

SAS® Macro Language

Course Notes

ii For Your Information

SAS® Macro Language Course Notes was developed by Jim Simon. Additional contributions were made
by Hunter McGhee, Bill Powers, Warren Repole, and Kari Richardson. Editing and production support
was provided by the Curriculum Development and Support Department.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.

SAS® Macro Language Course Notes

Copyright 2004 by SAS Institute Inc., Cary, NC 27513, USA. All rights reserved. Printed in the
United States of America. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without
the prior written permission of the publisher, SAS Institute Inc.

Book code 59958, course code MACR, prepared date 21DEC04.

 For Your Information iii

Table of Contents

Course Description ... v

Prerequisites .. vi

General Conventions ..vii

Chapter 1 Introduction .. 1-1

1.1 Purpose of the Macro Facility..1-3

1.2 Program Flow ..1-8

1.3 Course Data..1-26

Chapter 2 Macro Variables .. 2-1

2.1 Introduction to Macro Variables ..2-3

2.2 Automatic Macro Variables ...2-6

2.3 Macro Variable References ..2-9

2.4 User-Defined Macro Variables...2-27

2.5 Delimiting Macro Variable Names...2-42

2.6 Macro Functions ..2-54

Chapter 3 Macro Definitions ... 3-1

3.1 Defining and Calling a Macro..3-3

3.2 Macro Parameters ..3-21

Chapter 4 DATA Step and SQL Interfaces.. 4-1

4.1 Creating Macro Variables in the DATA Step ...4-3

4.2 Indirect References to Macro Variables ...4-29

4.3 Retrieving Macro Variables in the DATA Step (Self-Study)..4-52

iv For Your Information

4.4 Creating Macro Variables in SQL..4-67

Chapter 5 Macro Programs ... 5-1

5.1 Conditional Processing ..5-3

5.2 Iterative Processing..5-28

5.3 Global and Local Symbol Tables ...5-45

Chapter 6 Learning More... 6-1

6.1 SAS Resources...6-3

6.2 What’s Next After SAS® Macro Language..6-20

Appendix A Flow Diagram... A-1

A.1 Program Flow ...A-3

Appendix B Index ... B-1

 For Your Information v

Course Description

This instructor-based course is for experienced SAS programmers who want to build complete macro-
based systems using the SAS macro facility.

This two-day course focuses on the components of the macro facility and how the macro language affects
the normal processing of SAS programs. Emphasis is on designing macro systems and debugging
techniques.

To learn more…

A full curriculum of general and statistical instructor-based training is available
at any of the Institute’s training facilities. Institute instructors can also provide
on-site training.

For information on other courses in the curriculum, contact the SAS Education
Division at 1-800-333-7660, or send e-mail to training@sas.com. You can also
find this information on the Web at support.sas.com/training/ as well as in the
Training Course Catalog.

For a list of other SAS books that relate to the topics covered in this
Course Notes, USA customers can contact our SAS Publishing Department at
1-800-727-3228 or send e-mail to sasbook@sas.com. Customers outside the
USA, please contact your local SAS office.

Also, see the Publications Catalog on the Web at support.sas.com/pubs for a
complete list of books and a convenient order form.

vi For Your Information

Prerequisites

Before selecting this course, students should be able to

 write and submit SAS programs on your operating system

 use LIBNAME, FILENAME, TITLE, and OPTIONS statements

 use a DATA step to read from or write to a SAS data set or external data file

 use DATA step programming statements such as IF-THEN/ELSE, DO WHILE, DO UNTIL, and
iterative DO

 use character functions such as SUBSTR, SCAN, INDEX, and UPCASE

 use the LENGTH and RETAIN statements

 use SAS data set options such as DROP=, KEEP=, AND OBS=

 form subsets of data using the WHERE clause

 create and use SAS date values, including SAS date constants

 execute base SAS procedures such as SORT, PRINT, CONTENTS, MEANS, FREQ, TABULATE,
and CHART.

 For Your Information vii

General Conventions
This section explains the various conventions that may be used in presenting text, SAS language syntax,
and examples in this book.

Typographical Conventions

You will see several type styles in this book. This list explains the meaning of each style:

UPPERCASE ROMAN is used for SAS statements and other SAS language elements when they
appear in the text.

italic identifies terms or concepts that are defined in text. Italic is also used for
book titles when they are referenced in text, as well as for various syntax
and mathematical elements.

bold is used for emphasis within text.

monospace is used for examples of SAS programming statements and for SAS character
strings. Monospace is also used to refer to variable and data set names, field
names in windows, information in fields, and user-supplied information.

select indicates selectable items in windows and menus. This book also uses icons
to represent selectable items.

Syntax Conventions

The general forms of SAS statements and commands shown in this book include only that part of the
syntax actually taught in the course. For complete syntax, see the appropriate SAS reference guide.

PROC CHART DATA = SAS-data-set;
 HBAR | VBAR chart-variables </ options>;
RUN;

This is an example of how SAS syntax is shown in text:
• PROC and CHART are in uppercase bold because they are SAS keywords.
• DATA= is in uppercase to indicate that it must be spelled as shown.
• SAS-data-set is in italic because it represents a value that you supply. In this case, the value must be

the name of a SAS data set.
• HBAR and VBAR are in uppercase bold because they are SAS keywords. They are separated by a

vertical bar to indicate they are mutually exclusive; you can choose one or the other.
• chart-variables is in italic because it represents a value or values that you supply.
• </ options> represents optional syntax specific to the HBAR and VBAR statements. The angle

brackets enclose the slash as well as options because if no options are specified you do not include
the slash.

• RUN is in uppercase bold because it is a SAS keyword.

viii For Your Information

Chapter 1 Introduction

1.1 Purpose of the Macro Facility ...1-3

1.2 Program Flow..1-8

1.3 Course Data ..1-26

1-2 Chapter 1 Introduction

 1.1 Purpose of the Macro Facility 1-3

1.1 Purpose of the Macro Facility

3

Objectives
State the purpose of the macro facility.
View examples of macro applications.

4

Purpose of the Macro Facility
The macro facility is a text processing facility for
automating and customizing flexible SAS code.

The macro facility supports
symbolic substitution within SAS code
automated production of SAS code
dynamic generation of SAS code
conditional construction of SAS code.

1-4 Chapter 1 Introduction

5

Purpose of the Macro Facility
The macro facility enables you to

create and resolve macro variables anywhere within
a SAS program
write and call macro programs (macros) that
generate custom SAS code.

The macro facility is a tool for customizing SAS and for minimizing the amount of program code you
must enter to perform common tasks.

6

Substituting System Information
Example: Include system information within SAS footnotes.

proc print data=perm.all;
title "Listing of PERM.ALL Data Set";
footnote1 "Created 10:24 Wednesday, 25AUG2004";
footnote2 "on the WIN System Using Release 9.1";
run;

Automatic macro variables, which store system information,
can be used to avoid hardcoding these values.

 1.1 Purpose of the Macro Facility 1-5

7

Substituting User-Defined Information
Example: Include the same value repeatedly throughout

a program.
proc print data=perm.schedule;

where year(begin_date)=2004;
title "Scheduled Classes for 2004";

run;
proc means data=perm.all sum;

where year(begin_date)=2004;
class location;
var fee;
title "Total Fees for 2004 Classes";
title2 "by Training Center";

run;

User-defined macro variables enable you to define a
value once, then substitute that value as often as
necessary within a program.

8

Conditional Processing

Is it
Friday? Yes

Daily report
proc print data=perm.all;
run;

proc means data=perm.all;
run;

Example: Generate a detailed report on a daily basis.
Generate an additional report every Friday,
summarizing data on a weekly basis.

Macro programs can conditionally execute selected
portions of a SAS program based on user-defined
conditions.

1-6 Chapter 1 Introduction

9

Repetitive Processing
Example: Generate a similar report each year from

2003 to 2005.

The macro facility can generate SAS code repetitively,
substituting different values with each iteration.

proc print data=perm.year2003;
run;

proc print data=perm.year2004;
run;

proc print data=perm.year2005;
run;

10

Data-Driven Applications
Example: Create a separate subset of a data set for each

unique value of a selected variable.

The macro facility can generate data-driven code.

data Boston Dallas Seattle;
set perm.schedule;
select(location);

when("Boston") output Boston;
when("Dallas") output Dallas;
when("Seattle") output Seattle;
otherwise;

end;
run;

 1.1 Purpose of the Macro Facility 1-7

11

Developing Macro-Based Applications
If a macro-based application generates SAS code, use a
four-step approach.

Step 1:
write and debug the desired SAS program without any
macro coding
make sure the SAS program runs with hardcoded
programming constants on a fixed set of data.

Steps 2-4 will be presented later.

Beginning the development process in this manner enables rapid development and debugging because
syntax and logic at the SAS code level is isolated from syntax and logic at the macro level.

12

Efficiency of Macro-Based Applications
The macro facility can reduce program

development time
maintenance time.

SAS code generated by macro techniques
does not compile or execute faster than any other SAS
code
depends on the efficiency of the underlying SAS code,
regardless of how the SAS code was generated.

1-8 Chapter 1 Introduction

1.2 Program Flow

14

Objectives
Identify the tokens in a SAS program.
Describe how a SAS program is tokenized, compiled,
and executed.

 1.2 Program Flow 1-9

15

Program Flow
A SAS program can be any combination of

DATA steps and PROC steps
global statements
SAS Component Language (SCL)
Structured Query Language (SQL)
SAS macro language.

When you submit a program, it is copied to a location in
memory called the input stack.

16

Program Flow

Input StackInput Stack

SUBMIT
Command

Stored
Process

Batch or
Noninteractive

Submission

data new;
set perm.mast;
bonus=wage*0.1;

run;
proc print;
run;

data new;
set perm.mast;
bonus=wage*0.1;

run;
proc print;
run;

%STPBEGIN;
proc print data=new;
run;
proc means data=new;
run;
%STPEND;

%STPBEGIN;
proc print data=new;
run;
proc means data=new;
run;
%STPEND;

//SYSIN DD *
options nodate;
proc sql;

select *
from perm.mast;

quit;

//SYSIN DD *
options nodate;
proc sql;

select *
from perm.mast;

quit;

1-10 Chapter 1 Introduction

17

Program Flow

Word
Scanner

Input
Stack

set perm.mast;
bonus=wage*0.1;

run;
proc print;
run;

set perm.mast;
bonus=wage*0.1;

run;
proc print;
run;

data
new
;

data
new
;

Once SAS code is in the input stack, a component of SAS
called the word scanner

reads the text in the input stack, character by
character, left-to-right, top-to-bottom
breaks the text into fundamental units called tokens.

18

Program Flow

Compiler

Word Scanner

Input Stack

data new;data new;

set
perm
.
mast
;

set
perm
.
mast
;

bonus=wage*0.1;
run;
proc print;
run;

bonus=wage*0.1;
run;
proc print;
run;

The word scanner passes the tokens, one at a time, to
the appropriate compiler, as the compiler demands.

 1.2 Program Flow 1-11

19

Program Flow
The compiler

requests tokens until it receives a semicolon
performs a syntax check on the statement
repeats this process for each statement.

SAS
suspends the compiler when a step boundary is
encountered
executes the compiled code if there are no compilation
errors
repeats this process for each step.

20

Tokenization
The word scanner recognizes four classes of tokens:

literal tokens
number tokens
name tokens
special tokens.

1-12 Chapter 1 Introduction

21

Literal Tokens
A literal token is a string of characters enclosed in single
or double quotes.

Examples: 'Any text'
"Any text"

The string is treated as a unit by the compiler.

22

Number Tokens
Number tokens can be

integer numbers, including SAS date constants
floating point numbers, containing a decimal point
and/or exponent.

Examples: 3
3.
3.5
-3.5
’01jan2002’d
5E8
7.2E-4

 1.2 Program Flow 1-13

23

Name Tokens
Name tokens contain one or more characters beginning
with a letter or underscore and continuing with
underscores, letters, or numerals.

Examples: infile

n

item3

univariate

dollar10.2

Format and informat names contain a period.

24

Special Tokens
Special tokens can be any character, or combination of
characters, other than a letter, numeral, or underscore.

Examples: * / + - ** ; $ () . & % @ # = ||

1-14 Chapter 1 Introduction

25

Tokenization
A token ends when the word scanner detects

the beginning of another token
a blank after a token.

Blanks
are not tokens
delimit tokens.

The maximum length of a token is 32,767 characters.

 1.2 Program Flow 1-15

26

Example

Input Stack

Tokens

var x1-x10 z ;

1. var
2. x1
3. -
4. x10
5. z
6. ;

27

Example

Input Stack

Tokens

title 'Report for May';

1. title
2. 'Report for May'
3. ;

1-16 Chapter 1 Introduction

28

Question
How many tokens are present in each of these
statements?

input @10 ssn comma11. name $30-50;

bonus=3.2*(wage-2000);

plot date*revenue='$'/vref='30jun2001'd;

29

Answer
How many tokens are present in each of these
statements?

input @10 ssn comma11. name $30-50;

bonus=3.2*(wage-2000);

plot date*revenue='$'/vref='30jun2001'd;

11

11

10

 1.2 Program Flow 1-17

Processing Tokens

flow1

By executing the program below, one token at a time in the Program Editor, you can observe in the SAS
log which tokens trigger SAS to compile and execute code.
proc
options
;
proc
print
;
run
;

1. Which token triggers execution of the PROC OPTIONS step, displaying the current settings of
system options in the SAS log?

2. Which token triggers an error message in the log window indicating that no data set is available to be
printed?

3. Which token triggers a note indicating that the SAS System stopped processing the step?

1-18 Chapter 1 Introduction

31

The %INCLUDE Statement
The %INCLUDE statement

copies SAS statements from an external file to the
input stack
is a global SAS statement
is not a macro language statement
can be used only on a statement boundary.

External File: pgm1.sasInput Stack

%include 'pgm1.sas';
proc print;
run;

data new;
set perm.mast;
bonus=wage*0.1;

run;

32

The %INCLUDE Statement
The contents of the external file are placed on the input
stack. The word scanner then reads the newly inserted
statements.

...

External File: pgm1.sas

data new;
set perm.mast;
bonus=wage*0.1;

run;

Input Stack

data new;
set perm.mast;
bonus=wage*0.1;

run;
proc print;
run;

 1.2 Program Flow 1-19

33

file-specification physical name or fileref of the file to be
retrieved and placed on the input stack.

SOURCE2 requests inserted SAS statements to
appear in the SAS log.

The %INCLUDE Statement
The %INCLUDE statement retrieves SAS source code
from an external file and places it on the input stack.

General form of the %INCLUDE statement:

%INCLUDE file-specification < / SOURCE2 >;%INCLUDE file-specification < / SOURCE2 >;

 If SOURCE2 is not specified in the %INCLUDE statement, the setting of the SAS system option
SOURCE2 controls whether the inserted SAS code is displayed.

34

Macro Triggers
During word scanning, two token sequences are
recognized as macro triggers:

%name-token a macro statement, function, or call
&name-token a macro variable reference.

The word scanner passes macro triggers to the macro
processor, which

requests additional tokens as necessary
performs the action indicated.

1-20 Chapter 1 Introduction

35

Macro Statements
Macro statements

begin with a percent sign (%) followed by a name token
end with a semicolon
represent macro triggers
are executed by the macro processor.

36

The %PUT Statement
The %PUT statement

writes text to the SAS log
writes to column one of the next line
writes a blank line if no text is specified
does not require quotes around text
is valid in open code (anywhere in a SAS program).

General form of the %PUT statement:

%PUT text;%PUT text;

 1.2 Program Flow 1-21

37

The %PUT Statement

Partial SAS Log

Example: Use a %PUT statement to write text to the SAS
log.

12 %put Hi Mom!;
Hi Mom!

38

Program Flow

Macro Processor

Input
Stack

Compiler

Word
Scanner

%put Hi Mom!;%put Hi Mom!;

The %PUT statement is submitted.

1-22 Chapter 1 Introduction

39

Program Flow

Macro Processor

Input
Stack

Compiler

Word
Scanner

%
put
Hi
Mom
!
;

%
put
Hi
Mom
!
;

The statement is tokenized.

40

Program Flow

Macro Processor

Input
Stack

Compiler

Word
Scanner

Hi
Mom
!
;

Hi
Mom
!
;

%put%put

When a macro trigger is encountered, it is passed to the
macro processor for evaluation.

 1.2 Program Flow 1-23

41

Program Flow

Macro Processor

Input
Stack

Compiler

Word
Scanner

%put Hi Mom!;%put Hi Mom!;

The macro processor requests tokens until a semicolon
is encountered, then executes the macro statement.

1-24 Chapter 1 Introduction

Exercises

Issue a LIBNAME statement to assign the perm libref to the SAS data library according to instructions
provided by the instructor.

1. Insert Code with the %INCLUDE Statement

The program below is stored in a file named printnum. It creates a list of students enrolled in a specific
course. Execute the printnum code directly using a %INCLUDE statement.

proc print data=perm.all label noobs n;
 where course_number=3;
 var student_name student_company;
 title "Enrollment for Course 3";
run;

2. Write Text to the SAS Log with the %PUT Statement

Submit a %PUT statement which writes your name to the SAS log.

 1.2 Program Flow 1-25

Solutions to Exercises

1. Insert Code with the %INCLUDE Statement
%include 'printnum.sas';

2. Write Text to the SAS Log with the %PUT Statement
%put Jane Doe;

1-26 Chapter 1 Introduction

1.3 Course Data

44

Objectives
Describe the data used in the course examples and
workshops.

 1.3 Course Data 1-27

To demonstrate features of the macro facility, this course uses course registration data from a company
specializing in computer training.

The company presents its courses in cities (Boston, Dallas, and Seattle) around the United States.

The company is developing a registration and reporting system.

Data for October 2004 through March 2006 are documented in the following data sets:

SAS Data Set Description Number of Observations

courses contains information about courses with one
observation per course.

6

schedule contains information about each course with one
observation per course at a particular location and
date.

18

students contains information about students with one
observation per student.

207

register contains information about students registered for
a specific course with one observation per student
for a particular course.

434

all joins all data files with one observation per
student per course.

434

These data sets are stored in a SAS data library with a libref of perm.

1-28 Chapter 1 Introduction

The COURSES Data Set
The CONTENTS Procedure

Data Set Name PERM.COURSES Observations 6
Member Type DATA Variables 4
Engine V9 Indexes 0
Created Tuesday, May 30, Observation Length 48
 2000 04:21:30 PM
Last Modified Monday, June 12, Deleted Observations 0
 2000 10:39:41 AM
Protection Compressed NO
Data Set Type Sorted NO
Label
Data Representation WINDOWS_32
Encoding Default

 Engine/Host Dependent Information

Data Set Page Size 4096
Number of Data Set Pages 2
First Data Page 1
Max Obs per Page 84
Obs in First Data Page 6
Number of Data Set Repairs 0
File Name C:\workshop\winsas\macr\courses.sas7bdat
Release Created 8.0000M0
Host Created WIN_NT

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Informat Label

 1 Course_Code Char 4 Course Code
 2 Course_Title Char 25 Description
 3 Days Num 8 1. 1. Course Length
 4 Fee Num 8 DOLLAR5. DOLLAR5. Course Fee

 Listing of PERM.COURSES
 Course_
 Obs Code Course_Title Days Fee

 1 C001 Basic Telecommunications 3 $795
 2 C002 Structured Query Language 4 $1150
 3 C003 Local Area Networks 3 $650
 4 C004 Database Design 2 $375
 5 C005 Artificial Intelligence 2 $400
 6 C006 Computer Aided Design 5 $1600

 1.3 Course Data 1-29

The SCHEDULE Data Set
 The CONTENTS Procedure

Data Set Name PERM.SCHEDULE Observations 18
Member Type DATA Variables 5
Engine V9 Indexes 0
Created Monday, July 12, Observation Length 56
 2004 04:29:52 PM
Last Modified Monday, July 12, Deleted Observations 0
 2004 04:29:52 PM
Protection Compressed NO
Data Set Type Sorted NO
Label
Data Representation WINDOWS_32
Encoding wlatin1 Western
 (Windows)

 Engine/Host Dependent Information

Data Set Page Size 8192
Number of Data Set Pages 1
First Data Page 1
Max Obs per Page 145
Obs in First Data Page 18
Number of Data Set Repairs 0
File Name C:\workshop\winsas\macr\schedule.sas7bdat
Release Created 9.0101B3
Host Created XP_PRO

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Informat Label

 4 Begin_Date Num 8 DATE9. DATE7. Begin
 2 Course_Code Char 4 Course Code
 1 Course_Number Num 8 2. 2. Course Number
 3 Location Char 15 Location
 5 Teacher Char 20 Instructor

 Partial Listing of PERM.SCHEDULE

 Course_ Course_ Begin_
 Obs Number Code Location Date Teacher

 1 1 C001 Seattle 26OCT2004 Hallis, Dr. George
 2 2 C002 Dallas 07DEC2004 Wickam, Dr. Alice
 3 3 C003 Boston 11JAN2005 Forest, Mr. Peter
 4 4 C004 Seattle 25JAN2005 Tally, Ms. Julia
 5 5 C005 Dallas 01MAR2005 Hallis, Dr. George
 6 6 C006 Boston 05APR2005 Berthan, Ms. Judy
 7 7 C001 Dallas 24MAY2005 Hallis, Dr. George

1-30 Chapter 1 Introduction

The STUDENTS Data Set
The CONTENTS Procedure

Data Set Name PERM.STUDENTS Observations 207
Member Type DATA Variables 3
Engine V9 Indexes 0
Created Tuesday, May 30, Observation Length 85
 2000 04:21:31 PM
Last Modified Monday, June 12, Deleted Observations 0
 2000 10:39:11 AM
Protection Compressed NO
Data Set Type Sorted NO
Label
Data Representation WINDOWS_32
Encoding Default

 Engine/Host Dependent Information

Data Set Page Size 8192
Number of Data Set Pages 4
First Data Page 1
Max Obs per Page 95
Obs in First Data Page 80
Number of Data Set Repairs 0
File Name C:\workshop\winsas\macr\students.sas7bdat
Release Created 8.0000M0
Host Created WIN_NT

 Alphabetic List of Variables and Attributes

 # Variable Type Len Label

 3 City_State Char 20 City,State
 2 Student_Company Char 40 Company
 1 Student_Name Char 25 Student Name

 Partial Listing of PERM.STUDENTS

Obs Student_Name Student_Company City_State

 1 Abramson, Ms. Andrea Eastman Developers Deerfield, IL
 2 Alamutu, Ms. Julie Reston Railway Chicago, IL
 3 Albritton, Mr. Bryan Special Services Oak Brook, IL
 4 Allen, Ms. Denise Department of Defense Bethesda, MD
 5 Amigo, Mr. Bill Assoc. of Realtors Chicago, IL
 6 Avakian, Mr. Don Reston Railway Chicago, IL
 7 Babbitt, Mr. Bill National Credit Corp. Chicago, IL
 8 Baker, Mr. Vincent Snowing Petroleum New Orleans, LA
 9 Bates, Ms. Ellen Reston Railway Chicago, IL
 10 Belles, Ms. Vicki Jost Hardware Inc. Toledo, OH
 11 Benincasa, Ms. Elizabeth Hospital Nurses Association Naperville, IL
 12 Bills, Ms. Paulette Reston Railway Chicago, IL

 1.3 Course Data 1-31

The REGISTER Data Set
 The CONTENTS Procedure

Data Set Name PERM.REGISTER Observations 434
Member Type DATA Variables 3
Engine V9 Indexes 0
Created Tuesday, May 30, Observation Length 40
 2000 04:21:31 PM
Last Modified Monday, June 12, Deleted Observations 0
 2000 10:39:54 AM
Protection Compressed NO
Data Set Type Sorted NO
Label
Data Representation WINDOWS_32
Encoding Default

 Engine/Host Dependent Information

Data Set Page Size 4096
Number of Data Set Pages 6
First Data Page 1
Max Obs per Page 101
Obs in First Data Page 68
Number of Data Set Repairs 0
File Name C:\workshop\winsas\macr\register.sas7bdat
Release Created 8.0000M0
Host Created WIN_NT

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Informat Label

 2 Course_Number Num 8 2. 2. Course Number
 3 Paid Char 1 Paid Status
 1 Student_Name Char 25 Student Name

 Partial Listing of PERM.REGISTER
 Course_
 Obs Student_Name Number Paid

 1 Albritton, Mr. Bryan 1 Y
 2 Amigo, Mr. Bill 1 N
 3 Chodnoff, Mr. Norman 1 Y
 4 Clark, Mr. Rich 1 Y
 5 Crace, Mr. Ron 1 Y
 6 Dellmonache, Ms. Susan 1 Y
 7 Dixon, Mr. Matt 1 Y
 8 Edwards, Mr. Charles 1 N
 9 Edwards, Ms. Sonia 1 Y
 10 Elsins, Ms. Marisa F. 1 Y
 11 Griffin, Mr. Lantz 1 Y
 12 Hall, Ms. Sharon 1 Y

1-32 Chapter 1 Introduction

The ALL Data Set

The program used to create the PERM.ALL data set is shown below.
proc sql;
 create table perm.all as
 select students.student_name,
 schedule.course_number,
 paid, courses.course_code,
 location, begin_date,
 teacher, course_title, days, fee,
 student_company, city_state
 from perm.schedule, perm.students,
 perm.register, perm.courses
 where schedule.course_code =
 courses.course_code and
 schedule.course_number =
 register.course_number and
 students.student_name =
 register.student_name
 order by students.student_name,
 courses.course_code;
quit;

 1.3 Course Data 1-33

The ALL Data Set
The CONTENTS Procedure

Data Set Name PERM.ALL Observations 434
Member Type DATA Variables 12
Engine V9 Indexes 0
Created Friday, July 23, Observation Length 184
 2004 02:53:26 PM
Last Modified Friday, July 23, Deleted Observations 0
 2004 02:53:26 PM
Protection Compressed NO
Data Set Type Sorted YES
Label
Data Representation WINDOWS_32
Encoding wlatin1 Western (Windows)

 Engine/Host Dependent Information

Data Set Page Size 16384
Number of Data Set Pages 6
First Data Page 1
Max Obs per Page 88
Obs in First Data Page 76
Number of Data Set Repairs 0
File Name C:\workshop\winsas\macr\all.sas7bdat
Release Created 9.0101B3
Host Created XP_PRO

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Informat Label

 6 Begin_Date Num 8 DATE9. DATE7. Begin
 12 City_State Char 20 City,State
 4 Course_Code Char 4 Course Code
 2 Course_Number Num 8 2. 2. Course Number
 8 Course_Title Char 25 Description
 9 Days Num 8 1. 1. Course Length
 10 Fee Num 8 DOLLAR5. DOLLAR5. Course Fee
 5 Location Char 15 Location
 3 Paid Char 1 Paid Status
 11 Student_Company Char 40 Company
 1 Student_Name Char 25 Student Name
 7 Teacher Char 20 Instructor

 Sort Information

 Sortedby Student_Name Course_Code
 Validated YES
 Character Set ANSI

1-34 Chapter 1 Introduction

The ALL Data Set
Partial Listing of PERM.ALL

 Course_ Course_
Obs Student_Name Number Paid Code Location

 1 Abramson, Ms. Andrea 10 Y C004 Dallas
 2 Abramson, Ms. Andrea 6 N C006 Boston
 3 Alamutu, Ms. Julie 14 N C002 Seattle
 4 Albritton, Mr. Bryan 1 Y C001 Seattle
 5 Albritton, Mr. Bryan 5 Y C005 Dallas

 Begin_
Obs Date Teacher Course_Title

 1 16AUG2005 Tally, Ms. Julia Database Design
 2 05APR2005 Berthan, Ms. Judy Computer Aided Design
 3 06DEC2005 Wickam, Dr. Alice Structured Query Language
 4 26OCT2004 Hallis, Dr. George Basic Telecommunications
 5 01MAR2005 Hallis, Dr. George Artificial Intelligence

Obs Days Fee Student_Company City_State

 1 2 $375 Eastman Developers Deerfield, IL
 2 5 $1600 Eastman Developers Deerfield, IL
 3 4 $1150 Reston Railway Chicago, IL
 4 3 $795 Special Services Oak Brook, IL
 5 2 $400 Special Services Oak Brook, IL

Chapter 2 Macro Variables

2.1 Introduction to Macro Variables..2-3

2.2 Automatic Macro Variables..2-6

2.3 Macro Variable References..2-9

2.4 User-Defined Macro Variables...2-27

2.5 Delimiting Macro Variable Names ...2-42

2.6 Macro Functions...2-54

2-2 Chapter 2 Macro Variables

 2.1 Introduction to Macro Variables 2-3

2.1 Introduction to Macro Variables

3

Objectives
Understand macro variables.
Describe where macro variables are stored.
Identify the two types of macro variables.

4

Macro Variables
Macro variables store text, including

complete or partial SAS steps
complete or partial SAS statements.

Macro variables are referred to as symbolic variables
because SAS programs can reference macro variables
as symbols for additional program text.

2-4 Chapter 2 Macro Variables

5

Global Symbol Table
Macro variables are stored in an area of memory called
the global symbol table. When SAS is invoked, the global
symbol table is created and initialized with automatic
macro variables.

Automatic
Variables

Global Symbol Table
. .
. .

SYSTIME 09:47
SYSVER 9.1

. .

. .

6

Global Symbol Table
User-defined macro variables can be added to the
global symbol table.

Automatic
Variables

Global Symbol Table
. .
. .

SYSTIME 09:47
SYSVER 9.1

. .

. .
CITY Dallas
DATE 05JAN2004
AMOUNT 975

User-defined
Variables

 2.1 Introduction to Macro Variables 2-5

7

Macro Variables
Macro variables in the global symbol table

are global in scope (available any time)
have a minimum length of 0 characters (null value)
have a maximum length of 65,534 (64K) characters
store numeric tokens as character strings.

2-6 Chapter 2 Macro Variables

2.2 Automatic Macro Variables

9

Objectives
Identify selected automatic macro variables.
Display automatic macro variables in the SAS log.

10

Automatic Macro Variables
Automatic macro variables

are system-defined
are created at SAS invocation
are global (always available)
are assigned values by SAS
can be assigned values by the user in some cases.

 2.2 Automatic Macro Variables 2-7

11

System-Defined Automatic Macro Variables
Some automatic macro variables have fixed values that
are set at SAS invocation:

Name Description
SYSDATE date of SAS invocation (DATE7.)
SYSDATE9 date of SAS invocation (DATE9.)
SYSDAY day of the week of SAS invocation
SYSTIME time of SAS invocation
SYSSCP abbreviation for the operating system: OpenVMS,

WIN, HP 300, and so on
SYSVER release of SAS software being used.

12

System-Defined Automatic Macro Variables
Some automatic macro variables have values that change
automatically based on submitted SAS statements:

Name Description
SYSLAST name of most recently created SAS data set in

the form libref.name. If no data set has been
created, the value is _NULL_.

SYSPARM text specified at program invocation.

2-8 Chapter 2 Macro Variables

13

Automatic Macro Variables
Example: Write the names and values of all automatic

macro variables to the SAS log using the
AUTOMATIC argument of the %PUT
statement.

%put _automatic_;

14

Automatic Macro Variables
Partial SAS Log

The macro variables SYSDATE, SYSDATE9, and
SYSTIME store character strings, not SAS date or time
values.

12 %put _automatic_;
AUTOMATIC AFDSID 0
AUTOMATIC AFDSNAME
AUTOMATIC AFLIB
AUTOMATIC AFSTR1
AUTOMATIC AFSTR2
AUTOMATIC FSPBDV
AUTOMATIC SYSBUFFR
AUTOMATIC SYSCC 3000
AUTOMATIC SYSCHARWIDTH 1
AUTOMATIC SYSCMD
AUTOMATIC SYSDATE 05FEB04
AUTOMATIC SYSDATE9 05FEB2004

 2.3 Macro Variable References 2-9

2.3 Macro Variable References

16

Objectives
Understand how macro variable references are
handled by the word scanner and macro processor.

17

Macro Variable Reference
Macro variable references

begin with an ampersand (&) followed by a macro
variable name
represent macro triggers
are also called symbolic references
can appear anywhere in your program
are passed to the macro processor.

When the macro processor receives a macro variable
reference, it

searches the symbol table for the macro variable
places the macro variable's value on the input stack
issues a warning to the SAS log if the macro variable is
not found in the symbol table.

2-10 Chapter 2 Macro Variables

18

Macro Variable Reference
Example: Write the day of the week to the SAS log.

Partial SAS Log

12 %put Today is &sysday;
Today is Tuesday

19

Substitution within a Macro Statement

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

%put Today is &sysday;%put Today is &sysday;

 2.3 Macro Variable References 2-11

20

Substitution within a Macro Statement

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

When a macro trigger is encountered, it is passed to the
macro processor for evaluation.

Today is &sysday;Today is &sysday;

%put %put

21

Substitution within a Macro Statement

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

The macro processor requests tokens until a semicolon
is encountered.

%put Today is &sysday;%put Today is &sysday;

2-12 Chapter 2 Macro Variables

22

%put Today is &sysday;%put Today is &sysday;

Substitution within a Macro Statement

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

The macro variable reference triggers the macro processor
to search the symbol table for the reference.

23

Substitution within a Macro Statement

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

The macro processor resolves the macro variable reference,
substituting its value.

%put Today is Tuesday;%put Today is Tuesday;

 2.3 Macro Variable References 2-13

24

Substitution within a Macro Statement

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

The macro processor executes the %PUT statement,
writing the resolved text to the SAS log.

%put Today is Tuesday;%put Today is Tuesday;

25

Substitution within a SAS Literal
If you need to reference a
macro variable within a
literal, enclose the literal in
double quotes.

Global Symbol Table

CITY Dallas
DATE 05JAN2000
AMOUNT 975

The word scanner continues to tokenize literals enclosed in
double quotes, permitting macro variables to resolve.

generates

The word scanner does not tokenize literals enclosed in
single quotes, so macro variables do not resolve.

generates

where cityst CONTAINS "&city";

where cityst contains '&city';

WHERE CITYST CONTAINS "Dallas";

WHERE CITYST CONTAINS '&city';

2-14 Chapter 2 Macro Variables

26

Substitution within a SAS Literal

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

Example: Substitute the day of the week in a title.

proc print data=perm.all;
title "Today is &sysday";
run;

proc print data=perm.all;
title "Today is &sysday";
run;

27

Substitution within a SAS Literal

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

SAS statements are passed to the compiler.

proc print data=perm.all;
title

proc print data=perm.all;
title

"
Today
is

"
Today
is

&sysday";
run;

&sysday";
run;

 2.3 Macro Variable References 2-15

28

Substitution within a SAS Literal

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

The macro trigger is passed to the macro processor.

"
Today
is

"
Today
is

";
run;

";
run;

&sysday&sysday

proc print data=perm.all;
title

proc print data=perm.all;
title

29

Substitution within a SAS Literal

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

The macro processor searches the symbol table.

"
Today
is

"
Today
is

";
run;

";
run;

&sysday&sysday

proc print data=perm.all;
title

proc print data=perm.all;
title

2-16 Chapter 2 Macro Variables

30

Substitution within a SAS Literal

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

The resolved reference is passed back to the input stack.

"
Today
is

"
Today
is

Tuesday";
run;

Tuesday";
run;

proc print data=perm.all;
title

proc print data=perm.all;
title

31

Substitution within a SAS Literal

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

Word scanning continues.

"
Today
is
Tuesday
"

"
Today
is
Tuesday
"

proc print data=perm.all;
title

proc print data=perm.all;
title

;
run;

;
run;

 2.3 Macro Variable References 2-17

32

Substitution within a SAS Literal

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

The double-quoted string is passed to the compiler as a
unit.

proc print data=perm.all;
title "Today is Tuesday"
proc print data=perm.all;
title "Today is Tuesday"

;
run;

;
run;

33

Substitution within a SAS Literal

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

When a step boundary is encountered, compilation ends and
execution begins.

proc print data=perm.all;
title "Today is Tuesday";
proc print data=perm.all;
title "Today is Tuesday";

run; run;

2-18 Chapter 2 Macro Variables

34

Substitution within a SAS Literal
Example: Substitute system information in footnotes.

footnote1 "Created &systime &sysday, &sysdate9";
footnote2

"on the &sysscp system using Release &sysver";
title "REVENUES FOR DALLAS TRAINING CENTER";
proc tabulate data=perm.all;

where upcase(location)="DALLAS";
class course_title;
var fee;
table course_title=" " all="TOTALS",

fee=" "*(n*f=3. sum*f=dollar10.)
/ rts=30 box="COURSE";

run;

Automatic

35

Substitution within a SAS Literal
REVENUES FOR DALLAS TRAINING CENTER

„ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ…ƒƒƒ…ƒƒƒƒƒƒƒƒƒƒ†
‚COURSE ‚ N ‚ Sum ‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰
‚Artificial Intelligence ‚ 25‚ $10,000‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰
‚Basic Telecommunications ‚ 18‚ $14,310‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰
‚Computer Aided Design ‚ 19‚ $30,400‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰
‚Database Design ‚ 23‚ $8,625‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰
‚Local Area Networks ‚ 24‚ $15,600‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰
‚Structured Query Language ‚ 24‚ $27,600‚
‡ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒˆƒƒƒƒƒƒƒƒƒƒ‰
‚TOTALS ‚133‚ $106,535‚
Šƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ‹ƒƒƒ‹ƒƒƒƒƒƒƒƒƒƒŒ

Created 14:56 Friday, 20AUG2004
on the WIN system using Release 9.1

 2.3 Macro Variable References 2-19

36

Unresolved Reference

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

Example: Reference a non-existent macro variable.

proc print data=perm.exp;
title "Expenses for R&D";
run;

proc print data=perm.exp;
title "Expenses for R&D";
run;

37

Unresolved Reference

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

The macro trigger is passed to the macro processor for
evaluation.

proc print data=perm.exp;
title

proc print data=perm.exp;
title

"
Expenses
for
R

"
Expenses
for
R

";
run;

";
run;

&D&D

2-20 Chapter 2 Macro Variables

38

Unresolved Reference

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

The macro processor writes a warning to the SAS log
when it cannot resolve a reference.

WARNING: Apparent symbolic
reference D not resolved.proc print data=perm.exp;

title
proc print data=perm.exp;
title

"
Expenses
for
R

"
Expenses
for
R

";
run;

";
run;

&D&D

39

Unresolved Reference

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
NULL

Symbol Table

Compiler

Word
Scanner

If the macro processor cannot resolve a reference, it
passes the tokens back to the word scanner and the word
scanner passes them to the compiler.

proc print data=perm.exp;
title "Expenses for R&D"
proc print data=perm.exp;
title "Expenses for R&D"

;
run;

;
run;

 2.3 Macro Variable References 2-21

40

Substitution within SAS Code

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
PERM.ALL

Symbol Table

Compiler

Word
Scanner

Example: Generalize PROC PRINT to print the last created
data set, using the automatic macro variable
SYSLAST.

proc print data=&syslast;
title "Listing of &syslast";
run;

proc print data=&syslast;
title "Listing of &syslast";
run;

41

Substitution within SAS Code

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
PERM.ALL

Symbol Table

Compiler

Word
Scanner

SAS statements are passed to the compiler. When a macro
trigger is encountered, it is passed to the macro processor
for evaluation.

proc print data=proc print data=

;
title "Listing of &syslast";
run;

;
title "Listing of &syslast";
run;

&syslast&syslast

2-22 Chapter 2 Macro Variables

42

Substitution within SAS Code

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
PERM.ALL

Symbol Table

Compiler

Word
Scanner

The macro variable reference triggers the macro processor
to search the symbol table for the reference.

proc print data=proc print data=

;
title "Listing of &syslast";
run;

;
title "Listing of &syslast";
run;

&syslast

43

Substitution within SAS Code

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
PERM.ALL

Symbol Table

Compiler

Word
Scanner

The macro processor resolves the macro variable reference,
passing its resolved value back to the input stack.

proc print data=proc print data=

PERM.ALL;
title "Listing of &syslast";
run;

PERM.ALL;
title "Listing of &syslast";
run;

 2.3 Macro Variable References 2-23

44

Substitution within SAS Code

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
PERM.ALL

Symbol Table

Compiler

Word
Scanner

Word scanning continues.

proc print data=PERM.ALL;proc print data=PERM.ALL;

title "Listing of &syslast";
run;
title "Listing of &syslast";
run;

45

Substitution within SAS Code

Macro Processor

Input
Stack SYSDAY

SYSLAST
Tuesday
PERM.ALL

Symbol Table

Compiler

Word
Scanner

A step boundary is encountered. Compilation ends.
Execution begins.

proc print data=PERM.ALL;
title "Listing of PERM.ALL";
proc print data=PERM.ALL;
title "Listing of PERM.ALL";

run;run;

2-24 Chapter 2 Macro Variables

Exercises

1. Using Automatic Macro Variables

Open the babbit program shown below into the Editor window.
options nocenter;
proc print data=perm.all noobs label uniform;
 where student_name contains ’Babbit’;
 by student_name student_company;
 var course_title begin_date location teacher;
 title ’Courses Taken by Selected Students:’;
 title2 ’Those with Babbit in Their Name’;
run;

Add a FOOTNOTE that displays today’s date (use an automatic macro variable) using this text:
Report Created on date

Submit the program and examine the output it creates.

2. Displaying Automatic Macro Variables

a. Use the %PUT statement to display the values of the SYSDAY, SYSVER, and SYSLAST macro
variables in the SAS log.

b. Use the %PUT statement to display the values of all automatic macro variables in the SAS log.

 2.3 Macro Variable References 2-25

Solutions to Exercises

1. Using Automatic Macro Variables

The automatic macro variable SYSDATE9 contains the date when the current SAS session was
invoked. The footnote text must be enclosed in double quotes for the macro variable reference to be
resolved.
options nocenter;
proc print data=perm.all noobs label uniform;
 where student_name contains 'Babbit';
 by student_name student_company;
 var course_title begin_date location teacher;
 title 'Courses Taken by Selected Students';
 title2 'Those with Babbit in Their Name';
 footnote "Report Created on &sysdate9";
run;

Courses Taken by Selected Students
Those with Babbit in Their Name

Student Name=Babbitt, Mr. Bill Company=National Credit Corp.

 Description Begin Location Instructor

Basic Telecommunications 24MAY2005 Dallas Hallis, Dr. George
Artificial Intelligence 01MAR2005 Dallas Hallis, Dr. George
Computer Aided Design 28MAR2006 Dallas Berthan, Ms. Judy

Report Created on 05FEB2004

2. Displaying Automatic Macro Variables

a. Macro variable references are resolved before the text of the %PUT statement is displayed in the
log.
%put Today is a &sysday;
%put This is Release &sysver of the SAS System;
%put The last data set created is &syslast;

Partial SAS Log
61 %put Today is a &sysday;
Today is a Thursday
62 %put This is Release &sysver of the SAS System;
This is Release 9.1 of the SAS System
63 %put The last data set created is &syslast;
The last data set created is _NULL_

b. The _AUTOMATIC_ argument in the %PUT statement displays the values of all automatic
macro variables in the SAS log. Many of the values shown are dependent on the host system.
%put _automatic_;

2-26 Chapter 2 Macro Variables

Partial SAS Log
AUTOMATIC SYSBUFFR
AUTOMATIC SYSCC 3000
AUTOMATIC SYSCHARWIDTH 1
AUTOMATIC SYSCMD
AUTOMATIC SYSDATE 12FEB04
AUTOMATIC SYSDATE9 12FEB2004
AUTOMATIC SYSDAY Thursday
AUTOMATIC SYSDEVIC
AUTOMATIC SYSDMG 0
AUTOMATIC SYSDSN _NULL_

 2.4 User-Defined Macro Variables 2-27

2.4 User-Defined Macro Variables

48

Objectives
Create user-defined macro variables.
Display values of user-defined macro variables in the
SAS log.

49

The %LET Statement
The %LET statement creates a macro variable and
assigns it a value.

General form of the %LET statement:

variable follows SAS naming conventions.
If variable already exists, its value is overwritten.
If variable or value contain macro triggers, the triggers
are evaluated before the assignment is made.

%LET variable=value;%LET variable=value;

2-28 Chapter 2 Macro Variables

50

The %LET Statement
Value can be any string:

maximum length is 65,534 (64K) characters
minimum length is 0 characters (null value)
numeric tokens are stored as character strings
mathematical expressions are not evaluated
the case of value is preserved
quotes bounding literals are stored as part of value
leading and trailing blanks are removed from value
before the assignment is made.

51

%LET Statement Examples
Determine the value assigned to each macro variable by
these %LET statements.

%let name= Ed Norton ;
%let name2=' Ed Norton ';
%let title="Joan's Report";
%let start=;
%let sum=3+4;
%let total=0;
%let total=&total+∑
%let x=varlist;
%let &x=name age height;

Value

...

 2.4 User-Defined Macro Variables 2-29

52

%LET Statement Examples
The %LET statement truncates leading and trailing
blanks.

%let name= Ed Norton ;
%let name2=' Ed Norton ';
%let title="Joan's Report";
%let start=;
%let sum=3+4;
%let total=0;
%let total=&total+∑
%let x=varlist;
%let &x=name age height;

Value
Ed Norton

...

53

%LET Statement Examples
Quotation marks are stored as part of the value.

Value
Ed Norton
' Ed Norton '

%let name= Ed Norton ;
%let name2=' Ed Norton ';
%let title="Joan's Report";
%let start=;
%let sum=3+4;
%let total=0;
%let total=&total+∑
%let x=varlist;
%let &x=name age height;

...

2-30 Chapter 2 Macro Variables

54

%LET Statement Examples
Quotation marks are stored as part of the value.

Value
Ed Norton
' Ed Norton '
"Joan's Report"

%let name= Ed Norton ;
%let name2=' Ed Norton ';
%let title="Joan's Report";
%let start=;
%let sum=3+4;
%let total=0;
%let total=&total+∑
%let x=varlist;
%let &x=name age height;

...

55

%LET Statement Examples
A null value is stored.

Value
Ed Norton
' Ed Norton '
"Joan's Report"

%let name= Ed Norton ;
%let name2=' Ed Norton ';
%let title="Joan's Report";
%let start=;
%let sum=3+4;
%let total=0;
%let total=&total+∑
%let x=varlist;
%let &x=name age height;

...

 2.4 User-Defined Macro Variables 2-31

56

%LET Statement Examples
Mathematical expressions are not evaluated.

Value
Ed Norton
' Ed Norton '
"Joan's Report"

3+4

%let name= Ed Norton ;
%let name2=' Ed Norton ';
%let title="Joan's Report";
%let start=;
%let sum=3+4;
%let total=0;
%let total=&total+∑
%let x=varlist;
%let &x=name age height;

...

57

%LET Statement Examples
Numeric tokens are stored as character strings.

Value
Ed Norton
' Ed Norton '
"Joan's Report"

3+4
0

%let name= Ed Norton ;
%let name2=' Ed Norton ';
%let title="Joan's Report";
%let start=;
%let sum=3+4;
%let total=0;
%let total=&total+∑
%let x=varlist;
%let &x=name age height;

...

2-32 Chapter 2 Macro Variables

58

%LET Statement Examples
The macro trigger is evaluated before assignment is
made. The previous value of total is replaced.

Value
Ed Norton
' Ed Norton '
"Joan's Report"

3+4

0+3+4

%let name= Ed Norton ;
%let name2=' Ed Norton ';
%let title="Joan's Report";
%let start=;
%let sum=3+4;
%let total=0;
%let total=&total+∑
%let x=varlist;
%let &x=name age height;

...

59

%LET Statement Examples

Value
Ed Norton
' Ed Norton '
"Joan's Report"

3+4

0+3+4
varlist

%let name= Ed Norton ;
%let name2=' Ed Norton ';
%let title="Joan's Report";
%let start=;
%let sum=3+4;
%let total=0;
%let total=&total+∑
%let x=varlist;
%let &x=name age height;

...

 2.4 User-Defined Macro Variables 2-33

60

%LET Statement Examples

Value
Ed Norton
' Ed Norton '
"Joan's Report"

3+4

0+3+4
varlist
name age height

%let name= Ed Norton ;
%let name2=' Ed Norton ';
%let title="Joan's Report";
%let start=;
%let sum=3+4;
%let total=0;
%let total=&total+∑
%let x=varlist;
%let &x=name age height;

macvarname=varlist

...

The macro variable's name resolves to varlist.

61

%LET Statement Examples
Example: Assign the value DALLAS to the macro

variable SITE. Reference the macro variable
within the program.

%let site=DALLAS;
title "REVENUES FOR &site TRAINING CENTER";
proc tabulate data=perm.all(keep=location

course_title fee);
where upcase(location)="&site";
class course_title;
var fee;
table course_title=’ ’ all=’TOTALS’,

fee=’ ’*(n*f=3. sum*f=dollar10.)
/ rts=30 box=’COURSE’;

run;
LET1

2-34 Chapter 2 Macro Variables

62

%LET Statement Examples
PROC TABULATE Output

63

%LET Statement Examples
Example: Create three macro variables.

CITY Dallas
DATE 05JAN2004
AMOUNT 975

Global Symbol Table

Macro variables store numbers as character strings, not
as numeric values.

%let city=Dallas;
%let date=05JAN2004;
%let amount=975;

 2.4 User-Defined Macro Variables 2-35

64

Displaying Macro Variables
Example: Display all user-defined macro variables in the

SAS log.

Partial SAS Log

Example: Display all user-defined and automatic macro
variables in the SAS log.

4 %put _user_;
GLOBAL DATE 05JAN2004
GLOBAL AMOUNT 975
GLOBAL CITY Dallas

%put _user_;

%put _all_;

65

Displaying Macro Variables
The SYMBOLGEN system option writes macro variable
values to the SAS log as they are resolved.
General form of the SYMBOLGEN system option:

The default option is NOSYMBOLGEN.

OPTIONS SYMBOLGEN;OPTIONS SYMBOLGEN;

2-36 Chapter 2 Macro Variables

66

Displaying Macro Variables

Partial SAS Log

Why is no message displayed for the final example?

OPTIONS SYMBOLGEN;
where fee>&amount;
SYMBOLGEN: Macro variable AMOUNT resolves to 975
where city_state contains "&city";
SYMBOLGEN: Macro variable CITY resolves to Dallas
where city_state contains '&city';

CITY Dallas
DATE 05JAN2004
AMOUNT 975

Global Symbol Table

67

Deleting User-Defined Macro Variables
The %SYMDEL statement deletes one or more user-
defined macro variables from the global symbol table.

Because symbol tables are stored in memory, delete
macro variables when they are no longer needed.

General form of the %SYMDEL statement:

Example: Delete the macro variables CITY and DATE.

%SYMDEL macro-variables;%SYMDEL macro-variables;

%symdel city date;

 2.4 User-Defined Macro Variables 2-37

68

Developing Macro-Based Applications
If a macro-based application generates SAS code, use a
four-step approach.
Step 1:

Write and debug the desired SAS program without any
macro coding.

Step 2:
Generalize the program by removing hardcoded
programming constants and substituting macro variable
references.
Initialize the macro variables with %LET statements.
Use the SYMBOLGEN system option for debugging.

Steps 3-4 will be presented later.

2-38 Chapter 2 Macro Variables

Exercises

3. Defining and Using Macro Variables

a. Open the babbit program shown below into the Editor window. Submit the program and
examine the output it creates.
options nocenter;
proc print data=perm.all noobs label uniform;
 where student_name contains ’Babbit’;
 by student_name student_company;
 var course_title begin_date location teacher;
 title ’Courses Taken by Selected Students:’;
 title2 ’Those with Babbit in Their Name’;
run;

b. Edit the program to change the search pattern in the WHERE statement and TITLE2 statement
from Babbit to Ba and resubmit. Examine the output.

c. Modify the program so that the two occurrences of Ba are replaced by references to the macro
variable PATTERN. Precede the program with a %LET statement to assign the value Ba to
PATTERN. Submit the program. It produces the same output as before.

d. Submit a %PUT statement to display the value of all user-defined macro variables including
PATTERN.

 2.4 User-Defined Macro Variables 2-39

Solutions to Exercises

3. Defining and Using Macro Variables

a. Bill Babbitt is the only student whose name contains the text string Babbit.
options nocenter;
proc print data=perm.all noobs label uniform;
 where student_name contains 'Babbit';
 by student_name student_company;
 var course_title begin_date location teacher;
 title 'Courses Taken by Selected Students';
 title2 'Those with Babbit in Their Name';
run;

Courses Taken by Selected Students
Those with Babbit in Their Name

- Student Name=Babbitt, Mr. Bill Company=National Credit Corp. -

 Description Begin Location Instructor

 Basic Telecommunications 24MAY2005 Dallas Hallis, Dr. George
 Artificial Intelligence 01MAR2005 Dallas Hallis, Dr. George
 Computer Aided Design 28MAR2006 Dallas Berthan, Ms. Judy

2-40 Chapter 2 Macro Variables

b. There are four students whose name contains the text string Ba: Bill Babbit, Vincent Baker, Ellen
Bates, and Barbara Turner.
options nocenter;
proc print data=perm.all noobs label uniform;
 where student_name contains 'Ba';
 by student_name student_company;
 var course_title begin_date location teacher;
 title 'Courses Taken by Selected Students';
 title2 'Those with Ba in Their Name';
run;

Partial Output
Courses Taken by Selected Students
Those with Ba in Their Name

- Student Name=Babbitt, Mr. Bill Company=National Credit Corp. -

Description Begin Location Instructor

Basic Telecommunications 24MAY2005 Dallas Hallis, Dr. George
Artificial Intelligence 01MAR2005 Dallas Hallis, Dr. George
Computer Aided Design 28MAR2006 Dallas Berthan, Ms. Judy

-- Student Name=Baker, Mr. Vincent Company=Snowing Petroleum ---

Description Begin Location Instructor

Structured Query Language 14JUN2005 Boston Wickam, Dr. Alice

----- Student Name=Bates, Ms. Ellen Company=Reston Railway -----

Description Begin Location Instructor

Basic Telecommunications 24MAY2005 Dallas Hallis, Dr. George
Database Design 25JAN2005 Seattle Tally, Ms. Julia
Computer Aided Design 28MAR2006 Dallas Berthan, Ms. Judy

Student Name=Turner, Ms. Barbara Company=Gravely Finance Center

Description Begin Location Instructor

Structured Query Language 06DEC2005 Seattle Wickam, Dr. Alice
Computer Aided Design 28MAR2006 Dallas Berthan, Ms. Judy

 2.4 User-Defined Macro Variables 2-41

c. The macro variable PATTERN should contain the text string Ba without any surrounding quotes.
To resolve the macro variable in the WHERE and TITLE2 statement, change the single quotes to
double quotes.
%let pattern=Ba;
options nocenter;
proc print data=perm.all noobs label uniform;
 where student_name contains "&pattern";
 by student_name student_company;
 var course_title begin_date location teacher;
 title 'Courses Taken by Selected Students';
 title2 "Those with &pattern in Their Name";
run;

d. A %PUT statement can verify that the macro variable PATTERN contains the text string Ba. The
USER argument displays the values of all user-defined macro variables:
%put _user_;

Partial SAS Log
108 %put _user_;
GLOBAL PATTERN Ba

2-42 Chapter 2 Macro Variables

2.5 Delimiting Macro Variable Names

71

Objectives
Place a macro variable reference adjacent to text or
another macro variable reference.

72

Referencing Macro Variables
You can reference macro variables anywhere in your
program, including these special situations:
Macro variable references adjacent to leading and/or
trailing text:

text&variable
&variabletext
text&variabletext

Adjacent macro variable references:
&variable&variable

 2.5 Delimiting Macro Variable Names 2-43

73

Combining Macro Variables with Text
You can place text immediately before a macro variable
reference to build a new token.

Example: Data sets are stored in a SAS data library with
a naming convention of Yyyyymon.
yyyy can be 2000 2001 2002 and so on.
mon can be JAN FEB MAR and so on.

Write an application that uses macro variables to build
SAS data set names and other tokens.

74

Combining Macro Variables with Text
%let month=jan;
proc chart data=perm.y2000&month;

hbar week / sumvar=sale;
run;
proc plot data=perm.y2000&month;

plot sale*day;
run;

generates

PROC CHART DATA=PERM.Y2000JAN;
HBAR WEEK / SUMVAR=SALE;

RUN;
PROC PLOT DATA=PERM.Y2000JAN;

PLOT SALE*DAY;
RUN;

2-44 Chapter 2 Macro Variables

75

Combining Macro Variables with Text
This example illustrates adjacent macro variables
references.

Example: Modify the previous program to allow
both the month and the year to be
substituted.

%let year=2000;
%let month=jan;
proc chart data=perm.y&year&month;

hbar week / sumvar=sale;
run;
proc plot data=perm.y&year&month;

plot sale*day;
run;

76

Combining Macro Variables with Text
The generated program is identical to the program in the
previous example.

PROC CHART DATA=PERM.Y2000JAN;
HBAR WEEK / SUMVAR=SALE;

RUN;
PROC PLOT DATA=PERM.Y2000JAN;

PLOT SALE*DAY;
RUN;

 2.5 Delimiting Macro Variable Names 2-45

77

You can place text immediately after a macro variable
reference if it does not change the reference.

Example: Modify the previous program to
substitute the name of an analysis
variable.

Combining Macro Variables with Text

%let year=2000;
%let month=jan;
%let var=sale;
proc chart data=perm.y&year&month;

hbar week / sumvar=&var;
run;
proc plot data=perm.y&year&month;

plot &var*day;
run;

78

Combining Macro Variables with Text
The generated program is identical to the program in the
previous example.

PROC CHART DATA=PERM.Y2000JAN;
HBAR WEEK / SUMVAR=SALE;
RUN;
PROC PLOT DATA=PERM.Y2000JAN;
PLOT SALE*DAY;
RUN;

2-46 Chapter 2 Macro Variables

79

Combining Macro Variables with Text
Example: Modify the previous program to allow a base

SAS or SAS/GRAPH procedure.

What is wrong with this program?

/* GRAPHICS should be null or G */
%let graphics=g;
%let year=2000;
%let month=jan;
%let var=sale;
proc &graphicschart data=perm.y&year&month;

hbar week / sumvar=&var;
run;
proc &graphicsplot data=perm.y&year&month;

plot &var*day;
run;

80

SAS interprets the macro variable’s name as
GRAPHICSCHART because no delimiter separates the
macro variable reference from the trailing text.

Partial Log

Combining Macro Variables with Text

1 %let graphics=g;
2 %let year=2000;
3 %let month=jan;
4 %let var=sale;
5 proc &graphicschart data=perm.y&year&month;

-
10

WARNING: Apparent symbolic reference GRAPHICSCHART not resolved.

ERROR 10-205: Expecting the name of the procedure to be executed.

 2.5 Delimiting Macro Variable Names 2-47

81

Macro Variable Name Delimiter
The word scanner recognizes the end of a macro variable
reference when it encounters a character that cannot be
part of the reference.
A period (.) is a special delimiter that ends a macro
variable reference and does not appear as text when the
macro variable is resolved.

82

Macro Variable Name Delimiter
Example: Correct the problem from the previous

example.

%let graphics=g;
%let year=2000;
%let month=jan;
%let var=sale;
proc &graphics.chart data=perm.y&year&month;

hbar week / sumvar=&var;
run;
proc &graphics.plot data=perm.y&year&month;

plot &var*day;
run;

2-48 Chapter 2 Macro Variables

83

Macro Variable Name Delimiter
The generated code does not include the period.

PROC GCHART DATA=PERM.Y2000JAN;
HBAR WEEK / SUMVAR=SALE;

RUN;
PROC GPLOT DATA=PERM.Y2000JAN;

PLOT SALE*DAY;
RUN;

84

Macro Variable Name Delimiter
Example: Modify the previous example to include a

macro variable that defines a libref.
%let lib=perm;
%let graphics=g;
%let year=2000;
%let month=jan;
%let var=sale;
libname &lib ’SAS-data-library’;
proc &graphics.chart data=&lib.y&year&month;

hbar week / sumvar=&var;
run;
proc &graphics.plot data=&lib.y&year&month;

plot &var*day;
run;

What is the problem this time?

 2.5 Delimiting Macro Variable Names 2-49

85

Macro Variable Name Delimiter
The program

generates

%let lib=perm;
...
libname &lib 'SAS-data-library';
proc &graphics.chart data=&lib.y&year&month;
...

LIBNAME PERM 'SAS-data-library';
PROC GCHART DATA=PERMY2000JAN;

HBAR WEEK / SUMVAR=SALE;
RUN;
PROC GPLOT DATA=PERMY2000JAN;

PLOT SALE*DAY;
RUN;

The period after &lib is interpreted as a delimiter.

86

Macro Variable Name Delimiter
Use another period after the delimiter period to supply the
needed token.

%let lib=perm;
...
libname &lib 'SAS-data-library';
proc &graphics.chart data=&lib..y&year&month;
...
proc &graphics.plot data=&lib..y&year&month;

2-50 Chapter 2 Macro Variables

87

Macro Variable Name Delimiter

The first period is treated as a delimiter, the second as
text.
The compiler receives

proc &graphics.chart data=&lib..y&year&month;

delimiter text

...
PROC GCHART DATA=PERM.Y2000JAN;
...

 2.5 Delimiting Macro Variable Names 2-51

Exercises

4. Macro Variable References

a. Open the program countloc shown below into the Editor window.

title;
proc sql;
 select location,n(location) label='Count'
 from perm.schedule,perm.register
 where schedule.course_number=
 register.course_number
 group by location;
quit;

Submit the program. The SELECT statement creates a listing from two SAS data sets (tables) that
are merged (joined) by the common variable course_number. The GROUP BY clause
reduces the listing to distinct values of location. The N function counts the number of
observations that are within distinct values of the GROUP BY variable.

b. Modify the program so that it contains references to these macro variables:

TABLE1 second-level name of one input data set

TABLE2 second-level name of the other input data set

JOINVAR name of variable common to both input data sets

FREQVAR name of the GROUP BY variable.

Precede the program with %LET statements that initialize these macro variables to the values
currently in the program. Submit the program and compare the listing with the one created earlier.
They are identical.

c. Edit the program to change the values of the macro variables to create a listing from the
perm.students and perm.register data sets that shows the distribution of the
city_state variable. The two data sets share the student_name variable.

2-52 Chapter 2 Macro Variables

Solutions to Exercises

4. Macro Variable References

a. The original program produces this output:

SAS Output
Location Count
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
Boston 150
Dallas 133
Seattle 151

b. The references to the input data set names in the WHERE clause are followed by two periods, the
first acting as the macro variable name delimiter and the second received by the compiler as part
of the two-level column name.
%let table1=schedule;
%let table2=register;
%let joinvar=course_number;
%let freqvar=location;
title;
proc sql;
 select &freqvar,n(&freqvar) label=’Count’
 from perm.&table1,perm.&table2
 where &table1..&joinvar=&table2..&joinvar
 group by &freqvar;
quit;

SAS Output
Location Count
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
Boston 150
Dallas 133
Seattle 151

 2.5 Delimiting Macro Variable Names 2-53

c. The only changes required are new values assigned to the macro variables in the %LET
statements.
%let table1=register;
%let table2=students;
%let joinvar=student_name;
%let freqvar=city_state;
title;
proc sql;
 select &freqvar,n(&freqvar) label=’Count’
 from perm.&table1,perm.&table2
 where &table1..&joinvar=&table2..&joinvar
 group by &freqvar;
quit;

Partial Output
City,State Count
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
Akron, OH 5
Albany, NY 2
Allentown, PA 3
Annapolis, MD 7
Atlanta, GA 7
Austin, TX 3
Bethesda, MD 1
Birmingham, AL 2
Bozeman, MT 10
Brea, CA 2
Buena Park, CA 1
Chicago, IL 71
Chicago, IN 2
Cincinati, OH 1
Cleveland, OH 3
Columbia, MD 4
Columbus, OH 8
Costa Mesa, CA 9
Cupertino, CA 2
Dallas, TX 8

2-54 Chapter 2 Macro Variables

2.6 Macro Functions

90

Objectives
Use macro functions to

manipulate character strings
perform arithmetic
execute SAS functions.

91

Macro Functions
Macro functions

have similar syntax as corresponding DATA step
character functions
yield similar results
manipulate macro variables and expressions
represent macro triggers
are executed by the macro processor.

 2.6 Macro Functions 2-55

92

Macro Functions
Selected character string manipulation functions:
%UPCASE translates letters from lowercase to uppercase.
%SUBSTR extracts a substring from a character string.
%SCAN extracts a word from a character string.
%INDEX searches a character string for specified text.
%LENGTH returns the length of a character string or text

expression.

Other functions:
%SYSFUNC executes SAS functions.
%EVAL performs arithmetic and logical operations.
%BQUOTE protects blanks and other special characters.

93

Case Sensitivity
Character comparisons are case sensitive.

Example: Create a summary of total fees outstanding for
each course.

%let paidval=n;
proc means data=perm.all sum maxdec=0;

where paid="&paidval";
var fee;
class course_title;

title "Courses with fee status=&paidval";
run;

UPCASE1

2-56 Chapter 2 Macro Variables

94

Case Sensitivity
Partial Log

Because the value of the macro variable PAIDVAL was
specified in lowercase, the WHERE expression finds no
matching observations. All the values of the data set
variable PAID are uppercase.

539 %let paidval=n;
540 proc means data=perm.all sum maxdec=0;
541 where paid="&paidval";
542 var fee;
543 class course_title;
544 title "Courses with fee status=&paidval";
545 run;

NOTE: No observations were selected from data set PERM.ALL.

95

The %UPCASE Function
The %UPCASE function translates characters to
uppercase.

General form of the %UPCASE function:

%UPCASE(argument)%UPCASE(argument)

argument can be any combination of text and macro
triggers.

 2.6 Macro Functions 2-57

96

The %UPCASE Function
Example: For each course, create a summary of total

fees outstanding and account for case.

%let paidval=n;
proc means data=perm.all sum maxdec=0;

where paid="%upcase(&paidval)";
var fee;
class course_title;

title "Courses with fee status=&paidval";
run;

UPCASE2

97

The %UPCASE Function
Courses with fee status=n

The MEANS Procedure

Analysis Variable : Fee Course Fee

Description N Obs Sum
ƒƒƒ
Artificial Intelligence 24 9600

Basic Telecommunications 14 11130

Computer Aided Design 13 20800

Database Design 17 6375

Local Area Networks 19 12350

Structured Query Language 20 23000
ƒƒƒ

2-58 Chapter 2 Macro Variables

98

The %SUBSTR Function
General form of the %SUBSTR function:

The %SUBSTR function
returns the portion of argument beginning at position
for a length of n characters
returns the portion of argument beginning at position
to the end of argument when an n value is not
supplied.

continued...

%SUBSTR(argument, position <,n>)%SUBSTR(argument, position <,n>)

99

The %SUBSTR Function
General form of the %SUBSTR function:

You can specify argument, position, and n values using
constant text
macro variable references
macro functions
macro calls.

It is not necessary to place argument in quotes because it
is always handled as a character string by the %SUBSTR
function.

%SUBSTR(argument, position <,n>)%SUBSTR(argument, position <,n>)

 The values of position and n can also be the result of an arithmetic expression that yields an
integer. For example,
%substr(&var,%length(&var)-1)

returns the last two characters of the value of the macro variable VAR.

 2.6 Macro Functions 2-59

100

The %SUBSTR Function
Example: Print courses with a BEGIN_DATE between

the current date and the first day of the current
month. Use the %SUBSTR function and
SYSDATE9 macro variable to construct the
appropriate dates.

proc print data=perm.schedule;
where begin_date between

"01%substr(&sysdate9,3)"d and
"&sysdate9"d;

title "All Courses Held So Far This Month";
title2 "(as of &sysdate9)";

run;
SUBSTR1

101

The %SUBSTR Function

%substr(30OCT2004,3)

"01%substr(&sysdate9,3)"d

text macro triggers text

OCT2004

&sysdate9 resolves:

%substr executes:

"01OCT2004"dfinal substitution:

2-60 Chapter 2 Macro Variables

102

The %SUBSTR Function

 2.6 Macro Functions 2-61

103

The %SCAN Function
General form of the %SCAN function:

The %SCAN function
returns the nth word of argument, where words are
strings of characters separated by delimiters
uses a default set of delimiters if none are specified
returns a null string if there are fewer than n words in
argument.

%SCAN(argument, n < , delimiters>)%SCAN(argument, n < , delimiters>)

104

The %SCAN Function
General form of the %SCAN function:

You can specify values for argument, n, and delimiters using
constant text
macro variable references
macro functions
macro calls.

The value of n can also be an arithmetic expression that
yields an integer.

%SCAN(argument, n < , delimiters>)%SCAN(argument, n < , delimiters>)

 Default delimiters for the %SCAN function include blank . (& ! $ *) ; - / , %

It is not necessary to place argument and delimiters in quotes because they are always handled as
character strings by the %SCAN function.

2-62 Chapter 2 Macro Variables

 105

Example: Use PROC DATASETS to investigate the
structure of the last data set created.

The %SCAN Function

data work.current;
set perm.schedule;
where year(begin_date) =

year("&sysdate9"d);
run;

%let libref=%scan(&syslast,1);
%let dsname=%scan(&syslast,2,.);
proc datasets lib=&libref nolist;
title "Contents of Data Set &syslast";

contents data=&dsname;
run;
quit;

SCAN1

106

The %SCAN Function
%let libref=%scan(&syslast,1);

%let libref=%scan(work.current,1);
&syslast
resolves:

%let libref=work;
%scan
executes:

 2.6 Macro Functions 2-63

107

Partial Output
The %SCAN Function

Contents of Data Set WORK.CURRENT

The DATASETS Procedure

Data Set Name WORK.CURRENT Observations 0
Member Type DATA Variables 5
Engine V9 Indexes 0
Created Thu, Feb 05, 2004 02:04:21 PM Observation Length 56
Last Modified Thu, Feb 05, 2004 02:04:21 PM Deleted Observations 0
Protection Compressed NO
Data Set Type Sorted NO
Label
Data Representation WINDOWS_32
Encoding wlatin1 Western (Windows)

Engine/Host Dependent Information

Data Set Page Size 8192
Number of Data Set Pages 1
First Data Page 1
Max Obs per Page 145
Obs in First Data Page 0
Number of Data Set Repairs 0
File Name C:\temp\SAS Temporary

Files_TD2140\CURRENT.sas7bdat
Release Created 9.0101M0
Host Created WIN_PRO

108

The %BQUOTE Function
The %BQUOTE function removes the normal meaning of
special tokens that appear as constant text.

Special tokens include: + - * / , < > =
LT EQ GT AND OR NOT LE GE NE

General form of the %BQUOTE function:

argument can be any combination of text and macro
triggers.

%BQUOTE(argument)%BQUOTE(argument)

The %BQUOTE function is one of several macro quoting functions designed for specialized purposes.

2-64 Chapter 2 Macro Variables

109

The %BQUOTE Function
The %BQUOTE function

protects (quotes) tokens so that the macro processor
does not interpret them as macro-level syntax
enables macro triggers to work normally
preserves leading and trailing blanks in its argument.

110

The %BQUOTE Function
Example: Protect a special character and preserve

leading blanks in macro expressions.

Partial SAS Log
140 %let text=%bquote(Joan's Report);
141 %put %bquote(&text is the value.);

Joan's Report is the value.

%let text=%bquote(Joan's Report);
%put %bquote(&text is the value.);

 2.6 Macro Functions 2-65

111

The %EVAL Function
General form of the %EVAL function:

The %EVAL function
performs arithmetic and logical operations
truncates non-integer results
returns a character result
returns 1 (true) or 0 (false) for logical operations
returns a null value and issues an error message
when non-integer values are used in arithmetic
operations.

%EVAL(expression)%EVAL(expression)

112

The %EVAL Function
Example: Use the %EVAL function to compute the final

year of a range.

%let firstyr=2004;
%let numyears=2;
%let finalyr=%eval(&firstyr+&numyears-1);
proc print data=perm.schedule;

where year(begin_date) between
&firstyr and &finalyr;

title "All Courses Scheduled";
title2 "&firstyr through &finalyr";

run;
EVAL1

2-66 Chapter 2 Macro Variables

113

The %EVAL Function
Example: Use the %EVAL function to compute the final

year of a range.
All Courses Scheduled
2004 through 2005

Course_ Course_ Begin_
Obs Number Code Location Date Teacher

1 1 C001 Seattle 26OCT2004 Hallis, Dr. George
2 2 C002 Dallas 07DEC2004 Wickam, Dr. Alice
3 3 C003 Boston 11JAN2005 Forest, Mr. Peter
4 4 C004 Seattle 25JAN2005 Tally, Ms. Julia
5 5 C005 Dallas 01MAR2005 Hallis, Dr. George
6 6 C006 Boston 05APR2005 Berthan, Ms. Judy
7 7 C001 Dallas 24MAY2005 Hallis, Dr. George
8 8 C002 Boston 14JUN2005 Wickam, Dr. Alice
9 9 C003 Seattle 19JUL2005 Forest, Mr. Peter

10 10 C004 Dallas 16AUG2005 Tally, Ms. Julia
11 11 C005 Boston 20SEP2005 Tally, Ms. Julia
12 12 C006 Seattle 04OCT2005 Berthan, Ms. Judy
13 13 C001 Boston 15NOV2005 Hallis, Dr. George
14 14 C002 Seattle 06DEC2005 Wickam, Dr. Alice

 2.6 Macro Functions 2-67

114

The %SYSFUNC Function
The %SYSFUNC macro function executes SAS functions.

General form of the %SYSFUNC function:

SAS function(argument(s)) is the name of a SAS
function and its corresponding arguments.
The second argument is an optional format for the
value returned by the first argument.

%SYSFUNC(SAS function(argument(s)) <,format>)%SYSFUNC(SAS function(argument(s)) <,format>)

115

The %SYSFUNC Function
The automatic macro variables SYSDATE9 and
SYSTIME can be used in titles:

generates

title "Report Produced on &sysdate9";
title2 "at &systime";

SYSDATE9 and SYSTIME represent the date and
time the SAS session started.

Report Produced on 11JUN2004
at 09:21

2-68 Chapter 2 Macro Variables

116

The %SYSFUNC Function
Example: Generate titles containing the current date and

time. Format the date and time with the
WEEKDATE. and TIME8. formats, respectively.

generates

title "%sysfunc(today(),weekdate.)";
title2 "%sysfunc(time(),time8.)";

Tuesday, August 24, 2004
13:06:08

117

The %SYSFUNC Function

%let thisyr=%sysfunc(today(),year4.);
%let lastyr=%eval(&thisyr-1);
proc print data=perm.schedule;

where year(begin_date) between &lastyr and &thisyr;
title1 "Courses Scheduled &lastyr and &thisyr";
title2 "(as of &sysdate9)";

run;
SYSFUNC1

Example: Compute the first year of a range based on
the current date using the TODAY function.

 2.6 Macro Functions 2-69

118

The %SYSFUNC Function

Courses Scheduled 2003 and 2004
(as of 02AUG2004)

Course_ Course_ Begin_
Obs Number Code Location Date Teacher

1 1 C001 Seattle 26OCT2004 Hallis, Dr. George
2 2 C002 Dallas 07DEC2004 Wickam, Dr. Alice

SAS Output

2-70 Chapter 2 Macro Variables

119

The %SYSFUNC Function
Most SAS functions can be used with %SYSFUNC.
Exceptions include:

Array processing (DIM, HBOUND, LBOUND)
Variable information (VNAME, VLABEL, MISSING)
Macro interface (RESOLVE, SYMGET)
Data conversion (INPUT, PUT)
Other functions (IORC, MSG, LAG, DIF).

INPUTC and INPUTN can be used in place of INPUT.
PUTC and PUTN can be used in place of PUT.

 Variable Information functions include functions such as VNAME and VLABEL. For a complete
list, see “Functions and CALL Routines” in the SAS® Language Reference: Dictionary.

 Because %SYSFUNC is a macro function, you do not need to enclose character values in
quotation marks as you do in DATA step functions. Use commas to separate all arguments in
DATA step functions within %SYSFUNC. You cannot use argument lists preceded by the word
OF.

 2.6 Macro Functions 2-71

Exercises

5. Using Macro Functions

a. Submit this program to create the work.sorted data set:

proc sort data=perm.schedule out=work.sorted;
 by course_number begin_date;
run;

b. Open the program dictcols shown below into the Editor window and submit it. This program
uses a PROC SQL dictionary table to display the variables in a specified data set.

title "Variables in PERM.SCHEDULE";
proc sql;
 select name, type, length
 from dictionary.columns
 where libname="PERM" and
 memname="SCHEDULE";
quit;

c. Add a %LET statement to assign the value perm.schedule to a macro variable named DSN.
Use the new macro variable in the TITLE statement. Use one or more macro functions to separate
the value of DSN into the library reference and the data set name for substitution into the
WHERE clause. Submit the modified program. You should get the same report.

d. Change the %LET statement to assign the value perm.courses to the DSN macro variable.
Submit the modified program to see the new report.

e. Change the %LET statement to assign the value of the automatic macro variable SYSLAST to the
DSN macro variable. Submit the modified program to see the new report.

2-72 Chapter 2 Macro Variables

Solutions to Exercises

5. Using Macro Functions

a. Submit this program to create the work.sorted data set:

proc sort data=perm.schedule out=work.sorted;
 by course_number begin_date;
run;

b. Open the dictcols program shown below into the Editor window and submit it. This program
uses a PROC SQL dictionary table to display the variables in a specified data set.

title "Variables in PERM.SCHEDULE";
proc sql;
 select name, type, length
 from dictionary.columns
 where libname="PERM" and
 memname="SCHEDULE";
quit;

c. The %SCAN function can divide the value of the macro variable DSN into parts. The default
delimiter set will work for this example; however, the single applicable delimiter, the period (.),
can be specified as the third argument to %SCAN.

The %UPCASE function may be required, because the values of LIBNAME and MEMNAME in the
DICTIONARY.COLUMNS table are in uppercase.
%let dsn=perm.schedule;
%let libref=%upcase(%scan(&dsn,1,.));
%let dsname=%upcase(%scan(&dsn,2,.));
title "Variables in %upcase(&dsn)";
proc sql;
 select name, type, length
 from dictionary.columns
 where libname="&libref" and
 memname="&dsname";
quit;

SAS Output
Variables in PERM.SCHEDULE

 Column Column
Column Name Type Length
ƒƒ
Course_Number num 8
Course_Code char 4
Location char 15
Begin_Date num 8
Teacher char 20

 2.6 Macro Functions 2-73

Alternate Solution
%let dsn=perm.schedule;
title "Variables in %upcase(&dsn)";
proc sql;
 select name, type, length
 from dictionary.columns
 where libname="%upcase(%scan(&dsn,1,.))" and
 memname="%upcase(%scan(&dsn,2,.))";
quit;

SAS Output
Variables in PERM.SCHEDULE

 Column Column
Column Name Type Length
ƒƒ
Course_Number num 8
Course_Code char 4
Location char 15
Begin_Date num 8
Teacher char 20

d. Changing the value of the macro variable DSN automatically changes which data set is analyzed.
%let dsn=perm.courses;
%let libref=%upcase(%scan(&dsn,1,.));
%let dsname=%upcase(%scan(&dsn,2,.));
title "Variables in %upcase(&dsn)";
proc sql;
 select name, type, length
 from dictionary.columns
 where libname="&libref" and
 memname="&dsname";
quit;

SAS Output
Variables in PERM.COURSES

 Column Column
 Column Name Type Length
 ƒƒ
 Course_Code char 4
 Course_Title char 25
 Days num 8
 Fee num 8

2-74 Chapter 2 Macro Variables

e. The value of the macro variable SYSLAST is assigned as the value of the macro variable DSN,
so the work.sorted data set is analyzed.
%let dsn=&syslast;
%let libref=%upcase(%scan(&dsn,1,.));
%let dsname=%upcase(%scan(&dsn,2,.));
title "Variables in %upcase(&dsn)";
proc sql;
 select name, type, length
 from dictionary.columns
 where libname="&libref" and
 memname="&dsname";
quit;

SAS Output

Variables in WORK.SORTED

 Column Column
Column Name Type Length
ƒƒ
Course_Number num 8
Course_Code char 4
Location char 15
Begin_Date num 8
Teacher char 20

Chapter 3 Macro Definitions

3.1 Defining and Calling a Macro ..3-3

3.2 Macro Parameters ..3-21

3-2 Chapter 3 Macro Definitions

 3.1 Defining and Calling a Macro 3-3

3.1 Defining and Calling a Macro

3

Objectives
Define and call a simple macro.
Control macro storage.

4

Defining a Macro
A macro or macro definition enables you to write macro
programs.
General form of a macro definition:

macro-name follows SAS naming conventions
macro-text can include

any text
SAS statements or steps
macro variables, functions, statements, or calls
any combination of the above.

%MACRO macro-name;
macro-text

%MEND <macro-name>;

%MACRO macro-name;
macro-text

%MEND <macro-name>;

3-4 Chapter 3 Macro Definitions

5

Macro Compilation
When a macro definition is submitted,

macro language statements are
– checked for syntax errors
– compiled

SAS statements and other text are not
– checked for syntax errors
– compiled

the macro is stored as an entry in a SAS catalog, the
temporary catalog work.sasmacr by default.

 Do not name a macro with the name of a macro statement or function (LET or SCAN, for
example). Refer to the documentation for a complete list of reserved names.

6

Macro Compilation
The MCOMPILENOTE=ALL option issues a note to the
SAS log after a macro definition has compiled.

General form of the MCOMPILENOTE= option:

The default setting is MCOMPILENOTE=NONE.

The MCOMPILENOTE= option is new in SAS®9.

OPTIONS MCOMPILENOTE=ALL | NONE;OPTIONS MCOMPILENOTE=ALL | NONE;

 3.1 Defining and Calling a Macro 3-5

7

Macro Compilation
Example: Submit a macro definition.

Partial SAS Log

options mcompilenote=all;
%macro time;

%put The current time is %sysfunc
(time(),time11.2).;

%mend time;

NOTE: The macro TIME completed compilation without errors.
3 instructions 76 bytes.

MACRO1

8

Macro Storage
Example: Produce a list of compiled macros stored in the

default temporary catalog work.sasmacr.

proc catalog cat=work.sasmacr;
contents;
title "My Temporary Macros";

quit;

My Temporary Macros

Contents of Catalog WORK.SASMACR

Name Type Create Date Modified Date Description
--
1 TIME MACRO 11JUN2004:15:55:59 11JUN2004:15:55:59

PROC CATALOG Output

3-6 Chapter 3 Macro Definitions

9

Calling a Macro
A macro call

causes the macro to execute
is specified by placing a percent sign before the name
of the macro
can be made anywhere in a program (similar to a
macro variable reference)
represents a macro trigger
is not a statement (no semicolon required).

General form of a macro call:

%macro-name%macro-name

 Placing a semicolon after a macro call may insert an inappropriate semicolon into the resulting
program, leading to errors during compilation or execution.

10

Calling a Macro
Example: Call the TIME macro.

Partial SAS Log

%time

204 %time
The current time is 15:55:59.05.

 3.1 Defining and Calling a Macro 3-7

11

Program Flow
When the macro processor receives %macro-name, it

1. searches the designated SAS catalog
(WORK.SASMACR by default) for an entry named
macro-name.MACRO

2. executes compiled macro language statements
3. sends any remaining text to the input stack for word

scanning
4. pauses while the word scanner tokenizes the

inserted text and SAS code executes
5. resumes execution of macro language statements

after the SAS code executes.

12

Example
A macro can generate SAS code.

Example: Write a macro that generates a PROC PRINT
step. Reference macro variables within the macro.

%macro printdsn;
proc print data=&dsn;

var &vars;
run;

%mend;

This macro contains no macro language statements.

MACRO2

3-8 Chapter 3 Macro Definitions

13

Example
Example: Call the PRINTDSN macro. Precede the call

with %LET statements that populate macro
variables referenced within the macro.

%let dsn=perm.courses;
%let vars=days fee;
%printdsn

14

Example: Submit the %LET statements and call the
PRINTDSN macro.

Compiler Symbol Table

Word Scanner Macro Processor

Input Stack work.sasmacr

Program Flow

%let dsn=perm.courses;
%let vars=days fee;
%printdsn

%let dsn=perm.courses;
%let vars=days fee;
%printdsn

Name Type
1 PRINTDSN MACRO
2 TIME MACRO

Name Type
1 PRINTDSN MACRO
2 TIME MACRO

 3.1 Defining and Calling a Macro 3-9

15

The macro processor executes the %LET statements and
populates the Symbol Table.

Compiler Symbol Table

Word Scanner Macro Processor

Input Stack work.sasmacr

Program Flow

DSN perm.courses
VARS days fee
DSN perm.courses
VARS days fee

%printdsn%printdsn # Name Type
1 PRINTDSN MACRO
2 TIME MACRO

Name Type
1 PRINTDSN MACRO
2 TIME MACRO

16

When the macro processor receives %PRINTDSN, it locates
PRINTDSN.MACRO within the work.sasmacr catalog.

Compiler Symbol Table

Word Scanner Macro Processor

Input Stack work.sasmacr

Program Flow

DSN perm.courses
VARS days fee
DSN perm.courses
VARS days fee

%printdsn%printdsn

Name Type
1 PRINTDSN MACRO
2 TIME MACRO

Name Type
1 PRINTDSN MACRO
2 TIME MACRO

3-10 Chapter 3 Macro Definitions

17

The macro processor opens PRINTDSN.MACRO. There
are no macro language statements to execute.

Compiler Symbol Table

Word Scanner Macro Processor

Input Stack PRINTDSN.MACRO

Program Flow

DSN perm.courses
VARS days fee
DSN perm.courses
VARS days fee

%macro printdsn;
proc print data=&dsn;

var &vars;
run;

%mend;

%macro printdsn;
proc print data=&dsn;

var &vars;
run;

%mend;

18

The macro processor places the macro text on the input
stack.

Compiler Symbol Table

Word Scanner Macro Processor

Input Stack PRINTDSN.MACRO

Program Flow

DSN perm.courses
VARS days fee
DSN perm.courses
VARS days fee

proc print data=&dsn;
var &vars;

run;

proc print data=&dsn;
var &vars;

run;

%macro printdsn;
proc print data=&dsn;

var &vars;
run;

%mend;

%macro printdsn;
proc print data=&dsn;

var &vars;
run;

%mend;

 3.1 Defining and Calling a Macro 3-11

19

Macro activity pauses while the word scanner tokenizes
text placed on the input stack by the macro processor.

Compiler Symbol Table

Word Scanner Macro Processor

Input Stack PRINTDSN.MACRO

Program Flow

proc print data= proc print data= DSN perm.courses
VARS days fee
DSN perm.courses
VARS days fee

&dsn;
var &vars;

run;

&dsn;
var &vars;

run;

%macro printdsn;
proc print data=&dsn;

var &vars;
run;

%mend;

%macro printdsn;
proc print data=&dsn;

var &vars;
run;

%mend;

20

Macro variable references are passed to the macro
processor.

Compiler Symbol Table

Word Scanner Macro Processor

Input Stack PRINTDSN.MACRO

Program Flow

proc print data=proc print data= DSN perm.courses
VARS days fee
DSN perm.courses
VARS days fee

&dsn&dsn

;
var &vars;

run;

;
var &vars;

run;

%macro printdsn;
proc print data=&dsn;

var &vars;
run;

%mend;

%macro printdsn;
proc print data=&dsn;

var &vars;
run;

%mend;

3-12 Chapter 3 Macro Definitions

21

Symbolic substitution is performed. Word scanning
continues.

Compiler Symbol Table

Word Scanner Macro Processor

Input Stack PRINTDSN.MACRO

Program Flow

proc print data= proc print data= DSN perm.courses
VARS days fee
DSN perm.courses
VARS days fee

perm.courses;
var &vars;

run;

perm.courses;
var &vars;

run;

%macro printdsn;
proc print data=&dsn;

var &vars;
run;

%mend;

%macro printdsn;
proc print data=&dsn;

var &vars;
run;

%mend;

22

When a step boundary is encountered, SAS executes the
compiled step as macro activity remains paused. Macro
activity stops when the %MEND statement is encountered.

Compiler Symbol Table

Word Scanner Macro Processor

Input Stack PRINTDSN.MACRO

Program Flow

proc print data=perm.courses;
var days fee;

proc print data=perm.courses;
var days fee; DSN perm.courses

VARS days fee
DSN perm.courses
VARS days fee

run;run;

%macro printdsn;
proc print data=&dsn;

var &vars;
run;

%mend;

%macro printdsn;
proc print data=&dsn;

var &vars;
run;

%mend;

 3.1 Defining and Calling a Macro 3-13

23

Macro Execution

Partial SAS Log

Why does PROC PRINT source code not appear in the
SAS log?

243 %let dsn=perm.courses;
244 %let vars=days fee;
245 %printdsn

NOTE: There were 6 observations read from the data set PERM.COURSES.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds

The SAS log reflects that a PROC PRINT step executed.

24

Macro Execution
The MPRINT option writes to the SAS log the text sent to
the SAS compiler as a result of macro execution.

General form of the MPRINT|NOMPRINT option:

The default setting is NOMPRINT.

OPTIONS MPRINT;
OPTIONS NOMPRINT;
OPTIONS MPRINT;
OPTIONS NOMPRINT;

3-14 Chapter 3 Macro Definitions

25

Macro Execution
Example: Set the MPRINT option before calling the

macro.

Partial SAS Log

267 options mprint;
268 %printdsn
MPRINT(PRINTDSN): proc print data=perm.courses;
MPRINT(PRINTDSN): var days fee;
MPRINT(PRINTDSN): run;

NOTE: There were 6 observations read from the data set PERM.COURSES.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.00 seconds
cpu time 0.01 seconds

 Macro generated code is treated as a series of tokens. The MPRINT option shows each statement
on a new line without indentation.

26

Macro Storage
Example: Produce a list of compiled macros stored in the

default temporary catalog work.sasmacr.

proc catalog cat=work.sasmacr;
contents;
title "My Temporary Macros";

quit;

PROC CATALOG Output
My Temporary Macros

Contents of Catalog WORK.SASMACR

Name Type Create Date Modified Date Description
--
1 PRINTDSN MACRO 15JUN2004:15:58:21 15JUN2004:15:58:21
2 TIME MACRO 15JUN2004:15:55:59 15JUN2004:15:55:59

 3.1 Defining and Calling a Macro 3-15

27

Macros are stored in the work library by default.

The MSTORED system option enables storage of compiled
macros in a permanent SAS library.

The SASMSTORE= system option designates a permanent
library to store compiled macros.

libref points to an allocated SAS data library.

Macro Storage

OPTIONS MSTORED SASMSTORE=libref ;OPTIONS MSTORED SASMSTORE=libref ;

28

Macro Storage
General form of a macro definition for permanent macro
storage:

The STORE option stores the compiled macro in the library
indicated by the SASMSTORE= system option.
The SOURCE option stores the macro source code along
with the compiled code.

%MACRO macro-name / STORE <SOURCE>;
macro-text

%MEND macro-name;

%MACRO macro-name / STORE <SOURCE>;
macro-text

%MEND macro-name;

The SOURCE option is new in SAS®9. In earlier
releases, be sure to save your source code externally.

3-16 Chapter 3 Macro Definitions

29

Example: Store the PRINTDSN macro, along with its
source code, in a permanent library.

Macro Storage

libname perm '.';
options mstored sasmstore=perm;
%macro printdsn / store source;

proc print data=&dsn;
var &vars;

run;
%mend printdsn;

libname perm '.';
options mstored sasmstore=perm;
%let dsn=perm.courses;
%let vars=days fee;
%printdsn

Call the PRINTDSN macro in a new SAS session.

MACRO3

30

Macro Storage
Use a %COPY statement to access stored macro source
code.

If the OUT= option is omitted, source code is written to
the SAS log.

The %COPY statement is new in SAS®9.

%COPY macro-name / SOURCE
<OUT='external file'>;

%COPY macro-name / SOURCE
<OUT='external file'>;

 3.1 Defining and Calling a Macro 3-17

31

Macro Storage
Example: Copy the source code from the stored

PRINTDSN macro to the SAS log.

Partial SAS Log
265 %copy printdsn / source;
%macro printdsn / store source;

proc print data=&dsn;
var &vars;

run;
%mend;

%copy printdsn / source;

3-18 Chapter 3 Macro Definitions

Exercises

1. Defining and Calling a Macro

Open the printnum program into the Editor window. The printnum program contains this PROC
PRINT step:
proc print data=perm.all label noobs n;
 where course_number=3;
 var student_name student_company;
 title "Enrollment for Course 3";
run;

a. Change the hardcoded 3 in WHERE and TITLE statements to reference the macro variable NUM.
Convert this program into a macro. Submit the macro definition to compile the macro.

b. Submit a %LET statement to assign the value 8 to the macro variable NUM. Call the macro
defined in the previous step.

c. Activate the appropriate system options to display the source code received by the SAS compiler
and to track macro variable resolution during macro execution. Call the macro again.

 3.1 Defining and Calling a Macro 3-19

Solutions to Exercises

1. Defining and Calling a Macro

a. %MACRO and %MEND statements surround the PROC PRINT step to create a macro program.
%macro printnum;
 proc print data=perm.all label noobs n;
 where course_number=#
 var student_name student_company;
 title "Enrollment for Course &num";
 run;
%mend printnum;

b. To execute the macro, use a percent sign followed by the name of the macro. The value of the
macro variable NUM will be resolved during word scanning, after the text of the program is
copied to the input stack.
%let num=8;
%printnum

Partial SAS Log
173 %macro printnum;
174 proc print data=perm.all label noobs n;
175 where course_number=#
176 var student_name student_company;
177 title "Enrollment for Course &num";
178 run;
179 %mend printnum;
180 %let num=8;
181 %printnum

NOTE: There were 20 observations read from the dataset PERM.ALL.
 WHERE course_number=8;
NOTE: PROCEDURE PRINT used:
 real time 11.18 seconds
 cpu time 0.12 seconds

3-20 Chapter 3 Macro Definitions

Partial Output
 Enrollment for Course 8
 Student Name Company

 Baker, Mr. Vincent Snowing Petroleum
 Blayney, Ms. Vivian Southern Gas Co.
 Boyd, Ms. Leah United Shoes Co.
 Chevarley, Ms. Arlene Motor Communications
 Coley, Mr. John California Dept. of Insurance
 Crace, Mr. Ron Von Crump Seafood
 Garza, Ms. Cheryl Admiral Research & Development Co.
 Hamilton, Mr. Paul Imperial Steel
 Huels, Ms. Mary Frances Basic Home Services
 Kendig, Ms. Linda Crossbow of California
 Knight, Ms. Susan K&P Products
 Koleff, Mr. Jim Emulate Research
 Leon, Mr. Quinton Dept. of Defense
 Lochbihler Mr. Mark K&P Products
 Nicholson, Ms. Elizabeth Silver, Sachs & Co.
 Purvis, Mr. Michael Roam Publishers
 Ramsey, Ms. Kathleen Pacific Solid State Corp.
 Shipman, Ms. Jan Southern Edison Co.
 Sulzbach, Mr. Bill Sailbest Ships
 Woods, Mr. Joseph Federal Landmarks

 N = 20

c. To display the code received by the SAS compiler, including all resolved macro variable
references, use the MPRINT system option. To track the resolution of macro variables, use the
SYMBOLGEN system option.
options mprint symbolgen;
%printnum

Partial SAS Log
182 options mprint symbolgen;
183 %printnum
MPRINT(PRINTNUM): proc print data=perm.all label noobs n;
SYMBOLGEN: Macro variable NUM resolves to 8
MPRINT(PRINTNUM): where course_number=8;
MPRINT(PRINTNUM): var student_name student_company;
SYMBOLGEN: Macro variable NUM resolves to 8
MPRINT(PRINTNUM): title "Enrollment for Course 8";
MPRINT(PRINTNUM): run;
NOTE: There were 20 observations read from the dataset PERM.ALL.
 WHERE course_number=8;
NOTE: PROCEDURE PRINT used:
 real time 11.64 seconds
 cpu time 0.14 seconds

 3.2 Macro Parameters 3-21

3.2 Macro Parameters

34

Objectives
Define and call macros with parameters.
Describe the difference between positional and
keyword parameters.

3-22 Chapter 3 Macro Definitions

35

Introduction
Example: Note macro variable references within the

PRINTDSN macro.

%macro printdsn;
proc print data=&dsn;

var &vars;
run;

%mend;

36

Introduction
Example: Call the macro twice, each time substituting

different values of the macro variables DSN
and VARS.

%let dsn=perm.courses;
%let vars=days fee;
%printdsn

%let dsn=perm.schedule;
%let vars=location teacher;
%printdsn

The user must submit three lines per macro call. How
can this be simplified?

 3.2 Macro Parameters 3-23

37

Macro Parameters
Macros can be defined with a parameter list of macro
variables referenced within the macro.

%macro printdsn(dsn,vars);
proc print data=&dsn;

var &vars;
run;

%mend;

38

Macro Parameters
Example: Call the PRINTDSN macro and provide

parameter values.

%macro printdsn(dsn,vars);
proc print data=&dsn;

var &vars;
run;

%mend;

%printdsn(perm.courses,days fee)

3-24 Chapter 3 Macro Definitions

39

Macro Parameters
General form of a macro definition with a parameter list:

Parameter names are
parenthesized
comma delimited.

%MACRO macro-name(parameter-1, … parameter-n);
macro text

%MEND;

%MACRO macro-name(parameter-1, … parameter-n);
macro text

%MEND;

40

Macro Parameters
General form of a macro call with parameters:

Parameter values are
parenthesized
comma delimited.

Parameter values can be any text, null values, macro
variable references, or macro calls.

%macro-name(value-1, … value-n)%macro-name(value-1, … value-n)

 To assign a null value to one or more positional parameters, use commas as placeholders for the
omitted values.

 3.2 Macro Parameters 3-25

41

Local Symbol Tables
When a macro with a parameter list is called, the
parameters are created in a separate symbol table called
a local table.

The macro call

initializes a local table:

Local Table Global Table
SYSDAY Tuesday
SYSLAST _NULL_
CITY Dallas
AMOUNT 975

DSN perm.courses
VARS days fee

%printdsn(perm.courses, days fee)

42

Local Symbol Tables
A local symbol table is

created when a macro with a parameter list is called
deleted when the macro finishes execution.

Macro variables in the local table are available only during
macro execution and therefore can be referenced only
within the macro.

3-26 Chapter 3 Macro Definitions

43

Positional Parameters
Positional parameters use a one-to-one correspondence
between

parameter names supplied on the macro definition
parameter values supplied on the macro call.

%macro printdsn(dsn,vars);
proc print data=&dsn;

var &vars;
run;

%mend;

%printdsn(perm.courses,days fee)

44

Positional Parameters
Example: Define and call a macro with positional parameters.
%macro attend(opts, start, stop);

%let start=%upcase(&start);
%let stop=%upcase(&stop);
proc freq data=perm.all;

where begin_date between
"&start"d and "&stop"d;

table location / &opts;
title1 "Enrollment from &start to &stop";

run;
%mend;

options mprint;
%attend(nocum,01jan2005,31dec2005)
%attend(,01oct2005,31dec2005)

PARAM1

 3.2 Macro Parameters 3-27

Macros with Positional Parameters

PARAM1

Define a macro that creates reports showing enrollment for individual training centers. Use positional
parameters to specify a range of dates and options for the TABLES statement in the FREQ procedure.
%macro attend(opts, start, stop);
 %let start=%upcase(&start);
 %let stop=%upcase(&stop);
 proc freq data=perm.all;
 where begin_date between "&start"d and "&stop"d;
 table location / &opts;
 title1 "Enrollment from &start to &stop";
 run;
%mend;

options mprint;
%attend(nocum,01jan2005,31dec2005)
%attend(,01oct2005,31dec2005)

 A null value is passed for OPTS in the second call.

Partial SAS Log for %attend(nocum,01jan2005,31dec2005)
MPRINT(ATTEND): proc freq data=perm.all;
MPRINT(ATTEND): where begin_date between "01JAN2005"d and
"31DEC2005"d;
MPRINT(ATTEND): table location / nocum;
MPRINT(ATTEND): title1 "Enrollment from 01JAN2005 to 31DEC2005";
MPRINT(ATTEND): run;
NOTE: There were 299 observations read from the dataset PERM.ALL.
 WHERE ((begin_date>='01JAN2005'D and begin_date<='31DEC2005'D));
NOTE: PROCEDURE FREQ used:
 real time 28.40 seconds
 cpu time 0.36 seconds

Partial SAS Log for %attend(,01oct2005,31dec2005)
MPRINT(ATTEND): proc freq data=perm.all;
MPRINT(ATTEND): where begin_date between "01OCT2005"d and "31DEC2005"d;
MPRINT(ATTEND): table location / ;
MPRINT(ATTEND): title1 "Enrollment from 01OCT2005 to 31DEC2005";
MPRINT(ATTEND): run;
NOTE: There were 81 observations read from the dataset PERM.ALL.
 WHERE ((begin_date>='01OCT2005'D and begin_date<='31DEC2005'D));
NOTE: PROCEDURE FREQ used:
 real time 0.10 seconds
 cpu time 0.10 seconds

3-28 Chapter 3 Macro Definitions

46

Keyword Parameters
A parameter list can include keyword parameters.
General form of a macro definition with keyword
parameters:

Keyword parameters are assigned a default or null value
after an equal (=) sign.

%MACRO macro-name(keyword=value, …, keyword=value);
macro text

%MEND;

%MACRO macro-name(keyword=value, …, keyword=value);
macro text

%MEND;

47

Keyword Parameters
General form of a macro call with keyword parameters:

keyword=value combinations can be
specified in any order
omitted from the call without placeholders.

If omitted from the call, a keyword parameter receives
its default value. To omit every keyword parameter from
a macro call, specify %macro-name(). Specifying
%macro-name without the parentheses may not
immediately execute the macro.

%macro-name(keyword=value, …, keyword=value)%macro-name(keyword=value, …, keyword=value)

 3.2 Macro Parameters 3-29

48

Keyword Parameters
Example: Assign default parameter values by defining the

macro with keyword parameters.

%macro attend(opts=,start=01jan05,stop=31dec05);
%let start=%upcase(&start);
%let stop=%upcase(&stop);
proc freq data=perm.all;

where begin_date between
"&start"d and "&stop"d;

table location / &opts;
title1 "Enrollment from &start to &stop";

run;
%mend;
options mprint;
%attend(opts=nocum)
%attend(stop=30jun05,opts=nocum nopercent)
%attend()

PARAM2

3-30 Chapter 3 Macro Definitions

Macros with Keyword Parameters

PARAM2

Alter the previous macro by using keyword parameters. Issue various calls to the macro.
%macro attend(opts=,start=01jan2005,stop=31dec2005);
 %let start=%upcase(&start);
 %let stop=%upcase(&stop);
 proc freq data=perm.all;
 where begin_date between "&start"d and "&stop"d;
 table location / &opts;
 title1 "Enrollment from &start to &stop";
 run;
%mend;

options mprint;
%attend(opts=nocum)
%attend(stop=30jun2005,opts=nocum nopercent)
%attend()

What are the values of the omitted parameters in each call?

Partial SAS Log for %attend(opts=nocum)
MPRINT(ATTEND): proc freq data=perm.all;
MPRINT(ATTEND): where begin_date between "01JAN2005"d and "31DEC2005"d;
MPRINT(ATTEND): table location / nocum;
MPRINT(ATTEND): title1 "Enrollment from 01JAN2005 to 31DEC2005";
NOTE: There were 299 observations read from the dataset PERM.ALL.
 WHERE ((begin_date>='01JAN2005'D and begin_date<='31DEC2005'D));
NOTE: PROCEDURE FREQ used:
 real time 0.12 seconds
 cpu time 0.10 seconds

Partial SAS Log for %attend(stop=30jun2005,opts=nocum nopercent)
MPRINT(ATTEND): proc freq data=perm.all;
MPRINT(ATTEND): where begin_date between "01JAN2005"d and "30JUN2005"d;
MPRINT(ATTEND): table location / nocum nopercent;
MPRINT(ATTEND): title1 "Enrollment from 01JAN2005 to 30JUN2005";
MPRINT(ATTEND): run;
NOTE: There were 137 observations read from the dataset PERM.ALL.
 WHERE ((begin_date>='01JAN2005'D and begin_date<='30JUN2005'D));
NOTE: PROCEDURE FREQ used:
 real time 0.11 seconds
 cpu time 0.09 seconds

 3.2 Macro Parameters 3-31

Partial SAS Log for %attend()
MPRINT(ATTEND): proc freq data=perm.all;
MPRINT(ATTEND): where begin_date between "01JAN2005"d and "31DEC2005"d;
MPRINT(ATTEND): table location / ;
MPRINT(ATTEND): title1 "Enrollment from 01JAN2005 to 31DEC2005";
MPRINT(ATTEND): run;
NOTE: There were 299 observations read from the dataset PERM.ALL.
 WHERE ((begin_date>='01JAN2005'D and begin_date<='31DEC2005'D));
NOTE: PROCEDURE FREQ used:
 real time 0.09 seconds
 cpu time 0.09 seconds

3-32 Chapter 3 Macro Definitions

50

Mixed Parameter Lists
You can use a combination of positional and keyword
parameters. In a mixed parameter list, positional
parameters must be listed before keyword parameters on
both the macro definition and the macro call.

51

Mixed Parameter Lists
Example: Use a combination of positional and keyword

parameters.
%macro attend(opts,start=01jan05,stop=31dec05);

%let start=%upcase(&start);
%let stop=%upcase(&stop);
proc freq data=perm.all;

where begin_date between
"&start"d and "&stop"d;

table location / &opts;
title1 "Enrollment from &start to &stop";

run;
%mend;
options mprint;
%attend(nocum)
%attend(stop=30jun05,start=01apr05)
%attend(nocum nopercent,stop=30jun05)
%attend() PARAM3

 3.2 Macro Parameters 3-33

Macros with Mixed Parameter Lists

PARAM3

Alter the previous macro by using a mixed parameter list. Issue various calls to the macro.
82 %macro attend(opts,start=01jan05,stop=31dec05);
83 %let start=%upcase(&start);
84 %let stop=%upcase(&stop);
85 proc freq data=perm.all;
86 where begin_date between
87 "&start"d and "&stop"d;
88 table location / &opts;
89 title1 "Enrollment from &start to &stop";
90 run;
91 %mend;
92 options mprint;
93 %attend(nocum)
MPRINT(ATTEND): proc freq data=perm.all;
MPRINT(ATTEND): where begin_date between "01JAN05"d and "31DEC05"d;
MPRINT(ATTEND): table location / nocum;
MPRINT(ATTEND): title1 "Enrollment from 01JAN05 to 31DEC05";
MPRINT(ATTEND): run;

NOTE: There were 299 observations read from the data set PERM.ALL.
 WHERE (begin_date>='01JAN2005'D and begin_date<='31DEC2005'D);

94 %attend(stop=30jun05,start=01apr05)
MPRINT(ATTEND): proc freq data=perm.all;
MPRINT(ATTEND): where begin_date between "01APR05"d and "30JUN05"d;
MPRINT(ATTEND): table location / ;
MPRINT(ATTEND): title1 "Enrollment from 01APR05 to 30JUN05";
MPRINT(ATTEND): run;

NOTE: There were 65 observations read from the data set PERM.ALL.
 WHERE (begin_date>='01APR2005'D and begin_date<='30JUN2005'D);

95 %attend(nocum nopercent,stop=30jun05)
MPRINT(ATTEND): proc freq data=perm.all;
MPRINT(ATTEND): where begin_date between "01JAN05"d and "30JUN05"d;
MPRINT(ATTEND): table location / nocum nopercent;
MPRINT(ATTEND): title1 "Enrollment from 01JAN05 to 30JUN05";
MPRINT(ATTEND): run;

NOTE: There were 137 observations read from the data set PERM.ALL.
 WHERE (begin_date>='01JAN2005'D and begin_date<='30JUN2005'D);

3-34 Chapter 3 Macro Definitions

96 %attend()
MPRINT(ATTEND): proc freq data=perm.all;
MPRINT(ATTEND): where begin_date between "01JAN05"d and "31DEC05"d;
MPRINT(ATTEND): table location / ;
MPRINT(ATTEND): title1 "Enrollment from 01JAN05 to 31DEC05";
MPRINT(ATTEND): run;

NOTE: There were 299 observations read from the data set PERM.ALL.
 WHERE (begin_date>='01JAN2005'D and begin_date<='31DEC2005'D);

 3.2 Macro Parameters 3-35

53

Developing Macro-Based Applications

1. Write and debug the SAS program without any macro
coding.

2. Generalize the program by replacing hardcoded
constants with macro variable references and initialize
the macro variables with %LET statements.

3. Create a macro definition by placing %MACRO and
%MEND statements around your program. Convert
%LET statements to macro parameters as appropriate.

Step 4 is presented later.

If a macro-based application generates SAS code, use a
four-step approach.

 These steps permit rapid development and debugging because they isolate syntax and logic at the
SAS code level from the syntax and logic at the macro level.

3-36 Chapter 3 Macro Definitions

Exercises

2. Defining and Using Macro Parameters

Open the printnum program into the Editor window.
proc print data=perm.all label noobs n;
 where course_number=3;
 var student_name student_company;
 title "Enrollment for Course 3";
run;

a. Change the hardcoded 3 in WHERE and TITLE statements to reference the macro variable NUM.
Convert this program into a macro with a positional parameter. Select a name for the parameter
based on the macro variable references in the program. Submit the macro definition to compile
the macro.

b. Activate the appropriate system option to display the source code received by the SAS compiler.
Call the macro defined in the previous step with a value of 8 for the parameter.

c. Call the macro again, but with a parameter value of 10.

d. Change the positional parameter to a keyword parameter with a default value of 1. Submit the
revised macro definition to compile the macro.

e. Call the macro defined in the previous step with a value of 8 for the keyword parameter.

f. Call the macro again, but allow the macro to use its default parameter value.

 3.2 Macro Parameters 3-37

Solutions to Exercises

2. Defining and Using Macro Parameters

a. The macro parameter name should be NUM because the program contains the macro references
&num. When you define positional parameters, enclose the names of the parameter in parentheses
following the macro name.
%macro prtrost(num);
 proc print data=perm.all label noobs n;
 where course_number=#
 var student_name student_company;
 title "Enrollment for Course &num";
 run;
%mend prtrost;

b. To display the code received by the SAS compiler, including all resolved macro variable
references, use the MPRINT system option. To execute the macro, use a percent sign followed by
the name of the macro. To assign a value to a positional parameter, supply the desired value
within parentheses following the macro name.
options mprint;
%prtrost(8)

Partial SAS Log
200 %prtrost(8)
MPRINT(PRTROST): proc print data=perm.all label noobs n;
MPRINT(PRTROST): where course_number=8;
MPRINT(PRTROST): var student_name student_company;
MPRINT(PRTROST): title "Enrollment for Course 8";
MPRINT(PRTROST): run;
NOTE: There were 20 observations read from the dataset PERM.ALL.
 WHERE course_number=8;
NOTE: PROCEDURE PRINT used:
 real time 11.05 seconds
 cpu time 0.16 seconds

3-38 Chapter 3 Macro Definitions

Partial Output
 Enrollment for Course 8

 Student Name Company

 Baker, Mr. Vincent Snowing Petroleum
 Blayney, Ms. Vivian Southern Gas Co.
 Boyd, Ms. Leah United Shoes Co.
 Chevarley, Ms. Arlene Motor Communications
 Coley, Mr. John California Dept. of Insurance
 Crace, Mr. Ron Von Crump Seafood
 Garza, Ms. Cheryl Admiral Research & Development Co.
 Hamilton, Mr. Paul Imperial Steel
 Huels, Ms. Mary Frances Basic Home Services
 Kendig, Ms. Linda Crossbow of California
 Knight, Ms. Susan K&P Products
 Koleff, Mr. Jim Emulate Research
 Leon, Mr. Quinton Dept. of Defense
 Lochbihler Mr. Mark K&P Products
 Nicholson, Ms. Elizabeth Silver, Sachs & Co.
 Purvis, Mr. Michael Roam Publishers
 Ramsey, Ms. Kathleen Pacific Solid State Corp.
 Shipman, Ms. Jan Southern Edison Co.
 Sulzbach, Mr. Bill Sailbest Ships
 Woods, Mr. Joseph Federal Landmarks

 N = 20

c. The macro definition does not need to be resubmitted with each macro call. The macro call does
not end with a semicolon.
%prtrost(10)

Partial SAS Log
MPRINT(PRTROST): proc print data=perm.all label noobs n;
MPRINT(PRTROST): where course_number=10;
MPRINT(PRTROST): var student_name student_company;
MPRINT(PRTROST): title "Enrollment for Course 10";
MPRINT(PRTROST): run;
NOTE: There were 23 observations read from the dataset PERM.ALL.
 WHERE course_number=10;
NOTE: PROCEDURE PRINT used:
 real time 11.44 seconds
 cpu time 0.17 seconds

d. When you define keyword parameters, an equal sign (=) must follow the name of each parameter.
A default value for each parameter can be specified following the equal sign.
%macro prtrost(num=1);
 proc print data=perm.all label noobs n;
 where course_number=#
 var student_name student_company;
 title "Enrollment for Course &num”;
 run;
%mend prtrost;

 3.2 Macro Parameters 3-39

e. To assign a value to a keyword parameter, specify the name of the parameter followed by an
equal sign (=), followed by the desired value.
%prtrost(num=8)

Partial SAS Log
18 %prtrost(num=8)
MPRINT(PRTROST): proc print data=perm.all label noobs n;
MPRINT(PRTROST): where course_number=8;
MPRINT(PRTROST): var student_name student_company;
MPRINT(PRTROST): title "Enrollment for Course 8";
MPRINT(PRTROST): run;
NOTE: There were 20 observations read from the dataset PERM.ALL.
 WHERE course_number=8;
NOTE: PROCEDURE PRINT used:
 real time 10.51 seconds
 cpu time 0.12 seconds

f. To request that all default parameter values be used, follow the macro call with an empty set of
parentheses.
%prtrost()

Partial SAS Log
19 %prtrost()
MPRINT(PRTROST): proc print data=perm.all label noobs n;
MPRINT(PRTROST): where course_number=1;
MPRINT(PRTROST): var student_name student_company;
MPRINT(PRTROST): title "Enrollment for Course 1";
MPRINT(PRTROST): run;
NOTE: There were 23 observations read from the dataset PERM.ALL.
 WHERE course_number=1;
NOTE: PROCEDURE PRINT used:
 real time 13.20 seconds
 cpu time 0.15 seconds

3-40 Chapter 3 Macro Definitions

Chapter 4 DATA Step and SQL
Interfaces

4.1 Creating Macro Variables in the DATA Step ...4-3

4.2 Indirect References to Macro Variables ...4-29

4.3 Retrieving Macro Variables in the DATA Step (Self-Study)4-52

4.4 Creating Macro Variables in SQL ..4-67

4-2 Chapter 4 DATA Step and SQL Interfaces

 4.1 Creating Macro Variables in the DATA Step 4-3

4.1 Creating Macro Variables in the DATA Step

3

Objectives
Create macro variables during DATA step execution.
Describe the difference between the SYMPUT routine
and the %LET statement.

4

The DATA Step Interface
Example: Automate production of the report below, with an

appropriate footnote.
Paid Status for Course 3

Obs Student_Name Student_Company Paid

1 Bills, Ms. Paulette Reston Railway Y
2 Chevarley, Ms. Arlene Motor Communications N
3 Clough, Ms. Patti Reston Railway N
4 Crace, Mr. Ron Von Crump Seafood Y
5 Davis, Mr. Bruce Semi;Conductor Y
6 Elsins, Ms. Marisa F. SSS Inc. N
7 Gandy, Dr. David Paralegal Assoc. Y
8 Gash, Ms. Hedy QA Information Systems Center Y
9 Haubold, Ms. Ann Reston Railway Y
10 Hudock, Ms. Cathy So. Cal. Medical Center Y
11 Kimble, Mr. John Alforone Chemical N
12 Kochen, Mr. Dennis Reston Railway Y
13 Larocque, Mr. Bret Physicians IPA Y
14 Licht, Mr. Bryan SII Y
15 McKnight, Ms. Maureen E. Federated Bank Y
16 Scannell, Ms. Robin Amberly Corp. N
17 Seitz, Mr. Adam Lomax Services Y
18 Smith, Ms. Jan Reston Railway N
19 Sulzbach, Mr. Bill Sailbest Ships Y
20 Williams, Mr. Gene Snowing Petroleum Y

Some Fees Due

Many applications require macro variables to have values based on data values, programming logic, or
expressions.

4-4 Chapter 4 DATA Step and SQL Interfaces

5

The DATA Step Interface
%let crsnum=3;
data revenue;
set perm.all end=final;
where course_number=&crsnum;
total+1;
if paid='Y' then paidup+1;
if final then do;
put total= paidup=;
if paidup<total then do;
%let foot=Some Fees Due;

end;
else do;
%let foot=All Students Paid;

end;
end;

run;
proc print data=revenue;

var student_name student_company paid;
title "Paid Status for Course &crsnum";
footnote "&foot";

run; SYMPUT1

6

The DATA Step Interface
Why is the footnote incorrect?

Paid Status for Course 3

Obs Student_Name Student_Company Paid

1 Bills, Ms. Paulette Reston Railway Y
2 Chevarley, Ms. Arlene Motor Communications N
3 Clough, Ms. Patti Reston Railway N
4 Crace, Mr. Ron Von Crump Seafood Y
5 Davis, Mr. Bruce Semi;Conductor Y
6 Elsins, Ms. Marisa F. SSS Inc. N
7 Gandy, Dr. David Paralegal Assoc. Y
8 Gash, Ms. Hedy QA Information Systems Center Y
9 Haubold, Ms. Ann Reston Railway Y
10 Hudock, Ms. Cathy So. Cal. Medical Center Y
11 Kimble, Mr. John Alforone Chemical N
12 Kochen, Mr. Dennis Reston Railway Y
13 Larocque, Mr. Bret Physicians IPA Y
14 Licht, Mr. Bryan SII Y
15 McKnight, Ms. Maureen E. Federated Bank Y
16 Scannell, Ms. Robin Amberly Corp. N
17 Seitz, Mr. Adam Lomax Services Y
18 Smith, Ms. Jan Reston Railway N
19 Sulzbach, Mr. Bill Sailbest Ships Y
20 Williams, Mr. Gene Snowing Petroleum Y

All Students Paid

 4.1 Creating Macro Variables in the DATA Step 4-5

7

The DATA Step Interface

Symbol Table
crsnum 3

%let crsnum=3;
data revenue;
set perm.all end=final;
where course_number=&crsnum;
total+1;
if paid='Y' then paidup+1;
if final then do;
put total= paidup=;
if paidup<total then do;
%let foot=Some Fees Due;

end;
else do;
%let foot=All Students Paid;

end;
end;

run;

Word scanning begins. Macro trigger encountered.

8

The DATA Step Interface

Symbol Table
crsnum 3data revenue;

set perm.all end=final;
where course_number=3;
total+1;
if paid='Y' then paidup+1;
if final then do;
put total= paidup=;
if paidup<total then do;
%let foot=Some Fees Due;

end;
else do;
%let foot=All Students Paid;

end;
end;

run;

Compiling begins. Macro variable reference resolved.

4-6 Chapter 4 DATA Step and SQL Interfaces

9

The DATA Step Interface

Symbol Table
crsnum 3
foot Some Fees Due

data revenue;
set perm.all end=final;
where course_number=3;
total+1;
if paid='Y' then paidup+1;
if final then do;
put total= paidup=;
if paidup<total then do;
%let foot=Some Fees Due;

end;
else do;
%let foot=All Students Paid;

end;
end;

run;

Macro trigger passed to macro processor.

10

The DATA Step Interface

Symbol Table
crsnum 3
foot All Students Paid

data revenue;
set perm.all end=final;
where course_number=3;
total+1;
if paid='Y' then paidup+1;
if final then do;
put total= paidup=;
if paidup<total then do;

end;
else do;
%let foot=All Students Paid;

end;
end;

run;

Macro trigger overwrites previous value.

 %LET statements execute at word scanning time, while non-macro SAS statements are sent to the
compiler.

 4.1 Creating Macro Variables in the DATA Step 4-7

11

The DATA Step Interface

Symbol Table
crsnum 3
foot All Students Paid

data revenue;
set perm.all end=final;
where course_number=3;
total+1;
if paid='Y' then paidup+1;
if final then do;
put total= paidup=;
if paidup<total then do;

end;
else do;

end;
end;

run;

Compile phase complete. Ready for execution.

Nothing in this DATA step
affects the value of FOOT.

It remains
All Students Paid.

12

The SYMPUT Routine

DATA step variables

DATA step expressions

character literals

Symbol Table

SYMPUT

The SYMPUT routine
is an executable DATA step statement
assigns to a macro variable any value available to the
DATA step during execution time
can create macro variables with
– static values
– dynamic (data dependent) values
– dynamic (data dependent) names.

4-8 Chapter 4 DATA Step and SQL Interfaces

13

The SYMPUT Routine
The SYMPUT routine creates a macro variable and
assigns it a value.

General form of the SYMPUT routine:

macro-variable is assigned the character value of text.

If macro-variable already exists, its value is replaced.

If either argument represents a literal value, it must be
quoted.

CALL SYMPUT(macro-variable, text);CALL SYMPUT(macro-variable, text);

14

The SYMPUT Routine
Example: The SYMPUT routine can be controlled with

DATA step execution time logic.

%let crsnum=3;
data revenue;

set perm.all end=final;
where course_number=&crsnum;
total+1;
if paid='Y' then paidup+1;
if final then do;

put total= paidup=;
if paidup<total then do;
call symput('foot','Some Fees Due');

end;
else do;
call symput('foot','All Students Paid');

end;
end;

run;

No macro
triggers within

DO groups

Fixed Macro
Variable Name

Fixed Macro
Variable Value SYMPUT2

 4.1 Creating Macro Variables in the DATA Step 4-9

15

The SYMPUT Routine
Note corrected footnote.

Paid Status for Course 3

Obs Student_Name Student_Company Paid

1 Bills, Ms. Paulette Reston Railway Y
2 Chevarley, Ms. Arlene Motor Communications N
3 Clough, Ms. Patti Reston Railway N
4 Crace, Mr. Ron Von Crump Seafood Y
5 Davis, Mr. Bruce Semi;Conductor Y
6 Elsins, Ms. Marisa F. SSS Inc. N
7 Gandy, Dr. David Paralegal Assoc. Y
8 Gash, Ms. Hedy QA Information Systems Center Y
9 Haubold, Ms. Ann Reston Railway Y
10 Hudock, Ms. Cathy So. Cal. Medical Center Y
11 Kimble, Mr. John Alforone Chemical N
12 Kochen, Mr. Dennis Reston Railway Y
13 Larocque, Mr. Bret Physicians IPA Y
14 Licht, Mr. Bryan SII Y
15 McKnight, Ms. Maureen E. Federated Bank Y
16 Scannell, Ms. Robin Amberly Corp. N
17 Seitz, Mr. Adam Lomax Services Y
18 Smith, Ms. Jan Reston Railway N
19 Sulzbach, Mr. Bill Sailbest Ships Y
20 Williams, Mr. Gene Snowing Petroleum Y

Some Fees Due

4-10 Chapter 4 DATA Step and SQL Interfaces

The SYMPUT Routine

SYMPUT2

Conditionally assign a text value to a macro variable FOOT based on DATA step values. Reference this
macro variable later in the program.
options symbolgen;
%let crsnum=3;
data revenue;
 set perm.all end=final;
 where course_number=&crsnum;
 total+1;
 if paid=‘Y’ then paidup+1;
 if final then do;
 if paidup<total then do;
 call symput('foot','Some Fees Due');
 end;
 else do;
 call symput('foot','All Students Paid');
 end;
 end;
run;

proc print data=revenue;
 var student_name student_company paid;
 title "Paid Status for Course &crsnum";
 footnote "&foot";
run;

The value assigned to the macro variable FOOT is set dynamically to either Some Fees Due or All
Students Paid, based on DATA step execution time logic.

 4.1 Creating Macro Variables in the DATA Step 4-11

SAS Output
 Paid Status for Course 3

Obs Student_Name Student_Company Paid

 1 Bills, Ms. Paulette Reston Railway Y
 2 Chevarley, Ms. Arlene Motor Communications N
 3 Clough, Ms. Patti Reston Railway N
 4 Crace, Mr. Ron Von Crump Seafood Y
 5 Davis, Mr. Bruce Semi;Conductor Y
 6 Elsins, Ms. Marisa F. SSS Inc. N
 7 Gandy, Dr. David Paralegal Assoc. Y
 8 Gash, Ms. Hedy QA Information Systems Center Y
 9 Haubold, Ms. Ann Reston Railway Y
 10 Hudock, Ms. Cathy So. Cal. Medical Center Y
 11 Kimble, Mr. John Alforone Chemical N
 12 Kochen, Mr. Dennis Reston Railway Y
 13 Larocque, Mr. Bret Physicians IPA Y
 14 Licht, Mr. Bryan SII Y
 15 McKnight, Ms. Maureen E. Federated Bank Y
 16 Scannell, Ms. Robin Amberly Corp. N
 17 Seitz, Mr. Adam Lomax Services Y
 18 Smith, Ms. Jan Reston Railway N
 19 Sulzbach, Mr. Bill Sailbest Ships Y
 20 Williams, Mr. Gene Snowing Petroleum Y

 Some Fees Due

4-12 Chapter 4 DATA Step and SQL Interfaces

17

The SYMPUT Routine
Example: Enhance the title and footnote as below.

Fee Status for Local Area Networks (#3)

Student_Name Student_Company Paid

Bills, Ms. Paulette Reston Railway Y
Chevarley, Ms. Arlene Motor Communications N
Clough, Ms. Patti Reston Railway N
Crace, Mr. Ron Von Crump Seafood Y
Davis, Mr. Bruce Semi;Conductor Y
Elsins, Ms. Marisa F. SSS Inc. N
Gandy, Dr. David Paralegal Assoc. Y
Gash, Ms. Hedy QA Information Systems Center Y
Haubold, Ms. Ann Reston Railway Y
Hudock, Ms. Cathy So. Cal. Medical Center Y
Kimble, Mr. John Alforone Chemical N
Kochen, Mr. Dennis Reston Railway Y
Larocque, Mr. Bret Physicians IPA Y
Licht, Mr. Bryan SII Y
McKnight, Ms. Maureen E. Federated Bank Y
Scannell, Ms. Robin Amberly Corp. N
Seitz, Mr. Adam Lomax Services Y
Smith, Ms. Jan Reston Railway N
Sulzbach, Mr. Bill Sailbest Ships Y
Williams, Mr. Gene Snowing Petroleum Y

Note: 14 out of 20 paid

18

The SYMPUT Routine
You can copy the current value of a DATA step variable
into a macro variable by using the name of a DATA step
variable as the second argument to the SYMPUT routine.

A maximum of 32,767 characters can be assigned to
the receiving macro variable.
Any leading or trailing blanks within the DATA step
variable’s value are stored in the macro variable.
Values of numeric variables are converted automatically
to character using the BEST12. format.

CALL SYMPUT('macro-variable', DATA-step-variable);CALL SYMPUT('macro-variable', DATA-step-variable);

 4.1 Creating Macro Variables in the DATA Step 4-13

19

The SYMPUT Routine
%let crsnum=3;
data revenue;

set perm.all end=final;
where course_number=&crsnum;
total+1;
if paid='Y' then paidup+1;
if final then do;

call symput('numpaid',paidup);
call symput('numstu',total);
call symput('crsname',course_title);

end;
run;
proc print data=revenue noobs;

var student_name student_company paid;
title "Fee Status for &crsname (#&crsnum)";
footnote "Note: &numpaid out of &numstu paid";

run;
SYMPUT3

4-14 Chapter 4 DATA Step and SQL Interfaces

The SYMPUT Routine

SYMPUT3

Create a report for any of the courses held showing the students’ name, their company, and paid status.
The title should contain course title and course number. Include the following footnote to summarize how
many students have paid their fees: "Note: xx Paid out of yy Students" where xx represents paid students
and yy represents total students in the course.
%let crsnum=3;
data revenue;
 set perm.all end=final;
 where course_number=&crsnum;
 total+1;
 if paid='Y' then paidup+1;
 if final then do;
 call symput('numpaid',paidup);
 call symput('numstu',total);
 call symput('crsname',course_title);
 end;
run;
proc print data=revenue noobs;
 var student_name student_company paid;
 title "Fee Status for &crsname (#&crsnum)";
 footnote "Note: &numpaid out of &numstu paid";
run;

 4.1 Creating Macro Variables in the DATA Step 4-15

Program Output
 Fee Status for Local Area Networks (#3)

 Student_Name Student_Company Paid

 Bills, Ms. Paulette Reston Railway Y
 Chevarley, Ms. Arlene Motor Communications N
 Clough, Ms. Patti Reston Railway N
 Crace, Mr. Ron Von Crump Seafood Y
 Davis, Mr. Bruce Semi;Conductor Y
 Elsins, Ms. Marisa F. SSS Inc. N
 Gandy, Dr. David Paralegal Assoc. Y
 Gash, Ms. Hedy QA Information Systems Center Y
 Haubold, Ms. Ann Reston Railway Y
 Hudock, Ms. Cathy So. Cal. Medical Center Y
 Kimble, Mr. John Alforone Chemical N
 Kochen, Mr. Dennis Reston Railway Y
 Larocque, Mr. Bret Physicians IPA Y
 Licht, Mr. Bryan SII Y
 McKnight, Ms. Maureen E. Federated Bank Y
 Scannell, Ms. Robin Amberly Corp. N
 Seitz, Mr. Adam Lomax Services Y
 Smith, Ms. Jan Reston Railway N
 Sulzbach, Mr. Bill Sailbest Ships Y
 Williams, Mr. Gene Snowing Petroleum Y

 Note: 14 out of 20 paid

 Note the extra blanks between the course title and course number, as well as extra blanks before
14 and 20 in the footnote.

4-16 Chapter 4 DATA Step and SQL Interfaces

21

The SYMPUT Routine
You can use DATA step functions and expressions in the
SYMPUT routine's second argument to

left-align character strings created by numeric-to-
character conversion
remove trailing blanks
format data values
perform arithmetic operations on numeric data values.

CALL SYMPUT('macro-variable',expression);CALL SYMPUT('macro-variable',expression);

22

The SYMPUT Routine

SYMPUT4

%let crsnum=3;
data revenue;

set perm.all end=final;
where course_number=&crsnum;
total+1;
if paid='Y' then paidup+1;
if final then do;

call symput('numpaid',trim(left(paidup)));
call symput('numstu',trim(left(total)));
call symput('crsname',trim(course_title));

end;
run;
proc print data=revenue noobs;

var student_name student_company paid;
title "Fee Status for &crsname (#&crsnum)";
footnote "Note: &numpaid out of &numstu paid";

run;

 4.1 Creating Macro Variables in the DATA Step 4-17

The SYMPUT Routine

SYMPUT4

Remove leading blanks from the macro variables NUMSTU and NUMPAID. Remove trailing blanks
from CRSNAME.
%let crsnum=3;
data revenue;
 set perm.all end=final;
 where course_number=&crsnum;
 total+1;
 if paid=’Y’ then paidup+1;
 if final then do;
 call symput(’numpaid’,trim(left(paidup)));
 call symput(’numstu’,trim(left(total)));
 call symput(’crsname’,trim(course_title));
 end;
run;

proc print data=revenue noobs;
 var student_name student_company paid;
 title "Fee Status for &crsname (#&crsnum)";
 footnote "Note: &numpaid out of &numstu paid";
run;

 The LEFT function left-justifies the value. The TRIM function removes trailing blanks. Both
functions expect character arguments. Numeric arguments cause automatic numeric-to-character
conversion, with notes written to the SAS log.

4-18 Chapter 4 DATA Step and SQL Interfaces

Program Output
 Fee Status for Local Area Networks (#3)

 NAME COMPANY PAID

 Bills, Ms. Paulette Reston Railway Y
 Chevarley, Ms. Arlene Motor Communications N
 Clough, Ms. Patti Reston Railway N
 Crace, Mr. Ron Von Crump Seafood Y
 Davis, Mr. Bruce Semi;Conductor Y
 Elsins, Ms. Marisa F. SSS Inc. N
 Gandy, Dr. David Paralegal Assoc. Y
 Gash, Ms. Hedy QA Information Systems Center Y
 Haubold, Ms. Ann Reston Railway Y
 Hudock, Ms. Cathy So. Cal. Medical Center Y
 Kimble, Mr. John Alforone Chemical N
 Kochen, Mr. Dennis Reston Railway Y
 Larocque, Mr. Bret Physicians IPA Y
 Licht, Mr. Bryan SII Y
 McKnight, Ms. Maureen E. Federated Bank Y
 Scannell, Ms. Robin Amberly Corp. N
 Seitz, Mr. Adam Lomax Services Y
 Smith, Ms. Jan Reston Railway N
 Sulzbach, Mr. Bill Sailbest Ships Y
 Williams, Mr. Gene Snowing Petroleum Y

 Note: 14 out of 20 paid

 4.1 Creating Macro Variables in the DATA Step 4-19

24

The SYMPUTX Routine
The SYMPUTX routine automatically removes leading
and trailing blanks from both arguments.

General form of the SYMPUTX routine:

CALL SYMPUTX(macro-variable, expression);CALL SYMPUTX(macro-variable, expression);

The SYMPUTX routine is new in SAS®9.

25

The SYMPUTX Routine

SYMPUT5

%let crsnum=3;
data revenue;

set perm.all end=final;
where course_number=&crsnum;
total+1;
if paid='Y' then paidup+1;
if final then do;

call symputx('numpaid',paidup);
call symputx('numstu',total);
call symputx('crsname',course_title);

end;
run;
proc print data=revenue noobs;

var student_name student_company paid;
title "Fee Status for &crsname (#&crsnum)";
footnote "Note: &numpaid out of &numstu paid";

run;

4-20 Chapter 4 DATA Step and SQL Interfaces

26

The SYMPUTX Routine
Example: Further enhance the report as below.

Fee Status for Local Area Networks (#3) Held 01/11/2005

Obs Student_Name Student_Company Paid

1 Bills, Ms. Paulette Reston Railway Y
2 Chevarley, Ms. Arlene Motor Communications N
3 Clough, Ms. Patti Reston Railway N
4 Crace, Mr. Ron Von Crump Seafood Y
5 Davis, Mr. Bruce Semi;Conductor Y
6 Elsins, Ms. Marisa F. SSS Inc. N
7 Gandy, Dr. David Paralegal Assoc. Y
8 Gash, Ms. Hedy QA Information Systems Center Y
9 Haubold, Ms. Ann Reston Railway Y
10 Hudock, Ms. Cathy So. Cal. Medical Center Y
11 Kimble, Mr. John Alforone Chemical N
12 Kochen, Mr. Dennis Reston Railway Y
13 Larocque, Mr. Bret Physicians IPA Y
14 Licht, Mr. Bryan SII Y
15 McKnight, Ms. Maureen E. Federated Bank Y
16 Scannell, Ms. Robin Amberly Corp. N
17 Seitz, Mr. Adam Lomax Services Y
18 Smith, Ms. Jan Reston Railway N
19 Sulzbach, Mr. Bill Sailbest Ships Y
20 Williams, Mr. Gene Snowing Petroleum Y

Note: $3,900 in Unpaid Fees

27

The SYMPUTX Routine

SYMPUT6

%let crsnum=3;
data revenue;

set perm.all end=final;
where course_number=&crsnum;
total+1;
if paid='Y' then paidup+1;
if final then do;

call symputx('crsname',course_title);
call symputx('date',put(begin_date,mmddyy10.));
call symputx('due',put(fee*(total-paidup),dollar8.));

end;
run;
proc print data=revenue;

var student_name student_company paid;
title "Fee Status for &crsname (#&crsnum) Held &date";
footnote "Note: &due in Unpaid Fees";

run;

 4.1 Creating Macro Variables in the DATA Step 4-21

The SYMPUTX Routine

SYMPUT6

Format the value of the numeric variable begin_date with the MMDDYY. format and assign it to the
macro variable DATE. Format the result of an expression involving FEE, TOTAL, and PAIDUP as a
dollar amount and assign it to the macro variable DUE.
%let crsnum=3;
data revenue;
 set perm.all end=final;
 where course_number=&crsnum;
 total+1;
 if paid='Y' then paidup+1;
 if final then do;
 call symputx('crsname',course_title);
 call symputx('date',put(begin_date,mmddyy10.));
 call symputx('due',put(fee*(total-paidup),dollar8.));
 end;
run;
proc print data=revenue;
 var student_name student_company paid;
 title "Fee Status for &crsname (#&crsnum) Held &date";
 footnote "Note: &due in Unpaid Fees";
run;

The PUT function returns the character string formed by writing a value with a specified format.

You can use the PUT function to
• format the result of a numeric expression
• perform explicit numeric-to-character conversion.

General form of the PUT function

 PUT(source, format)

source is a constant, variable, or expression (numeric or character)

format is any SAS or user-defined format.

format determines

 the width of the resulting string

 whether the string is right- or left-aligned.

4-22 Chapter 4 DATA Step and SQL Interfaces

Program Output
 Fee Status for Local Area Networks (#3) Held 01/11/2005

Obs Student_Name Student_Company Paid

 1 Bills, Ms. Paulette Reston Railway Y
 2 Chevarley, Ms. Arlene Motor Communications N
 3 Clough, Ms. Patti Reston Railway N
 4 Crace, Mr. Ron Von Crump Seafood Y
 5 Davis, Mr. Bruce Semi;Conductor Y
 6 Elsins, Ms. Marisa F. SSS Inc. N
 7 Gandy, Dr. David Paralegal Assoc. Y
 8 Gash, Ms. Hedy QA Information Systems Center Y
 9 Haubold, Ms. Ann Reston Railway Y
10 Hudock, Ms. Cathy So. Cal. Medical Center Y
11 Kimble, Mr. John Alforone Chemical N
12 Kochen, Mr. Dennis Reston Railway Y
13 Larocque, Mr. Bret Physicians IPA Y
14 Licht, Mr. Bryan SII Y
15 McKnight, Ms. Maureen E. Federated Bank Y
16 Scannell, Ms. Robin Amberly Corp. N
17 Seitz, Mr. Adam Lomax Services Y
18 Smith, Ms. Jan Reston Railway N
19 Sulzbach, Mr. Bill Sailbest Ships Y
20 Williams, Mr. Gene Snowing Petroleum Y

 Note: $3,900 in Unpaid Fees

 4.1 Creating Macro Variables in the DATA Step 4-23

29

The SYMPUTX Routine
Example: Based on user-selected time periods, dynamically

compute statistics for automatic inclusion within
titles, footnotes, and a graphic reference line.

30

The SYMPUTX Routine
%let start=01Jan2005;
%let stop=31Dec2005;
proc freq data = perm.all;

where begin_date between "&start"d and "&stop"d;
table course_code*location / noprint

out=stats (rename=(count=ENROLLMENT));
run;
data _null_;

set stats end=last;
classes+1;
students+enrollment;
if last;
call symputx('students',students);
call symputx('average',put(students/classes,4.1));

run;
options nolabel;
proc gchart data=stats;

vbar3d location / patternid=midpoint cframe=w shape=c
sumvar=enrollment type=mean mean ref=&average;

title1 "Report from &start to &stop";
title2 h=2 f=swiss "Students this period: " c=b "&students";
footnote1 h=2 f=swiss "Enrollment average: " c=b "&average";

run;

SYMPUT7

4-24 Chapter 4 DATA Step and SQL Interfaces

Computing Statistics for Later Use

SYMPUT7

Generate a horizontal bar chart for a specified period, with dynamically assigned title, footnote, and
reference line position.
%let start=01Jan2005;
%let stop=31Dec2005;
proc freq data = perm.all;
 where begin_date between "&start"d and "&stop"d;
 table course_code*location / noprint
 out=stats (rename=(count=ENROLLMENT));
run;

Listing of STATS data set

 Course_
 Obs Code Location ENROLLMENT PERCENT

 1 C001 Boston 28 9.3645
 2 C001 Dallas 18 6.0201
 3 C002 Boston 20 6.6890
 4 C002 Seattle 33 11.0368
 5 C003 Boston 20 6.6890
 6 C003 Seattle 30 10.0334
 7 C004 Dallas 23 7.6923
 8 C004 Seattle 27 9.0301
 9 C005 Boston 28 9.3645
 10 C005 Dallas 25 8.3612
 11 C006 Boston 27 9.0301
 12 C006 Seattle 20 6.6890

data _null_;
 set stats end=last;
 classes+1;
 students+enrollment;
 if last;
 call symput('students',trim(left(students)));
 call symput('average',put(students/classes,4.1));
run;
%put _user_;

42 %put _user_;
GLOBAL STUDENTS 299
GLOBAL START 01Jan2005
GLOBAL STOP 31Dec2005
GLOBAL AVERAGE 24.9

 4.1 Creating Macro Variables in the DATA Step 4-25

options nolabel;
proc gchart data=stats;
 vbar3d location / patternid=midpoint cframe=w shape=c
 sumvar=enrollment type=mean mean ref=&average;
 title1 "Report from &start to &stop";
 title2 h=2 f=swiss "Students this period: " c=b "&students";
 footnote1 h=2 f=swiss "Enrollment average: " c=b "&average";
run;
quit;

Output from PROC GCHART

Error! Bookmark not defined.

4-26 Chapter 4 DATA Step and SQL Interfaces

Exercises

1. Creating Macro Variables with the SYMPUT Routine

a. Reset the system option DATE|NODATE to NODATE using the OPTIONS statement:
options nodate;

 You may want to activate the SYMBOLGEN option also.

b. Write a DATA step that creates a macro variable named DATE. This macro variable’s value
should be today’s date in the MMDDYY10. format.

The TODAY function returns today’s date as a SAS date value.

c. Insert the value of the macro variable DATE into a TITLE statement:
title "Courses Offered as of &date";

d. Verify that the text of the title resolved correctly by printing the perm.courses data set or by
opening the TITLES window.

e. Modify the DATA step so that the macro variable DATE has a value that reflects the
WORDDATE20. format (month dd, year).

Verify the text of the title again. Make sure there are no extra blanks in the title.

 4.1 Creating Macro Variables in the DATA Step 4-27

Solutions to Exercises

1. Creating Macro Variables with the SYMPUT Routine

a. Reset the system option DATE|NODATE to NODATE using the OPTIONS statement:
options nodate;

You may want to activate the SYMBOLGEN option also.

b. The PUT function converts the numeric SAS date value returned by the TODAY function into a
character string representing today’s date in mm/dd/yyyy form.
data _null_;
 call symput('date',put(today(),mmddyy10.));
run;

c. Insert the value of the macro variable DATE into a TITLE statement:
title "Courses Offered as of &date";

d. This PROC PRINT step should display the desired title:
proc print data=perm.courses;
 title "Courses offered as of &date";
run;

 Courses offered as of 07/19/2004

 Course_
 Obs Code Course_Title Days Fee

 1 C001 Basic Telecommunications 3 $795
 2 C002 Structured Query Language 4 $1150
 3 C003 Local Area Networks 3 $650
 4 C004 Database Design 2 $375
 5 C005 Artificial Intelligence 2 $400
 6 C006 Computer Aided Design 5 $1600

4-28 Chapter 4 DATA Step and SQL Interfaces

e. The WORDDATE20. format typically generates leading blanks. Use the TRIM and LEFT
functions to remove them.
options nodate symbolgen;
data _null_;
 call symput('date',trim(left(put(today(),
 worddate20.))));
run;

title "Courses offered as of &date";

proc print data=perm.courses;
run;

 Courses offered as of July 19, 2004

 Course_
 Obs Code Course_Title Days Fee

 1 C001 Basic Telecommunications 3 $795
 2 C002 Structured Query Language 4 $1150
 3 C003 Local Area Networks 3 $650
 4 C004 Database Design 2 $375
 5 C005 Artificial Intelligence 2 $400
 6 C006 Computer Aided Design 5 $1600

 4.2 Indirect References to Macro Variables 4-29

4.2 Indirect References to Macro Variables

34

Objectives
Reference macro variables indirectly.
Create a series of macro variables using the SYMPUT
routine.

35

Table Lookup Application
Example: Use the perm.register data set to create

a roster for a given course. The report title
should display the instructor for the course.

Roster for Course 3
Taught by Forest, Mr. Peter

Student_Name Paid

Scannell, Ms. Robin N
Seitz, Mr. Adam Y
Smith, Ms. Jan N
Sulzbach, Mr. Bill Y
Williams, Mr. Gene Y

4-30 Chapter 4 DATA Step and SQL Interfaces

36

Table Lookup Application
Step 1: Hardcode the entire program, including the

course number and instructor's name.

proc print data=perm.register noobs;
where course_number=3;
var student_name paid;
title1 "Roster for Course 3";
title2 "Taught by Forest, Mr. Peter";

run;

37

Table Lookup Application
Step 2: Use a macro variable to control the subset and

display the course number in the report title.

%let crs=3;
proc print data=perm.register noobs;

where course_number=&crs;
var student_name paid;
title1 "Roster for Course &crs";

run;

How can we add the instructor's name in TITLE2 without
hardcoding it?

 4.2 Indirect References to Macro Variables 4-31

38

Table Lookup Application
The perm.schedule data set contains
Course_Number and Teacher variables.

Partial Listing of PERM.SCHEDULE Data Set

Course_ Course_ Begin_
Obs Number Code Location Date Teacher

1 1 C001 Seattle 26OCT2004 Hallis, Dr. George
2 2 C002 Dallas 07DEC2004 Wickam, Dr. Alice
3 3 C003 Boston 11JAN2005 Forest, Mr. Peter
4 4 C004 Seattle 25JAN2005 Tally, Ms. Julia
5 5 C005 Dallas 01MAR2005 Hallis, Dr. George
6 6 C006 Boston 05APR2005 Berthan, Ms. Judy
7 7 C001 Dallas 24MAY2005 Hallis, Dr. George
8 8 C002 Boston 14JUN2005 Wickam, Dr. Alice
9 9 C003 Seattle 19JUL2005 Forest, Mr. Peter
10 10 C004 Dallas 16AUG2005 Tally, Ms. Julia

39

Table Lookup Application
Step 3: Add a DATA step to create a macro variable with

the instructor's name from perm.schedule
and resolve the name in TITLE2.

Output from Proc Print

%let crs=3;
data _null_;

set perm.schedule;
where course_number=&crs;
call symput('teacher',trim(teacher));

run;
proc print data=perm.register noobs;

where course_number=&crs;
var student_name paid;
title1 "Roster for Course &crs";
title2 "Taught by &teacher";

run;

4-32 Chapter 4 DATA Step and SQL Interfaces

40

Table Lookup Application
Each time you select a course number to generate a
different report, you must re-run the DATA step. This is
inefficient.

Output from Proc Print

%let crs=4;
data _null_;

set perm.schedule;
where course_number=&crs;
call symput('teacher',trim(teacher));

run;
proc print data=perm.register noobs;

where course_number=&crs;
var student_name paid;
title1 "Roster for Course &crs";
title2 "Taught by &teacher";

run;

Change

INDIRECT1

41

Solution: Execute the DATA step one time only, creating
a numbered series of macro variables to store instructor
names. Derive unique macro variable names by
appending the Course_Number variable, unique on
every observation (1-18), to the prefix (root) TEACH.

Creating a Series of Macro Variables

Symbol Table
Variable Value
TEACH1 Hallis, Dr. George
TEACH2 Wickam, Dr. Alice
TEACH3 Forest, Mr. Peter
… …

 4.2 Indirect References to Macro Variables 4-33

42

Creating a Series of Macro Variables
To create a series of macro variables, use the SYMPUT
or SYMPUTX routine with a DATA step variable or
expression in argument1.

expression1 evaluates to a character value that is a valid
macro variable name, unique to each
execution of the routine.

expression2 value to assign to each macro variable.

CALL SYMPUT(expression1,expression2);

CALL SYMPUTX(expression1,expression2);

CALL SYMPUT(expression1,expression2);

CALL SYMPUTX(expression1,expression2);

43

Creating a Series of Macro Variables
Step 4: Create a series of macro variables containing the

name of the instructor assigned to a specific
course.

data _null_;
set perm.schedule;
call symput('teach'||left(course_number),

trim(teacher));
run;
%put _user_;

INDIRECT2

4-34 Chapter 4 DATA Step and SQL Interfaces

44

Creating a Series of Macro Variables
SAS Log
137 %put _user_;
GLOBAL TEACH1 Hallis, Dr. George
GLOBAL TEACH13 Hallis, Dr. George
GLOBAL TEACH12 Berthan, Ms. Judy
GLOBAL TEACH3 Forest, Mr. Peter
GLOBAL TEACH15 Forest, Mr. Peter
GLOBAL TEACH2 Wickam, Dr. Alice
GLOBAL TEACH14 Wickam, Dr. Alice
GLOBAL TEACH17 Hallis, Dr. George
GLOBAL TEACH16 Tally, Ms. Julia
GLOBAL TEACH18 Berthan, Ms. Judy
GLOBAL TEACH9 Forest, Mr. Peter
GLOBAL TEACH8 Wickam, Dr. Alice
GLOBAL TEACH5 Hallis, Dr. George
GLOBAL TEACH4 Tally, Ms. Julia
GLOBAL TEACH7 Hallis, Dr. George
GLOBAL TEACH11 Tally, Ms. Julia
GLOBAL TEACH6 Berthan, Ms. Judy
GLOBAL TEACH10 Tally, Ms. Julia

45

Creating a Series of Macro Variables
Because there are no macro triggers, the entire DATA step
is passed to the compiler. The compiled DATA step
executes after the RUN statement is encountered.

Input
Stack SYSDAY Tuesday

Symbol Table

Compiler

Word
Scanner

%put _user_;%put _user_;

run;run;

data _null_;
set perm.schedule;
call symput('teach'||left(course_number),

trim(teacher));

data _null_;
set perm.schedule;
call symput('teach'||left(course_number),

trim(teacher));

Macro Processor

 4.2 Indirect References to Macro Variables 4-35

46

Partial PDV
Teacher

$
20

Course_
Number

N
8

Partial Listing of perm.schedule

data _null_;
set perm.schedule;
call symput('teach'||

left(course_number),
trim(teacher));

run;

Course_Number Teacher

1 Hallis, Dr. George
2 Wickam, Dr. Alice
3 Forest, Mr. Peter
4 Tally, Ms. Julia

SYSDAY Tuesday

Symbol Table

47

Partial PDV
Teacher

$
20

Course_
Number

N
8

1

Partial Listing of perm.schedule

data _null_;
set perm.schedule;
call symput('teach'||

left(course_number),
trim(teacher));

run;

Course_Number Teacher

1 Hallis, Dr. George
2 Wickam, Dr. Alice
3 Forest, Mr. Peter
4 Tally, Ms. Julia

Hallis, Dr. George

The SET statement reads
the first observation into
the PDV.

SYSDAY Tuesday

Symbol Table

4-36 Chapter 4 DATA Step and SQL Interfaces

48

Partial PDV
Teacher

$
20

Course_
Number

N
8

1

Partial Listing of perm.schedule

data _null_;
set perm.schedule;
call symput('teach'||

left(course_number),
trim(teacher));

run;

Course_Number Teacher

1 Hallis, Dr. George
2 Wickam, Dr. Alice
3 Forest, Mr. Peter
4 Tally, Ms. Julia

Hallis, Dr. George

CALL SYMPUT evaluates the
expressions and adds a macro
variable to the symbol table.

SYSDAY
TEACH1

Tuesday
Hallis, Dr. George

Symbol Table

49

Partial PDV
Teacher

$
20

Course_
Number

N
8

1

Partial Listing of perm.schedule

data _null_;
set perm.schedule;
call symput('teach'||

left(course_number),
trim(teacher));

run;

Course_Number Teacher

1 Hallis, Dr. George
2 Wickam, Dr. Alice
3 Forest, Mr. Peter
4 Tally, Ms. Julia

Hallis, Dr. George

SYSDAY
TEACH1

Tuesday
Hallis, Dr. George

Symbol Table

Automatic return

 4.2 Indirect References to Macro Variables 4-37

50

Partial PDV
Teacher

$
20

Course_
Number

N
8

2

Partial Listing of perm.schedule

data _null_;
set perm.schedule;
call symput('teach'||

left(course_number),
trim(teacher));

run;

Course_Number Teacher

1 Hallis, Dr. George
2 Wickam, Dr. Alice
3 Forest, Mr. Peter
4 Tally, Ms. Julia

Wickam, Dr. Alice

SYSDAY
TEACH1

Tuesday
Hallis, Dr. George

Symbol Table

The SET statement reads
the next observation into
the PDV.

51

Partial PDV
Teacher

$
20

Course_
Number

N
8

2

Partial Listing of perm.schedule

data _null_;
set perm.schedule;
call symput('teach'||

left(course_number),
trim(teacher));

run;

Course_Number Teacher

1 Hallis, Dr. George
2 Wickam, Dr. Alice
3 Forest, Mr. Peter
4 Tally, Ms. Julia

Wickam, Dr. Alice

SYSDAY
TEACH1
TEACH2

Tuesday
Hallis, Dr. George
Wickam, Dr. Alice

Symbol Table

CALL SYMPUT evaluates the
expressions and adds a macro
variable to the symbol table.

4-38 Chapter 4 DATA Step and SQL Interfaces

52

Partial PDV
Teacher

$
20

Course_
Number

N
8

2

Partial Listing of perm.schedule

data _null_;
set perm.schedule;
call symput('teach'||

left(course_number),
trim(teacher));

run;

Course_Number Teacher

1 Hallis, Dr. George
2 Wickam, Dr. Alice
3 Forest, Mr. Peter
4 Tally, Ms. Julia

Wickam, Dr. Alice

SYSDAY
TEACH1
TEACH2

Tuesday
Hallis, Dr. George
Wickam, Dr. Alice

Symbol Table

Processing continues until SAS
has read all observations in the
perm.schedule data set.

53

Creating a Series of Macro Variables
After the DATA step completes, control returns to the
word scanner.

Macro Processor

Input
Stack

Compiler

Word
Scanner

user;_user_;

%
put
%
put

SYSDAY
TEACH1
TEACH2

Tuesday
Hallis, Dr. George
Wickam, Dr. Alice

Symbol Table

 4.2 Indirect References to Macro Variables 4-39

54

Creating a Series of Macro Variables
The %PUT statement is passed to the macro processor
for execution.

Macro Processor

Input
Stack

Compiler

Word
Scanner

%put _user_;%put _user_;

SYSDAY
TEACH1
TEACH2

Tuesday
Hallis, Dr. George
Wickam, Dr. Alice

Symbol Table

55

Creating a Series of Macro Variables
SAS Log
137 %put _user_;
GLOBAL TEACH1 Hallis, Dr. George
GLOBAL TEACH13 Hallis, Dr. George
GLOBAL TEACH12 Berthan, Ms. Judy
GLOBAL TEACH3 Forest, Mr. Peter
GLOBAL TEACH15 Forest, Mr. Peter
GLOBAL TEACH2 Wickam, Dr. Alice
GLOBAL TEACH14 Wickam, Dr. Alice
GLOBAL TEACH17 Hallis, Dr. George
GLOBAL TEACH16 Tally, Ms. Julia
GLOBAL TEACH18 Berthan, Ms. Judy
GLOBAL TEACH9 Forest, Mr. Peter
GLOBAL TEACH8 Wickam, Dr. Alice
GLOBAL TEACH5 Hallis, Dr. George
GLOBAL TEACH4 Tally, Ms. Julia
GLOBAL TEACH7 Hallis, Dr. George
GLOBAL TEACH11 Tally, Ms. Julia
GLOBAL TEACH6 Berthan, Ms. Judy
GLOBAL TEACH10 Tally, Ms. Julia

4-40 Chapter 4 DATA Step and SQL Interfaces

56

Creating a Series of Macro Variables
You can now reference the correct name without
rerunning the DATA step.

%let crs=2;
proc print data=perm.register noobs;

where course_number=&crs;
var student_name paid;
title1 "Roster for Course &crs";
title2 "Taught by &teach2";

run;

Symbol Table
Variable Value
CRS 2
TEACH1 Hallis, Dr. George
TEACH2 Wickam, Dr. Alice
TEACH3 Forest, Mr. Peter
… …

INDIRECT3

57

Creating a Series of Macro Variables
But now you must change two lines of code for every new
report. How can this be improved?

Output from Proc Print%let crs=3;
proc print data=perm.register noobs;

where course_number=&crs;
var student_name paid;
title1 "Roster for Course &crs";
title2 "Taught by &teach3";

run;

Symbol Table
Variable Value
CRS 3
TEACH1 Hallis, Dr. George
TEACH2 Wickam, Dr. Alice
TEACH3 Forest, Mr. Peter
… …

Change

Change

 4.2 Indirect References to Macro Variables 4-41

58

Because the CRS macro variable matches part of the
name of a TEACH macro variable, the CRS macro variable
can indirectly reference a TEACH macro variable.

Indirect References to Macro Variables

Symbol Table
Variable Value
CRS 3
TEACH1 Hallis, Dr. George
TEACH2 Wickam, Dr. Alice
TEACH3 Forest, Mr. Peter
… …

59

Indirect References to Macro Variables
The Forward Rescan Rule:

Multiple ampersands preceding a name token denote
an indirect reference that ends when a token is
encountered that cannot be part of a macro variable
reference, that is, a token other than a name, an
ampersand, or a period delimiter.
The macro processor will re-scan an indirect
reference, left to right, from the point where the
multiple ampersands begin.
Two ampersands (&&) resolve to one ampersand (&).
Scanning continues until no more triggers can be
resolved.

4-42 Chapter 4 DATA Step and SQL Interfaces

60

Indirect References to Macro Variables
Step 5: Use an indirect reference.
%let crs=3;
proc print data=perm.register noobs;

where course_number=&crs;
var student_name paid;
title1 "Roster for Course &crs";
title2 "Taught by &&teach&crs";

run;

Roster for Course 3
Taught by Forest, Mr. Peter

Student_Name Paid

Scannell, Ms. Robin N
Seitz, Mr. Adam Y
Smith, Ms. Jan N
Sulzbach, Mr. Bill Y
Williams, Mr. Gene Y

INDIRECT4

61

Placing two ampersands at the start of the original token
sequence alters the processing of the tokens and macro
triggers.

Indirect References to Macro Variables

reference

1st scan

2nd scan
(only occurs when
&& is encountered)

&teach&crs

&teach3

WARNING

&&teach&crs

teach3&

Forest, Mr. Peter

...

 4.2 Indirect References to Macro Variables 4-43

62

The CRS macro variable is an indirect reference to a
TEACH macro variable.

Indirect References to Macro Variables

Symbol Table
Variable Value
CRS 3
TEACH1 Hallis, Dr. George
TEACH2 Wickam, Dr. Alice
TEACH3 Forest, Mr. Peter
… …

Scan sequence:

&&teach&crs &teach3 Forest, Mr. Peter

4-44 Chapter 4 DATA Step and SQL Interfaces

Indirect References to Macro Variables

INDIRECT2, INDIRECT4

Create a series of macro variables teach1 to teachn, each containing the name of the instructor assigned to
a specific course. Reference one of these variables when a course number is designated.
options symbolgen;
data _null_;
 set perm.schedule;
 call symput('teach'||left(course_number),trim(teacher));
run;

%let crs=3;
proc print data=perm.register noobs;
 where course_number=&crs;
 var student_name paid;
 title1 "Roster for Course &crs";
 title2 "Taught by &&teach&crs";
run;

Partial SAS Log
65 %let crs=3;
66 proc print data=perm.register noobs;
67 where course_number=&crs;
SYMBOLGEN: Macro variable CRS resolves to 3
68 var student_name paid;
SYMBOLGEN: Macro variable CRS resolves to 3
69 title1 "Roster for Course &crs";
SYMBOLGEN: && resolves to &.
SYMBOLGEN: Macro variable CRS resolves to 3
SYMBOLGEN: Macro variable TEACH3 resolves to Forest, Mr. Peter
70 title2 "Taught by &&teach&crs";
71 run;

NOTE: There were 20 observations read from the dataset PERM.REGISTER.
 WHERE course_number=3;
NOTE: PROCEDURE PRINT used:
 real time 2.03 seconds
 cpu time 0.03 seconds

 4.2 Indirect References to Macro Variables 4-45

SAS Output
 Roster for Course 3
 Taught by Forest, Mr. Peter

 Student_Name Paid

 Bills, Ms. Paulette Y
 Chevarley, Ms. Arlene N
 Clough, Ms. Patti N
 Crace, Mr. Ron Y
 Davis, Mr. Bruce Y
 Elsins, Ms. Marisa F. N
 Gandy, Dr. David Y
 Gash, Ms. Hedy Y
 Haubold, Ms. Ann Y
 Hudock, Ms. Cathy Y
 Kimble, Mr. John N
 Kochen, Mr. Dennis Y
 Larocque, Mr. Bret Y
 Licht, Mr. Bryan Y
 McKnight, Ms. Maureen E. Y
 Scannell, Ms. Robin N
 Seitz, Mr. Adam Y
 Smith, Ms. Jan N
 Sulzbach, Mr. Bill Y
 Williams, Mr. Gene Y

4-46 Chapter 4 DATA Step and SQL Interfaces

64

Table Lookup Application (Self-Study)
Example: Use the perm.schedule data set to create a

list of offerings of a given course. The report title
should display the name of the course.

Schedule for Structured Query Language

Location Begin Instructor

Dallas 07DEC2004 Wickam, Dr. Alice
Boston 14JUN2005 Wickam, Dr. Alice
Seattle 06DEC2005 Wickam, Dr. Alice

65

Table Lookup Application (Self-Study)
The perm.courses data set contains course names
that can be transferred into macro variables as in the
previous example.
The values of Course_Code are unique and can be
used as macro variable names without alteration.

Listing of PERM.COURSES Data Set

Course_
Obs Code Course_Title Days Fee

1 C001 Basic Telecommunications 3 $795
2 C002 Structured Query Language 4 $1150
3 C003 Local Area Networks 3 $650
4 C004 Database Design 2 $375
5 C005 Artificial Intelligence 2 $400
6 C006 Computer Aided Design 5 $1600

 4.2 Indirect References to Macro Variables 4-47

66

Table Lookup Application (Self-Study)
Example: Create a series of macro variables, one for each

course code. Assign the corresponding value of
the variable course_title to each macro
variable.

data _null_;
set perm.courses;
call symputx(course_code, course_title);

run;

Because the values of Course_Code represent valid
macro variable names, there is no need to precede the
value of Course_Code with a separate prefix (root).

INDIRECT5

67

Table Lookup Application (Self-Study)
Because the value of one macro variable exactly matches
the name of another macro variable, three ampersands
appear together in this indirect macro variable reference.

%let crsid=C002;
proc print data=perm.schedule noobs label;

where course_code="&crsid";
var location begin_date teacher;
title1 "Schedule for &&&crsid";

run;
INDIRECT6

4-48 Chapter 4 DATA Step and SQL Interfaces

68

Use three ampersands when the value of one macro
variable matches the entire name of a second macro
variable.

Table Lookup Application (Self-Study)

Scan sequence:

&&&crsid &c002 Structured Query Language

Symbol Table
Variable Value
CRSID C002
C001 Basic Telecommunications
C002 Structured Query Language
C003 Local Area Networks
C004 Database Design
C005 Artificial Intelligence
C006 Computer Aided Design

69

Placing three ampersands at the start of the original
token sequence alters the processing of the tokens and
macro triggers.

Table Lookup Application (Self-Study)

reference

1st scan

2nd scan
(only occurs when
&& is encountered)

&&&crsid

c002&

Structured Query Language

 4.2 Indirect References to Macro Variables 4-49

Exercises

2. Creating Multiple Macro Variables with the SYMPUT Routine

a. The perm.schedule data set contains the variable begin_date, which contains the starting
date of each course. Use a DATA step to create a series of macro variables named START1
through STARTn, one for each course offered. The value of each START macro variable should
be the starting date of the corresponding class in the MMDDYY10. format.

b. Open the prtrost program shown below into the Editor window. Modify the TITLE statement
so the series of Xs is replaced with an indirect macro variable reference to one of the START
variables based on the current value of CRS. Submit the modified program.
%let crs=4;
proc print data=perm.all noobs n;
 where course_number=&crs;
 var student_name student_company;
 title1 "Roster for Course &crs";
 title2 "Beginning on XXXXX";
run;

4-50 Chapter 4 DATA Step and SQL Interfaces

Solutions to Exercises

2. Creating Multiple Macro Variables with the SYMPUT Routine

a. Concatenating the text start with the value of the course_number variable specifies the
name of each macro variable. Because the course_number variable is numeric, the LEFT
function is required to remove the leading blanks introduced by the automatic numeric-to-
character conversion. The %PUT statement displays the names and values of all user-created
macro variables.

data _null_;
 set perm.schedule;
 call symput('start'||trim(left(course_number)),
 put(begin_date,mmddyy10.));
run;

%put _user_;

 4.2 Indirect References to Macro Variables 4-51

b. Because each macro variable that contains a course date has a common root at the start of its
name (START) and a suffix that corresponds to the value of the CRS macro variable, two
ampersands are used in front of the complete reference.

options symbolgen;
%let crs=4;
proc print data=perm.all noobs n;
 where course_number=&crs;
 var student_name student_company;
 title1 "Roster for Course &crs";
 title2 "Beginning on &&start&crs";
run;

Partial SAS Log
161 options symbolgen;
162 %let crs=4;
163 proc print data=perm.all noobs n;
164 where course_number=&crs;
SYMBOLGEN: Macro variable CRS resolves to 4
165 var student_name student_company;
SYMBOLGEN: Macro variable CRS resolves to 4
166 title1 "Roster for Course &crs";
SYMBOLGEN: && resolves to &.
SYMBOLGEN: Macro variable CRS resolves to 4
SYMBOLGEN: Macro variable START4 resolves to 01/25/2005
167 title2 "Beginning on &&start&crs";
168 run;

Partial Output
 Roster for Course 4
 Beginning on 1/25/2005

 Student_Name Student_Company

 Bates, Ms. Ellen Reston Railway
 Boyd, Ms. Leah United Shoes Co.
 Chan, Mr. John California Lawyers Assn.
 Chevarley, Ms. Arlene Motor Communications
 Chow, Ms. Sylvia Bostic Amplifier Inc.
 Crace, Mr. Ron Von Crump Seafood
 Edwards, Mr. Charles Gorman Tire Corp.
 Garza, Ms. Cheryl Admiral Research & Development Co.
 Geatz, Mr. Patrick D. San Juan Gas and Electric
 Keever, Ms. Linda Crossbow of California
 Kelley, Ms. Gail Crossbow of California
 Kendig, Mr. James Rocks International
 Kimble, Mr. John Alforone Chemical
 Koleff, Mr. Jim Emulate Research
 Montgomery, Mr. Jeff Bonstell Electronics
 Moore, Mr. John California Dept. of Insurance
 Page, Mr. Scott Applied Technologies
 Parker, Mr. Robert SMASH Hardware Inc.

4-52 Chapter 4 DATA Step and SQL Interfaces

4.3 Retrieving Macro Variables in the DATA Step (Self-Study)

72

Objectives
Obtain the value of a macro variable during DATA step
execution.
Describe the difference between the SYMGET
function and macro variable references.

77

The SYMGET Function

%LET

CALL SYMPUT

create macro
variables

&macvar
word

scanning
time

execution
time

retrieve macro
variables

SYMGET(macvar)

 4.3 Retrieving Macro Variables in the DATA Step (Self-Study) 4-53

78

The SYMGET Function
Retrieve a macro variable’s value during DATA step
execution with the SYMGET function.

Program Data Vector

DATA Step
Variables

Symbol Table

SYMGET

79

The SYMGET Function
General form of the SYMGET function:

macro-variable can be specified as a
character literal
DATA step character expression.

A DATA step variable created by the SYMGET function is
a character variable with a length of 200 bytes unless it
has been previously defined.

SYMGET(macro-variable)SYMGET(macro-variable)

4-54 Chapter 4 DATA Step and SQL Interfaces

80

The SYMGET Function

data _null_;
set perm.schedule;
call symput(’teach’||left(course_number),

trim(teacher));
run;

The SYMGET function can be used in table lookup
applications.

Example: Use the SYMPUT routine to create a series of
macro variables.

teach1
teach2
teach3

Hallis, Dr. George
Wickam, Dr. Alice
Forest, Mr. Peter

Symbol Table

SYMGET1

81

The SYMGET Function

data teachers;
set perm.register;
length teacher $ 20;
teacher=symget(’teach’||left(course_number));

run;

Example: Look up the teacher's name from the symbol
table by deriving the corresponding macro
variable's name from the data set variable
course_number.

SYMGET1

 4.3 Retrieving Macro Variables in the DATA Step (Self-Study) 4-55

82

The SYMGET Function
Because there are no macro triggers, the entire DATA
step is passed to the compiler. The DATA step executes
after the RUN statement is encountered.

Macro Processor

Input
Stack

Compiler

Word
Scanner

run;run;

data teachers;
set perm.register;
length teacher $ 20;
teacher=symget(’teach’||left(course_number));

data teachers;
set perm.register;
length teacher $ 20;
teacher=symget(’teach’||left(course_number));

teach1
teach2
teach3

Hallis, Dr. George
Wickam, Dr. Alice
Forest, Mr. Peter

Symbol Table

83

Partial PDV

Teacher
$

20

Course_
Number

N
8

.

Partial Listing of perm.register
data teachers;

set perm.register;
length teacher $ 20;
teacher=symget(’teach’||

left(course_number));
run;

Initialize PDV
to missing.

Course_
Student_Name Number Paid

Albritton, Mr. Bryan 1 Y
Amigo, Mr. Bill 2 Y
Chodnoff, Mr. Norman 1 Y

teach1
teach2
teach3

Hallis, Dr. George
Wickam, Dr. Alice
Forest, Mr. Peter

Symbol Table

4-56 Chapter 4 DATA Step and SQL Interfaces

84

Partial PDV

Teacher
$

20

Course_
Number

N
8

1

Partial Listing of perm.register
data teachers;

set perm.register;
length teacher $ 20;
teacher=symget(’teach’||

left(course_number));
run;

Course_
Student_Name Number Paid

Albritton, Mr. Bryan 1 Y
Amigo, Mr. Bill 2 Y
Chodnoff, Mr. Norman 1 Y

teach1
teach2
teach3

Hallis, Dr. George
Wickam, Dr. Alice
Forest, Mr. Peter

Symbol Table

The SET statement reads the
first observation into the PDV.

85

Partial PDV

Teacher
$

20

Course_
Number

N
8

1

Partial Listing of perm.register
data teachers;

set perm.register;
length teacher $ 20;
teacher=symget(’teach’||

left(course_number));
run;

Course_
Student_Name Number Paid

Albritton, Mr. Bryan 1 Y
Amigo, Mr. Bill 2 Y
Chodnoff, Mr. Norman 1 Y

Hallis, Dr. George

teach1
teach2
teach3

Hallis, Dr. George
Wickam, Dr. Alice
Forest, Mr. Peter

Symbol Table

The SYMGET function
retrieves the macro variable
value from the symbol table.
teacher=symget(’teach1’);

 4.3 Retrieving Macro Variables in the DATA Step (Self-Study) 4-57

86

Partial PDV

Teacher
$

20

Course_
Number

N
8

1

Partial Listing of perm.register
data teachers;

set perm.register;
length teacher $ 20;
teacher=symget(’teach’||

left(course_number));
run;

Course_
Student_Name Number Paid

Albritton, Mr. Bryan 1 Y
Amigo, Mr. Bill 2 Y
Chodnoff, Mr. Norman 1 Y

Hallis, Dr. George

teach1
teach2
teach3

Hallis, Dr. George
Wickam, Dr. Alice
Forest, Mr. Peter

Symbol Table

Automatic output
At the bottom of the step, SAS
automatically outputs the
observation to the new data set
work.teachers.

87

Partial PDV

Teacher
$

20

Course_
Number

N
8

1

Partial Listing of perm.register
data teachers;

set perm.register;
length teacher $ 20;
teacher=symget(’teach’||

left(course_number));
run;

Course_
Student_Name Number Paid

Albritton, Mr. Bryan 1 Y
Amigo, Mr. Bill 2 Y
Chodnoff, Mr. Norman 1 Y

teach1
teach2
teach3

Hallis, Dr. George
Wickam, Dr. Alice
Forest, Mr. Peter

Symbol Table

Automatic return

At the bottom of the step,
SAS automatically returns to
the top of the step. The PDV
is reinitialized.

4-58 Chapter 4 DATA Step and SQL Interfaces

88

Partial PDV

Teacher
$

20

Course_
Number

N
8

2

Partial Listing of perm.register
data teachers;

set perm.register;
length teacher $ 20;
teacher=symget(’teach’||

left(course_number));
run;

Course_
Student_Name Number Paid

Albritton, Mr. Bryan 1 Y
Amigo, Mr. Bill 2 Y
Chodnoff, Mr. Norman 1 Y

teach1
teach2
teach3

Hallis, Dr. George
Wickam, Dr. Alice
Forest, Mr. Peter

Symbol Table

The SET statement reads the
second observation into the
PDV.

89

Partial PDV

Teacher
$

20

Course_
Number

N
8

2

Partial Listing of perm.register
data teachers;

set perm.register;
length teacher $ 20;
teacher=symget(’teach’||

left(course_number));
run;

Course_
Student_Name Number Paid

Albritton, Mr. Bryan 1 Y
Amigo, Mr. Bill 2 Y
Chodnoff, Mr. Norman 1 Y

Wickam, Dr. Alice

teach1
teach2
teach3

Hallis, Dr. George
Wickam, Dr. Alice
Forest, Mr. Peter

Symbol Table

The SYMGET function
retrieves the macro variable
value from the symbol table.
teacher=symget(’teach2’);

 4.3 Retrieving Macro Variables in the DATA Step (Self-Study) 4-59

90

Partial PDV

Teacher
$

20

Course_
Number

N
8

Partial Listing of perm.register
data teachers;

set perm.register;
length teacher $ 20;
teacher=symget(’teach’||

left(course_number));
run;

Course_
Student_Name Number Paid

Albritton, Mr. Bryan 1 Y
Amigo, Mr. Bill 2 Y
Chodnoff, Mr. Norman 1 Y

teach1
teach2
teach3

Hallis, Dr. George
Wickam, Dr. Alice
Forest, Mr. Peter

Symbol Table

Processing continues until
SAS has read all rows in the
perm.register data
set.

91

The SYMGET Function

Partial SAS Output
Teacher for Each Registered Student

Course_
Obs Student_Name Number teacher

1 Albritton, Mr. Bryan 1 Hallis, Dr. George
2 Amigo, Mr. Bill 2 Wickam, Dr. Alice
3 Chodnoff, Mr. Norman 1 Hallis, Dr. George

title1 "Teacher for Each Registered Student";
proc print data=teachers;

var student_name course_number teacher;
run;

SYMGET1

4-60 Chapter 4 DATA Step and SQL Interfaces

Exercises

3. Resolving Macro Variables with the SYMGET Function

Retrieve the starts program shown below and submit it to create a series of macro variables
containing the starting date for each course.

data _null_;
 set perm.schedule;
 call symput('start'||trim(left(course_number)),
 put(begin_date,mmddyy10.));
run;

a. Display the values of the newly created macro variables in the SAS log.

b. Create a temporary data set named outstand containing the students in the perm.register
data set who have not yet paid their registration fee. Create a new variable that indicates the
starting date for the corresponding course number. Print the outstand data set.

 The INPUT function is needed to convert character values of macro variables retrieved by the
SYMGET function into numeric SAS data values.

 4.3 Retrieving Macro Variables in the DATA Step (Self-Study) 4-61

4. Macro Variable Storage and Resolution (Optional)

Determine the type, length, and value of the DATA step variables in the program below.
%let var1=cat;
%let var2=3;
data test;
 length s1 s4 s5 $ 3;
 call symput(’var3’,’dog’);
 r1="&var1";
 r2=&var2;
 r3="&var3";
 s1=symget(’var1’);
 s2=symget(’var2’);
 s3=input(symget(’var2’),2.);
 s4=symget(’var3’);
 s5=symget(’var’||left(r2));
run;

Name Type Length Value

R1

R2

R3

S1

S2

S3

S4

S5

Hint: Mimic the behavior of SAS by making three passes through the program: word scanning,
 compilation, and execution.

Hint: Draw a symbol table, updating it as each macro variable is created and assigned a value.

4-62 Chapter 4 DATA Step and SQL Interfaces

Solutions to Exercises

3. Resolving Macro Variables with the SYMGET Function

a. The _USER_ argument in the %PUT statement displays all user-created macro variables.
%put _user_;

Partial SAS Log
GLOBAL START17 02/28/2006
GLOBAL START16 01/24/2006
GLOBAL DSN perm.courses
GLOBAL VARS days fee
GLOBAL START8 06/14/2005
GLOBAL START18 03/28/2006
GLOBAL START9 07/19/2005
GLOBAL CRSNUM 3
GLOBAL DATE 01/11/2005
GLOBAL START4 01/25/2005
GLOBAL START5 03/01/2005
GLOBAL START6 04/05/2005
GLOBAL NUMPAID 14
GLOBAL START7 05/24/2005
GLOBAL START11 09/20/2005
GLOBAL NUMSTU 20
GLOBAL CRSNAME Local Area Networks
GLOBAL DUE $3,900
GLOBAL START10 08/16/2005
GLOBAL NUM 8
GLOBAL START1 10/26/2004
GLOBAL START13 11/15/2005
GLOBAL START2 12/07/2004
GLOBAL START12 10/04/2005
GLOBAL START3 01/11/2005
GLOBAL START15 01/10/2006
GLOBAL START14 12/06/2005

 The order in which the macro variables are displayed may differ from the order in which they
were created.

 4.3 Retrieving Macro Variables in the DATA Step (Self-Study) 4-63

b. The correct date can be obtained by appending the value of the course_number variable as a
suffix to START to identify the corresponding macro variable name. The retrieved (character)
value should be converted to a numeric SAS date value with a permanently assigned format.

data outstand;
 set perm.register;
 where paid='N';
 begin=input(symget('start'||
 left(course_number)),mmddyy10.);
 format begin date9.;
run;

proc print data=outstand;
 var student_name course_number begin;
 title1 "Class Dates for Students";
 title2 "with Outstanding Fees";
run;

Partial SAS Output
Class Dates for Students

 with Outstanding Fees

 Course_
 Obs Student_Name Number begin

 1 Amigo, Mr. Bill 1 26OCT2004
 2 Edwards, Mr. Charles 1 26OCT2004
 3 Haubold, Ms. Ann 1 26OCT2004
 4 Hodge, Ms. Rita 1 26OCT2004
 5 McGillivray, Ms. Kathy 1 26OCT2004
 6 Pancoast, Ms. Jane 1 26OCT2004
 7 Divjak, Ms. Theresa 2 07DEC2004
 8 Gandy, Dr. David 2 07DEC2004
 9 Harrell, Mr. Ken 2 07DEC2004
 10 Hill, Mr. Paul 2 07DEC2004
 11 Lewanwowski, Mr. Dale R. 2 07DEC2004
 12 Nandy, Ms. Brenda 2 07DEC2004
 13 Ng, Mr. John 2 07DEC2004
 14 Williams, Mr. Gene 2 07DEC2004
 15 Chevarley, Ms. Arlene 3 11JAN2005

4-64 Chapter 4 DATA Step and SQL Interfaces

4. Macro Variable Storage and Resolution (Optional)

Word Scanning

Substitutions based on macro variable references using & occur during word scanning.

R1 and R2 Macro variables VAR1 and VAR2 exist so both substitutions occur.

R3 Macro variable VAR3 does not exist until the CALL SYMPUT statement executes, so no
 substitution is made.
data test:
length s1 s4 s5 $ 3;
call symput('var3','dog');
r1="cat";
r2=3;
r3="&var3";
s1=symget('var1');
s2=symget('var2');
s3=input(symget('var2'),2.);
s4=symget('var3');
s5=symget('var'||left(r2));
run;

 4.3 Retrieving Macro Variables in the DATA Step (Self-Study) 4-65

Compilation

The attributes of each variable are determined during compilation of the resulting DATA step
program:

data test:
length s1 s4 s5 $ 3;
call symput('var3','dog');
r1="cat";
r2=3;
r3="&var3";
s1=symget('var1');
s2=symget('var2');
s3=input(symget('var2'),2.);
s4=symget('var3');
s5=symget('var'||left(r2));
run;

S1, S4, S5 Explicit definition as character variables with length 3.

R2 Lack of quotes around the assigned value indicates a numeric variable. Default length
for numeric variables is 8.

R1 and R3 Quotes around the assigned value indicate a character variable. The number of
characters inside the quotes determines the length.

S2 Assignment from the SYMGET function indicates a character variable. No explicitly
assigned length defaults to 200; the compile does not know what value will be in the
symbol table during execution, the 200 bytes is allocated.

S3 Assignment from the INPUT function with a numeric informat indicates a numeric
variable. Default length for numeric variables is 8.

4-66 Chapter 4 DATA Step and SQL Interfaces

Execution

The values of each variable are determined during execution of the program. It is at this time that the
CALL SYMPUT statement creates the macro variable VAR3 so that its value is available for retrieval
by the SYMGET function later in the DATA step.

R1 and R2 Hardcoded values are assigned.

R3 The reference &VAR3 is a text string during execution, so this is also a hardcoded
value.

S1 Value obtained from the symbol table.

S2 Value obtained from the symbol tables does not fill allotment of 200 characters;
there are 199 trailing blanks.

S3 The first two characters obtained from the symbol table are converted into a
numeric value using the 2. informat.

S4 and S5 Same value obtained from the symbol table since each SYMGET argument results
in the character string var3. Macro variable VAR3 was created earlier in the
execution of the DATA step.

Name Type Length Value

R1 Char 3 cat

R2 Num 8 3

R3 Char 5 &var3

S1 Char 3 cat

S2 Char 200 3

S3 Num 8 3

S4 Char 3 dog

S5 Char 3 dog

 4.4 Creating Macro Variables in SQL 4-67

4.4 Creating Macro Variables in SQL

94

Objectives
Create macro variables during PROC SQL execution.
Store several values in one macro variable using the
SQL procedure.

95

The SQL Procedure INTO Clause
The SQL procedure INTO clause can create or update
macro variables.

General form of the SQL procedure INTO clause:

This form of the INTO clause does not trim leading or
trailing blanks.

SELECT col1, col2, . . . INTO :mvar1, :mvar2,...
FROM table-expression
WHERE where-expression
other clauses;

SELECT col1, col2, . . . INTO :mvar1, :mvar2,...
FROM table-expression
WHERE where-expression
other clauses;

4-68 Chapter 4 DATA Step and SQL Interfaces

96

Example: Create a macro variable that contains the
total of all course fees.

The SQL Procedure INTO Clause

proc sql noprint;
select sum(fee) format=dollar10.

into :totfee
from perm.all;

quit;

The %LET statement removes leading and trailing blanks
from TOTFEE.

Partial SAS Log
13 %let totfee=&totfee;
14 %put totfee=&totfee;
totfee=$354,380

SQL1

97

The SQL Procedure INTO Clause
The INTO clause can create multiple macro variables per
row when multiple rows are selected.

General form of the INTO clause to create multiple macro
variables per row:

SELECT col1, . . . INTO :mvar1 - :mvarn,...
FROM table-expression
WHERE where-expression
other clauses;

SELECT col1, . . . INTO :mvar1 - :mvarn,...
FROM table-expression
WHERE where-expression
other clauses;

 4.4 Creating Macro Variables in SQL 4-69

98

The SQL Procedure INTO Clause
Example: Create macro variables from the course code and

begin date from the first two rows returned by the
SELECT statement from perm.schedule.

title 'SQL result';
proc sql;

select course_code, begin_date format=mmddyy10.
into :crsid1-:crsid2, :date1-:date2
from perm.schedule
where year(begin_date)=2006
order by begin_date;

quit;
%put &crsid1, &date1;
%put &crsid2, &date2;

SQL2

99

The SQL Procedure INTO Clause

Partial SAS Log

53 %put &crsid1, &date1;
C003, 01/10/2006
54 %put &crsid2, &date2;
C004, 01/24/2006

SQL result

Course_Code Begin_Date
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
C003 01/10/2006
C004 01/24/2006
C005 02/28/2006
C006 03/28/2006

SELECT statement
output

4-70 Chapter 4 DATA Step and SQL Interfaces

100

1. Run a query to determine the number of rows and
create a macro variable NUMROWS to store that
number.

2. Run a query using NUMROWS as the suffix of a
numbered series of macro variables.

The SQL Procedure INTO Clause
(Self-Study)
The INTO clause can create macro variables for an
unknown number of rows.

 4.4 Creating Macro Variables in SQL 4-71

The SQL Procedure INTO Clause (Self-Study)

SQL3

Create ranges of macro variables that contain the course code, location, and starting date of all courses
scheduled in 2006.
proc sql noprint;
 select count(*)
 into :numrows
 from perm.schedule
 where year(begin_date)=2006;
 %let numrows=&numrows;
 %put There are &numrows courses in 2006;
 select course_code, location,
 begin_date format=mmddyy10.
 into :crsid1-:crsid&numrows,
 :place1-:place&numrows,
 :date1-:date&numrows
 from perm.schedule
 where year(begin_date)=2006
 order by begin_date;
 %put _user_;
quit;

4-72 Chapter 4 DATA Step and SQL Interfaces

Partial SAS Log
20 proc sql noprint;
21 select count(*)
22 into :numrows
23 from perm.schedule
24 where year(begin_date)=2006;
25 %let numrows=&numrows;
26 %put There are &numrows courses in 2006;
There are 4 courses in 2006
27 select course_code, location,
28 begin_date format=mmddyy10.
29 into :crsid1-:crsid&numrows,
30 :place1-:place&numrows,
31 :date1-:date&numrows
32 from perm.schedule
33 where year(begin_date)=2006
34 order by begin_date;
35 %put _user_;
GLOBAL SQLOBS 4
GLOBAL CRSID2 C004
GLOBAL SQLOOPS 22
GLOBAL CRSID3 C005
GLOBAL DATE4 03/28/2006
GLOBAL PLACE1 Dallas
GLOBAL CRSID1 C003
GLOBAL PLACE2 Boston
GLOBAL PLACE3 Seattle
GLOBAL DATE1 01/10/2006
GLOBAL CRSID4 C006
GLOBAL TOTFEE $354,380
GLOBAL DATE2 01/24/2006
GLOBAL DATE3 02/28/2006
GLOBAL SQLRC 0
GLOBAL NUMROWS 4
GLOBAL PLACE4 Dallas

 4.4 Creating Macro Variables in SQL 4-73

102

The SQL Procedure INTO Clause
The INTO clause can store all unique values of a
specified column into a single macro variable.

General form of the INTO clause to create a list of
unique values in one macro variable:

SELECT col1, . . .
INTO :mvar SEPARATED BY ’delimiter’, . . .
FROM table-expression
WHERE where-expression
other clauses;

SELECT col1, . . .
INTO :mvar SEPARATED BY ’delimiter’, . . .
FROM table-expression
WHERE where-expression
other clauses;

103

The SQL Procedure INTO Clause
Example: Create a macro variable that concatenates

the names of each location from the
perm.schedule data set. Delimit the
names with blanks.

proc sql noprint;
select distinct location into :sites

separated by ' '
from perm.schedule;

quit;

Partial SAS Log
20 %put sites=&sites;
sites=Boston Dallas Seattle

SQL result

Location
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
Boston
Dallas
Seattle

SELECT statement output

SQL4

4-74 Chapter 4 DATA Step and SQL Interfaces

Exercises

5. Creating Multiple Macro Variables Using SQL

a. The perm.schedule data set contains the variable begin_date, which holds the starting
date of each course for 18 classes. Use the SQL procedure to create a set of macro variables
named START1 through START18. The value of each START macro variable should be in
MMDDYY10. format.

b. Open the sqlrost program shown below. Modify the TITLE statement so that the series of Xs
are replaced with the appropriate indirect macro variable references based on the current value of
NUM, which represents the course number (1 through 18). Submit the modified program.
%let num=4;
proc print data=perm.all noobs n;
 where course_number=#
 var student_name student_company;
 title "Roster for Course &num Beginning on XXXXXX";
run;

c. (Optional)
Complete parts a and b of this exercise without the explicit knowledge of the number of classes
in the perm.schedule data set.

 4.4 Creating Macro Variables in SQL 4-75

Solutions to Exercises

5. Creating Multiple Macro Variables Using SQL

a. A special form of the INTO clause is useful for creating series of macro variables from multiple
rows of an SQL query.

proc sql noprint;
 select begin_date format=mmddyy10.
 into :start1 - :start18
 from perm.schedule;
quit;

b. Because the series of macro variables has a common root (START) and a suffix that corresponds
to the value of the NUM macro variable, two ampersands are used in front of the completed
reference.
%let num=4;

proc print data=perm.all noobs n;
 where course_number=#
 var student_name student_company;
 title1 "Roster for Course &num Beginning on &&start&num";
run;

Partial Output
 Roster for Course 4 Beginning on 01/25/2005

 Student_Name Student_Company

 Bates, Ms. Ellen Reston Railway
 Boyd, Ms. Leah United Shoes Co.
 Chan, Mr. John California Lawyers Assn.
 Chevarley, Ms. Arlene Motor Communications
 Chow, Ms. Sylvia Bostic Amplifier Inc.
 Crace, Mr. Ron Von Crump Seafood
 Edwards, Mr. Charles Gorman Tire Corp.
 Garza, Ms. Cheryl Admiral Research & Development Co.
 Geatz, Mr. Patrick D. San Juan Gas and Electric
 Keever, Ms. Linda Crossbow of California
 Kelley, Ms. Gail Crossbow of California
 Kendig, Mr. James Rocks International
 Kimble, Mr. John Alforone Chemical
 Koleff, Mr. Jim Emulate Research
 Montgomery, Mr. Jeff Bonstell Electronics
 Moore, Mr. John California Dept. of Insurance
 Page, Mr. Scott Applied Technologies
 Parker, Mr. Robert SMASH Hardware Inc.
 Pledger, Ms. Terri Candide Corporation
 Snell, Dr. William J. US Treasury
 Stackhouse, Ms. Loretta Donnelly Corp.
 Sulzbach, Mr. Bill Sailbest Ships
 Swayze, Mr. Rodney Reston Railway

4-76 Chapter 4 DATA Step and SQL Interfaces

c. (Optional) The NUMROWS macro variable stores how many records will be returned by the
query. This is the same as the number of macro variables in each series.
proc sql noprint;
 select count(*)
 into :numrows
 from perm.schedule;
 %let numrows=&numrows;
 select begin_date format=mmddyy10.
 into :start1 - :start&numrows
 from perm.schedule;
quit;

%let num=4;
proc print data=perm.all noobs n;
 where course_number = #
 var student_name student_company;
 title1 "Roster for Course &num Beginning on &&start&num";
run;

Chapter 5 Macro Programs

5.1 Conditional Processing ...5-3

5.2 Iterative Processing ...5-28

5.3 Global and Local Symbol Tables...5-45

5-2 Chapter 5 Macro Programs

 5.1 Conditional Processing 5-3

5.1 Conditional Processing

3

Objectives
Conditionally process SAS code within a macro
program.
Monitor macro execution.
Insert entire steps, entire statements, and partial
statements into a SAS program.

5-4 Chapter 5 Macro Programs

4

The Need for Macro-Level Programming
Suppose you submit a program every day to create
registration listings for courses to be held later in the
current month.

Every Friday you also submit a second program to create
a summary of revenue generated so far in the current
month.

5

Is it
Friday?

Yes

Always Print
the

Daily Report

The Need for Macro-Level Programming

proc print data=perm.all noobs n;
where put(begin_date,monyy7.)=

"%substr(&sysdate9,3,7)"
and begin_date ge "&sysdate9"d;

var student_name student_company paid;
title "Course Registration as of &sysdate9";
run;

proc means data=perm.all maxdec=0 sum;
where put(begin_date,monyy7.)=

"%substr(&sysdate9,3,7)"
and begin_date le "&sysdate9"d;

class begin_date location course_title;
var fee;

title "Revenue for Courses as of &sysdate9";
run;

Example: Automate the application so that only one
program is required.

 5.1 Conditional Processing 5-5

6

Conditional Processing
You can perform conditional execution with %IF-%THEN
and %ELSE statements.
General form of %IF-%THEN and %ELSE statements:

expression can be any valid macro expression.

The %ELSE statement is optional.

These macro language statements can only be used
inside a macro definition.

%IF expression %THEN text;
%ELSE text;
%IF expression %THEN text;
%ELSE text;

CAUTION

Compound expressions can be specified using the AND and OR operators. Do not precede
these keywords with %.

7

Conditional Processing
The text following keywords %THEN and %ELSE can be

a macro programming statement
constant text
an expression
a macro variable reference
a macro call.

Macro language expressions are similar to DATA step
expressions, except the following, which are not valid in the
macro language:

1 <= &x <= 10
special WHERE operators
IN comparison operator (prior to SAS®9).

The macro IN comparison operator is new in SAS®9.

5-6 Chapter 5 Macro Programs

8

Monitoring Macro Execution
The MLOGIC system option displays macro execution
messages in the SAS log, including

macro initialization
parameter values
results of arithmetic and logical operations
macro termination.

General form of the MLOGIC|NOMLOGIC option:

The default setting is NOMLOGIC.

OPTIONS MLOGIC;
OPTIONS NOMLOGIC;
OPTIONS MLOGIC;
OPTIONS NOMLOGIC;

9

Processing Complete Steps
Step 1: Create separate macros for the daily and weekly

programs.
%macro daily;

proc print data=perm.all noobs n;
where put(begin_date,monyy7.)="%substr(&sysdate9,3,7)"

and begin_date ge "&sysdate9"d;
var student_name student_company paid;
title "Course Registration as of &sysdate";

run;
%mend daily;

%macro weekly;
proc means data=perm.all maxdec=0 sum;

where put(begin_date,monyy7.)="%substr(&sysdate9,3,7)"
and begin_date le "&sysdate9"d;

class begin_date location course_title;
var fee;
title "Revenue for Courses as of &sysdate9";

run;
%mend weekly;

 5.1 Conditional Processing 5-7

10

Processing Complete Steps
Step 2: Write a third macro that always calls the DAILY

macro and conditionally calls the WEEKLY
macro.

%macro reports;
%daily
%if &sysday=Friday %then %weekly;

%mend reports;

COND01

11

Monitoring Macro Execution
Example: Use the MLOGIC option to monitor the

REPORTS macro.

Partial SAS Log
494 %macro reports;
495 %daily
496 %if &sysday=Friday %then %weekly;
497 %mend reports;
498
499 options mlogic;
500 %reports
MLOGIC(REPORTS): Beginning execution.
MLOGIC(DAILY): Beginning execution.
MLOGIC(DAILY): Ending execution.
MLOGIC(REPORTS): %IF condition &sysday=Friday is TRUE
MLOGIC(WEEKLY): Beginning execution.
MLOGIC(WEEKLY): Ending execution.
MLOGIC(REPORTS): Ending execution.

5-8 Chapter 5 Macro Programs

12

Macro Syntax Errors
If a macro definition contains macro language syntax
errors, error messages are written to the SAS log and a
nonexecutable (dummy) macro is created.

Example: Suppose the percent sign is missing from the
%THEN statement.

Partial SAS Log

514 %macro reports;
515 %daily
516 %if &sysday=Friday then %weekly;
ERROR: Expected %THEN statement not found. A dummy macro will be

compiled.
517 %mend reports;

13

Conditional Processing
Use %DO and %END statements following %THEN or
%ELSE to generate text that contains semicolons.

%IF expression %THEN %DO;
statement; statement;...

%END;
%ELSE %DO;

statement; statement;...
%END;

%IF expression %THEN %DO;
statement; statement;...

%END;
%ELSE %DO;

statement; statement;...
%END;

 5.1 Conditional Processing 5-9

14

Processing Complete Steps

%macro reports;
proc print data=perm.all noobs n;

where put(begin_date,monyy7.)="%substr(&sysdate9,3,7)"
and begin_date ge "&sysdate9"d;

var name company paid;
title "Course Registration as of &sysdate";

run;
%if &sysday=Friday %then %do;
proc means data=perm.all maxdec=0 sum;

where put(begin_date,monyy7.)="%substr(&sysdate9,3,7)"
and begin_date le "&sysdate9"d;

class begin_date location course_title;
var fee;
title "Revenue for Courses as of &sysdate9";

run;
%end;

%mend reports;

Example: Use a single macro to generate the daily report
unconditionally and the weekly report on Friday.

COND02

15

Processing Complete Steps
Example: Store the production SAS programs in external

files and copy those files to the input stack with
%INCLUDE statements.

%macro reports;
%include 'c:\mypgms\daily.sas';
%if &sysday=Friday %then %do;

%include 'c:\mypgms\weekly.sas';
%end;

%mend reports;
COND03

5-10 Chapter 5 Macro Programs

16

Processing Complete Statements
Example: Insert individual statements within a PROC step.

%macro attend(crs,start=01jan2005,stop=31dec2005);
proc freq data=perm.all;

where begin_date between "&start"d and "&stop"d;
table location / nocum;
title "Enrollment from &start to &stop";
%if &crs= %then %do;

title2 "For all Courses";
%end;
%else %do;

title2 "For Course &crs only";
where also course_code="&crs";

%end;
run;

%mend;
options mprint mlogic;
%attend(start=01jul2005)
%attend(C003)

COND04

17

Processing Complete Statements
SAS log from macro call %attend(start=01jul2005)
71 %attend(start=01jul2005)
MLOGIC(ATTEND): Beginning execution.
MLOGIC(ATTEND): Parameter START has value 01jul2005
MLOGIC(ATTEND): Parameter CRS has value
MLOGIC(ATTEND): Parameter STOP has value 31dec2005
MPRINT(ATTEND): proc freq data=perm.all;
MPRINT(ATTEND): where begin_date between "01jul2005"d and "31dec2005"d;
MPRINT(ATTEND): table location / nocum;
MPRINT(ATTEND): title "Enrollment from 01jul2005 to 31dec2005";
MLOGIC(ATTEND): %IF condition &crs= is TRUE
MPRINT(ATTEND): title2 "For all Courses";
MPRINT(ATTEND): run;

NOTE: There were 162 observations read from the data set PERM.ALL.
WHERE (begin_date>='01JUL2005'D and begin_date<='31DEC2005'D);

MLOGIC(ATTEND): Ending execution.

 5.1 Conditional Processing 5-11

18

Processing Complete Statements
SAS log from macro call %attend(C003)
72 %attend(C003)
MLOGIC(ATTEND): Beginning execution.
MLOGIC(ATTEND): Parameter CRS has value C003
MLOGIC(ATTEND): Parameter START has value 01jan2005
MLOGIC(ATTEND): Parameter STOP has value 31dec2005
MPRINT(ATTEND): proc freq data=perm.all;
MPRINT(ATTEND): where begin_date between "01jan2005"d and "31dec2005"d;
MPRINT(ATTEND): table location / nocum;
MPRINT(ATTEND): title "Enrollment from 01jan2005 to 31dec2005";
MLOGIC(ATTEND): %IF condition &crs= is FALSE
MPRINT(ATTEND): title2 "For Course C003 only";
MPRINT(ATTEND): where also course_code="C003";
NOTE: Where clause has been augmented.
MPRINT(ATTEND): run;

NOTE: There were 50 observations read from the data set PERM.ALL.
WHERE (begin_date>='01JAN2005'D and begin_date<='31DEC2005'D) and
(course_code='C003');

MLOGIC(ATTEND): Ending execution.

5-12 Chapter 5 Macro Programs

19

Processing Complete Statements
Example: Insert individual statements within a DATA step.
%macro choice(status);

data fees;
set perm.all;
%if %upcase(&status)=PAID %then %do;

where paid = 'Y';
keep student_name course_code

begin_date totalfee;
%end;
%else %do;

where paid = 'N';
keep student_name course_code

begin_date totalfee latechg;
latechg=fee*1.10;

%end;
if location='Boston' then totalfee=fee*1.06;
else if location='Seattle' then totalfee=fee*1.025;
else if location='Dallas' then totalfee=fee*1.05;

run;
%mend choice;
%choice(PAID)
%choice(OWED) COND05

Macro comparisons are case sensitive.

20

Processing Complete Statements
Partial SAS Log
744 %choice(PAID)
MLOGIC(CHOICE): Beginning execution.
MLOGIC(CHOICE): Parameter STATUS has value PAID
MPRINT(CHOICE): data fees;
MPRINT(CHOICE): set perm.all;
MLOGIC(CHOICE): %IF condition %upcase(&status)=PAID is TRUE
MPRINT(CHOICE): where paid = 'Y';
MPRINT(CHOICE): keep student_name course_code begin_date totalfee;
MPRINT(CHOICE): if location='Boston' then totalfee=fee*1.06;
MPRINT(CHOICE): else if location='Seattle' then
totalfee=fee*1.025;
MPRINT(CHOICE): else if location='Dallas' then totalfee=fee*1.05;
MPRINT(CHOICE): run;

NOTE: There were 327 observations read from the data set PERM.ALL.
WHERE paid='Y';

NOTE: The data set WORK.FEES has 327 observations and 4 variables.
NOTE: DATA statement used (Total process time):

real time 0.02 seconds
cpu time 0.02 seconds

 5.1 Conditional Processing 5-13

21

Processing Complete Statements
Partial SAS Log
745 %choice(OWED)
MLOGIC(CHOICE): Beginning execution.
MLOGIC(CHOICE): Parameter STATUS has value OWED
MPRINT(CHOICE): data fees;
MPRINT(CHOICE): set perm.all;
MLOGIC(CHOICE): %IF condition %upcase(&status)=PAID is FALSE
MPRINT(CHOICE): where paid = 'N';
MPRINT(CHOICE): keep student_name course_code begin_date totalfee
latechg;
MPRINT(CHOICE): latechg=fee*1.10;
MPRINT(CHOICE): if location='Boston' then totalfee=fee*1.06;
MPRINT(CHOICE): else if location='Seattle' then
totalfee=fee*1.025;
MPRINT(CHOICE): else if location='Dallas' then totalfee=fee*1.05;
MPRINT(CHOICE): run;

NOTE: There were 107 observations read from the data set PERM.ALL.
WHERE paid='N';

NOTE: The data set WORK.FEES has 107 observations and 5 variables.
NOTE: DATA statement used (Total process time):

real time 0.02 seconds
cpu time 0.02 seconds

5-14 Chapter 5 Macro Programs

22

Processing Partial Statements

%macro counts (cols=_character_, rows=);
proc freq data=perm.all;

tables
%if &rows ne %then &rows *;

&cols
;

run;
%mend counts;
options mprint mlogic;
%counts(cols=paid)
%counts(cols=paid, rows=course_number)

Conditionally insert text into the middle of a statement.

Example: Generate either a one-way or two-way
frequency table, depending on a parameter value.

COND06

The abbreviated variable list _character_ stands for all character variables in a data set.

23

Processing Partial Statements
Partial SAS Log
633 %counts(cols=paid)
MPRINT(COUNTS): proc freq data=perm.all;
MPRINT(COUNTS): tables paid ;
MPRINT(COUNTS): run;

NOTE: There were 434 observations read from the data set PERM.ALL.
NOTE: PROCEDURE FREQ used (Total process time):

real time 0.00 seconds
cpu time 0.01 seconds

634 %counts(cols=paid, rows=course_number)
MPRINT(COUNTS): proc freq data=perm.all;
MPRINT(COUNTS): tables course_number * paid ;
MPRINT(COUNTS): run;

NOTE: There were 434 observations read from the data set PERM.ALL.
NOTE: PROCEDURE FREQ used (Total process time):

real time 0.01 seconds
cpu time 0.02 seconds

 5.1 Conditional Processing 5-15

24

Parameter Validation

%macro courses(site);
%let site=%upcase(&site);
%if &site=DALLAS
or &site=SEATTLE
or &site=BOSTON %then %do;

proc print data=perm.schedule;
where upcase(location)="&site";
title "COURSES OFFERED AT &site";

run;
%end;
%else %put Sorry, no courses taught at &site..;

%mend courses;

Example: Validate a parameter value before generating
SAS code based on that value.

COND07

25

Parameter Validation

%macro courses(site);
%let site=%upcase(&site);
%if &site in DALLAS SEATTLE BOSTON %then %do;

proc print data=perm.schedule;
where upcase(location)="&site";
title "COURSES OFFERED AT &site";

run;
%end;
%else %put Sorry, no courses taught at &site..;

%mend courses;

The IN operator is new in SAS®9. The list of values is
not enclosed in parentheses.

Example: Validate a parameter value before generating
SAS code based on that value.

COND08

5-16 Chapter 5 Macro Programs

26

Parameter Validation
Partial SAS Log
788 %courses(Dallas)
MPRINT(COURSES): proc print data=perm.schedule;
MPRINT(COURSES): where upcase(location)="DALLAS";
MPRINT(COURSES): title "COURSES OFFERED AT DALLAS";
MPRINT(COURSES): run;
NOTE: There were 6 observations read from the data set

PERM.SCHEDULE.
WHERE UPCASE(location)='DALLAS';

NOTE: PROCEDURE PRINT used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

789 %courses(LA)
Sorry, no courses taught at LA.

 5.1 Conditional Processing 5-17

27

Parameter Validation
Use the %INDEX function to check the value of a macro
variable against a list of valid values.
General form of the %INDEX function:

The %INDEX function
searches argument1 for the first occurrence of
argument2
returns an integer representing the position in
argument1 of the first character of argument2 if there
is an exact match
returns 0 if there is no match.

%INDEX(argument1, argument2)%INDEX(argument1, argument2)

28

Parameter Validation

argument1 and argument2 can be
constant text
macro variable references
macro functions
macro calls.

%INDEX(argument1, argument2)%INDEX(argument1, argument2)

5-18 Chapter 5 Macro Programs

29

Parameter Validation
Example: Parameter validation with the %INDEX function.

%macro courses(site);
%let site=%upcase(&site);
%let sitelist=*DALLAS*SEATTLE*BOSTON*;
%if %index(&sitelist,*&site*) > 0 %then %do;

proc print data=perm.schedule;
where upcase(location)="&site";
title "COURSES OFFERED AT &site";

run;
%end;
%else %do;

%put Sorry, no courses taught at &site..;
%put Valid locations are: &sitelist..;

%end;
%mend courses;

COND09

30

Parameter Validation
Partial SAS Log

762 %courses(Dallas)
MPRINT(COURSES): proc print data=perm.schedule;
MPRINT(COURSES): where upcase(location)="DALLAS";
MPRINT(COURSES): title "COURSES OFFERED AT DALLAS";
MPRINT(COURSES): run;
NOTE: There were 6 observations read from the data set

PERM.SCHEDULE.
WHERE UPCASE(location)='DALLAS';

NOTE: PROCEDURE PRINT used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

763 %courses(LA)
Sorry, no courses taught at LA.
Valid locations are: *DALLAS*SEATTLE*BOSTON*.

 5.1 Conditional Processing 5-19

31

Parameter Validation
Example: Modify the previous program so that the macro

variable SITELIST is data-driven.

COND10

%macro courses(site);
%let site=%upcase(&site);
proc sql noprint;

select distinct upcase(location)
into :sitelist separated by '*'

from perm.schedule;
quit;

%if %index(*&sitelist*,*&site*) > 0
%then %do;

. . .

32

Developing Macro-Based Applications

1. Write and debug the SAS program without any macro
coding.

2. Generalize the program by replacing hardcoded
constants with macro variable references. Initialize the
macro variables with %LET statements.

3. Create a macro definition by placing %MACRO and
%MEND statements around your program. Convert
%LET statements to macro parameters as appropriate.

4. Add macro-level programming statements such as
%IF-%THEN.

If a macro-based application generates SAS code, use a
four-step development approach.

5-20 Chapter 5 Macro Programs

Exercises

1. Validating Macro Parameters

a. Open the paidstat program shown below into the Editor window and submit it.

%macro paid(crsnum);
 proc print data=perm.register label n noobs;
 var student_name paid;
 where course_number=&crsnum;
 title "Fee Status for Course &crsnum";
 run;
%mend paid;

%paid(2)

b. Modify the macro so it submits the PROC PRINT step only if the CRSNUM parameter has a
value between 1 and 18. If the CRSNUM value is out of range, the macro should write this
message to the SAS log:

Course Number must be between 1 and 18.

Supplied value was: x

The value of x is the CRSNUM parameter.

c. Resubmit the macro definition and call the macro using both valid and invalid parameter values.

d. Modify the macro to support a second positional parameter named STATUS. Add this statement
after the WHERE statement:
where also paid="&status";

 At the beginning of the macro, extract the first character of STATUS and store it in uppercase.
 Alter the macro so that the PROC PRINT step can be submitted only when the STATUS
 parameter begins with Y or N. Write a message to the log when the STATUS parameter is
 invalid.

 Resubmit the macro definition and call the macro using both valid and invalid values for
 STATUS.

 5.1 Conditional Processing 5-21

2. Defining, Executing, and Debugging a Macro (Optional)

a. If you have the SAS windowing environment active, exit SAS and then start a new SAS session.
Remember to assign the perm libref in the new SAS session.

Open the printit program shown below into the Editor window and submit it.
%macro printit;
 %if &syslast = _NULL_ %then %do;
 proc print data=_last_(obs=5);
 title "Listing of data set &syslast";
 run;
 end;
%mend;

b. Use the SAS log to diagnose the compilation error. Fix the syntax error and resubmit the macro
definition.

c. Submit a call to the PRINTIT macro. An error message appears.

Activate system options that print information in the SAS log to help you diagnose the error. Call
the PRINTIT macro again and examine the SAS log.

Fix the logic error in the program. Resubmit the macro definition and call the macro. If no SAS
code is submitted when the macro is called, you have repaired the error.

d. Alter the macro definition by writing a message to the SAS log whenever the %IF expression is
false:
%put No SAS data set has been created.;

Recompile the macro and call it. The text from the %PUT statement should appear in the SAS
log.

e. Submit this program:

proc sort data=perm.students
 out=business(keep=student_company) nodupkey;
 by student_company;
run;

Make a call to the PRINTIT macro. You should get a listing of the business data set.

5-22 Chapter 5 Macro Programs

Solutions to Exercises

1. Validating Macro Parameters

a. Open the program paidstat shown below into the Editor window and submit it.

%macro paid(crsnum);
 proc print data=perm.register label n noobs;
 var student_name paid;
 where course_number=&crsnum;
 title "Fee Status for Course &crsnum";
 run;
%mend paid;

%paid(2)

b. To define a valid range, the %IF expression must contain two comparisons connected with the
AND operator. Each message line requires a separate %PUT statement.
%macro paid(crsnum);
 %if &crsnum >=1 and &crsnum <= 18 %then %do;
 proc print data=perm.register label noobs n;
 where course_number=&crsnum;
 title "Fee Status for Course &crsnum";
 run;
 %end;
 %else %do;
 %put Course Number must be between 1 and 18;
 %put Supplied Value was: &crsnum;
 %end;
%mend paid;

%paid(2)
%paid(20)

c. Resubmit the macro definition and call the macro.

Partial SAS Log
MLOGIC(PAID): Ending execution.
222 %paid(20)
MLOGIC(PAID): Beginning execution.
MLOGIC(PAID): Parameter CRSNUM has value 20
MLOGIC(PAID): %IF condition &crsnum >=1 and &crsnum <= 18 is FALSE
MLOGIC(PAID): %PUT Course Number must be between 1 and 18
Course Number must be between 1 and 18
MLOGIC(PAID): %PUT Supplied Value was: &crsnum
Supplied Value was: 20
MLOGIC(PAID): Ending execution.

 5.1 Conditional Processing 5-23

d. The %UPCASE and %SUBSTR functions are used to extract the first character of the parameter
value and translate it to uppercase. The additional condition based on STATUS can be
implemented using the AND operator with the previous CRSNUM validation expression or with
nested %IF-%THEN statements.
%macro paid(crsnum,status);
 %let status1=%upcase(%substr(&status,1,1));
 %if &status1=Y or &status1=N %then %do;
 %if &crsnum >= 1 and &crsnum <= 18 %then %do;
 proc print data=perm.register label n noobs;
 var student_name paid;
 where course_number=&crsnum;
 where also paid="&status1";
 title "Fee Status for Course &crsnum";
 run;
 %end;
 %else %do;
 %put Course Number must be between 1 and 18;
 %put Supplied Value was: &crsnum;
 %end;
 %end;
 %else %do;
 %put Status must begin with Y or N;
 %put Supplied value was: &status;
 %end;
%mend paid;

%paid(2,Y)
%paid(2,no)
%paid(2,?)

5-24 Chapter 5 Macro Programs

Partial SAS Log
246 %paid(2,no)
MLOGIC(PAID): Beginning execution.
MLOGIC(PAID): Parameter CRSNUM has value 2
MLOGIC(PAID): Parameter STATUS has value no
MLOGIC(PAID): %LET (variable name is STATUS1)
MLOGIC(PAID): %IF condition &status1=Y or &status1=N is TRUE
MLOGIC(PAID): %IF condition &crsnum >= 1 and &crsnum <= 18 is TRUE
MPRINT(PAID): proc print data=perm.register label n noobs;
MPRINT(PAID): var student_name paid;
MPRINT(PAID): where course_number=2;
MPRINT(PAID): where also paid="N";
NOTE: Where clause has been augmented.
MPRINT(PAID): title "Fee Status for Course 2";
MPRINT(PAID): run;
NOTE: There were 8 observations read from the dataset PERM.REGISTER.
 WHERE (course_number=2) and (paid='N');
NOTE: PROCEDURE PRINT used:
 real time 2.40 seconds
 cpu time 0.03 seconds

MLOGIC(PAID): Ending execution.
247 %paid(2,?)
MLOGIC(PAID): Beginning execution.
MLOGIC(PAID): Parameter CRSNUM has value 2
MLOGIC(PAID): Parameter STATUS has value ?
MLOGIC(PAID): %LET (variable name is STATUS1)
MLOGIC(PAID): %IF condition &status1=Y or &status1=N is FALSE
MLOGIC(PAID): %PUT Status must begin with Y or N
Status must begin with Y or N
MLOGIC(PAID): %PUT Supplied value was: &status
Supplied value was: ?
MLOGIC(PAID): Ending execution

 5.1 Conditional Processing 5-25

2. Defining, Executing, and Debugging a Macro (Optional)

a. If you have the SAS windowing environment active, exit SAS and then start a new SAS session.
Assign the perm libref in the new SAS session.

Include the program printit shown below into the Program Editor window and submit it.
%macro printit;
 %if &syslast = _NULL_ %then %do;
 proc print data=_last_(obs=5);
 title "Listing of data set &syslast";
 run;
 end;
%mend;

b. The missing percent sign in the % END statement causes the compilation error.

c. The %PRINTIT macro call generates an error message in the SAS log.

Partial SAS Log
25 %printit
ERROR: There is not a default input data set (_LAST_ is _NULL_).

NOTE: The SAS System stopped processing this step because of errors.

Activating the MPRINT, MLOGIC, and SYMBOLGEN options before calling the macro again
provides additional information to assist in debugging the problem.
options mprint mlogic symbolgen;

%printit

Partial SAS Log
35 %printit
MLOGIC(PRINTIT): Beginning execution.
SYMBOLGEN: Macro variable SYSLAST resolves to _NULL_
MLOGIC(PRINTIT): %IF condition &syslast = _NULL_ is TRUE
MPRINT(PRINTIT): proc print data=_last_(obs=5);
ERROR: There is not a default input data set (_LAST_ is _NULL_).
SYMBOLGEN: Macro variable SYSLAST resolves to _NULL_
MPRINT(PRINTIT): title "Listing of data set _NULL_";
MPRINT(PRINTIT): run;

NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE PRINT used:
 real time 0.01 seconds
 cpu time 0.01 seconds

MLOGIC(PRINTIT): Ending execution.

The PROC PRINT step is generated when there is not a previously created data set. When there is
no data set, the automatic macro variable SYSLAST has the value _NULL_. Therefore, the
operator used with the %IF statement should be NE, not =.

5-26 Chapter 5 Macro Programs

%macro printit;
 %if &syslast ne _NULL_ %then %do;
 proc print data=_last_(obs=5);
 title "Listing of data set &syslast";
 run;
 %end;
%mend printit;

d. The message can be written to the SAS log using the %PUT statement within the %ELSE portion
of the conditional logic.
%macro printit;
 %if &syslast ne _NULL_ %then %do;
 proc print data=_last_(obs=5);
 title "Listing of data set &syslast";
 run;
 %end;
 %else %put No SAS data set has been created.;
%mend;

In another approach, the message could be generated based on the main condition and the report
generated as the alternative.
%macro printit;
 %if &syslast =_NULL_
 %then %put No SAS data set has been created.;
 %else %do;
 proc print data=_last_(obs=5);
 title "Listing of data set &syslast";
 run;
 %end;
%mend;
%printit

Partial SAS Log
115 %macro printit;
116 %if &syslast =_NULL_
117 %then %put No SAS data set has been created.;
118 %else %do;
119 proc print data=_last_(obs=5);
120 title "Listing of data set &syslast";
121 run;
122 %end;
123 %mend;
124 options mlogic mprint symbolgen;
125 %printit
MLOGIC(PRINTIT): Beginning execution.
SYMBOLGEN: Macro variable SYSLAST resolves to _NULL_
MLOGIC(PRINTIT): %IF condition &syslast =_NULL_ is TRUE
MLOGIC(PRINTIT): %PUT No SAS data set has been created.
No SAS data set has been created.
MLOGIC(PRINTIT): Ending execution.

 5.1 Conditional Processing 5-27

e. After creating a data set, the PRINTIT macro generates a PROC PRINT step to display it.
proc sort data=perm.students
 out=business(keep=student_company) nodupkey;
 by student_company;
run;

Partial SAS Log
148 %printit
MLOGIC(PRINTIT): Beginning execution.
MLOGIC(PRINTIT): %IF condition &syslast =_NULL_ is FALSE
MPRINT(PRINTIT): proc print data=_last_(obs=5);
MPRINT(PRINTIT): title "Listing of data set WORK.BUSINESS
 ";
MPRINT(PRINTIT): run;

NOTE: There were 5 observations read from the dataset WORK.BUSINESS.
NOTE: PROCEDURE PRINT used:
 real time 0.02 seconds
 cpu time 0.02 seconds

MLOGIC(PRINTIT): Ending execution.

SAS Output
 Listing of data set WORK.BUSINESS

 Obs Student_Company

 1 ABC, Inc.
 2 ACDD
 3 Admiral Research & Development Co.
 4 Al's Discount Clothing
 5 Alforone Chemical

5-28 Chapter 5 Macro Programs

5.2 Iterative Processing

35

Objectives
Execute macro language statements iteratively.
Generate SAS code iteratively.

36

Simple Loops
Many macro applications require iterative processing.

The iterative %DO statement can repeatedly
execute macro language statements
generate SAS code.

General form of the iterative %DO statement:

%DO index-variable=start %TO stop <%BY increment>;
text

%END;

%DO index-variable=start %TO stop <%BY increment>;
text

%END;

 5.2 Iterative Processing 5-29

37

Simple Loops
%DO and %END statements are valid only inside a
macro definition.
Index-variable is a macro variable.
Index-variable is created in the local symbol table if it
does not already exist in an existing symbol table.
Start, stop, and increment values can be any valid
macro expressions that resolve to integers.
%BY clause is optional (default increment is 1).

38

Simple Loops
Text can be

constant text
macro variables or expressions
macro statements
macro calls.

5-30 Chapter 5 Macro Programs

39

Simple Loops
Example: Create a numbered series of macro variables.

Display each macro variable in the SAS log by
repeatedly executing %PUT within a macro loop.

data _null_;
set perm.schedule end=no_more;
call symputx('teach'||left(_n_),teacher);
if no_more then call symputx('count',_n_);

run;

%macro putloop;
%do i=1 %to &count;

%put TEACH&i is &&teach&i;
%end;

%mend putloop;

LOOP1

 No code is sent to the compiler when the macro executes. The %PUT statements are executed by
the macro processor.

40

Simple Loops
Partial SAS Log
12 %putloop
TEACH1 is Hallis, Dr. George
TEACH2 is Wickam, Dr. Alice
TEACH3 is Forest, Mr. Peter
TEACH4 is Tally, Ms. Julia
TEACH5 is Hallis, Dr. George
TEACH6 is Berthan, Ms. Judy
TEACH7 is Hallis, Dr. George
TEACH8 is Wickam, Dr. Alice
TEACH9 is Forest, Mr. Peter
TEACH10 is Tally, Ms. Julia
TEACH11 is Tally, Ms. Julia
TEACH12 is Berthan, Ms. Judy
TEACH13 is Hallis, Dr. George
TEACH14 is Wickam, Dr. Alice
TEACH15 is Forest, Mr. Peter
TEACH16 is Tally, Ms. Julia
TEACH17 is Hallis, Dr. George
TEACH18 is Berthan, Ms. Judy

 5.2 Iterative Processing 5-31

41

Generating Complete Steps
Example: Iteratively generate complete SAS steps.
%macro readraw(first=1999,last=2005);

%do year=&first %to &last;
data year&year;
infile "raw&year..dat";
input course_code $4.

location $15.
begin_date date9.
teacher $25.;

run;
proc print data=year&year;
title "Scheduled classes for &year";
run;

%end;
%mend readraw;
%readraw(first=2000,last=2002)

LOOP2

42

Generating Complete Steps
Partial SAS Log
MLOGIC(READRAW): %DO loop index variable YEAR is now 2001; loop will iterate again.
MPRINT(READRAW): data year2001;
MPRINT(READRAW): infile "raw2001.dat";
MPRINT(READRAW): input course_code $4. location $15. begin_date date9. teacher $25.;
MPRINT(READRAW): run;

NOTE: The infile "raw2001.dat" is:
File Name=C:\workshop\winsas\macr\raw2001.dat,
RECFM=V,LRECL=256

NOTE: 12 records were read from the infile "raw2001.dat".
The minimum record length was 53.
The maximum record length was 53.

NOTE: The data set WORK.YEAR2001 has 12 observations and 4 variables.

MPRINT(READRAW): proc print data=year2001;
MPRINT(READRAW): title "Scheduled classes for 2001";
MPRINT(READRAW): run;

NOTE: There were 12 observations read from the data set WORK.YEAR2001.

MLOGIC(READRAW): %DO loop index variable YEAR is now 2002; loop will iterate again.
MPRINT(READRAW): data year2002;
MPRINT(READRAW): infile "raw2002.dat";
MPRINT(READRAW): input course_code $4. location $15. begin_date date9. teacher $25.;
MPRINT(READRAW): run;

5-32 Chapter 5 Macro Programs

43

Generating Data-Dependent Steps
Example: Print all data sets in a SAS data library.

sashelp.vstabvw

Obs libname memname memtype

3480 PERM ALL DATA
3481 PERM COURSES DATA
3482 PERM REGISTER DATA
3483 PERM SCHEDULE DATA
3484 PERM STUDENTS DATA

PROC PRINT Output

Data set information
is available in the
dynamic view
vstabvw in the
sashelp library.

proc print data=sashelp.vstabvw;
where libname="PERM";
title "sashelp.vstabvw";

run;

44

Generating Data-Dependent Steps
Store data set names in macro variables.

7 %put _user_;
GLOBAL DSN1 ALL
GLOBAL DSN2 COURSES
GLOBAL DSN3 REGISTER
GLOBAL DSN4 SCHEDULE
GLOBAL DSN5 STUDENTS
GLOBAL TOTALDSN 5

data _null_;
set sashelp.vstabvw end=final;
where libname="PERM";
call symputx('dsn'||left(_n_),memname);
if final then call symputx('totaldsn',_n_);

run;
%put _user_;

Partial SAS Log

 5.2 Iterative Processing 5-33

45

Generating Data-Dependent Steps
Use a macro loop to print every data set in the library.

%macro printlib(lib=WORK,obs=5);
%let lib=%upcase(&lib);
data _null_;

set sashelp.vstabvw end=final;
where libname="&lib";
call symputx('dsn'||left(_n_),memname);
if final then call symputx('totaldsn',_n_);

run;
%do i=1 %to &totaldsn;

proc print data=&lib..&&dsn&i(obs=&obs);
title "&lib..&&dsn&i Data Set";

run;
%end;

%mend printlib;
%printlib(lib=PERM)

LOOP3

46

Generating Data-Dependent Steps
Partial SAS Log

MPRINT(PRINTLIB): proc print data=PERM.ALL(obs=5);
MPRINT(PRINTLIB): title "PERM.ALL Data Set";
MPRINT(PRINTLIB): run;
NOTE: There were 5 observations read from the data set PERM.ALL.

MPRINT(PRINTLIB): proc print data=PERM.COURSES(obs=5);
MPRINT(PRINTLIB): title "PERM.COURSES Data Set";
MPRINT(PRINTLIB): run;
NOTE: There were 5 observations read from the data set PERM.COURSES.

MPRINT(PRINTLIB): proc print data=PERM.REGISTER(obs=5);
MPRINT(PRINTLIB): title "PERM.REGISTER Data Set";
MPRINT(PRINTLIB): run;
NOTE: There were 5 observations read from the data set PERM.REGISTER.

MPRINT(PRINTLIB): proc print data=PERM.SCHEDULE(obs=5);
MPRINT(PRINTLIB): title "PERM.SCHEDULE Data Set";
MPRINT(PRINTLIB): run;
NOTE: There were 5 observations read from the data set PERM.SCHEDULE.

5-34 Chapter 5 Macro Programs

47

Generating Data-Dependent Steps
Example: Create a separate data set for each value of a

selected variable in a selected data set. Use the
variable location in perm.schedule.

Listing of PERM.SCHEDULE

Course_ Course_ Begin_
Obs Number Code Location Date Teacher

1 1 C001 Seattle 26OCT2004 Hallis, Dr. George
2 2 C002 Dallas 07DEC2004 Wickam, Dr. Alice
3 3 C003 Boston 11JAN2005 Forest, Mr. Peter
4 4 C004 Seattle 25JAN2005 Tally, Ms. Julia
5 5 C005 Dallas 01MAR2005 Hallis, Dr. George
6 6 C006 Boston 05APR2005 Berthan, Ms. Judy
7 7 C001 Dallas 24MAY2005 Hallis, Dr. George
8 8 C002 Boston 14JUN2005 Wickam, Dr. Alice
9 9 C003 Seattle 19JUL2005 Forest, Mr. Peter
10 10 C004 Dallas 16AUG2005 Tally, Ms. Julia
11 11 C005 Boston 20SEP2005 Tally, Ms. Julia
12 12 C006 Seattle 04OCT2005 Berthan, Ms. Judy
13 13 C001 Boston 15NOV2005 Hallis, Dr. George
14 14 C002 Seattle 06DEC2005 Wickam, Dr. Alice
15 15 C003 Dallas 10JAN2006 Forest, Mr. Peter
16 16 C004 Boston 24JAN2006 Tally, Ms. Julia
17 17 C005 Seattle 28FEB2006 Hallis, Dr. George
18 18 C006 Dallas 28MAR2006 Berthan, Ms. Judy

48

Generating Data-Dependent Steps
SAS Program and Log

MPRINT(SITES): data Boston Dallas Seattle ;
MPRINT(SITES): set perm.schedule;
MPRINT(SITES): select(location);
MPRINT(SITES): when("Boston") output Boston;
MPRINT(SITES): when("Dallas") output Dallas;
MPRINT(SITES): when("Seattle") output Seattle;
MPRINT(SITES): otherwise;
MPRINT(SITES): end;
MPRINT(SITES): run;

NOTE: There were 18 observations read from the data set PERM.SCHEDULE.
NOTE: The data set WORK.BOSTON has 6 observations and 5 variables.
NOTE: The data set WORK.DALLAS has 6 observations and 5 variables.
NOTE: The data set WORK.SEATTLE has 6 observations and 5 variables.

 5.2 Iterative Processing 5-35

49

Generating Data-Dependent Steps

%macro sites (data=, var=);
proc sort data=&data(keep=&var)

out=values nodupkey;
by &var;

run;
data _null_;

set values end=last;
call symputx('site'||left(_n_),location);
if last then call symputx('count',_n_);

run;
%put _local_;

Store data values in macro variables.

LOOP4

continued...

50

Generating Data-Dependent Steps
Partial SAS log with result of %put _local_;

SITES DATA perm.schedule
SITES I
SITES COUNT 3
SITES VAR location
SITES SITE3 Seattle
SITES SITE2 Dallas
SITES SITE1 Boston

The _local_ argument of the %PUT statement lists the
name and value of macro variables local to the currently
executing macro.

5-36 Chapter 5 Macro Programs

51

Generating Data-Dependent Steps
Generate the DATA step, using macro loops for iterative
substitution. Call the macro.
data

%do i=1 %to &count;
&&site&i

%end;
;
set &data;
select(&var);

%do i=1 %to &count;
when("&&site&i") output &&site&i;

%end;
otherwise;

end;
run;
%mend sites;
%sites(data=perm.schedule, var=location)

52

Generating Data-Dependent Steps
Partial SAS Log

MPRINT(SITES): data Boston Dallas Seattle ;
MPRINT(SITES): set perm.schedule;
MPRINT(SITES): select(location);
MPRINT(SITES): when("Boston") output Boston;
MPRINT(SITES): when("Dallas") output Dallas;
MPRINT(SITES): when("Seattle") output Seattle;
MPRINT(SITES): otherwise;
MPRINT(SITES): end;
MPRINT(SITES): run;

NOTE: There were 18 observations read from the data set PERM.SCHEDULE.
NOTE: The data set WORK.BOSTON has 6 observations and 5 variables.
NOTE: The data set WORK.DALLAS has 6 observations and 5 variables.
NOTE: The data set WORK.SEATTLE has 6 observations and 5 variables.

 5.2 Iterative Processing 5-37

53

Conditional Iteration (Self-Study)
You can perform conditional iteration in macros with %DO
%WHILE and %DO %UNTIL statements.

General form of the %DO %WHILE statement:

A %DO %WHILE loop
evaluates expression at the top of the loop before the
loop executes
executes repetitively while expression is true.

%DO %WHILE(expression);
text

%END;

%DO %WHILE(expression);
text

%END;

54

Conditional Iteration (Self-Study)
General form of the %DO %UNTIL statement:

expression can be any valid macro expression.

A %DO %UNTIL loop
evaluates expression at the bottom of the loop after
the loop executes
executes repetitively until expression is true
executes at least once.

%DO %UNTIL(expression);
text

%END;

%DO %UNTIL(expression);
text

%END;

5-38 Chapter 5 Macro Programs

55

Conditional Iteration (Self-Study)
Review: Create a macro variable with a delimited list of

values.
573 proc sql noprint;
574 select distinct upcase(location)
575 into :sitelist separated by '*'
576 from perm.schedule;
577 quit;

578 %put sitelist=&sitelist;
sitelist=BOSTON*DALLAS*SEATTLE

56

Conditional Iteration (Self-Study)
Example: Execute macro language statements within a

%DO %WHILE loop.

LOOP5

%macro values(text,delim=*);
%let i=1;
%let value=%scan(&text,&i,&delim);
%if &value= %then %put Text is blank.;
%else %do %while (&value ne);

%put Value &i is: &value;
%let i=%eval(&i+1);
%let value=%scan(&text,&i,&delim);

%end;
%mend values;

%values(&sitelist)

 5.2 Iterative Processing 5-39

57

Conditional Iteration (Self-Study)
Example: Execute macro language statements within a

%DO %UNTIL loop.

LOOP6

%macro values(text,delim=*);
%let i=1;
%let value=%scan(&text,&i,&delim);
%if &value= %then %put Text is blank.;
%else %do %until (&value=);

%put Value &i is: &value;
%let i=%eval(&i+1);
%let value=%scan(&text,&i,&delim);

%end;
%mend values;
%values(&sitelist)

58

Conditional Iteration (Self-Study)

Partial SAS Log

Result of macro call.

572 %values(&sitelist)
Value 1 is: BOSTON
Value 2 is: DALLAS
Value 3 is: SEATTLE

5-40 Chapter 5 Macro Programs

Exercises

3. Using Macro Loops

Open the printnum program shown below into the Editor window.
proc print data=perm.all label noobs n;
 where course_number=3;
 var student_name student_company;
 title "Enrollment for Course 3";
run;

Define a macro program that generates a separate listing for each of the courses in the perm.all
data set. The values of COURSE_NUMBER range from 1 to 18.

4. Generating Data-Dependent Steps (Optional)

a. Define a macro that can print a series of reports, each report containing observations having a
particular value for a selected variable. For example, because the perm.schedule data set
contains six distinct values for COURSE_CODE, the macro should produce six reports, one for
each distinct value of COURSE_CODE.

Parameters for the macro are
• data set to be printed
• variables used for subsetting
• type of variable (CHAR, NUM).

b. Use the macro to generate a separate report for each training location in perm.schedule data
set.

c. Use the macro to generate a separate report for each class’s duration in the perm.courses data
set.

 5.2 Iterative Processing 5-41

Solutions to Exercises

3. Using Macro Loops

A simple macro loop with an index variable starting at 1 and stopping at 18 will produce the reports.
%macro prtrost;
 %do num=1 %to 18;
 proc print data=perm.all label noobs n;
 where course_number=#
 var student_name student_company;
 title1 "Enrollment for Course &num";
 run;
 %end;
%mend prtrost;

options mprint nomlogic;

%prtrost

Partial SAS Log
MPRINT(PRTROST): proc print data=perm.all label noobs n;
MPRINT(PRTROST): where course_number=1;
MPRINT(PRTROST): var student_name student_company;
MPRINT(PRTROST): title1 "Enrollment for Course 1";
MPRINT(PRTROST): run;
NOTE: There were 23 observations read from the dataset PERM.ALL.
 WHERE course_number=1;
NOTE: PROCEDURE PRINT used:
 real time 0.07 seconds
 cpu time 0.07 seconds

5-42 Chapter 5 Macro Programs

4. Generating Data-Dependent Steps (Optional)

a. The SORT procedure can produce a list of distinct values for a given variable. These values can
be placed into a series of macro variables. Using a macro loop, the series of macro variables can
be processed to produce one report for each original data value. The type of variable parameter
controls whether quotes are placed around data in the WHERE statement.
%macro printall(dsn,var,type=CHAR);
 %let dsn=%upcase(&dsn);
 %let var=%upcase(&var);
 %let type=%upcase(&type);
 proc sort data=&dsn(keep=&var) out=unique nodupkey;
 by &var;
 run;

 data _null_;
 set unique end=final;
 call symput('value'||left(_n_),
 trim(left(&var)));
 if final then call symput('count',_n_);
 run;

 %do i=1 %to &count;
 proc print data=&dsn;
 %if &type=CHAR %then %do;
 where &var="&&value&I";
 %end;
 %else %do;
 where &var=&&value&i;
 %end;
 title1 "Listing of &dsn Data Set";
 title2 "for &var=&&value&I";
 run;
 %end;
%mend printall;

 5.2 Iterative Processing 5-43

b. The macro call to generate a separate report for each training center location in the
perm.schedule data set is
%printall(perm.schedule,location)

Partial SAS Log
MPRINT(PRINTALL): proc print data=PERM.SCHEDULE;
MPRINT(PRINTALL): where LOCATION="Boston";
MPRINT(PRINTALL): title1 "Listing of PERM.SCHEDULE Data Set";
MPRINT(PRINTALL): title2 "for LOCATION=Boston";
MPRINT(PRINTALL): run;
NOTE: There were 6 observations read from the dataset PERM.SCHEDULE.
 WHERE LOCATION='Boston';
NOTE: PROCEDURE PRINT used:
 real time 1.96 seconds
 cpu time 0.01 seconds

MPRINT(PRINTALL): proc print data=PERM.SCHEDULE;
MPRINT(PRINTALL): where LOCATION="Dallas";
MPRINT(PRINTALL): title1 "Listing of PERM.SCHEDULE Data Set";
MPRINT(PRINTALL): title2 "for LOCATION=Dallas";
MPRINT(PRINTALL): run;
NOTE: There were 6 observations read from the dataset PERM.SCHEDULE.
 WHERE LOCATION='Dallas';
NOTE: PROCEDURE PRINT used:
 real time 2.03 seconds
 cpu time 0.04 seconds

MPRINT(PRINTALL): proc print data=PERM.SCHEDULE;
MPRINT(PRINTALL): where LOCATION="Seattle";
MPRINT(PRINTALL): title1 "Listing of PERM.SCHEDULE Data Set";
MPRINT(PRINTALL): title2 "for LOCATION=Seattle";
MPRINT(PRINTALL): run;
NOTE: There were 6 observations read from the dataset PERM.SCHEDULE.
 WHERE LOCATION='Seattle';
NOTE: PROCEDURE PRINT used:
 real time 1.97 seconds
 cpu time 0.01 seconds

c. The macro call to generate a separate report for each class’s duration in the perm.courses data
set.
%printall(perm.courses,days,type=num)

5-44 Chapter 5 Macro Programs

Partial SAS Log
MPRINT(PRINTALL): proc print data=PERM.COURSES;
MPRINT(PRINTALL): where DAYS=2;
MPRINT(PRINTALL): title1 "Listing of PERM.COURSES Data Set";
MPRINT(PRINTALL): title2 "for DAYS=2";
MPRINT(PRINTALL): run;
NOTE: There were 2 observations read from the dataset PERM.COURSES.
 WHERE DAYS=2;
NOTE: PROCEDURE PRINT used:
 real time 1.46 seconds
 cpu time 0.02 seconds

MPRINT(PRINTALL): proc print data=PERM.COURSES;
MPRINT(PRINTALL): where DAYS=3;
MPRINT(PRINTALL): title1 "Listing of PERM.COURSES Data Set";
MPRINT(PRINTALL): title2 "for DAYS=3";
MPRINT(PRINTALL): run;
NOTE: There were 2 observations read from the dataset PERM.COURSES.
 WHERE DAYS=3;
NOTE: PROCEDURE PRINT used:
 real time 1.51 seconds
 cpu time 0.05 seconds

MPRINT(PRINTALL): proc print data=PERM.COURSES;
MPRINT(PRINTALL): where DAYS=4;
MPRINT(PRINTALL): title1 "Listing of PERM.COURSES Data Set";
MPRINT(PRINTALL): title2 "for DAYS=4";
MPRINT(PRINTALL): run;
NOTE: There were 1 observations read from the dataset PERM.COURSES.
 WHERE DAYS=4;
NOTE: PROCEDURE PRINT used:
 real time 1.44 seconds
 cpu time 0.02 seconds

MPRINT(PRINTALL): proc print data=PERM.COURSES;
MPRINT(PRINTALL): where DAYS=5;
MPRINT(PRINTALL): title1 "Listing of PERM.COURSES Data Set";
MPRINT(PRINTALL): title2 "for DAYS=5";
MPRINT(PRINTALL): run;
NOTE: There were 1 observations read from the dataset PERM.COURSES.
 WHERE DAYS=5;
NOTE: PROCEDURE PRINT used:
 real time 1.46 seconds
 cpu time 0.03 seconds

 5.3 Global and Local Symbol Tables 5-45

5.3 Global and Local Symbol Tables

61

Objectives
Explain the difference between global and local
symbol tables.
Describe how the macro processor decides which
symbol table to use.
Describe the concept of nested macros and the
hierarchy of symbol tables.

62

The Global Symbol Table
The global symbol table is

created during the initialization of a SAS session or
noninteractive execution
initialized with automatic or system-defined macro
variables
deleted at the end of the session.

5-46 Chapter 5 Macro Programs

63

The Global Symbol Table
Macro variables in the global symbol table

are available anytime during the session
can be created by your program
have values that can be changed during the session
(except some automatic macro variables).

64

The Global Symbol Table

Global Symbol Table

SYSDATE 23FEB04
SYSDAY Monday
SYSVER 9.1

. .

. .

. .
uservar1 value1
uservar2 value2

Variable Value

 5.3 Global and Local Symbol Tables 5-47

65

The Global Symbol Table
You can create a global macro variable with a

%LET statement (used outside a macro definition)
DATA step containing a SYMPUT routine
SELECT statement containing an INTO clause in
PROC SQL
%GLOBAL statement.

66

The Global Symbol Table
General form of the %GLOBAL statement:

The %GLOBAL statement
creates one or more macro variables in the global
symbol table and assigns them null values
can be used inside or outside a macro definition
has no effect on variables already in the global table.

%GLOBAL macrovar1 macrovar2 . . . ;%GLOBAL macrovar1 macrovar2 . . . ;

5-48 Chapter 5 Macro Programs

67

The Local Symbol Table
A local symbol table is

created when a macro with a parameter list is
called or a local macro variable is created during
macro execution
deleted when the macro finishes execution.

A local table is not created unless and until a request is
made to create a local variable. Macros that do not create
local variables do not have a local table.

68

The Local Symbol Table
Local macro variables can be

created and initialized at macro invocation
(macro parameters)
created during macro execution
updated during macro execution
referenced anywhere within the macro.

 5.3 Global and Local Symbol Tables 5-49

69

Local Symbol Table

parameter1 value1
parameter2 value2

. .

. .

. .
uservar1 value1
uservar2 value2

Variable Value

The Local Symbol Table
The memory used by a local table can be reused when
the table is deleted after macro execution. Therefore, use
local variables instead of global variables whenever
possible.

70

The Local Symbol Table
In addition to macro parameters, you can create local
macro variables with any of the following methods used
inside a macro definition:

%LET statement
DATA step containing a SYMPUT routine
SELECT statement containing an INTO clause in
PROC SQL
%LOCAL statement.

The SYMPUT routine creates local variables only if a local
table already exists.

5-50 Chapter 5 Macro Programs

71

The %LOCAL Statement
General form of %LOCAL statement:

The %LOCAL statement
can appear only inside a macro definition
creates one or more macro variables in the local
symbol table and assigns them null values
has no effect on variables already in the local table.

%LOCAL macrovar1 macrovar2 . . . ;%LOCAL macrovar1 macrovar2 . . . ;

72

The %LOCAL Statement
Declare the index variable of a macro loop as a local
variable to prevent the accidental contamination of macro
variables of the same name in the global table or other
local tables.

%macro putloop;
%local i;
%do i=1 %to &count;

%put TEACH&i is &&teach&i;
%end;

%mend putloop;

 5.3 Global and Local Symbol Tables 5-51

73

The SYMPUTX Routine
The optional scope argument of the SYMPUTX routine
specifies where to store the macro variable:

G specifies the global symbol table.
L specifies the most local of existing symbol tables,
which might be the global symbol table if no local
symbol table exists.

The SYMPUTX routine is new in SAS®9.

CALL SYMPUTX(macro-variable, text, <scope>);CALL SYMPUTX(macro-variable, text, <scope>);

74

Rules for Creating and Updating Variables
When the macro processor receives a request to create
or update a macro variable during macro execution, the
macro processor follows these rules:

Request during
macro call:

%LET MACVAR=VALUE;

Does MACVAR already exist
in the local table? Yes Update MACVAR with VALUE

in the local table.

Does MACVAR already exist
in the global table?

Update MACVAR with VALUE
in the global table.

Create MACVAR and assign it VALUE
in the local table.

No

No

Yes

Macro Processor

5-52 Chapter 5 Macro Programs

75

Request during macro call: &MACVAR

Yes Retrieve its value from the
local table.

Retrieve its value from the
global table.

Give the tokens back to the wordscanner.
Issue warning message in SAS log:
Apparent symbolic reference MACVAR not resolved.

No

No
Yes

Macro Processor

Does MACVAR exist in the
global table?

Does MACVAR exist in the
local table?

Rules for Resolving Variables
To resolve a macro variable reference during macro
execution, the macro processor follows these rules:

76

Multiple Local Tables
Multiple local tables can exist concurrently during macro
execution.

Example: Define two macros. One calls the other.

%macro outer;
%local x;
%let x=1;
%inner

%mend outer;
%macro inner;

%local y;
%let y=&x;

%mend inner;

Create a global macro variable X.

%let x=0;

Global Table

X 0

 5.3 Global and Local Symbol Tables 5-53

77

Multiple Local Tables
Call the OUTER macro. When the %LOCAL statement
executes, a local table is created.

%macro outer;
%local x;
%let x=1;
%inner

%mend outer;
%macro inner;

%local y;
%let y=&x;

%mend inner;

%outer
Global Table

X 0

OUTER Local Table

X 1

What happens if the %LOCAL statement in the OUTER
macro is omitted?

78

Multiple Local Tables
A nested macro call can create its own local symbol table
in addition to any other tables that may currently exist.

%macro outer;
%local x;
%let x=1;
%inner

%mend outer;
%macro inner;

%local y;
%let y=&x;

%mend inner;

Global Table

X 0

OUTER Local Table

X 1

INNER Local Table

Y

5-54 Chapter 5 Macro Programs

79

Multiple Local Tables
The macro processor resolves a macro variable reference by
searching symbol tables in the reverse order in which they
were created:
1. current local table
2. previously created local tables
3. global table.

Global Table

X 0
OUTER Local Table

X 1

INNER Local Table

Y 1

%macro outer;
%local x;
%let x=1;
%inner

%mend outer;
%macro inner;

%local y;
%let y=&x;

%mend inner;

The global variable X is not available to the INNER macro.

80

Multiple Local Tables
When the INNER macro finishes execution, its local table
is deleted. Control passes back to the OUTER macro.

%macro outer;
%local x;
%let x=1;
%inner

%mend outer;
%macro inner;

%local y;
%let y=&x;

%mend inner;

Global Table
X 0

OUTER Local Table

X 1

 5.3 Global and Local Symbol Tables 5-55

81

Multiple Local Tables
When the OUTER macro finishes execution, its local
table is removed. Only the GLOBAL table remains.

%macro outer;
%local x;
%let x=1;
%inner

%mend outer;
%macro inner;

%local y;
%let y=&x;

%mend inner;

Global Table
X 0

82

Example: Call the NUMOBS macro within the CHECK
macro to find the number of observations in a
subset of the perm.students data set.
Conditionally execute additional SAS code if the
subset contains any observations.
Call the macro to list students from different
companies.

Multiple Local Tables

5-56 Chapter 5 Macro Programs

83

Multiple Local Tables
%macro numobs(lib,dsn);

%global num;
%let num=0;
proc sql noprint;
select (nobs-delobs) into :num

from dictionary.tables
where libname="%upcase(&lib)"

and memname="%upcase(&dsn)";
quit;
%let num=#

%mend numobs;
%macro check(comp);

data subset;
set perm.students;
where student_company="&comp";

run;
%numobs(work,subset)
%if &num>0 %then %do;
proc print data=subset noobs;

var student_name city_state;
title "&num Students from &comp";

run;
%end;
%else %put No students from &comp..;

%mend check;

Why is NUM
declared global in
the NUMOBS
macro? Is there
another solution?

SYMBOL1

84

%macro check(comp);
data subset;
set perm.students;
where student_company="&comp";

run;
%numobs(work,subset)
%if &num>0 %then %do;
proc print data=subset noobs;

var student_name city_state;
title "&num Students from &comp";

run;
%end;
%else %put No students from &comp..;

%mend check;
%check(Reston Railway) Global Table

check Local Table
comp Reston Railway

 5.3 Global and Local Symbol Tables 5-57

85

Multiple Local Tables

Global Table

check Local Table

comp Reston Railway

numobs Local Table

lib work
dsn subset

%macro check(comp);
data subset;
set perm.students;
where student_company="&comp";

run;
%numobs(work,subset)
%if &num>0 %then %do;
proc print data=subset noobs;

var student_name city_state;
title "&num Students from &comp";

run;
%end;
%else %put No students from &comp..;

%mend check;
%check(Reston Railway)

86

Multiple Local Tables
%macro numobs(lib,dsn);

%global num;
%let num=0;
proc sql noprint;
select (nobs-delobs) into :num

from dictionary.tables
where libname="%upcase(&lib)"

and memname="%upcase(&dsn)";
quit;
%let num=#

%mend numobs;
Global Table

check Local Table

comp Reston Railway
numobs Local Table

lib work
dsn subset

num 0

5-58 Chapter 5 Macro Programs

87

Multiple Local Tables
%macro numobs(lib,dsn);

%global num;
%let num=0;
proc sql noprint;
select (nobs-delobs) into :num

from dictionary.tables
where libname="%upcase(&lib)"

and memname="%upcase(&dsn)";
quit;
%let num=#

%mend numobs;
Global Table

check Local Table

comp Reston Railway
numobs Local Table

lib work
dsn subset

num 14

NUM is the number
of observations
selected by this
query.

88

Global Table

check Local Table

comp Reston Railway

num 14

%macro check(comp);
data subset;
set perm.students;
where student_company="&comp";

run;
%numobs(work,subset)
%if &num>0 %then %do;
proc print data=subset noobs;

var student_name city_state;
title "&num Students from &comp";

run;
%end;
%else %put No students from &comp..;

%mend check;
%check(Reston Railway)

NUMOBS has finished
execution. Therefore, its
local symbol table is
deleted.

NUM still exists
because it was placed
into the global table.

 5.3 Global and Local Symbol Tables 5-59

89

Global Table

CHECK Local Table

comp Reston Railway

num 14

%macro check(comp);
data subset;
set perm.students;
where student_company="Reston Railway";

run;
%numobs(work,subset)
%if 14>0 %then %do;
proc print data=subset noobs;

var student_name city_state;
title "14 Students from Reston Railway";

run;
%end;
%else %put No students from Reston Railway.;

%mend check;
%check(Reston Railway)

The values of &num
and &comp are
substituted into the
program.

CHECK local table will be
deleted when the CHECK
macro finishes execution.

90

Multiple Local Tables

174 %check(Reston Railway)

NOTE: There were 14 observations read from the data set PERM.STUDENTS.
WHERE student_company='Reston Railway';

NOTE: The data set WORK.SUBSET has 14 observations and 3 variables.
NOTE: DATA statement used (Total process time):

real time 0.00 seconds
cpu time 0.01 seconds

NOTE: PROCEDURE SQL used (Total process time):
real time 0.00 seconds
cpu time 0.01 seconds

NOTE: There were 14 observations read from the data set WORK.SUBSET.
NOTE: PROCEDURE PRINT used (Total process time):

real time 0.00 seconds
cpu time 0.00 seconds

Partial SAS Log

5-60 Chapter 5 Macro Programs

91

Multiple Local Tables

175 %check(Raston Railway)

NOTE: There were 0 observations read from the data set PERM.STUDENTS.
WHERE student_company='Raston Railway';

NOTE: The data set WORK.SUBSET has 0 observations and 3 variables.
NOTE: DATA statement used (Total process time):

real time 0.01 seconds
cpu time 0.01 seconds

NOTE: PROCEDURE SQL used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

No students from Raston Railway.

Partial SAS Log

 5.3 Global and Local Symbol Tables 5-61

Exercises

5. Creating Multiple Symbol Tables

a. Open the nested program shown below into the Editor window.
%macro prtrost(num=1);
 data _null_;
 call symput('today',
 trim(left(put(today(),mmddyy10.))));
 run;

 proc print data=perm.all label noobs n;
 where course_number=#
 var student_name student_company city_state;
 title1 "Enrollment for Course &num as of &today";
 run;
%mend prtrost;
%prtrost(num=8)

b. Move the DATA step into a separate macro named DATEMVAR with one parameter
corresponding to the format used in the PUT function. Make DATE9. the default value of this
parameter.

c. Place a call to the new macro before the PROC PRINT step (where the DATA step had been). Use
the value MMDDYY10. instead of the default value for the macro’s parameter. Submit the
revised program.

d. Make certain that the reference to &TODAY in the title resolves to the formatted value of today’s
date.

5-62 Chapter 5 Macro Programs

Solutions to Exercises

5. Creating Multiple Symbol Tables

When the DATA step is moved outside the original macro, and the new macro has parameters, the
macro variable TODAY is placed in the local table for the new macro unless it is explicitly made
available to the original macro.

This can be done by making TODAY
• a global variable, or
• a local variable for the original macro, which can be updated within the new macro as the

macro processor traverses through the separate local tables in the reverse order that they were
created.

%macro datemvar(fmt=date9.);
 data _null_;
 call symput('today',
 trim(left(put(today(),&fmt))));
 run;
%mend datemvar;

%macro prtrost(num=1);
 %local today;
 %datemvar(fmt=mmddyy10.);
 proc print data=perm.all label noobs n;
 where course_number=#
 var student_name student_company city_state;
 title1 "Enrollment for Course &num as of &today";
 run;
%mend prtrost;

%prtrost(num=8)

Chapter 6 Learning More

6.1 SAS Resources...6-3

6.2 What’s Next After SAS® Macro Language ..6-20

6-2 Chapter 6 Learning More

 6.1 SAS Resources 6-3

6.1 SAS Resources

3

Objectives
Explore other services and resources available to all
SAS users.

ConsultingConsulting

DocumentationDocumentation

Technical SupportTechnical Support

EducationEducation

User GroupsUser Groups

4

SAS Services
SAS is a full-service company that provides

Training instructor-based and online
training options

Certification global certification program to
assess knowledge of SAS software
and earn industry-recognized
credentials

Online Help a comprehensive online Help
system to address many
information needs

Documentation extensive online and hardcopy
reference information.

6-4 Chapter 6 Learning More

5

SAS Customer Support Center
Access the SAS Customer Support Center to learn more
about available services and resources.

support.sas.com/

You can use the SAS Web site to
• read about software, either by application or by industry
• learn about upcoming worldwide events, such as industry trade shows
• report problems to the Technical Support Division
• learn about consulting services
• identify the most appropriate learning path and register for courses online
• review the list of certification exams designed to assess knowledge of SAS software; identify test

preparation options; and register online for a certification exam
• browse and order from the online version of the SAS® Publications catalog
• access online versions of SAS publications.

 6.1 SAS Resources 6-5

6

SAS Training
SAS provides comprehensive training services.

Instructor-based training (public and onsite)
Business Knowledge Series seminars (led by
industry experts)
E-Learning (self-paced and Live Web)

For additional information, visit the SAS Training Web
site.

support.sas.com/training/

6-6 Chapter 6 Learning More

Training Services

SAS offers training services to help you achieve business and professional goals. Whether you are a
beginning or an accomplished SAS software user, training services are available to help you increase your
skills and expand your knowledge.

Instructor-based training offers both public and on-site courses that encompass the breadth of SAS
solutions and software including
• the SAS programming language
• report writing
• applications development
• data warehousing
• client/server strategies
• structured query language (SQL)
• financial consolidation and reporting
• database access
• statistical analysis.

Seminars led by industry experts are also available through the Business Knowledge Series to provide
you with expertise in the latest business developments.

e-Learning is an optimal choice when time and distance are an issue. SAS offers Live Web classes and
self-paced e-learning to help you get the training you need while accommodating your busy schedule. The
benefits of e-learning include the following:
• Bring SAS software or JMP training directly to your desktop and learn at your own pace anytime,

anywhere.
• Learn at your convenience.
• Personalize your training.
• Practice in your own SAS session.
• Enhance what you learn in the classroom.

For more information about training services, visit the Web at http://support.sas.com/training and order
the complimentary SAS® Training catalog (http://support.sas.com/training/us/catalog.html). Published
biannually, the SAS® Training catalog contains detailed course descriptions, course fees, and suggested
learning paths, as well as information on discounts and special offers.

Additional learning paths include
• Data Presentation
• Data Mining
• SAS IT Resource Management
• SAS Human Capital Management
• Statistical Analysis
• JMP
• StatView.

 6.1 SAS Resources 6-7

7

SAS Technology Conferences
SAS holds an annual Data Mining conference where
you can learn the latest developments in the data
mining field.

www.sas.com/events/dmconf/

8

SAS Certified Professional Program
Consider taking a certification exam to assess your
knowledge of SAS software. For a current listing of
certification exams and registration information, visit the
SAS Certification Web site.

support.sas.com/certify/

6-8 Chapter 6 Learning More

9

Online Help
SAS features an extensive online Help system built into
the software.

10

SAS Documentation
The Documentation section of the Customer Support
Center is designed to give you quick and easy access to
the documentation provided by SAS.

support.sas.com/documentation/

 6.1 SAS Resources 6-9

11

Online Documentation
You can access SAS OnlineDoc, which provides you with
SAS reference documentation.

12

Hardcopy Documentation
Some SAS documentation is available in hardcopy.
For more information, visit the SAS Publishing Web site.

support.sas.com/publishing/

6-10 Chapter 6 Learning More

Publications Services

For a complete list of documentation available in online and hardcopy form, access the SAS Publications
Web site at http://support.sas.com/publishing .

 You can order documentation using the Publications Catalog through the SAS Publications Web
site or by calling 1-800-727-3228.

Online and printed documentation includes
• Getting Started Guides, which provide an introduction to selected features of SAS
• Reference Guides, which cover the SAS language
• User's Guides, which show applications of SAS features
• Companions, which explain the implementation of SAS features in specific operating environments
• Changes and Enhancements, which describe "What's New" in each release of SAS software
• Books by Users, written by expert SAS software users on a variety of topics
• Proceedings from SAS Users Group conferences.

SAS publishes a number of magazines and newsletters. To view these periodicals, access the SAS
Publications Web site.

13

Additional SAS Services
SAS also provides

Sample Programs online code samples, technical
tips, how-to advice

Online Communities resources related to specific
subject areas

Technical Support specialists for all SAS
software products and
supported operating systems.

Consulting Services short- or long-term services to
meet business needs.

 6.1 SAS Resources 6-11

14

Code Samples
Sample programs and technical tips from SAS
developers, SAS technical support consultants, and
longtime SAS users are available online.

support.sas.com/sassamples/

15

Online Communities
SAS communities offer quick online access to
information related to many subject areas.

support.sas.com/rnd/

6-12 Chapter 6 Learning More

16

Goals:
Provide support to our users to solve any problems
they encounter when using SAS software.
Free unlimited support.
Local support at each site - designated SAS
consultant. sas

World Wide Web Services:
Report/resolve problems
Frequently asked questions
SASware Ballot suggestions/results
Download zaps/fixes/patches
Upload code/data
Search SAS notes
Alert notes.

Technical Support

17

Web: support.sas.com/techsup/

E-mail: support@sas.com - report problems
suggest@sas.com - software

suggestions

Telephone (North America):
9:00 a.m. until 8:00 p.m. Eastern Time,
Monday-Friday
(919) 677-8008

Contacting Technical Support

 Customers outside North America should contact their local SAS office for telephone support.

 6.1 SAS Resources 6-13

Technical Support Services

Technical Support provides you with the resources to answer questions or solve problems that you
encounter when you use SAS software. You have access to a variety of tools to solve problems on your
own and a variety of ways to contact Technical Support when you need help.
• Free, Unlimited Support

Free technical support is available to all sites that license software from SAS. This includes unlimited
telephone support for customers in North America by calling 1-919-677-8008. Customers outside
North America can contact their local SAS Institute office. There is also an e-mail interface and FTP
site.

• Reported Problems

Although SAS software is recognized as a leader in reliability, SAS realizes that no software is
problem free. We do our best to let you know about bugs or problems that have been reported to
Technical Support. Information about reported problems is available in the SAS Notes and SAS/C
Compiler Usage Notes, which are distributed with the software, and can also be searched via the Web
interface. We also inform you about more serious problems through Alert Notes and the TSNEWS-L
list server.

• Local Support at Your Site

To provide the most effective response to your questions and problems, one or more persons at your
site are designated as local SAS support personnel. These are knowledgeable SAS users who are
provided with additional resources to assist all SAS users at your site. You can often get a quick
answer to your SAS questions by contacting your local SAS consultant before calling SAS Technical
Support.

To use SAS Technical Support, you must know your SAS System site number. Your site number can be
found at the top of the log. The site number can also be easily obtained using the SETINIT procedure,
which displays information about your SAS installation in the log.

PROC SETINIT NOALIAS;
RUN;

6-14 Chapter 6 Learning More

18

Services provided:

knowledge transfer

application development

analytical consulting

implement business solutions.

Consulting Services

Consulting Services

SAS offers flexible consulting options to meet short- or long-term business needs. Services such as
installation, needs assessment, project scoping, prototyping, or short-term technical assistance help you to
reap the benefits of SAS software as quickly as possible.

Consultants provide expertise in areas such as
• data warehousing
• data mining
• business intelligence
• Web-enablement tasks
• analytical solutions
• business solutions
• custom applications
• client/server technology
• systems-related issues.

 6.1 SAS Resources 6-15

19

Other SAS Users
SAS users can share their experiences through

SAS Users Groups
the SAS-L Internet mail list
the COMP.SOFT-SYS.SAS newsgroup

20

SAS Users Groups
SAS Users Groups offer the opportunity to

enhance your understanding of SAS software and
services
exchange ideas about using your software and
hardware most productively
learn of new SAS products and services as soon as
they become available
have more influence over the direction of SAS
software and services.

6-16 Chapter 6 Learning More

21

SUGI (pronounced soo-gee)
SAS Users Group International. Annual conference
held March or April in North America.

SAS Forum International (formerly SEUGI)
Annual conference held May or June in Europe.

SUGA (SAS Users Group of Australia)
Annual Conference held August or September in
Australia.

International Users Groups

22

SESUG SouthEast SAS Users Group
NESUG NorthEast SAS Users Group
MWSUG MidWest SAS Users Group
SCSUG South-Central SAS Users Group
WUSS Western Users of SAS Software
PNWSUG Pacific Northwest SAS Users Group

U.S. Regional User Groups

 6.1 SAS Resources 6-17

23

Local City or area user group. Often hold
multiple meetings per year.

Special Interest Industry-specific user groups.
In-house Single organization or company user

group.
Worldwide Most countries have their own users

groups.

Other Users Groups

support.sas.com/usergroups/

24

SAS-L is a user-run Internet mail list (LISTSERV)
devoted to issues relating to SAS software products.
You can use SAS-L to exchange information (and
opinions) about SAS software, or to post questions about
SAS software and get responses from SAS users around
the world.
SAS-L is sponsored by the University of Georgia.
SAS-L is neither moderated nor supported by SAS.

SAS-L Internet Mail List

6-18 Chapter 6 Learning More

25

To subscribe to the SAS-L mail list, send a message to
listserv@listserv.uga.edu.

The subject line is ignored and the body should
contain SUBSCRIBE SAS-L your name here
.

For example, SUBSCRIBE SAS-L Tom Smith is how
Tom Smith would subscribe.

You can also manage your subscription through the
SAS-L Web site:

listserv.uga.edu/archives/sas-l.html

Subscribing to SAS-L

26

The COMP.SOFT-SYS.SAS Usenet newsgroup mirrors
the SAS-L mail list.
To view this newsgroup, use a newsgroup viewer such as
groups.google.com.

COMP.SOFT-SYS.SAS Newsgroup

 6.1 SAS Resources 6-19

27

Additional Information
Access the SAS Web site to learn more about available
SAS software, support, and services.

www.sas.com

6-20 Chapter 6 Learning More

6.2 What’s Next After SAS® Macro Language

29

Objectives
Explore which SAS training courses are appropriate
after you complete SAS® Macro Language.

30

Additional SAS Training Courses
SAS® Macro Language is part of the Accessing and
Manipulating Data learning path of the SAS curriculum:

Accessing and Manipulating
Data Curriculum
Accessing and Manipulating
Data Curriculum

SAS® Macro
Language
SAS® Macro
Language

 6.2 What’s Next After SAS® Macro Language 6-21

Additional learning paths include
• SAS Enterprise Guide
• Business Intelligence
• Data Presentation and Reporting
• Application Development
• Statistical Analysis
• Data Mining
• Activity-Based Management
• Supplier Relationship Management and Risk Management
• Warranty Analysis
• Financial Management, IT Management, and Strategic Performance Management
• Customer Intelligence
• Pharmaceutical/Health Care
• Scientific Discovery
• JMP.

31

To learn more about: Enroll in:

Manipulating data
with the DATA step
and procedures

Implementing
Web-based SAS
applications

Building automated
and integrated macro
applications

SAS® Programming III:
Advanced Techniques

SAS® Web Tools: Static
and Dynamic Solutions
using SAS/IntrNet®

Software

SAS® Macro
Programming:
Advanced Topics

...

Specific SAS Training Courses

6-22 Chapter 6 Learning More

32

Do not forget to
fill out your evaluation
make a copy of the course data (if desired)
pick up your diploma
deposit your name badge in the container provided by
your course coordinator.

Before You Leave…

33

Thank You…
for attending SAS® Macro Language.

We hope that the topics you have learned in this course
will enhance your ability to build more flexible SAS
applications and reduce your effort in creating and
maintaining those applications.

Appendix A Flow Diagram

A.1 Program Flow... A-3

A-2 Appendix A Flow Diagram

 A.1 Program Flow A-3

A.1 Program Flow

3

DATA STEP
Compiler

PROCEDURE
Parser

GLOBAL STATEMENT
Parser

SQL
Compiler

WORD SCANNER MACRO
PROCESSOR

SYMBOL TABLE

MACRO LIBRARY

INPUT STACK

A-4 Appendix A Flow Diagram

Appendix B Index

%
%BQUOTE function, 2-55, 2-63–2-64
%COPY statement

macro storage, 3-16
OUT= option, 3-16

%DO %UNTIL statement
syntax, 5-37

%DO %WHILE statement
syntax, 5-37

%DO statement, 5-8
%ELSE statement

syntax, 5-5
%END statement, 5-8
%EVAL function, 2-55, 2-68

syntax, 2-65
%GLOBAL statement, 5-47
%IF-%THEN statement

syntax, 5-5
%INDEX function, 2-55
%LENGTH function, 2-55
%LET statement, 5-49

creating macro variables, 2-27–2-34
syntax, 2-27

%LOCAL statement, 5-49
syntax, 5-50

%PUT statement, 1-21
syntax, 1-20

%SCAN function, 2-55, 2-60–2-62
%SUBSTR function, 2-55, 2-58–2-59
%SYSFUNC function, 2-55, 2-67–2-70

syntax, 2-67
%UPCASE function, 2-55

syntax, 2-56

A
automatic macro variables, 1-4, 2-6–2-8

C
calling a macro, 3-6
case sensitivity, 2-55, 2-56

code
substitution within, 2-21–2-23

conditional iteration, 5-37–5-39
conditional processing, 1-5, 5-5–5-19

%ELSE statement, 5-5
%IF-%THEN statement, 5-5

course data, 1-34
creating a series of macro variables, 4-32–4-

40
creating macro variables

%LET statement, 2-27–2-34
creating macro variables in SQL, 4-67–4-73

D
data-driven applications, 1-6
deleting user-defined macro variables, 2-36
displaying user-defined macro variables, 2-

35–2-36

G
global symbol table, 2-4, 5-45–5-47

I
IN comparison operator, 5-5
input stack, 1-9
INTO clause

SQL procedure, 4-67–4-73
iterative %DO statement

syntax, 5-28
iterative processing, 5-28–5-39

K
keyword parameters, 3-28–3-29

L
literal tokens, 1-12
literals

substitution within, 2-18
local symbol table, 5-48–5-49
local symbol tables, 3-25
local tables

multiple, 5-52–5-60

B-2 Index

loops
simple, 5-29–5-30

M
macro call

syntax, 3-6
macro call with parameters

syntax, 3-24
macro compilation, 3-4
macro definition

syntax, 3-3
macro definition with parameter list

syntax, 3-24
macro execution, 3-13–3-14
macro facility

efficiency of, 1-7
purpose, 1-3

macro functions, 2-54–2-70
macro parameters, 3-22–3-35
macro statements, 1-20
macro storage, 3-14–3-17

%COPY statement, 3-16
MSTORED system option, 3-15
SASMSTORE= system option, 3-15
STORE option, 3-15

macro syntax errors, 5-8
macro variable references, 2-9–2-23
macro variables

combining with text, 2-43–2-46
creating a series of, 4-32–4-40
creating in SQL, 4-67–4-73
creating with %LET statement, 2-27–2-

34
indirect references, 4-44–4-48
introduction, 2-3–2-5
name delimiter, 2-47–2-49
referencing, 2-42
retrieving in DATA step, 4-52–4-59
user-defined

deleting, 2-36

displaying, 2-34–2-36
macro-based applications

developing, 1-7
MCOMPILENOTE= option

syntax, 3-4
mixed parameter list, 3-32
MLOGIC option

syntax, 5-6
MPRINT option, 3-14
MSTORED system option

macro storage, 3-15

N
name tokens, 1-13
NOMLOGIC option

syntax, 5-6
number tokens, 1-12

O
OUT= option

%COPY statement, 3-16

P
parameter list, 3-23
parameter validation, 5-15–5-18
positional parameters, 3-26
program flow, 1-9–1-10
PUT function, 4-21

R
references

unresolved, 2-20
referencing macro variables, 2-42
repetitive processing, 1-6
retrieving macro variables in DATA step, 4-

52–4-59

S
SAS services, 6-3–6-13

consulting, 6-14
Publications, 6-10
technical support, 6-13
training, 6-5–6-6

SASMSTORE= system option
macro storage, 3-15

special tokens, 1-13
SQL procedure

INTO clause, 4-67–4-73
STORE option

macro storage, 3-15

 Index B-3

SYMBOLGEN system option
syntax, 2-35

symbolic variables, 2-3
SYMGET function, 4-52–4-55

syntax, 4-53
SYMPUT routine, 4-7–4-18, 5-49

syntax, 4-8
SYMPUTX routine, 4-19–4-25

syntax, 5-51
SYSDATE9 automatic macro variable, 2-67
system information, 1-4
SYSTIME automatic macro variable, 2-67

T
table lookup application, 4-46–4-48
TODAY function, 2-68

tokenization, 1-11–1-13

U
unresolved references, 2-20
user-defined macro variables, 1-5, 2-4, 2-27–

2-37
deleting, 2-36
displaying, 2-34–2-36

V
variables

rules for creating, 5-51
rules for resolving, 5-52
rules for updating, 5-51

