

临床研究SAS高级编程
SAS Macro

 1

Outlines

• Introduction

• Macro Variables

• Macro Function

• Macro Quoting

• Macro Programs

• DATA Step and SQL Interfaces

• How to use SAS Macros

2

Examples (1/5)

• Example 1: Using a Macro Variable to
Select Observations to Process

%let car_maker=Audi;

proc print data=sashelp.cars(where=(Make="&car_maker"));
 title "Cars information for &car_maker";
 var Model Type Origin DriveTrain EngineSize;
run;

 3

Presenter
Presentation Notes
The macro variable CAR_MAKER defined in this macro is used to select a subset of a dataset and place information in the report title.

4

Examples (2/5)

• Example 2: Displaying System Information

%let car_maker=Audi;

title1 "Cars information for &car_maker";
title2 "As of &systime &sysday &sysdate";
title3 "Using SAS Version: &sysver";

proc print data=sashelp.cars(where=(Make="&car_maker"));
 var Model Type Origin DriveTrain EngineSize;
run;

Presenter
Presentation Notes
SAS has a set of automatic macro variables that you can reference in your SAS programs. Most of these macro variables deal with system-related items like date, time,
operating system, and version of SAS. Using these automatically defined macro variables is one of the simplest applications of the macro facility.

Examples (3/5)

• Example 3: Iterative Processing of SAS Steps

%macro classcat;
 data %do i=12 %to 16;
 age&i
 %end;
 ;
 set sashelp.class;
 if age=12 then output age12;
 %do i=13 %to 16;
 else if age=&i then output age&i;
 %end;
 run;
%mend classcat;

/*After interpretation by the macro processor, the program becomes:*/

data age12 age13 age14 age15 age16;
 set sashelp.class;
 if age=12 then output age12;
 else if age=13 then output age13;
 else if age=14 then output age14;
 else if age=15 then output age15;
 else if age=16 then output age16;
run;

 5

Presenter
Presentation Notes
The %DO loops in the macro language can take over some of that iterative coding for you. This example illustrates the iterative processing. It creates 5 datasets

Examples (4/5)

• Example 4: Using a Macro Program to Execute the
Same PROC Step on Multiple Data Sets

%macro Classinfo;

 %do age=12 %to 16;

 proc print data=work.age&age;
 title "Students demographics of age &age in class";
 var Name Sex Height Weight;
 run;
 %end;

%mend Classinfo;

 6

Presenter
Presentation Notes
When this macro executes, it submits a PROC PRINT step five times. Each time, it processes a different dataset.

7

Examples (5/5)

• Example 5: Conditionally Generating SAS
Code

%macro whatstep(info=
 ,mydata=);
 %if &info=print %then
 %do;
 proc print data=&mydata;
 run;
 %end;
 %else %if &info=report %then
 %do;
 options nodate nonumber ps=18 ls=70 fmtsearch=(sasuser);
 proc report data=&mydata nowd;
 column manager dept sales;
 where sector="se";
 format manager $mgrfmt. dept $deptfmt. sales dollar11.2;
 title "Sales for the Southeast Sector";
 run;
 %end;
%mend whatstep;

Presenter
Presentation Notes
Macro programs can use macro variables and macro programming statements to select the steps and the SAS language statements to execute in a SAS program.
Macro program WHATSTEP contains two PROCs. If you let info equals to print, it run PROC PRINT; if you let info equals to report, it run PROC REPORT.

8

What Is the SAS Macro Facility*
• The macro facility is a tool for extending and customizing SAS

and for reducing the amount of text you must enter to do
common tasks.

• The macro facility enables you to assign a name to character
strings or groups of SAS programming statements. You can
work with the names rather than with the text itself.

* From the SAS document—SAS Macro Language

9

What Is the SAS Macro Facility*

• The macro facility has two components:
The macro processor

- is the portion of SAS that does the work
The macro language

- is the syntax that you use to communicate with the macro
processor

• When SAS compiles program text, two delimiters trigger
macro processor activity:
&name a macro variable
%name a macro
 (%INCLUDE, %LIST, and %RUN statements are not part of

the macro facility)

* From the SAS document—SAS Macro Language

10

What Is the SAS Macro Facility

• SAS Macro language has two components:
SAS macro variables

- Typically, Store text; is used to insert text throughout a SAS program repeatedly

SAS macro programs
- Use macro variables and macro programming statements to build SAS programs

Presenter
Presentation Notes
In Following series of training, we will have some presentation to introduce the two components of the SAS macro language.

11

How to Access SAS Macro Facility

• The SAS macro facility is a component of Base SAS.
• If you have access to SAS, you have access to the macro facility,

and you can include macro facility features in your programs.

Presenter
Presentation Notes
We know if we need plot a fancy figure, we need the module SAS/GRAPH; if we perform a ANCOVA model, we need the module SAS/STAT. What about the SAS macro facility.
Actually, ……

12

Purpose of the SAS Macro Facility

• The macro facility is a text processing facility for automating and
customizing flexible SAS code.

• The macro facility supports

Symbolic substitution within SAS code
Automated production of SAS code
Dynamic generation of SAS code
Conditional construction of SAS code.

Presenter
Presentation Notes
From the five examples, We can know the purpose of SAS macro facility clearly.

13

Purpose of the SAS Macro Facility

• The macro facility is a text processing facility for automating and
customizing flexible SAS code.

• The macro facility enables you to

Create and resolve macro variables anywhere within
a SAS program
Write and call macro programs (macros) that

generate custom SAS code.

14

Where Can the SAS Macro Facility Be Used

• The macro facility can be used with all SAS products.
Customizes data set processing, PROC steps and reports
Passes data between steps in a program
Conditionally executes DATA steps and PROC steps
Iteratively processes DATA steps and PROC steps
Contains libraries of macro program routines
Contains libraries of macro routines for annotating SAS/GRAPH

output
Creates functions that can be used with the macro facility
……

Macro Variables (1/6)

• How to define a Macro variable

%let macrovar = macrovalue
Macrovar: regular SAS naming conventions Macrovalue: any

string or macro expression
stored as character type length 0-32K characters

math expressions are not evaluated
 quotations not needed
 leading/trailing blanks are removed

15

Macro Variable (2/6)

• How to resolve a Macro variable
• ¯ovar

NOT resolved in single quotes--you must use double quotes.

Examples :
%let var1= SAS Macro;
%let var2 = ‘SAS Macro’;
%let var3 = “SAS’ Macro”;

%let var4 = 3+4;

%put
¯ovar

%put ‘&var1’

%put “&var1”

Macro Variable
var1
Var2 Var3 var4

Value
SAS Macro
‘SAS Macro’

“SAS’ Macro”
3+4

‘&var1’

“SAS Macro”

 16

Macro Variable (3/6)

Type of Macro variables

Automatic/User-defined macro variable

Global/Local Macro Variable
It depends on where the macro variable is defined If

in open code then Global Else Local
%global or %local;

%let var5= global macro variable;

%macro test;

%let var6= local macro variable;

%mend;

%test;

17

9 临床研究SAS高级编程

Macro Variable (4/6)

Where Macro variables store

Macro Variable (5/6)

How to display Macro variables

%put _all_: to display all macro variables;

%put _automatic_: to display all automatic macro variables;

%put _user_: to display all user-defined macro variables;

%put _global_ : to display all global variables (user-defined);

%put _local_: to display all local variables (user-defined);

 19

Macro Variable (6/6)

Combine Macro variable with Text

Text&macvar
&macvar.Text
&macvar1&macvar2

Results
SAS MacroText
TextSAS Macro
SAS Macro'SAS Macro‘
SAS Macro.Text

%put &var1.Text;
%put Text&var1;
%put &var1&var2;
%put &var1..Text;

20

Macro Function (1/4)

• Purpose
• Used to manipulate character strings
• Used to perform arithmetic
• Used to execute SAS functions
• Have similar syntax to corresponding data step functions and yield

similar results

21

Macro Function (2/4)

• Manipulate character strings
• %UPCASE translates letters to uppercase
• %SUBSTR produces a substring of a character string
• %SCAN extracts a word from a character string
• %LENGTH determines the length of a character string

22

%let var7=%length(&var1);

%put The length of var1 is &var7..;

Result in the Log: The length of var1 is 9.

Macro Function (2/4)

• Utilize the %SYSFUNC macro function

The first argument is required.
The second argument is optional.
Function(argument(s)) is the name of one of most SAS functions and the

corresponding arguments.
All SAS functions can be used with %SYSFUNC except: DIF, DIM,

HBOUND, IORCMSG, INPUT, LAG, LBOUND, MISSING,PUT, RESOLVE,
SYMGET , All Variable Information Functions.

23

%SYSFUNC(function(argument(s)) <,format>)

Macro Function (3/4)

• Examples:
• %put Today is %sysfunc(today(),date9.);
 Result: Today is 14JUN2009
• Determining the Number of Variables and Observations in a Data Set

24

%macro obsnvars(ds);
%global dset nvars nobs;
%let dset=&ds;
%let dsid = %sysfunc(open(&dset));
%if &dsid %then
%do;
%let nobs =%sysfunc(attrn(&dsid,NOBS));
%let nvars=%sysfunc(attrn(&dsid,NVARS));
%let rc = %sysfunc(close(&dsid));
%put &dset has &nvars variable(s) and
&nobs observation(s).;
%end;
%else
%put Open for data set &dset failed -
%sysfunc(sysmsg());
%mend obsnvars;

%obsnvars(sasuser.houses);

Open for data set sasuser.houses
failed - ERROR: File
SASUSER.HOUSES.DATA does not
exist.

%obsnvars(sashelp.adomsg);

sashelp.adomsg has 6
variable(s) and 458
observation(s).

Macro Quoting (1/13)

• Objective
• Macro quoting functions tell the macro processor to interpret special

characters and mnemonics as text rather than as part of the macro
language. Here are some examples of the kinds of ambiguities:

25

Macro Quoting (2/13)

• Special characters and mnemonics
Special characters and mnemonics might require masking when they appear

in text strings:

26

Special Characters Must Be Masked
+ -*/<>=^|¬ ~ # LE LT
EQ NE GE GT AND OR
NOT IN

To prevent it from being treated as an
operator in the argument of an %EVAL
function

Blank To maintain, rather than ignore, a leading,
trailing, or isolated blank

;(semicolon) To prevent a macro program statement from
ending prematurely

,(comma) To prevent it from indicating a new function
argument, parameter, or parameter value

' " () If it might be unmatched(expect pairs)
% or & immediately
followed by a valid
macro name

Text other than macro trigger

Macro Quoting (3/13)

• Macro Quoting Functions (1/3)

27

Macro Quoting (4/13)

• Macro Quoting Functions (2/3)

28

Macro Quoting (5/13)

• Macro Quoting Functions (3/3)

29

Macro Quoting (7/13)

• Compile-phase: translates all statements inside a SAS macro
definition into compiled instructions or constant text. it is completed
with the %mend statement. During compilation, macro processor :

A.Creates an entry in the session catalog
B.Compiles and stores all macro program statements for that macro as

macro instructions
C.Stores non-compiled items in the macro as text such as: 1)macro variable

references, 2) text written by %put statements, 3) macro functions, 4) arithmetic
and logical macro expression.

30

Macro Quoting (8/13)

• %macro comp(score=);
 %if %upcase(&score)=A %then
 %do;
 data _null_;
 call symput(‘score’, ’A’);
 run;
 %put Your score is “A”;
 %end;
 %else
 %do;
 %put Your score is “&score”, not “A”;
 %end;
%mend;

%COMP(score=b)

31

Macro Quoting (9/13)

• Execute-phase: when the compiled macro is
invoked, the macro facility executes or runs
these instructions in another phase, the execute-
phase. During execution, macro processor
(repetitively):

A.Opens the session catalog and creates a local symbol table
B.Removes tokens for macro call and places any parameter values in the

local symbol table
C.Executes compiled macro program statements
D.Places non-compiled items back in to the top of the input stack as text
E.Waits for the word scanner to process the text

32

Macro Quoting (10/13)

33

Macro Quoting (11/13)

• Example of masking

 %let x=%str(msd<=>Merck Sharp & Dohme);

• The value stored by SAS is:
• ▲msd▲▲▲Merck Sharp & Dohme▲

34

Macro Quoting (12/13)

• Special Characters and Corresponding Quoting Functions (1/2)

35

Special
Characters

Quoted by Macro
Quoting
Functions

Select the
preferable func?

+ -*/<>=^|¬ ~ # LE
LT EQ NE GE GT
AND OR NOT IN

%str, %nrstr, %quote,
%nrquote, %bquote,
%nrbquote, %superq

When do the chars
need to be masked?
Comp or Exec?

Blank
;(semicolon)
,(comma)

%str, %nrstr, %quote,
%nrquote, %bquote,
%nrbquote, %superq

When do the chars
need to be masked?
Comp or Exec?

Macro Quoting (13/13)

• Special Characters and Corresponding Quoting Functions (2/2)

36

Special
Character
s

Quoted by Macro
Quoting Functions

Select the
preferable func?

' " () %str, %nrstr, %quote,
%nrquote, %bquote,
%nrbquote, %superq

Use a % sign as prefix
when you use functions
in RED color.

% or & %nrstr, %nrquote,
%nrbquote, %superq

%nrstr do a real
masking job.

Macro Program (1/6)

• Define and Call a Macro
• A macro or macro definition enables you to write macro programs.

• macro-name follows SAS naming conventions
• macro-text can include
any text
SAS statements or steps
macro variables, functions, statements, or calls
any combination of the above.

37

Define: %MACRO macroname;
macro text;

%MEND macroname;

Call: %macroname;

Macro Program (2/6)

• Type of Macro Parameter
• Positional Parameter

• Keyword Parameter

• Mixture

38

%MACRO macroname(p1,p2,…,pn);

%MACRO macroname(k1=,k2=v2,…,kn=);

%MACRO macroname(p1,p2,…,k1=,k2=v2,…,pn);

Macro Program (3/6)

• Macro Compilation
• When a macro definition is submitted,
• macro language statements are
checked for syntax errors
Compiled

• SAS statements and other text are not
checked for syntax errors
Compiled

• the macro is stored as an entry in a SAS catalog, the temporary catalog
work.sasmacr by default.

• The MCOMPILENOTE=ALL option issues a note to the SAS log after a
macro definition has compiled.

39

Macro Program (4/6)

• Produce a list of compiled macros stored in the default temporary
catalog work.sasmacr.

40

Macro Program (5/6)

• Calling a Macro

• A macro call
causes the macro to execute
is specified by placing a percent sign before the name of the macro
can be made anywhere in a program (similar to a macro variable

reference)
represents a macro trigger
is not a statement (no semicolon required).

41

Macro Program (6/6)

• Program Flow
When the macro processor receives %macro-name, it
searches the designated SAS catalog (WORK.SASMACR by default)

for an entry named macro-name.MACRO
executes compiled macro language statements
sends any remaining text to the input stack for word scanning
pauses while the word scanner tokenizes the inserted text and SAS

code executes
resumes execution of macro language statements after the SAS code

executes.

42

DATA Step and SQL Interfaces

• Create a Macro Variable using Proc SQL

43

proc sql noprint;

select name into :names separated by ',' from sashelp.class;

quit;

%put names=&names;

Log:names=Alfred,Alice,Barbara,Carol,Henry,James,Jane,Janet,Jeffre
y,John,Joyce,Judy,Louise,Mary,Philip,Robert,Ronald,Thomas,William

DATA Step and SQL Interfaces

• SYMEXIST to check if a macro variable exists

44

data _null_;

if symexist('var1') then put '**** var1 exists'; Else put "****

var1 doesn't exist";

if symexist('var11') then put '**** var11 exists';

Else put "**** var11 doesn't exist";

run; Results:

**** var1 exists

**** var11 doesn't exist

Other Funcitons: SYMLOCAL: SYMGLOBAL; SYMDEL; SYMGET

DATA Step and SQL Interfaces

• %eval and %sysvalf

45

DATA Step and SQL Interfaces

Using Macros to Comment Out Code

46

When :

If there is a large section of codes you don’t want to run.

How:

Put a “%macro name” at the top and a “%mend” at the end and
never call the macro.

Advantages:

This effectively comments out the code without running it.

No need to worry about other comment styles in the code.

DATA Step and SQL Interfaces

• RESOLVE Function

47

%let name1=Sanofi;

%let name2=Aventis;

data _null_;

name=resolve('Our company is &name1 &name2'); put name;

run;

Result:

Our company is Sanofi Aventis

DATA Step and SQL Interfaces

• CALL SYMPUT & PROC SQL (1/2)

48

%macro test; data test;
do x=1 to 3;

y='C'||strip(put(x,3.)); output;

end;
run;

data _null_;
set test;
call symput(y,put(x,z3.));

run;

data _null_;
%do x=1 %to 3;

%put The value of Macro Variable
%end; run;
%mend;
%test;

C&x is &&C&x ;

The value of Macro Variable C1 is 001
The value of Macro Variable C2 is 002
The value of Macro Variable C3 is 003

DATA Step and SQL Interfaces

49

CALL SYMPUT & PROC SQL (2/2)

%macro test;

4
9

%end;
run;
%mend
;
%test
;

proc sql noprint;
select put(x,z3.) into :D1-:D3
from test;
quit;
data _null_;
%do x=1 %to 3;

%put The value of

Macro Variable D&x is &&D&x ;

The value of Macro Variable D1 is 001
The value of Macro Variable D2 is 002
The value of Macro Variable D3 is 003

50

How to use SAS Macros

• In order to use a SAS macro
You have to tell SAS where it is located
You have to call it.

• E.g., We want to call the macro %ANCOVA (Performs an ANOVA or

ANCOVA analysis and produces several output data sets), the SAS
macro %ANCOVA is stored in the file ancova.sas.

• A SAS macro will have a particular name, and will be stored in a file
of the same name. Good Reminder

to you

51

How to use SAS Macros

• Telling SAS where the macro is located
You must know the location that all the files containing

macros are in. (e.g. C:\My Documents\SAS Macros\)
Place the following statements in the SAS file, e.g.,

autoexec.sas file: filename storemacs 'C:\My
Documents\SAS Macros\';
Two ways to use the macro %ANCOVA that you

developed
- options mautosource sasautos=(storemacs, sasautos);
- %include storemacs(ancova.sas)/source;

• then you can call the macro %ANCOVA
whenever you need

52

Good Programming Practice (GPP) for SAS Macro Program

• SAS macros variables
When creating macro variables ensure that it does not have

the same name as a system macro. (e.g., ABORT, SYSDAY)
Declare macro variables as local within the local environment.

- E.g. %local macroname;

Declare all global macro variables in a common place near the
beginning of the program as specified;
Declare macro variables explicitly as global or local using

%GLOBAL or %LOCAL statements.

%macro macname;
 ...
 %local macroname;
 ...
%mend macname;

53

Good Programming Practice (GPP) for SAS Macro Program

• SAS macros program
Write macro procedures only for repetitive tasks;
Utilize existing standard macro procedures when possible;
Use SAS system options to facilitate debugging of macros (e.g.

MPRINT, &sysmacroname);
Specify the name of the macro in the %mend statement;
Use the recommended comment statement within the macros. They

will not appear in the SAS log if the MPRINT option is activated.
- Beginning with /* and ending with */
- Begins with a %* and ends with a ; (Preferred)

54

Good Programming Practice (GPP) for SAS Macro Program

• SAS macros program
Left-justify %MACRO and %MEND statements. Indent each level of

subsequent statements consistently.
Align a %DO with its corresponding %END statement.
List each macro parameter on a separate line.
Start procedure statements or data step statements in column one if

not located in a macro, else put %MACRO and %MEND statements
in column one. All other code should be indented within the data step
or procedure.
Add the header to the macro when you complete to develop the

macro.

55

A Example for GPP

56

To Develop a Macro is To Build a Building

• You must have a big picture before you developing, the objects and
clear logic

• Think more about the efficient process, make sure of using less
parameters in your macro

• Fellow the GPP, make sure it’s readable
• For the complicated macro, the manual for using it is needed

A good macro is like a beautiful building,

you are the architect

	
	Outlines
	Examples (1/5)
	Examples (2/5)
	Examples (3/5)
	Examples (4/5)
	Examples (5/5)
	What Is the SAS Macro Facility*
	What Is the SAS Macro Facility*
	What Is the SAS Macro Facility
	How to Access SAS Macro Facility
	Purpose of the SAS Macro Facility
	Purpose of the SAS Macro Facility
	Where Can the SAS Macro Facility Be Used
	Macro Variables (1/6)
	Macro Variable (2/6)
	Macro Variable (3/6)
	Macro Variable (4/6)
	Macro Variable (5/6)
	Macro Variable (6/6)
	Macro Function (1/4)
	Macro Function (2/4)
	Macro Function (2/4)
	Macro Function (3/4)
	Macro Quoting (1/13)
	Macro Quoting (2/13)
	Macro Quoting (3/13)
	Macro Quoting (4/13)
	Macro Quoting (5/13)
	Macro Quoting (7/13)
	Macro Quoting (8/13)
	Macro Quoting (9/13)
	Macro Quoting (10/13)
	Macro Quoting (11/13)
	Macro Quoting (12/13)
	Macro Quoting (13/13)
	Macro Program (1/6)
	Macro Program (2/6)
	Macro Program (3/6)
	Macro Program (4/6)
	Macro Program (5/6)
	Macro Program (6/6)
	DATA Step and SQL Interfaces
	DATA Step and SQL Interfaces
	DATA Step and SQL Interfaces
	DATA Step and SQL Interfaces
	DATA Step and SQL Interfaces
	DATA Step and SQL Interfaces
	DATA Step and SQL Interfaces
	How to use SAS Macros
	How to use SAS Macros
	Good Programming Practice (GPP) for SAS Macro Program
	Good Programming Practice (GPP) for SAS Macro Program
	Good Programming Practice (GPP) for SAS Macro Program
	A Example for GPP
	To Develop a Macro is To Build a Building

