
PROC SQL: Basic and Advance
Using SAS

 1

http://www.google.com/imgres?q=clinical+pharm&um=1&hl=en&sa=N&biw=1366&bih=673&tbm=isch&tbnid=W_fBOEm91-IFkM:&imgrefurl=http://nctechnews.com/2012/05/08/clinical-trials/clinverse-receives-38-million-to-expand-its-financial-technology-for-clinical-trials/7246/&docid=gjqWgH6HCXJiTM&imgurl=http://www.thecem.net/images/research_pills.jpg&w=400&h=343&ei=VvpSULiWHZGW8gSqz4GwCg&zoom=1
http://www.google.com/imgres?q=clinical+pharm&um=1&hl=en&sa=N&biw=1366&bih=673&tbm=isch&tbnid=W_fBOEm91-IFkM:&imgrefurl=http://nctechnews.com/2012/05/08/clinical-trials/clinverse-receives-38-million-to-expand-its-financial-technology-for-clinical-trials/7246/&docid=gjqWgH6HCXJiTM&imgurl=http://www.thecem.net/images/research_pills.jpg&w=400&h=343&ei=VvpSULiWHZGW8gSqz4GwCg&zoom=1

Outline

 Introduction

 Basic Queries

 Combining Tables

 Creating and Modifying Tables and Views

 Additional SQL Features

 2

Introduction

Structured Query Language (SQL)

is a standardized language that is widely used to retrieve and update data
in tables and in views based on those tables

The SQL procedure uses SQL to

 query SAS data sets
 generate reports from SAS data sets
 combine SAS data sets in many ways
 create and delete SAS data files, views, and indexes
 update existing SAS data sets.

 3

Introduction (Cont’d)

SAS Data Files
DBMS Tables
SAS Data Views

PROC
SQL

Report
SAS Data File
SAS Data View

 4

Features of SQL

 The PROC SQL statement does not need to be repeated with each
query.

 Each statement is processed individually.

 No PROC PRINT step is needed to view query results.

 No PROC SORT step is needed to order query results.

 No RUN statement is needed.

 Use a QUIT statement to terminate PROC SQL.

 5

Basic Queries

 Overview of the SQL Procedure

 Specifying Columns

 Specifying Rows

 Presenting Data

 Summarizing Data

 Performing Subqueries

 6

Overview of the SQL Procedure

PROC SQL <option <option>…>;
 ALTER expression;
 CREATE expression;
 DELETE expression;
 DESCRIBE expression;
 DROP expression;
 INSERT expression;
 RESET expression;
 SELECT expression;
 UPDATE expression;

ALTER adds, drops, and modifies columns in a table.
CREATE builds new tables.
DELETE eliminates unwanted rows from a table or view.
DESCRIBE displays table attributes.
DROP eliminates entire tables, views, or indexes.
INSERT adds rows of data to tables.
RESET adds to or changes PROC SQL options without re-invoking
 the procedure.
SELECT specifies columns to be printed.
UPDATE modifies data values in existing rows of a table or view. 7

Overview of the SQL Procedure (Cont’d)

 The SELECT statement

A SELECT statement is used to query one or more SAS data sets

proc sql;
 select EmpID, JobCode, Salary
 from airline.payrollmaster
 where JobCode contains ‘NA’
 order by Salary desc;

Note: Use a comma to separate items in a list, such as
 column or table names.
 Place a single semicolon at the end of the last clause

 8

The SELECT Statement (Cont’d)

SELECT Statement Syntax

SELECT column <,column>…
 FROM table\view <, table\view>…
 <WHERE expression>
 <GROUP BY column <,column>…>
 <HAVING expression>
 <ORDER BY column <,column>…>;

SELECT specifies the columns to be selected.
FROM specifies the table to be queried.
WHERE subsets the data based on a condition.
GROUP BY classifies the data into groups.
HAVING subsets groups of data based on a group condition.
ORDER BY sorts rows by the values of specific columns.

 The order of the above clauses within the SQL SELECT
statement does matter.

 9

The SELECT Statement (Cont’d)

The SELECT statement

 selects data that meets certain conditions

 groups data

 specifies an order for the data

 formats the data

 queries 1 to 32 tables.

Note: Tables names can be 1 to 32 characters in length and are not
 case-sensitive.
 Variable names can be 1 to 32 characters in length and are stored in
 mixed case but are normalized for lookups and comparisons. However,
 the first usage of the variable determines the capitalization pattern.
 Librefs, filerefs, formats, and informats are limited to 8 characters.

 10

The SELECT Statement (Cont’d)

The VALIDATE keyword

 is used only on a SELECT statement

 tests the syntax of a query without executing the query

 checks column name validity

 prints error messages for invalid queries.

1 proc sql;
2 validate
3 select EmployeeNumber, JobCode, Salary
4 from airline.payrollmaster
5 where JobCode contains ‘NA’
6 order by Salary desc;
Note: PROC SQL statement has valid syntax.

 11

The SELECT Statement (Cont’d)

The NOEXEC option can also be used for syntax checking.

1 proc sql noexec;
2 select EmployeeNumber, JobCode, Salary
3 from airline.payrollmaster
4 where JobCode contains ‘NA’
5 order by Salary desc;
Note: Statement not executed due to NOEXEC
option.

 The NOEXEC option checks for invalid syntax in all the
statements previously mentioned, but the VALIDATE
option applies only to the SELECT statement.

 12

Specifying Columns

 Retrieve Data from a Table

proc sql;
 select EmpID, JobCode, Salary
 from airline.payrollmaster;

Specify column names to be printed
in the SELECT statement.

An asterisk in the SELECT statement
prints all columns in their originally
stored order.

proc sql;
 select *
 from airline.payrollmaster;

 13

Specify Columns (Cont’d)

 The FEEDBACK Option

Use the FEEDBACK option to write the expanded SELECT statement to
the SAS log.

 1 proc sql feedback;
2 select *
3 from airline.payrollmaster;
Note: Statement transforms to:
 select PAYROLLMASTER.Gender, PAYROLLMASTER.JobCode,
 PAYROLLMASTER.Salary,
 PAYROLLMASTER.DateOfBirth,
 PAYROLLMASTER.DateOfHire
 from AIRLINE.PAYROLLMASTER;

 This option expands any use of an asterisk into the list of qualified columns
it represents. NOFEEDBACK is the default.

 14

Specify Columns (Cont’d)

 Expressions

 Calculate new columns from existing columns and name the new
columns using the AS keyword.

proc sql;
 select EmpID, JobCode, Salary,
 Salary*.10 as Bonus
 from airline.payrollmaster;

Note: The new column is called an alias. The AS keyword is required.
 Omission causes the column heading to be blank.

 15

Specify Columns (Cont’d)

Expressions (Cont’d)

 Use SAS DATA step functions for calculating columns.

proc sql;
 select EmpID, JobCode,
 int((today()-DateOfBirth) / 365.25) as Age
 from airline.payrollmaster ;

 All SAS DATA step functions are supported except LAG, DIF.

 16

Specifying Rows

 By default, all rows in a table are returned in a query.

 Use the DISTINCT keyword to eliminate duplicate rows in query results.

proc sql;
 select distinct FlightNumber, Destination
 from airline.payrollmaster ;

 The DISTINCT keyword applies to all columns in the SELECT
list. One row is displayed for each existing combination of values.

 17

Specifying Rows (Cont’d)

 Subsetting with the WHERE clause

 Use a WHERE clause to specify a condition that the data must satisfy before
being selected.

 You can use all common comparison operators in a WHERE clause.

proc sql;
 select EmpID, JobCode, Salary
 from airline.payrollmaster
 where Salary > 112000 ;

Mnemonic Symbol Definition
LT < Less than
GT > Greater than
EQ = Equal to
LE <= Less than or equal to
GE >= Greater than or equal to
NE ^= Not equal to (ASCII)

 18

Specifying Rows (Cont’d)

Subsetting with the WHERE clause (Cont’d)

 Use the IN operator to compare a value to a list of values. If the value
matches at least one in the list, the expression is true; otherwise, the
expression is false.

 Specify multiple expressions in a WHERE clause by using logical
operators.

where JobCategory in (‘PT’, ‘NA’, ‘FA’)
where DayOfWeek in (2, 4, 6)

Mnemonic Symbol Definition
OR | or, either

AND & and, both
NOT ┐ not, negation ANSII

 19

Specifying Rows (Cont’d)

Subsetting with the WHERE clause (Cont’d)

 Use either CONTAINS or ? to select rows that include the substring
specified.

 Use either IS NULL or IS MISSING to select rows with missing values.

• Alternative statetments are

• With the = operator, you must know if FlightNumber is character or numeric.

On the other hand, if you use MISSING=, you do not need advance
knowledge of column type.

where word ? ‘LAM’
(BLAME, LAMENT, and BEDLAM are selected.)

where FlightNumber = ‘ ’
where FlightNumber = .

where FlightNumber is missing

 20

Specifying Rows (Cont’d)

Subsetting with the WHERE clause (Cont’d)

 Use BETWEEN-AND to select rows containing ranges of values,
inclusively.

 Use LIKE to select rows by comparing character values to specified
patterns.

• A % sign replaces any number of characters.

• A single underscore (‘_’) replaces individual characters.

 captures any two characters and 1, e.g., ‘FA1’, ‘TA1’, ‘NA1’.

where Date between ’01mar2000’d and ‘07mar2000’d
where Salary between 70000 and 80000;

where LastName like ‘ H% ’

where JobCode like ‘__1’ 2 underscores followed by a 1

 21

Specifying Rows (Cont’d)

Subsetting with the WHERE clause (Cont’d)

 Use sounds-like (=*) to select rows containing a spelling
variation of the specified word(s).

 selects values SMITT, SMYTHE, and SMOTHE, in addition to SMITH.

where LastName =* ‘SMITH’

 22

Specifying Rows (Cont’d)

 Subsetting with Calculated Values

 Because a WHERE clause is evaluated first, columns used in the WHERE
clause must exist in the table or be derived from existing columns.

proc sql;
 select FlightNumber, Date, Destination,
 Boarded + Transferred + Nonrevenue as Total
 from airline.marchflights
 where Total < 100 ;

ERROR: The following columns were not found in
the contributing tables: Total.

 23

Specifying Rows (Cont’d)

Subsetting with Calculated Values (Cont’d)

• One solution is to repeat the calculation in the WHERE clause.

• A more efficient method is to use the CALCULATED keyword to refer to
already calculated columns in the SELECT clause.

proc sql;
 select FlightNumber, Date, Destination,
 Boarded + Transferred + Nonrevenue as Total
 from airline.marchflights
 where Boarded + Transferred + Nonrevenue < 100 ;

proc sql;
 select FlightNumber, Date, Destination,
 Boarded + Transferred + Nonrevenue as Total
 from airline.marchflights
 where calculated Total < 100 ;

 24

Specifying Rows (Cont’d)

Subsetting with Calculated Values (Cont’d)

 Use the CALCULATED keyword in other parts of a query, e.g., in a
SELECT clause.

proc sql;
 select FlightNumber, Date, Destination,
 Boarded + Transferred + Nonrevenue as Total,
 calculated Total/2 as half
 from airline.marchflights ;

 25

Presenting Data

 Ordering Data

 Use the ORDER BY clause to sort query results in
• ascending order (the default)
• descending order by following the column name with the DESC keyword

proc sql;
 select EmpID, JobCode, Salary
 from airline.payrollmaster
 where JobCode contains ‘NA’
 order by Salary desc;

 PROC SQL uses information provided by a table’s internal sort indicator
(if applicable) to avoid performing unnecessary sorts.

 You can specify the collating sequence by using the SORTSEQ=option
in the PROC SQL statement. Use this option if you want a collating
sequence other than your system’s or installation’s default

 26

Presenting Data (Cont’d)

Ordering Data (Cont’d)

 In an ORDER BY clause, you order query results by specifying
• any column or expression (display or nondisplay)
• a column name or a number that represents the position of an item in

the SELECT list
• multiple columns.

proc sql;
 select FlightNumber, Date, Origin, Destination,
 Boarded + Transferred + Nonrevenue
 from airline.marchflights
 where Destination = ‘LHR’
 order by Date, 5 desc ;

 27

Presenting Data (Cont’d)

 Enhancing Query Output

 You can use SAS formats and labels to customize PROC SQL output.
After the column name in the SELECT list, you specify the
• LABEL= option to alter the column heading
• FORMAT= option to alter the appearance of the values in that

column.

proc sql;
 select EmpID label= ‘Employee Identifier’,
 JobCode label= ‘Job Code’,
 Salary label= ‘Annual Salary’ format= dollar12.2
 from airline.payrollmaster
 where JobCode contains ‘NA’
 order by Salary desc ;

 28

Presenting Data (Cont’d)

Enhancing Query Output (Cont’d)

 You can
• define a column containing a character constant by placing a text

string in the SELECT list
• use SAS titles and footnotes to enhance the query’s appearance.
 proc sql;

title ‘Current Bonus Information’ ;
title2 ‘Navigators – All Levels’ ;
 select EmpID label=‘Employee Identifier’,
 ‘bonus is: ’,
 Salary * .05 format=dollar12.2
 from airline.payrollmaster
 where JobCode contains ‘NA’
 order by Salary desc ;

Note: TITLE and FOOTNOTE statements must precede the SELECT statement

 29

Summarizing Data

 Summary Functions

proc sql;
 select Date, FlightNumber, Boarded,
 Transferred, Nonrevenue,
 sum(Boarded,Transferred,Nonrevenue)
 as Total
 from airline.marchflights;

If you specify more than
one column name in a
summary function, the

function acts like a DATA
step function. The

calculation is performed
for each row.

If you specify only one
column name in a

summary function, the
statistic is calculated

down the column.

proc sql;
 select avg(Salary) as MeanSalary
 from airline.payrollmaster;

 30

Summarizing Data (Cont’d)

Summary Functions (Cont’d)

AVG, MEAN mean or average value
COUNT, FREQ, N number of nonmissing values
MAX largest value
MIN smallest value
NMISS number of missing values
STD standard deviation
SUM sum of values
VAR variance.

 31

Summarizing Data (Cont’d)

 Grouping Data

 You can use the GROUP BY clause to

• classify the data into groups based on the values of one or more
columns

• calculate statistics for each unique value of the grouping columns.

proc sql;
 select JobCode, avg(Salary) as
 average format=dollar11.2
 from airline.payrollmaster
 group by JobCode;

 32

Summarizing Data (Cont’d)

 Analyzing Groups of Data

 The COUNT(*) summary function counts the number of rows.

proc sql;
 select count(*) as count
 from airline.payrollmaster;

proc sql;
 select substr(JobCode,1,2) label = ‘Job Category’,
 count(*) as count
 from airline.payrollmaster
 group by 1;

 33

Summarizing Data (Cont’d)

Analyzing Groups of Data (Cont’d)

proc sql;
 select EmpID, Salary, (Salary/sum(Salary)) as percent
 format = percent8.2
 from airline.payrollmaster
 where JobCode contains ‘NA’;

Note: PROC SQL automatically re-merges the summary statistic
 with the table to calculate the percentage. This requires two
 passes through the data: one to compute the column sum
 and another to compute each row’s percentage of the total.
 A note appears in the SAS log when re-merging occurs.

 34

Summarizing Data (Cont’d)

 Selecting Groups of Data with the HAVING Clause

The WHERE clause selects data based on values for individual rows. To
select entire groups of data, use the HAVING clause.

proc sql;
 select JobCode, avg(Salary) as average format=dollar11.2
 from airline.payrollmaster
 group by JobCode
 having avg(Salary) > 56000;

Alternatively, you can code the HAVING clause as follows:
 having average > 56000;
 having calculated average > 56000;

 35

Subqueries

 are inner queries that return values to be used by an outer query to
complete a subsetting expression in a WHERE or HAVING clause

 return single or multiple values to be used by the outer query

 can return only a single column.

 36

Subqueries (Cont’d)

Noncorrelated subqueries

• A noncorrelated subquery is a subquery that is independent of the
outer query and it can executed on its own without relying on main
outer query.

Correlated subqueries

• cannot be evaluated independently, but depend on the values
returned by the outer query for their results.

• are evaluated for each row in the outer query.

 37

Subqueries (Cont’d)

 Noncorrelated Subqueries

 Example: Display job codes where the group’s average salary exceeds
the company’s average salary.

proc sql;
 select JobCode, avg(Salary) as MeanSalary
 from airline.payrollmaster
 group by JobCode
 having avg(Salary) >
 (select avg(Salary) from airline.payrollmaster) ;

Alternatively, you can code the HAVING clause as follows:
 having average > 56000;
 having calculated average > 56000;

Evaluated first,
then pass result to

outer query

 38

Subqueries (Cont’d)

Noncorrelated Subqueries (Cont’d)

 Example: Send birthday cards to employees with February birthdays.
Names and addresses are in airline.staffmaster, and birth dates in
airline.payrollmaster.

 proc sql;
 select LastName, FirstName, City, State
 from airline.staffmaster
 where EmpID in
 (select EmpID
 from airline.payrollmaster
 where month(DateOfBirth)=2) ;

 39

Subqueries (Cont’d)

Noncorrelated Subqueries: How do they work?

 Step 1: Evaluate the inner query and build a virtual table that satisfies
the WHERE criteria.

 proc sql;
 select LastName, FirstName,
 City, State
 from airline.staffmaster
 where EmpID in
 (select EmpID
 from airline.payrollmaster
 where month(DateOfBirth)=2) ;

Virtual table contains
‘1420’, ‘ 1390’, ‘ 1403’, ‘ 1404’, ‘ 1834’, ‘ 1103’.

 40

Subqueries (Cont’d)

Noncorrelated Subqueries: How do they work?

 Step 2: Pass values in the virtual table to the outer query.

proc sql;
 select LastName, FirstName, City, State
 from airline.staffmaster
 where EmpID in
 (‘1420’, ‘1390’, ‘1403’,
 ‘1404’, ‘1834’, ‘1103’) ;

Pass ‘1420’, ‘ 1390’, ‘1403’, ‘1404’, ‘1834’, ‘1103’
to the outer query.

 41

Subqueries (Cont’d)

 Correlated Subqueries

Example: Display the names and states of all navigator managers.

proc sql;
 select LastName, FirstName, State
 from airline.staffmaster
 where ‘NA’ =
 (select JobCategory
 from airline.supervisors
 where staffmaster.EmpID=supervisors.EmpID) ;

You must qualify each
column with a table name.

 42

Subqueries (Cont’d)

Correlated Subqueries (Cont’d)
 Step 1: The outer query takes the

first row in AIRLINE.STAFFMASTER
and finds the EmpID, LastName,
FirstName, and State.

proc sql;
 select LastName, FirstName, State
 from airline.staffmaster
 where ‘NA’ =
 (select JobCategory
 from airline.supervisors
 where staffmaster.EmpID
 =supervisors.EmpID) ;

 43

Subqueries (Cont’d)

Correlated Subqueries (Cont’d)
 Step 2: Match

STAFFMASTER.EMPID with
SUPERVISORS.EMPID to find
the qualifying row in
AIRLINE.SUPERVISORS.

proc sql;
 select LastName, FirstName, State
 from airline.staffmaster
 where ‘NA’ =
 (select JobCategory
 from airline.supervisors
 where staffmaster.EmpID
 =supervisors.EmpID);

NO MATCH

 44

Subqueries (Cont’d)

Correlated Subqueries (Cont’d)
 Step 1 and 2 (repeated): Read

the next row from
AIRLINE.STAFFMASTER, and
identify the qualifying row in
AIRLINE.SUPERVISORS.

proc sql;
 select LastName, FirstName, State
 from airline.staffmaster
 where ‘NA’ =
 (select JobCategory
 from airline.supervisors
 where staffmaster.EmpID
 =supervisors.EmpID) ;

MATCH

 45

Subqueries (Cont’d)

Correlated Subqueries (Cont’d)
 Step 3: The inner query now passes the

JobCategory of the selected row in
AIRLINE.SUPERVISORS back to the
outer query via the = operator, where
the JobCategory is matched for
selection in the outer query.

proc sql;
 select LastName, FirstName, State
 from airline.staffmaster
 where ‘NA’ = ‘TA’
 (select JobCategory
 from airline.supervisors
 where staffmaster.EmpID
 =supervisors.EmpID) ;

Resolves
to FALSE

 46

Subqueries (Cont’d)

Correlated Subqueries (Cont’d)
 Continue repeating steps 2 and 3 until

all rows are read from
AIRLINE.STAFFMASTER.

proc sql;
 select LastName, FirstName, State
 from airline.staffmaster
 where ‘NA’ =
 (select JobCategory
 from airline.supervisors
 where staffmaster.EmpID
 =supervisors.EmpID) ;

NO MATCH

 47

Subqueries (Cont’d)

proc sql;
 select LastName, FirstName, State
 from airline.staffmaster
 where ‘NA’ =
 (select JobCategory
 from airline.supervisors
 where staffmaster.EmpID
 =supervisors.EmpID) ;

MATCH

Correlated Subqueries (Cont’d)

 48

Subqueries (Cont’d)

proc sql;
 select LastName, FirstName, State
 from airline.staffmaster
 where ‘NA’ = ‘NA’
 (select JobCategory
 from airline.supervisors
 where staffmaster.EmpID
 =supervisors.EmpID) ;

Resolves
to TRUE

Pass JobCategory from
AIRLINE.SUPERVISORS to outer query
for comparison.

Correlated Subqueries (Cont’d)

 49

Subqueries (Cont’d)

proc sql;
 select LastName, FirstName, State
 from airline.staffmaster
 where ‘NA’ = ‘NA’
 (select JobCategory
 from airline.supervisors
 where staffmaster.EmpID
 =supervisors.EmpID) ;

Resolves
to TRUE

Write LastName, FirstName, and State
from AIRLINE.STAFFMASTER as the
first row in a newly-created report.

Correlated Subqueries (Cont’d)

 50

Subqueries (Cont’d)

Correlated Subqueries (Cont’d)

proc sql;
 select LastName, FirstName, State
 from airline.staffmaster
 where ‘NA’ = ‘NA’
 (select JobCategory
 from airline.supervisors
 where staffmaster.EmpID
 =supervisors.EmpID) ;

Resolves
to TRUE

Write LastName, FirstName, and State
from AIRLINE.STAFFMASTER as the
first row in a newly-created report.

 51

Subqueries (Cont’d)

Correlated Subqueries (Cont’d)

Build first row of report:

Build third (and final) row of report:

LastName FirstName State
FERNANDEZ KATRINA CT

LastName FirstName State
FERNANDEZ KATRINA CT
NEWKIRK WILLIAM NJ
RIVERS SIMON NY

 52

Subqueries (Cont’d)

Correlated Subqueries (Cont’d)

The EXISTS condition tests for the existence of a set of values returned by
the subquery.

 The EXISTS condition is true if the subquery returns at least one row.

 The NOT EXISTS condition is true if the subquery returns no data.

 53

Subqueries (Cont’d)

Correlated Subqueries (Cont’d)

 Example: The temporary table WORK.FA is a subset of
AIRLINE.STAFFMASTER containing the names and IDs of all flight
attendants. The AIRLINE.FLIGHTSCHEDULE table contains a row for
each crew member assigned to a flight for each date.

 Determine which flight attendants have not been scheduled.

proc sql;
 select LastName, FirstName
 from work.fa
 where not exists
 (select *
 from airline.flightschedule
 where fa.EmpID=flightschedule.EmpID);

Find
employees
who exist

here…

…who do not
exist here.

 54

Subqueries (Cont’d)

 Selecting Data

 If you specify the ANY keyword before a subquery, the comparison is
true if it is true for any of the values that the subquery returns.

Keyword ANY Signifies…
> ANY(20,30,40) returned
from inner query

>20

< ANY(20,30,40) returned
from inner query

<40

=ANY(20,30,40) returned
from inner query

=20 or =30 or =40

 55

Subqueries (Cont’d)

Selecting Data (Cont’d)

 Example: Are any low-level flight attendants (FA1 or FA2) older than
any of the high-level flight attendants (FA3)?

proc sql;
title “FA1’s or FA2’s Older Than ANY FA3’s”;
 select EmpID, JobCode, DateOfBirth
 from airline.payrollermaster
 where JobCode in (‘FA1’, ‘FA2’)
 and DateOfBirth < any
 (select DateOfBirth
 from airline.payrollmaster
 where JobCode=‘FA3’) ;

An alternative WHERE clause is
 where JobCode in (‘FA1’ , ‘FA2’) and
 DateOfBirth < (select max(DateOfBirth) from..) ;

 56

Subqueries (Cont’d)

Selecting Data (Cont’d)

 The ALL keyword is true only if the comparison is true for all values
returned.

Keyword ALL Signifies…
> ALL(20,30,40) returned
from inner query

>40

< ALL(20,30,40) returned
from inner query

<20

 57

Subqueries (Cont’d)

Selecting Data (Cont’d)

 Example: Are there FA1’s or FA2’s who are older than all of the FA3’s?

proc sql;
title “FA1’s or FA2’s Older Than ALL FA3’s”;
 select EmpID, JobCode, DateOfBirth
 from airline.payrollermaster
 where JobCode in (‘FA1’, ‘FA2’)
 and DateOfBirth < all
 (select DateOfBirth
 from airline.payrollmaster
 where JobCode=‘FA3’) ;

An alternative WHERE clause is
 where JobCode in (‘FA1’ , ‘FA2’) and
 DateOfBirth < (select min(DateOfBirth) from..) ;

 58

Combining Tables

 Overview

 Joins

 Complex Joins

 Set Operators

 59

Overview

 Joins combine tables horizontally (side by side).

 Set operations combine tables vertically (one on top of the other).

Table A Table B

Table A

Table B

 60

Joins

Types of Joins

PROC SQL supports two types of joins:

 inner joins

 return only matching rows
 allow a maximum of 32 tables to be joined at the same time.

 outer joins

 return all matching rows, plus nonmatching rows from one or both tables
 can be performed on only two tables or views at a time.

 61

Joins (Cont’d)

 Cartesian Product

A query that lists multiple tables in the FROM clause, without row
restrictions, results in all possible combinations of rows from all tables.

proc sql;
 select *
 from one, two ;

 62

Joins (Cont’d)

Cartesian Product (Cont’d)

 Table ONE

 Table TWO

X A
1 a
4 d
2 b

X B
2 x
3 y
5 v

X A X B
1 a 2 x
1 a 3 y
1 a 5 v
4 d 2 x
4 d 3 y
4 d 5 v
2 b 2 x
2 b 3 y
2 b 5 v

 The number of rows in a Cartesian product is the product of
the number of rows in the contributing tables.

 63

Joins (Cont’d)

 Inner Joins

Inner join syntax resembles Cartesian product syntax, but it has a WHERE
clause that restricts how the rows can be combined.

SELECT col1, col2, …
 FROM table1, table2, …
 WHERE join-condition(s)
 <AND other subsetting conditions>
 <other clauses> ;

The distinguishing characteristics of inner join syntax are
 a list of two or more table names in the FROM clause
 one or more join conditions in the WHERE clause.

 64

Joins (Cont’d)

Inner Joins (Cont’d)

Conceptually, PROC SQL
 first builds a Cartesian product
 then applies the specified restriction(s) and removes rows.

X A X B
1 a 2 x
1 a 3 y
1 a 5 v
4 d 2 x
4 d 3 y
4 d 5 v
2 b 2 x
2 b 3 y
2 b 5 v

select *
 from one, two
 where one.x=two.x ;

 65

Joins (Cont’d)

Inner Joins (Cont’d)

 Table ONE Table TWO
X A
1 a
4 d
2 b

X A
2 x
3 y
5 v

X A X B
2 a 2 x

select *
 from one, two
 where one.x=two.x ;

An inner join is sometimes called a conventional join, natural join, or
equijoin.
 Tables do not have to be sorted before they are joined.
 Column X exists in both tables and occurs twice in the query result.

 66

Joins (Cont’d)

Inner Joins (Cont’d)

Display the X column only once.

 Table ONE Table TWO
X A
1 a
4 d
2 b

X A
2 x
3 y
5 v

X A X B
2 a 2 x

select one.x, a, b
 from one, two
 where one.x=two.x ;

select *
 FROM one INNER JOIN two
 ON one.x=two.x ;

 67

Joins (Cont’d)

Inner Joins (Cont’d)

 Example: Display the names, job codes, and ages of all New York
employees.

• Employee names are found in the AIRLINE.STAFFMASTER table.
• Employee job codes and birth dates are found in the
 AIRLINE.OATRIKKNASTER table.

proc sql;
title “New York Employees”;
 select substr(FirstName, 1, 1) || ‘.’ || LastName as Name,
 JobCode,
 int((today()-DateOfBirth)/365.25) as Age
 from airline.payrollmaster, airline.staffmaster
 where payrollmaster.EmpID=staffmaster.EmpID
 and State = ‘NY’
 order by JobCode;

 68

Joins (Cont’d)

 Outer Joins

You can retrieve nonmatching rows, as well as matching rows, by using an
outer join. Outer join are limited to two tables at a time.

Note: An outer join is an augmentation of an inner join. It returns all
the rows by an inner join, plus others.

 69

Joins (Cont’d)

Outer Joins (Cont’d)

SELECT col1, col2, …
 FROM table1
 LEFT|RIGHT|FULL JOIN table2
 ON join-condition(s)
 <other clauses> ;

The distinguishing characteristics of outer join syntax are
 exactly two table names flanking one of the three JOIN

operators in the FROM clause
 a special ON clause specifying the join condition(s).
 a WHERE clause is permitted in order to specify general

subsetting conditions.

 70

Joins (Cont’d)

Outer Joins (Cont’d)

 A left join retrieves matching rows from both tables, plus nonmatching
rows from the left table (the first table in the FROM clause).

 Table ONE Table TWO
X A
1 a
2 b
4 d

X B
2 x
3 y
5 v

select *
 from one left join two
 on one.x=two.x ;

X A X B
1 a .
2 b 2 x
4 d .

 71

Joins (Cont’d)

Outer Joins (Cont’d)

 A right join retrieves matching rows from both tables, plus nonmatching
rows from the right table (the second table in the FROM clause).

 Table ONE Table TWO
X A
1 a
2 b
4 d

X B
2 x
3 y
5 v

select *
 from one right join two
 on one.x=two.x ;

X A X B
2 b 2 x
. 3 y
. 5 v

 72

Joins (Cont’d)

Outer Joins (Cont’d)

 A full join retrieves matching rows and nonmatching rows from both
tables.

 Table ONE Table TWO
X A
1 a
2 b
4 d

X B
2 x
3 y
5 v

select *
 from one full join two
 on one.x=two.x ;

X A X B
1 a .
2 b 2 x
. 3 y
4 d .
. 5 v

 73

Joins (Cont’d)

 Using a Table Alias

 An alias is a table nickname. You can assign an alias to a table by
following the table name in the FROM clause with the AS keyword and a
nickname for the table. Then use the alias in other clauses of the
QUERY statement.

 A table alias is primarily used to reduce the amount of typing required to
write a query. It is usually optional. There are, however, two situations
that require a table alias:

• a self-join (a table is joined to itself), for example,
 from airline.staffmaster as s1, airline.staffmaster as as2
• when referencing same-named columns from same-named tables in

different libraries, for example,
 from airline.flightdelays as ad,
 work.flightdalays as wd
 where ad.delay > wd.delay

 74

Joins (Cont’d)

Using a Table Alias (Cont’d)

proc sql;
 select l.date,
 l.flightnumber label=‘Flight Number’,
 l.destination label=‘Left’,
 l.destination label=‘Right’,
 delay
 from airline.marchflights as l
 left join
 airline.flightdalays as r
 on l.date=r.date and
 l.flightnumber=r.flightnumber
 order by delay ;

Note: The AS keyword is optional in a table alias. The alias can
directly follow the table name in the FROM clause.

 75

Joins (Cont’d)

 SQL Join versus DATA Step Merge

A DATA step with MERGE and BY statements combines rows differently
from an outer join.

 Table ONE Table TWO
X A
1 a
2 b
4 d

X B
2 x
3 y
5 v

data merged;
 merge one two;
 by x;
run;

Table MERGED

X A B
1 a
2 b x
3 y
4 d
5 v

 76

Joins (Cont’d)

SQL Join versus DATA Step Merge (Cont’d)

 Table ONE Table TWO

X A
1 a
2 b
4 d

X B
2 x
3 y
5 v

proc sql;
 select one.x, a, b
 from one full join two
 on one.x=two.x;

X A B
1 a
2 b x

y
4 d

v

Note: In the SQL procedure, the two
X columns are not overlaid by default.

 77

Joins (Cont’d)

SQL Join versus DATA Step Merge (Cont’d)

You can use the COALESCE function to overlay two columns. The
COALESCE function
 returns the first value that is a SAS nonmissing value.
 Requires all arguments to have the same data type.
 Table ONE Table TWO

X A
1 a
2 b
4 d

X B
2 x
3 y
5 v

proc sql;
 select coalesce(one.x, two.x)
 label=‘x’, a, b
 from one full join two
 on one.x=two.x;

X A B
1 a
2 b x
3 y
4 d
5 v

Note: If you omit the LABEL=option
or an alias in a coalesced column, it
appears without a column heading.

 78

Joins (Cont’d)

SQL Join versus DATA Step Merge (Cont’d)

Joins do not require

 sorted or indexed tables
 same-named columns in join expressions
 equality in join expressions.

Note: Tables can be joined on inequalities, for example,
 select columns
 from table1 as a, table2 as b
 where a.itemnumber=b.itemnumber
 and a.cost > b.price ;

 79

Complex Joins

 In-line Views

An in-line view is
 a temporary table that exists only during query execution
 created when a FROM clause contains a query expression in place of a

table name.

 80

proc sql;
 select *, Late/(Late+Early) as prob
 format=5.2 label=‘Probability of Delay’
 from (select Destination,
 avg(Delay) as average
 format=3.0 label=‘Average Delay’,
 max(Delay) as max
 format=3.0 label=‘Maximum Delay’,
 sum(Delay<=0) as early
 format=3.0 label=‘Number of Early Arrivals’
 from airline.flightdelays
 group by 1)
 order by 2;

Complex Joins (Cont’d)

In-line Views (Cont’d)

Boolean expressions can be used in the SELECT clause.

proc sql;
 select Delay,
 (Delay > 0) as Late
 from airline.flightdelays;

Delay Late
0 0
8 1
-5 0
18 1

Note: A Boolean expression resolves either to 1 (true) or 0 (false).

 81

Complex Joins (Cont’d)

Handling a Complex Query

What are the names of the supervisors for the crew on the flight to
Copenhagen on March 4, 2000?

 82

 Step 1: Identify the crew for the flight.

proc sql;
 select EmpID
 from airline.flightschedule
 where Date=’04mar2000’d
 and Destination=‘CPH’

Complex Joins (Cont’d)

Handling a Complex Query (Cont’d)

 Step 2: Find the states and job categories of the crew returned from the
 first query.

 83

proc sql;
 select substr(JobCode,1,2) as JobCategory,
 State
 from airline.staffmaster as s,
 airline.payrollmaster as p
 where s.empid=p.empid and s.empid in
 (select EmpID
 from airline.flightschedule
 where Date=’04mar2000’d
 and Destination=‘CPH’);

Complex Joins (Cont’d)

Handling a Complex Query (Cont’d)

 Step 3: Find the employee numbers of the crew supervisors based on
 the states and job categories generated by the second query.

 84

proc sql;
 select EmpID
 from airline.supervisors as m,
 (select substr(JobCode,1,2) as JobCategory,
 State
 from airline.staffmaster as s,
 airline.payrollmaster as p
 where s.empid=p.empid and s.empid in
 (select EmpID
 from airline.flightschedule
 where Date=’04mar2000’d and
 Destination=‘CPH’)) as c
 where m.jobcategory=c.jobcategory
 and m.state=c.state;

Complex Joins (Cont’d)

Handling a Complex Query (Cont’d)

 Step 4: Find the names of the supervisors.

 85

proc sql;
 select FirstName, LastName
 from airline.staffmaster where empid in
 (select EmpID
 from airline.supervisors as m,
 (select substr(JobCode,1,2) as JobCategory,
 State
 from airline.staffmaster as s,
 airline.payrollmaster as p
 where s.empid=p.empid and s.empid in
 (select EmpID
 from airline.flightschedule
 where Date=’04mar2000’d and
 Destination=‘CPH’)) as c
 where m.jobcategory=c.jobcategory
 and m.state=c.state);

Complex Joins (Cont’d)

Handling a Complex Query (Cont’d)

You can also solve this problem by using a multiway join.

 86

proc sql;
 select distinct e.firstname, e.lastname
 from airline.flightschedule as a,
 airline.staffmaster as b,
 airline.payrollmaster as c,
 airline.supervisors as d,
 airline.staffmaster as e
 where a.date=’04mar2000’d and
 a.destination=‘CPH’ and
 a.empid=b.empid and
 a.empid=c.empid and
 d.jobcategory=substr(c.jobcode,1,2) and
 d.state=b.state and
 d.empid=e.empid;

Complex Joins (Cont’d)

Handling a Complex Query (Cont’d)

Comparison with traditional SAS programs

 87

/* Find the crew for the flight. */

proc sort data=airline.flightschedule (drop=flightnumber)
 out=crew (keep=empid);
 where destination=‘CPH’ and date=‘04mar2000’d;
 by empid;
run;

Complex Joins (Cont’d)

Handling a Complex Query (Cont’d)

 88

/* Find the State and job code for the crew. */

proc sort data=airline.payrollmaster (keep=empid jobcode)
 out=payroll;
 by empid;
run;

proc sort data=airline.staffmaster (keep=empid state firstname lastname)
 out=staff;
 by empid;
run;

data st_cat (keep=state category);
 merge crew (in=c) staff payroll;
 by empid;
 if c;
 jobcategory=substr(jobcode,1,2);
run;

Complex Joins (Cont’d)

Handling a Complex Query (Cont’d)

 89

/* Find the supervisor IDs. */

proc sort data=st_cat;
 by jobcategory state;
run;

proc sort data=airline.supervisors
 out=superv;
 by jobcategory state;
run;

data super (keep=empid);
 merge st_cat (in=s) superv;
 by jobcategory state;
 if s;
run;

Complex Joins (Cont’d)

Handling a Complex Query (Cont’d)

 90

/* Find the names of the supervisors. */

proc sort data=super;
 by empid;
run;

data names (keep=empid);
 merge super (in=super)
 staff (keep=empid firstname lastname);
 by empid;
 if super;
run;

proc print data=names noobs uniform;
run;

Complex Joins (Cont’d)

Choosing Between SQL Joins and DATA Step Merges

 DATA step merges are usually more efficient than SQL joins in
combining small tables.

 SQL joins are usually more efficient than DATA step merges in
combining large, unsorted tables.

 SQL joins are usually more efficient than DATA step merges in
combining a large, indexed table with a small table.

 For ad hoc queries, select the method that you can code in the shortest
time.

 For production jobs, experiment with different coding techniques and
evaluate performance statistics.

 91

Set Operators

Types of Set Operators

Set operators combine rows from two tables vertically.

There are four set operators:

 EXCEPT
 INTERSECT
 UNION
 OUTER UNION

 92

• Columns are matched by position and must be
the same data type.

• Column names in the result set are determined
by the first table.

• All columns from both tables are selected.

Set Operators (Cont’d)

Types of Set Operators (Cont’d)

EXCEPT
• Unique rows from the first table that are

not found in the second table are selected.

INTERSECT
• Common unique rows from both tables

are selected.

 93

Set Operators (Cont’d)

Types of Set Operators (Cont’d)

UNION
• All unique rows from both tables are

selected with columns overlaid.

OUTER UNION
• All rows from both tables, unique as

well as non-unique, are selected.
• Columns are not overlaid.

 94

Set Operators (Cont’d)

Modifiers

You can use two keywords to modify the behavior of set operators:

 ALL

• does not remove duplicate rows, and so avoids an extra pass through the
data. Use the ALL keyword for better performance when it is possible.

• is not allowed in connection with an OUTER UNION operator.

 CORRESPONDING

• overlays columns by name, instead of by position
• removes any columns in EXCEPT, INTERSECT, and UNION operations
• causes common columns to be overlaid when used in OUTER UNION

operations
• can be abbreviated as CORR.

 95

Set Operators (Cont’d)

The EXCEPT Operator

Display the unique rows in table ONE that are not found in table TWO.

 Table ONE Table TWO

 96

X A
1 a
1 a
1 b
2 c
3 v
4 e
6 g

X B
1 x
2 y
3 z
3 v
5 w

proc sql;
 select *
 from one
 except
 select *
 from two;

X A
1 a
1 b
2 c
4 e
6 g

Note: Duplicate
rows are omitted.

Set Operators (Cont’d)

The EXCEPT Operator (Cont’d)

Display the rows (duplicates included) that are found in table ONE but not
in TWO.

 Table ONE Table TWO

 97

X A
1 a
1 a
1 b
2 c
3 v
4 e
6 g

X B
1 x
2 y
3 z
3 v
5 w

proc sql;
 select *
 from one
 except all
 select *
 from two;

X A
1 a
1 a
1 b
2 c
4 e
6 g

Set Operators (Cont’d)

The EXCEPT Operator (Cont’d)

Display the unique rows that exist in table ONE and not in table TWO,
based on same-named columns.

 Table ONE Table TWO

 98

X A
1 a
1 a
1 b
2 c
3 v
4 e
6 g

X B
1 x
2 y
3 z
3 v
5 w

proc sql;
 select *
 from one
 except corr
 select *
 from two;

X
4
6

Set Operators (Cont’d)

The EXCEPT Operator (Cont’d)

Example: How many employees have no changes in salary or job code?

 99

proc sql;
 select count (*) label=‘No. of Persons’
 from (select EmpID
 from airline.staffmaster
 except all
 select EmpID
 from airline.staffchanges);

Set Operators (Cont’d)

The INTERSECT Operator

Display the unique rows common to table ONE and table TWO.

 Table ONE Table TWO

 100

X A
1 a
1 a
1 b
2 c
3 v
4 e
6 g

X B
1 x
2 y
3 z
3 v
5 w

proc sql;
 select *
 from one
 intersect
 select *
 from two;

X A
3 v

Set Operators (Cont’d)

The INTERSECT Operator (Cont’d)

Display the unique rows common to table ONE and table TWO, based on
same-named columns.

 Table ONE Table TWO

 101

X A
1 a
1 a
1 b
2 c
3 v
4 e
6 g

X B
1 x
2 y
3 z
3 v
5 w

proc sql;
 select *
 from one
 intersect corr
 select *
 from two;

X
1
2
3

Set Operators (Cont’d)

The INTERSECT Operator (Cont’d)

Example: What are the names of the old employees who have changed
salary or job code?

 102

proc sql;
 select FirstName, LastName
 from airline.staffmaster
 intersect all
 select FirstName, LastName
 from airline.staffchanges;

Set Operators (Cont’d)

The UNION Operator

 Table ONE Table TWO

 103

X A
1 a
1 a
1 b
2 c
3 v
4 e
6 g

X B
1 x
2 y
3 z
3 v
5 w

proc sql;
 select *
 from one
 union
 select *
 from two;

X A
1 a
1 b
1 x
2 c
2 y
3 v
3 z
4 e
5 w
6 g

Set Operators (Cont’d)

The UNION Operator (Cont’d)

 Table ONE Table TWO

 104

X A
1 a
1 a
1 b
2 c
3 v
4 e
6 g

X B
1 x
2 y
3 z
3 v
5 w

proc sql;
 select *
 from one
 union corr
 select *
 from two;

X
1
2
3
4
5
6

Set Operators (Cont’d)

The UNION Operator (Cont’d)

Example: Add the miles traveled, bonus points earned, and bonus points
used by frequent flyers.

 105

proc sql;
 title ‘Points and Miles Traveled by Frequent Flyers’;
 select ‘Total Points Earned :’,
 sum(PointsEarned) format=comma12.
 from airline.frequentflyers
 union
 select ‘Total Points Used :’,
 sum(PointsUsed) format=comma12.
 from airline.frequentflyers
 union
 select ‘Total Miles Traveled :’,
 sum(MilesTraveled) format=comma12.
 from airline.frequentflyers;

Set Operators (Cont’d)

The OUTER UNION Operator

Display all data values from table ONE and table TWO.

 Table ONE Table TWO

 106

X A
1 a
1 a
1 b
2 c
3 v
4 e
6 g

X B
1 x
2 y
3 z
3 v
5 w

proc sql;
 select *
 from one
 outer union
 select *
 from two;

X A X B
1 a .
1 a .
1 b .
2 c .
3 v .
4 e .
6 g .
. 1 x
. 2 y
. 3 z
. 3 v
. 5 w

Set Operators (Cont’d)

The OUTER UNION Operator (Cont’d)

Display all data values from table ONE and table TWO, but overlay
common columns.
 Table ONE Table TWO

 107

X A
1 a
1 a
1 b
2 c
3 v
4 e
6 g

X B
1 x
2 y
3 z
3 v
5 w

proc sql;
 select *
 from one
 outer union corr
 select *
 from two;

X A B
1 a
1 a
1 b
2 c
3 v
4 e
6 g
1 x
2 y
3 z
3 v
5 w

Set Operators (Cont’d)

The OUTER UNION Operator (Cont’d)

Example: Display the employee numbers, job codes, and salaries of all
machines.

 108

proc sql;
 select *
 from airline.mechanicslevel1
 outer union corr
 select *
 from airline.mechanicslevel2
 outer union corr
 select *
 from airline.mechanicslevel3;

Set Operators (Cont’d)

Comparing Methods of Combining Tables Vertically
The following programs produce the same report:

 109

data three;
 set one two;
run;

proc sql;
 select * from one
 outer union corr
 select * from two;
quit;

proc append base=one data =two;
run;
proc print data=one noobs;
run;

Set Operators (Cont’d)

Comparing Methods of Combining Tables Vertically (Cont’d)

 PROC APPEND is the fastest method of performing a simple
concatenation of two tables. The BASE = table is not completely read;
only the DATA = table is completely read.

 When logical conditions are involved, you can choose either the DATA
step of PROC SQL.

 SQL set operators generally require more computer resources, but are
more convenient and flexible, than the DATA step equivalents.

 With the DATA step, you can process an unlimited number of tables at
one time.

 With SQL set operators, you can work on only two tables at a time.
 If multiple DATA steps are required to perform the task, consider using

PROC SQL.

 110

Creating and Modifying Tables and Views

 Creating Tables

 Creating Views

 Creating Indexes

 Maintaining Tables

 111

Creating Tables

Use the CREATE TABLE statement in three ways.

• CREATE TABLE table-name (column-
name type(length),<column-name,
type(length)>,…);

Method
1A

• CREATE TABLE table-name LIKE table-
name;

Method
1B

• CREATE TABLE table-name AS query-
expression;

Method
2

Creates
an empty
table.

Populates
table with a
query
result.

Creating Tables (Cont’d)

Method 1A: Define the columns and fill in the data rows later.

 113

proc sql;
 create table x
 (Name char(20),
 BirthDate date,
 Salary num format=comma10.2) ;

Note: The table created above does not contain any rows. Use
this method when the table you want to create is unlike any
other existing table.

Creating Tables (Cont’d)

 Example: Create a table to store discounts for certain destinations and
time periods in March. Define columns for destination, discount, and
beginning and ending dates of the discount.

 114

proc sql;
 create table discount
 (Destination char(3),
 BeginDate date label=‘BEGINS’,
 EndDate date label=‘ENDS’,
 Discount num) ;

Creating Tables (Cont’d)

PROC SQL accepts

 types of CHARACTER or VARCHAR, but interprets both as SAS
CHARACTER. Default length is 8 bytes.

 types of INTEGER, SMALLINT, DECIMAL, NUMERIC, FLOAT, REAL,
and DOUBLE PRECISION, interpreting all as SAS NUMERIC with a
length of 8 bytes.

 a type of DATE, interpreted as a SAS NUMERIC, with a length of 8
bytes and a DATE, Informat and format.

 115

Note: Although SAS reads all of the above mentioned data types,
only CHARACTER and NUMERIC are used in SAS tables.

Creating Tables (Cont’d)

Method 1B: Copy a table. Use column definitions from another table and
fill in the rows of data later.

 116

proc sql;
 create table airline.delaycat
 (drop=delayCategory DestinationType)
 like airline.flightdelays ;

The columns in this
table are copied to
the new table.

Note: Use Methods 1A and 1B to create tables containing
columns that do not already exist in other tables, that is,
define your own columns.

Creating Tables (Cont’d)

Method 2: Store a query result in a table that defines both columns and rows.

 117

proc sql;
 create table airline.fa as
 select LastName, FirstName, Salary
 from airline.payrollmaster,
 airline.staffmaster
 where payrollmasater.EmpID
 =staffmaster.EmpID
 and JobCode contains ‘FA’ ;
 select *
 from airline.fa ;

 This method is particularly helpful when you create subsets or
supersets of tables.

 Use of the CREATE TABLE statement shuts off the automatic report
generation. Also, this is the only method of the three that both
creates and populates a table at the same time.

 Use this method when the table you want to create is similar or
identical to another existing table.

Creating Tables (Cont’d)

Loading Data into a Table

Once the table is created, you can enter rows of data using the INSERT
statement with one of three methods.

 118

Method 1: The SET Clause
INSERT INTO table-name
 SET column-name=value, column-name=value, …;

Method B: The VALUES Clause
INSERT INTO table-name <(column list)>
 VALUES (value, value, value, …;)

Method C: The Query-expression
INSERT INTO table-name<(column list)>
 SELECT columns FROM table -name;

Creating Tables (Cont’d)

Method A: The SET Clause

You may nest a SELECT statement within a SET statement, as follows:

 119

proc sql;
 insert into discount
 set Destination = ‘LHR’,
 BeginDate = ‘01MAR2000’d,
 EndDate = ’05MAR2000’d, Discount=.33
 set Destination = ‘CPH’,
 BeginDate = ‘03MAR2000’d,
 EndDate = ’10MAR2000’d, Discount=.15;

proc sql;
 insert into discount
 set Destination = ‘LHR’, BeginDate=select max(Date)
 from airline.flightdelays;

Creating Tables (Cont’d)

Method B: The VALUES Clause

 120

proc sql;
 insert into discount
 values (‘LHR’, ‘01MAR2000’d,
 ‘05MAR2000’d, .33)
 values (‘CPH’, ‘03MAR2000’d,
 ‘10MAR2000’d, .15) ;

Creating Tables (Cont’d)

Method C: A Query-expression

 121

proc sql;
 insert into discount (Distination, Discount)
 select Destination, Rate*.25
 from work.fares
 where Type = ‘special’ ;

Creating Tables (Cont’d)

Example: Create the discount table, insert four rows of data, and display
the table.

 122

proc sql;
 create table discount
 (Destination char(3),
 BeginDate date label=‘BEGINS’,
 EndDate date label=‘ENDS’,
 discount num) ;
 insert into discount
 values (‘LHR’, ‘01MAR2000’d, ‘05MAR2000’d, .33)
 values (‘CPH’, ‘03MAR2000’d, ‘10MAR2000’d, .15)
 values (‘CDG’, ‘03MAR2000’d, ‘10MAR2000’d, .15)
 values (‘LHR’, ‘10MAR2000’d, ‘12MAR2000’d, .05) ;

 select *
 from discount ;

Creating Tables (Cont’d)

Integrity Constraints

 Integrity constraints are rules that table modifications must follow to
guarantee validity of data.

 You can preserve the consistency and correctness of data by specifying
integrity constraints for a SAS data file.

 SAS uses the integrity constraints to validate data when you insert or
update the values of a variable for which you have defined integrity
constraints.

 123

Creating Tables (Cont’d)

Integrity Constraints (Cont’d)

Integrity constraints

 are part of Version 8 of base SAS software

 follow ANSI standards

 cannot be defined for views

 cannot be defined for historical versions of generation data sets

 can be specified when a table is created or later when a table contains
data.

 124

Creating Tables (Cont’d)

Five Integrity Constraints

 125

General:

 NOT NULL

 CHECK

 UNIQUE

Referential:

 PRIMARY KEY

 FOREIGN KEY

Creating Tables (Cont’d)

Five Integrity Constraints (Cont’d)

NOT NULL means that data is required and ensures that corresponding
 columns have non-missing values in each row.
CHECK specifies what values may be entered in a column. If a user
 attempts to enter data that violates this constraint, SAS rejects
 the value.
UNIQUE ensures that every value in a column is unique. The same
 column can be defined as NULL, but only a single null value is
 allowed per UNIQUE column.
PRIMARY KEY identifies the column as the table’s primary key. Only unique
 values are permitted and the primary key cannot contain
 missing values.
FOREIGN KEY links one or more rows in a table to specific row in another table
 by matching a foreign key in one table with the primary key in
 another table. This parent/child relationship limits modifications
 made to both primary and foreign keys. The only acceptable
 values for a foreign key are values of the primary key or missing
 values.

 126

Creating Tables (Cont’d)

Using PROC SQL to Create Integrity Constraints

Example: Re-create the DISCOUNT table with an integrity constraint to
limit ticket discounting.

 127

proc sql;
 create table discount
 (Destination char(3),
 BeginDate date label=‘BEGINS’,
 EndDate date label=‘ENDS’,
 discount num.
 CONSTRAINT ok_discount check
 (discount le .5)) ;

Creating Tables (Cont’d)

Using PROC SQL to Create Integrity Constraints (Cont’d)

Example: Insert two rows using default UNDO_POLICY option (required).

 128

proc sql;
 insert into discount
 values (‘LHR’, ‘01MAR2000’d,
 ‘05MAR2000’d, .15)
 values (‘CPH’, ‘03MAR2000’d,
 ‘10MAR2000’d, .55) ;

Stockholders may not
tolerate excessive
airline generosity!

Creating Tables (Cont’d)

Using PROC SQL to Create Integrity Constraints (Cont’d)

Partial Log

 129

proc sql;
 insert into discount
 values (‘LHR’, ‘01MAR2000’d,
 ‘05MAR2000’d, .33)
 values (‘CPH’, ‘03MAR2000’d,
 ‘10MAR2000’d, .15) ;
ERROR: Add/Update failed for data set WORK.DISCOUNT
because data value(s) do not comply with integrity constraint
ok_discount.
NOTE: This insert failed while attempting to add data from
VALUES clause 2 to the dataset.
NOTE: Deleting the successful inserts before error noted
above to restore table to a consistent state.

0 rows inserted.

Creating Tables (Cont’d)

Rollbacks

If an INSERT or UPDATE statement experiences an error while it
processes the statement, then the inserts or updates that were completed
up to the point of the error by that statement can be undone by use of the
UNDO_POLICY option.

 UNDO_POLICY=REQUIRED (the default)
 undoes all inserts or updates that have been done to the point of the
 error. Sometimes the UNDO operation cannot be done reliably.
 UNDO_POLICY=NONE
 prevents any updates or inserts from violating a constraint.
 UNDO_POLICY=OPTIONAL
 reverses any updates or inserts that it can reverse reliably.

 130

Creating Tables (Cont’d)

Rollbacks (Cont’d)

UNDO_POLICY=REQUIRED

PROC SQL performs UNDO processing for INSERT and UPDATE
statements.
If the UNDO operation cannot be done reliably, PROC SQL does not execute
the statement, and issues an ERROR message.
UNDO cannot be attempted reliably in the following situations:

• A SAS data set opened with CNTLLEV=RECORD can allow other users to
update newly inserted records. An error during the insert deletes the record
that the other user inserted.

• A SAS/ACCESS view is not able to rollback the changes made by this
statement without rolling back other changes at the same time.

Default: UNDO_POLICY=REQUIRED

 131

Creating Tables (Cont’d)

Rollbacks (Cont’d)

UNDO_POLICY=NONE

PROC SQL skips records that cannot be inserted or updated, and writes to
the SAS log a warning message similar to that written by PROC APPEND.

UNDO_POLICY=OPTIONAL

PROC SQL performs UNDO processing if it can be done reliably. If the
UNDO cannot be done reliably, then no UNDO processing is attempted.

This option is a combination of the first two. If UNDO can be done reliably,
then it is done. PROC SQL proceeds as if UNDO_POLICY=REQUIRED is
in effect. Otherwise, it proceeds as if UNDO_POLICY=NONE was specified.

 132

Creating Tables (Cont’d)

Using PROC SQL to Create Integrity Constraints (Cont’d)

Example: Insert two rows using UNDO_POLICY=NONE.

 133

proc sql undo_policy=none;
 insert into discount
 values (‘LHR’, ‘01MAR2000’d,
 ‘05MAR2000’d, .15)
 values (‘CPH’, ‘03MAR2000’d,
 ‘10MAR2000’d, .55) ;

Creating Tables (Cont’d)

Using PROC SQL to Create Integrity Constraints (Cont’d)

Partial Log

 134

WARNING: The SQL option UNDO_POLICY=REQUIRED is
not in effect. If an error is detected when processing this
INSERT statement, that error will not cause the entire
statement to fail.
ERROR: Add/Update failed for data set WORK.DISCOUNT
because data value(s) do not comply with integrity constraint
ok_discount.
NOTE: This insert failed while attempting to add data from
VALUES clause 2 to the dataset.
NOTE: 2 rows were inserted into WORK.DISCOUNT. Of
these 1 row was rejected as an ERROR, leaving 1 row that
was inserted successfully.

1 of 2 rows inserted successfully.

Creating Tables (Cont’d)

Documenting Table and View Definitions and Integrity Constraints

The DESCRIBE statement displays the definition of the view or CREATE
TABLE statement of a table.

General form of the DESCRIBE statement:

 135

PROC SQL;
 DESCRIBE TABLE table-name,<,table-name>…;
 DESCRIBE VIEW proc-sql-view <,proc-sql-view>…;
 DESCRIBE TABLE CONSTRAINTS table-name
 <,table-name> …;

Creating Tables (Cont’d)

Documenting Table Definitions and Integrity Constraints (Cont’d)

Example: Show the constraints for the DISCOUNT table.

 136

proc sql;
 describe table discount;

 The DESCRIBE TABLE statement (without the
CONSTRAINTS keyword) writes a CREATE TABLE statement
to the SAS log for the specified table regardless of how the
table was originally created (for example, with a DATA step).

 If the table contains an index, CREATE INDEX statements for
those indexes are also written to the SAS log.

Creating Views

A PROC SQL view

 is a stored query. It contains no rows of data.

 can be used in SAS programs in place of an actual SAS data file.

 can be derived from one or more tables, PROC SQL views, DATA step
views, or SAS/ACESS views.

 extracts underlying data when used, thus accessing the most current
data.

 137

Creating Views (Cont’d)

Creating a View

General form of the CREATE VIEW statement:

 138

PROC SQL;
 CREATE VIEW view-name AS query-expression;

 Views are not separate copies of the data and are referred
to as virtual tables because they do not exist as
independent entities as do real tables. It may be helpful to
think of a view as a movable frame or window through
which you can see the data.

 Thus, when the view is referenced by a SAS procedure or in
a DATA step, it is executed, and conceptually, an internal
table is built. PROC SQL processes this internal table as if it
were any other table.

Creating Views (Cont’d)

Creating a View (Cont’d)

Example: Create a view containing personal information for flight
attendants. Have the view always return the employee’s age as of the
current date.

 139

proc sql ;
 create view airline.fa as
 select LastName, FirstName, Gender,
 int((today()-DateOfBirth)/365.25) as Age,
 substr(JobCode,3,1) as Level, Salary
 from airline.payrollmaster,
 airline.staffmaster
 where JobCode contains ‘FA’ and
 staffmaster.EmpID=
 payrollmaster.EmpID ;

Creating Views (Cont’d)

Creating a View (Cont’d)

An alternative: Embed the LIBNAME statement within a USING clause.

This allows you to store a SAS libref in the view and does not conflict with
an identically named libref in the SAS session.

 140

PROC SQL;
 CREATE VIEW proc-sql-view AS query-expression
 <USING statement<,libname-clause>…>;

Creating Views (Cont’d)

Using a View

Example: Calculate the flight attendants’ mean age, by level, using the
AIRLINE.FA view.

 141

proc tabulate data=
 class Level;
 var Age;
 table Level*Age*mean ;
run;

airline.fa; Your view

NOTE: In both of the above examples, it only appears that the
PROC SQL view, AIRLINE.FA, is a table because the view
name itself is used in the same way as a SAS table name.
However, it is not a table but a stored query-expression only!
Both tables and views are considered SAS data sets.

Creating Views (Cont’d)

Why Use Views?

You can
• access the most current data in changing tables, DATA step views, or

SAS/ACCESS views

• pull together data from multiple database tables or even different
databases.

• simplify complex query-expressions and prevent users from altering
code

• avoid storing a SAS copy of a large table.

 142

Creating Views (Cont’d)

Administering Views

Example: Write the view defnition for AIRLINE.FA to the SAS log.

 143

proc sql ;
 describe view airline.fa;

NOTE: SQL view AIRLINE.FA is defined as:

Select LastName, FirstName, Gender, INT((TODAY()-
DateOfBirth)/365.25) as Age, SUBSTR(JobCode,3,1) as Level,
Salary from AIRLINE.PAYROLLMASTER,
AIRLINE.STAFFMASTER where JobCode contains ‘FA’ and
(staffmaster.EmpID=payrollmaster.EmpID);

Creating Views (Cont’d)

Administering Views (Cont’d)

Some General Guidelines

• Avoid the ORDER BY clause in a view definition. Otherwise, the data
must be stored each time the view is referenced.

• If the same data is used many times in one program, create a table
rather than a view.

• Avoid specifying two-level names in the FROM clause when you create
a permanent view that resides in the same library as the contributing
table(s).

 144

Creating Views (Cont’d)

Administering Views (Cont’d)

Example:

 145

proc sql ;
 create view sasdata.master as
 select *
 from payrollmaster;

This looks like
work.payrollmaster,…

…but is in reality
sasdata.payrollmaster

Creating Views (Cont’d)

Administering Views (Cont’d)

Using the Embedded LIBNAME Statement

 146

libname sasdata ‘SAS-data library one’;
libname airline ‘SAS-data library two’;
proc sql ;
 create view sasdata.journeymen as
 select *
 from airline.payrollmaster
 where jobcode like ‘ 2’
 using libname airline ‘SAS-data library three’;
quit;
proc print data=sasdata.journeymen;

1) While the view
SASDATA.JOURNEYMEN
is executing…

4) After view executes, original libref
assignment (3) is re-established and
embedded assignment (2) is cleared.

2) …libref AIRLINE
becomes active…

3) …overriding any
earlier assignment for
the duration of the
view’s execution.

Creating Indexes

An index is an auxiliary data structure that specifies the location of rows
based on the values of one or more key columns.

You can use indexes for subsetting, grouping, and joining tables.

 Indexes provide fast access to small subsets of data…

 147

proc sql ;
 select *
 from airline.payrollmaster
 where JobCode= ; ‘NA1’

One of many values of
the variable JobCode

NOTE: A small
subset is <=15%.

Creating Indexes (Cont’d)

 … and also enhance join performance.

 148

proc sql ;
 select *
 from airline.payrollmaster,
 airline.staffmaster
 where staffmaster.EmpID=
 payrollmaster.EmpID;

NOTE: When you subset data, you can select an index to
optimize not only a WHERE clause with an equals
comparison, but also a WHERE clause with the TRIM or
SUBSTR function or the CONTAINS or LIKE operator.

Creating Indexes (Cont’d)

Index Terminology

Two types of indexes are

simple based on values of only one column

composite based on values of more than one column concatenated
 to form a single value, for example, Date and
 FlightNumber.

A table can have

• multiple simple and composite indexes

• character and numeric key columns.

 149

Creating Indexes (Cont’d)

Creating an Index

• Designate the key column(s).

• Select a name for the index. A simple index must have the same name
as the column.

• Specify if the index is to be unique.

 150

proc sql ;
 create unique index EmpID
 on airline.payrollmaster (EmpID);

Creating Indexes (Cont’d)

Creating an Index

Gerenal form of the CREATE INDEX statement:

Precede the INDEX keyword with the UNIQUE keyword to define a
unique index.

 151

PROC SQL;
 CREATE <UNIQUE> INDEX index-name
 ON table-name(column-name, column name);

Creating Indexes (Cont’d)

Creating an Index (Cont’d)

Additional notes:

• Indexes can be based on either a character or numeric variable.
• You do not want to create two indexes on the same variable.
• You can achieve improved index performance if you create the index on

a pre-sorted data set.
• A composite index cannot have the same name as a variable.

 152

Creating Indexes (Cont’d)

Creating an Index (Cont’d)

Example: This simple index is based on EmpID and allows no duplicate ID
numbers in the table.

 153

proc sql;
 create unique index
 on airline.payrollmaster

EmpID
(EmpID);

Names must
match for a
simple index!

Creating Indexes (Cont’d)

Creating an Index (Cont’d)

Example: This composite index named DAILY is based on
FLIGHTNUMBER and DATE.

 154

proc sql ;
 create unique index
 on airline.marchflights(FlightNumber, Date);

daily

Creating Indexes (Cont’d)

Indexing and Performance

Example: An index was created for the JobCode column of
AIRLINE.PAYROLLMASTER. Use the MSGLEVEL=I system option to
determine which queries used the index.

 155

NOTE: To determine if an index is used, specify the SAS
system option MSGLEVEL=I. A note appears in the SAS
log when an index is selected for processing.

options msglevel=I;
proc sql ;
 select *
 from airline.payrollmaster
 where JobCode=‘NA1’;
INFO: Index JobCode selected for WHERE clause optimization.
 select *
 from airline.payrollmaster
 where salary gt 100000;

Creating Indexes (Cont’d)

Indexing and Performance (Cont’d)

Control Over Index Usage in a WHERE Expression

Two data set options control the use of indexes:

• IDXWHERE= |

• INXNAME=<name>.

 156

YES NO

Forces index
usage.

Prevents index
usage.

Creating Indexes (Cont’d)

Indexing and Performance (Cont’d)

• When the IDXWHERE=option is

YES SAS uses the best available index to process the WHERE
 expression, even if SAS estimates that sequential processing is
 faster.
NO SAS processes the data sequentially even if SAS estimates that
 processing with an index is better.

• When the IDXNAME=option is

<name> SAS uses the named index regardless of performance estimates.

If you do not use the IDXWHERE=option, SAS chooses whether to use an
index. You can use either the IDXWHERE=or the IDXNAME=data set
option, but not both.

 157

Creating Indexes (Cont’d)

Indexing and Performance (Cont’d)

Suggested guidelines for using indexes:
• Keep the number of indexes to minimum to reduce disk storage and

update costs.
• Do not create an index for small tables; sequential access is faster on

small tables.
• Do not create an index based on columns with a very small number of

distinct values, for example, Male and Female.
• An index performs best when it retrieves a relatively small number of

rows, that is, <15%.

 158

Creating Indexes (Cont’d)

Indexing and Performance (Cont’d)

Tradeoffs

 159

Benefits
• Fast access to a small subset of

data (<15%).
• Equijoins can be performed without

internal sorts.
• Can enforce uniqueness.
• BY group processing without

sorting.

Costs
• Extra CPU cycles and I/O

operations to create an index.
• Extra disk space to store the index

file.
• Extra memory to load index pages

and code for use.
• Extra CPU cycles and I/O

operations to maintain the index.

Maintaining Tables

You can use PROC SQL to

 modify values in a table or view

 add rows to a table or view

 delete rows from a table or view

 alter column attributes of a table

 add new columns to a table

 drop columns from a table

 delete an entire table, SQL view, or index.

 160

Maintaining Tables (Cont’d)

Updating Data Values

Use the UPDATE statement to modify column values in existing rows of a
table or SAS/ACCESS view.

General form of the UPDATE statement:

 161

PROC SQL;
 UPDATE table-name
 SET column-name=expression,
 SET column-name=expression,…
 WHERE expression;

Careful! If you omit the
WHERE expression,
all rows are updated.

Maintaining Tables (Cont’d)

Updating Data Values (Cont’d)

 162

x y
1 a1
2 b1
3 a2
4 b2

update one
 set x=x*2
 where y contains ‘a’;

x y
2 a1
2 b1
6 a2
4 b2

Maintaining Tables (Cont’d)

Updating Data Values (Cont’d)

Example: Give all level 1 employees a 5% raise.

A SAS DATA step equivalent is as follows:

 163

proc sql;
 update airline.payrollmaster
 set Salary=Salary * 1.05
 where JobCode like ‘__1’;
 select *
 from airline.payrollmaster;

data airline.test;
 modify airline.payrollmaster;
 if substr(JobCode,3)=‘1’ then
 Salary=Salary * 1.05;
run;

NOTE: You cannot
create additional
columns using the
UPDATE statement.

Maintaining Tables (Cont’d)

Conditional Processing

Use a CASE expression to perform conditional processing. Assign new
salaries based on job level. Two methods are available.
• Method 1:

 164

proc sql;
 update airline.payrollmaster
 set Salary=Salary *
 case substr(JobCode,3,1)
 when ‘1’ then 1.05
 when ‘2’ then 1.10
 when ‘3’ then 1.15
 else 1.08
 end;

Maintaining Tables (Cont’d)

Conditional Processing (Cont’d)

• Method 2:

 165

proc sql;
 update airline.payrollmaster
 set Salary=Salary *
 case when substr(JobCode,3,1)=‘1’
 then 1.05
 when substr(JobCode,3,1)=‘2’
 then 1.10
 when substr(JobCode,3,1)=‘3’
 then 1.15
 else 1.08
 end;

NOTE: Method 1 is more efficient because the SUBSTR
function is evaluated only once. This method also assumes an
=comparison operator, which means that if you need a different
operator, you must use Method 2.

Maintaining Tables (Cont’d)

Conditional Processing (Cont’d)

You can also use a CASE expression in other parts of a query, such as
within a SELECT statement, to create new columns.

General form of the CASE expression within the SELECT statement:

 166

PROC SQL;
 SELECT column <,column> …
 CASE <case-operand>
 WHEN when-condition THEN result-expression
 <WHEN when-condition THEN result-expression>
 <ELSE result-expression>
END;

Maintaining Tables (Cont’d)

Conditional Processing (Cont’d)

Example: Display employee names, job codes, and job levels.

 167

proc sql;
 select LastName, FirstName, JobCode,
 case substr (JobCode,3,1)
 when ‘1’ then ‘junior’
 when ‘2’ then ‘intermediate’
 when ‘3’ then ‘senior’
 else ‘none’
 end as level
 from airline.payrollmaster,
 airline.staffmaster
 where staffmaster.EmpID=
 payrollmaster.EmpID;

Maintaining Tables (Cont’d)

Deleting Rows

Use a DELETE statement to eliminate unwanted rows from a table or
SAS/ACCESS view.

General form of the DELETE statement:

 168

PROC SQL;
 DELETE FROM table-name
 WEHRE expression;

NOTE: If you do not specify a WHERE clause, all
rows are deleted.

Maintaining Tables (Cont’d)

Deleting Rows (Cont’d)

 ONE ONE

 169

x y
1 a1
2 b1
3 a2
4 b2

delete from one
 where y contains ‘1’;

x y
3 a2
4 b2

Maintaining Tables (Cont’d)

Deleting Rows (Cont’d)

Example: From the AIRLINE.FREQUENTFLYERS table, delete all
frequent flyers who have either used up their points or used more than
they have.

Partial log

 170

proc sql;
 delete from airline.frequentflyers
 where PointsEarned-PointsUsed <=0;

NOTE: 11 rows were deleted from AIRLINE.FREQUENTFLYERS.

Maintaining Tables (Cont’d)

Altering Columns

Use the ALTER statement to manipulate columns in a table three different
ways.

General form of the ALTER statement:

 171

PROC SQL;
 ALTER TABLE table-name
 ADD column-definition, column-definition,…
 DROP column-name, column-name,…
 MODIFY column-definition, column-definition,…;

Maintaining Tables (Cont’d)

Altering Columns (Cont’d)

• Add columns to a table.

You are enlarging the table.

 172

proc sql;
 alter table airline.payrollmaster
 add Bonus num format=comma10.2,
 Level char(3) ;

NOTE: After adding columns, use the UPDATE
statement to assign values to those columns. These
added columns initially contain missing values.

Maintaining Tables (Cont’d)

Altering Columns (Cont’d)

• Drop columns from a table.

You are shrinking the table.

An alternative is to use the DROP=data set option as follows:

 173

proc sql;
 alter table airline.payrollmaster
 drop DestinationType;

create table airline.flightdelays
 select *
 from airline.flightdelays(drop=destype);

Maintaining Tables (Cont’d)

Altering Columns (Cont’d)

• Modifying attributes of existing columns in a table. You can alter a
column’s length, informat, format, and label.

 174

proc sql;
 alter table airline.payrollmaster
 modify Bonus num format=comma8.2,
 Level char(1)
 label=‘Emplyee Level’;

Maintaining Tables (Cont’d)

Altering Columns (Cont’d)

Example: Alter AIRLINE.PAYROLLMASTER as follows:
 1. Add a new column named Age.
 2. Change the DateOfBirth column to the MMDDYY10. format.
 3. Drop the DateOfHire column.

 175

proc sql;
 alter table airline.payrollmaster
 add Age num
 modify DateOfBirth date format=mmddyy10.
 drop DateOfHire;
 update airline.payrollmaster
 set age=int((today()-DateOfBirth)/365.25) ;

Create
the
columns
here.

Populate the
rows here.

Maintaining Tables (Cont’d)

Deleting Table, Indexes, and Views

Use the DROP statement to delete an entire table, SQL view, or index.

General form of the DROP statement:

 176

PROC SQL;
 DROP TABLE table-name, table-name,…;
 DROP VIEW view-name, view-name,…;
 DROP INDEX index-name, index-name,…;
 FROM table-name;

Maintaining Tables (Cont’d)

Deleting Table, Indexes, and Views (Cont’d)

Example: Delete the index EmpID from the AIRLINE.PAYROLLMASTER
table and delete the temporary table DISCOUNT.

 177

proc sql;
 drop index EmpID
 from airline.payrollmaster;

NOTE: Index EmpID has been dropped.
 drop table Discount;

NOTE: Table WORK.DISCOUNT has been dropped.

NOTE: When you delete a table, all indexes on
that table are automatically deleted. If you copy a
table, all indexes are copied.

Maintaining Tables (Cont’d)

In Summary

• UPDATE
 -SET
 -CASE
• ALTER
 -ADD
 -DROP
 -MODIFY

• INSERT
 -SET
 -VALUES

• DELETE

• DROP
 178

Modifies values in existing columns, that is,
changes row values.

Adds or drops columns, or changes column
attributes.

Inserts data rows at end of existing tables.

Removes rows as specified with a WHERE clause.

Deletes an entire table, view, or index.

Maintaining Tables (Cont’d)

Updating Views

You can update the data underlying PROC SQL views using the INSERT,
DELETE, and UPDATE statements, but

• you can only update a single table through a view. It cannot be joined or
linked to another table, nor contain a subquery.

• you can update a column using the column’s alias, but not a derived
column.

• you cannot update the table through a summary query.

• you cannot update a view containing an ORDER BY clause.

 179

Maintaining Tables (Cont’d)

Updating Views (Cont’d)

Creating a view…

… and then update the view.

 180

proc sql;
 create view airline.raise as
 select EmpID, JobCode, Salary,
 Salary/12 as MonthlySalary format=dollar12.
 from airline.payrollmaster;

proc sql;
 update airline.raise
 set Salary=Salary * 1.20
 where JobCode=‘PT3’;

Additional SQL Features

 Setting PROC SQL Options

 Dictionary Tables and Views

 Interfacing PROC SQL with Macro Language

 Program Testing and Performance

 181

Setting PROC SQL Options

Controlling Processing

The SQL procedure offers a variety of options and statements that affect
processing.

General form of the PROC SQL statement:

Selected options:

INOBS=n sets a limit of n rows from each source table that
 contributes to a query.
OUTOBS=n restricts the number of rows that a query outputs
 (displays or writes to a table).
LOOPS=n restricts the number of iterations of the inner loop of
 PROC SQL.

 182

PROC SQL options;

Setting PROC SQL Options (Cont’d)

Controlling Processing (Cont’d)

NOPROMP|PROMPT modifies the effect of the INOBS=, OUTOBS=,
 and LOOPS= options so that you are prompted to
 stop or continue when a specified limit is reached.
PRINT|NOPRINT controls whether the results of a SELECT
 statement are displayed.
NONUMBER|NUMBER controls whether the row number is printed as the
 first column in the output.
NODOUBLE|DOUBLE double-spaces the report.
NOFLOW|FLOW| controls the appearance of wide character
FLOW=n|FLOW=n m columns. The FLOW option causes text to be
 flowed in its column rather than wrapping the
 entire row. Specifying n determines the width of
 the flowed column. Specifying n and m floats the
 width of the column between the limits to achieve
 a balanced layout.

 183

Setting PROC SQL Options (Cont’d)

Controlling Processing (Cont’d)

Example: Display the AWARDS table with flowed character columns and
double-spacing.

 184

proc sql flow= 1 3
double;
 select *
 from awards;

Setting PROC SQL Options (Cont’d)

Controlling Processing (Cont’d)

Example: Prompt the user to stop or continue processing after 10 rows are
read from AIRLINE.MARCHFLIGHTS.

 185

proc sql inobs=10 prompt;
 select FlightNumber,
 Date
 from airline.marchflights;

Setting PROC SQL Options (Cont’d)

Resetting Options

You can use the RESET statement to add or change PROC SQL options
without re-invoking the procedure.

General form of the RESET statement:

 186

RESET options;

Setting PROC SQL Options (Cont’d)

Resetting Options (Cont’d)

Example: Display two rows from the payroll table and print the row
number. Then display the rows without printing the row number.

 187

proc sql outobs=2 number;
 select * from airline.payrollmaster;

Dictionary Tables and Views

Overview

You can retrieve information about SAS session metadata by querying
dictionary tables with PROC SQL. Dictionary tables are

• created at initialization

• updated automatically

• limited to read-only access.

The metadata available in dictionary tables includes

• SAS files

• external files

• system options, macros, titles, and footnotes.

 188

Dictionary Tables and Views (Cont’d)

Overview (Cont’d)

SAS File Metadata
DICTIONARY.MEMBERS general information about data library
 members
DICTIONARY.TABLES detailed information about data sets
DICTIONARY.COLUMNS detailed information on variables and their
 attributes
DICTIONARY.CATALOGS information about catalog entries
DICTIONARY.VIEWS general information about data views
DICTIONARY.INDEXES information on indexes defined for data
 files

 189

Dictionary Tables and Views (Cont’d)

Overview (Cont’d)

Other Metadata
DICTIONARY.EXTFILES currently assigned filerefs
DICTIONARY.OPTIONS current settings of SAS system options
DICTIONARY.MACROS information about macro variables
DICTIONARY.TITLES text assigned to titles and footnotes

 190

NOTE: SAS librefs are limited to 8 characters.
DICTIONARY is an automatically assigned,
reserved word.

Dictionary Tables and Views (Cont’d)

Exploring Dictionary Tables

describe table dictionary.tables;

Partial Log

 191

create table DICTIONARY.TABLES (
 libname char(8) label=‘Library Name’,
 memname char(32) label=‘Member Name’,
 memtype char(8) label=‘Member Type’,
 memlabel char(256) label=‘Dataset Label’,
 typemem char(8) label=‘Dataset Type’,
 create num format=DATETIME informat=DATETIME
label=‘Date Created’,…);

Dictionary Tables and Views (Cont’d)

Using Dictionary Information

Example: Display information about the files in the AIRLINE library.

Example: Determine which tables contain the EmpID column.

 192

options nolabel nocenter;
select memname format=$20.,
 nobs,
 nvar,
 crdate
 from dictionary.tables
 where libname=‘AIRLINE’;

select memname
 from dictionary.columns
 where libname=‘AIRLINE’
 and name=‘EmpID’;

Dictionary Tables and Views (Cont’d)

Using Dictionary Information (Cont’d)

To use session metadata in other procedures or in a DATA step, you can

• create a PROC SQL view based on a dictionary table

• use views provided in the SASHELP library that are based on the
dictionary tables.

 193

Dictionary Tables and Views (Cont’d)

Using Dictionary Information (Cont’d)

Example: Use SASHELP.VMEMBER to extract information from
DICTIONARY.MEMBERS in a PROC TABULATE step.

 194

proc tabulate
 data=sashelp.vmember format=8.;
 class libname memtype;
 keylabel N=‘ ’;
 table libname, memtype/
 rts=10 misstext=‘None’;
run;

Interfacing PROC SQL with Macro Language

Resolving Symbolic References

Macro variable references embedded within PROC SQL code are resolved
as the source code is tokenized.

 195

select *
 from airline.&datasetname
 where Salary>&bigsalary;

SYMBOL TABLE
Name Value

Datasetname payrollmaster
bigsalary 100000

%let datasetname=payrollmaster;
%let bigsalary=100000;

Interfacing PROC SQL with Macro Language (Cont’d)

Creating Macro Variables

 SQL allows a query to pass data values to variables in the host software
system. The SAS System chose to implement these host variables as
macro variables.

 PROC SQL can create or update macro variables using an INTO clause.
This clause can be used in three ways.

• PROC SQL can create or update macro variables in either local or
global symbol tables.

• The INTO clause occurs between the SELECT and FROM clauses. It
cannot be used in a CREATE TABLE or CREATE VIEW statement. Use
the NOPRINT option if you do not need a display of the query result.

 196

Interfacing PROC SQL with Macro Language (Cont’d)

Creating Macro Variables: Method 1

General form of the SELECT statement with an INTO keyword:

Method 1 extracts values only from the first row of the query result.

 197

SELECT col1,col2,…
 INTO :mvar1, :mvar2,…
 FROM …

NOTE: This method is often used with
queries that return only one row.

Interfacing PROC SQL with Macro Language (Cont’d)

Creating Macro Variables: Method 1 (Cont’d)

Example

 198

reset noprint;
select avg(salary),
 min(salary),
 max(salary)
 into :mean, :min, :max
 from airline.payrollmaster;
 %put &mean &min &max;

Interfacing PROC SQL with Macro Language (Cont’d)

Creating Macro Variables: Method 1 (Cont’d)

Example: Calculate the average salary of employees with a particular job
code. Store the average in a macro variable and use the average to
display all employees in that job code who have a salary above the
average. Place the average in a title.

 199

%let code=NA1;
select avg(Salary) into :mean
 from airline.payrollmaster
 where JobCode=‘&code’;

reset print;
title1 ‘&code Employees Earning Above-Average Salaries’;
title2 ‘Average Salary for &code Employees Is &mean’;
select *
 from airline.payrollmaster
 where Salary>&mean and JobCode=‘&code’;

Interfacing PROC SQL with Macro Language (Cont’d)

Creating Macro Variables: Method 2

General form of the SELECT statement to create a macro variable:

Method 2 extracts values from the first n rows of the query result, and puts
them into a series of n macro variables.

 200

SELECT a, b,…
 INTO :a1- :an, :b1- :bn
 FROM …

Interfacing PROC SQL with Macro Language (Cont’d)

Creating Macro Variables: Method 2 (Cont’d)

Example: How many frequent flyers are in each of the three member types
(GOLD, SILVER, BRONZE)?

 201

reset print;
select MemberType,
 count (*) as Frequency
 into :memtype1- :memtype3,
 :freq1- :freq3
 from airline.frequentflyers
 group by MemberType;

%put Member types: &memtype1 &memtype2 &memtype3;
%put Frequencies: &freq1 &freq2 &freq3;

Interfacing PROC SQL with Macro Language (Cont’d)

Creating Macro Variables: Method 3

General form of the SELECT statement to create a macro variable:

Method 3 extracts values from all rows of the query result, and puts them
into a single macro variable, separated by the specified delimiter.

 202

SELECT col1,col2,…
 INTO :mvar1, :mvar2,…
 SEPARATED BY ‘delimiter’
 FROM …

Interfacing PROC SQL with Macro Language (Cont’d)

Creating Macro Variables: Method 3 (Cont’d)

Example: Put the unique values of all international destinations into a
single macro variable.

 203

select distinct Destination
 into :airportcodes
 separated by ‘ ’
 from airline.internationalflights

%put &airportcodes;

Interfacing PROC SQL with Macro Language (Cont’d)

Automatic Macro Variables

Execution of a PROC SQL query or non-query statement updates the
following automatic macro variables:

SQLOBS records the number of rows output or deleted

SQLRC contains the return code from each SQL statement

SQLOOPS contains the number of iterations processed by the inner
 loop of PROC SQL.

 204

Interfacing PROC SQL with Macro Language (Cont’d)

Automatic Macro Variables (Cont’d)

 Macro Program Example: Write a macro that accepts a state code as a
parameter and creates a table containing employees from that state.
Display a maximum of 10 rows from the table.

 205

%macro state(st);
proc sql;
create table &st as
select LastName, FirstName
 from airline.staffmaster
 where State=‘&st’;
%put NOTE: The table &st has
&sqlobs rows. ;

title1 ‘&st Employees’;
%if &sqlobs>10 %then %do;
 %put NOTE: Only the first 10
 rows are displayed.;
 title2 ‘NOTE: Only 10 rows
 are displayed.’;
 reset outobs=10;
%end;
select * from &st;
quit;
%mend state;
%state(NY) ;

Program Testing and Performance

Testing and Performance Options

PROC SQL statement options are available to aid in testing programs and
evaluating performance. The following are selected options:

• EXEC|NOEXEC controls whether submitted SQL statements are
executed.

• NONSTIMER|STIMER reports performance statistics in the SAS log for
each SQL statement.

• NONERRORSTOP|ERRORSTOP is used in batch and noninteractive
jobs to make PROC SQL enter syntax-check mode after an error occurs.

 206

NOTE: To use the STIMER SQL option, the system
option STIMER or FULLSTIMER must also be in effect.

Program Testing and Performance (Cont’d)

Testing and Performance Options (Cont’d)

Example: Display the columns that are retrieved when you use SELECT *
in a query and display any macro variable resolutions, but do not execute
the query.

 207

%let datasetname=payrollmaster;

proc sql
 feedback
 noexec;
 select *
 from airline.&datasetname;

Program Testing and Performance (Cont’d)

Testing and Performance Options (Cont’d)

Example: This is a log from a PROC SQL step with the STIMER statement
option, executing a single query. The first note concerns the invocation of
PROC SQL.

 208

Program Testing and Performance (Cont’d)

Testing and Performance Options (Cont’d)

The second note concerns the query itself.

The third note reflects the totals for the procedure.

 209

Program Testing and Performance (Cont’d)

General Guidelines for Benchmarking Programs

• Never use elapsed time for comparison because it may be affected by
concurrent tasks.

• Benchmark two programs in separate SAS sessions. If benchmarking is
done within one SAS session, statistics for the second program can be
misleading because the SAS supervisor might have loaded modules into
memory from prior steps.

• Run each program multiple times and average the performance
statistics.

• Use realistic data for tests. Program A could be better than program B
on small tables and worse on large tables.

 210

Question?

 211

	PROC SQL: Basic and Advance �Using SAS
	Outline
	Introduction
	Introduction (Cont’d)
	Features of SQL
	Basic Queries
	Overview of the SQL Procedure
	Overview of the SQL Procedure (Cont’d)
	The SELECT Statement (Cont’d)
	The SELECT Statement (Cont’d)
	The SELECT Statement (Cont’d)
	The SELECT Statement (Cont’d)
	Specifying Columns
	Specify Columns (Cont’d)
	Specify Columns (Cont’d)
	Specify Columns (Cont’d)
	Specifying Rows
	Specifying Rows (Cont’d)
	Specifying Rows (Cont’d)
	Specifying Rows (Cont’d)
	Specifying Rows (Cont’d)
	Specifying Rows (Cont’d)
	Specifying Rows (Cont’d)
	Specifying Rows (Cont’d)
	Specifying Rows (Cont’d)
	Presenting Data
	Presenting Data (Cont’d)
	Presenting Data (Cont’d)
	Presenting Data (Cont’d)
	Summarizing Data
	Summarizing Data (Cont’d)
	Summarizing Data (Cont’d)
	Summarizing Data (Cont’d)
	Summarizing Data (Cont’d)
	Summarizing Data (Cont’d)
	Subqueries
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Subqueries (Cont’d)
	Combining Tables
	Overview
	Joins
	Joins (Cont’d)
	Joins (Cont’d)
	Joins (Cont’d)
	Joins (Cont’d)
	Joins (Cont’d)
	Joins (Cont’d)
	Joins (Cont’d)
	Joins (Cont’d)
	Joins (Cont’d)
	Joins (Cont’d)
	Joins (Cont’d)
	Joins (Cont’d)
	Joins (Cont’d)
	Joins (Cont’d)
	Joins (Cont’d)
	Joins (Cont’d)
	Joins (Cont’d)
	Joins (Cont’d)
	Complex Joins
	Complex Joins (Cont’d)
	Complex Joins (Cont’d)
	Complex Joins (Cont’d)
	Complex Joins (Cont’d)
	Complex Joins (Cont’d)
	Complex Joins (Cont’d)
	Complex Joins (Cont’d)
	Complex Joins (Cont’d)
	Complex Joins (Cont’d)
	Complex Joins (Cont’d)
	Complex Joins (Cont’d)
	Set Operators
	Set Operators (Cont’d)
	Set Operators (Cont’d)
	Set Operators (Cont’d)
	Set Operators (Cont’d)
	Set Operators (Cont’d)
	Set Operators (Cont’d)
	Set Operators (Cont’d)
	Set Operators (Cont’d)
	Set Operators (Cont’d)
	Set Operators (Cont’d)
	Set Operators (Cont’d)
	Set Operators (Cont’d)
	Set Operators (Cont’d)
	Set Operators (Cont’d)
	Set Operators (Cont’d)
	Set Operators (Cont’d)
	Set Operators (Cont’d)
	Set Operators (Cont’d)
	Creating and Modifying Tables and Views
	Creating Tables
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Tables (Cont’d)
	Creating Views
	Creating Views (Cont’d)
	Creating Views (Cont’d)
	Creating Views (Cont’d)
	Creating Views (Cont’d)
	Creating Views (Cont’d)
	Creating Views (Cont’d)
	Creating Views (Cont’d)
	Creating Views (Cont’d)
	Creating Views (Cont’d)
	Creating Indexes
	Creating Indexes (Cont’d)
	Creating Indexes (Cont’d)
	Creating Indexes (Cont’d)
	Creating Indexes (Cont’d)
	Creating Indexes (Cont’d)
	Creating Indexes (Cont’d)
	Creating Indexes (Cont’d)
	Creating Indexes (Cont’d)
	Creating Indexes (Cont’d)
	Creating Indexes (Cont’d)
	Creating Indexes (Cont’d)
	Creating Indexes (Cont’d)
	Maintaining Tables
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Maintaining Tables (Cont’d)
	Additional SQL Features
	Setting PROC SQL Options
	Setting PROC SQL Options (Cont’d)
	Setting PROC SQL Options (Cont’d)
	Setting PROC SQL Options (Cont’d)
	Setting PROC SQL Options (Cont’d)
	Setting PROC SQL Options (Cont’d)
	Dictionary Tables and Views
	Dictionary Tables and Views (Cont’d)
	Dictionary Tables and Views (Cont’d)
	Dictionary Tables and Views (Cont’d)
	Dictionary Tables and Views (Cont’d)
	Dictionary Tables and Views (Cont’d)
	Dictionary Tables and Views (Cont’d)
	Interfacing PROC SQL with Macro Language
	Interfacing PROC SQL with Macro Language (Cont’d)
	Interfacing PROC SQL with Macro Language (Cont’d)
	Interfacing PROC SQL with Macro Language (Cont’d)
	Interfacing PROC SQL with Macro Language (Cont’d)
	Interfacing PROC SQL with Macro Language (Cont’d)
	Interfacing PROC SQL with Macro Language (Cont’d)
	Interfacing PROC SQL with Macro Language (Cont’d)
	Interfacing PROC SQL with Macro Language (Cont’d)
	Interfacing PROC SQL with Macro Language (Cont’d)
	Interfacing PROC SQL with Macro Language (Cont’d)
	Program Testing and Performance
	Program Testing and Performance (Cont’d)
	Program Testing and Performance (Cont’d)
	Program Testing and Performance (Cont’d)
	Program Testing and Performance (Cont’d)
	

