC option is identified
with the prefix MLOGIC(macro-name):. If MLOGIC is in effect and the macro processor
encounters a macro invocation, the macro processor displays messages that identify

� the beginning of macro execution
� values of macro parameters at invocation
� execution of each macro program statement
� whether each %IF condition is true or false
� the ending of macro execution.

Note: Using MLOGIC can produce a great deal of output. �

For more information on macro debugging, see Chapter 10, “Macro Facility Error
Messages and Debugging,” on page 111.

Example

Example 1: Tracing Macro Execution In this example, MLOGIC traces the execution
of the macros MKTITLE and RUNPLOT:

%macro mktitle(proc,data);
title "%upcase(&proc) of %upcase(&data)";

%mend mktitle;

%macro runplot(ds);
%if %sysprod(graph)=1 %then

%do;
%mktitle (gplot,&ds)
proc gplot data=&ds;

plot style*price
/ haxis=0 to 150000 by 50000;

run;
quit;

%end;
%else

%do;
%mktitle (plot,&ds)

Macro Language Dictionary MLOGICNEST System Option 215

proc plot data=&ds;
plot style*price;

run;
quit;

%end;
%mend runplot;

options mlogic;

%runplot(sasuser.houses)

Executing this program writes this MLOGIC output to the SAS log:

MLOGIC(RUNPLOT): Beginning execution.
MLOGIC(RUNPLOT): Parameter DS has value sasuser.houses
MLOGIC(RUNPLOT): %IF condition %sysprod(graph)=1 is TRUE
MLOGIC(MKTITLE): Beginning execution.
MLOGIC(MKTITLE): Parameter PROC has value gplot
MLOGIC(MKTITLE): Parameter DATA has value sasuser.houses
MLOGIC(MKTITLE): Ending execution.
MLOGIC(RUNPLOT): Ending execution.

MLOGICNEST System Option

Allows the macro nesting information to be displayed in the SAS log

Type: System option

Valid in:
Configuration file

OPTIONS window

OPTIONS statement

SAS invocation

Default: NOMLOGICNEST

PROC OPTIONS GROUP= MACRO

Syntax

MLOGICNEST | NOMLOGICNEST

MLOGICNEST
allows the macro nesting information to be displayed in the MLOGIC output in the
SAS log.

NOMLOGICNEST
prevents the macro nesting information from being displayed in the MLOGIC output
in the SAS log.

216 MLOGICNEST System Option Chapter 13

Details
MLOGICNEST allows the macro nesting information to be written to the SAS log in the
MLOGIC output.

The setting of MLOGICNEST does not affect the output of any currently executing
macro.

The setting of MLOGICNEST does not imply the setting of MLOGIC. You must set
both MLOGIC and MLOGICNEST in order for output (with nesting information) to be
written to the SAS log.

Examples

The first example shows both the MLOGIC and MLOGICNEST options being set:

%macro outer;
%put THIS IS OUTER;
%inner;

%mend outer;
%macro inner;

%put THIS IS INNER;
%inrmost;

%mend inner;
%macro inrmost;

%put THIS IS INRMOST;
%mend;

options mlogic mlogicnest;
%outer

Here is the MLOGIC output in the SAS log using the MLOGICNEST option:

MLOGIC(OUTER): Beginning execution.
MLOGIC(OUTER): %PUT THIS IS OUTER
THIS IS OUTER
MLOGIC(OUTER.INNER): Beginning execution.
MLOGIC(OUTER.INNER): %PUT THIS IS INNER
THIS IS INNER
MLOGIC(OUTER.INNER.INRMOST): Beginning execution.
MLOGIC(OUTER.INNER.INRMOST): %PUT THIS IS INRMOST
THIS IS INRMOST
MLOGIC(OUTER.INNER.INRMOST): Ending execution.
MLOGIC(OUTER.INNER): Ending execution.
MLOGIC(OUTER): Ending execution.

The second example uses only the NOMLOGICNEST option:

%macro outer;
%put THIS IS OUTER;
%inner;

%mend outer;
%macro inner;

%put THIS IS INNER;
%inrmost;

%mend inner;
%macro inrmost;

%put THIS IS INRMOST;
%mend;

Macro Language Dictionary MPRINT System Option 217

options nomlogicnest;
%outer

Here is the output in the SAS log when you use only the NOMLOGICNEST option:

MLOGIC(OUTER): Beginning execution.
MLOGIC(OUTER): %PUT THIS IS OUTER
THIS IS OUTER
MLOGIC(INNER): Beginning execution.
MLOGIC(INNER): %PUT THIS IS INNER
THIS IS INNER
MLOGIC(INRMOST): Beginning execution.
MLOGIC(INRMOST): %PUT THIS IS INRMOST
THIS IS INRMOST
MLOGIC(INRMOST): Ending execution.
MLOGIC(INNER): Ending execution.
MLOGIC(OUTER): Ending execution.

MPRINT System Option

Controls whether SAS statements generated by macro execution are traced for debugging

Type: System option
Valid in:

Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

Default: NOMPRINT
PROC OPTIONS GROUP= MACRO
See also: “MFILE System Option” on page 211

Syntax
MPRINT | NOMPRINT

MPRINT
displays the SAS statements that are generated by macro execution. This is useful
for debugging macros.

NOMPRINT
does not display SAS statements that are generated by macro execution.

Details
The MPRINT option displays the text generated by macro execution. Each SAS
statement begins a new line. Each line of MPRINT output is identified with the prefix
MPRINT(macro-name):, to identify the macro that generates the statement. Tokens

218 MPRINT System Option Chapter 13

that are separated by multiple spaces are printed with one intervening space. Each
statement ends with a semicolon.

You can direct MPRINT output to an external file by also using the MFILE option
and assigning the fileref MPRINT to that file. For more information, see “MFILE
System Option” on page 211.

Examples

Example 1: Tracing Generation of SAS Statements In this example, MPRINT traces
the SAS statements that are generated when the macros MKTITLE and RUNPLOT
execute:

%macro mktitle(proc,data);
title "%upcase(&proc) of %upcase(&data)";

%mend mktitle;

%macro runplot(ds);
%if %sysprod(graph)=1 %then

%do;
%mktitle (gplot,&ds)
proc gplot data=&ds;

plot style*price
/ haxis=0 to 150000 by 50000;

run;
quit;

%end;
%else

%do;
%mktitle (plot,&ds)
proc plot data=&ds;

plot style*price;
run;
quit;

%end;
%mend runplot;

options mprint;

%runplot(sasuser.houses)

Executing this program writes this MPRINT output to the SAS log:

MPRINT(MKTITLE): TITLE "GPLOT of SASUSER.HOUSES";
MPRINT(RUNPLOT): PROC GPLOT DATA=SASUSER.HOUSES;
MPRINT(RUNPLOT): PLOT STYLE*PRICE / HAXIS=0 TO 150000 BY 50000;
MPRINT(RUNPLOT): RUN;

MPRINT(RUNPLOT): QUIT;

Example 2: Directing MPRINT Output to an External File Adding these statements
before the macro call in the previous program sends the MPRINT output to the file
DEBUGMAC when the SAS session ends.

options mfile mprint;
filename mprint ’debugmac’;

Macro Language Dictionary MPRINTNEST System Option 219

MPRINTNEST System Option

Allows the macro nesting information to be displayed in the MPRINT output in the SAS log

Type: System option

Valid in:
Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

Default: NOMPRINTNEST

PROC OPTIONS GROUP= MACRO

Syntax
MPRINTNEST | NOMPRINTNEST

MPRINTNEST
allows the macro nesting information to be displayed in the MPRINT output in the
SAS log.

NOMPRINTNEST
prevents the macro nesting information from being displayed in the MPRINT output
in the SAS log.

Details
MPRINTNEST allows the macro nesting information to be written to the SAS log in the
MPRINT output. This has no effect on the MPRINT output that is sent to an external
file. For more information, see MFILE System Option.

The setting of MPRINTNEST does not imply the setting of MPRINT. You must set
both MPRINT and MPRINTNEST in order for output (with the nesting information) to
be written to the SAS log.

Examples

The following example uses the MPRINT and MPRINTNEST options:

%macro outer;

data _null_;
%inner

run;

%mend outer;
%macro inner;

put %inrmost;
%mend inner;
%macro inrmost;

220 MPRINTNEST System Option Chapter 13

’This is the text of the PUT statement’
%mend inrmost;

options mprint mprintnest;
%outer

Here is the output written to the SAS log using both the MPRINT option and the
MPRINTNEST option:

MPRINT(OUTER): data _null_;
MPRINT(OUTER.INNER): put
MPRINT(OUTER.INNER.INRMOST): ’This is the text of the PUT statement’
MPRINT(OUTER.INNER): ;
MPRINT(OUTER): run;
This is the text of the PUT statement
NOTE: DATA statement used (Total process time):

real time 0.10 seconds
cpu time 0.06 seconds

Here is an example that uses the NOMPRINTNEST option:

%macro outer;
data _null_;
%inner

run;

%mend outer;
%macro inner;

put %inrmost;
%mend inner;
%macro inrmost;

’This is the text of the PUT statement’
%mend inrmost;

options nomprintnest;
%outer

Here is the output written to the SAS log using the NOMPRINTNEST option:

MPRINT(OUTER): data _null_;
MPRINT(INNER): put
MPRINT(INRMOST): ’This is the text of the PUT statement’
MPRINT(INNER): ;
MPRINT(OUTER): run;
This is the text of the PUT statement
NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.01 seconds

Macro Language Dictionary MSTORED System Option 221

MRECALL System Option

Controls whether autocall libraries are searched for a member not found during an earlier search

Type: System option

Valid in:
Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

Default: NOMRECALL

PROC OPTIONS GROUP= MACRO

Syntax
MRECALL | NOMRECALL

MRECALL
searches the autocall libraries for an undefined macro name each time an attempt is
made to invoke the macro. It is inefficient to search the autocall libraries repeatedly
for an undefined macro. Generally, use this option when you are developing or
debugging programs that call autocall macros.

NOMRECALL
searches the autocall libraries only once for a requested macro name.

Details
Use the MRECALL option primarily for

� developing systems that require macros in autocall libraries.

� recovering from errors caused by an autocall to a macro that is in an unavailable
library. Use MRECALL to call the macro again after making the library available.
In general, do not use MRECALL unless you are developing or debugging autocall
macros.

MSTORED System Option

Controls whether stored compiled macros are available

Type: System option

Valid in:
Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

Default: NOMSTORED

222 MSYMTABMAX= System Option Chapter 13

PROC OPTIONS GROUP= MACRO

Syntax
MSTORED | NOMSTORED

MSTORED
searches for stored compiled macros in a catalog in the SAS data library referenced
by the SASMSTORE= option.

NOMSTORED
does not search for compiled macros.

Details
Regardless of the setting of MSTORED, the macro facility first searches for macros
compiled in the current SAS session. If the MSTORED option is in effect, the macro
facility next searches the libraries containing compiled stored macros. If the
MAUTOSOURCE option is in effect, the macro facility next searches the autocall
libraries.

MSYMTABMAX= System Option

Specifies the maximum amount of memory available to the macro variable symbol table(s)

Type: System option
Valid in:

Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

PROC OPTIONS GROUP= MACRO

Syntax
MSYMTABMAX= n | nK | nM | nG | MAX

n specifies the maximum memory available in bytes.

nK specifies the maximum memory available in kilobytes.

nM specifies the maximum memory available in megabytes.

nG specifies the maximum memory available in gigabytes.

MAX specifies the maximum memory available as the largest integer your
operating environment can represent.

Macro Language Dictionary MVARSIZE= System Option 223

Details
Once the maximum value is reached, additional macro variables are written out to disk.

The value you specify with the MSYMTABMAX= system option can range from 0 to
the largest non-negative integer representable on your operating environment. The
default values are host dependent. A value of 0 causes all macro symbol tables to be
written to disk.

The value of MSYMTABMAX= can affect system performance. If this option is set too
low and the application frequently reaches the specified memory limit, then disk I/O
increases. If this option is set too high (on some operating environments) and the
application frequently reaches the specified memory limit, then less memory is
available for the application, and CPU usage increases. Before you specify the value for
production jobs, run tests to determine the optimum value.

MVARSIZE= System Option

Specifies the maximum size for in-memory macro variable values

Type: System option
Valid in:

Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

PROC OPTIONS GROUP= MACRO

Syntax
MVARSIZE= n | nK | nM | nG | MAX

n specifies the maximum memory available in bytes.

nK specifies the maximum memory available in kilobytes.

nM specifies the maximum memory available in megabytes.

nG specifies the maximum memory available in gigabytes.

MAX specifies the maximum memory of 65534.

Details
If the memory required for a macro variable value is larger than the MVARSIZE=
value, the variable is written to a temporary catalog on disk. The macro variable name
is used as the member name, and all members have the type MSYMTAB.

The value you specify with the MVARSIZE= system option can range from 0 to
65534. A value of 0 causes all macro variable values to be written to disk.

The value of MVARSIZE= can affect system performance. If this option is set too low
and the application frequently creates macro variables larger than the limit, then disk
I/O increases. Before you specify the value for production jobs, run tests to determine
the optimum value.

224 %NRBQUOTE Function Chapter 13

%NRBQUOTE Function

Masks special characters, including & and %, and mnemonic operators in a resolved value at
macro execution

Type: Macro quoting function

Syntax
%NRBQUOTE (character string | text expression)

See “%BQUOTE and %NRBQUOTE Functions” on page 165

Note: The maximum level of nesting for the macro quoting functions is 10. �

%NRQUOTE Function

Masks special characters, including & and %, and mnemonic operators in a resolved value at
macro execution

Type: Macro quoting function

Syntax
%NRQUOTE (character string | text expression)

See “%QUOTE and %NRQUOTE Functions” on page 230.

Note: The maximum level of nesting for the macro quoting functions is 10. �

%NRSTR Function

Masks special characters, including & and %, and mnemonic operators in constant text during
macro compilation

Type: Macro quoting function

Syntax
%NRSTR (character-string)

See “%STR and %NRSTR Functions” on page 239.

Note: The maximum level of nesting for the macro quoting functions is 10. �

Macro Language Dictionary %PUT Statement 225

%PUT Statement

Writes text or macro variable information to the SAS log

Type: Macro statement
Restriction: Allowed in macro definitions or open code

Syntax
%PUT <text | _ALL_ | _AUTOMATIC_ | _GLOBAL_ | _LOCAL_ | _USER_>;

no argument
places a blank line in the SAS log.

text
is text or a text expression that is written to the SAS log. If text is longer than the
current line size, the remainder of the text appears on the next line. The %PUT
statement removes leading and trailing blanks from text unless you use a macro
quoting function.

ALL
lists the values of all user-generated and automatic macro variables.

AUTOMATIC
lists the values of automatic macro variables. The automatic variables listed depend
on the SAS products installed at your site and on your operating system. The scope
is identified as AUTOMATIC.

GLOBAL
lists user-generated global macro variables. The scope is identified as GLOBAL.

LOCAL
lists user-generated local macro variables. The scope is the name of the currently
executing macro.

USER
describes user-generated global and local macro variables. The scope is identified
either as GLOBAL, or as the name of the macro in which the macro variable is
defined.

Details
When you use the %PUT statement to list macro variable descriptions, the %PUT
statement includes only the macro variables that exist at the time the statement
executes. The description contains the macro variable’s scope, name, and value. Macro
variables with null values show only the scope and name of the variable. Characters in
values that have been quoted with macro quoting functions remain quoted. Values that
are too long for the current line size wrap to the next line or lines. Macro variables are
listed in order from the current local macro variables outward to the global macro
variables.

Note: Within a particular scope, macro variables may appear in any order, and the
order may change in different executions of the %PUT statement or different SAS

226 %PUT Statement Chapter 13

sessions. Do not write code that depends on locating a variable in a particular position
in the list. �

The following figure shows the relationship of these terms.

Figure 13.1 %PUT Arguments by Type and Scope

Scope

Global

Local

_A
UTOM

ATIC
_

_U
SER_

GLOBAL

LOCAL
(current macro only)

(The only local automatic
variable is SYSPBUFF.)

Automatic User-GeneratedType

ALL

The %PUT statement displays text in different colors to generate messages that look
like ERROR, NOTE, and WARNING messages generated by SAS. To display text in
different colors, the first word in the %PUT statement must be ERROR, NOTE, or
WARNING, followed immediately by a colon or a hyphen. You may also use the
national-language equivalents of these words. When you use a hyphen, the ERROR,
NOTE, or WARNING word is blanked out.

Examples

Example 1: Displaying Text The following statements illustrate using the %PUT
statement to write text to the SAS log:

%put One line of text.;
%put %str(Use a semicolon(;) to end a SAS statement.);
%put %str(Enter the student%’s address.);

When you submit these statements, these lines appear in the SAS log:

One line of text.
Use a semicolon(;) to end a SAS statement.
Enter the student’s address.

Example 2: Displaying Automatic Variables To display all automatic variables, submit

%put _automatic_;

The result in the SAS log (depending on the products installed at your site) lists the
scope, name, and value of each automatic variable:

AUTOMATIC SYSBUFFR
AUTOMATIC SYSCMD
AUTOMATIC SYSDATE 21JUN97
AUTOMATIC SYSDAY Wednesday
AUTOMATIC SYSDEVIC
AUTOMATIC SYSDSN _NULL_

Macro Language Dictionary %PUT Statement 227

AUTOMATIC SYSENV FORE
AUTOMATIC SYSERR 0
AUTOMATIC SYSFILRC 0
AUTOMATIC SYSINDEX 0
AUTOMATIC SYSINFO 0

Example 3: Displaying User-Generated Variables This example lists the
user-generated macro variables in all referencing environments or scopes.

%macro myprint(name);
proc print data=&name;

title "Listing of &name on &sysdate";
footnote "&foot";

run;
%put _user_;

%mend myprint;

%let foot=Preliminary Data;

%myprint(consumer)

The %PUT statement writes these lines to the SAS log:

MYPRINT NAME consumer
GLOBAL FOOT Preliminary Data

Notice that SYSDATE does not appear because it is an automatic macro variable.
To display the user-generated variables after macro MYPRINT finishes, submit

another %PUT statement.

%put _user_;

The result in the SAS log does not list the macro variable NAME because it was local
to MYPRINT and ceased to exist when MYPRINT finished execution.

GLOBAL FOOT Preliminary Data

Example 4: Displaying Local Variables This example displays the macro variables
that are local to macro ANALYZE.

%macro analyze(name,vars);

proc freq data=&name;
tables &vars;

run;

%put FIRST LIST:;
%put _local_;

%let firstvar=%scan(&vars,1);

proc print data=&name;
where &firstvar ne .;

run;

%put SECOND LIST:;
%put _local_;

%mend analyze;

228 %QCMPRES Autocall Macro Chapter 13

%analyze(consumer,car house stereo)

In the result, printed in the SAS log, the macro variable FIRSTVAR, which was
created after the first %PUT _LOCAL_ statement, appears only in the second list.

FIRST LIST:
ANALYZE NAME consumer
ANALYZE VARS car house stereo

SECOND LIST:
ANALYZE NAME consumer
ANALYZE VARS car house stereo
ANALYZE FIRSTVAR car

%QCMPRES Autocall Macro
Compresses multiple blanks, removes leading and trailing blanks, and returns a result that masks
special characters and mnemonic operators

Type: Autocall macro
Requires: MAUTOSOURCE system option

Syntax
%QCMPRES (text | text expression)

See “%CMPRES and %QCMPRES Autocall Macros” on page 168.

Note: Autocall macros are included in a library supplied by SAS. This library might
not be installed at your site or might be a site-specific version. If you cannot access this
macro or if you want to find out if it is a site-specific version, see your SAS Software
Consultant. For more information, see Chapter 9, “Storing and Reusing Macros,” on
page 105. �

%QLEFT Autocall

Left-aligns an argument by removing leading blanks and returns a result that masks special
characters and mnemonic operators

Type: Autocall macro
Requires: MAUTOSOURCE system option

Syntax
%QLEFT (text | text expression)

See “%LEFT and %QLEFT Autocall Macro” on page 197.

Macro Language Dictionary %QSUBSTR Function 229

Note: Autocall macros are included in a library supplied by SAS. This library might
not be installed at your site or might be a site-specific version. If you cannot access this
macro or if you want to find out if it is a site-specific version, see your SAS Software
Consultant. For more information, see Chapter 9, “Storing and Reusing Macros,” on
page 105. �

%QLOWCASE Autocall Macro

Changes uppercase characters to lowercase and returns a result that masks special characters and
mnemonic operators

Type: Autocall macro
Requires: MAUTOSOURCE system option

Syntax
%QLOWCASE(text | text expression)

See “%LOWCASE and %QLOWCASE Autocall Macros” on page 201.

Note: Autocall macros are included in a library supplied by SAS. This library might
not be installed at your site or might be a site-specific version. If you cannot access this
macro or if you want to find out if it is a site-specific version, see your SAS Software
Consultant. For more information, see Chapter 9, “Storing and Reusing Macros,” on
page 105. �

%QSCAN Function

Searches for a word and masks special characters and mnemonic operators

Type: Macro function

Syntax
%QSCAN (argument,n<,delimiters>)

See “%SCAN and %QSCAN Functions” on page 236 .

%QSUBSTR Function

Produces a substring and masks special characters and mnemonic operators

Type: Macro function

230 %QSYSFUNC Function Chapter 13

Syntax
%QSUBSTR (argument, position<, length>)

See “%SUBSTR and %QSUBSTR Functions” on page 241.

%QSYSFUNC Function

Executes functions and masks special characters and mnemonic operators

Type: Macro function

Syntax
%QSYSFUNC (function(function-arg-list)<, format>)

See “%SYSFUNC and %QSYSFUNC Functions” on page 277.

%QTRIM Autocall Macro

Trims trailing blanks and returns a result that masks special characters and mnemonic operators

Type: Autocall macro
Requires: MAUTOSOURCE system option

Syntax
%QTRIM (text | text expression)

See “%TRIM and %QTRIM Autocall Macro” on page 303.

Note: Autocall macros are included in a library supplied by SAS. This library might
not be installed at your site or might be a site-specific version. If you cannot access this
macro or if you want to find out if it is a site-specific version, see your SAS Software
Consultant. For more information, see Chapter 9, “Storing and Reusing Macros,” on
page 105. �

%QUOTE and %NRQUOTE Functions

Mask special characters and mnemonic operators in a resolved value at macro execution

Macro Language Dictionary %QUOTE and %NRQUOTE Functions 231

Type: Macro quoting functions
See also:

“%BQUOTE and %NRBQUOTE Functions” on page 165
“%NRBQUOTE Function” on page 224
“%NRSTR Function” on page 224
“%SUPERQ Function” on page 244

Syntax
%QUOTE (character string | text expression)

%NRQUOTE (character string | text expression)

Details
The %QUOTE and %NRQUOTE functions mask a character string or resolved value of
a text expression during execution of a macro or macro language statement. They mask
the following special characters and mnemonic operators:

+ − * / < > = ^ ~ ; , blank
AND OR NOT EQ NE LE LT GE GT

They also mask the following characters when they occur in pairs and when they are
not matched and are marked by a preceding %:

’ "

In addition, %NRQUOTE masks

& %

%NRQUOTE is most useful when an argument may contain a macro variable
reference or macro invocation that you do not want resolved.

For a description of quoting in SAS macro language, see Chapter 7, “Macro Quoting,”
on page 75.

Note: The maximum level of nesting for the macro quoting functions is 10. �

Comparisons
� %QUOTE and %NRQUOTE mask the same items as %STR and %NRSTR,

respectively. However, %STR and %NRSTR mask constant text instead of a
resolved value. And, %STR and %NRSTR work when a macro compiles, while
%QUOTE and %NRQUOTE work when a macro executes.

� The %BQUOTE and %NRBQUOTE functions do not require that quotation marks
without a match be marked with a preceding %, while %QUOTE and %NRQUOTE
do. Matching parentheses are required in quoting functions.

� %QUOTE and %NRQUOTE mask resolved values, while the %SUPERQ function
prevents resolution of any macro invocations or macro variable references that
may occur in a value.

Example

Example 1: Quoting a Value that May Contain a Mnemonic Operator The macro DEPT1
receives abbreviations for states and therefore might receive the value OR for Oregon.

232 %QUPCASE Function Chapter 13

%macro dept1(state);
/* without %quote -- problems may occur */

%if &state=nc %then
%put North Carolina Department of Revenue;

%else %put Department of Revenue;
%mend dept1;

%dept1(or)

When the macro DEPT1 executes, the %IF condition implicitly executes a %EVAL
function, which evaluates or as a logical operator in this expression. Then the macro
processor produces an error message for an invalid operand in the expression or=nc.

The macro DEPT2 uses the %QUOTE function to treat characters that result from
resolving &STATE as text:

%macro dept2(state);
/* with %quote function--problems are prevented */

%if %quote(&state)=nc %then
%put North Carolina Department of Revenue;

%else %put Department of Revenue;
%mend dept2;

%dept2(or)

The %IF condition now compares the strings or and nc and writes to the SAS log:

Department of Revenue

%QUPCASE Function

Converts a value to uppercase and returns a result that masks special characters and mnemonic
operators

Type: Macro function

Syntax
%QUPCASE (character string | text expression)

See “%UPCASE and %QUPCASE Functions” on page 306.

RESOLVE Function

Resolves the value of a text expression during DATA step execution

Type: SAS language function

Macro Language Dictionary RESOLVE Function 233

Syntax
RESOLVE(argument)

argument
can be one of the following items:

� a text expression enclosed in single quotation marks (to prevent the macro
processor from resolving the argument while the DATA step is being
constructed). When a macro variable value contains a macro variable reference,
RESOLVE attempts to resolve the reference. If argument references a
nonexistent macro variable, RESOLVE returns the unresolved reference. These
examples using text expressions show how to assign the text generated by
macro LOCATE or assign the value of the macro variable NAME:

x=resolve(’%locate’);
x=resolve(’&name’);

� the name of a DATA step variable whose value is a text expression. For
example, this example assigns the value of the text expression in the current
value of the DATA step variable ADDR1 to X:

addr1=’&locate’;
x=resolve(addr1);

� a character expression that produces a text expression for resolution by the
macro facility. For example, this example uses the current value of the DATA
step variable STNUM in building the name of a macro:

x=resolve(’%state’||left(stnum));

Details
The RESOLVE function returns a character value that is the maximum length of a
DATA step character variable unless you explicitly assign the target variable a shorter
length. A returned value that is longer is truncated.

If RESOLVE cannot locate the macro variable or macro identified by the argument, it
returns the argument without resolution and the macro processor issues a warning
message.

You can create a macro variable with the SYMPUT routine and use RESOLVE to
resolve it in the same DATA step.

Comparisons
� RESOLVE resolves the value of a text expression during execution of a DATA step

or SCL program, whereas a macro variable reference resolves when a DATA step
is being constructed or an SCL program is being compiled. For this reason, the
resolved value of a macro variable reference is constant during execution of a
DATA step or SCL program. However, RESOLVE can return a different value for a
text expression in each iteration of the program.

� RESOLVE accepts a wider variety of arguments than the SYMGET function
accepts. SYMGET resolves only a single macro variable but RESOLVE resolves
any macro expression. Using RESOLVE may result in the execution of macros and
resolution of more than one macro variable.

234 %RETURN Statement Chapter 13

� When a macro variable value contains an additional macro variable reference,
RESOLVE attempts to resolve the reference, but SYMGET does not.

� If argument references a nonexistent macro variable, RESOLVE returns the
unresolved reference, whereas SYMGET returns a missing value.

� Because of its greater flexibility, RESOLVE requires slightly more computer
resources than SYMGET.

Example

Example 1: Resolving Sample References This example shows RESOLVE used with a
macro variable reference, a macro invocation, and a DATA step variable whose value is
a macro invocation.

%let event=Holiday;
%macro date;

New Year
%mend date;

data test;
length var1-var3 $ 15;
when=’%date’;
var1=resolve(’&event’); /* macro variable reference */
var2=resolve(’%date’); /* macro invocation */
var3=resolve(when); /* DATA step variable with macro invocation */

put var1= var2= var3=;
run;

Executing this program writes these lines to the SAS log:

VAR1=Holiday VAR2=New Year VAR3=New Year
NOTE: The data set WORK.TEST has 1 observations and 4 variables.

%RETURN Statement

Execution causes normal termination of the currently executing macro

Type: Macro Statement
Restriction: Valid only in a macro definition

Syntax
%RETURN;

Details
The %RETURN macro causes normal termination of the currently executing macro.

Example

In this example, if the error variable is set to 1, then the macro will stop executing
and the DATA step will not execute.

Macro Language Dictionary SASAUTOS= System Option 235

%macro checkit(error);
%if &error = 1 %then %return;

data a;
x=1;

run;

%mend checkit;

%checkit(0)
%checkit(1)

SASAUTOS= System Option

Specifies one or more autocall libraries

Type: System option

Valid in:
Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

PROC OPTIONS GROUP= ENVFILES
MACRO

Syntax
SASAUTOS= library-specification |

(library-specification-1 . . . , library-specification-n)

library-specification
identifies a location that contains library members that contain a SAS macro
definition. A location can be a SAS fileref or a host-specific location name enclosed in
quotation marks. Each member contains a SAS macro definition.

(library-specification-1 . . . , library-specification-n)
identifies two or more locations that contain library members that contain a SAS
macro definition. A location can be a SAS fileref or a host-specific location name
enclosed in quotation marks. When you specify two or more autocall libraries,
enclose the specifications in parentheses and separate them with either a comma or a
blank space.

Details
When SAS searches for an autocall macro definition, it opens and searches each
location in the same order that it is specified in the SASAUTOS option. If SAS cannot

236 SASMSTORE= System Option Chapter 13

open any specified location, it generates a warning message and sets the
NOMAUTOSOURCE system option on. To use the autocall facility again in the same
SAS session, you must specify the MAUTOSOURCE option again.

For more information, refer to Chapter 9, “Storing and Reusing Macros,” on page 105.

Operating Environment Information: You specify a source library by using a fileref or
by enclosing the host-specific location name in quotation marks. A valid library
specification and its syntax are host specific. Although the syntax is generally
consistent with the command-line syntax of your operating environment, it may include
additional or alternate punctuation. For details, see the SAS documentation for your
operating environment. �

SASMSTORE= System Option
Specifies the libref of a SAS library with a catalog that contains, or will contain, stored compiled
SAS macros

Type: System option
Valid in:

Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

PROC OPTIONS GROUP= MACRO

Syntax
SASMSTORE=libref

libref
specifies the libref of a SAS data library that contains, or will contain, a catalog of
stored compiled SAS macros. This libref cannot be WORK.

%SCAN and %QSCAN Functions
Search for a word that is specified by its position in a string

Type: Macro functions
See also:

“%NRBQUOTE Function” on page 224
“%STR and %NRSTR Functions” on page 239

Syntax
%SCAN(argument, n<, delimiters>)

Macro Language Dictionary %SCAN and %QSCAN Functions 237

%QSCAN(argument, n<, delimiters>)

argument
is a character string or a text expression. If argument might contain a special
character or mnemonic operator, listed below, use %QSCAN. If argument contains a
comma, enclose argument in a quoting function, for example, %QUOTE(argument).

n
is an integer or a text expression that yields an integer, which specifies the position
of the word to return. (An implied %EVAL gives n numeric properties.) If n is
greater than the number of words in argument, the functions return a null string.

delimiters
specifies an optional list of one or more characters that separate “words” or text
expressions that yield one or more characters. To use a single blank or a single
comma as the only delimiter, you must enclose the character in the %STR function,
for example %STR()or %STR(,). The delimiters recognized by %SCAN and %QSCAN
vary between ASCII and EBCDIC systems. If you omit delimiters, SAS treats these
characters as default delimiters:

ASCII systems
blank . < (+ & ! $ *); ^ − / , % |

EBCDIC systems
blank . < (+ | & ! $ *); − / , % ¦ ¢
If delimiters includes any of the default delimiters for your system, the remaining

default delimiters are treated as text.
To determine if you are using an ASCII or EBCDIC system, see the SAS

companion for your operating system.

Details
The %SCAN and %QSCAN functions search argument and return the nth word. A word
is one or more characters separated by one or more delimiters.

%SCAN does not mask special characters or mnemonic operators in its result, even
when the argument was previously masked by a macro quoting function. %QSCAN
masks the following special characters and mnemonic operators in its result:

& % ’ " () + − * / < > = ^ ~ ; , blank
AND OR NOT EQ NE LE LT GE GT

Comparisons
%QSCAN masks the same characters as the %NRBQUOTE function.

Example

Example 1: Comparing the Actions of %SCAN and %QSCAN This example illustrates
the actions of %SCAN and %QSCAN.

%macro a;
aaaaaa

%mend a;
%macro b;

bbbbbb

238 SERROR System Option Chapter 13

%mend b;
%macro c;

cccccc
%mend c;

%let x=%nrstr(%a*%b*%c);
%put X: &x;
%put The third word in X, with SCAN: %scan(&x,3,*);
%put The third word in X, with QSCAN: %qscan(&x,3,*);

The %PUT statement writes these lines to the log:

X: %a*%b*%c
The third word in X, with SCAN: cccccc
The third word in X, with QSCAN: %c

SERROR System Option

Controls whether the macro processor issues a warning message when a macro variable reference
cannot be resolved

Type: System option
Valid in:

Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

Default: SERROR
PROC OPTIONS GROUP= MACRO

Syntax
SERROR | NOSERROR

SERROR
issues a warning message when the macro processor cannot match a macro variable
reference to an existing macro variable.

NOSERROR
issues no warning messages when the macro processor cannot match a macro
variable reference to an existing macro variable.

Details
Several conditions can occur that prevent a macro variable reference from resolving.
These conditions appear when one or more of the following is true:

� the name in a macro variable reference is misspelled.

� the variable is referenced before being defined.

Macro Language Dictionary %STR and %NRSTR Functions 239

� the program contains an ampersand (&) followed by a string, without intervening
blanks between the ampersand and the string. For example:

if x&y then do;
if buyer="Smith&Jones, Inc." then do;

If your program uses a text string containing ampersands and you want to suppress
the warnings, specify NOSERROR.

%STR and %NRSTR Functions

Mask special characters and mnemonic operators in constant text at macro compilation

Type: Macro quoting function
See also: “%NRQUOTE Function” on page 224

Syntax
%STR (character-string)

%NRSTR (character-string)

Details
The %STR and %NRSTR functions mask a character string during compilation of a
macro or macro language statement. They mask the following special characters and
mnemonic operators:

+ − * / < > = ^ ~ ; , blank
AND OR NOT EQ NE LE LT GE GT

They also mask the following characters when they occur in pairs and when they are
not matched and are marked by a preceding %:

’ " ()

In addition, %NRSTR also masks the following characters:

& %

240 %STR and %NRSTR Functions Chapter 13

When an argument contains... Use...

percent sign before a quotation mark - for
example, %’ or %”,

percent sign with quotation mark

EXAMPLE: %let percent=%str(Jim%’s office);

percent sign before a parenthesis - for example,
%(or %)

two percent signs (%%):

EXAMPLE: %let x=%str(20%%);

character string with the comment symbols /* or
–>

%STR with each character

EXAMPLE: %str(/) %str(*) comment-text
%str(*)%str(/)

%STR is most useful for character strings that contain

� a semicolon that should be treated as text rather than as part of a macro program
statement

� blanks that are significant

� a quotation mark or parenthesis without a match.

Putting the same argument within nested %STR and %QUOTE functions is
redundant. This example shows an argument that is masked at macro compilation by
the %STR function and so remains masked at macro execution. Thus, in this example,
the %QUOTE function used here has no effect.

%quote(%str(argument))

CAUTION:
Do not use %STR to enclose other macro functions or macro invocations that have a list of
parameter values. Because %STR masks parentheses without a match, the macro
processor does not recognize the arguments of a function or the parameter values of a
macro invocation. �

For a description of quoting in SAS macro language, see Chapter 7, “Macro Quoting,”
on page 75.

Note: The maximum level of nesting for macro quoting functions is 10. �

Comparisons
� Of all the macro quoting functions, only %NRSTR and %STR take effect during

compilation. The other macro quoting functions take effect when a macro executes.

� %STR and %NRSTR mask the same items as %QUOTE and %NRQUOTE.
However, %QUOTE and %NRQUOTE work during macro execution.

� If resolution of a macro expression will produce items that need to be masked, use
the %BQUOTE or %NRBQUOTE function instead of the %STR or %NRSTR
function.

Examples

Example 1: Maintaining Leading Blanks This example enables the value of the macro
variable TIME to contain leading blanks.

Macro Language Dictionary %SUBSTR and %QSUBSTR Functions 241

%let time=%str(now);

%put Text followed by the value of time:&time;

Executing this example writes these lines to the SAS log:

Text followed by the value of time: now

Example 2: Protecting a Blank So That It Will Be Compiled As Text This example
specifies that %QSCAN use a blank as the delimiter between words.

%macro words(string);
%local count word;
%let count=1;
%let word=%qscan(&string,&count,%str());
%do %while(&word ne);

%let count=%eval(&count+1);
%let word=%qscan(&string,&count,%str());

%end;
%let count=%eval(&count-1);
%put The string contains &count words.;

%mend words;

%words(This is a very long string)

Executing this program writes these lines to the SAS log:

The string contains 6 words.

Example 3: Quoting a Value That May Contain a Macro Reference The macro REVRS
reverses the characters produced by the macro TEST. %NRSTR in the %PUT statement
protects %test&test so that it is compiled as text and not interpreted.

%macro revrs(string);
%local nstring;
%do i=%length(&string) %to 1 %by -1;

%let nstring=&nstring%qsubstr(&string,&i,1);
%end;nstring

%mend revrs;

%macro test;
Two words

%mend test;

%put %nrstr(%test&test) - %revrs(%test&test);

Executing this program writes these lines to the SAS log:

%test&test - tset&sdrow owT

%SUBSTR and %QSUBSTR Functions

Produce a substring of a character string

Type: Macro functions
See also: “%NRBQUOTE Function” on page 224

242 %SUBSTR and %QSUBSTR Functions Chapter 13

Syntax
%SUBSTR (argument, position<, length>)

%QSUBSTR (argument, position<, length>)

argument
is a character string or a text expression. If argument might contain a special
character or mnemonic operator, listed below, use %QSUBSTR.

position
is an integer or an expression (text, logical, or arithmetic) that yields an integer,
which specifies the position of the first character in the substring. If position is
greater than the number of characters in the string, %SUBSTR and %QSUBSTR
issue a warning message and return a null value. An automatic call to %EVAL
causes n to be treated as a numeric value.

length
is an optional integer or an expression (text, logical, or arithmetic) that yields an
integer that specifies the number of characters in the substring. If length is greater
than the number of characters following position in argument, %SUBSTR and
%QSUBSTR issue a warning message and return a substring containing the
characters from position to the end of the string. By default, %SUBSTR and
%QSUBSTR produce a string containing the characters from position to the end of
the character string.

Details
The %SUBSTR and %QSUBSTR functions produce a substring of argument, beginning
at position, for length number of characters.

%SUBSTR does not mask special characters or mnemonic operators in its result,
even when the argument was previously masked by a macro quoting function.
%QSUBSTR masks the following special characters and mnemonic operators:

& % ’ " () + − * / < > = ^ ~ ; , blank
AND OR NOT EQ NE LE LT GE GT

Comparisons
%QSUBSTR masks the same characters as the %NRBQUOTE function.

Examples

Example 1: Limiting a Fileref to Eight Characters The macro MAKEFREF uses
%SUBSTR to assign the first eight characters of a parameter as a fileref, in case a user
assigns one that is longer.

%macro makefref(fileref,file);
%if %length(&fileref) gt 8 %then

%let fileref = %substr(&fileref,1,8);
filename &fileref "&file";

%mend makefref;

Macro Language Dictionary %SUBSTR and %QSUBSTR Functions 243

%makefref(humanresource,/dept/humanresource/report96)

SAS sees the following statement:

FILENAME HUMANRES "/dept/humanresource/report96";

Example 2: Storing a Long Macro Variable Value In Segments The macro SEPMSG
separates the value of the macro variable MSG into 40-character units and stores each
unit in a separate variable.

%macro sepmsg(msg);
%let i=1;
%let start=1;
%if %length(&msg)>40 %then

%do;
%do %until(%length(&&msg&i)<40);

%let msg&i=%qsubstr(&msg,&start,40);
%put Message &i is: &&msg&i;
%let i=%eval(&i+1);
%let start=%eval(&start+40);
%let msg&i=%qsubstr(&msg,&start);

%end;
%put Message &i is: &&msg&i;

%end;
%else %put No subdivision was needed.;

%mend sepmsg;

%sepmsg(%nrstr(A character operand was found in the %EVAL function
or %IF condition where a numeric operand is required. A character
operand was found in the %EVAL function or %IF condition where a
numeric operand is required.));

Executing this program writes these lines to the SAS log:

Message 1 is: A character operand was found in the %EV
Message 2 is: AL function or %IF condition where a nu
Message 3 is: meric operand is required. A character
Message 4 is: operand was found in the %EVAL function
Message 5 is: or %IF condition where a numeric operan
Message 6 is: d is required.

Example 3: Comparing Actions of %SUBSTR and %QSUBSTR Because the value of C is
masked by %NRSTR, the value is not resolved at compilation. %SUBSTR produces a
resolved result because it does not mask special characters and mnemonic operators in
C before processing it, even though the value of C had previously been masked with the
%NRSTR function.

%let a=one;
%let b=two;
%let c=%nrstr(&a &b);

%put C: &c;
%put With SUBSTR: %substr(&c,1,2);
%put With QSUBSTR: %qsubstr(&c,1,2);

244 %SUPERQ Function Chapter 13

Executing these statements writes these lines to the SAS log:

C: &a &b
With SUBSTR: one
With QSUBSTR: &a

%SUPERQ Function

Masks all special characters and mnemonic operators at macro execution but prevents further
resolution of the value

Type: Macro quoting function
See also:

“%NRBQUOTE Function” on page 224
“%BQUOTE and %NRBQUOTE Functions” on page 165

Syntax
%SUPERQ (argument)

argument
is the name of a macro variable with no leading ampersand or a text expression that
produces the name of a macro variable with no leading ampersand.

Details
The %SUPERQ function returns the value of a macro variable without attempting to
resolve any macros or macro variable references in the value. %SUPERQ masks the
following special characters and mnemonic operators:

& % ’ " () + − * / < > = ^ ~ ; , blank
AND OR NOT EQ NE LE LT GE GT

%SUPERQ is particularly useful for masking macro variables that might contain an
ampersand or a percent sign when they are used with the %INPUT or %WINDOW
statement, or the SYMPUT routine.

For a description of quoting in SAS macro language, see Chapter 7, “Macro Quoting,”
on page 75.

Note: The maximum level of nesting for the macro quoting functions is 10. �

Comparisons
� %SUPERQ is the only quoting function that prevents the resolution of macro

variables and macro references in the value of the specified macro variable.
� %SUPERQ accepts only the name of a macro variable as its argument, without an

ampersand, while the other quoting functions accept any text expression, including
constant text, as an argument.

� %SUPERQ masks the same characters as the %NRBQUOTE function. However,
%SUPERQ does not attempt to resolve anything in the value of a macro variable,

Macro Language Dictionary SYMBOLGEN System Option 245

while %NRBQUOTE attempts to resolve any macro references or macro variable
values in the argument before masking the result.

Example

Example 1: Passing Unresolved Macro Variable Values In this example, %SUPERQ
prevents the macro processor from attempting to resolve macro references in the values
of MV1 and MV2 before assigning them to macro variables TESTMV1 and TESTMV2.

data _null_;
call symput(’mv1’,’Smith&Jones’);
call symput(’mv2’,’%macro abc;’);

run;

%let testmv1=%superq(mv1);
%let testmv2=%superq(mv2);

%put Macro variable TESTMV1 is &testmv1;
%put Macro variable TESTMV2 is &testmv2;

Executing this program writes these lines to the SAS log:

Macro variable TESTMV1 is Smith&Jones
Macro variable TESTMV2 is %macro abc;

You might think of the values of TESTMV1 and TESTMV2 as “pictures” of the
original values of MV1 and MV2. The %PUT statement then writes the pictures in its
text. Because the macro processor does not attempt resolution, it does not issue a
warning message for the unresolved reference &JONES or an error message for
beginning a macro definition inside a %LET statement.

SYMBOLGEN System Option

Controls whether the results of resolving macro variable references are displayed for debugging

Type: System option
Alias: SGEN | NOSGEN
Valid in:

Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

Default: NOSYMBOLGEN
PROC OPTIONS GROUP= MACRO

246 SYMBOLGEN System Option Chapter 13

Syntax
SYMBOLGEN | NOSYMBOLGEN

SYMBOLGEN
displays the results of resolving macro variable references. This option is useful for
debugging.

NOSYMBOLGEN
does not display results of resolving macro variable references.

Details
SYMBOLGEN displays the results in this form:

SYMBOLGEN: Macro variable name resolves to value

SYMBOLGEN also indicates when a double ampersand (&&) resolves to a single
ampersand (&).

Example

Example 1: Tracing Resolution of Macro Variable References In this example,
SYMBOLGEN traces the resolution of macro variable references when the macros
MKTITLE and RUNPLOT execute:

%macro mktitle(proc,data);
title "%upcase(&proc) of %upcase(&data)";

%mend mktitle;

%macro runplot(ds);
%if %sysprod(graph)=1 %then

%do;
%mktitle (gplot,&ds)
proc gplot data=&ds;

plot style*price
/ haxis=0 to 150000 by 50000;

run;
quit;

%end;
%else

%do;
%mktitle (plot,&ds)
proc plot data=&ds;

plot style*price;
run;
quit;

%end;
%mend runplot;

%runplot(sasuser.houses)

Executing this program writes this SYMBOLGEN output to the SAS log:

SYMBOLGEN: Macro variable DS resolves to sasuser.houses
SYMBOLGEN: Macro variable PROC resolves to gplot

Macro Language Dictionary SYMDEL Call Routine 247

SYMBOLGEN: Macro variable DATA resolves to sasuser.houses
SYMBOLGEN: Macro variable DS resolves to sasuser.houses

%SYMDEL Statement

Deletes the specified variables(s) from the macro global symbol table

Type: Macro Statement

Syntax
%SYMDEL macro-variable(s)</option>;

macro-variable(s)
is the name of one or more macro variables or a text expression that generates one or
more macro variable names. You cannot use a SAS variable list or a macro
expression that generates a SAS variable list in a %SYMDEL statement.

options

NOWARN
suppresses the warning message when an attempt is made to delete a non-existent
macro variable.

Details
%SYMDEL statement issues a warning when an attempt is made to delete a
non-existent macro variable. To suppress this message, use the NOWARN option.

SYMDEL Call Routine

Deletes the specified variable from the macro global symbol table

Type: SAS call routine

Syntax
CALL SYMDEL(<macro-variable>(<macro-variable><, option>);

macro-variable
can be any of the following:

� the name of a macro variable within quotation marks but without an
ampersand. When a macro variable value contains another macro variable
reference, SYMDEL does not attempt to resolve the reference.

248 %SYMEXIST Function Chapter 13

� the name of a DATA step character variable, specified with no quotation marks,
which contains the name of a macro variable. If the value is not a valid SAS
name, or if the macro processor cannot find a macro variable of that name, SAS
writes a warning to the log.

� a character expression that constructs a macro variable name.

option(s)

NOWARN
suppresses the warning message when an attempt is made to delete a non-existent
macro variable.

Details
Call SYMDEL issues a warning when an attempt is made to delete a non-existent
macro variable. To suppress this message, use the NOWARN option.

%SYMEXIST Function

Returns an indication of the existence of a macro variable

Type: Macro function

Syntax
%SYMEXIST(macro-variable-name)

Required Argument

macro-variable-name
is the name of a macro variable or a text expression that yields the name of a macro
variable.

Details
The %SYMEXIST function searches any enclosing local symbol tables and then the
global symbol table for the indicated macro variable and returns a value of 1 if the
macro variable is found or a value of 0 if the macro variable is not found.

Macro Language Dictionary SYMEXIST Function 249

Examples

The following example uses the %IF %THEN %ELSE macro statement to change the
value of 1 and 0 to TRUE and FALSE respectively:

%global x;
%macro test;

%local y;
%if %symexist(x) %then %put %nrstr(%symexist(x)) = TRUE;

%else %put %nrstr(%symexist(x)) = FALSE;
%if %symexist(y) %then %put %nrstr(%symexist(y)) = TRUE;

%else %put %nrstr(%symexist(y)) = FALSE;
%if %symexist(z) %then %put %nrstr(%symexist(z)) = TRUE;

%else %put %nrstr(%symexist(z)) = FALSE;
%mend test;
%test;

In the previous example, executing the %TEST macro writes the following output to the
SAS log:

%symexist(x) = TRUE
%symexist(y) = TRUE
%symexist(z) = FALSE

SYMEXIST Function

Returns an indication of the existence of a macro variable

Type: SAS language function

Syntax
SYMEXIST (argument)

Required Argument

argument
can be one of the following items:

� the name of a macro variable within double quotation marks but without an
ampersand

� the name of a DATA step character variable, specified with no quotation marks,
which contains a macro variable name

� a character expression that constructs a macro variable name.

250 SYMGET Function Chapter 13

Details
The SYMEXIST function searches any enclosing local symbol tables and then the global
symbol table for the indicated macro variable and returns a value of 1 if the macro
variable is found or a value of 0 if the macro variable is not found.

Examples

The following example of the %TEST macro contains the SYMEXIST function:

%global x;
%macro test;
%local y;
data null;

if symexist("x") then put "x EXISTS";
else put "x does not EXIST";

if symexist("y") then put "y EXISTS";
else put "y does not EXIST";

if symexist("z") then put "z EXISTS";
else put "z does not EXIST";

run;
%mend test;
%test;

In the previous example, executing the %TEST macro, which contains the SYMEXIST
function, writes the following output to the SAS log:

x EXISTS
y EXISTS
z does not EXIST

SYMGET Function

Returns the value of a macro variable to the DATA step during DATA step execution

Type: SAS language function

See also:
“RESOLVE Function” on page 232
“SYMGETN Function” on page 253
“SYMPUT Routine” on page 259
“SYMPUTN Routine” on page 263

Syntax
SYMGET(argument)

Macro Language Dictionary SYMGET Function 251

argument
can be one of the following items:

� the name of a macro variable within quotation marks but without an
ampersand. When a macro variable value contains another macro variable
reference, SYMGET does not attempt to resolve the reference. If argument
references a nonexistent macro variable, SYMGET returns a missing value.
This example shows how to assign the value of the macro variable G to the
DATA step variable X.

x=symget(’g’);

� the name of a DATA step character variable, specified with no quotation marks,
which contains names of one or more macro variables. If the value is not a valid
SAS name, or if the macro processor cannot find a macro variable of that name,
SAS writes a note to the log that the function has an illegal argument and sets
the resulting value to missing. For example, these statements assign the value
stored in the DATA step variable CODE, which contains a macro variable name,
to the DATA step variable KEY:

length key $ 8;
input code $;
key=symget(code);

Each time the DATA step iterates, the value of CODE supplies the name of a
macro variable whose value is then assigned to KEY.

� a character expression that constructs a macro variable name. For example,
this statement assigns the letter s and the number of the current iteration
(using the automatic DATA step variable _N_).

score=symget(’s’||left(_n_));

Details
SYMGET returns a character value that is the maximum length of a DATA step
character variable. A returned value that is longer is truncated.

If SYMGET cannot locate the macro variable identified as the argument, it returns a
missing value, and the program issues a message for an illegal argument to a function.

SYMGET can be used in all SAS language programs, including SCL programs.
Because it resolves variables at program execution instead of macro execution,
SYMGET should be used to return macro values to DATA step views, SQL views, and
SCL programs.

Comparisons
� SYMGET returns values of macro variables during program execution, whereas

the SYMPUT function assigns values that are produced by a program to macro
variables during program execution.

� SYMGET accepts fewer types of arguments than the RESOLVE function.
SYMGET resolves only a single macro variable. Using RESOLVE may result in
the execution of macros and further resolution of values.

� SYMGET is available in all SAS programs, but SYMGETN is available only in
SCL programs.

Example

Example 1: Retrieving Variable Values Previously Assigned from a Data Set

data dusty;
input dept $ name $ salary @@;

252 SYMGET Function Chapter 13

datalines;
bedding Watlee 18000 bedding Ives 16000
bedding Parker 9000 bedding George 8000
bedding Joiner 8000 carpet Keller 20000
carpet Ray 12000 carpet Jones 9000
gifts Johnston 8000 gifts Matthew 19000
kitchen White 8000 kitchen Banks 14000
kitchen Marks 9000 kitchen Cannon 15000
tv Jones 9000 tv Smith 8000
tv Rogers 15000 tv Morse 16000
;

proc means noprint;
class dept;
var salary;
output out=stats sum=s_sal;

run;

proc print data=stats;
var dept s_sal;
title "Summary of Salary Information";
title2 "For Dusty Department Store";

run;

data _null_;
set stats;
if _n_=1 then call symput(’s_tot’,s_sal);
else call symput(’s’||dept,s_sal);

run;

data new;
set dusty;
pctdept=(salary/symget(’s’||dept))*100;
pcttot=(salary/&s_tot)*100;

run;

proc print data=new split="*";
label dept ="Department"

name ="Employee"
pctdept="Percent of *Department* Salary"
pcttot ="Percent of * Store * Salary";

format pctdept pcttot 4.1;
title "Salary Profiles for Employees";
title2 "of Dusty Department Store";

run;

This program produces the output shown in the following output.

Macro Language Dictionary SYMGETN Function 253

Output 13.1 Intermediate Data Set and Final Report

Summary of Salary Information 1
For Dusty Department Store

OBS DEPT S_SAL

1 221000
2 bedding 59000
3 carpet 41000
4 gifts 27000
5 kitchen 46000
6 tv 48000

Salary Profiles for Employees 2
Dusty Department Store

Percent of Percent of
Department Store

OBS Department Employee SALARY Salary Salary

1 bedding Watlee 18000 30.5 8.1
2 bedding Ives 16000 27.1 7.2
3 bedding Parker 9000 15.3 4.1
4 bedding George 8000 13.6 3.6
5 bedding Joiner 8000 13.6 3.6
6 carpet Keller 20000 48.8 9.0
7 carpet Ray 12000 29.3 5.4
8 carpet Jones 9000 22.0 4.1
9 gifts Johnston 8000 29.6 3.6

10 gifts Matthew 19000 70.4 8.6
11 kitchen White 8000 17.4 3.6
12 kitchen Banks 14000 30.4 6.3
13 kitchen Marks 9000 19.6 4.1
14 kitchen Cannon 15000 32.6 6.8
15 tv Jones 9000 18.8 4.1
16 tv Smith 8000 16.7 3.6
17 tv Rogers 15000 31.3 6.8
18 tv Morse 16000 33.3 7.2

SYMGETN Function
In SAS Component Control Language (SCL) programs, returns the value of a global macro variable
as a numeric value

Type: SCL function
See also:

“SYMGET Function” on page 250
“SYMPUT Routine” on page 259
“SYMPUTN Routine” on page 263

Syntax
SCL-variable=SYMGETN(’macro-variable’);

254 %SYMGLOBL Function Chapter 13

SCL variable
is the name of a numeric SCL variable to contain the value stored in macro-variable.

macro-variable
is the name of a global macro variable with no ampersand – note the single quotation
marks. Or, the name of an SCL variable that contains the name of a global macro
variable.

Details
SYMGETN returns the value of a global macro variable as a numeric value and stores it
in the specified numeric SCL variable. You can also use SYMGETN to retrieve the value
of a macro variable whose name is stored in an SCL variable. For example, to retrieve
the value of SCL variable UNITVAR, whose value is ’UNIT’, submit the following code:

unitnum=symgetn(unitvar)

SYMGETN returns values when SCL programs execute. If SYMGETN cannot locate
macro-variable, it returns a missing value.

To return the value stored in a macro variable when an SCL program compiles, use a
macro variable reference in an assignment statement:

SCL variable=¯o-variable;

Note: It is inefficient to use SYMGETN to retrieve values that are not assigned with
SYMPUTN and values that are not numeric. �

Comparisons
� SYMGETN is available only in SCL programs, but SYMGET is available in DATA

step programs and SCL programs.

� SYMGETN retrieves values, but SYMPUTN assigns values.

Example

Example 1: Storing a Macro Variable Value as a Numeric Value In an SCL
Program This statement stores the value of the macro variable UNIT in the SCL
variable UNITNUM when the SCL program executes:

unitnum=symgetn(’unit’);

%SYMGLOBL Function

Returns an indication as to whether a macro variable is global in scope

Type: Macro function

Syntax
%SYMGLOBL(macro-variable-name)

Macro Language Dictionary SYMGLOBL Function 255

Required Argument

macro-variable-name
is a name of a macro variable or a text expression that yields the name of a macro
variable.

Details
The %SYMGLOBL function searches only the global symbol table for the indicated
macro variable and returns a value of 1 if the macro variable is found or a value of 0 if
the macro variable is not found. See Chapter 5, “Scopes of Macro Variables,” on page 41
for more information on the global and local symbol tables and macro variable scopes.

Examples

The following example uses the %IF %THEN %ELSE macro statement to change the
values of 1 and 0 to TRUE and FALSE respectively:

%global x;
%macro test;

%local y;
%if %symglobl(x) %then %put %nrstr(%symglobl(x)) = TRUE;

%else %put %nrstr(%symglobl(x)) = FALSE;
%if %symglobl(y) %then %put %nrstr(%symglobl(y)) = TRUE;

%else %put %nrstr(%symglobl(y)) = FALSE;
%if %symglobl(z) %then %put %nrstr(%symglobl(z)) = TRUE;

%else %put %nrstr(%symglobl(z)) = FALSE;
%mend test;
%test;

In the example above, executing the %TEST macro writes the following output to the
SAS log:

%symglobl(x) = TRUE
%symglobl(y) = FALSE
%symglobl(z) = FALSE

SYMGLOBL Function

Returns an indication as to whether a macro variable is global in scope to the DATA step during
DATA step execution

Type: SAS language function

Syntax
SYMGLOBL (argument)

256 %SYMLOCAL Function Chapter 13

Required Argument

argument
can be one of the following items:

� the name of a macro variable within double quotation marks but without an
ampersand

� the name of a DATA step character variable, specified with no quotation marks,
that contains a macro variable name

� a character expression that constructs a macro variable name.

Details

The SYMGLOBL function searches only the global symbol table for the indicated macro
variable and returns a value of 1 if the macro variable is found or a value of 0 if the
macro variable is not found. See Chapter 5, “Scopes of Macro Variables,” on page 41 for
more information on the global and local symbol tables and macro variable scopes.

Examples

The following example of the %TEST macro contains the SYMGLOBL function:

%global x;
%macro test;
%local y;
data null;

if symglobl("x") then put "x is GLOBAL";
else put "x is not GLOBAL";

if symglobl("y") then put "y is GLOBAL";
else put "y is not GLOBAL";

if symglobl("z") then put "z is GLOBAL";
else put "z is not GLOBAL";

run;
%mend test;
%test;

In the previous example, executing the %TEST macro, which contains the SYMGLOBL
function, writes the following output to the SAS log:

x is GLOBAL
y is not GLOBAL
z is not GLOBAL

%SYMLOCAL Function

Returns an indication as to whether a macro variable is local in scope

Type: Macro function

Macro Language Dictionary SYMLOCAL Function 257

Syntax
%SYMLOCAL(macro-variable-name)

Required Argument

macro-variable-name
is the name of a macro variable or a text expression that yields the name of a macro
variable.

Details
The %SYMLOCAL searches enclosing local symbol tables for the indicated macro
variable and returns a value of 1 if the macro variable is found or a value 0 if the macro
variable is not found. See Chapter 5, “Scopes of Macro Variables,” on page 41 for more
information on the global and local symbol tables and macro variable scopes.

Examples

The following example uses the %IF %THEN %ELSE macro statement to change the
values of 1 and 0 to TRUE and FALSE respectively:

%global x;
%macro test;

%local y;
%if %symlocal(x) %then %put %nrstr(%symlocal(x)) = TRUE;

%else %put %nrstr(%symlocal(x)) = FALSE;
%if %symlocal(y) %then %put %nrstr(%symlocal(y)) = TRUE;

%else %put %nrstr(%symlocal(y)) = FALSE;
%if %symlocal(z) %then %put %nrstr(%symlocal(z)) = TRUE;

%else %put %nrstr(%symlocal(z)) = FALSE;
%mend test;
%test;

In the example above, executing the %TEST macro writes the following output to the
SAS log:

%symlocal(x) = FALSE
%symlocal(y) = TRUE
%symlocal(z) = FALSE

SYMLOCAL Function

Returns an indication as to whether a macro variable is local in scope to the DATA step during
DATA step execution

Type: SAS language function

258 SYMLOCAL Function Chapter 13

Syntax

SYMLOCAL (argument)

Required Argument

argument
can be one of the following items:

� the name of a macro variable within double quotation marks but without an
ampersand

� the name of a DATA step character variable, specified with no quotation marks,
that contains a macro variable name

� a character expression that constructs a macro variable name.

Details

The SYMLOCAL function searches the enclosing local symbol tables for the indicated
macro variable and returns a value of 1 if the macro variable is found or a value of 0 if
the macro variable is not found. See Chapter 5, “Scopes of Macro Variables,” on page 41
for more information on the global and local symbol tables and macro variable scopes.

Examples

The following example of the %TEST macro contains the SYMLOCAL function:

%global x;
%macro test;
%local y;
data null;

if symlocal("x") then put "x is LOCAL";
else put "x is not LOCAL";

if symlocal("y") then put "y is LOCAL";
else put "y is not LOCAL";

if symlocal("z") then put "z is LOCAL";
else put "z is not LOCAL";

run;
%mend test;
%test;

In the previous example, executing the %TEST macro, which contains the SYMLOCAL
function, writes the following output to the SAS log:

x is not LOCAL
y is LOCAL
z is not LOCAL

Macro Language Dictionary SYMPUT Routine 259

SYMPUT Routine

Assigns a value produced in a DATA step to a macro variable

Type: SAS language routine
See also: “SYMGET Function” on page 250

Syntax
CALL SYMPUT(macro-variable, value);

macro-variable
can be one of the following items:

� a character string that is a SAS name, enclosed in quotation marks. For
example, to assign the character string testing to macro variable NEW, submit
the following statement:

call symput(’new’,’testing’);

� the name of a character variable whose values are SAS names. For example,
this DATA step creates the three macro variables SHORTSTP, PITCHER, and
FRSTBASE and respectively assign them the values ANN, TOM, and BILL.

data team1;
input position : $8. player : $12.;
call symput(position,player);

datalines;
shortstp Ann
pitcher Tom
frstbase Bill
;

� a character expression that produces a macro variable name. This form is
useful for creating a series of macro variables. For example, the CALL
SYMPUT statement builds a series of macro variable names by combining the
character string POS and the left-aligned value of _N_ and assigns values to the
macro variables POS1, POS2, and POS3.

data team2;
input position : $12. player $12.;
call symput(’POS’||left(_n_), position);
datalines;

shortstp Ann
pitcher Tom
frstbase Bill
;

value
is the value to be assigned, which can be

� a string enclosed in quotation marks. For example, this statement assigns the
string testing to the macro variable NEW:

call symput(’new’,’testing’);

260 SYMPUT Routine Chapter 13

� the name of a numeric or character variable. The current value of the variable
is assigned as the value of the macro variable. If the variable is numeric, SAS
performs an automatic numeric-to-character conversion and writes a message in
the log. Later sections on formatting rules describe the rules that SYMPUT
follows in assigning character and numeric values of DATA step variables to
macro variables.

Note: This form is most useful when macro-variable is also the name of a
SAS variable or a character expression that contains a SAS variable because a
unique macro variable name and value can be created from each observation, as
shown in the previous example for creating the data set TEAM1. �

If macro-variable is a character string, SYMPUT creates only one macro
variable, and its value changes in each iteration of the program. Only the value
assigned in the last iteration remains after program execution is finished.

� a DATA step expression. The value returned by the expression in the current
observation is assigned as the value of macro-variable. In this example, the
macro variable named HOLDATE receives the value July 4,1997:

data c;
input holiday mmddyy.;
call symput(’holdate’,trim(left(put(holiday,worddate.))));

datalines;
070497
;
run;

If the expression is numeric, SAS performs an automatic
numeric-to-character conversion and writes a message in the log. Later sections
on formatting rules describe the rules that SYMPUT follows in assigning
character and numeric values of expressions to macro variables.

Details
If macro-variable does not exist, SYMPUT creates it. SYMPUT makes a macro variable
assignment when the program executes.

SYMPUT can be used in all SAS language programs, including SCL programs.
Because it resolves variables at program execution instead of macro execution,
SYMPUT should be used to assign macro values from DATA step views, SQL views, and
SCL programs.

Concepts

Scope of Variables Created with SYMPUT SYMPUT puts the macro variable in the
most local nonempty symbol table. A symbol table is nonempty if it contains

� a value

� a computed %GOTO (A computed %GOTO contains % or & and resolves to a label.)

� the macro variable &SYSPBUFF, created at macro invocation time.

However, there are three cases where SYMPUT creates the variable in the local
symbol table, even if that symbol table is empty:

� Beginning with Version 8, if SYMPUT is used after a PROC SQL, the variable will
be created in a local symbol table.

� If an executing macro contains a computed %GOTO statement and uses SYMPUT
to create a macro variable, the variable is created in the local symbol table.

Macro Language Dictionary SYMPUT Routine 261

� If an executing macro uses &SYSPBUFF and SYMPUT to create a macro variable,
the macro variable is created in the local symbol table.

For more information on creating a variable with SYMPUT, see Chapter 5, “Scopes of
Macro Variables,” on page 41.

Problem Trying to Reference a SYMPUT-Assigned Value Before It Is Available One of
the most common problems in using SYMPUT is trying to reference a macro variable
value assigned by SYMPUT before that variable is created. The failure generally occurs
because the statement referencing the macro variable compiles before execution of the
CALL SYMPUT statement that assigns the variable’s value. The most important fact to
remember in using SYMPUT is that it assigns the value of the macro variable during
program execution, but macro variable references resolve during the compilation of a
step, a global statement used outside a step, or an SCL program. As a result:

� You cannot use a macro variable reference to retrieve the value of a macro variable
in the same program (or step) in which SYMPUT creates that macro variable and
assigns it a value.

� You must explicitly use a step boundary statement to force the DATA step to
execute before referencing a value in a global statement following the program (for
example, a TITLE statement). The boundary could be a RUN statement or
another DATA or PROC statement. For example:

data x;
x=’December’;
call symput(’var’,x);

proc print;
title "Report for &var";
run;

Chapter 4, “Macro Processing,” on page 33 provides details about compilation and
execution.

Formatting Rules For Assigning Character Values If value is a character variable,
SYMPUT writes it using the $w. format, where w is the length of the variable.
Therefore, a value shorter than the length of the program variable is written with
trailing blanks. For example, in the following DATA step the length of variable C is 8
by default. Therefore, SYMPUT uses the $8. format and assigns the letter x followed
by seven trailing blanks as the value of CHAR1. To eliminate the blanks, use the TRIM
function as shown in the second SYMPUT statement.

data char1;
input c $;
call symput(’char1’,c);
call symput(’char2’,trim(c));
datalines;

x
;
run;

%put char1 = ***&char1***;
%put char2 = ***&char2***;

Executing this program writes these lines to the SAS log:

char1 = ***x ***
char2 = ***x***

262 SYMPUT Routine Chapter 13

Formatting Rules For Assigning Numeric Values If value is a numeric variable,
SYMPUT writes it using the BEST12. format. The resulting value is a 12-byte string
with the value right-aligned within it. For example, this DATA step assigns the value of
numeric variable X to the macro variables NUM1 and NUM2. The last CALL SYMPUT
statement deletes undesired leading blanks by using the LEFT function to left-align the
value before the SYMPUT routine assigns the value to NUM2.

data _null_;
x=1;
call symput(’num1’,x);
call symput(’num2’,left(x));
call symput(’num3’,trim(left(put(x,8.)))); /*preferred technique*/

run;

%put num1 = ***&num1***;
%put num2 = ***&num2***;
%put num3 = ***&num3***;

Executing this program writes these lines to the SAS log:

num1 = *** 1***
num2 = ***1 ***
num3 = ***1***

Comparisons
� SYMPUT assigns values produced in a DATA step to macro variables during

program execution, but the SYMGET function returns values of macro variables to
the program during program execution.

� SYMPUT is available in DATA step and SCL programs, but SYMPUTN is
available only in SCL programs.

� SYMPUT assigns character values, but SYMPUTN assigns numeric values.

Example

Example 1: Creating Macro Variables and Assigning Them Values from a Data Set

data dusty;
input dept $ name $ salary @@;
datalines;

bedding Watlee 18000 bedding Ives 16000
bedding Parker 9000 bedding George 8000
bedding Joiner 8000 carpet Keller 20000
carpet Ray 12000 carpet Jones 9000
gifts Johnston 8000 gifts Matthew 19000
kitchen White 8000 kitchen Banks 14000
kitchen Marks 9000 kitchen Cannon 15000
tv Jones 9000 tv Smith 8000
tv Rogers 15000 tv Morse 16000
;

proc means noprint;
class dept;
var salary;
output out=stats sum=s_sal;

run;

Macro Language Dictionary SYMPUTN Routine 263

data _null_;
set stats;
if _n_=1 then call symput(’s_tot’,trim(left(s_sal)));
else call symput(’s’||dept,trim(left(s_sal)));

run;

%put _user_;

Executing this program writes these lines this list of variables to the SAS log:

GLOBAL SCARPET 41000
GLOBAL SKITCHEN 46000
GLOBAL STV 48000
GLOBAL SGIFTS 27000
GLOBAL SBEDDING 59000
GLOBAL S_TOT 221000

SYMPUTN Routine

In SCL programs, assigns a numeric value to a global macro variable

Type: SCL routine

See also:
“SYMGET Function” on page 250
“SYMGETN Function” on page 253
“SYMPUT Routine” on page 259

Syntax
CALL SYMPUTN(’macro-variable’, value);

macro-variable
is the name of a global macro variable with no ampersand – note the single quotation
marks. Or, it is the name of an SCL variable that contains the name of a global
macro variable.

value
is the numeric value to assign, which can be a number or the name of a numeric SCL
variable.

Details
The SYMPUTN routine assigns a numeric value to a global SAS macro variable.
SYMPUTN assigns the value when the SCL program executes. You can also use
SYMPUTN to assign the value of a macro variable whose name is stored in an SCL
variable. For example, to assign the value of SCL variable UNITNUM to SCL variable
UNITVAR, which contains ’UNIT’, submit the following:

call symputn(unitvar,unitnum)

264 SYSBUFFR Automatic Macro Variable Chapter 13

You must use SYMPUTN with a CALL statement.

Note: It is inefficient to use an ampersand (&) to reference a macro variable that
was created with CALL SYMPUTN. Instead, use SYMGETN. It is also inefficient to use
CALL SYMPUTN to store a variable that does not contain a numeric value. �

Comparisons
� SYMPUTN assigns numeric values, but SYMPUT assigns character values.
� SYMPUTN is available only in SCL programs, but SYMPUT is available in DATA

step programs and SCL programs.
� SYMPUTN assigns numeric values, but SYMGETN retrieves numeric values.

Example

Example 1: Storing the Value 1000 in The Macro Variable UNIT When the SCL Program
Executes This statement stores the value 1000 in the macro variable UNIT when the
SCL program executes:

call symputn(’unit’,1000);

SYSBUFFR Automatic Macro Variable

Contains text that is entered in response to a %INPUT statement when there is no corresponding
macro variable

Type: Automatic macro variable (read and write)

Details
Until the first execution of a %INPUT statement, SYSBUFFR has a null value.
However, SYSBUFFR receives a new value during each execution of a %INPUT
statement, either the text entered in response to the %INPUT statement where there is
no corresponding macro variable or a null value. If a %INPUT statement contains no
macro variable names, all characters entered are assigned to SYSBUFFR.

Example

Example 1: Assigning Text to SYSBUFFR This %INPUT statement accepts the values
of the two macro variables WATRFALL and RIVER:

%input watrfall river;

If you enter the following text, there is not a one-to-one match between the two
variable names and the text:

Angel Tributary of Caroni

For example, you can submit these statements:

%put WATRFALL contains: *&watrfall*;
%put RIVER contains: *&river*;
%put SYSBUFFR contains: *&sysbuffr*;

After execution, they produce this output in the SAS log:

Macro Language Dictionary %SYSCALL Statement 265

WATRFALL contains: *Angel*
RIVER contains: *Tributary*
SYSBUFFR contains: * of Caroni*

As the SAS log demonstrates, the text stored in SYSBUFFR includes leading and
embedded blanks.

%SYSCALL Statement

Invokes a SAS call routine

Type: Macro statement
Restriction: Allowed in macro definitions or in open code
See also: “%SYSFUNC and %QSYSFUNC Functions” on page 277

Syntax
%SYSCALL call-routine<(call-routine-argument(s))>;

call-routine
is a SAS or user-written CALL routine created with SAS/TOOLKIT. All SAS call
routines are accessible with %SYSCALL except LABEL, VNAME, SYMPUT, and
EXECUTE.

call-routine-argument(s)
is one or more macro variable names (with no leading ampersands), separated by
commas. You can use a text expression to generate part or all of the CALL routine
arguments.

Details
When %SYSCALL invokes a CALL routine, the value of each macro variable argument
is retrieved and passed to the CALL routine. Upon completion of the CALL routine, the
value for each argument is written back to the respective macro variable. If
%SYSCALL encounters an error condition, the execution of the CALL routine
terminates without updating the macro variable values, an error message is written to
the log, and macro processing continues.

CAUTION:
Do not use leading ampersands on macro variable names. The arguments in the CALL
routine invoked by the %SYSCALL macro are resolved before execution. If you use
leading ampersands, then the values of the macro variables are passed to the CALL
routine rather than the names of the macro variables. �

CAUTION:
Macro variables contain only character data. When an argument to a function may be
either numeric data or character data, %SYSCALL attempts to convert the supplied
data to numeric data. This causes truncation of any trailing blanks if the data was
character data. %SYSCALL does not modify arguments that may only be character
data.

266 SYSCC Automatic Macro Variable Chapter 13

You can preserve the trailing blanks by using the %QUOTE function when
assigning the value to the macro variable that will be supplied as the argument to
the function. To determine whether it is necessary to preserve the trailing blanks
using the %QUOTE function, consult the documentation for the desired function to
see whether the arguments are numeric only, character only, or either numeric or
character. Use the %QUOTE function to quote the value supplied to arguments
which are documented to be either numeric or character. �

Example

Example 1: Using the RANUNI Call Routine with %SYSCALL This example illustrates
the %SYSCALL statement. The macro statement %SYSCALL RANUNI(A,B) invokes
the SAS CALL routine RANUNI.

Note: The syntax for RANUNI is RANUNI(seed,x). �

%let a = 123456;
%let b = 0;
%syscall ranuni(a,b);
%put &a, &b;

The %PUT statement writes the following values of the macro variables A and B to
the SAS log:

1587033266 0.739019954

SYSCC Automatic Macro Variable

Contains the current condition code that SAS returns to your operating environment (the operating
environment condition code)

Type: Automatic macro variable (read and write)

Details
SYSCC is a read/write automatic macro variable that enables you to reset the job
condition code and to recover from conditions that prevent subsequent steps from
running.

A normal exit internally to SAS is 0. The host code translates the internal value to a
meaningful condition code by each host for each operating environment. &SYSCC of 0
at SAS termination is the value of success for that operating environment’s return code.

The following are examples of successful condition codes:

Operating Environment Value

z/OS RC 0

OpenVMS $STATUS = 1

Macro Language Dictionary SYSCMD Automatic Macro Variable 267

The method to check the operating environment return code is host dependent.
The warning condition code in SAS sets &SYSCC to 4.

SYSCHARWIDTH Automatic Macro Variable

Contains the character width value

Type: Automatic macro variable (read only)

Details
The character width value is either 1 (narrow) or 2 (wide).

SYSCMD Automatic Macro Variable

Contains the last unrecognized command from the command line of a macro window

Restriction: Automatic macro variable (read and write)

Details
The value of SYSCMD is null before each execution of a %DISPLAY statement. If

you enter a word or phrase on the command line of a macro window and the windowing
environment does not recognize the command, SYSCMD receives that word or phrase
as its value. This is the only way to change the value of SYSCMD, which otherwise is a
read-only variable. Use SYSCMD to enter values on the command line that work like
user-created windowing commands.

Example

Example 1: Processing Commands Entered In a Macro Window The macro definition
START creates a window in which you can use the command line to enter any
windowing command. If you type an invalid command, a message informs you that the
command is not recognized. When you type QUIT on the command line, the window
closes and the macro terminates.

%macro start;
%window start

#5 @28 ’Welcome to the SAS System’
#10 @28 ’Type QUIT to exit’;

%let exit = 0;
%do %until (&exit=1);

%display start;
%if &syscmd ne %then %do;

%if %upcase(&syscmd)=QUIT %then %let exit=1;
%else %let sysmsg=&syscmd not recognized;

%end;

268 SYSDATE Automatic Macro Variable Chapter 13

%end;
%mend start;

SYSDATE Automatic Macro Variable

Contains the date that a SAS job or session began executing

Restriction: Automatic macro variable (read only)
See also: “SYSDATE9 Automatic Macro Variable” on page 269

Details
SYSDATE contains a SAS date value in the DATE7. format, which displays a two-digit
date, the first three letters of the month name, and a two-digit year. The date does not
change during the individual job or session. As an example, you could use SYSDATE in
programs to check the date before you execute code that you want to run on certain
dates of the month.

Example

Example 1: Formatting a SYSDATE Value Macro FDATE assigns a format you specify
to the value of SYSDATE:

%macro fdate(fmt);
%global fdate;
data _null_;

call symput("fdate",left(put("&sysdate"d,&fmt)));
run;

%mend fdate;

%fdate(worddate.)
title "Tests for &fdate";

If you execute this macro on July 28, 1998, SAS sees the statements:

DATA _NULL_;
CALL SYMPUT("FDATE",LEFT(PUT("28JUL98"D,WORDDATE.)));

RUN;
TITLE "Tests for July 28, 1998";

For another method of formatting the current date, see the %SYSFUNC and
%QSYSFUNC functions.

Macro Language Dictionary SYSDATE9 Automatic Macro Variable 269

SYSDATE9 Automatic Macro Variable

Contains the date that a SAS job or session began executing

Restriction: Automatic macro variable (read only)

See also: “SYSDATE Automatic Macro Variable” on page 268

Details
SYSDATE9 contains a SAS date value in the DATE9. format, which displays a
two-digit date, the first three letters of the month name, and a four-digit year. The date
does not change during the individual job or session. As an example, you could use
SYSDATE9 in programs to check the date before you execute code that you want to run
on certain dates of the month.

Example

Example 1: Formatting a SYSDATE9 Value Macro FDATE assigns a format you specify
to the value of SYSDATE9:

%macro fdate(fmt);
%global fdate;
data _null_;

call symput("fdate",left(put("&sysdate9"d,&fmt)));
run;

%mend fdate;

%fdate(worddate.)
title "Tests for &fdate";

If you execute this macro on July 28, 2003, SAS sees the statements:

DATA _NULL_;
CALL SYMPUT("FDATE",LEFT(PUT("28JUL2003"D,WORDDATE.)));

RUN;
TITLE "Tests for July 28, 2003";

For another method of formatting the current date, see the %SYSFUNC and
%QSYSFUNC functions.

270 SYSDAY Automatic Macro Variable Chapter 13

SYSDAY Automatic Macro Variable

Contains the day of the week that a SAS job or session began executing

Type: Automatic macro variable (read only)

Details
You can use SYSDAY to check the current day before executing code that you want to
run on certain days of the week, provided you initialized your SAS session today.

Example

Example 1: Identifying the Day When a SAS Session Started The following statement
identifies the day and date when a SAS session started running.

%put This SAS session started running on: &sysday, &sysdate9.;

Executing this statement on Thursday, December 19, 2002 for a SAS session that
began executing on Tuesday, December 17, 2002, writes this to the SAS log:

This SAS session started running on: Tuesday, 17DEC2002

SYSDEVIC Automatic Macro Variable

Contains the name of the current graphics device

Type: Automatic macro variable (read and write)

Details
The current graphics device is the one specified at invocation of SAS. You can specify
the graphics device on the command line in response to a prompt when you use a
product that uses SAS/GRAPH. You can also specify the graphics device in a
configuration file. The name of the current graphics device is also the value of the SAS
system option DEVICE=.

For details, see the SAS documentation for your operating environment.

Comparisons
Assigning a value to SYSDEVIC is the same as specifying a value for the DEVICE=
system option.

Macro Language Dictionary SYSDSN Automatic Macro Variable 271

SYSDMG Automatic Macro Variable

Contains a return code that reflects an action taken on a damaged data set

Type: Automatic macro variable (read and write)

Default: 0

Details

You can use the value of SYSDMG as a condition to determine further action to take.
SYSDMG can contain the following values:

Value Description

0 No repair of damaged data sets in this session. (Default)

1 One or more automatic repairs of damaged data sets has occurred.

2 One or more user-requested repairs of damaged data sets has occurred.

3 One or more opens failed because the file was damaged.

4 One or more SAS tasks were terminated because of a damaged data set.

SYSDSN Automatic Macro Variable

Contains the libref and name of the most recently created SAS data set

Type: Automatic macro variable (read and write)

See also: “SYSLAST Automatic Macro Variable” on page 282

Details

The libref and data set name are displayed in two left-aligned fields. If no SAS data set
has been created in the current program, SYSDSN returns eight blanks followed by
NULL followed by two more blanks.

Comparisons

� Assigning a value to SYSDSN is the same as specifying a value for the _LAST_=
system option.

� The value of SYSLAST is often more useful than SYSDSN because the value of
SYSLAST is formatted so that you can insert a reference to it directly into SAS
code in place of a data set name.

272 SYSENV Automatic Macro Variable Chapter 13

Example

Example 1: Comparing Values Produced by SYSDSN and SYSLAST Create a data set
WORK.TEST and then enter the following statements:

%put Sysdsn produces: *&sysdsn*;
%put Syslast produces: *&syslast*;

Executing these statements writes the following lines to the SAS log:

Sysdsn produces: *WORK TEST *
Syslast produces: *WORK.TEST *

When the libref or data set name contain fewer than eight characters, SYSDSN
maintains the blanks for the unused characters. SYSDSN does not display a period
between the libref and data set name fields.

SYSENV Automatic Macro Variable

Reports whether SAS is running interactively

Type: Automatic macro variable (read only)

Details
The value of SYSENV is independent of the source of input. The following are values
for SYSENV:

FORE
when the SAS system option TERMINAL is in effect. For example, the value is
FORE when you run SAS interactively through a windowing environment.

BACK
when the SAS system option NOTERMINAL is in effect. For example, the value is
BACK when you submit a SAS job in batch mode.

You can use SYSENV to check the execution mode before submitting code that
requires interactive processing. To use a %INPUT statement, the value of SYSENV
must be FORE. For details, see the SAS documentation for your operating environment.

Operating Environment Information: Some operating environments do not support the
submission of jobs in batch mode. In this case the value of SYSENV is always FORE.
For details, see the SAS documentation for your operating environment. �

Macro Language Dictionary %SYSEVALF Function 273

SYSERR Automatic Macro Variable

Contains a return code status set by some SAS procedures and the DATA step

Type: Automatic macro variable (read only)

Details
You can use the value of SYSERR as a condition to determine further action to take or
to decide which parts of a SAS program to execute.

SYSERR can contain the following values:

Value Description

0 Execution completed successfully and without warning messages.

1 Execution was canceled by a user with a RUN CANCEL statement.

2 Execution was canceled by a user with an ATTN or BREAK command.

3 An error in a program run in batch or non-interactive mode caused SAS to
enter syntax-check mode.

4 Execution completed successfully but with warning messages.

>4 An error occurred. The value returned is procedure dependent.

%SYSEVALF Function

Evaluates arithmetic and logical expressions using floating-point arithmetic

Type: Macro function
See also: “%EVAL Function” on page 181

Syntax
%SYSEVALF(expression<, conversion-type>)

274 %SYSEVALF Function Chapter 13

expression
is an arithmetic or logical expression to evaluate.

conversion-type
optionally converts the value returned by %SYSEVALF to the type of value specified.
The value can then be used in other expressions that require a value of that type.
Conversion-type can be one of the following:

BOOLEAN
returns

0 if the result of the expression is 0 or missing

1 if the result is any other value.

For example,

%sysevalf(1/3,boolean) /* returns 1 */
%sysevalf(10+.,boolean) /* returns 0 */

CEIL
returns a character value representing the smallest integer that is greater than or
equal to the result of the expression. If the result is within 10—12 of an integer, the
function returns a character value representing that integer. An expression
containing a missing value returns a missing value along with a message noting
that fact. For example,

%sysevalf(1 + 1.1,ceil) /* returns 3 */
%sysevalf(-1 -2.4,ceil) /* returns −3 */
%sysevalf(-1 + 1.e-11,ceil) /* returns −1 */
%sysevalf(10+.) /* returns . */

FLOOR
returns a character value representing the largest integer that is less than or
equal to the result of the expression. If the result is within 10—12 of an integer, the
function returns that integer. An expression with a missing value produces a
missing value. For example,

%sysevalf(-2.4,floor) /* returns −3 */
%sysevalf(3,floor) /* returns 3 */
%sysevalf(1.-1.e-13,floor) /* returns 1 */
%sysevalf(.,floor) /* returns . */

Macro Language Dictionary %SYSEVALF Function 275

INTEGER
returns a character value representing the integer portion of the result (truncates
the decimal portion). If the result of the expression is within 10—12 of an integer,
the function produces a character value representing that integer. If the result of
the expression is positive, INTEGER returns the same result as FLOOR. If the
result of the expression is negative, INTEGER returns the same result as CEIL.
An expression with a missing value produces a missing value. For example,

%put %sysevalf(2.1,integer); /* returns 2 */
%put %sysevalf(-2.4,integer); /* returns −2 */
%put %sysevalf(3,integer); /* returns 3 */
%put %sysevalf(-1.6,integer); /* returns −1 */
%put %sysevalf(1.-1.e-13,integer); /* returns 1 */

Details
The %SYSEVALF function performs floating-point arithmetic and returns a value that
is formatted using the BEST32. format. The result of the evaluation is always text.
%SYSEVALF is the only macro function that can evaluate logical expressions that
contain floating point or missing values. Specifying a conversion type can prevent
problems when %SYSEVALF returns missing or floating point values to macro
expressions or macro variables that are used in other macro expressions that require an
integer value.

For details about evaluation of expressions by the SAS macro language, see Chapter
6, “Macro Expressions,” on page 67.

Comparisons
� %SYSEVALF supports floating point numbers. However, %EVAL performs only

integer arithmetic.
� You must explicitly use the %SYSEVALF macro function in macros to evaluate

floating point expressions. However, %EVAL is used automatically by the macro
processor to evaluate macro expressions.

Example

Example 1: Illustrating Floating-Point Evaluation The macro FIGUREIT performs all
types of conversions for SYSEVALF values.

%macro figureit(a,b);
%let y=%sysevalf(&a+&b);
%put The result with SYSEVALF is: &y;
%put The BOOLEAN value is: %sysevalf(&a +&b, boolean);
%put The CEIL value is: %sysevalf(&a +&b, ceil);
%put The FLOOR value is: %sysevalf(&a +&b, floor);
%put The INTEGER value is: %sysevalf(&a +&b, int);

%mend figureit;

%figureit(100,1.597)

Executing this program writes these lines to the SAS log:

The result with SYSEVALF is: 101.597
The BOOLEAN value is: 1
The CEIL value is: 102
The FLOOR value is: 101
The INTEGER value is: 101

276 %SYSEXEC Statement Chapter 13

%SYSEXEC Statement

Issues operating environment commands

Type: Macro statement

Restriction: Allowed in macro definitions or open code

See also:
“SYSSCP and SYSSCPL Automatic Macro Variables” on page 298
“SYSRC Automatic Macro Variable” on page 296

Syntax
%SYSEXEC<command>;

no argument
puts you into operating environment mode under most operating environments,
where you can issue operating environment commands and return to your SAS
session.

command
is any operating environment command. If command contains a semicolon, use a
macro quoting function.

Details
The %SYSEXEC statement causes the operating environment to immediately execute
the command you specify and assigns any return code from the operating environment
to the automatic macro variable SYSRC. Use the %SYSEXEC statement and the
automatic macro variables SYSSCP and SYSSCPL to write portable macros that run
under multiple operating environments.

Operating Environment Information: These items related to the use of the %SYSEXEC
statement are operating environment specific:

� the availability of the %SYSEXEC statement in batch processing, noninteractive
mode, or interactive line mode

� the way you return from operating environment mode to your SAS session after
executing the %SYSEXEC statement with no argument

� the commands to use with the %SYSEXEC statement

� the return codes you get in the automatic macro variable SYSRC.

For details, see the SAS documentation for your operating environment. �

Comparisons
The %SYSEXEC statement is analogous to the X statement and the X windowing
environment command. However, unlike the X statement and the X windowing
environment command, host commands invoked with %SYSEXEC should not be
enclosed in quotation marks.

Macro Language Dictionary %SYSFUNC and %QSYSFUNC Functions 277

Example

Example 1: Executing Operating Environment-Specific Utility Programs In this macro,
ACLIB, the %SYSEXEC statement executes one of two operating environment utility
programs based on the value of the automatic macro variable SYSSCP. If the value of
SYSSCP is anything other than OS or VMS, ACLIB writes a message in the SAS log
indicating that no utilities are available.

%macro aclib;
%if %upcase(&sysscp)=OS %then

%sysexec ex ’dept.tools.clist(tiefiles)’;
%else %if %upcase(&sysscp)=VMS %then

%sysexec @tiefiles;
%else %put NO UTILITIES AVAILABLE ON &sysscp..;

%mend aclib;

SYSFILRC Automatic Macro Variable

Contains the return code from the last FILENAME statement

Type: Automatic macro variable (read and write)

Details
The return code reports whether the last FILENAME statement executed correctly.
SYSFILRC checks whether the file or storage location referenced by the last
FILENAME statement exists. You can use SYSFILRC to confirm that a file or location
is allocated before attempting to access an external file.

The following are values for SYSFILRC:

Value Description

0 The last FILENAME statement executed correctly.

≠0 The last FILENAME statement did not execute correctly.

%SYSFUNC and %QSYSFUNC Functions

Execute SAS functions or user-written functions

Type: Macro functions

Syntax
%SYSFUNC (function(argument(s))<, format>)

278 %SYSFUNC and %QSYSFUNC Functions Chapter 13

%QSYSFUNC (function(argument(s))<, format>)

function
is the name of the function to execute. This function can be a SAS function or a
function written with SAS/TOOLKIT software. The function cannot be a macro
function.

All SAS functions, except those listed Table 13.1 on page 279, can be used with
%SYSFUNC and %QSYSFUNC.

You cannot nest functions to be used with a single %SYSFUNC. However, you can
nest %SYSFUNC calls, for example,

%let x=%sysfunc(trim(%sysfunc(left(&num))));

Appendix 3, “Syntax for Selected Functions Used with the %SYSFUNC Function,”
on page 321 shows the syntax of SAS functions used with %SYSFUNC that were
introduced with SAS 6.12.

argument(s)
is one or more arguments used by function. An argument can be a macro variable
reference or a text expression that produces arguments for a function. If argument
might contain a special character or mnemonic operator, listed below, use
%QSYSFUNC.

format
is an optional format to apply to the result of function. This format can be provided
by SAS, generated by PROC FORMAT, or created with SAS/TOOLKIT. By default,
numeric results are converted to a character string using the BEST12. format and
character results are used as they are, without formatting or translation.

Details
Because %SYSFUNC is a macro function, you do not need to enclose character values in
quotation marks as you do in DATA step functions. For example, the arguments to the
OPEN function are enclosed in quotation marks when the function is used alone, but do
not require quotation marks when used within %SYSFUNC. These statements show
the difference:

�

dsid=open("sasuser.houses","i");

�

dsid=open("&mydata","&mode");

�

%let dsid = %sysfunc(open(sasuser.houses,i));

�

%let dsid=%sysfunc(open(&mydata,&mode));

All arguments in DATA step functions within %SYSFUNC must be separated by
commas. You cannot use argument lists preceded by the word OF.

%SYSFUNC does not mask special characters or mnemonic operators in its result.
%QSYSFUNC masks the following special characters and mnemonic operators in its
result:

& % ’ " () + − * / < > = ^ ~ ; , blank
AND OR NOT EQ NE LE LT GE GT

Macro Language Dictionary %SYSFUNC and %QSYSFUNC Functions 279

When a function called by %SYSFUNC or %QSYSFUNC requires a numeric
argument, the macro facility converts the argument to a numeric value. %SYSFUNC
and %QSYSFUNC can return a floating point number when the function they execute
supports floating point numbers.

Table 13.1 SAS Functions Not Available with %SYSFUNC and %QSYSFUNC

DIF DIM HBOUND

IORCMSG INPUT LAG

LBOUND MISSING PUT

RESOLVE SYMGET All Variable Information
Functions

Note: Instead of INPUT and PUT, which are not available with %SYSFUNC and
%QSYSFUNC, use INPUTN, INPUTC, PUTN, and PUTC in SAS Component
Language. �

Note: The Variable Information functions include functions such as VNAME and
VLABEL. For a complete list, see Definitions of Functions and CALL Routines in SAS
Language Reference: Dictionary. �

CAUTION:
Values returned by SAS functions may be truncated. Although values returned by macro
functions are not limited to the length imposed by the DATA step, values returned by
SAS functions do have that limitation. �

Comparisons
%QSYSFUNC masks the same characters as the %NRBQUOTE function.

Examples

Example 1: Formatting the Current Date in a TITLE Statement This example formats a
TITLE statement containing the current date using the DATE function and the
WORDDATE. format:

title "%sysfunc(date(),worddate.) Absence Report";

Executing this statement on July 18, 2000, produces this TITLE statement:

title "July 18, 2000 Absence Report"

Example 2: Formatting a Value Produced by %SYSFUNC In this example, the TRY
macro transforms the value of PARM using the PUTN function and the CATEGORY.
format.

proc format;
value category
Low-<0 = ’Less Than Zero’
0 = ’Equal To Zero’
0<-high = ’Greater Than Zero’

280 %SYSFUNC and %QSYSFUNC Functions Chapter 13

other = ’Missing’;
run;

%macro try(parm);
%put &parm is %sysfunc(putn(&parm,category.));

%mend;

%try(1.02)
%try(.)
%try(-.38)

Executing this program writes these lines to the SAS log:

1.02 is Greater Than Zero
. is Missing
-.38 is Less Than Zero

Example 3: Translating Characters %SYSFUNC executes the TRANSLATE function
to translate the Ns in a string to Ps.

%let string1 = V01N01-V01N10;
%let string1 = %sysfunc(translate(&string1,P, N));
%put With N translated to P, V01N01-V01N10 is &string1;

Executing these statements writes these lines to the SAS log:

With N translated to P, V01N01-V01N10 is V01P01-V01P10

Example 4: Confirming the Existence of a SAS Data Set The macro CHECKDS uses
%SYSFUNC to execute the EXIST function, which checks the existence of a data set:

%macro checkds(dsn);
%if %sysfunc(exist(&dsn)) %then

%do;
proc print data=&dsn;
run;

%end;
%else

%put The data set &dsn does not exist.;
%mend checkds;

%checkds(sasuser.houses)

Executing this program produces the statements:

PROC PRINT DATA=SASUSER.HOUSES;
RUN;

Example 5: Determining the Number of Variables and Observations in a Data Set
Many solutions have been generated in the past to obtain the number of variables

and observations present in a SAS data set. Most past solutions have utilized a
combination of _NULL_ DATA steps, SET statement with NOBS=, and arrays to obtain
this information. Now, you can use the OPEN and ATTRN functions to obtain this
information quickly and without interfering with step boundary conditions.

%macro obsnvars(ds);
%global dset nvars nobs;
%let dset=&ds;
%let dsid = %sysfunc(open(&dset));

Macro Language Dictionary %SYSGET Function 281

%if &dsid %then
%do;

%let nobs =%sysfunc(attrn(&dsid,NOBS));
%let nvars=%sysfunc(attrn(&dsid,NVARS));
%let rc = %sysfunc(close(&dsid));

%end;
%else

%put Open for data set &dset failed - %sysfunc(sysmsg());
%mend obsnvars;

%obsnvars(sasuser.houses)

Executing this program writes these lines to the SAS log:

sasuser.houses has 6 variable(s) and 15 observation(s).

%SYSGET Function

Returns the value of the specified operating environment variable

Type: Macro function

Syntax
%SYSGET(environment-variable)

environment-variable
is the name of an environment variable. The case of environment-variable must
agree with the case that is stored on the operating environment.

Details
The %SYSGET function returns the value as a character string. If the value is
truncated or the variable is not defined on the operating environment, %SYSGET
displays a warning message in the SAS log.

You can use the value returned by %SYSGET as a condition for determining further
action to take or parts of a SAS program to execute. For example, your program can
restrict certain processing or issue commands that are specific to a user.

For details, see the SAS documentation for your operating environment.

Example

Example 1: Using SYSGET in a UNIX Operating Environment This example returns the
id of a user on a UNIX operating environment:

%let person=%sysget(USER);
%put User is &person;

Executing these statements for user ABCDEF prints this in the SAS log:

User is abcdef

282 SYSINDEX Automatic Macro Variable Chapter 13

SYSINDEX Automatic Macro Variable

Contains the number of macros that have started execution in the current SAS job or session

Type: Automatic macro variable (read only)

Details
You can use SYSINDEX in a program that uses macros when you need a unique
number that changes after each macro invocation.

SYSINFO Automatic Macro Variable

Contains return codes provided by some SAS procedures

Type: Automatic macro variable (read only)

Details
Values of SYSINFO are described with the procedures that use it. You can use the
value of SYSINFO as a condition for determining further action to take or parts of a
SAS program to execute.

For example, PROC COMPARE, which compares two data sets, uses SYSINFO to
store a value that provides information about the result of the comparison.

SYSJOBID Automatic Macro Variable

Contains the name of the current batch job or userid

Type: Automatic macro variable (read only)

Details
The value stored in SYSJOBID depends on the operating environment that you use to
run SAS. You can use SYSJOBID to check who is currently executing the job to restrict
certain processing or to issue commands that are specific to a user.

SYSLAST Automatic Macro Variable

Contains the name of the SAS data file created most recently

Type: Automatic macro variable (read and write)

Macro Language Dictionary SYSLCKRC Automatic Macro Variable 283

See also: “SYSDSN Automatic Macro Variable” on page 271

Details
The name is stored in the form libref.dataset. You can insert a reference to SYSLAST
directly into SAS code in place of a data set name. If no SAS data set has been created
in the current program, the value of SYSLAST is _NULL_, with no leading or trailing
blanks.

Comparisons
� Assigning a value to SYSLAST is the same as specifying a value for the _LAST_=

system option.
� The value of SYSLAST is often more useful than SYSDSN because the value of

SYSLAST is formatted so that you can insert a reference to it directly into SAS
code in place of a data set name.

Examples

Example 1: Comparing Values Produced by SYSLAST and SYSDSN Create the data set
FIRSTLIB.SALESRPT and then enter the following statements:

%put Sysdsn produces: *&sysdsn*;
%put Syslast produces: *&syslast*;

Executing these statements writes this to the SAS log:

Sysdsn produces: *FIRSTLIBSALESRPT*
Syslast produces: *FIRSTLIB.SALESRPT*

The name stored in SYSLAST contains the period between the libref and data set
name.

SYSLCKRC Automatic Macro Variable

Contains the return code from the most recent LOCK statement

Type: Automatic macro variable (read and write)

Details
The LOCK statement is a Base SAS software statement used to lock data objects in
data libraries accessed through SAS/SHARE software. The following are values for
SYSLCKRC:

Value Description

0 The last LOCK statement executed correctly.

≠0 The last LOCK statement did not execute correctly.

284 SYSLIBRC Automatic Macro Variable Chapter 13

For more information, see the documentation for SAS/SHARE software.

SYSLIBRC Automatic Macro Variable

Contains the return code from the last LIBNAME statement

Type: Automatic macro variable (read and write)

Details
The code reports whether the last LIBNAME statement executed correctly. SYSLIBRC
checks whether the SAS data library referenced by the last LIBNAME statement exists.
As an example, you could use SYSLIBRC to confirm that a libref is allocated before you
attempt to access a permanent data set.

The following are values for SYSLIBRC:

Value Description

0 The last LIBNAME statement executed correctly.

≠0 The last LIBNAME statement did not execute correctly.

%SYSLPUT Statement

Creates a new macro variable or modifies the value of an existing macro variable on a remote
host or server

Type: Macro Statement
Requires: SAS/CONNECT
Restriction: Allowed in macro definitions or open code
See also:

“%LET Statement” on page 198
“%SYSRPUT Statement” on page 296

Syntax
%SYSLPUTmacro-variable=<value</REMOTE=remote-session-id>>;

macro-variable
is either the name of a macro variable or a macro expression that produces a macro
variable name. The name can refer to a new or existing macro variable on a remote
host or server.

Macro Language Dictionary SYSMENV Automatic Macro Variable 285

remote-session-id
is the name of the remote session.

value
is a string or a macro expression that yields a string. Omitting the value produces a
null (0 characters). Leading and trailing blanks are ignored. To make them
significant, enclose the value in the %STR function.

Details
The %SYSLPUT statement is submitted with SAS/CONNECT software from the local
host or client to a remote host or server to create a new macro variable on the remote
host or server, or to modify the value of an existing macro variable on the remote host
or server.

Note: The names of the macro variables on the remote and local hosts must not
contain any leading ampersands. �

To assign the value of a macro variable on a remote host to a macro variable on the
local host, use the %SYSRPUT statement.

To use %SYSLPUT, you must have initiated a link between a local SAS session or
client and a remote SAS session or server using the SIGNON command or SIGNON
statement. For more information, see the documentation for SAS/CONNECT software.

SYSMACRONAME Automatic Macro Variable

Returns the name of the currently executing macro

Type: Automatic macro variable (read only)

Details
When referenced outside of an executing macro, SYSMACRONAME returns the null

string.

SYSMENV Automatic Macro Variable

Contains the invocation status of the macro that is currently executing

Type: Automatic macro variable (read only)

286 SYSMSG Automatic Macro Variable Chapter 13

Details
The following are values for SYSMENV:

Value Description

S The macro currently executing was invoked as part of a SAS program.

D The macro currently executing was invoked from the command line of a SAS
window.

SYSMSG Automatic Macro Variable

Contains text to display in the message area of a macro window

Type: Automatic macro variable (read and write)

Details
Values assigned to SYSMSG do not require quotation marks. The value of SYSMSG is
set to null after each execution of a %DISPLAY statement.

Example

Example 1: Using SYSMSG This example shows that text assigned to SYSMSG is
cleared after the %DISPLAY statement.

%let sysmsg=Press ENTER to continue.;
%window start

#5 @28 ’Welcome to SAS’;
%display start;

%put Sysmsg is: *&sysmsg*;

Executing this program writes this to the SAS log:

Sysmsg is: **

SYSNCPU Automatic Macro Variable

Contains the current number of processors available to SAS for computations

Type: Automatic Macro Variable (Read Only)

Macro Language Dictionary SYSPARM Automatic Macro Variable 287

Details
SYSNCPU is an automatic macro variable that provides the current value of the
CPUCOUNT option. For more information about CPUCOUNT system option, see the
SAS Language Reference: Dictionary.

The following example shows the option CPUCOUNT set to 265.

options cpucount=265;
%put &sysncpu;

The output of the above example is 265.

SYSPARM Automatic Macro Variable

Contains a character string that can be passed from the operating environment to SAS program
steps

Type: Automatic macro variable (read and write)

Details
SYSPARM enables you to pass a character string from the operating environment to
SAS program steps and provides a means of accessing or using the string while a
program is executing. For example, you can use SYSPARM from the operating
environment to pass a title statement or a value for a program to process. You can also
set the value of SYSPARM within a SAS program. SYSPARM can be used anywhere in
a SAS program. The default value of SYSPARM is null (zero characters).

SYSPARM is most useful when specified at invocation of SAS. For details, see the
SAS documentation for your operating environment.

Comparisons
� Assigning a value to SYSPARM is the same as specifying a value for the

SYSPARM= system option.
� Retrieving the value of SYSPARM is the same as using the SYSPARM() SAS

function.

Example

Example 1: Passing a Value to a Procedure In this example, you invoke SAS on a
UNIX operating environment on September 20, 2001 (the librefs DEPT and TEST are
defined in the config.sas file) with a command like the following:

sas program-name -sysparm dept.projects -config /myid/config.sas

Macro variable SYSPARM supplies the name of the data set for PROC REPORT:

proc report data=&sysparm
report=test.resorces.priority.rept;

title "%sysfunc(date(),worddate.)";
title2;
title3 ’Active Projects By Priority’;
run;

288 SYSPARM= System Option Chapter 13

SAS sees the following:

proc report data=dept.projects
report=test.resorces.priority.rept;

title "September 20, 2001";
title2;
title3 ’Active Projects By Priority’;
run;

SYSPARM= System Option

Specifies a character string that can be passed to SAS programs

Type: System option
Valid in:

Configuration file
OPTIONS window
OPTIONS statement
SAS invocation

Syntax
SYSPARM=’character-string’

character-string
is a character string, enclosed in quotation marks, with a maximum length of 200.

Details
The character string specified can be accessed in a SAS DATA step by the SYSPARM()
function or anywhere in a SAS program by using the automatic macro variable
reference &SYSPARM.

Operating Environment Information: The syntax shown here applies to the OPTIONS
statement. At invocation, on the command line, or in a configuration file, the syntax is
host specific. For details, see the SAS documentation for your operating environment. �

Example

Example 1: Passing a User Identification to a Program This example uses the
SYSPARM option to pass a user identification to a program.

options sysparm=’usr1’;

data a;
length z $100;
if sysparm()=’usr1’ then z="&sysparm";

run;

Macro Language Dictionary SYSPROCESSID Automatic Macro Variable 289

SYSPBUFF Automatic Macro Variable

Contains text supplied as macro parameter values

Type: Automatic macro variable (read and write, local scope)

Details
SYSPBUFF resolves to the text supplied as parameter values in the invocation of a
macro that is defined with the PARMBUFF option. For name-style invocations, this text
includes the parentheses and commas. Using the PARMBUFF option and SYSPBUFF,
you can define a macro that accepts a varying number of parameters at each invocation.

If the macro definition includes both a set of parameters and the PARMBUFF option,
the macro invocation causes the parameters to receive values and the entire invocation
list of values to be assigned to SYSPBUFF.

Example

Example 1: Using SYSPBUFF to Display Macro Parameter Values The macro PRINTZ
uses the PARMBUFF option to define a varying number of parameters and SYSPBUFF
to display the parameters specified at invocation.

%macro printz/parmbuff;
%put Syspbuff contains: &syspbuff;
%let num=1;
%let dsname=%scan(&syspbuff,&num);
%do %while(&dsname ne);

proc print data=&dsname;
run;
%let num=%eval(&num+1);
%let dsname=%scan(&syspbuff,&num);

%end;
%mend printz;

%printz(purple,red,blue,teal)

Executing this program writes this line to the SAS log:

Syspbuff contains: (purple,red,blue,teal)

SYSPROCESSID Automatic Macro Variable

Contains the process id of the current SAS process

Type: Automatic macro variable (read only)
Default: null

Details
The process id is a 32–character hexadecimal string. The default value is null.

290 SYSPROCESSNAME Automatic Macro Variable Chapter 13

Example

Example 1: Using SYSPROCESSID to Display the Current SAS Process ID The following
code writes the current SAS process id to the SAS log:

%put &sysprocessid;

A process id, such as the following, is written to the SAS log:

41D1B269F86C7C5F4010000000000000

SYSPROCESSNAME Automatic Macro Variable

Contains the process name of the current SAS process

Type: Automatic macro variable (read only)

Example

Example 1: Using SYSPROCESSNAME to Display the Current SAS Process Name The
following statement writes the name of the current SAS process to the log:

%put &sysprocessname;

If you submit this statement in the SAS windowing environment of your second SAS
session, the following line is written to the SAS log:

DMS Process (2)

SYSPROCNAME Automatic Macro Variable

Contains the name of the procedure (or DATASTEP for DATA steps) currently being processed by
the SAS Language Processor

Type: Automatic macro variable (read only)

Details
The value of SYSPROCNAME contains the name of the procedure specified by the user
in the PROC statement until a step boundary is reached.

%SYSPROD Function

Reports whether a SAS software product is licensed at the site

Type: Macro function
See also:

Macro Language Dictionary %SYSPROD Function 291

“%SYSEXEC Statement” on page 276
“SYSSCP and SYSSCPL Automatic Macro Variables” on page 298
“SYSVER Automatic Macro Variable” on page 303

Syntax
%SYSPROD (product)

product
can be a character string or text expression that yields a code for a SAS product. The
following are commonly used codes:

AF CPE GRAPH PH-CLINICAL

ASSIST EIS IML QC

BASE ETS INSIGHT SHARE

CALC FSP LAB STAT

CONNECT GIS OR TOOLKIT

For codes for other SAS software products, see your SAS site representative.

Details
%SYSPROD can return the following values:

Value Description

1 The SAS product is licensed.

0 The SAS product is not licensed.

−1 The product is not Institute software (for example, if the product code is
misspelled).

Example

Example 1: Verifying SAS/GRAPH Installation Before Running the GPLOT
Procedure This example uses %SYSPROD to determine whether to execute a PROC
GPLOT statement or a PROC PLOT statement, based on whether SAS/GRAPH
software has been installed.

%macro runplot(ds);
%if %sysprod(graph)=1 %then

%do;
title "GPLOT of %upcase(&ds)";
proc gplot data=&ds;

292 %SYSRC Autocall Macro Chapter 13

plot style*price / haxis=0 to 150000 by 50000;
run;
quit;

%end;
%else

%do;
title "PLOT of %upcase(&ds)";
proc plot data=&ds;

plot style*price;
run;
quit;

%end;
%mend runplot;

%runplot(sasuser.houses)

Executing this program when SAS/GRAPH is installed, generates the following
statements:

TITLE "GPLOT of SASUSER.HOUSES";
PROC GPLOT DATA=SASUSER.HOUSES;
PLOT STYLE*PRICE / HAXIS=0 TO 150000 BY 50000;
RUN;

%SYSRC Autocall Macro

Returns a value corresponding to an error condition

Type: Autocall macro

Requires: MAUTOSOURCE system option

Syntax
%SYSRC(character-string)

character-string
is one of the mnemonic values listed in Table 13.2 on page 293 or a text expression
that produces the mnemonic value.

Note: Autocall macros are included in a library supplied by SAS. This library might
not be installed at your site or might be a site-specific version. If you cannot access this
macro or if you want to find out if it is a site-specific version, see your SAS Software
Consultant. For more information, see Chapter 9, “Storing and Reusing Macros,” on
page 105. �

Details
The SYSRC macro enables you to test for return codes produced by SCL functions, the
MODIFY statement, and the SET statement with the KEY= option. The SYSRC

Macro Language Dictionary %SYSRC Autocall Macro 293

autocall macro tests for the error conditions by using mnemonic strings rather than the
numeric values associated with the error conditions.

When you invoke the SYSRC macro with a mnemonic string, the macro generates a
SAS return code. The mnemonics are easier to read than the numeric values, which are
not intuitive and subject to change.

You can test for specific errors in SCL functions by comparing the value returned by
the function with the value returned by the SYSRC macro with the corresponding
mnemonic. To test for errors in the most recent MODIFY or SET statement with the
KEY= option, compare the value of the _IORC_ automatic variable with the value
returned by the SYSRC macro when you invoke it with the value of the appropriate
mnemonic.

The following table lists the mnemonic values to specify with the SYSRC function
and a description of the corresponding error.

Table 13.2 Mnemonics for Warning and Error Conditions

Mnemonic Description

Library Assign/Deassign Messages

_SEDUPLB The libref refers to the same physical library as another libref.

_SEIBASN The specified libref is not assigned.

_SEINUSE The library or member is not available for use.

_SEINVLB The library is not in a valid format for the access method.

_SEINVLN The libref is not valid.

_SELBACC The action requested cannot be performed because you do not
have the required access level on the library.

_SELBUSE The library is still in use.

_SELGASN The specified libref is not assigned.

_SENOASN The libref is not assigned.

_SENOLNM The libref is not available for use.

_SESEQLB The library is in sequential (tape) format.

_SWDUPLB The libref refers to the same physical file as another libref.

_SWNOLIB The library does not exist.

Fileref Messages

_SELOGNM The fileref is assigned to an invalid file.

_SWLNASN The fileref is not assigned.

SAS Data Set Messages

_DSENMR The TRANSACTION data set observation does not exist in the
MASTER data set.

_DSEMTR Multiple TRANSACTION data set observations do not exist in
MASTER data set.

_DSENOM No matching observation was found in MASTER data set.

_SEBAUTH The data set has passwords.

294 %SYSRC Autocall Macro Chapter 13

Mnemonic Description

_SEBDIND The index name is not a valid SAS name.

_SEDSMOD The data set is not open in the correct mode for the specified
operation.

_SEDTLEN The data length is invalid.

_SEINDCF The new name conflicts with an index name.

_SEINVMD The open mode is invalid.

_SEINVPN The physical name is invalid.

_SEMBACC You do not have the level of access required to open the data set
in the requested mode.

_SENOLCK A record-level lock is not available.

_SENOMAC Member-level access to the data set is denied.

_SENOSAS The file is not a SAS data set.

_SEVARCF The new name conflicts with an existing variable name.

_SWBOF You tried to read the previous observation when you were on the
first observation.

_SWNOWHR The record no longer satisfies the WHERE clause.

_SWSEQ The task requires reading observations in a random order, but
the engine you are using allows only sequential access.

_SWWAUG The WHERE clause has been augmented.

_SWWCLR The WHERE clause has been cleared.

_SWWREP The WHERE clause has been replaced.

SAS File Open and Update Messages

_SEBDSNM The file name is not a valid SAS name.

_SEDLREC The record has been deleted from the file.

_SEFOPEN The file is currently open.

_SEINVON The option name is invalid.

_SEINVOV The option value is invalid.

_SEINVPS The value of the File Data Buffer pointer is invalid.

_SELOCK The file is locked by another user.

_SENOACC You do not have the level of access required to open the file in
the requested mode.

_SENOALL _ALL_ is not allowed as part of a filename in this release.

_SENOCHN The record was not changed because it would cause a duplicate
value for an index that does not allow duplicates.

_SENODEL Records cannot be deleted from this file.

_SENODLT The file could not be deleted.

_SENOERT The file is not open for writing.

_SENOOAC You are not authorized for the requested open mode.

_SENOOPN The file or directory is not open.

Macro Language Dictionary %SYSRC Autocall Macro 295

Mnemonic Description

_SENOPF The physical file does not exist.

_SENORD The file is not opened for reading.

_SENORDX The file is not radix addressable.

_SENOTRD No record has been read from the file yet.

_SENOUPD The file cannot be opened for update because the engine is read
only.

_SENOWRT You do not have write access to the member.

_SEOBJLK The file or directory is in exclusive use by another user.

_SERECRD No records have been read from the input file.

_SWACMEM Access to the directory will be provided one member at a time.

_SWDLREC The record has been deleted from file.

_SWEOF End of file.

_SWNOFLE The file does not exist.

_SWNOPF The file or directory does not exist.

_SWNOREP The file was not replaced because of the NOREPLACE option.

_SWNOTFL The item pointed to exists but is not a file.

_SWNOUPD This record cannot be updated at this time.

Library/Member/Entry Messages

_SEBDMT The member type specification is invalid.

_SEDLT The member was not deleted.

_SELKUSR The library or library member is locked by another user.

_SEMLEN The member name is too long for this system.

_SENOLKH The library or library member is not currently locked.

_SENOMEM The member does not exist.

_SWKNXL You have locked a library, member, or entry, that does not exist
yet.

_SWLKUSR The library or library member is locked by another user.

_SWLKYOU You have already locked the library or library member.

_SWNOLKH The library or library member is not currently locked.

Miscellaneous Operations

_SEDEVOF The device is offline or unavailable.

_SEDSKFL The disk or tape is full.

_SEINVDV The device type is invalid.

_SENORNG There is no write ring in the tape opened for write access.

_SOK The function was successful.

_SWINVCC The carriage control character is invalid.

_SWNODSK The device is not a disk.

_SWPAUAC Pause in I/O, process accumulated data up to this point.

296 SYSRC Automatic Macro Variable Chapter 13

Mnemonic Description

_SWPAUSL Pause in I/O, slide data window forward and process
accumulated data up to this point.

_SWPAUU1 Pause in I/O, extra user control point 1.

_SWPAUU2 Pause in I/O, extra user control point 2.

Comparison
The SYSRC autocall macro and the SYSRC automatic macro variable are not the same.
For more information, see “SYSRC Automatic Macro Variable” on page 296.

Example

Example 1: Examining the Value of _IORC_ The following DATA step illustrates using
the autocall macro SYSRC and the automatic variable _IORC_ to control writing a
message to the SAS log:

data big;
modify big trans;
by id;
if _iorc_=%sysrc(_dsenmr) then put ’WARNING: Check ID=’ id;

run;

SYSRC Automatic Macro Variable

Contains the last return code generated by your operating system

Type: Automatic macro variable (read and write)

Details
The code returned by SYSRC is based on commands you execute using the X statement
in open code, the X command in a windowing environment, or the %SYSEXEC, %TSO,
or %CMS macro statements. Return codes are integers. The default value of SYSRC is
0.

You can use SYSRC to check the return code of a system command before you
continue with a job. For return code examples, see the SAS companion for your
operating environment.

%SYSRPUT Statement

Assigns the value of a macro variable on a remote host to a macro variable on the local host

Type: Macro statement

Macro Language Dictionary %SYSRPUT Statement 297

Requires: SAS/CONNECT
Restriction: Allowed in macro definitions or open code
See also:

“SYSERR Automatic Macro Variable” on page 273
“SYSINFO Automatic Macro Variable” on page 282
“%SYSLPUT Statement” on page 284

Syntax
%SYSRPUT local-macro-variable=remote-macro-variable;

local-macro-variable
is the name of a macro variable with no leading ampersand or a text expression that
produces the name of a macro variable. This name must be a macro variable stored
on the local host.

remote-macro-variable
is the name of a macro variable with no leading ampersand or a text expression that
produces the name of a macro variable. This name must be a macro variable stored
on a remote host.

Details
The %SYSRPUT statement is submitted with SAS/CONNECT to a remote host to
retrieve the value of a macro variable stored on the remote host. %SYSRPUT assigns
that value to a macro variable on the local host. %SYSRPUT is similar to the %LET
macro statement because it assigns a value to a macro variable. However, %SYSRPUT
assigns a value to a variable on the local host, not on the remote host where the
statement is processed. The %SYSRPUT statement places the macro variable in the
current referencing environmentor scope of the local host.

Note: The names of the macro variables on the remote and local hosts must not
contain a leading ampersand. �

The %SYSRPUT statement is useful for capturing the value of the automatic macro
variable SYSINFO and passing that value to the local host. SYSINFO contains
return-code information provided by some SAS procedures. Both the UPLOAD and the
DOWNLOAD procedures of SAS/CONNECT can update the macro variable SYSINFO
and set it to a nonzero value when the procedure terminates due to errors. You can use
%SYSRPUT on the remote host to send the value of the SYSINFO macro variable back
to the local SAS session. Thus, you can submit a job to the remote host and test
whether a PROC UPLOAD or DOWNLOAD step has successfully completed before
beginning another step on either the remote host or the local host.

For details about using %SYSRPUT, see the documentation for SAS/CONNECT
Software.

To create a new macro variable or modify the value of an existing macro variable on
a remote host or server, use the %SYSLPUT macro statement.

Example

Example 1: Checking the Value of a Return Code on a Remote Host This example
illustrates how to download a file and return information about the success of the step

298 SYSSCP and SYSSCPL Automatic Macro Variables Chapter 13

from a noninteractive job. When remote processing is completed, the job then checks
the value of the return code stored in RETCODE. Processing continues on the local host
if the remote processing is successful.

The %SYSRPUT statement is useful for capturing the value returned in the
SYSINFO macro variable and passing that value to the local host. The SYSINFO macro
variable contains return-code information provided by SAS procedures. In the example,
the %SYSRPUT statement follows a PROC DOWNLOAD step, so the value returned by
SYSINFO indicates the success of the PROC DOWNLOAD step:

rsubmit;
%macro download;

proc download data=remote.mydata out=local.mydata;
run;
%sysrput retcode=&sysinfo;

%mend download;
%download

endrsubmit;

%macro checkit;
%if &retcode = 0 %then %do;

further processing on local host
%end;

%mend checkit;
%checkit

A SAS/CONNECT batch (noninteractive) job always returns a system condition code
of 0. To determine the success or failure of the SAS/CONNECT noninteractive job, use
the %SYSRPUT macro statement to check the value of the automatic macro variable
SYSERR. To determine what remote system the SAS/CONNECT conversation is
attached to, remote submit the following statement:

%sysrput rhost=&sysscp;

SYSSCP and SYSSCPL Automatic Macro Variables
Contain an identifier for your operating environment

Type: Automatic macro variable (read only)

Details
SYSSCP and SYSSCPL resolve to an abbreviation of the name of your operating
environment. In some cases, SYSSCPL provides a more specific value than SYSSCP.
You could use SYSSCP and SYSSCPL to check the operating environment to execute
appropriate system commands.

The following table lists the values for SYSSCP and SYSSCPL.

Table 13.3 SYSSCP and SYSSCPL Values

Platform SYSSCP Value SYSSCPL Value

386 BCS 386 BCS

AIX RS6000 AIX

Macro Language Dictionary SYSSCP and SYSSCPL Automatic Macro Variables 299

Platform SYSSCP Value SYSSCPL Value

AIX/ESA AIX_370

AIX/PS2 AIX_370

ALPHA/OSF ALXOSF

ALPHA/VMS VMS_AXP

CONVEX CONVEX

DigitalUnix ALXOSF DEC OSFI

DGUX DG UX

HPU3 HP 300

HPUX HP 800 HP-UX

IABI 386 ABI 386 ABI

LINUX LINUX

MAC68000 MAC MAC_M68

MAC PowerPC MAC MAC_MPP

MIPS UMIPS

MIPS ABI MIPS ABI

MS-DOS

MVS OS MVS

NEXT NEXT

OS/2 OS2

PC-DOS PC DOS

PRIMOS PRIMOS

RS6000 RS6000

SEQUENT IAB SEQUENT

SGI MAX IRIX

SIEMENS SINIX

SOLARIS2 SUN 4 Solaris

SR10 SR10

SUN3 SUN 3

SUN4.1.x SUN 4 SunOS

SUNOS SUN 386i

ULTRIX ULTRIX

VAX VMS

VM/CMS CMS VM_ESA

VMS VMS

VSE VSE

WINDOWS WIN

WINDOWS 32S WIN WIN_32S

300 SYSSCPL Automatic Macro Variable Chapter 13

Platform SYSSCP Value SYSSCPL Value

WINDOWS 95 WIN WIN_95

WINDOWS/NT WIN WIN_NT

NT Server WIN WIN_NTSV

Example

Example 1: Deleting a Temporary File on a Platform Running SAS The macro
DELFILE locates the platform that is running SAS and deletes the TMP file. FILEREF
is a global macro variable that contains the fileref for the TMP file.

%macro delfile;
%if /* HP Unix */&sysscp=HP 800 or &sysscp=HP 300
%then

%do;
X "rm &fileref..TMP";

%end;
%else %if /* VMS */&sysscp=VMS
%then

%do;
X "DELETE &fileref..TMP;*";

%end;
%else %if /* DOS-LIKE PLATFORMS */&sysscp=OS2 or &sysscp=WIN
%then

%do;
X "DEL &fileref..TMP";

%end;
%else %if /* CMS */&sysscp=CMS
%then

%do;
X "ERASE &fileref TEMP A";

%end;
%mend delfile;

SYSSCPL Automatic Macro Variable

Contains the name of your operating environment

Automatic macro variable (read only)

See “SYSSCP and SYSSCPL Automatic Macro Variables” on page 298.

Macro Language Dictionary SYSSTARTNAME Automatic Macro Variable 301

SYSSITE Automatic Macro Variable
Contains the number assigned to your site

Type: Automatic macro variable (read only)

Details
SAS assigns a site number to each site that licenses SAS software. The number
displays in the SAS log.

SYSSTARTID Automatic Macro Variable
Contains the id generated from the last STARTSAS statement

Type: Automatic macro variable (read only)
Default: null

Details
The ID is a 32-character hexadecimal string that can be passed to the WAITSAS
statement or the ENDSAS statement. The default value is null.

Example

Example 1: Using SYSSTARTID to Display the SAS Process ID from the Most Recent
STARTSAS Statement Submit the following code from the SAS process in which you
have submitted the most recent STARTSAS statement to write the value of the
SYSSTARTID variable to the SAS log:

%put &sysstartid

A process id value, such as the following, is written to the SAS log:

41D20425B89FCED94036000000000000

SYSSTARTNAME Automatic Macro Variable
Contains the process name generated from the last STARTSAS statement

Type: Automatic macro variable (read only)
Default: null

Example

Example 1: Using SYSSTARTNAME to Display the SAS Process Name from the Most
Recent STARTSAS Statement Submit the following code from the SAS process in

302 SYSTIME Automatic Macro Variable Chapter 13

which you have submitted the most recent STARTSAS statement to write the value of
the SYSSTARTNAME variable to the SAS log:

%put &sysstartname;

An example of a process name that can appear in the SAS log is as follows:

DMS Process (2)

SYSTIME Automatic Macro Variable

Contains the time a SAS job or session began executing

Type: Automatic macro variable (read only)

Details
The value is displayed in TIME5. format and does not change during the individual job
or session.

Example

Example 1: Using SYSTIME to Display the Time that a SAS Session Started The
following statement displays the time a SAS session started.

%put This SAS session started running at: &systime;

Executing this statement at 3 p.m. when your SAS session began executing at 9:30
a.m. writes to the SAS log:

This SAS session started running at: 09:30

SYSUSERID Automatic Macro Variable

Contains the userid or login of the current SAS process

Type: Automatic macro variable (read only)

Example

Example 1: Using SYSUSERID to Display the Userid for the Current SAS Process The
following code, when submitted from the current SAS process, writes the userid or login
for the current SAS process to the SAS log:

%put &sysuserid;

A userid, such as the following, is written to the SAS log:

MyUserid

Macro Language Dictionary %TRIM and %QTRIM Autocall Macro 303

SYSVER Automatic Macro Variable
Contains the release number of SAS software that is running

Type: Automatic macro variable (read only)
See also: “SYSVLONG Automatic Macro Variable” on page 303

Comparison
SYSVER provides the release number of the SAS software that is running. You can use
SYSVER to check for the release of SAS before running a job with newer features.

Example

Example 1: Identifying SAS Software Release The following statement displays the
release number of a user’s SAS software.

%put I am using release: &sysver;

Submitting this statement (for a user of SAS 6.12) writes this to the SAS log:

I am using release: 6.12

SYSVLONG Automatic Macro Variable
Contains the release number and maintenance level of SAS software that is running

Type: Automatic macro variable (read only)
See also: “SYSVER Automatic Macro Variable” on page 303

Comparisons
SYSVLONG provides the release number and maintenance level of SAS software, in
addition to the release number.

Example

Example 1: Identifying a SAS Maintenance Release The following statement displays
information identifying the SAS release being used.

%put I am using maintenance release: &sysvlong;

Submitting this statement (for a user of SAS 6.12) writes this to the SAS log:

I am using maintenance release: 6.12.0005P123199

%TRIM and %QTRIM Autocall Macro
Trim trailing blanks

304 %TRIM and %QTRIM Autocall Macro Chapter 13

Type: Autocall macro

Requires: MAUTOSOURCE system option

Syntax
%TRIM(text | text expression)

%QTRIM(text | text expression)

Note: Autocall macros are included in a library supplied by SAS. This library might
not be installed at your site or might be a site-specific version. If you cannot access this
macro or if you want to find out if it is a site-specific version, see your SAS Software
Consultant. For more information, see Chapter 9, “Storing and Reusing Macros,” on
page 105. �

Details
The TRIM macro and the QTRIM macro both trim trailing blanks. If the argument
contains a special character or mnemonic operator, listed below, use %QTRIM.

QTRIM produces a result with the following special characters and mnemonic
operators masked so the macro processor interprets them as text instead of as elements
of the macro language:

& % ’ " () + − * / < > = ~ˆ ; , blank
AND OR NOT EQ NE LE LT GE GT

Examples

Example 1: Removing Trailing Blanks In this example, the TRIM autocall macro
removes the trailing blanks from a message that is written to the SAS log.

%macro numobs(dsn);
%local num;
data _null_;

set &dsn nobs=count;
call symput(’num’, left(put(count,8.)));
stop;
run;

%if &num eq 0 %then
%put There were NO observations in %upcase(&dsn).;

%else
%put There were %trim(&num) observations in %upcase(&dsn).;

%mend numobs;

%numobs(sample)

Invoking the NUMOBS macro generates the following statements:

DATA _NULL_;
SET SAMPLE NOBS=COUNT;
CALL SYMPUT(’num’, LEFT(PUT(COUNT,8.)));
STOP;
RUN;

Macro Language Dictionary %UNQUOTE Function 305

If the data set SAMPLE contains six observations, then the %PUT statement writes
this line to the SAS log:

There were 6 observations in SAMPLE.

Example 2: Contrasting %TRIM and %QTRIM These statements are executed January
28, 1999:

%let date=%nrstr(&sysdate);
%put *&date* *%qtrim(&date)* *%trim(&date)*;

The %PUT statement writes this line to the SAS log:

* &sysdate * * &sysdate* * 28JAN99*

%UNQUOTE Function

During macro execution, unmasks all special characters and mnemonic operators for a value

Type: Macro function
See also:

“%BQUOTE and %NRBQUOTE Functions” on page 165
“%NRBQUOTE Function” on page 224
“%NRQUOTE Function” on page 224
“%NRSTR Function” on page 224
“%QUOTE and %NRQUOTE Functions” on page 230
“%STR and %NRSTR Functions” on page 239
“%SUPERQ Function” on page 244

Syntax
%UNQUOTE (character string | text expression)

Details
The %UNQUOTE function unmasks a value so that special characters that it might
contain are interpreted as macro language elements instead of as text. The most
important effect of %UNQUOTE is to restore normal tokenization of a value whose
tokenization was altered by a previous macro quoting function. %UNQUOTE takes
effect during macro execution.

For more information, see Chapter 7, “Macro Quoting,” on page 75.

Example

Example 1: Using %UNQUOTE to Unmask Values This example demonstrates a problem
that can arise when the value of a macro variable is assigned using a macro quoting
function and then the variable is referenced in a later DATA step. If the value is not
unmasked before it reaches the SAS compiler, the DATA step does not compile correctly

306 %UPCASE and %QUPCASE Functions Chapter 13

and it produces error messages. Although several macro functions automatically
unmask values, a variable might not be processed by one of those functions.

The following program generates error messages in the SAS log because the value of
TESTVAL is still masked when it reaches the SAS compiler.

%let val = aaa;
%let testval = %str(%’&val%’);

data _null_;
val = &testval;
put ’VAL =’ val;

run;

This version of the program runs correctly because %UNQUOTE explicitly unmasks
the value of TESTVAL.

%let val = aaa;
%let testval = %str(%’&val%’);

data _null_;
val = %unquote(&testval);
put ’VAL =’ val;

run;

This program prints this to the SAS log:

VAL=aaa

%UPCASE and %QUPCASE Functions

Convert values to uppercase

Type: Macro functions

See also:
“%LOWCASE and %QLOWCASE Autocall Macros” on page 201
“%NRBQUOTE Function” on page 224
“%QLOWCASE Autocall Macro” on page 229

Syntax
%UPCASE (character string | text expression)

%QUPCASE(character string | text expression)

Details
The %UPCASE and %QUPCASE functions convert lowercase characters in the
argument to uppercase. %UPCASE does not mask special characters or mnemonic
operators in its result, even when the argument was previously masked by a macro
quoting function.

Macro Language Dictionary %VERIFY Autocall Macro 307

If the argument contains a special character or mnemonic operator, listed below, use
%QUPCASE. %QUPCASE masks the following special characters and mnemonic
operators in its result:

& % ’ " () + − * / < > = ^ ~ ; , blank
AND OR NOT EQ NE LE LT GE GT

%UPCASE and %QUPCASE are useful in the comparison of values because the
macro facility does not automatically convert lowercase characters to uppercase before
comparing values.

Comparison
� %QUPCASE masks the same characters as the %NRBQUOTE function.
� To convert characters to lowercase, use the %LOWCASE or %QLOWCASE autocall

macro.

Examples

Example 1: Capitalizing a Value to be Compared In this example, the macro
RUNREPT compares a value input for the macro variable MONTH to the string DEC.
If the uppercase value of the response is DEC, then PROC FSVIEW runs on the data
set REPORTS.ENDYEAR. Otherwise, PROC FSVIEW runs on the data set with the
name of the month in the REPORTS data library.

%macro runrept(month);
%if %upcase(&month)=DEC %then

%str(proc fsview data=reports.endyear; run;);
%else %str(proc fsview data=reports.&month; run;);

%mend runrept;

You can invoke the macro in any of these ways to satisfy the %IF condition:

%runreport(DEC)
%runreport(Dec)
%runreport(dec)

Example 2: Comparing %UPCASE and %QUPCASE These statements show the results
produced by %UPCASE and %QUPCASE:

%let a=begin;
%let b=%nrstr(&a);

%put UPCASE produces: %upcase(&b);
%put QUPCASE produces: %qupcase(&b);

Executing these statements writes this to the SAS log:

UPCASE produces: begin
QUPCASE produces: &A

%VERIFY Autocall Macro

Returns the position of the first character unique to an expression

Type: Autocall macro

308 %VERIFY Autocall Macro Chapter 13

Requires: MAUTOSOURCE system option

Syntax
%VERIFY(source, excerpt)

source
is text or a text expression. This is the text that you want to examine for characters
that do not exist in excerpt.

excerpt
is text or a text expression. This is the text that defines the set of characters that
%VERIFY uses to examine source.

Note: Autocall macros are included in a library supplied by SAS. This library
might not be installed at your site or might be a site-specific version. If you cannot
access this macro or if you want to find out if it is a site-specific version, see your SAS
Software Consultant. For more information, see Chapter 9, “Storing and Reusing
Macros,” on page 105. �

Details
%VERIFY returns the position of the first character in source that is not also present in
excerpt. If all characters in source are present in excerpt, %VERIFY returns 0.

Example

Example 1: Testing for a Valid Fileref The ISNAME macro checks a string to see if it
is a valid fileref and prints a message in the SAS log that explains why a string is or is
not valid.

%macro isname(name);
%let name=%upcase(&name);
%if %length(&name)>8 %then

%put &name: The fileref must be 8 characters or less.;
%else %do;

%let first=ABCDEFGHIJKLMNOPQRSTUVWXYZ_;
%let all=&first.1234567890;
%let chk_1st=%verify(%substr(&name,1,1),&first);
%let chk_rest=%verify(&name,&all);
%if &chk_rest>0 %then

%put &name: The fileref cannot contain
"%substr(&name,&chk_rest,1)".;

%if &chk_1st>0 %then
%put &name: The first character cannot be

"%substr(&name,1,1)".;
%if (&chk_1st or &chk_rest)=0 %then

%put &name is a valid fileref.;
%end;

%mend isname;

%isname(file1)

Macro Language Dictionary %WINDOW Statement 309

%isname(1file)
%isname(filename1)
%isname(file$)

Executing this program writes this to the SAS log:

FILE1 is a valid fileref.
1FILE: The first character cannot be "1".
FILENAME1: The fileref must be 8 characters or less.
FILE$: The fileref cannot contain "$".

%WINDOW Statement

Defines customized windows

Type: Macro statement
Restriction: Allowed in macro definitions or open code
See also:

“%DISPLAY Statement” on page 174
“%INPUT Statement” on page 192

Syntax
%WINDOWwindow-name<window-option(s) group-definition(s)>field-definition(s);

window-name
names the window. Window-name must be a SAS name.

window-option(s)
specifies the characteristics of the window as a whole. Specify all window options
before any field or group definitions. These window options are available:

COLOR=color
specifies the color of the window background. The default color of the window and
the contents of its fields are both device-dependent. Color can be one of these:

BLACK

BLUE

BROWN

CYAN

GRAY (or GREY)

GREEN

MAGENTA

ORANGE

PINK

RED

310 %WINDOW Statement Chapter 13

WHITE

YELLOW

Operating Environment Information: The representation of colors may vary,
depending on the display device you use. In addition, on some display devices the
background color affects the entire window; on other display devices, it affects only
the window border. �

COLUMNS=columns
specifies the number of display columns in the window, including borders. A
window can contain any number of columns and can extend beyond the border of
the display, which is useful when you need to display a window on a device larger
than the one on which you developed it. By default, the window fills all remaining
columns in the display.

Operating Environment Information: The number of columns available depends
on the type of display device you use. Also, the left and right borders each use
from 0 to 3 columns on the display depending on your display device. If you create
windows for display on different types of display devices, ensure that all fields can
be displayed in the narrowest window. �

ICOLUMN=column
specifies the initial column within the display at which the window is displayed.
By default, the macro processor begins the window at column 1 of the display.

IROW=row
specifies the initial row (line) within the display at which the window is displayed.
By default, the macro processor begins the window at row 1 of the display.

KEYS=<<libref.>catalog.>keys-entry
specifies the name of a KEYS catalog entry that contains the function key
definitions for the window. If you omit libref and catalog, SAS uses
SASUSER.PROFILE.keys-entry.

If you omit the KEYS= option, SAS uses the current function key settings
defined in the KEYS window.

MENU=<<libref.>catalog.>pmenu-entry
specifies the name of a menu you have built with the PMENU procedure. If you
omit libref and catalog, SAS uses SASUSER.PROFILE.pmenu-entry.

ROWS=rows
specifies the number of rows in the window, including borders. A window can
contain any number of rows and can extend beyond the border of the display,
which is useful when you need to display a window on a device larger than the one
on which you developed it. If you omit a number, the window fills all remaining
rows in the display.

Operating Environment Information: The number of rows available depends on
the type of display device you use. �

group-definition
names a group and defines all fields within a group. The form of group definition is

GROUP=group field-definition <. . . field-definition-n>
where group names a group of fields that you want to display in the window

collectively. A window can contain any number of groups of fields; if you omit the
GROUP= option, the window contains one unnamed group of fields. Group must be a
SAS name.

Macro Language Dictionary %WINDOW Statement 311

Organizing fields into groups allows you to create a single window with several
possible contents. To refer to a particular group, use window.group.

field-definition
identifies and describes a macro variable or string you want to display in the window.
A window can contain any number of fields.

You use a field to identify a macro variable value (or constant text) to be displayed,
its position within the window, and its attributes. Enclose constant text in quotation
marks. The position of a field is determined by beginning row and column. The
attributes that you can specify include color, whether you can enter a value into the
field, and characteristics such as highlighting.

The form of a field definition containing a macro variable is
<row> <column> macro-variable<field-length> <options>
The form of a field definition containing constant text is
<row> <column>’text’ | “text”<options>
The elements of a field definition are

row
specifies the row (line) on which the macro variable or constant text is displayed.
Each row specification consists of a pointer control and, usually, a macro
expression that generates a number. These row pointer controls are available:

#macro-expression
specifies the row within the window given by the value of the macro expression.
The macro expression must either be a positive integer or generate a positive
integer.

/ (forward slash)
moves the pointer to column 1 of the next line.
The macro processor evaluates the macro expression when it defines the

window, not when it displays the window. Thus, the row position of a field is fixed
when the field is being displayed.

If you omit row in the first field of a group, the macro processor uses the first
line of the window. If you omit row in a later field specification, the macro
processor continues on the line from the previous field.

The macro processor treats the first usable line of the window as row 1 (that is,
it excludes the border, command line or menu bar, and message line).

Specify either row or column first.

column
specifies the column in which the macro variable or constant text begins. Each
column specification consists of a pointer control and, usually, a macro expression
that generates a number. These column pointer controls are available:

@macro-expression
specifies the column within the window given by the value of the macro
expression. The macro expression must either be a positive integer or generate
a positive integer.

+macro-expression
moves the pointer the number of columns given by the value of the macro
expression. The macro expression must either be a positive integer or generate
a positive integer.
The macro processor evaluates the macro expression when it defines the

window, not when it displays the window. Thus, the column position of a field is
fixed when the field is being displayed.

The macro processor treats the column after the left border as column 1. If you
omit column, the macro processor uses column 1.

312 %WINDOW Statement Chapter 13

Specify either column or row first.

macro-variable
names a macro variable to be displayed or to receive the value you enter at that
position. The macro variable must either be a macro variable name (not a macro
variable reference) or it must be a macro expression that generates a macro
variable name.

By default, you can enter or change a macro variable value when the window
containing the value is displayed. To display the value without allowing changes,
use the PROTECT= option.

CAUTION:
Do not overlap fields. Do not allow a field to overlap another field displayed at
the same time. Unexpected results, including the incorrect assignment of values
to macro variables, may occur. (Some display devices treat adjacent fields with
no intervening blanks as overlapping fields.) SAS writes a warning in the SAS
log if fields overlap. �

field-length
is an integer specifying how many positions in the current row are available for
displaying the macro variable’s value or for accepting input. The maximum value
of field-length is the number of positions remaining in the row. You cannot extend
a field beyond one row.

Note: The field length does not affect the length stored for the macro variable.
The field length affects only the number of characters displayed or accepted for
input in a particular field. �

If you omit field-length when the field contains an existing macro variable, the
macro processor uses a field equal to the current length of the macro variable
value, up to the number of positions remaining in the row or remaining until the
next field begins.

CAUTION:
Specify a field length whenever a field contains a macro variable. If the current
value of the macro variable is null, as in a macro variable defined in a
%GLOBAL or %LOCAL statement, the macro processor uses a field length of 0;
you cannot input any characters into the field. �

If you omit field-length when the macro variable is created in that field, the
macro processor uses a field length of zero. Specify a field length whenever a field
contains a macro variable.

‘text’ | “text”
contains constant text to be displayed. The text must be enclosed in either single
or double quotation marks. You cannot enter a value into a field containing
constant text.

options
can include the following:

ATTR=attribute | (attribute-1 <. . . , attribute-n>) A=attribute |
(attribute-1 <. . . , attribute-n>)

controls several display attributes of the field. The display attributes and
combinations of display attributes available depend on the type of display device
you use.

BLINK causes the field to blink.

HIGHLIGHT displays the field at high intensity.

Macro Language Dictionary %WINDOW Statement 313

REV_VIDEO displays the field in reverse video.

UNDERLINE underlines the field.

AUTOSKIP=YES | NO
AUTO=YES | NO

controls whether the cursor moves to the next unprotected field of the current
window or group when you have entered data in all positions of a field. If you
specify AUTOSKIP=YES, the cursor moves automatically to the next
unprotected field. If you specify AUTOSKIP=NO, the cursor does not move
automatically. The default is AUTOSKIP=YES.

COLOR=color C=color
specifies a color for the field. The default color is device-dependent. Color can be
one of these:

BLACK

BLUE

BROWN

CYAN

GRAY (or GREY)

GREEN

MAGENTA

ORANGE

PINK

WHITE

YELLOW

DISPLAY=YES | NO
determines whether the macro processor displays the characters you are
entering into a macro variable value as you enter them. If you specify
DISPLAY=YES (the default value), the macro processor displays the characters
as you enter them. If you specify DISPLAY=NO, the macro processor does not
display the characters as you enter them.

DISPLAY=NO is useful for applications that require users to enter
confidential information, such as passwords. Use the DISPLAY= option only
with fields containing macro variables; constant text is displayed automatically.

PROTECT=YES | NO
P=YES | NO

controls whether information can be entered into a field containing a macro
variable. If you specify PROTECT=NO (the default value), you can enter
information. If you specify PROTECT=YES, you cannot enter information into a
field. Use the PROTECT= option only for fields containing macro variables;
fields containing text are automatically protected.

REQUIRED=YES | NO
determines whether you must enter a value for the macro variable in that field.
If you specify REQUIRED=YES, you must enter a value into that field in order
to remove the display. You cannot enter a null value into a required field. If you
specify REQUIRED=NO (the default value), you does not have to enter a value
in that field in order to remove the display. Entering a command on the
command line of the window removes the effect of REQUIRED=YES.

314 %WINDOW Statement Chapter 13

Details
Use the %WINDOW statement to define customized windows that are controlled by the
macro processor. These windows have command and message lines. You can use these
windows to display text and accept input. In addition, you can invoke windowing
environment commands, assign function keys, and use a menu generated by the
PMENU facility.

You must define a window before you can display it. The %WINDOW statement
defines macro windows; the %DISPLAY statement displays macro windows. Once
defined, a macro window exists until the end of the SAS session, and you can display a
window or redefine it at any point.

Defining a macro window within a macro definition causes the macro processor to
redefine the window each time the macro executes. If you repeatedly display a window
whose definition does not change, it is more efficient to define the window outside a
macro or in a macro that you execute once rather than in the macro in which you
display it.

If a %WINDOW statement contains the name of a new macro variable, the macro
processor creates that variable with the current scope. The %WINDOW statement
creates two automatic macro variables.

SYSCMD
contains the last command from the window’s command line that was not
recognized by the windowing environment.

SYSMSG
contains text you specify to be displayed on the message line.

Note: Windowing environment file management, scrolling, searching, and editing
commands are not available to macro windows. �

Example

Example 1: Creating an Application Welcome Window This %WINDOW statement
creates a window with a single group of fields:

%window welcome color=white
#5 @28 ’Welcome to SAS.’ attr=highlight

color=blue
#7 @15

"You are executing Release &sysver on &sysday, &sysdate.."
#12 @29 ’Press ENTER to continue.’;

The WELCOME window fills the entire display. The window is white, the first line of
text is blue, and the other two lines are black at normal intensity. The WELCOME
window does not require you to input any values. However, you must press ENTER to
remove the display.

Note: Two periods are a needed delimiter for the reference to the macro variables
SYSVER, SYSDAY, and SYSDATE. �

315

P A R T3

Appendixes

Appendix 1.Reserved Words in the Macro Facility 317

Appendix 2.SAS Tokens 319

Appendix 3.Syntax for Selected Functions Used with the %SYSFUNC
Function 321

Appendix 4.Recommended Reading 325

316

317

A P P E N D I X

1
Reserved Words in the Macro
Facility

Macro Facility Word Rules 317

Reserved Words 317

Macro Facility Word Rules
The following rules apply to the macro facility.
� Do not use a reserved word as the name of a macro, a macro variable, or a macro

label. Reserved words include words reserved by both the macro facility and the
operating environment. When a macro name is a macro facility reserved word, the
macro processor issues a warning, and the macro is neither compiled nor available
for execution. The macro facility reserves the words listed under “Reserved Words”
on page 317 for internal use.

� Do not prefix the name of a macro language element with SYS because SAS
reserves the SYS prefix for the names of macro language elements supplied with
SAS software.

� Do not prefix macro variables names with SYS, AF, or DMS in order to avoid
macro name conflicts.

Reserved Words
The following table lists the reserved words for the macro facility.

Table A1.1 Macro Facility Reserved Words

ABEND END METASYM SUBSTR

ABORT EVAL NRBQUOTE SUPERQ

ACT FILE NRQUOTE SYMDEL

ACTIVATE GLOBAL NRSTR SYMEXIST

BQUOTE GO ON SYMGLOBL

BY GOTO OPEN SYMLOCAL

CLEAR IF PAUSE SYSCALL

CLOSE INC PUT SYSEVALF

CMS INCLUDE QSCAN SYSEXEC

COMANDR INDEX QSUBST SYSFUNC

318 Reserved Words Appendix 1

COPY INFILE QUOTE SYSGET

DEACT INPUT QSYSFUNC SYSRPUT

DEL QUPCASE UNSTR THAN

DELETE LENGTH RESOLVE TO

DISPLAY LET RETURN TSO

DMIDSPLY LIST RUN UNQUOTE

DMISPLIT LISTM SAVE UNTIL

DO LOCAL SCAN UPCASE

EDIT MACRO STOP WHILE

ELSE MEND STR WINDOW

319

A P P E N D I X

2
SAS Tokens

What Are SAS Tokens? 319

List of Tokens 319

What Are SAS Tokens?
When SAS processes a program, a component called the word scanner reads the

program, character by character, and groups the characters into words. These words
are referred to as tokens.

List of Tokens
SAS recognizes four general types of tokens:

Literal
One or more characters enclosed in single or double quotation marks. Examples of
literals include

’CARY’ "2003"

’Dr. Kemple-Long’ ’<entry align="center">’

Name
One or more characters beginning with a letter or an underscore. Other characters
can be letters, underscores, and digits.

data _test linesleft

f25 univariate otherwise

year_2003 descending

Number
A numeric value. Number tokens include the following:

� integers. Integers are numbers that do not contain a decimal point or an
exponent. Examples of integers include 1, 72, and 5000. SAS date, time, and

320 List of Tokens Appendix 2

datetime constants such as ’24AUG2003’D are integers, as are hexadecimal
constants such as 0C4X.

� real (floating-point) numbers. Floating-point numbers contain a decimal point
or an exponent. Examples include numbers such as 2.35, 5., 2.3E1, and 5.4E−
1.

Special character
Any character that is not a letter, number, or underscore. Examples of special
characters include

= + − % & ; ()

The maximum length of any type of token is 200 characters. A token ends when the
tokenizer encounters one of the following situations:

� the beginning of a new token
� a blank after a name or number token
� in a literal token, a quotation mark of the same type that started the token. There

is an exception. A quotation mark followed by a quotation mark of the same type
is interpreted as a single quotation mark that becomes part of the literal token.
For example, in ’Mary’’s’, the fourth quotation mark terminates the literal
token. The second and third quotation marks are interpreted as a single character
which is included in the literal token.

321

A P P E N D I X

3
Syntax for Selected Functions
Used with the %SYSFUNC
Function

Summary Descriptions and Syntax 321

Summary Descriptions and Syntax

This appendix provides summary descriptions and syntax for selected functions that
can be used with the %SYSFUNC function. These functions are documented in the SAS
Language Reference: Dictionary.

The following table shows the syntax for selected functions that can be used with the
%SYSFUNC function. This is not a complete list of the functions that can be used with
%SYSFUNC. For a list of functions that cannot be used with %SYSFUNC, see Table
13.1 on page 279.

Table A3.1 Functions and Arguments for %SYSFUNC

Function Description and Syntax

ATTRC returns the value of a character attribute for a SAS data
set.%SYSFUNC(ATTRC(data-set-id,attr-name))

ATTRN returns the value of a numeric attribute for specified SAS data
set.%SYSFUNC(ATTRN(data-set_id,attr-name))

CEXIST verifies the existence of a SAS catalog or SAS catalog
entry.%SYSFUNC(CEXIST(entry <, ’U’>))

CLOSE closes a SAS data set.%SYSFUNC(CLOSE(data-set-id))

CUROBS returns the number of the current
observation.%SYSFUNC(CUROBS(data-set-id))

DCLOSE closes a directory.%SYSFUNC(DCLOSE(directory-id))

DINFO returns specified information items for a
directory.%SYSFUNC(DINFO(directory-id,info-items))

DNUM returns the number of members in a
directory.%SYSFUNC(DNUM(directory-id))

DOPEN opens a directory.%SYSFUNC(DOPEN(fileref))

DOPTNAME returns a specified directory
attribute.%SYSFUNC(DOPTNAME(directory-id,nval))

DOPTNUM returns the number of information items available for a
directory.%SYSFUNC(DOPTNUM(directory-id))

322 Summary Descriptions and Syntax Appendix 3

Function Description and Syntax

DREAD returns the name of a directory member.
%SYSFUNC(DREAD(directory-id,nval))

DROPNOTE deletes a note marker from a SAS data set or an external file.
%SYSFUNC(DROPNOTE(data-set-id|file-id,note-id))

DSNAME returns the data set name associated with a data set identifier.
%SYSFUNC(DSNAME(<data-set-id>))

EXIST verifies the existence of a SAS data library member.
%SYSFUNC(EXIST(member-name<,member-type>))

FAPPEND appends a record to the end of an external file.
%SYSFUNC(FAPPEND(file-id<,cc>))

FCLOSE closes an external file, directory, or directory member.
%SYSFUNC(FCLOSE(file-id))

FCOL returns the current column position in the File Data Buffer (FDB)
%SYSFUNC(FCOL(file-id))

FDELETE deletes an external file. %SYSFUNC(FDELETE(fileref))

FETCH reads the next nondeleted observation from a SAS data set into the Data
Set Data Vector (DDV). %SYSFUNC(FETCH(data-set-id<,’NOSET’>))

FETCHOBS reads a specified observation from a SAS data set into the DDV.
%SYSFUNC(FETCHOBS(data-set-id,obs-number<,options>))

FEXIST verifies the existence of an external file associated with a fileref.
%SYSFUNC(FEXIST(fileref))

FGET copies data from the FDB. %SYSFUNC(FGET(file-id,cval<,length>))

FILEEXIST verifies the existence of an external file by its physical name.
%SYSFUNC(FILEEXIST(file-name))

FILENAME assigns or deassigns a fileref for an external file, directory, or output device.
%SYSFUNC(FILENAME(fileref,file-name<,device<,host-options<,dir-ref>>>))

FILEREF verifies that a fileref has been assigned for the current SAS session.
%SYSFUNC(FILEREF(fileref))

FINFO returns a specified information item for a file.
%SYSFUNC(FINFO(file-id,info-item))

FNOTE identifies the last record that was read. %SYSFUNC(FNOTE(file-id))

FOPEN opens an external file.
%SYSFUNC(FOPEN(fileref<,open-mode<,record-length<,record-format>>>))

FOPTNAME returns the name of an information item for an external file.
%SYSFUNC(FOPTNAME(file-id,nval))

FOPTNUM returns the number of information items available for an external file.
%SYSFUNC(FOPTNUM(file-id))

FPOINT positions the read pointer on the next record to be read.
%SYSFUNC(FPOINT(file-id,note-id))

FPOS sets the position of the column pointer in the FDB.
%SYSFUNC(FPOS(file-id,nval))

FPUT moves data to the FDB of an external file starting at the current column
position. %SYSFUNC(FPUT(file-id,cval))

FREAD reads a record from an external file into the FDB.
%SYSFUNC(FREAD(file-id))

Syntax for Selected Functions Used with the %SYSFUNC Function Summary Descriptions and Syntax 323

Function Description and Syntax

FREWIND positions the file pointer at the first record.
%SYSFUNC(FREWIND(file-id))

FRLEN returns the size of the last record read, or the current record size for a file
opened for output. %SYSFUNC(FRLEN(file-id))

FSEP sets the token delimiters for the FGET function.
%SYSFUNC(FSEP(file-id,cval))

FWRITE writes a record to an external file. %SYSFUNC(FWRITE(file-id<,cc>))

GETOPTION returns the value of a SAS system or graphics option.
%SYSFUNC(GETOPTION(option-name<,reporting-options<,...>>))

GETVARC assigns the value of a SAS data set variable to a character DATA step or
macro variable. %SYSFUNC(GETVARC(data-set-id,var-num))

GETVARN assigns the value of a SAS data set variable to a numeric DATA step or
macro variable. %SYSFUNC(GETVARN(data-set-id,var-num))

LIBNAME assigns or deassigns a libref for a SAS data library.
%SYSFUNC(LIBNAME(libref<,SAS-data-library<,engine<,options>>>))

LIBREF verifies that a libref has been assigned. %SYSFUNC(LIBREF(libref))

MOPEN opens a directory member file.
%SYSFUNC(MOPEN(directory-id,member-name<open-mode<,
record-length<,record-format>>>))

NOTE returns an observation ID for current observation of a SAS data set.
%SYSFUNC(NOTE(data-set-id))

OPEN opens a SAS data file. %SYSFUNC(OPEN(<data-file-name<,mode>>))

PATHNAME returns the physical name of a SAS data library or an external file.
%SYSFUNC(PATHNAME(fileref))

POINT locates an observation identified by the NOTE function.
%SYSFUNC(POINT(data-set-id,note-id))

REWIND positions the data set pointer to the beginning of a SAS data set.
%SYSFUNC(REWIND(data-set-id))

SPEDIS returns a number for the operation required to change an incorrect keyword
in a WHERE clause to a correct keyword.
%SYSFUNC(SPEDIS(query,keyword))

SYSGET returns the value of the specified host environment variable.
%SYSFUNC(sysget(host-variable))

SYSMSG returns the error or warning message produced by the last function that
attempted to access a data set or external file. %SYSFUNC(SYSMSG())

SYSRC returns the system error number or exit status of the entry most recently
called. %SYSFUNC(SYSRC())

VARFMT returns the format assigned to a data set variable.
%SYSFUNC(VARFMT(data-set-id,var-num))

VARINFMT returns the informat assigned to a data set variable.
%SYSFUNC(VARINFMT(data-set-id,var-num))

VARLABEL returns the label assigned to a data set variable.
%SYSFUNC(VARLABEL(data-set-id,var-num))

VARLEN returns the length of a data set variable.
%SYSFUNC(VARLEN(data-set-id,var-num))

VARNAME returns the name of a data set variable.
%SYSFUNC(VARNAME(data-set-id,var-num))

324 Summary Descriptions and Syntax Appendix 3

Function Description and Syntax

VARNUM returns the number of a data set variable.
%SYSFUNC(VARNUM(data-set-id,var-name))

VARTYPE returns the data type of a data set variable.
%SYSFUNC(VARTYPE(data-set-id,var-num))

325

A P P E N D I X

4
Recommended Reading

Recommended Reading 325

Recommended Reading

Here is the recommended reading list for this title:
� Carpenter’s Complete Guide to the SAS Macro Language
� Debugging SAS Programs: A Handbook of Tools and Techniques
� SAS Language Reference: Concepts
� SAS Language Reference: Dictionary
� SAS Macro Programming Made Easy
� Base SAS Procedures Guide
� The SAS Companion that is specific to your operating environment.

For a complete list of SAS publications, see the current SAS Publishing Catalog. To
order the most current publications or to receive a free copy of the catalog, contact a
SAS representative at

SAS Publishing Sales
SAS Campus Drive
Cary, NC 27513
Telephone: (800) 727-3228*
Fax: (919) 677-8166
E-mail: sasbook@sas.com
Web address: support.sas.com/pubs
* For other SAS Institute business, call (919) 677-8000.

Customers outside the United States should contact their local SAS office.

http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=56100
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=57743

326

327

Glossary

argument
in macro processing, a character string that is used by a macro function.

arithmetic expression
a type of macro expression that consists of a sequence of arithmetic operators and
operands. An arithmetic expression returns a numeric value when it is executed.

autocall facility
a feature of SAS that enables you to store the source statements that define a macro
and to invoke the macro as needed, without having to include the definition in your
program.

autocall macro
a macro whose uncompiled source code and text are stored in an autocall macro
library. Unlike a stored compiled macro, an autocall macro is compiled before
execution the first time it is called.

boolean
the data type of a variable or expression that can have only two possible values:
’true’ and ’false’.

command-style macro
a macro that is defined with the CMD option in the %MACRO statement. See also
statement-style macro, name-style macro.

constant text
the character strings that are stored as part of a macro or as a macro variable’s value
in open code, from which the macro processor generates text to be used as SAS
statements, display manager commands, or other macro program statements.
Constant text is also called model text. See also open code.

current referencing environment
the environment in which the macro processor activity is taking place. See also
referencing environment.

dummy macro
a macro that the macro processor compiles but does not store.

328 Glossary

global macro variable
a macro variable that can be referenced in any referencing environment in a SAS
program, except when there is a local macro variable that has the same name. A
global macro variable exists until the end of the session or program. See also macro
variable, referencing environment.

global scope
the outermost referencing environment (or scope), which is the entire SAS program
or session. See also scope.

input stack
the most recently read line of input from a SAS program and any text generated by
the macro processor that is awaiting processing by the word scanner. See also word
scanner.

keyword parameter
a macro parameter that is defined with an equal sign after the parameter name, as
in parameter-name=.

local macro variable
a macro variable that is available only within the macro in which it was created and
within macros that are invoked from within that macro. A local macro variable
ceases to exist when the macro that created it stops executing.

local scope
the referencing environment (or scope) that is associated with the execution of a
particular macro. See also referencing environment.

logical expression
a type of macro expression that consists of a sequence of logical operators and
operands. A logical expression returns a value of either true or false when it is
executed.

macro
a SAS catalog entry that contains a group of compiled program statements and
stored text.

macro call
within a SAS program, a statement that invokes (or calls) a stored compiled macro
program. You use the syntax %macro-name; to call a macro.

macro compilation
the process of converting a macro definition from the statements that you enter to a
form that is ready for the macro processor to execute. The compiled macro is then
stored for later use in the SAS program or session.

macro execution
the process of following the instructions that are given by compiled macro program
statements in order to generate text, to write messages to the SAS log, to accept
input, to create or change the values of macro variables, or to perform other
activities. The generated text can be a SAS statement, a SAS command, or another
macro program statement.

macro expression
any valid combination of symbols that returns a value when it is executed. The three
types of macro expressions are text, logical, and arithmetic. A text expression
generates text when it is resolved (executed) and can consist of any combination of
text, macro variables, macro functions, and macro calls. A logical expression consists
of logical operators and operands and returns a value of either true or false. An
arithmetic expression consists of arithmetic operators and operands and returns a
numeric value.

Glossary 329

macro facility
a component of Base SAS software that you can use for extending and customizing
SAS programs and for reducing the amount of text that must be entered in order to
perform common tasks. The macro facility consists of the macro processor and the
macro programming language.

macro function
a function that is defined by the macro facility. Each macro function processes one or
more arguments and produces a result.

macro invocation
another term for macro call. See macro call.

macro language
the programming language that is used to communicate with the macro processor.

macro processor
the component of SAS software that compiles and executes macros and macro
program statements.

macro quoting
a function that tells the macro processor to interpret special characters and
mnemonics as text rather than as part of the macro language. See also quoting.

macro variable
a variable that is part of the SAS macro programming language. The value of a
macro variable is a string that remains constant until you change it. Macro variables
are sometimes referred to as symbolic variables.

macro variable reference
the name of a macro variable, preceded by an ampersand (&name). The macro
processor replaces the macro variable reference with the value of the specified macro
variable.

model text
another term for constant text. See constant text.

name-style macro
a macro that is named and defined with the %MACRO statement. See also
command-style macro, statement-style macro.

null value
in the SAS macro language, a value that consists of zero characters.

open code
the part of a SAS program that is outside any macro definition.

parameter
a local macro variable that is defined within parentheses in a %MACRO statement.
You supply values to a macro parameter when you invoke a macro. See also keyword
parameter, positional parameter.

positional parameter
a parameter that is defined by name only. The parameter’s value is assigned by
matching the parameter (which is in a particular position in the %MACRO
statement) with the value that is in the corresponding position (delimited by
commas) in the macro invocation.

quoting
the process that causes the macro processor to read certain items as text rather than
as symbols in the macro language. Quoting is also called removing the significance of
an item and treating an item as text.

330 Glossary

quoting function
a macro language function that performs quoting on its argument.

referencing environment
the global or local scope within which a macro variable is available. See also scope.

reserved word
a name that is reserved for use by an internal component of a software application
and which therefore cannot be assigned by a user of that application to any type of
data object.

returned value
a character string that is the result of the execution of a macro function.

SAS compilation
the process of converting statements in the SAS language from the form in which you
enter them to a form that is ready for SAS to use.

SAS variable
a column in a SAS data set or in a SAS data view. The data values for each variable
describe a single characteristic for all observations. Each SAS variable can have the
following attributes: name, data type (character or numeric), length, format,
informat, and label. See also macro variable.

scope
the referencing environment of a macro variable’s availability. A macro variable has
either global or local scope. See global macro variable, local macro variable.

session compiled macro
a macro that the macro processor compiles and stores in a SAS catalog in the WORK
library. These macros exist only during the current SAS session. Unlike stored
compiled macros, session compiled macros cannot be called in any other SAS session.

statement-style macro
a macro that is defined with the STMT option in the %MACRO statement. See also
command-style macro, name-style macro.

stored compiled macro
a macro program that was compiled in a previous session and which was stored in a
permanent directory. Unlike session compiled macros, stored compiled macros can be
called in any SAS program.

symbol table
the area in which the macro processor stores all macro variables and macro
statement labels for a particular referencing environment (or scope).

symbolic substitution
the process of resolving a macro variable reference (&variable-name) to its value. See
also macro variable reference.

symbolic variable
another term for macro variable. See macro variable.

text expression
a type of macro expression that generates text when it is resolved (executed). The
text expression can include any combination of text, macro variables, macro
functions, and macro calls.

token
the unit into which the SAS language or the macro language divides input in order to
enable SAS to process that input. Tokens (also called words) include items that look

Glossary 331

like English words (such as variable names) as well as items that do not (such as
mathematical operators and semicolons).

tokenizer
the part of the word scanner that divides input into tokens (also called words). See
also token, word scanner.

unquoting
the process of restoring the meaning of a quoted item. See also quoting.

variable
See macro variable, SAS variable.

word
another term for token. See token.

word scanner
the component of SAS that examines all tokens (words) in a SAS program and moves
the tokens to the correct component of SAS for processing.

332

Index 333

Index

A
%ABORT statement 163
arithmetic expressions 67, 68

evaluating 70
ATTR= option

%WINDOW statement 312
autocall facility

debugging 122
macro definition errors 123
naming macros for 146

autocall libraries 105
catalogs as 107
directories as 106
saving macros in 106
specification errors 122

autocall macros 10, 157
calling 107
centrally storing 138
file names 123
list of 157
macro names 123
required system options for 157

automatic evaluation 149
automatic macro variables 10, 20, 154

by category 20
defined 19
displaying with %PUT statement 226
list of 154
portable, with host-specific values 141

AUTOSKIP= option
%WINDOW statement 313

B
BACK value

SYSENV automatic macro variable 272
BELL option

%DISPLAY statement 174
BLANK option

%DISPLAY statement 174
BLINK attribute

customizing windows 312
BOOLEAN conversion 274
%BQUOTE function 84, 165

comparisons 166
examples 84, 166

C
CALL EXECUTE routine 96
call routines

invoking 265
CALL SYMPUT routine 58
catalogs

as autocall libraries 107
CEIL conversion 274
character width value 267
CMD option

%MACRO statement 203
CMDMAC system option 167
%CMPRES autocall macro 168
COLOR= option

%WINDOW statement 309, 313
COLUMNS= option

%WINDOW statement 310
comments 169

inserting in macros 6
compiled macros 36
compiling macro definitions 34
%COMPSTOR autocall macro 171
condition codes

resetting 266
constant text 5
conversion types

%SYSEVALF function 274
%COPY statement 172

D
data sets

determining number of variables and observa-
tions 280

return code when damaged 271
DATA step

functions in 99
interfaces 96

%DATATYP autocall macro 173
date values

execution date for SAS job or session 269
debugging 111

autocall facility problems 122
black hole problems 118
developing bug-free macros 112
error types 112
expression evaluation 125
macro functions 118

macro names 118
macro variable resolution errors 115
macro variable scope problems 116
nesting information 127
open code recursion problems 117
system options for 126
techniques 126
timing issues 119
tracing flow of execution 126
troubleshooting macros 113

DELETE option
%DISPLAY statement 174

delta character 91
DES= option

%MACRO statement 203
DISPLAY= option

%WINDOW statement 313
%DISPLAY statement 174
%DO loops 9
%DO statement 175
%DO statement, iterative 176
%DO %UNTIL statement 177
%DO %WHILE statement 179
dummy macros 34, 118

E
efficiency 133, 134
%END statement 180
error messages

%SYSRC mnemonics for 293
%EVAL function 181

examples 182
evaluation functions 151
EXECUTE routine 183

conditional macro execution 184
passing DATA step values into parameter

list 184
execution errors 112
expression evaluation

debugging 125

F
floating-point evaluation 275
FLOOR conversion 274
FORE value

SYSENV automatic macro variable 272

334 Index

functions
DATA step and macro facility 99

G
global macro variables 20, 41, 42

creating 57, 186
creating, based on value of local variables 58

%GLOBAL statement 185
compared with %LOCAL statement 200
creating global macro variables 186

%GOTO statement 186
computed 186
%label name used with 196

H
HIGHLIGHT attribute

customizing windows 312

I
ICOLUMN= option

%WINDOW statement 310
%IF-%THEN/%ELSE statement 188

examples 189
IMPLMAC system option 190
%INDEX function 191
input stacks 11
%INPUT statement 192
INTEGER conversion 275
interfaces 95

DATA step interfaces 96
functions in DATA step and macro facility 99
SAS/CONNECT interfaces 103
SCL with 101
SQL procedure with 100

INTO clause
SELECT statement 100, 193

IROW= option
%WINDOW statement 310

J
job execution 100

K
KEYS= option

%WINDOW statement 310
keyword parameters 7

%MACRO statement with 205

L
%label statement 196
%LEFT autocall macro 197
%LENGTH function 198
%LET statement 198

local macro variables 20, 41, 43
creating 50
displaying with %PUT statement 227
forcing 54

%LOCAL statement 199
compared with %GLOBAL statement 200
example 200

LOCK statement return codes 283
logical expressions 67, 68

comparing character operands in 72
comparing numeric operands in 71
evaluating 71

login
of current SAS process 302

%LOWCASE autocall macro 201

M
macro comment statement 169
macro definitions

compiling 34, 108
nesting 135
storing 108

macro expressions 67
arithmetic 68
logical 68

macro facility 3
functions 99
interfaces 10, 95, 156
reserved words 317
system options 158
word rules 317

macro functions 10, 149
assigning results to macro variables 136
debugging 118
evaluation functions 151
list of 149
manipulating macro variables with 30
quoting functions 151

macro keywords 87
macro language 3, 10

autocall macros 157
automatic variables 154
elements 147
functions 149
macro facility interfaces 156
statements 147
system-dependent elements 144

macro parameters 7
%MACRO statement with 204
validating 178

macro processing 11, 33, 40
calling macros 33
compiling macro definitions 34
defining macros 33
executing compiled macros 36

macro processor 3
macro quoting 75, 91

mnemonics in passed parameters 77
referring to already quoted variables 85
special characters in passed parameters 77
unquoting text 89

macro quoting functions 76, 92
choosing 78
masking text 85
overview 77

summary of 88
when to use 78

macro source code
saving 108

%MACRO statement 202
examples 204
keyword parameters 205
positional parameters 204

macro statements 10, 147
comment statement 169
for automatic evaluation 149
list of 147
open code recursion problems 117

MACRO system option 207
macro variable references 25

combining with text 27
creating series of, with single macro call 29
in SCL submit blocks 102
indirect references 29
indirect references, more than two amper-

sands 30
resolving with SCL 102
suffixes for 9
SYMPUT routine timing problem 261

macro variable resolution errors 112, 115
macro variables 19

assigning 45
assigning function results to 136
automatic 20
changing values of 48
creating, on remote host or server 284
creating period to follow resolved text 28
delimiting names of, within text 27
displaying local variables 227
displaying values 28
global 42
host-specific 145
local 43
manipulating values with macro functions 30
modifying, on remote host or server 284
referencing 25
replacing text strings 4
resetting to null 138
resolving 45
scanning 138
scope problems 116
scopes of 41, 48
solving resolution problems 115
storing one copy of long values 138
user-defined 22

macros
black hole problems 118
bug-free, developing 112
calling 33
conditionally generating SAS code 8
containing several SAS statements 6
defining 33
definition of 33
%DO loops and 9
efficiency and 133, 134
generating repetitive pieces of text 9
generating SAS code 5
inserting comments 6
names of 118, 123
nesting information 127
passing information to, with parameters 7
reusing 105

Index 335

saving, in autocall libraries 106
saving, with stored compiled macro facil-

ity 108
sharing between SCL programs 102
storing 105
troubleshooting 113

MAUTOLOCDISPLAY system option 207
MAUTOSOURCE system option 208
MCOMPILENOTE system option 209
%MEND statement 210
MENU= option

%WINDOW statement 310
MERROR system option 210
MFILE system option 211
MINDELIMITER= system option 212
MLOGIC system option 214

tracing flow of execution with 126, 214
MLOGICNEST system option 215

nesting information generated by 127
mnemonic operators

quoting values that contain 231
model text 5
MPRINT system option 217
MPRINTNEST system option 219

nesting information generated by 127
MRECALL system option 221
MSTORED system option 222
MSYMTABMAX= system option 138, 222
MVARSIZE= system option 138, 223

N
name delimiters 3
name style macros 135
nested macro definitions

avoiding 135
nesting information 127
NOINPUT option

%DISPLAY statement 174
%NRBQUOTE function 84, 224
%NRQUOTE function 224

comparisons 231
quoting values containing mnemonic opera-

tor 231
%NRSTR function 80, 224, 239

comparisons 240
examples 82
maintaining leading blanks 240
protecting blanks 241
quoting values containing macro refer-

ence 241

O
observations

determining number of, in a data set 280
open code 19
open code recursion 117
operands 68

evaluating floating point operands 70
evaluating numeric operands 70

operators 68

P
PARMBUFF option

%MACRO statement 203, 205
portable macros 140
positional parameters

%MACRO statement 204
process id 289
process name

generated from last STARTSAS state-
ment 301

writing to log 290
PROTECT= option

%WINDOW statement 313
%PUT statement 225

displaying automatic variables 226
displaying local variables 227
displaying text 226
displaying user-generated variables 227
tracking problems with 130

Q
%QCMPRES autocall macro 168, 228
%QLEFT autocall macro 228
%QLOWCASE autocall macro 201, 229
%QSCAN function 93, 229, 237
%QSUBSTR function 230, 242
%QSYSFUNC function 10, 230, 278

comparisons 279
examples 279
formatting current date 279
SAS functions not available with 279

%QTRIM autocall macro 230, 304
removing trailing blanks 304
vs. %TRIM 305

%QUOTE function 231
quoting values containing mnemonic opera-

tor 231
quoting functions 151
%QUPCASE function 232, 306

R
RANUNI call routine

%SYSCALL statement with 266
recursion 117
REQUIRED= option

%WINDOW statement 313
reserved words 317
RESOLVE function 233

resolving sample references 234
return code status 273
return codes

for damaged data sets 271
%RETURN statement 234
REV_VIDEO attribute

customizing windows 313
ROWS= option

%WINDOW statement 310

S
SAS code

conditionally generating 8
generating with macros 5

SAS/CONNECT interfaces 103
SAS process

login of current process 302
userid of current process 302
writing name to log 290

SASAUTOS= system option 235
SASMSTORE= system option 236
%SCAN function 237
SCL

example 102
interfaces with 101
referencing macro variables in submit

blocks 102
resolving macro references 102
sharing macros between programs 102

scopes
CALL SYMPUT routine and 58
examples 48
of macro variables 41
variables created with SYMPUT routine 260

semantic errors 112
SERROR system option 238
session compiled macros 105
SOURCE option

%MACRO statement 204
SQL procedure

controlling job execution 100
interfaces with 100
INTO clause 100

STARTSAS statement
id generated from 301
process name generated from 301

statement processing
with macro activity 14
without macro activity 12

STMT option
%MACRO statement 203

STORE option
%MACRO statement 204

stored compiled macro facility 108
efficiency and 137

stored compiled macros
calling 109
displaying information about 124

%STR function 80, 239
comparisons 240
examples 82
maintaining leading blanks 240
percent signs with 81
protecting blanks 241
quoting values containing macro refer-

ence 241
%SUBSTR function 242
suffixes

for macro variable references 9
%SUPERQ function 86, 244

entering macro keywords 87
preventing warning messages 86

symbol tables 41
writing contents to log 45

336 Index

SYMBOLGEN system option 246
tracing resolution of macro variable refer-

ences 246
SYMDEL CALL routine 247
%SYMDEL statement 247
SYMEXIST function 249
%SYMEXIST function 248
SYMGET function 250
SYMGETN function 253

comparisons 254
SYMGLOBL function 255
%SYMGLOBL function 254
SYMLOCAL function 258
%SYMLOCAL function 257
SYMPUT routine 259

comparisons 262
formatting rules, assigning character val-

ues 261
formatting rules, assigning numeric val-

ues 262
scope of variables 260
timing of referencing 261

SYMPUTN routine 263
syntax errors 112
SYSBUFFR automatic macro variable 264
%SYSCALL statement 265

RANUNI call routine with 266
SYSCC automatic macro variable 266
SYSCHARWIDTH automatic macro vari-

able 267
SYSCMD automatic macro variable 267
SYSDATE automatic macro variable 268
SYSDATE9 automatic macro variable 269
SYSDAY automatic macro variable 270
SYSDEVIC automatic macro variable 270
SYSDMG automatic macro variable 271
SYSDSN automataic macro variable 271
SYSENV automatic macro variable 272
SYSERR automatic macro variable 273
%SYSEVALF function 273

floating-point evaluation 275
%SYSEXEC statement 276
SYSFILRC automatic macro variable 277
%SYSFUNC function 10, 278

comparisons 279
confirming existence of data sets 280
formatting current date 279
formatting values 279
functions and arguments for 321
number of variables and observations in a data

set 280

portable functions with 140

SAS functions not available with 279

translating characters 280

%SYSGET function 281

SYSINDEX automatic macro variable 282

SYSINFO automatic macro variable 282

SYSJOBID automatic macro variable 282

SYSLAST automatic macro variable 283

SYSLCKRC automatic macro variable 283

SYSLIBRC automatic macro variable 284

%SYSLPUT statement 284

SYSMACRONAME automatic macro vari-
able 285

SYSMENV automatic macro variable 286

SYSMSG automatic macro variable 286

SYSNCPU automatic macro variable 287

SYSPARM automatic macro variable 287

SYSPARM= system option 288

SYSPBUFF automatic macro variable 289

SYSPROCESSID automatic macro variable 289

SYSPROCESSNAME automatic macro vari-
able 290

SYSPROCNAME automatic macro variable 290

%SYSPROD function 291

%SYSRC autocall macro 292

example 296

mnemonics for warning and error condi-
tions 293

SYSRC automatic macro variable 296

%SYSRPUT statement 297

SYSSCP automatic macro variable 298

SYSSCPL automatic macro variable 298, 300

SYSSITE automatic macro variable 301

SYSSTARTID automatic macro variable 301

SYSSTARTNAME automatic macro vari-
able 301

system options

in macro facility 158

required, for autocall macros 157

tracking problems with 126

turning off, for efficiency 137

SYSTIME automatic macro variable 302

SYSUSERID automatic macro variable 302

SYSVER automatic macro variable 303

SYSVLONG automatic macro variable 303

T
temporary files

deleting 300
text

displaying with %PUT statement 226
text expressions 67
text strings

replacing, with macro variables 4
timing problems 119
tokenization 12
tokens 319

list of 319
tracking problems

with %PUT statement 130
with system options 126

%TRIM autocall macro 304
troubleshooting 113

U
UNDERLINE attribute

customizing windows 313
%UNQUOTE function 305
unquoting text 89
%UPCASE function 306
user-defined macro variables 22

assigning values 22
assignment types 23
creating 22
defined 19
displaying with %PUT statement 227

userid
of current SAS process 302

V
variables

determining number of, in a data set 280
%VERIFY autocall macro 308

W
warning messages

preventing 86
%WINDOW statement 309

creating application WELCOME window 314
word rules 317
word scanner 12

Your Turn

If you have comments or suggestions about SAS 9.1 Macro Language: Reference,
please send them to us on a photocopy of this page, or send us electronic mail.

For comments about this book, please return the photocopy to
SAS Publishing
SAS Campus Drive
Cary, NC 27513
email: yourturn@sas.com

For suggestions about the software, please return the photocopy to
SAS Institute Inc.
Technical Support Division
SAS Campus Drive
Cary, NC 27513
email: suggest@sas.com

	Table of Contents
	Contents

	What’s New
	Overview
	New Automatic Macro Variable
	New Comparison Operators
	New SAS System Options
	New Macro Statements
	New Macro Functions
	New Option for the %MACRO Statement

	Understanding and Using the Macro Facility
	Introduction to the Macro Facility
	Getting Started with the Macro Facility
	Replacing Text Strings Using Macro Variables
	Generating SAS Code Using Macros
	Inserting Comments in Macros

	More Advanced Macro Techniques
	Generating Repetitive Pieces of Text Using %DO Loops
	Generating a Suffix for a Macro Variable Reference

	Other Features of the Macro Language

	SAS Programs and Macro Processing
	Introduction to SAS Programs and Macro Processing
	How SAS Processes Statements without Macro Activity
	How SAS Processes Statements with Macro Activity

	Macro Variables
	Introduction to Macro Variables
	Macro Variables Defined by SAS
	Macro Variables Defined by Users
	Creating Macro Variables and Assigning Values

	Using Macro Variables
	Combining Macro Variable References with Text

	Displaying Macro Variable Values
	Referencing Macro Variables Indirectly
	Generating a Series of Macro Variable References with a Single Macro Call
	Using More Than Two Ampersands

	Manipulating Macro Variable Values with Macro Functions

	Macro Processing
	Introduction to Macro Processing
	Defining and Calling Macros
	How the Macro Processor Compiles a Macro Definition
	How the Macro Processor Executes a Compiled Macro
	Summary of Macro Processing

	Scopes of Macro Variables
	Introduction to the Scopes of Macro Variables
	Global Macro Variables
	Local Macro Variables
	Writing the Contents of Symbol Tables to the SAS Log
	How Macro Variables Are Assigned and Resolved
	Examples of Macro Variable Scopes
	Changing the Values of Existing Macro Variables
	Creating Local Variables
	Forcing a Macro Variable to Be Local
	Creating Global Macro Variables
	Creating Global Variables Based on the Value of Local Variables
	Special Cases of Scope with the CALL SYMPUT Routine

	Macro Expressions
	Introduction to Macro Expressions
	Defining Arithmetic and Logical Expressions
	Operands and Operators

	How the Macro Processor Evaluates Arithmetic Expressions
	Evaluating Numeric Operands
	Evaluating Floating Point Operands

	How the Macro Processor Evaluates Logical Expressions
	Comparing Numeric Operands in Logical Expressions
	Comparing Character Operands in Logical Expressions

	Macro Quoting
	Introduction to Macro Quoting
	Understanding Why Macro Quoting Is Necessary
	Overview of Macro Quoting Functions
	Passing Parameters That Contain Special Characters and Mnemonics

	Deciding When to Use a Macro Quoting Function and Which Function to Use
	Using the %STR and %NRSTR Functions
	Using Unmatched Quotation Marks and Parentheses with %STR and % NRSTR
	Using % Signs with %STR
	Examples Using %STR
	Examples Using %NRSTR

	Using the %BQUOTE and %NRBQUOTE Functions
	Examples Using %BQUOTE

	Referring to Already Quoted Variables
	Deciding How Much Text to Mask with a Macro Quoting Function
	Using %SUPERQ
	Examples Using %SUPERQ

	Summary of Macro Quoting Functions and the Characters They Mask
	Unquoting Text
	Example of Unquoting
	What to Do When Automatic Unquoting Does Not Work

	How Macro Quoting Works
	Other Functions That Perform Macro Quoting
	Example Using the %QSCAN Function

	Interfaces with the Macro Facility
	Introduction to Interfaces with the Macro Facility
	DATA Step Interfaces
	CALL EXECUTE Routine Timing Details

	Using SAS Language Functions in the DATA Step and Macro Facility
	Interfaces with the SQL Procedure
	INTO Clause
	Controlling Job Execution

	Interfaces with the SAS Component Language
	How Macro References Are Resolved by SCL
	Referencing Macro Variables in Submit Blocks
	Considerations for Sharing Macros between SCL Programs
	Example Using Macros in an SCL Program

	SAS/CONNECT Interfaces
	Example Using %SYSRPUT to Check the Value of a Return Code on a Remote Host

	Storing and Reusing Macros
	Introduction to Storing and Reusing Macros
	Saving Macros in an Autocall Library
	Using Directories as Autocall Libraries
	Using SAS Catalogs as Autocall Libraries
	Calling an Autocall Macro

	Saving Macros Using the Stored Compiled Macro Facility
	Compiling and Storing a Macro Definition
	Calling a Stored Compiled Macro

	Macro Facility Error Messages and Debugging
	General Macro Debugging Information
	Encountering Errors
	Developing Bug-free Macros

	Troubleshooting Your Macros
	Solving Macro Variable Resolution Problems
	Solving Problems with Macro Variable Scope
	Solving Open Code Statement Recursion Problems
	Solving Problems with Macro Functions
	Solving Unresolved Macro Problems
	Solving the Black Hole” Macro Problem
	Resolving Timing Issues
	Solving Problems with the Autocall Facility
	Displaying Information about Stored Compiled Macros
	Solving Problems with Expression Evaluation

	Debugging Techniques
	Using System Options to Track Problems
	Using the %PUT Statement to Track Problems

	Writing Efficient and Portable Macros
	Introduction to Writing Efficient and Portable Macros
	Keeping Efficiency in Perspective
	Writing Efficient Macros
	Use Macros Wisely
	Use Name Style Macros
	Avoid Nested Macro Definitions
	Assign Function Results to Macro Variables
	Turn Off System Options When Appropriate
	Use the Stored Compiled Macro Facility
	Centrally Store Autocall Macros
	Other Useful Efficiency Tips
	Storing Only One Copy of a Long Macro Variable Value

	Writing Portable Macros
	Using Portable SAS Language Functions with %SYSFUNC
	Using Portable Automatic Variables with Host-Specific Values
	Macro Language Elements with System Dependencies
	Host-Specific Macro Variables
	Naming Macros and External Files for Use with the Autocall Facility

	Macro Language Elements
	Introduction to Macro Language Elements
	Macro Statements
	Macro Statements That Perform Automatic Evaluation

	Macro Functions
	Macro Character Functions
	Macro Evaluation Functions
	Macro Quoting Functions
	Other Macro Functions

	Automatic Macro Variables
	Interfaces with the Macro Facility
	Selected Autocall Macros Provided with SAS Software
	Required System Options for Autocall Macros
	Using Autocall Macros

	Selected System Options Used in the Macro Facility

	Macro Language Dictionary
	Appendixes
	Reserved Words in the Macro Facility
	Macro Facility Word Rules
	Reserved Words

	SAS Tokens
	What Are SAS Tokens?
	List of Tokens

	Syntax for Selected Functions Used with the % SYSFUNC Function
	Summary Descriptions and Syntax

	Recommended Reading
	Recommended Reading

	Glossary
	Index

