
 1

PROC SQL: Beyond the Basics Using SAS

by Kirk Paul Lafler

SAS Publishing © 2004 (384 pages)

ISBN:9781590475348

With straightforward explanations and numerous examples,

this step-by-step guide offers techniques that will

enhance your data access, manipulation, and presentation

prowess.

Table of Contents

 PROC SQL—Beyond the Basics Using SAS

 Preface

 Chapter 1 - Designing Database Tables

 Chapter 2 - Working with Data in PROC SQL

 Chapter 3 - Formatting Output

 Chapter 4 - Coding PROC SQL Logic

 Chapter 5 - Creating, Populating, and Deleting Tables

 Chapter 6 - Modifying and Updating Tables and Indexes

 Chapter 7 - Coding Complex Queries

 Chapter 8 - Working with Views

 Chapter 9 - Troubleshooting and Debugging

 Chapter 10 - Tuning for Performance and Efficiency
 Glossary

 References

 Index
 List of Figures
 List of Tables

 2

Chapter 1: Designing Database Tables

1.1 Introduction

The area of database design is very important in relational processes. Much

has been written on this subject including entire textbooks and thousands

of technical papers. No pretenses are made about the thoroughness of this

very important subject in these pages. Rather, an attempt is made to provide

a quick-start introduction for those readers unfamiliar with the issues and

techniques of basic design principles. Readers needing more information are

referred to the references listed in the back of this book.

1.2 Database Design

Activities related to “good” database design require the identification

of end-user requirements and involve defining the structure of data values

on a physical level. Database design begins with a conceptual view of what
is needed. The next step, called logical design, consists of developing a
formal description of database entities and relationships to satisfy user

requirements. Seldom does a database consist of a single table. Consequently,

tables of interrelated information are created to enable more complex and

powerful operations on data. In the final step, referred to as physical
design, the goal is to achieve optimal performance and efficient storage of
the logical database.

1.2.1 Conceptual View

The health and well-being of a database depends on its database design. A

database must be in balance (optimized) with all of its components to avoid

performance and operation bottlenecks. Database design doesn’t just happen.

It involves planning, modeling, creating, monitoring, and adjusting to

satisfy the endless assortment of user requirements without exhausting

available resources. Of central importance to database design is the process

of planning. Planning is a valuable component that, when absent, causes a

database to fall prey to a host of problems including poor performance and

difficulty in operation. Database design consists of three distinct phases,

as illustrated below.

 3

 Conceptual Design Activities

1. Identify all entities.

2. Define entity attributes’ uniqueness and usefulness.

3. Define attribute properties including data type, size, and whether

null values can be accepted.

4. Define entities and attributes as related to one another.

 Logical Design Activities

1. Transform conceptual design criteria into relational form.

2. Transform entities into tables.

3. Transform entity attributes into table columns.

4. Transform tables and columns using rules of functional dependencies

and keys or normalization.

 Physical Design Activities

1. Assign one or more indexes (simple and composite).

2. Tune indexes for maximum performance.

3. Denormalize tables, if necessary, to improve access speeds.

1.2.2 Table Definitions

PROC SQL uses a model of data stored as sets rather than as physical files.

A physical file consists of one or more records ordered sequentially or some

other way. Programming languages such as COBOL and FORTRAN evolved to process

files of this type by performing operations one record at a time. These

languages were generally designed and used to mimic the way people process

paper forms.

PROC SQL was designed to work with sets of data. Sets have no order and members

of a set are of the same type using a data structure known as a table. A table

is either a base table consisting of zero or more rows with one or more columns

or a virtual table called a view (see Chapter 8, “Working with Views”).

 4

1.2.3 Redundant Information

One of the rules of good database design is that data not be redundant or

not be duplicated in the same database. The rationale for this is that if

data appears more than once, then there is reason to believe that one of the

pieces of data is likely to be in error. Another thing to watch for is the

appearance of too many columns containing null values. When this occurs, the

database is probably not designed properly. To alleviate potential table

design issues, a process referred to as normalizing is performed. When

properly done, this ensures the complete absence of redundant information

in a table.

1.2.4 Normalization

Designing an optimal database design is an important element of database

operations. It is also critical in achieving maximum performance and

flexibility while working with tables and data. To minimize errors and

duplication of data, database developers apply a concept called

normalization to a logical database design.

The normalization process generally involves splitting larger multicolumn

tables into two or more smaller tables containing fewer columns. The

rationale for doing this is found in a set of data design guidelines called

normal forms. The guidelines provide designers with a set of rules for

converting one or two large database tables containing numerous columns into

a normalized database consisting of multiple tables and only those columns

that should be included in each table. The normalization process typically

consists of no more than five steps with each succeeding step subscribing

to the rules of the previous steps.

Normalizing a database helps to ensure that the database does not contain

redundant information in two or more of its tables. As database designers

and analysts proceed through the normalization process, many are not

satisfied unless a database design is carried out to at least third normal

form (3NF). Joe Celko in his popular book, SQL for Smarties: Advanced SQL
Programming (Morgan Kaufmann, 1999), describes 3NF this way: “Informally,

all the non-key columns are determined by the key, the whole key, and nothing

but the key.”

 5

While the normalization guidelines are extremely useful, some database

purists actually go to great lengths to remove any and all table redundancies

even at the expense of performance. This is in direct contrast to other

database experts who follow the guidelines less rigidly in an attempt to

improve the performance of a database by only going as far as the third step

(or third normal form). Whatever your preference, you should keep this in

mind as you normalize database tables. A fully normalized database often

requires a greater number of joins and adversely affects the speed of queries.

Celko mentions that the process of joining multiple tables is costly,

specifically affecting processing time and computer resources.

1.2.5 Normalization Strategies

After transforming entities and attributes from the conceptual design into

a logical design, the tables and columns are created. This is when a process

known as normalization occurs. Normalization refers to the process of making

your database tables subscribe to certain rules. Many, if not most, database

designers are satisfied when third normal form (3NF) is achieved and, for

the objectives of this book, I will stop at 3NF too. To help explain the

various normalization steps, an example scenario will be given.

1.2.5.1 First Normal Form (1NF)

A table is considered to be in first normal form (1NF) when all of its columns

describe the table completely and when each column in a row has only one value.

A table satisfies 1NF when each column in a row has a single value and no

repeating group information. Essentially every table meets 1NF as long as

an array, list, or other structure has not been defined. The following example

illustrates a table satisfying the 1NF rule because it has only one value

at each row-and-column intersection. The table is in ascending order by

CUSTNUM and consists of customers and the purchases they made at an office

supply store.

CUSTNUM CUSTNAME CUSTCITY ITEM UNITS UNITCOST MANUCITY

 1 Smith San Diego Chair 1 $179.00 San Diego

 1 Smith San Diego Pens 12 $0.89 Los Angeles

 1 Smith San Diego Paper 4 $76.95 Washington

 1 Smithe San Diego Stapler 1 $8.95 Los Angeles

 7 Lafler Spring Valley Mouse Pad 1 $11.79 San Diego

 7 Loffler Spring Valley Pens 24 $1.59 Los Angeles

 13 Thompson Miami Markers . $0.99 Los Angeles

 6

1.2.5.2 Second Normal Form (2NF)

The very nature of leaving a table in first normal form (1NF) may present

problems because of the repetition of some information in the table as shown

in the example above. Another problem is that there are misspellings in the

customer names. Although repeating information may be permissible with

hierarchical file structures and other legacy type file structures, it does

pose a potential data consistency problem as it relates to relational data.

To describe how data consistency problems can occur, let’s say that a

customer takes a new job and moves to a new city. In changing the customer’s

city to the new location, you might find it very easy to miss one or more

occurrences resulting in a customer residing incorrectly in two different

cities. Assuming that our table is only meant to track one unique customer

per city, this would definitely be a data consistency problem.

Essentially, second normal form (2NF) is important because it says that every

nonkey column must depend on the entire primary key.

Tables that subscribe to 2NF prevent the need to make changes in more than

one place. What this means in normalization terms is that tables in 2NF have

no partial key dependencies. As a result, our database consisting of a single

table that satisfies 1NF will need to be split into two separate tables in

order to subscribe to the 2NF rule. Each table would contain the CUSTNUM

column to connect the two tables. Unlike the single table in 1NF, the tables

in 2NF allow a customer’s city to be easily changed whenever they move to

another city because the CUSTCITY column only appears once. The tables in

2NF would be constructed as follows.

CUSTOMERS Table

CUSTNUM CUSTNAME CUSTCITY
 1 Smith San Diego
 1 Smithe San Diego
 7 Lafler Spring Valley
 13 Thompson Miami

PURCHASES Table

CUSTNUM ITEM UNITS UNITCOST MANUCITY
 1 Chair 1 $179.00 San Diego
 1 Pens 12 $0.89 Los Angeles
 1 Paper 4 $6.95 Washington
 1 Stapler 1 $8.95 Los Angeles

 7

 7 Mouse Pad 1 $11.79 San Diego
 7 Pens 24 $1.59 Los Angeles
 13 Markers . $0.99 Los Angeles

1.2.6 Third Normal Form (3NF)

Referring to the two tables constructed according to the rules of 2NF, you

may have noticed that the PURCHASES table contains a column called MANUCITY.

The MANUCITY column stores the city where the product manufacturer is

headquartered. Keeping this column in the PURCHASES table violates the third

normal form (3NF) because MANUCITY does not provide factual information about

the primary key column in the PURCHASES table. Consequently, tables are

considered to be in third normal form (3NF) when each column is “dependent

on the key, the whole key, and nothing but the key.” The tables in 3NF are

constructed so the MANUCITY column would be in a table of its own as follows.

CUSTOMERS Table

CUSTNUM CUSTNAME CUSTCITY
 1 Smith San Diego
 1 Smithe San Diego
 7 Lafler Spring Valley
 13 Thompson Miami

PURCHASES Table

CUSTNUM ITEM UNITS UNITCOST
 1 Chair 1 $179.00
 1 Pens 12 $0.89
 1 Paper 4 $6.95
 1 Stapler 1 $8.95
 7 Mouse Pad 1 $11.79
 7 Pens 24 $1.59
 13 Markers . $0.99

MANUFACTURERS Table

MANUNUM MANUCITY
 101 San Diego
 112 San Diego
 210 Los Angeles
 212 Los Angeles
 213 Los Angeles
 214 Los Angeles
 401 Washington

 8

1.2.7 Beyond Third Normal Form

In general, database designers are satisfied when their database tables

subscribe to the rules in 3NF. But it is not uncommon for others to normalize

their database tables to fourth normal form (4NF) where independent

one-to-many relationships between primary key and nonkey columns are

forbidden. Some database purists will even normalize to fifth normal form

(5NF) where tables are split into the smallest pieces of information in an

attempt to eliminate any and all table redundancies. Although constructing

tables in 5NF may provide the greatest level of database integrity, it is

neither practical nor desired by most database practitioners.

There is no absolute right or wrong reason for database designers to normalize

beyond 3NF as long as they have considered all the performance issues that

may arise by doing so. A common problem that occurs when database tables are

normalized beyond 3NF is that a large number of small tables are generated.

In these cases, an increase in time and computer resources frequently occurs

because small tables must first be joined before a query, report, or statistic

can be produced.

1.3 Column Names and Reserved Words

The ANSI Standard reserves a number of SQL keywords from being used as column

names. The SAS SQL implementation is not as rigid, but users should be aware

of what reserved words exist to prevent unexpected and unintended results

during SQL processing. Column names should conform to proper SAS naming

conventions (as described in the SAS Language Reference), and they should
not conflict with certain reserved words found in the SQL language. The

following list identifies the reserved words found in the ANSI SQL standard.

ANSI SQL Reserved Words

• AS

• CASE

• EXCEPT

• FROM

• FULL

• GROUP

• HAVING

• INNER

• INTERSECT

• JOIN

• LEFT

• LOWER

• ON

• ORDER

• OUTER

• RIGHT

• UNION

• UPPER

• USER

• WHEN

• WHERE

 9

You probably will not encounter too many conflicts between a column name and

an SQL reserved word, but when you do you will need to follow a few simple

rules to prevent processing errors from occurring. As was stated earlier,

although PROC SQL’s naming conventions are not as rigid as other vendors’

implementations, care should still be exercised, in particular when PROC SQL

code is transferred to other database environments expecting it to run

error-free. If a column name in an existing table conflicts with a reserved

word, you have three options at your disposal:

1. Physically rename the column in the table, as well as any references

to the column.

2. Use the RENAME= data set option to rename the desired column in the

current query.

3. Specify the PROC SQL option DQUOTE=ANSI, and surround the column name

(reserved word) in double quotes, as illustrated below.

SQL Code

PROC SQL DQUOTE=ANSI;

 SELECT *

 FROM RESERVED_WORDS

 WHERE "WHERE"="EXAMPLE";

QUIT;

1.4 Data Integrity

Webster’s New World Dictionary defines integrity as “the quality or state

of being complete; perfect condition; reliable; soundness.” Data integrity

is a critical element that every organization must promote and strive for.

It is imperative that the data tables in a database environment be reliable,

free of errors, and sound in every conceivable way. The existence of data

errors, missing information, broken links, and other related problems in one

or more tables can affect decision-making and information reporting

activities resulting in a loss of confidence among users.

Applying a set of rules to the database structure and content can ensure the

integrity of data resources. These rules consist of table and column

constraints and will be discussed in detail in Chapter 5, “Creating,

Populating, and Deleting Tables.”

 10

1.4.1 Referential Integrity

Referential integrity refers to the way in which database tables handle

update and delete requests. Database tables frequently have a primary key

where one or more columns have a unique value by which rows in a table can

be identified and selected. Other tables may have one or more columns called

a foreign key that is used to connect to some other table through its value.

Database designers frequently apply rules to database tables to control what

happens when a primary key value changes and its effect on one or more foreign

key values in other tables. These referential integrity rules restrict the

data that may be updated or deleted in tables.

Referential integrity ensures that rows in one table have corresponding rows

in another table. This prevents lost linkages between data elements in one

table and those of another enabling the integrity of data to always be

maintained. Using the 3NF tables defined earlier, a foreign key called

CUSTNUM can be defined in the PURCHASES table that corresponds to the primary

key CUSTNUM column in the CUSTOMERS table. Users are referred to Chapter 5,

“Creating, Populating, and Deleting Tables,” for more details on assigning

referential integrity constraints.

1.5 Database Tables Used in This Book

This section describes a database or library of tables that is used by an

imaginary computer hardware and software manufacturer. The library consists

of six tables: customer, inventory, invoice, manufacturers, products, and

purchases. The examples used throughout this book are based on this library

(database) of tables and are described and displayed below. An alphabetical

description of each table used throughout this book appears below.

1.5.1 CUSTOMERS Table

The CUSTOMERS table contains data on customers that have purchased computer

hardware and software products from a manufacturer. Each customer is uniquely

identified with a customer number. A description of each column in the

customers table follows.

 11

 CUSTOMERS

CUSTNUM Unique number identifying the customer

CUSTNAME Name of customer

CUSTCITY City where customer is located

1.5.2 INVENTORY Table

The INVENTORY table contains customer inventory information consisting of

computer hardware and software products. The inventory table contains no

historical data. As inventories are replenished, the old quantity is

overwritten with the new quantity. A description of each column in the

inventory table follows.

 INVENTORY

PRODNUM Unique number identifying product

MANUNUM Unique number identifying the manufacturer

INVENQTY Number of units of product in stock

ORDDATE Date product was last ordered

INVENCST Cost of inventory in customer’s stock room

1.5.3 INVOICE Table

The INVOICE table contains information about customer purchases. Each

invoice is uniquely identified with an invoice number. A description of each

column in the invoice table follows:

 INVOICE

INVNUM Unique number identifying the invoice

MANUNUM Unique number identifying the manufacturer

CUSTNUM Customer number

PRODNUM Product number

INVQTY Number of units sold

INVPRICE Unit price

 12

1.5.4 MANUFACTURERS Table

The MANUFACTURERS table contains data about companies that make computer

hardware and software products. Two companies cannot have the same name. No

historical data is kept in this table. If a company is sold or stops making

computer hardware or software, then the manufacturer is dropped from the

table. In the event a manufacturer has an address change, the old address

is overwritten with the new address. A description of each column in the

manufacturers table follows.

 MANUFACTURERS

MANUNUM Unique number identifying the manufacturer

MANUNAME Name of manufacturer

MANUCITY City where manufacturer is located

MANUSTAT State where manufacturer is located

1.5.5 PRODUCTS Table

The PRODUCTS table contains data about computer hardware and software

products offered for sale by the manufacturer. Each product is uniquely

identified with a product number. A description of each column in the products

table follows.

 PRODUCTS

PRODNUM Unique number identifying the product

PRODNAME Name of product

MANUNUM Unique number identifying the manufacturer

PRODTYPE Type of product

PRODCOST Cost of product

1.5.6 PURCHASES Table

The PURCHASES table contains information about computer hardware and

software products purchased by customers. Each product is uniquely

 13

identified with a product number. A description of each column in the

purchases table follows.

 PURCHASES

CUSTNUM Unique number identifying the product

ITEM Name of product

UNITS Unique number identifying the manufacturer

UNITCOST Cost of product

1.6 Table Contents

An alphabetical list of tables, variables, and attributes for each table is

displayed below.

Customers CONTENTS Output

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Label

custcity Char 20 25 Customer's Home City

custname Char 25 0 Customer Name

custnum Num 3 45 Customer Number

Inventory CONTENTS Output

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label

invencst Num 6 10 DOLLAR10.2 Inventory Cost

invenqty Num 3 7 Inventory Quantity

manunum Num 3 16 Manufacturer Number

orddate Num 4 0 MMDDYY10. MMDDYY10 Date Inventory Last Ordered

prodnum Num 3 4 Product Number

Invoice CONTENTS Output

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Label

 14

Invoice CONTENTS Output

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Label

custnum Num 3 6 Customer Number

invnum Num 3 0 Invoice Number

invprice Num 5 12 DOLLAR12.2 Invoice Unit Price

invqty Num 3 9 Invoice Quantity - Units Sold

manunum Num 3 3 Manufacturer Number

prodnum Num 3 17 Product Number

Manufacturers CONTENTS Output

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Label

manucity Char 20 25 Manufacturer City

manuname Char 25 0 Manufacturer Name

manunum Num 3 47 Manufacturer Number

manustat Char 2 45 Manufacturer State

Products CONTENTS Output

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Label

manunum Num 3 40 Manufacturer Number

prodcost Num 5 43 DOLLAR9.2 Product Cost

prodname Char 25 0 Product Name

prodnum Num 3 48 Product Number

prodtype Char 15 25 Product Type

Purchases CONTENTS Output

-----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format

custnum Num 4 0

item Char 10 8

unitcost Num 4 4 DOLLAR12.2

units Num 3 18

 15

1.6.1 The Database Structure

The logical relationship between each table and the columns common to each

appear below.

1.6.2 Sample Database Tables

The six tables (named above) represent a relational database that will be

illustrated in the examples in this book. These tables are small enough to

follow easily, but complex enough to illustrate the power of SQL. The data

contained in each table appears below.

CUSTOMERS Table

custnum custname custcity

101 La Mesa Computer Land La Mesa

201 Vista Tech Center Vista

301 Coronado Internet Zone Coronado

401 La Jolla Computing La Jolla

501 Alpine Technical Center Alpine

601 Oceanside Computer Land Oceanside

701 San Diego Byte Store San Diego

 16

custnum custname custcity

801 Jamul Hardware & Software Jamul

901 Del Mar Tech Center Del Mar

1001 Lakeside Software Center Lakeside

1101 Bonsall Network Store Bonsall

1201 Rancho Santa Fe Tech Rancho Santa Fe

1301 Spring Valley Byte Center Spring Valley

1401 Poway Central Poway

1501 Valley Center Tech Center Valley Center

1601 Fairbanks Tech USA Fairbanks Ranch

1701 Blossom Valley Tech Blossom Valley

1801 Chula Vista Networks

N = 18

INVENTORY Table

prodnum invenqty orddate invencst manunum

1110 20 09/01/2000 $45,000.00 111

1700 10 08/15/2000 $28,000.00 170

5001 5 08/15/2000 $1,000.00 500

5002 3 08/15/2000 $900.00 500

5003 10 08/15/2000 $2,000.00 500

5004 20 09/01/2000 $1,400.00 500

5001 2 09/01/2000 $1,200.00 600

N = 7

INVOICE Table

invnum manunum custnum invqty invprice prodnum

1001 500 201 5 $1,495.00 5001

1002 600 1301 2 $1,598.00 6001

1003 210 101 7 $245.00 2101

1004 111 501 3 $9,600.00 1110

 17

invnum manunum custnum invqty invprice prodnum

1005 500 801 2 $798.00 5002

1006 500 901 4 $396.00 6000

1007 500 401 7 $23,100.00 1200

N = 7

MANUFACTURERS Table

manunum manuname manucity manustat

111 Cupid Computer Houston TX

210 KPL Enterprises San Diego CA

600 World Internet Corp Miami FL

120 Storage Devices Inc San Mateo CA

500 Global Software San Diego CA

700 San Diego PC Planet San Diego CA

N = 6

PRODUCTS Table

prodnum prodname manunum prodtype prodcost

1110 Dream Machine 111 Workstation $3,200.00

1200 Business Machine 120 Workstation $3,300.00

1700 Travel Laptop 170 Laptop $3,400.00

2101 Analog Cell Phone 210 Phone $35.00

2102 Digital Cell Phone 210 Phone $175.00

2200 Office Phone 220 Phone $130.00

5001 Spreadsheet

Software

500 Software $299.00

5002 Database Software 500 Software $399.00

5003 Wordprocessor

Software

500 Software $299.00

5004 Graphics Software 500 Software $299.00

N=10

 18

PURCHASES Table

custnum item units unitcost

1 Chair 1 $179.00

1 Pens 12 $0.89

1 Paper 4 $6.95

1 Stapler 1 $8.95

7 Mouse Pad 1 $11.79

7 Pens 24 $1.59

13 Markers . $0.99

N=7

1.7 Summary

1. Poor database design is often attributed to the relative ease by which

tables can be created and populated in a relational database. By

adhering to certain rules, good design can be structured into almost

any database (see section 1.2.1).

2. SQL was designed to work with sets of data and accesses a data structure

known as a table (see section 1.2.2).

3. Achieving optimal design of a database means that the database contains

little or no redundant information in two or more of its tables. This

means that good database design calls for little or no replication of

data (see section 1.2.3).

4. Poor database design can result in costly or inefficient processing,

coding complexities, complex logical relationships, long application

development times, or excessive storage requirements (see section

1.2.4).

5. Design decisions made in one phase may involve making one or more

tradeoffs in another phase (see section 1.2.4).

6. A database in third normal form (3NF) is where a column is “dependent

on the key, the whole key, and nothing but the key” (see section

1.2.4).

 19

Chapter 2: Working with Data in PROC

SQL

2.1 Introduction

PROC SQL is essentially a database language as opposed to a procedural or

computational language. Although only two data types are available in the

SAS System’s implementation of SQL, numerous extensions including operators,

functions, and predicates are available to PROC SQL programmers.

2.2 Data Types Overview

The purpose of a database is to store data. A database contains one or more

tables (and other components). Tables consist of columns and rows of data.

In the SAS implementation of SQL, there are two available data types: 1)

numeric and 2) character.

2.2.1 Numeric Data

The SAS implementation of SQL provides programmers with numerous arithmetic,

statistical, and summary functions. It offers one numeric data type to

represent numeric data. Columns defined as a numeric data type with the

NUMERIC or NUM column definition are assigned a default length of 8 bytes,

even if the column is created with a numeric length less than 8 bytes. This

provides the greatest degree of precision allowed by the SAS System. In the

example below, a table called PURCHASES is created consisting of two

character and two numeric columns. The resulting table contains no rows of

data, as illustrated by the SAS log results. For more information about the

CREATE TABLE statement, see Chapter 5, “Creating, Populating, and Deleting

Tables.”

SQL Code

PROC SQL;

 CREATE TABLE PURCHASES

 (CUSTNUM CHAR(4),

 ITEM CHAR(10),

 20

 UNITS NUM

 UNITCOST NUM(8,2));

QUIT;

SAS Log Results

 PROC SQL;

 CREATE TABLE PURCHASES

 (CUSTNUM CHAR(4),

 ITEM CHAR(10),

 UNITS NUM,

 UNITCOST NUM(8,2));

NOTE: Table PURCHASES created, with 0 rows and 4

columns.

 QUIT;

Results

 The CONTENTS Procedure

-----Alphabetic List of Variables and Attributes-----

 # Variable Type Len Pos

 1 CUSTNUM Char 4 16

 2 ITEM Char 10 20

 3 UNITS Num 8 0

 4 UNITCOST Num 8 8

Use the DATA step LENGTH statement to create a column of fewer than 8 bytes.

Although this action can cause precision issues, it allows for more efficient

use of data storage resources. See the SAS Language Reference: Dictionary
for more information. The example illustrates a DATA step that assigns

smaller lengths to the two numeric variables, UNITS and UNITCOST, in the

PURCHASES table. The CONTENTS output illustrates the creation of shorter

length numeric variables.

DATA Step Code

DATA PURCHASES;

 LENGTH CUSTNUM $4.

 ITEM $10.

 21

 UNITS 3.

 UNITCOST 4.;

 LABEL CUSTNUM = 'Customer Number'

 ITEM = 'Item Purchased'

 UNITS = '# Units Purchased'

 UNITCOST = 'Unit Cost';

 FORMAT UNITCOST DOLLAR12.2;

RUN;

PROC CONTENTS DATA=PURCHASES;

RUN;

SAS Log Results

 DATA PURCHASES;

 LENGTH CUSTNUM $4.

 ITEM $10.

 UNITS 3.

 UNITCOST 4.;

 LABEL CUSTNUM = 'Customer Number'

 ITEM = 'Item Purchased'

 UNITS = '# Units Purchased'

 UNITCOST = 'Unit Cost';

 FORMAT UNITCOST DOLLAR12.2;

 RUN;

 NOTE: Variable CUSTNUM is uninitialized.

 NOTE: Variable ITEM is uninitialized.

 NOTE: Variable UNITS is uninitialized.

 NOTE: Variable UNITCOST is uninitialized.

 NOTE: The data set WORK.PURCHASES has 1 observations

 and 4 variables.

NOTE: DATA statement used:

 real time 2.80 seconds

 PROC CONTENTS DATA=PURCHASES;

 RUN;

 NOTE: PROCEDURE CONTENTS used:

 real time 1.82 seconds

CONTENTS Results

 22

 The CONTENTS Procedure

 -----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Label

__

1 CUSTNUM Char 4 4 Customer Number

2 ITEM Char 10 8 Item Purchased

3 UNITS Num 3 18 # Units Purchased

4 UNITCOST Num 4 0 DOLLAR12.2 Unit Cost

2.2.2 Date and Time Column Definitions

Database application processing stores date and time information in the form

of a numeric data type. Date and time values are represented internally as

an offset where a SAS date value is stored as the number of days from the

fixed date value of 01/01/1960 (January 1, 1960). The SAS date value for

January 1, 1960, is represented as 0 (zero). A date earlier than this is

represented as a negative number, and a date later than this is represented

as a positive number. This makes performing date calculations much easier.

The SAS System has integrated the vast array of date and time informats and

formats with PROC SQL. The various informats and formats act as input and

output templates and describe how date and time information is to be read

or rendered on output. See the SAS Language Reference: Dictionary for
detailed descriptions of the various informats and formats and their use.

Numeric date and time columns, when combined with informats and/or formats,

automatically validate values according to the following rules:

Date Date informats and formats enable PROC SQL and the SAS System to

determine the month, day, and year values of a date. The month value

handles values between 1 through 12. The day value handles values

from 1 through 31 and applies additional validations to a maximum

of 28, 29, or 30 depending on the month in question. The year value

handles values 1 through 9999. Dates go back to 1582 and ahead to

20,000. When you enter a year value of 0001 and specify a format

and yearcutoff value of 1920, the returned value would be 2001.

Time Time informats and formats enable PROC SQL to determine the hour,

minute, and second values of a time. The hour portion handles values

between 00 and 23. The minute portion handles values from 00 through

 23

59. The second portion handles values from 00 through 59.

DATETIME Date and time stamps enable PROC SQL to determine the month, day,

and year of a date as well the hour, minute, and second of a time.

See Chapter 5, “Creating, Populating, and Deleting Tables” and Chapter 6,

“Modifying and Updating Tables and Indexes,” for more information about

date and time informats and formats.

2.2.3 Character Data

PROC SQL provides tools to manipulate and store character data including

words, text, and codes using the CHARACTER or CHAR data type. The characters

allowed by this data type include the ASCII or EBCDIC character sets. The

CHARACTER or CHAR data type stores fixed-length character strings consisting

of a maximum of 32K characters. If a length is not specified, a CHAR column

stores a default of 8 characters.

The SQL programmer has a vast array of SQL and Base SAS functions that can

make the task of working with character data considerably easier. In this

chapter you’ll learn how columns based on the character data type are defined

and how string functions, pattern matching, phonetic matching techniques,

and a variety of other techniques are used with character data.

2.2.4 Missing Values and Null

Missing values are an important aspect of dealing with data. The concept of

missing values is familiar to programmers, statisticians, researchers, and

other SAS users. This section describes what null values are, what they

aren’t, and how they are used.

Missing or unknown information is supported by PROC SQL in a form known as

a null value. A null value is not the same as a zero value. In the SAS System,

nulls are treated as a separate category from known values. A value consisting

of zero has a known value. In contrast, a value of null has an unknown quantity

and will never be known. For example, a patient who is given an eye exam does

not have zero eyesight just because the results from the exam haven’t been

received. The correct value to assign in a case like this is a missing or

a null value.

 24

In another example, say a person declines to provide their age on a survey.

This person’s age is null, not zero. Essentially, this person has an age,

but it is unknown. Whenever an unknown value occurs, you have no choice but

to assign an unknown value – null.

Since the value of null is unknown, any arithmetic calculation using a null

will return a null. This makes a lot of sense since the results of a

calculation using a null are not determinable. This is sometimes referred

to as the propagation of nulls because when a null value is used in a

calculation or an expression, it propagates a null value. For example, if

a null is added to a known value, the result is a null value.

2.2.5 Arithmetic and Missing Data

In the SAS System, a numeric data type containing a null value (absence of

any value) is represented with a period (.) This representation indicates

that the column has not been assigned a value. A null value has no value and

is not the same as zero. A value consisting of zero has a known quantity as

opposed to a null value that is not known and never will be known.

If a null value is multiplied with a known value, the result is a null value

represented with a period (.). In the next example, when UNITS and UNITCOST

both have known values, their product will generate a known value, as is

illustrated for the Markers purchase below.

SQL Code

PROC SQL;

 SELECT CUSTNUM,

 ITEM,

 UNITS,

 UNITCOST,

 UNITS * UNITCOST AS TOTAL

 FROM PURCHASES

 ORDER BY TOTAL;

QUIT;

 25

Results

 The SAS System

custnum item units unitcost TOTAL

 13 Markers . $0.99 .

 1 Stapler 1 $8.95 8.949997

 1 Pens 12 $0.89 10.68

 7 Mouse Pad 1 $11.79 11.78999

 1 Paper 4 $6.95 27.79999

 7 Pens 24 $1.59 38.15998

 1 Chair 1 $179.00 179

2.2.6 SQL Keywords

SQL provides three keywords: AS, DISTINCT, and UNIQUE to perform specific

operations on the results. Each will be presented in order as follows.

2.2.6.1 Creating Column Aliases

In situations where data is computed using system functions, statistical

functions, or arithmetic operations, a column name or header can be left blank.

To prevent this from occurring, users may specify the AS keyword to provide

a name to the column or heading itself. The next example illustrates using

the AS keyword to prevent the name for the computed column from being assigned

a temporary column name similar to: _TEMAxxx. The name assigned with the AS

keyword is also used as the column header on output, as shown.

SQL Code

PROC SQL;

 SELECT PRODNAME,

 PRODTYPE,

 PRODCOST * 0.80 AS Discount_Price

 FROM PRODUCTS

 ORDER BY 3;

QUIT;

 26

Results

 The SAS System

Product Name Product Type Discount_Price

Analog Cell Phone Phone 28

Office Phone Phone 104

Digital Cell Phone Phone 140

Spreadsheet Software Software 239.2

Graphics Software Software 239.2

Wordprocessor Software Software 239.2

Database Software Software 319.2

Dream Machine Workstation 2560

Business Machine Workstation 2640

Travel Laptop Laptop 2720

2.2.6.2 Finding Duplicate Values

In some situations, several rows in a table will contain identical column

values. To select only one of each duplicate value, the DISTINCT keyword can

be used in the SELECT statement as follows.

SQL Code

PROC SQL;

 SELECT DISTINCT MANUNUM

 FROM INVENTORY;

QUIT;

Results

The SAS System

 Manufacturer

 Number

 111

 170

 500

 600

2.2.6.3 Finding Unique Values

In some situations, several rows in a table will contain identical column

values. To select each of these duplicate values only once, the UNIQUE keyword

can be used in the SELECT statement.

 27

SQL Code

PROC SQL;

 SELECT UNIQUE MANUNUM

 FROM INVENTORY;

QUIT;

Results

The SAS System

 Manufacturer

 Number

 111

 170

 500

 600

2.3 SQL Operators and Functions

SQL programmers have a number of ways to accomplish their objectives,

particularly when the goal is to retrieve and work with data. The SELECT

statement is an extremely powerful statement in the SQL language. Its syntax

can be somewhat complex because of the number of ways that columns, tables,

operators, functions, and predicates can be combined into executable

statements.

There are several types of operators and functions in PROC SQL: 1) comparison

operators, 2) logical operators, 3) arithmetic operators, 4) character

string operators, 5) summary functions, and 6) predicates. Operators and

functions provide value-added features for PROC SQL programmers. Each will

be presented below.

2.3.1 Comparison Operators

Comparison operators are used in the SQL procedure to compare one character

or numeric value to another. As in the DATA step, SQL comparison operators,

mnemonics, and their descriptions appear in the following table.

 28

SAS Operator Mnemonic Operator Description

= EQ Equal to

^= or ¬= NE Not equal to

< LT Less than

<= LE Less than or equal to

> GT Greater than

>= GE Greater than or equal to

Suppose you want to select only those products from the PRODUCTS table costing

more than $300.00. The example below illustrates the use of the greater than

sign (>) in a WHERE clause to select products meeting the condition.

SQL Code

PROC SQL;

 SELECT PRODNAME,

 PRODTYPE,

 PRODCOST

 FROM PRODUCTS

 WHERE PRODCOST > 300;

QUIT;

Results

 The SAS System

 Product

Product Name Product Type Cost

__

Dream Machine Workstation $3,200.00

Business Machine Workstation $3,300.00

Travel Laptop Laptop $3,400.00

Database Software Software $399.00

PROC SQL also supports the use of truncated string comparison operators.

These operators work by first truncating the longer string to the same length

as the shorter string, and then performing the specified comparison. Using

any of the comparison operators has no permanent effect on the strings

 29

themselves. The list of truncated string comparison operators and their

meanings appears below.

Truncated String Comparison Operator Description

EQT Equal to

GTT Greater than

LTT Less than

GET Greater than or equal to

LET Less than or equal to

NET Not equal to

2.3.2 Logical Operators

Logical operators are used to connect two or more expressions together in

a WHERE or HAVING clause. The available logical operators are AND, OR, and

NOT. Suppose you want to select only those software products costing more

than $300.00. The example illustrates how the AND operator is used to ensure

that both conditions are true.

SQL Code

PROC SQL;

 SELECT PRODNAME,

 PRODTYPE,

 PRODCOST

 FROM PRODUCTS

 WHERE PRODTYPE = 'Software' AND

 PRODCOST > 300;

QUIT;

Results

 The SAS System

 Product

Product Name Product Type Cost

Database Software Software $399.00

 30

The next example illustrates the use of the OR logical operator to select

software products or products that cost more than $300.

SQL Code

PROC SQL;

 SELECT PRODNAME,

 PRODTYPE,

 PRODCOST

 FROM PRODUCTS

 WHERE PRODTYPE = 'Software' OR

 PRODCOST > 300;

QUIT;

Results

 The SAS System

 Product

Product Name Product Type Cost

Dream Machine Workstation $3,200.00

Business Machine Workstation $3,300.00

Travel Laptop Laptop $3,400.00

Spreadsheet Software Software $299.00

Database Software Software $399.00

Wordprocessor Software Software $299.00

Graphics Software Software $299.00

The next example illustrates the use of the NOT logical operator to select

products that are not software products and do not cost more than $300.

SQL Code

PROC SQL;

 SELECT PRODNAME,

 PRODTYPE,

 PRODCOST

 FROM PRODUCTS

 WHERE NOT PRODTYPE = 'Software' AND

 NOT PRODCOST > 300;

QUIT;

 31

Results

 The SAS System

 Product

Product Name Product Type Cost

Analog Cell Phone Phone $35.00

Digital Cell Phone Phone $175.00

Office Phone Phone $130.00

2.3.3 Arithmetic Operators

The arithmetic operators used in PROC SQL are the same as those used in the

DATA step as well as those found in other languages like C, Pascal, FORTRAN,

and COBOL. The arithmetic operators available in the SQL procedure appear

below.

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponent (raises to a power)

= Equals

To illustrate how arithmetic operators are used, suppose you want to apply

a discount of 20% to the product price (PRODCOST) in the PRODUCTS table and

display the results in ascending order by the discounted price. Note that

the computed column (PRODCOST * 0.80) does not automatically create a column

header on output.

SQL Code

PROC SQL;

 SELECT PRODNAME,

 PRODTYPE,

 PRODCOST * 0.80

 FROM PRODUCTS;

 32

QUIT;

Results

 The SAS System

Product Name Product Type

Dream Machine Workstation 2560

Business Machine Workstation 2640

Travel Laptop Laptop 2720

Analog Cell Phone Phone 28

Digital Cell Phone Phone 140

Office Phone Phone 104

Spreadsheet Software Software 239.2

Database Software Software 319.2

Wordprocessor Software Software 239.2

Graphics Software Software 239.2

In the next example, suppose you wanted to reference a column that was

calculated in the SELECT statement. PROC SQL allows references to a computed

column in the same SELECT statement (or a WHERE clause) using the CALCULATED

keyword. Note that the computed columns have column aliases created for them

using the AS keyword. If the CALCULATED keyword were not specified preceding

the calculated column, an error would have been generated.

SQL Code

PROC SQL;

 SELECT PRODNAME,

 PRODTYPE,

 PRODCOST * 0.80 AS DISCOUNT_PRICE

 FORMAT=DOLLAR9.2,

 PRODCOST – CALCULATED DISCOUNT_PRICE AS LOSS

 FORMAT=DOLLAR7.2

 FROM PRODUCTS

 ORDER BY 3;

QUIT;

 33

Results

 The SAS System

 DISCOUNT_

Product Name Product Type PRICE LOSS

Analog Cell Phone Phone $28.00 $7.00

Office Phone Phone $104.00 $26.00

Digital Cell Phone Phone $140.00 $35.00

Spreadsheet Software Software $239.20 $59.80

Graphics Software Software $239.20 $59.80

Wordprocessor Software Software $239.20 $59.80

Database Software Software $319.20 $79.80

Dream Machine Workstation $2,560.00 $640.00

Business Machine Workstation $2,640.00 $660.00

Travel Laptop Laptop $2,720.00 $680.00

2.3.4 Character String Operators and Functions

Character string operators and functions are typically used with character

data. Numerous operators are presented to make you aware of the power

available with the SQL procedure. As you become familiar with each of the

operators, you’ll find their real strength as you begin to nest functions

within each other.

2.3.4.1 Concatenating Strings Together

The following example illustrates a basic concatenation operator that is used

to concatenate two columns and a text string. Note that the created column

is not labeled. The concatenation operator will be discussed in greater

detail in Chapter 3, “Formatting Output.”

SQL Code

PROC SQL;

 SELECT MANUCITY || "," || MANUSTAT

 FROM MANUFACTURERS;

QUIT;

 34

 The SAS System

Houston ,TX

San Diego ,CA

Miami ,FL

San Mateo ,CA

San Diego ,CA

San Diego ,CA

2.3.4.2 Finding the Length of a String

The LENGTH function is used to obtain the length of a character string column.

LENGTH returns a number equal to the number of characters in the argument.

Note that the computed column (LENGTH(PRODNAME)) has a column header created

for it called Length by specifying the AS keyword. This example illustrates

using the LENGTH function to determine the length of data values.

SQL Code

PROC SQL;

 SELECT PRODNUM,

 PRODNAME,

 LENGTH(PRODNAME) AS Length

 FROM PRODUCTS;

QUIT;

Results The SAS System

 Product

 Number Product Name Length

 1110 Dream Machine 13

 1200 Business Machine 16

 1700 Travel Laptop 13

 2101 Analog Cell Phone 17

 2102 Digital Cell Phone 18

 2200 Office Phone 12

 5001 Spreadsheet Software 20

 5002 Database Software 17

 5003 Wordprocessor Software 22

 5004 Graphics Software 17

 35

2.3.4.3 Combining Functions and Operators

As in the DATA step, many functions can be used in the SQL procedure. To modify

one or more existing rows in a table, the UPDATE statement is used (see Chapter

6, “Modifying and Updating Tables and Indexes,” for more details). The

UPDATE statement with SET clause changes the contents of a data value

(functioning the same way as a DATA step assignment statement) by assigning

a new value to the column identified to the left of the equal sign by a constant

or expression referenced to the right of the equal sign.

The UPDATE statement does not automatically produce any output, except for

the log messages based on the operation results itself. To illustrate the

use of DATA step functions and operators in the SQL procedure, the next

example shows a SCAN function that isolates the first piece of information

from product name (PRODNAME), a TRIM function to remove trailing blanks from

product type (PRODTYPE), and a concatenation operator “||” that

concatenates the first character expression with the second expression.

Exercise care when using the SCAN function because it returns a 200-byte

string.

SQL Code

PROC SQL;

 UPDATE PRODUCTS

 SET PRODNAME = SCAN(PRODNAME,1) || TRIM(PRODTYPE);

QUIT;

SAS Log Results

 PROC SQL;

 UPDATE PRODUCTS

 SET PRODNAME = SCAN(PRODNAME,1) || TRIM(PRODTYPE);

NOTE: 10 rows were updated in PRODUCTS.

 QUIT;

An optional WHERE clause can be specified limiting the number of rows that

modifications will be applied to. The next example illustrates using a WHERE

clause to restrict the number of rows that are updated in the previous example

to just “phones”, excluding all the other rows.

SQL Code

 36

PROC SQL;

 UPDATE PRODUCTS

 SET PRODNAME = SCAN(PRODNAME,1) || TRIM(PRODTYPE)

 WHERE PRODTYPE IN ('Phone');

QUIT;

SAS Log Results

 PROC SQL;

 UPDATE PRODUCTS

 SET PRODNAME = SCAN(PRODNAME,1) || TRIM(PRODTYPE)

 WHERE PRODTYPE IN ('Phone');

NOTE: 3 rows were updated in PRODUCTS.

 QUIT;

2.3.4.4 Aligning Characters

The default alignment for character data is to the left. However, character

columns or expressions can also be aligned to the right. Two functions are

available for character alignment: LEFT and RIGHT. The next example combines

the concatenation operator “||” and the TRIM function with the LEFT

function to left align a character expression while inserting a comma “,”

and blank between the columns.

SQL Code

PROC SQL;

 SELECT LEFT(TRIM(MANUCITY) || ", " || MANUSTAT)

 FROM MANUFACTURERS;

QUIT;

Results

 The SAS System

Houston, TX

San Diego, CA

Miami, FL

San Mateo, CA

San Diego, CA

San Diego, CA

 37

The next example illustrates how character data can be right aligned using

the RIGHT function.

SQL Code

PROC SQL;

 SELECT RIGHT(MANUCITY)

 FROM MANUFACTURERS;

QUIT;

Results

 The SAS System

 Houston

 San Diego

 Miami

 San Mateo

 San Diego

 San Diego

2.3.4.5 Finding the Occurrence of a Pattern with INDEX

To find the occurrence of a pattern, the INDEX function can be used.

Frequently, requirements call for a column to be searched using a specific

character string. The INDEX function can be used in the SQL procedure to

search for patterns in a character string. The character string is searched

from left to right for the first occurrence of the specified value. If the

desired string is found, the column position of the first character is

returned. Otherwise a value of zero (0) is returned. The following arguments

are used to search for patterns in a column: the character column or

expression and the character string to search for. To find all products with

the characters “phone” in the product name (PRODNAME) column, the following

code can be specified:

SQL Code

PROC SQL;

 SELECT PRODNUM,

 PRODNAME,

 PRODTYPE

 38

 FROM PRODUCTS

 WHERE INDEX(PRODNAME, 'phone') > 0;

QUIT;

Results

 PROC SQL;

 SELECT PRODNUM,

 PRODNAME,

 PRODTYPE

 FROM PRODUCTS

 WHERE INDEX(PRODNAME, 'phone') > 0;

NOTE: No rows were selected.

 QUIT;

2.3.4.6 Analysis

As in the DATA step, no rows were selected because the search is

case-sensitive and “phone” is specified as all lowercase characters.

2.3.4.7 Changing the Case in a String

The SAS System provides two functions that enable you to change the case of

a string’s characters: LOWCASE and UPCASE. The LOWCASE function converts

all of the characters in a string or expression to lowercase characters. The

UPCASE function converts all of the characters in a string or expression to

uppercase characters.

In the previous example, the results of the search were negative even though

the character string “phone” appeared multiple times in more than one row.

In order to make this search recognize all the possible lower- and uppercase

variations of the word “phone”, the search criteria in the WHERE clause

could be made “smarter” by combining an UPCASE function with the INDEX

function as follows.

SQL Code

PROC SQL;

 SELECT PRODNUM,

 PRODNAME,

 PRODTYPE

 FROM PRODUCTS

 39

 WHERE INDEX(UPCASE(PRODNAME), 'PHONE') > 0;

QUIT;

Results

 The SAS System

 Product

 Number Product Name Product Type

__

 2101 Analog Cell Phone Phone

 2102 Digital Cell Phone Phone

 2200 Office Phone Phone

In the next example, the LOWCASE function is combined with the INDEX function

to produce the identical output from the previous example.

SQL Code

PROC SQL;

 SELECT PRODNUM,

 PRODNAME,

 PRODTYPE

 FROM PRODUCTS

 WHERE INDEX(LOWCASE(PRODNAME), 'phone') > 0;

QUIT;

Results

 The SAS System

 Product

 Number Product Name Product Type

__

 2101 Analog Cell Phone Phone

 2102 Digital Cell Phone Phone

 2200 Office Phone Phone

 40

2.3.4.8 Extracting Information from a String

Occasionally, processing requirements call for specific pieces of

information to be extracted from a column. In these situations the SUBSTR

function can be used with a character column by specifying a starting position

and the number of characters to extract. The following example illustrates

how the SUBSTR function is used to capture the first 4 bytes from the product

type (PRODTYPE) column.

SQL Code

PROC SQL;

 SELECT PRODNUM,

 PRODNAME,

 PRODTYPE,

 SUBSTR(PRODTYPE,1,4)

 FROM PRODUCTS

 WHERE PRODCOST > 100.00;

QUIT;

Results

 The SAS System

Product

 Number Product Name Product Type

__

 1110 Dream Machine Workstation Work

 1200 Business Machine Workstation Work

 1700 Travel Laptop Laptop Lapt

 2102 Digital Cell Phone Phone Phon

 2200 Office Phone Phone Phon

 5001 Spreadsheet Software Software Soft

 5002 Database Software Software Soft

 5003 Wordprocessor Software Software Soft

 5004 Graphics Software Software Soft

2.3.4.9 Phonetic Matching (Sounds-Like Operator =*)

A technique for finding names that sound alike or have spelling variations

is available in the SQL procedure. This frequently used technique is referred

to as phonetic matching and is performed using the Soundex algorithm. In Joe

 41

Celko’s book, SQL for Smarties: Advanced SQL Programming (pages 83-87), he
traced the origins of the Soundex algorithm to the developers Margaret

O’Dell and Robert C. Russell in 1918. Developed before the first computer,

this technique was often used by clerks to manually search for similar

sounding names.

Although not technically a function, the sounds-like operator “=*”

searches and selects character data based on two expressions: the search

value and the matched value. Anyone that has looked for a last name in a local

telephone directory is quickly reminded of the possible phonetic variations.

To illustrate how the sounds-like operator works, we will search on last name

in a table called CUSTOMERS2. The CUSTOMERS2 table is illustrated below.

Although each name has phonetic variations and sounds the same, the results

of “Laughler,” “Loffler,” and “Laffler” are spelled differently

(illustrated below). The following PROC SQL code uses the sounds-like

operator to find all customers that sound like “Lafler”.

CUSTOMERS2 Table

CUSTNUM CUSTNAME CUSTCITY

 1 Smith San Diego

 7 Lafler Spring Valley

 11 Jones Carmel

 13 Thompson Miami

 7 Loffler Spring Valley

 1 Smithe San Diego

 7 Laughler Spring Valley

 7 Laffler Spring Valley

SQL Code

PROC SQL;

 SELECT CUSTNUM,

 CUSTNAME,

 CUSTCITY

 FROM CUSTOMERS2

 WHERE CUSTNAME =* 'Lafler';

QUIT;

 42

Results

 The SAS System

CUSTNUM CUSTNAME CUSTCITY

7 Lafler Spring Valley

7 Loffler Spring Valley

7 Laffler Spring Valley

Readers familiar with the DATA step SOUNDEX(argument) function to search a

string are cautioned that it cannot be used in an SQL WHERE clause. Instead

the sounds-like operator “=*” must be specified; otherwise a result of no

rows will be selected.

Notice that only three of the four possible phonetic matches were selected

in the preceding example (that is, Lafler, Loffler, and Laffler). The fourth

possibility “Laughler” was not chosen as a “matched” value in the search

by the sounds-like algorithm. In an attempt to overcome the inherent

limitation with the sounds-like operator, as described in Celko’s SQL for
Smarties (see earlier reference), and to derive a broader list of “matched”

values, programmers should make every attempt to develop a comprehensive list

of search values to widen the scope of possibilities. We can expand our

original search criteria in the previous example to include the missing

possibilities using OR logic.

SQL Code

PROC SQL;

 SELECT CUSTNUM,

 CUSTNAME,

 CUSTCITY

 FROM CUSTOMERS2

 WHERE CUSTNAME =* 'Lafler' OR

 CUSTNAME =* 'Laughler' OR

 CUSTNAME =* 'Lasler';

QUIT;

Results

 The SAS System

 43

CUSTNUM CUSTNAME CUSTCITY

7 Lafler Spring Valley

7 Loffler Spring Valley

7 Laughler Spring Valley

7 Laffler Spring Valley

2.3.4.10 Finding the First Nonmissing Value

The first example provides a way to find the first nonmissing value in a column

or list. Specified in a SELECT statement, the COALESCE function inspects a

column, or, in the case of a list, scans the arguments from left to right,

and returns the first nonmissing or non-null value. If all values are missing,

the result is missing. To take advantage of the COALESCE function, use

arguments all of the same data type. The next example illustrates one approach

to computing the total cost for each product purchased based on the number

of units and unit costs columns in the PURCHASES table. If either the UNITS

or UNITCOST columns contain a missing value, a zero is assigned to prevent

the propagation of missing values.

SQL Code

PROC SQL;

 SELECT CUSTNUM,

 ITEM,

 UNITS,

 UNITCOST,

 (COALESCE(UNITS, 0) * COALESCE(UNITCOST, 0))

 AS Totcost FORMAT=DOLLAR6.2

 FROM PURCHASES;

QUIT;

Results

 The SAS System

Custnum Item Units Unitcost Totcost

 1 Chair 1 $179.00 179.00

 1 Pens 12 $0.89 $10.68

 1 Paper 4 $6.95 $27.80

 1 Stapler 1 $8.95 $8.95

 44

 7 Mouse Pad 1 $11.79 $11.79

 7 Pens 24 $1.59 $38.16

 13 Markers . $0.99 $0.00

2.3.4.11 Producing a Row Number

A unique undocumented, but unsupported, feature for producing a row

(observation) count can be obtained with the MONOTONIC() function. Similar

to the row numbers produced and displayed on output from the PRINT procedure

(without the NOOBS option specified), the MONOTONIC() function displays row

numbers too. The MONOTONIC() function automatically creates a column

(variable) in the output results or in a new table. Because this is an

undocumented feature and not supported in the SQL procedure, you are

cautioned that it is possible to obtain duplicates or missing values with

the MONOTONIC() function. The next example illustrates the creation of a row

number using the MONOTONIC() function in a SELECT statement.

SQL Code

PROC SQL;

 SELECT MONOTONIC() AS Row_Number FORMAT=COMMA6.,

 ITEM,

 UNITS,

 UNITCOST

 FROM PURCHASES;

QUIT;

Results

 The SAS System

Row_Number Item Units Unitcost

__

 1 Chair 1 $179.00

 2 Pens 12 $0.89

 3 Paper 4 $6.95

 4 Stapler 1 $8.95

 5 Mouse Pad 1 $11.79

 6 Pens 24 $1.59

 7 Markers . $0.99

 45

A row number can also be produced with the documented and supported SQL

procedure option NUMBER. Unlike the MONOTONIC() function, the NUMBER option

does not create a new column in a new table. The NUMBER option is illustrated

below.

SQL Code

PROC SQL NUMBER;

 SELECT ITEM,

 UNITS,

 UNITCOST

 FROM PURCHASES;

QUIT;

Results

 The SAS System

 Row Item Units Unitcost

__

 1 Chair 1 $179.00

 2 Pens 12 $0.89

 3 Paper 4 $6.95

 4 Stapler 1 $8.95

 5 Mouse Pad 1 $11.79

 6 Pens 24 $1.59

 7 Markers . $0.99

2.3.5 Summarizing Data

The SQL procedure is a wonderful tool for summarizing (or aggregating) data.

It provides a number of useful summary (or aggregate) functions to help

perform calculations, descriptive statistics, and other aggregating

operations in a SELECT statement or HAVING clause. These functions are

designed to summarize information and not display detail about data.

Without the availability of summary functions, you would have to construct

the necessary logic using somewhat complicated SQL programming constructs.

When using a summary function without a GROUP BY clause (see Chapter 3 for

details), all the rows in a table are treated as a single group. Consequently,

the results are often a single row value.

 46

A number of summary functions are available including facilities to count

nonmissing values; determine the minimum and maximum values in specific

columns; return the range of values; compute the mean, standard deviation,

and variance of specific values; and perform other aggregating functions.

The following table is an alphabetical list of the available summary

functions. When multiple names for the same function are available, the

ANSI-approved name appears first.

Summary Functions

Summary Function Description

AVG, MEAN Average or mean of values

COUNT, FREQ, N Aggregate number of nonmissing values

CSS Corrected sum of squares

CV Coefficient of variation

MAX Largest value

MIN Smallest value

NMISS Number of missing values

PRT Probability of a greater absolute value of Student’s t

RANGE Difference between the largest and smallest values

STD Standard deviation

STDERR Standard error of the mean

SUM Sum of values

SUMWGT Sum of the weight variable values, which is 1

T Testing the hypothesis that the population mean is zero

USS Uncorrected sum of squares

VAR Variance

The next example uses the COUNT function with the (*) argument to produce

a total number of rows, regardless if data is missing. The asterisk (*) is

specified as the argument to the COUNT function to count all rows in the

PURCHASES table.

SQL Code

PROC SQL;

 SELECT COUNT(*) AS Row_Count

 47

 FROM PURCHASES;

QUIT;

Results

The SAS System

 Row_Count

 7

Unlike the COUNT(*) function syntax that counts all rows, regardless if data

is missing or not, the next example uses the COUNT function with the

(column-name) argument to produce a total number of nonmissing rows based

on the column UNITS.

SQL Code

PROC SQL;

 SELECT COUNT(UNITS) AS Non_Missing_Row_Count

 FROM PURCHASES;

QUIT;

Results

The SAS System

 Non_Missing_

 Row_Count

 6

The MIN summary function can be specified to determine what the least

expensive product is in the PRODUCTS table.

SQL Code

PROC SQL;

 SELECT MIN(prodcost) AS Cheapest

 Format=dollar9.2 Label='Least Expensive'

 FROM PRODUCTS;

QUIT;

 48

Results

The SAS System

 Least

Expensive

 $35.00

In the next example, the SUM function is specified to sum numeric data types

for a selected column. Suppose you wanted to determine the total costs of

all purchases by customers who bought pens and markers. You could construct

the following query to sum all nonmissing values for customers who purchased

pens and markers in the PURCHASES table as follows.

SQL Code

PROC SQL;

 SELECT SUM((UNITS) * (UNITCOST))

 AS Total_Purchases FORMAT=DOLLAR6.2

 FROM PURCHASES

 WHERE UPCASE(ITEM)='PENS' OR

 UPCASE(ITEM)='MARKERS';

QUIT;

Results

 Total_

 Purchases

 $48.84

Data can also be summarized down rows (observations) as well as across columns

(variables). This flexibility gives SAS users an incredible range of power

and the ability to take advantage of several SAS-supplied (or built-in)

summary functions. These techniques permit the average of quantities rather

than the set of all quantities. Without the ability to summarize data in PROC

SQL, users would be forced to write complicated formulas and/or routines or

even write and test DATA step programs to summarize data. Two examples

illustrate how SQL can be constructed to summarize data: 1) summarizing data

down rows and 2) summarizing data across columns.

 49

1. Summarizing data down rows

The SQL procedure can be used to produce a single aggregate value by

summarizing data down rows (or observations). The advantage of using a

summary function in PROC SQL is that it will generally compute the aggregate

quicker than if a user-defined equation were constructed. It also saves the

effort of having to construct and test a program containing the user-defined

equation in the first place. Suppose you wanted to know the average product

cost for all software in the PRODUCTS table containing a variety of products.

The following query computes the average product cost and produces a single

aggregate value using the AVG function.

SQL Code

PROC SQL;

 SELECT AVG(PRODCOST) AS

 Average_Product_Cost

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) IN

 ('SOFTWARE');

QUIT;

Results

 Average_

Product_Cost

 324

2. Summarizing data across columns

When a computation is needed on two or more columns in a row, the SQL procedure

can be used to summarize data across columns. Suppose you wanted to know the

average cost of products in inventory. The next example computes the average

inventory cost for each product without using a summary function, and once

computed displays the value for each row as Average_Price.

SQL Code

PROC SQL;

 SELECT PRODNUM,

 (INVPRICE / INVQTY) AS

 Averge_Price

 50

 FORMAT=DOLLAR8.2

 FROM INVOICE;

QUIT;

Results

 Product

 Number Averge_Price

 5001 $299.00

 6001 $799.00

 2101 $35.00

 1110 $3200.00

 5002 $399.00

 6000 $99.00

 1200 $3300.00

2.3.6 Predicates

Predicates are used in PROC SQL to perform direct comparisons between two

conditions or expressions. Six predicates will be looked at:

• BETWEEN

• IN

• IS NULL, IS MISSING

• LIKE

• EXISTS

2.3.6.1 Selecting a Range of Values

The BETWEEN predicate is a way of simplifying a query by selecting column

values within a designated range of values. BETWEEN is equivalent to one LE

(less than or equal) and one GE (greater than or equal) condition being ANDed

together. It is extremely flexible because it works with character, numeric,

and date values. Programmers can also combine two or more BETWEEN predicates

with AND or OR operators for more complicated conditions. In the next example

a range of products costing between $200 and $500 inclusively are selected

from the PRODUCTS table.

SQL Code

 51

PROC SQL;

 SELECT PRODNAME,

 PRODTYPE,

 PRODCOST

 FROM PRODUCTS

 WHERE PRODCOST BETWEEN 200 AND 500;

QUIT;

Results

 The SAS System

 Product

Product Name Product Type Cost

Spreadsheet Software Software $299.00

Database Software Software $399.00

Wordprocessor Software Software $299.00

Graphics Software Software $299.00

In the next example, products are selected from the INVENTORY table that were

ordered between the years 1999 and 2000. The YEAR function returns the year

portion from a SAS date value and is used as the range of values in the WHERE

clause.

SQL Code

PROC SQL;

 SELECT PRODNUM,

 INVENQTY,

 ORDDATE

 FROM INVENTORY

 WHERE YEAR(ORDDATE) BETWEEN 1999 AND 2000;

QUIT;

Results

 The SAS System

 Date

 Inventory

 Product Inventory Last

 52

 Number Quantity Ordered

 1110 20 09/01/2000

 1700 10 08/15/2000

 5001 5 08/15/2000

 5002 3 08/15/2000

 5003 10 08/15/2000

 5004 20 09/01/2000

 5001 2 09/01/2000

The BETWEEN predicate and OR operator are used together in the next example

to select products ordered between 1999 and 2000 or where inventory

quantities are greater than 15. The YEAR function returns the year portion

from a SAS date value and is used as the range of values in the WHERE clause.

SQL Code

PROC SQL;

 SELECT PRODNUM,

 INVENQTY,

 ORDDATE

 FROM INVENTORY

 WHERE (YEAR(ORDDATE) BETWEEN 1999 AND 2000) OR

 INVENQTY > 15;

QUIT;

Results

 The SAS System

 Date

 Inventory

 Product Inventory Last

 Number Quantity Ordered

 1110 20 09/01/2000

 1700 10 08/15/2000

 5001 5 08/15/2000

 5002 3 08/15/2000

 5003 10 08/15/2000

 5004 20 09/01/2000

 5001 2 09/01/2000

 53

2.3.6.2 Selecting Nonconsecutive Values

The IN predicate selects one or more rows based on the matching of one or

more column values in a set of values. The IN predicate creates an OR condition

between each value and returns a Boolean value of true if a column value is

equal to one or more of the values in the expression list. Although the IN

predicate can be specified with single column values, it may be less costly

to specify the “=” sign instead. In the next example, the “=” sign is

used rather than the IN predicate to select phones from the PRODUCTS table.

SQL Code

PROC SQL;

 SELECT PRODNAME,

 PRODTYPE,

 PRODCOST

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) = 'PHONE';

QUIT;

Results The SAS System

 Product

Product Name Product Type Cost

Analog Cell Phone Phone $35.00

Digital Cell Phone Phone $175.00

Office Phone Phone $130.00

In the next example, both phones and software products are selected from the

PRODUCTS table. To avoid having to specify two OR conditions, you can specify

the IN predicate.

SQL Code

PROC SQL;

 SELECT PRODNAME,

 PRODTYPE,

 PRODCOST

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) IN ('PHONE', 'SOFTWARE');

QUIT;

 54

Results

 The SAS System

 Product

Product Name Product Type Cost

Analog Cell Phone Phone $35.00

Digital Cell Phone Phone $175.00

Office Phone Phone $130.00

Spreadsheet Software Software $299.00

Database Software Software $399.00

Wordprocessor Software Software $299.00

Graphics Software Software $299.00

2.3.6.3 Testing for Null or Missing Values

The IS NULL predicate is the ANSI approach to selecting one or more rows by

evaluating whether a column value is missing or null (see earlier section

on null values). The next example selects products from the INVENTORY table

that are out-of-stock in inventory.

SQL Code

PROC SQL;

 SELECT PRODNUM,

 INVENQTY,

 INVENCST

 FROM INVENTORY

 WHERE INVENQTY IS NULL;

QUIT;

SAS Log Results

 PROC SQL;

 SELECT PRODNUM,

 INVENQTY,

 INVENCST

 FROM INVENTORY

 WHERE INVENQTY IS NULL;

NOTE: No rows were selected.

 QUIT;

 55

NOTE: PROCEDURE SQL used:

 real time 0.05 seconds

In the next example products are selected from the INVENTORY table that are

currently stocked in inventory. Note that the predicates NOT IS NULL or IS

NOT NULL can be specified to produce the same results.

SQL Code

PROC SQL;

 SELECT PRODNUM,

 INVENQTY,

 INVENCST

 FROM INVENTORY

 WHERE INVENQTY IS NOT NULL;

QUIT;

Results

 The SAS System

Product Inventory Inventory

 Number Quantity Cost

 1110 20 $45,000.00

 1700 10 $28,000.00

 5001 5 $1,000.00

 5002 3 $900.00

 5003 10 $2,000.00

 5004 20 $1,400.00

 5001 2 $1,200.00

The IS MISSING predicate performs identically to the IS NULL predicate by

selecting one or more rows containing a missing value (null). The only

difference is that specifying IS NULL is the ANSI standard way of expressing

the predicate and IS MISSING is commonly used in the SAS System.

The next example uses the IS MISSING predicate with the NOT predicates to

select products from the INVENTORY table that are stocked in inventory.

SQL Code

 56

PROC SQL;

 SELECT PRODNUM,

 INVENQTY,

 INVENCST

 FROM INVENTORY

 WHERE INVENQTY IS NOT MISSING;

QUIT;

2.3.6.4 Finding Patterns in a String (Pattern Matching % and _)

Constructing specific search patterns in string expressions is a simple

process with the LIKE predicate. The % acts as a wildcard character

representing any number of characters, including any combination of upper-

or lowercase characters. Combining the LIKE predicate with the % (percent

sign) permits case-sensitive searches and is a popular technique used by

savvy SQL programmers to find patterns in their data.

Using the LIKE operator with the % (percent sign) provides a wildcard

capability enabling the selection of table rows that match a specific pattern.

The LIKE predicate is case-sensitive and should be used with care. The

wildcard character % preceding and following the search word selects all

product types with “Soft” in the name. The following WHERE clause finds

patterns in product name (PRODNAME) containing the uppercase character “A”

in the first position followed by any number of characters.

SQL Code

PROC SQL;

 SELECT PRODNAME

 FROM PRODUCTS

 WHERE PRODNAME LIKE 'A%';

QUIT;

Results

 The SAS System

Product Name

Analog Cell Phone

 57

The next example selects products whose name contains the word “Soft”. The

resulting output contains product types such as “Software” and any other

products containing the word “Soft”.

SQL Code

PROC SQL;

 SELECT PRODNAME,

 PRODTYPE,

 PRODCOST

 FROM PRODUCTS

 WHERE PRODTYPE LIKE '%Soft%';

QUIT;

Results

 The SAS System

 Product

Product Name Product Type Cost

Spreadsheet Software Software $299.00

Database Software Software $399.00

Wordprocessor Software Software $299.00

Graphics Software Software $299.00

In the next example, the LIKE predicate is used to check a column for the

existence of trailing blanks. The wildcard character % followed by a blank

space is specified as the search argument.

SQL Code

PROC SQL;

 SELECT PRODNAME

 FROM PRODUCTS

 WHERE PRODNAME LIKE '% ';

QUIT;

Results

 The SAS System

 58

Product Name

Dream Machine

Business Machine

Travel Laptop

Analog Cell Phone

Digital Cell Phone

Office Phone

Spreadsheet Software

Database Software

Wordprocessor Software

Graphics Software

When a pattern search for a specific number of characters is needed, using

the LIKE predicate with the underscore (_) provides a way to pattern match

character by character. Thus, a single underscore (_) in a specific position

acts as a wildcard placement holder for that position only. Two consecutive

underscores (__) act as a wildcard placement holder for those two positions.

Three consecutive underscores act as a wildcard placement holder for those

three positions. And so forth. In the next example, the first position used

to search product type contains the character “P” and the next five

positions (represented with five underscores) act as a placeholder for any

value.

SQL Code

PROC SQL;

 SELECT PRODNAME,

 PRODTYPE,

 PRODCOST

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) LIKE 'P_____';

QUIT;

Results

 The SAS System

 Product

Product Name Product Type Cost

Analog Cell Phone Phone $35.00

 59

Digital Cell Phone Phone $175.00

Office Phone Phone $130.00

The next example illustrates a pattern search of product name (PRODNAME)

where the first three positions are represented as a wildcard; the fourth

position contains the lowercase character “a”, followed by any combination

of upper- or lowercase characters.

SQL Code

PROC SQL;

 SELECT PRODNAME

 FROM PRODUCTS

 WHERE PRODNAME LIKE '___a%';

QUIT;

Results The SAS System

Product Name

Dream Machine

Database Software

2.3.6.5 Testing for the Existence of a Value

The EXISTS predicate is used to test for the existence of a set of values.

In the next example, a subquery is used to check for the existence of customers

in the CUSTOMERS table with purchases from the PURCHASES table. More details

on subqueries will be presented in Chapter 7, “Coding Complex Queries.”

SQL Code

PROC SQL;

 SELECT CUSTNUM,

 CUSTNAME,

 CUSTCITY

 FROM CUSTOMERS2 C

 WHERE EXISTS

 (SELECT *

 FROM PURCHASES P

 WHERE C.CUSTNUM = P.CUSTNUM);

QUIT;

 60

Results

 The SAS System

Customer

 Number Customer Name Customer's Home City

__

 1 Smith San Diego

 7 Lafler Spring Valley

 13 Thompson Miami

 7 Loffler Spring Valley

 1 Smithe San Diego

 7 Laughler Spring Valley

 7 Laffler Spring Valley

2.4 Dictionary Tables

The SAS System generates and maintains valuable information at runtime about

SAS libraries, data sets, catalogs, indexes, macros, system options, titles,

and views in a collection of read-only tables called dictionary tables.

Although called tables, dictionary tables are not real tables at all.

Information is automatically generated at runtime and the tables’ contents

are made available once a SAS session is started.

Dictionary tables and their contents permit a SAS session’s activities to

be easily accessed and monitored. This becomes particularly important when

building intelligent software applications. You can also specify other

SELECT statement clauses, such as WHERE, GROUP BY, HAVING, and ORDER BY, when

accessing dictionary tables. The available dictionary tables and their

contents are described in the following table.

Dictionary Table Name Contents

DICTIONARY.CATALOGS SAS catalogs

DICTIONARY.COLUMNS Data set columns and attributes

DICTIONARY.EXTFILES Allocated filerefs and external physical paths

DICTIONARY.INDEXES Data set indexes

DICTIONARY.MACROS Global and automatic macro variables

DICTIONARY.MEMBERS SAS data sets and other member types

 61

Dictionary Table Name Contents

DICTIONARY.OPTIONS Current SAS System option settings

DICTIONARY.TABLES SAS data sets and views

DICTIONARY.TITLES Title and footnote definitions

DICTIONARY.VIEWS SAS data views

2.4.1 Displaying Dictionary Table Definitions

You can view a dictionary table’s definition and enhance your understanding

of each table’s contents by specifying a DESCRIBE TABLE statement. The

results of the statements used to create each dictionary table can be

displayed on the SAS log. For example, a DESCRIBE TABLE statement is

illustrated below to display the CREATE TABLE statement used in building the

OPTIONS dictionary table containing current SAS System option settings.

SQL Code

PROC SQL;

 DESCRIBE TABLE

 DICTIONARY.OPTIONS;

QUIT;

SAS Log Results

create table DICTIONARY.OPTIONS

 (

 optname char(32) label='Option Name',

 setting char(1024) label='Option Setting',

 optdesc char(160) label='Option Description',

 level char(8) label='Option Location'

);

 Note The information contained in dictionary tables is also available to DATA
and PROC steps outside the SQL procedure. Referred to as dictionary

views, each view is prefaced with the letter “V” and may be shortened

with abbreviated names. A dictionary view can be accessed by referencing

the view by its name in the SASHELP library. Refer to the SAS Procedures
Guide for further details on accessing and using dictionary views in
the SASHELP library.

 62

2.4.2 Dictionary Table Column Names

To help you become familiar with each dictionary table’s and dictionary

view’s column names and their definitions, the following table identifies

each unique column name, type, length, format, informat, and label.

DICTIONARY.CATALOGS or SASHELP.VCATALG

Column Type Length Format Informat Label

Libname char 8 Library Name

Memname char 32 Member Name

Memtype char 8 Member Type

Objname char 32 Object Name

Objtype char 8 Object Type

Objdesc char 256 Description

Created num DATETIME. DATETIME. Date Created

Modified num DATETIME. DATETIME. Date Modified

Alias char 8 Object Alias

DICTIONARY.COLUMNS or SASHELP.VCOLUMN

Column Type Length Label

Libname char 8 Library Name

Memname char 32 Member Name

Memtype char 8 Member Type

Name char 32 Column Name

Type char 4 Column Type

Length num Column Length

Npos num Column Position

Varnum num Column Number in Table

Label char 256 Column Label

Format char 16 Column Format

Informat char 16 Column Informat

Idxusage char 9 Column Index Type

 63

DICTIONARY.EXTFILES or SASHELP.VEXTFL

Column Type Length Label

Fileref char 8 Fileref

Xpath char 1024 Path Name

Xengine char 8 Engine Name

DICTIONARY.INDEXES or SASHELP.VINDEX

Column Type Length Label

Libname char 8 Library Name

Memname char 32 Member Name

Memtype char 8 Member Type

Name char 32 Column Name

Idxusage char 9 Column Index Type

Indxname char 32 Index Name

Indxpos num Position of Column in Concatenated Key

Nomiss char 3 Nomiss Option

Unique char 3 Unique Option

DICTIONARY.MACROS or SASHELP.VMACRO

Column Type Length Label

Scope char 9 Macro Scope

Name char 32 Macro Variable Name

Offset num Offset into Macro Variable

Value char 200 Macro Variable Value

DICTIONARY.MEMBERS or SASHELP.VMEMBER

Column Type Length Label

Libname char 8 Library Name

Memname char 32 Member Name

Memtype char 8 Member Type

 64

Column Type Length Label

Engine char 8 Engine Name

Index char 32 Indexes

Path char 1024 Path Name

DICTIONARY.OPTIONS or SASHELP.VOPTION

Column Type Length Label

Optname char 32 Option Name

Setting char 1024 Option Setting

Optdesc char 160 Option Description

Level char 8 Option Location

DICTIONARY.TABLES or SASHELP.VTABLE

Column Type Length Format Informat Label

Libname char 8 Library Name

Memname char 32 Member Name

Memtype char 8 Member Type

Memlabel char 256 Dataset Label

Typemem char 8 Dataset Type

Crdate num DATETIME. DATETIME. Date Created

Modate num DATETIME. DATETIME. Date Modified

Nobs num # of Obs

Obslen num Obs Length

Nvar num # of Variables

Protect char 3 Type of Password Protection

Compress char 8 Compression Routine

Encrypt char 8 Encryption

Npage num # of Pages

Pcompress num % Compression

Reuse char 3 Reuse Space

Bufsize num Bufsize

 65

Column Type Length Format Informat Label

Delobs num # of Deleted Obs

Indxtype char 9 Type of Indexes

Datarep char 32 Data Representation

Reqvector char 24 $HEX. $HEX. Requirements Vector

DICTIONARY.TITLES or SASHELP.VTITLE

Column Type Length Label

Type char 1 Title Location

Number num Title Number

Text char 256 Title Text

DICTIONARY.VIEWS or SASHELP.VVIEW

Column Type Length Label

Libname char 8 Library Name

Memname char 32 Member Name

Memtype char 8 Member Type

Engine char 8 Engine Name

2.4.3 Accessing a Dictionary Table’s Contents

You access the content of a dictionary table with the SQL procedure’s SELECT

statement FROM clause. Results are displayed as rows and columns in a table.

The results can be used in handling common data processing tasks including

obtaining a list of allocated libraries, catalogs, and data sets, as well

as communicating SAS environment settings to custom software applications.

You’ll want to take the time to explore the capabilities of these read-only

dictionary tables and become familiar with the type of information they

provide.

2.4.3.1 Dictionary.CATALOGS

Obtaining detailed information about catalogs and their members is quick and

easy with the CATALOGS dictionary table. You can capture an ordered list of

 66

catalog information by member name including object name and type,

description, date created and last modified, and object alias from any SAS

library. For example, the following code produces a listing of the catalog

objects in the SASUSER library.

 Note Because this dictionary table produces a considerable amount of
information, always specify a WHERE clause when using.

SQL Code

PROC SQL;

 SELECT *

 FROM DICTIONARY.CATALOGS

 WHERE LIBNAME='SASUSER';

QUIT;

Results

2.4.3.2 Dictionary.COLUMNS

Retrieving information about the columns in one or more data sets is easy

with the COLUMNS dictionary table. You can capture column-level information

including column name, type, length, position, label, format, informat, and

indexes, as well as produce cross-reference listings containing the location

of columns in a SAS library. For example, the following code requests a

cross-reference listing of the tables containing the CUSTNUM column in the

WORK library.

 Note Use care when specifying multiple functions with the WHERE clause
because the SQL Optimizer is unable to optimize the query resulting in

all allocated SAS session librefs being searched. This can cause the

query to run much longer than expected.

SQL Code

 67

PROC SQL;

 SELECT *

 FROM DICTIONARY.COLUMNS

 WHERE UPCASE(LIBNAME)='WORK' AND

 UPCASE(NAME)= 'CUSTNUM';

QUIT;

Results

2.4.3.3 Dictionary.EXTFILES

Accessing allocated external files by fileref and corresponding physical

path name information is a snap with the EXTFILES dictionary table. The

results from this handy table can be used in an application to communicate

whether a specific fileref has been allocated with a FILENAME statement. For

example, the following code produces a listing of each individual path name

by fileref.

SQL Code

PROC SQL;

 SELECT *

 FROM DICTIONARY.EXTFILES;

QUIT;

Results

 68

2.4.3.4 Dictionary.INDEXES

It is sometimes useful to display the names of existing simple and composite

indexes, or their SAS tables, that reference a specific column name. The

INDEXES dictionary table provides important information to help identify

indexes that improve a query’s performance. For example, to display indexes

that reference the CUSTNUM column name in any of the example tables, specify

the following code.

 Note Readers are referred to Chapter 10, “Tuning for Performance and

Efficiency,” for performance tuning techniques as they relate to

indexes.

SQL Code

PROC SQL;

 SELECT *

 FROM DICTIONARY.INDEXES

 WHERE UPCASE(NAME)='CUSTNUM' /* Column Name */

 AND UPCASE(LIBNAME)='WORK'; /* Library Name */

QUIT;

2.4.3.5 Dictionary.MACROS

The ability to capture macro variable names and their values is available

with the MACROS dictionary table. The MACROS dictionary table provides

information for global and macro variables, but not local macro variables.

For example, to obtain columns specific to macros such as global macros SQLOBS,

SQLOOPS, SQLXOBS, or SQLRC, specify the following code.

SQL Code

PROC SQL;

 SELECT *

 69

 FROM DICTIONARY.MACROS

 WHERE UPCASE(SCOPE)='GLOBAL';

QUIT;

Results

2.4.3.6 Dictionary.MEMBERS

Accessing a detailed list of data sets, views, and catalogs is the hallmark

of the MEMBERS dictionary table. You will be able to access a terrific

resource of information by library, member name and type, engine, indexes,

and physical path name. For example, to obtain a list of the individual files

in the WORK library, the following code is specified.

SQL Code

PROC SQL;

 SELECT *

 FROM DICTIONARY.MEMBERS

 WHERE UPCASE(LIBNAME)='WORK';

QUIT;

Results

2.4.3.7 Dictionary.OPTIONS

The OPTIONS dictionary table provides a list of the current SAS System

session’s option settings including the option name, its setting,

 70

description, and location. Obtaining option settings is as easy as 1-2-3.

Simply submit the following SQL query referencing the OPTIONS dictionary

table as follows. A partial listing of the results from the OPTIONS dictionary

table is displayed below in rich text format.

SQL Code

PROC SQL;

 SELECT *

 FROM DICTIONARY.OPTIONS;

QUIT;

Results

2.4.3.8 Dictionary.TABLES

When you need more information about SAS files than what the MEMBERS

dictionary table provides, consider using the TABLES dictionary table. The

TABLES dictionary table provides such file details as library name, member

name and type, date created and last modified, number of observations,

observation length, number of variables, password protection, compression,

encryption, number of pages, reuse space, buffer size, number of deleted

observations, type of indexes, and requirements vector. For example, to

obtain a detailed list of files in the WORK library, the following code is

specified.

 Note Because this dictionary table produces a considerable amount of
information, users should specify a WHERE clause when using it.

 71

SQL Code

PROC SQL;

 SELECT *

 FROM DICTIONARY.TABLES

 WHERE UPCASE(LIBNAME)='WORK';

QUIT;

Results

2.4.3.9 Dictionary.TITLES

The TITLES dictionary table provides a listing of the currently defined

titles and footnotes in a session. The table output distinguishes between

titles and footnotes using a “T” or “F” in the TITLE LOCATION column.

For example, the following code displays a single title and two footnotes.

SQL Code

PROC SQL;

 SELECT *

 FROM DICTIONARY.TITLES;

QUIT;

Results

 72

2.4.3.10 Dictionary.VIEWS

The VIEWS dictionary table provides a listing of views for selected SAS

libraries. The VIEWS dictionary table displays the library name, member names

and type, and engine used. For example, the following code displays a single

view called VIEW_CUSTOMERS from the WORK library.

SQL Code

PROC SQL;

 SELECT *

 FROM DICTIONARY.VIEWS

 WHERE UPCASE(LIBNAME)='WORK';

QUIT;

Results

2.5 Summary

1. The available data types in SQL are 1) numeric and 2) character (see

section 2.2).

2. When a table is created with PROC SQL, numeric columns are assigned

a default length of 8 bytes (see section 2.2.1).

3. SAS tables store date and time information in the form of a numeric

data type (see section 2.2.2).

4. A CHAR column stores a default of 8 characters (see section 2.2.3).

5. Missing or unknown information is supported by PROC SQL in a form known

as a null value. A null value is not the same as a zero value (see section

2.2.5).

 73

6. Comparison operators are used in the SQL procedure to compare one

character or numeric value to another (see section 2.3.1).

7. Logical operators (AND, OR, and NOT) are used to connect one or more

expressions together in a WHERE clause (see section 2.3.2).

8. The arithmetic operators used in the SQL procedure are the same as those

used in the DATA step (see section 2.3.3).

9. Character string operators and functions are typically used with

character data (see section 2.3.4).

10.Predicates are used in the SQL procedure to perform direct comparisons

between two conditions or expressions (see section 2.3.6).

11.Dictionary tables provide information about the SAS environment (see

section 2.4).

Chapter 3: Formatting Output

3.1 Introduction

Programmers want and expect to be able to format output in a variety of ways.

With the SQL procedure programmers have forged innovative ways to enhance

the appearance of output including double-spacing rows of output,

concatenating two or more columns, inserting text and constants between

selected columns, displaying column headers for derived fields, and much more.

As a value-added feature, the SQL procedure (not part of ANSI-standard SQL

— see “Preface” to this book) can be integrated with the Output Delivery

System to enhance and format output in ways not otherwise available.

3.2 Formatting Output

PROC SQL consists of a standard set of statements and options to create,

retrieve, alter, transform, and transfer data regardless of the operating

system or where the data is located. These features provide tremendous power

as well as control when integrating information from a variety of sources

in a number of ways. Because emphasis is placed on PROC SQL’s data

manipulation capabilities and not on its format and output capabilities, many

programmers are unfamiliar with the SQL procedure’s output-producing

features. Consequently, programmers resort to using report writers or

special outputting tools to create the best looking output. To illustrate

 74

the virtues of PROC SQL in the SAS System, this chapter presents numerous

examples on how output can be formatted and produced.

3.2.1 Writing a Blank Line Between Each Row

Being able to display a blank line between each row of output is available

as a procedure option in PROC SQL. As with PROC PRINT, specifying DOUBLE in

the SQL procedure inserts a blank line between each row of output (NODOUBLE

is the default). Setting this option is especially useful when one or more

flowed lines spans or wraps in the output because it provides visual

separation between each row of data. This example illustrates using the

DOUBLE option to double-space output.

SQL Code

PROC SQL DOUBLE;

 SELECT *

 FROM INVOICE;

QUIT;

Results

 The SAS System

 Invoice

 Quantity

Invoice Manufacturer Customer - Units Invoice Unit Product

 Number Number Number Sold Price Number

 1001 500 201 5 $1,495.00 5001

 1002 600 1301 2 $1,598.00 6001

 1003 210 101 7 $245.00 2101

 1004 111 501 3 $9,600.00 1110

 1005 500 801 2 $798.00 5002

 1006 500 901 4 $396.00 6000

 1007 500 401 7 $23,100.00 1200

To revert back to single-spaced output, you can specify the RESET statement

as long as the QUIT statement has not been issued to turn off the SQL procedure.

When PROC SQL is active, you can specify the RESET statement with or without

options to reestablish each option’s original settings. When the RESET

 75

statement is specified with one or more options, only those options are reset.

This example illustrates the NODOUBLE option specified to turn off

double-spaced output and reset printing back to the default single-spaced

output.

SQL Code

PROC SQL;

 RESET NODOUBLE;

QUIT;

3.2.2 Displaying Row Numbers

You can specify an SQL procedure option called NUMBER to display row numbers

on output under the column heading Row. The NUMBER option displays row numbers

on output. The next example shows the NUMBER option being specified to turn

on the display of row numbers.

SQL Code

PROC SQL NUMBER;

 SELECT ITEM,

 UNITS,

 UNITCOST

 FROM PURCHASES;

QUIT;

Results The SAS System

 Row Item Units Unitcost

__

 1 Chair 1 $179.00

 2 Pens 12 $0.89

 3 Paper 4 $6.95

 4 Stapler 1 $8.95

 5 Mouse Pad 1 $11.79

 6 Pens 24 $1.59

 7 Markers . $0.99

3.2.3 Concatenating Character Strings

 76

As was presented in Chapter 2, “Working with Data in PROC SQL,” two or more

strings can be concatenated together to produce a combined and longer string

of characters. The concatenation character string operator, represented by

two vertical bars “||”, “!!”, or “¦¦” (depending on the operating

system and keyboard being used), combines two or more strings or columns

together forming a new string value. The next example shows the concatenation

of the manufacturer city and state columns from the MANUFACTURERS table so

that the second column immediately follows the first. Although the two

character strings are concatenated, the output illustrates potential

problems as a result of using the concatenation operator.

First, column headers have been suppressed for both columns. Without header

information, a true understanding of the contents of the output may be in

jeopardy. Next, blanks are automatically padded to the entire length of the

first concatenated column for each row of data resulting in a “fixed” length

for the first column.

SQL Code

PROC SQL;

 SELECT manucity || manustat

 FROM MANUFACTURERS;

QUIT;

Results

 The SAS System

Houston TX

San Diego CA

Miami FL

San Mateo CA

San Diego CA

San Diego CA

To make the preceding output appear a bit more readable and complete, you

should consider a few modifications. First, column headers could be assigned

as aliases using the AS operator. The maximum size of a user-defined column

header is 32 bytes (following valid SAS naming conventions). Finally, the

TRIM function (described in Chapter 2, “Working with Data in PROC SQL”)

 77

could be used to remove trailing blanks in the city column. This makes the

second column act as a floating field.

SQL Code

PROC SQL;

 SELECT TRIM(manucity) || manustat AS Headquarters

 FROM MANUFACTURERS;

QUIT;

Results

 The SAS System

Headquarters

HoustonTX

San DiegoCA

MiamiFL

San MateoCA

San DiegoCA

San DiegoCA

Although the preceding output illustrates that some changes were made, it

still is difficult to read. A few more cosmetic changes should be made to

make it more aesthetically appealing and readable. In the next section, the

output will be customized to give the data further separation.

3.2.4 Inserting Text and Constants Between Columns

At times, it is useful to be able to insert text and/or constants in query

output. This enables special characters including symbols and comments to

be inserted in the output. We can improve the output in the previous example

by inserting a comma “,” and a single blank space between the manufacturer

city and state information. The final output illustrates an acceptable way

to display columnar data using a “free-floating” presentation as opposed

to fixed columns.

SQL Code

PROC SQL;

 78

 SELECT trim(manucity) || ', ' || manustat

 As Headquarters

 FROM MANUFACTURERS;

QUIT;

Results

The SAS System

Headquarters

Houston, TX

San Diego, CA

Miami, FL

San Mateo, CA

San Diego, CA

San Diego, CA

Another method of automatically concatenating character strings, removing

leading and trailing blanks, and inserting text and constants is with the

CATX function. The next example shows how the CATX function is specified with

a “,” used as a separator between character strings MANUCITY and MANUSTAT.

SQL Code

PROC SQL;

 SELECT CATX(',', manucity, manustat)

 As Headquarters

 FROM MANUFACTURERS;

QUIT;

Results

 The SAS System

Headquarters

Houston, TX

San Diego, CA

Miami, FL

San Mateo, CA

San Diego, CA

 79

San Diego, CA

3.2.5 Using Scalar Expressions with Selected Columns

In computing terms, a scalar refers to a quantity represented by a single

number or value. The value is not represented as an array or list of values,

but as a single value. For example, the value 7 is a scalar value, but (0,0,7)

is not. PROC SQL allows the use of scalar expressions and constants with

selected columns. Typically, these expressions replace or augment one or more

columns in the SELECT statement. To illustrate how a scalar expression is

used, assume that a value of 7.5% representing the sales tax percentage is

computed for each product in the PRODUCTS table. The results consist of the

product name, product cost, and derived computed sales tax column.

 Note Although the computed column contains the results of the sales tax
computation for each product, it does not contain a column heading.

SQL Code

PROC SQL;

 SELECT prodname, prodcost,

 .075 * prodcost

 FROM PRODUCTS;

QUIT;

Results

 The SAS System

 Product

Product Name Cost

__

Dream Machine $3,200.00 240

Business Machine $3,300.00 247.5

Travel Laptop $3,400.00 255

Analog Cell Phone $35.00 2.625

Digital Cell Phone $175.00 13.125

Office Phone $130.00 9.75

Spreadsheet Software $299.00 22.425

Database Software $399.00 29.925

 80

Wordprocessor Software $299.00 22.425

Graphics Software $299.00 22.425

In the next two examples, a column header or alias is assigned to the derived

sales tax column computed in the previous example. Two methods exist for

achieving this. The first method uses the AS keyword to not only name the

derived column, but also to permit referencing the column later in the query.

This is useful in situations where a reference to the ordinal position is

needed. The next example uses the ordinal position to reference a column in

a query with the ORDER BY clause.

SQL Code

PROC SQL;

 SELECT prodname, prodcost,

 .075 * prodcost AS Sales_Tax

 FROM PRODUCTS

 ORDER BY 3;

QUIT;

Results

 The SAS System

 Product

Product Name Cost Sales_Tax

Analog Cell Phone $35.00 2.625

Office Phone $130.00 9.75

Digital Cell Phone $175.00 13.125

Spreadsheet Software $299.00 22.425

Graphics Software $299.00 22.425

Wordprocessor Software $299.00 22.425

Database Software $399.00 29.925

Dream Machine $3,200.00 240

Business Machine $3,300.00 247.5

Travel Laptop $3,400.00 255

The next example illustrates the second method of assigning a column heading

for the computed sales tax column using the LABEL= option. To further enhance

the output’s readability, a numeric dollar format is specified.

 81

 Note Because the next example is only a query and the table is not being
updated, the assigned attributes are only available for the duration

of the step and are not permanently saved in the table’s record

descriptor.

SQL Code

PROC SQL;

 SELECT prodname, prodcost,

 .075 * prodcost FORMAT=DOLLAR7.2

 LABEL='Sales Tax'

 FROM PRODUCTS;

QUIT;

Results

 The SAS System

 Product Sales

Product Name Cost Tax

Dream Machine $3,200.00 $240.00

Business Machine $3,300.00 $247.50

Travel Laptop $3,400.00 $255.00

Analog Cell Phone $35.00 $2.63

Digital Cell Phone $175.00 $13.13

Office Phone $130.00 $9.75

Spreadsheet Software $299.00 $22.43

Database Software $399.00 $29.93

Wordprocessor Software $299.00 $22.43

Graphics Software $299.00 $22.43

3.2.6 Ordering Output by Columns

By definition, tables are unordered sets of data. The data that comes from

a table does not automatically appear in any particular order. To offset this

behavior, the SQL procedure provides the ability to impose order in a table

by using an ORDER BY clause. When used, this clause orders the query results

according to the values in one or more selected columns, it must be specified

after the FROM clause.

 82

Rows of data can be ordered in ascending or descending (DESC) order for each

column specified (ascending is the default order). To illustrate how selected

columns of data can be ordered, let’s first view the PRODUCTS table and all

its columns arranged in ascending order by product number (PRODNUM).

SQL Code

PROC SQL;

 SELECT *

 FROM PRODUCTS

 ORDER BY prodnum;

QUIT;

Results

 The SAS System

 Manufacturer Product

Product Product Name Number Product Type Cost

 Number

__

 1110 Dream Machine 111 Workstation $3,200.00

 1200 Business Machine 120 Workstation $3,300.00

 1700 Travel Laptop 170 Laptop $3,400.00

 2101 Analog Cell Phone 210 Phone $35.00

 2102 Digital Cell Phone 210 Phone $175.00

 2200 Office Phone 220 Phone $130.00

 5001 Spreadsheet Software 500 Software $299.00

 5002 Database Software 500 Software $399.00

 5003 Wordprocessor Software 500 Software $299.00

 5004 Graphics Software 500 Software $299.00

The next example illustrates a query that selects and orders multiple columns

of data from the PRODUCTS table. Output is arranged first in ascending order

by product type (PRODTYPE) and within product type in descending order by

product cost. The code and output is shown.

SQL Code

PROC SQL;

 SELECT prodname, prodtype, prodcost, prodnum

 FROM PRODUCTS

 83

 ORDER BY prodtype, prodcost DESC;

QUIT;

Results

 The SAS System

 Product Product

Product Name Product Type Cost Number

__

Travel Laptop Laptop $3,400.00 1700

Digital Cell Phone Phone $175.00 2102

Office Phone Phone $130.00 2200

Analog Cell Phone Phone $35.00 2101

Database Software Software $399.00 5002

Spreadsheet Software Software $299.00 5001

Graphics Software Software $299.00 5004

Wordprocessor Software Software $299.00 5003

Business Machine Workstation $3,300.00 1200

Dream Machine Workstation $3,200.00 1110

3.2.7 Grouping Data with Summary Functions

Occasionally it may be useful to display data in designated groups. A GROUP

BY clause is used in these situations to aggregate and order groups of data

using a designated column with the same value. When a GROUP BY clause is used

without a summary function, SAS issues a warning on the SAS log with the

message, “A GROUP BY clause has been transformed into an ORDER BY clause

because neither the SELECT clause nor the optional HAVING clause of the

associated table-expression referenced a summary function.” The GROUP BY

is transformed into an ORDER BY clause and then processed.

When a GROUP BY clause is used without specifying a summary function in the

SELECT statement, the entire table is treated as a single group and ordered

in ascending order. The next example illustrates a GROUP BY clause without

any summary function specifications. Due to the absence of any summary

functions, the GROUP BY clause is automatically transformed into an ORDER

BY clause, with the rows being ordered in ascending order by product type

(PRODTYPE).

SQL Code

 84

PROC SQL;

 SELECT prodtype,

 prodcost

 FROM PRODUCTS

 GROUP BY prodtype;

QUIT;

Results

 The SAS System

 Product

Product Type Cost

Laptop $3,400.00

Phone $130.00

Phone $175.00

Phone $35.00

Software $299.00

Software $299.00

Software $299.00

Software $399.00

Workstation $3,200.00

Workstation $3,300.00

When a GROUP BY clause is used with a summary function, the rows are aggregated

in a series of groups. This means that an aggregate function is evaluated

on a group of rows and not on a single row at a time. Suppose the least

expensive product in each product category needs to be identified. A separate

query for each product category could be specified using the MIN function

to determine the cheapest product. But this would require separate runs to

be executed — not a very good approach. A better way to do this would be

to specify a GROUP BY clause in a single statement as follows.

SQL Code

PROC SQL;

 SELECT prodtype,

 MIN(prodcost) AS Cheapest

 Format=dollar9.2 Label='Least Expensive'

 FROM PRODUCTS

 GROUP BY prodtype;

 85

QUIT;

Results

 The SAS System

 Least

Product Type Expensive

Laptop $3,400.00

Phone $35.00

Software $299.00

Workstation $3,200.00

3.2.8 Grouping Data and Sorting

In the absence of an ORDER BY clause, the SQL procedure automatically sorts

the results from a grouped query in the same order as specified in the GROUP

BY clause. When both an ORDER BY and GROUP BY clause are specified for the

same column(s) or column order, no additional processing occurs to satisfy

the request. Because the ORDER BY and GROUP BY clauses are not mutually

exclusive, they can be used together. Internally, the GROUP BY clause first

sorts the results on the grouping column(s) and then aggregates the rows of

the query by the same grouping column.

But what happens when the column(s) specified in the ORDER BY and GROUP BY

clauses are not the same? In these situations additional processing

requirements are generally needed. The additional processing, in the worst

case scenario, may require remerging summary statistics back with the

original data. In other cases, additional sorting requirements may be

necessary. Suppose information about the least expensive product in each

product category is desired. But instead of automatically sorting the results

in ascending order by product type, as before, the results will be displayed

in ascending order by the least expensive product.

SQL Code

PROC SQL;

 SELECT prodtype,

 MIN(prodcost) AS Cheapest

 Format=dollar9.2 Label='Least Expensive'

 86

 FROM PRODUCTS

 GROUP BY prodtype

 ORDER BY cheapest;

QUIT;

Results

 The SAS System

 Least

Product Type Expensive

Phone $35.00

Software $299.00

Workstation $3,200.00

Laptop $3,400.00

3.2.9 Subsetting Groups with the HAVING Clause

When processing groups of data, it is frequently useful to subset aggregated

rows (or groups) of data. This way, aggregated data can be filtered one group

at a time in contrast to the WHERE clause where individual rows of data are

filtered one row at a time, not aggregated rows. SQL provides a convenient

way to subset (or filter) groups of data by using the GROUP BY and HAVING

clauses. The HAVING clause is applied after the summary of all observations.

Suppose you want to identify only those product groupings that have an average

cost less than $200.00 from the PRODUCTS table. Your first inclination might

be to use a summary function in a WHERE clause. But this would not be valid

because a WHERE clause is designed specifically to evaluate a single row at

a time. This is in direct contrast with the way a summary function processes

data because summary functions evaluate groups of rows at a time, not a single

row of data at a time as with a WHERE clause. For those already familiar with

subqueries as discussed in Chapter 7, “Coding Complex Queries,” you could

also approach the problem as a complex query. But there is an easier and more

straightforward way of identifying and selecting the desired product groups

using the GROUP BY and HAVING clauses, as follows.

SQL Code

PROC SQL;

 87

 SELECT prodtype,

 AVG(prodcost)

 FORMAT=DOLLAR9.2 LABEL='Average Product Cost'

 FROM PRODUCTS

 GROUP BY prodtype

 HAVING AVG(prodcost) <= 200.00;

QUIT;

Results

 The SAS System

 Average

 Product

Product Type Cost

Phone $113.33

3.3 Formatting Output with the Output Delivery

System

The SAS System provides users with a familiar and automatic way to look at

output in a listing file. Although easy to use, it is not extremely flexible

when it comes to creating “nice” looking output. The SAS Output Delivery

System (ODS) provides many ways to format output by controlling the way it

is accessed and formatted. Many output formats are available with ODS,

including traditional SAS monospace font (that is, listing).

ODS was first introduced in Version 7 as a way to improve the appearance of

traditional SAS output. It enables “quality” looking output to be produced

without the need to import it into word processors such as MS-Word and

WordPerfect. Since then, many new output formatting features and options have

been made available for SAS users. With ODS, users have a powerful and easy

way to create and access formatted procedure and DATA step output.

 88

3.3.1 ODS and Output Formats

ODS statements are classified as global statements and are processed

immediately by the SAS System. With built-in format engines, referred to as

output destinations, ODS prepares output using special formats and layouts.

The diagram below illustrates the types of output that can be produced with

ODS.

ODS Output Destinations

PROC and DATA steps produce output in the form of an output object to any

and all open destinations. An output destination controls what format engine

is turned on during a step or until you specify another ODS statement. One

or more output destinations can be opened concurrently. When a destination

is open, one or more output objects can be sent to it. Conversely, when closed,

output objects are not sent to the destination.

Several good ODS books are available for further study on this exciting

facility including The Complete Guide to the SAS Output Delivery System,
Version 8; Output Delivery System: The Basics by Lauren E. Haworth; and Quick
Results with the Output Delivery System by Sunil Kumar Gupta.

3.3.2 Sending Output to a SAS Data Set

Output produced by the SQL procedure can also be used as input to another

vendor’s SQL, procedure, or DATA step. ODS provides an easy and consistent

alternative for creating a SAS table of results. For users already familiar

with ODS, this approach will consist of specifying the OUTPUT destination

in an ODS statement. For users preferring a more traditional ANSI SQL approach,

 89

the CREATE TABLE statement (see Chapter 5, “Creating, Populating, and

Deleting Tables,” for more details) will be the method of choice. An output

SAS data set produced by the SQL procedure can also be used as input in another

PROC SQL step, SAS procedure, or DATA step.

Although the CREATE TABLE statement is the standard method of creating a table

in PROC SQL, you can also use the ODS OUTPUT statement to produce a table.

The result table is then a rectangular structure consisting of one or more

rows and columns. In this example, the SQL procedure’s results are stored

in object SQL_Results and are then sent to data set SQL_DATA using the ODS

OUTPUT destination. The resulting data set is displayed using VIEWTABLE.

SQL Code

ODS LISTING CLOSE;

ODS OUTPUT SQL_Results = SQL_DATA;

PROC SQL;

 TITLE1 'Delivering Output to a Data Set';

 SELECT prodname, prodtype, prodcost, prodnum

 FROM PRODUCTS

 ORDER BY prodtype;

QUIT;

ODS OUTPUT CLOSE;

ODS LISTING;

Results

3.3.3 Converting Output to Rich Text Format

Rich Text Format (RTF) is text that includes codes that represent special

formatting attributes. Although most frequently associated with a word

processing program’s ability to read and create encapsulated text fonts and

 90

highlighting attributes during copy-and-paste operations, the ODS RTF

destination permits output generated by SAS to be packaged as rich text format.

This enables you to produce output that can be shared.

The next example illustrates SQL output being sent to an external RTF file

using the RTF format engine. First, the default Listing destination is closed,

and then the RTF format engine is opened with an external file destination

to which SQL results will be routed. Once the SQL procedure executes, the

RTF destination is closed and the default Listing destination is opened.

 Note Opening the RTF file automatically invokes your system’s default word

processor and displays the file contents.

SQL Code

ODS LISTING CLOSE;

ODS RTF FILE='c:\SQL_Results.rtf';

PROC SQL;

 TITLE1 'Delivering Output to Rich Text Format';

 SELECT prodname, prodtype, prodcost, prodnum

 FROM PRODUCTS

 ORDER BY prodtype;

QUIT;

ODS RTF CLOSE;

ODS LISTING;

Results

 91

3.3.4 Delivering Results to the Web

With the popularity of the Internet, you may find it useful to deploy selected

pieces of output on your intranet or Web site. ODS makes deploying output

to the Web a snap. The HTML destination creates syntactically correct HTML

code to be used with one of the leading Internet browsers.

Four types of files can be produced with the ODS HTML destination: 1) body,

2) contents, 3) page, and 4) frame. A unique file name must be assigned to

each file created with the ODS HTML statement. A custom and integrated file

structure is automatically created when each file is combined with a frame

file. To improve navigation and access of information, the Web browser

automatically places horizontal and vertical scroll bars on the generated

page, if necessary.

The next example illustrates PROC SQL output being sent to external HTML files

using the HTML format engine. First, the default Listing destination is

closed, and then the HTML format engine is opened specifying BODY, CONTENTS,

PAGE, and FRAME external files for the routing of SQL procedure results. Once

the SQL procedure executes, the HTML destination is closed and the default

Listing destination is opened.

SQL Code

ODS LISTING CLOSE;

ODS HTML BODY='c:\Products-body.html'

 CONTENTS='c:\Products-contents.html'

 PAGE='c:\Products-page.html'

 FRAME='c:\Products-frame.html';

PROC SQL;

 TITLE1 'Products List';

 SELECT prodname, prodtype, prodcost, prodnum

 FROM PRODUCTS

 ORDER BY prodtype;

QUIT;

ODS HTML CLOSE;

ODS LISTING;

Results

 92

3.4 Summary

1. A blank line can be displayed between each row of output (see section

3.2.1).

2. Columns can be concatenated to form a single column of data (see section

3.2.3).

3. Text and constants can be inserted between selected columns (see

section 3.2.4).

4. Numeric or character scalar values can be produced with expressions

(see section 3.2.5).

5. User-defined values can be assigned to derived column headers (see

section 3.2.5).

6. Formats can be assigned and stored permanently to automatically

display a user-defined formatted value instead of the unformatted

value (see section 3.2.5).

7. Columns do not have to appear as unordered sets of data. One or more

columns can be arranged in ascending or descending order (see section

3.2.6).

8. Selected columns can be organized and displayed in groups (see section

3.2.7).

9. PROC SQL can be coupled with ODS to extend output formatting

capabilities (see section 3.3.1).

 93

Chapter 4: Coding PROC SQL Logic

4.1 Introduction

The value of CASE expressions is that they enable you to group individual

rows of data using one or more expressions. In particular, data can be recoded

and reshaped to expand the data analysis perspective.

4.2 Conditional Logic

As experienced PROC SQL programmers know, it is often necessary to test and

evaluate conditions as true or false. From a programming perspective, the

evaluation of a condition determines which of the alternate paths a program

will follow. Conditional logic in PROC SQL is frequently implemented in a

WHERE clause to reference constants and relationships among columns and

values. The SQL procedure also allows the identification and assignment of

data values in a SELECT statement using CASE expressions (described in the

next section). To show how constants and relationships are referenced in a

WHERE clause, a simple example is given.

The WHERE clause expression evaluates whether the cost of a product (PRODCOST)

is less than $400.00. During execution the expression evaluates to true only

when the value of PRODCOST is less than 400.00. Otherwise, when the value

is greater than or equal to 400.00, the expression evaluates to false. This

is an important concept because any data rows satisfying the condition are

only selected if the specified condition is true.

SQL Code

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE PRODCOST < 400.00;

QUIT;

The following relation tests whether the cost of a product (PRODCOST) is

greater than $400.00. During execution the expression evaluates to true when

the value of PRODCOST is greater than 400.00 and the rows of data satisfying

 94

the expression are selected. Otherwise, if the value is less than or equal

to 400.00, the expression evaluates to false.

SQL Code

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE PRODCOST > 400.00;

QUIT;

A relation can also be used on nonnumeric literals and nonnumeric columns.

In the next example, a case-sensitive expression is constructed to represent

the type of product (PRODTYPE) made by a manufacturer. When evaluated, a

condition of “true” or “false” is produced depending on whether the

current value of PRODTYPE is identical (character-by-character) to the

literal value “Software”. When a condition of “true” occurs then the rows

of data satisfying the expression are selected; otherwise they are not.

SQL Code

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE PRODTYPE = "Software";

QUIT;

To ensure a character-by-character match of a character value, the previous

expression could be specified with the UPCASE function as follows.

SQL Code

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) = "SOFTWARE";

QUIT;

When the relations < and > are defined for nonnumeric values, the issue of

implementation-dependent collating sequence for characters comes into play.

For example, “A” < “B” is true, “Y” < “Z” is true, “B” < “A” is

false, and so forth. For more information about character collating sequences,

 95

refer to the specific operating system documentation for the platform you

are using.

4.3 CASE Expressions

In the SQL procedure, a CASE expression provides a way of determining what

the resulting value will be from all rows in a table (or view). Similar to

a DATA step SELECT statement (or IF-THEN/ELSE statement), a CASE expression

is based on some condition and the condition uses a WHEN-THEN clause to

determine what the resulting value will be. An optional ELSE expression can

be specified to handle an alternative action if none of the expression(s)

identified in the when-condition(s) is satisfied.

A CASE expression must be a valid PROC SQL expression and conform to syntax

rules similar to DATA step SELECT-WHEN statements. Even though this topic

is best explained by example, let’s take a quick look at the syntax.

CASE <column-name>

 WHEN when-condition THEN result-expression

 <WHEN when-condition THEN result-expression> ...

 <ELSE result-expression>

END

A column name can optionally be specified as part of the CASE expression.

If present, it is automatically made available to each WHEN-condition. When

it is not specified, the column name must be coded in each WHEN-condition.

Let’s examine how a CASE expression works.

If a WHEN-condition is satisfied by a row in a table (or view), then it is

considered “true” and the result expression following the THEN expression

is processed. The remaining WHEN conditions in the CASE expression are

skipped. If a WHEN-condition is “false,” the next WHEN-condition is

evaluated. SQL evaluates each WHEN-condition until a “true” condition is

found; or in the event all WHEN-conditions are “false,” it then executes

the ELSE expression and assigns its value to the CASE expression’s result.

A missing value is assigned to a CASE expression when an ELSE expression is

not specified and each WHEN-condition is “false.”

In the next example, let’s see how a CASE expression actually works. Suppose

a value of “West”, “East”, “Central”, or “Unknown” is desired for

each of the manufacturers. Using the manufacturer’s state of residence

 96

(MANUSTAT) column, a CASE expression could be constructed to assign the

desired value in a unique column for each row of data. A value of “West”

is assigned to the manufacturers in California, “East” for manufacturers

in Florida, “Central” for manufacturers in Texas, and for all other

manufacturers a value of “Unknown” is assigned to represent missing state

values. A column heading of Region is assigned to the new derived output

column using the AS keyword.

SQL Code

PROC SQL;

 SELECT MANUNAME,

 MANUSTAT,

 CASE

 WHEN MANUSTAT = 'CA' THEN 'West'

 WHEN MANUSTAT = 'FL' THEN 'East'

 WHEN MANUSTAT = 'TX' THEN 'Central'

 ELSE 'Unknown'

 END AS Region

 FROM MANUFACTURERS;

QUIT;

Results

 The SAS System

 Manufacturer

Manufacturer Name State Region

__

Cupid Computer TX Central

Global Comm Corp CA West

World Internet Corp FL East

Storage Devices Inc CA West

KPL Enterprises CA West

San Diego PC Planet CA West

Let’s look at another example. In the PRODUCTS table a column called PRODTYPE

contains the type of product (for example, Laptop, Phone, Software, and

Workstation) as a text string. Using a CASE expression the assignment of a

new data value is derived from the coded values in the PRODTYPE column:

“Laptop” = “ Hardware”, “ Phone” = “Hardware”, “Software” =

“Software”, and “Workstation” = “Hardware”. A column heading of

 97

Product_Classification is assigned to the derived output column with the AS

keyword.

SQL Code

PROC SQL;

 SELECT PRODNAME,

 CASE PRODTYPE

 WHEN 'Laptop' THEN 'Hardware'

 WHEN 'Phone' THEN 'Hardware'

 WHEN 'Software' THEN 'Software'

 WHEN 'Workstation' THEN 'Hardware'

 ELSE 'Unknown'

 END AS Product_Classification

 FROM PRODUCTS;

QUIT;

Results The SAS System

 Product_

Product Name Classification

Dream Machine Hardware

Business Machine Hardware

Travel Laptop Hardware

Analog Cell Phone Hardware

Digital Cell Phone Hardware

Office Phone Hardware

Spreadsheet Software Software

Database Software Software

Wordprocessor Software Software

Graphics Software Software

4.3.1 Case Logic versus COALESCE Expression

A popular convention among SQL users is to specify a COALESCE function in

an expression to perform case logic. As described in Chapter 2, “Working

with Data in PROC SQL,” the COALESCE function permits a new value to be

substituted for one or more missing column values. When you specify COALESCE

in an expression, PROC SQL evaluates each argument from left to right for

the occurrence of a nonmissing value. The first nonmissing value found in

 98

the list of arguments is returned; otherwise a missing value, or assigned

value, is returned. This approach not only saves programming time; it makes

code simpler to maintain.

Expressing logical expressions in one or more WHEN-THEN/ELSE statements is

generally easy, and the expressions are easy to code, understand, and

maintain. But as the complexities associated with case logic increase, the

amount of coding also increases. In the following example a simple CASE

expression is presented to illustrate how a value of “Unknown” is assigned

and displayed when CUSTCITY is missing.

SQL Case Logic

PROC SQL;

 SELECT CUSTNAME,

 CASE

 WHEN CUSTCITY IS NOT NULL THEN CUSTCITY

 ELSE 'Unknown'

 END AS Customer_City

 FROM CUSTOMERS;

QUIT;

To illustrate the usefulness of the COALESCE function as an alternative to

case logic, the same query can be modified to achieve the same results as

before. By replacing the case logic with a COALESCE expression as follows,

the value of CUSTCITY is automatically displayed unless it is missing. In

cases of character data a value of “Unknown” is displayed. This technique

makes the COALESCE function a very useful and shorthand approach indeed.

SQL COALESCE Logic

PROC SQL;

 SELECT CUSTNAME,

 COALESCE(CUSTCITY,'Unknown')

 AS Customer_City

 FROM CUSTOMER;

QUIT;

In cases where a COALESCE expression is used with numeric data, the value

assigned or displayed must be of the same type as the expression. The next

example shows a value of “0” (zero) being assigned and displayed when units

(UNITS) from the PURCHASES table are processed.

 99

SQL COALESCE Logic

PROC SQL;

 SELECT ITEM,

 COALESCE(UNITS, 0)

 FROM PURCHASES;

QUIT;

Results

 The SAS System

item Units

Chair 1

Pens 12

Paper 4

Stapler 1

Mouse Pad 1

Pens 24

Markers 0

4.3.2 Assigning Labels and Grouping Data

Assigning data values and group data based on the existence of distinct values

for specified table columns is a popular and frequently useful operation.

Suppose you want to assign a specific data value and then group the output

based on this assigned value. As a savvy SAS user you are probably thinking,

“Hey, this is easy — I’ll just create a userdefined format and use it in

the PRINT or REPORT procedure.”

In the next example, PROC FORMAT is used to assign temporary formatted values

based on a range of values for INVENQTY. The result from executing this simple

three-step (non-SQL procedure) program shows that the actual INVENQTY value

is temporarily replaced with the “matched” value in the user-defined format.

The FORMAT statement performs a look-up process to determine how the data

should be displayed. The actual data value being looked up is not changed

during the process, but a determination is made as to how its value should

be displayed. The BY statement specifies how BY-group processing is to be

constructed. The displayed results show the product numbers in relation to

their respective inventory quantity status.

 100

Non-SQL Code

PROC FORMAT;

 VALUE INVQTY

 0 – 5 = 'Low on Stock – Reorder'

 6 – 10 = 'Stock Levels OK'

 11 – 99 = 'Plenty of Stock'

 100 - 999 = 'Excessive Quantities';

RUN;

PROC SORT DATA=INVENTORY;

 BY INVENQTY;

RUN;

PROC PRINT DATA=INVENTORY(KEEP=PRODNUM INVENQTY) NOOBS;

 FORMAT INVENQTY INVQTY.;

RUN;

Results

 The SAS System

prodnum invenqty

 5001 Low on Stock - Reorder

 5002 Low on Stock - Reorder

 5001 Low on Stock - Reorder

 1700 Stock Levels OK

 5003 Stock Levels OK

 1110 Plenty of Stock

 5004 Plenty of Stock

The same results can also be derived using a CASE expression in the SQL

procedure. In the next example, a CASE expression is constructed using the

INVENTORY table to assign values to the user-defined column Inventory_Status.

The biggest difference between the FORMAT procedure approach and a CASE

expression is that the latter uses one step and does not replace the actual

data value with the recoded result. Instead, it creates a new column

containing the result of the CASE expression.

SQL Code

 101

PROC SQL;

 SELECT PRODNUM,

 CASE

 WHEN INVENQTY LE 5

 THEN 'Low on Stock - Reorder'

 WHEN 6 LE INVENQTY LE 10

 THEN 'Stock Levels OK'

 WHEN 11 LE INVENQTY LE 99

 THEN 'Plenty of Stock'

 ELSE 'Excessive Quantities'

 END AS Inventory_Status

 FROM INVENTORY

 ORDER BY INVENQTY;

QUIT;

Results

 The SAS System

Product

 Number Inventory_Status

 5001 Low on Stock - Reorder

 5002 Low on Stock - Reorder

 5001 Low on Stock - Reorder

 1700 Stock Levels OK

 5003 Stock Levels OK

 1110 Plenty of Stock

 5004 Plenty of Stock

4.3.3 Logic and Nulls

The existence of null values frequently introduces complexities for

programmers. Instead of coding two-valued logic conditions, such as true and

false, logic conditions must be designed to handle three-valued logic: true,

false, and unknown. When developing logic conditions, you need to be ready

to deal with the possibility of having null values. Program logic should test

whether the current value of an expression contains a value or is empty

(null).

 102

Let’s examine a CASE expression that is meant to handle the possibility of

having missing values in a table. Returning to an example presented earlier

in this chapter, suppose we want to assign a value of “South West”, “South

East”, “Central”, “Missing”, or “Unknown” to each of the

manufacturers based on their state of residence.

SQL Code

PROC SQL;

 SELECT MANUNAME,

 MANUSTAT,

 CASE

 WHEN MANUSTAT = 'CA' THEN 'South West'

 WHEN MANUSTAT = 'FL' THEN 'South East'

 WHEN MANUSTAT = 'TX' THEN 'Central'

 WHEN MANUSTAT = ' ' THEN 'Missing'

 ELSE 'Unknown'

 END AS Region

 FROM MANUFACTURERS;

QUIT;

Results

 The SAS System

 Manufacturer

Manufacturer Name State Region

Cupid Computer TX Central

Global Comm Corp CA South West

World Internet Corp FL South East

Storage Devices Inc CA South West

KPL Enterprises CA South West

San Diego PC Planet CA South West

The results indicate that there were no missing or null values in our database

for the column being tested. But, suppose a new row of data were added

containing null values in the manufacturer’s city and state of residence

columns so our new row looked something like the following:

Manufacturer Number: 800

Manufacturer Name: Spring Valley Products

 103

Manufacturer City: <Missing>

Manufacturer State: <Missing>.

The result would look something like the following if we ran the previous

code again.

SQL Code

PROC SQL;

 SELECT MANUNAME,

 MANUSTAT,

 CASE

 WHEN MANUSTAT = 'CA' THEN 'South West'

 WHEN MANUSTAT = 'FL' THEN 'South East'

 WHEN MANUSTAT = 'TX' THEN 'Central'

 WHEN MANUSTAT = ' ' THEN 'Missing'

 ELSE 'Unknown'

 END AS Region

 FROM MANUFACTURERS;

QUIT;

Results

 The SAS System

 Manufacturer

Manufacturer Name State Region

Cupid Computer TX Central

Global Comm Corp CA South West

World Internet Corp FL South East

Storage Devices Inc CA South West

KPL Enterprises CA South West

San Diego PC Planet CA South West

Spring Valley Products Missing

4.4 Interfacing PROC SQL with the Macro Language

Many software vendors’ SQL implementations permit SQL to be interfaced with

a host language. The SAS System’s SQL implementation is no different. The

 104

SAS macro language lets you customize the way SAS software behaves and in

particular extend the capabilities of the SQL procedure. PROC SQL users can

apply the macro facility’s many powerful features by interfacing the SQL

procedure with the macro language to provide a wealth of programming

opportunities.

From creating and using user-defined macro variables and automatic

(SAS-supplied) variables, reducing redundant code, performing common and

repetitive tasks, to building powerful and simple macro applications, the

macro language has the tools PROC SQL users can take advantage of to improve

efficiency. The best part is that you do not have to be a macro language

heavyweight to begin reaping the rewards of this versatile interface between

two powerful Base SAS software languages.

This section will introduce you to a number of techniques that, with a little

modification, could be replicated and used in your own programming

environment. You will learn how to use the SQL procedure with macro

programming techniques, as well as explore how dictionary tables (see Chapter

2 for details) and the SAS macro facility can be combined with PROC SQL to

develop useful utilities to inquire about the operating environment and other

information. For more information about the SAS Macro Language, readers are

referred to Carpenter’s Complete Guide to the SAS Macro Language by Art
Carpenter; SAS Macro Programming Made Easy by Michele M. Burlew; and SAS Macro
Language: Reference, Version 8.

4.4.1 Exploring Macro Variables and Values

Macro variables and their values provide PROC SQL users with a convenient

way to store text strings in SAS code. Whether you create your own macro

variables or use SAS-supplied automatic macro variables, macro variables can

improve a program’s efficiency and usefulness. A number of techniques are

presented in this section to illustrate the capabilities afforded users when

interfacing PROC SQL with macro variables.

4.4.1.1 Creating a Macro Variable with %LET

The %LET macro statement creates a single macro variable and assigns or

changes a text string value. It can be specified inside or outside a macro

and used with PROC SQL. In the next example, a macro variable called PRODTYPE

is created with a value of SOFTWARE assigned in a %LET statement. The PRODTYPE

macro variable is referenced in the TITLE statement and enclosed in quotes

 105

in the PROC SQL WHERE clause. This approach of assigning macro variable values

at the beginning of a program makes it easy and convenient for making changes,

if necessary, because the values are all at the beginning of the program.

SQL Code

%LET PRODTYPE=SOFTWARE;

TITLE "Listing of &PRODTYPE Products";

PROC SQL;

 SELECT PRODNAME,

 PRODCOST

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) = "&PRODTYPE"

 ORDER BY PRODCOST;

QUIT;

Results

 Listing of SOFTWARE Products

 Product

Product Name Cost

Wordprocessor Software $299.00

Spreadsheet Software $299.00

Graphics Software $299.00

Database Software $399.00

In the next example, a macro named VIEW creates a macro variable called NAME

and assigns a value to it with a %LET statement. When VIEW is executed, a

value of PRODUCTS, MANUFACTURERS, or INVENTORY is substituted for the macro

variable. The value supplied for the macro variable determines what view is

referenced. If the value supplied to the macro variable is not one of these

three values, then a program warning message is displayed in the SAS log.

Invoking the macro with %VIEW(Products) produces the following results.

SQL Code

%MACRO VIEW(NAME);

%IF %UPCASE(&NAME) ^= %STR(PRODUCTS) AND

 %UPCASE(&NAME) ^= %STR(MANUFACTURERS) AND

 %UPCASE(&NAME) ^= %STR(INVENTORY) %THEN %DO;

 106

 %PUT A valid view name was not supplied and no output

 will be generated!;

%END;

%ELSE %DO;

 PROC SQL;

 TITLE "Listing of &NAME View";

 %IF %UPCASE(&NAME)=%STR(PRODUCTS) %THEN %DO;

 SELECT PRODNAME,

 PRODCOST

 FROM &NAME._view

 ORDER BY PRODCOST;

 %END;

 %ELSE %IF %UPCASE(&NAME)=%STR(MANUFACTURERS) %THEN %DO;

 SELECT MANUNAME,

 MANUCITY,

 MANUSTAT

 FROM &NAME._view

 ORDER BY MANUCITY;

 %END;

 %ELSE %IF %UPCASE(&NAME)=%STR(INVENTORY) %THEN %DO;

 SELECT PRODNUM,

 INVENQTY,

 INVENCST

 FROM &NAME._view

 ORDER BY INVENCST;

 %END;

 QUIT;

 %END;

%MEND VIEW;

Results

 Listing of Products View

 Product

Product Name Cost

Analog Cell Phone $35.00

Office Phone $130.00

Digital Cell Phone $175.00

Spreadsheet Software $299.00

 107

Graphics Software $299.00

Wordprocessor Software $299.00

Database Software $399.00

Dream Machine $3,200.00

Business Machine $3,300.00

Travel Laptop $3,400.00

In the previous example, if a name is supplied to the macro variable &NAME

that is not valid, the user-defined program warning message appears in the

SAS log. Suppose we invoked the VIEW macro by entering %VIEW(Customers).

SQL Code

%VIEW(Customers);

SAS Log Results

 %VIEW(Customers);

A valid view name was not supplied and no output will be generated!

4.4.1.2 Creating a Macro Variable from a Table Row Column

A macro variable can be created from a column value in the first row of a

table in PROC SQL by specifying the INTO clause. The macro variable is

assigned using the value of the column specified in the SELECT list from the

first row selected. A colon (:) is used in conjunction with the macro variable

name being defined. In the next example, output results are suppressed with

the NOPRINT option, while two macro variables are created using the INTO

clause and their values displayed in the SAS log.

SQL Code

PROC SQL NOPRINT;

 SELECT PRODNAME,

 PRODCOST

 INTO :PRODNAME,

 :PRODCOST

 FROM PRODUCTS;

QUIT;

%PUT &PRODNAME &PRODCOST;

SAS Log Results

 108

PROC SQL NOPRINT;

 SELECT PRODNAME,

 PRODCOST

 INTO :PRODNAME,

 :PRODCOST

 FROM PRODUCTS;

QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.38 seconds

%PUT &PRODNAME &PRODCOST;

Dream Machine $3,200.00

In the next example, two macro variables are created using the INTO clause

and a WHERE clause to control what row is used in the assignment of macro

variable values. Using the WHERE clause enables a row other than the first

row to always be used in the assignment of macro variables. Their values are

displayed in the SAS log.

SQL Code

PROC SQL NOPRINT;

 SELECT PRODNAME,

 PRODCOST

 INTO :PRODNAME,

 :PRODCOST

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) IN ('SOFTWARE');

QUIT;

%PUT &PRODNAME &PRODCOST;

SAS Log Results

PROC SQL NOPRINT;

 SELECT PRODNAME,

 PRODCOST

 INTO :PRODNAME,

 :PRODCOST

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) IN ('SOFTWARE');

QUIT;

NOTE: PROCEDURE SQL used:

 109

 real time 0.04 seconds

%PUT &PRODNAME &PRODCOST;

Spreadsheet Software $299.00

4.4.1.3 Creating a Macro Variable with Aggregate Functions

Turning data into information and then saving the results as macro variables

is easy with aggregate (summary) functions. The SQL procedure provides a

number of useful aggregrate functions to help perform calculations,

descriptive statistics, and other aggregating computations in a SELECT

statement or HAVING clause. These functions are designed to summarize

information and not display detail about data. In the next example, the MIN

summary function is used to determine the least expensive product from the

PRODUCTS table with the value stored in the macro variable MIN_PRODCOST using

the INTO clause. The results are displayed in the SAS log.

SQL Code

PROC SQL NOPRINT;

 SELECT MIN(PRODCOST) FORMAT=DOLLAR10.2

 INTO :MIN_PRODCOST

 FROM PRODUCTS;

QUIT;

%PUT &MIN_PRODCOST;

SAS Log Results

PROC SQL NOPRINT;

 SELECT MIN(PRODCOST) FORMAT=DOLLAR10.2

 INTO :MIN_PRODCOST

 FROM SQL.PRODUCTS;

QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.05 seconds

%PUT &MIN_PRODCOST;

$35.00

4.4.1.4 Creating Multiple Macro Variables

 110

PROC SQL lets you create a macro variable for each row returned by a SELECT

statement. Using the PROC SQL keyword THROUGH or hyphen (-) with the INTO

clause, you can easily create a range of two or more macro variables. This

is a handy feature for creating macro variables from multiple rows in a table.

For example, suppose we wanted to create macro variables for the three least

expensive products in the PRODUCTS table. The INTO clause creates three macro

variables and assigns values from the first three rows of the PRODNAME and

PRODCOST columns. The ORDER BY clause is also specified to perform an

ascending sort on product cost (PRODCOST) to assure that the data is in the

desired order from least to most expensive. The results are displayed on the

SAS log.

SQL Code

PROC SQL NOPRINT;

 SELECT PRODNAME,

 PRODCOST

 INTO :PRODUCT1 – :PRODUCT3,

 :COST1 – :COST3

 FROM PRODUCTS

 ORDER BY PRODCOST;

QUIT;

%PUT &PRODUCT1 &COST1;

%PUT &PRODUCT2 &COST2;

%PUT &PRODUCT3 &COST3;

SAS Log Results

PROC SQL NOPRINT;

 SELECT PRODNAME,

 PRODCOST

 INTO :PRODUCT1 - :PRODUCT3,

 :COST1 - :COST3

 FROM PRODUCTS

 ORDER BY PRODCOST;

QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.26 seconds

%PUT &PRODUCT1 &COST1;

Analog Cell Phone $35.00

%PUT &PRODUCT2 &COST2;

 111

Office Phone $130.00

%PUT &PRODUCT3 &COST3;

Digital Cell Phone $175.00

4.4.1.5 Creating a List of Values in a Macro Variable

Concatenating values of a single column into one macro variable lets you

create a list of values that can be displayed in the SAS log or output to

a SAS data set. Use the INTO clause with the SEPARATED BY option to create

a list of values. For example, suppose we wanted to create a blank-delimited

list containing manufacturer names (MANUNAME) from the MANUFACTURERS table.

We create a macro variable called &MANUNAME and assign the manufacturer names

to a blank-delimited list with each name separated with two blank spaces.

The WHERE clause restricts the list’s contents to only those manufacturers

located in San Diego.

SQL Code

PROC SQL NOPRINT;

 SELECT MANUNAME

 INTO :MANUNAME SEPARATED BY ' '

 FROM MANUFACTURERS

 WHERE UPCASE(MANUCITY)='SAN DIEGO';

QUIT;

%PUT &MANUNAME;

SAS Log Results

PROC SQL NOPRINT;

 SELECT MANUNAME

 INTO :MANUNAME SEPARATED BY ' '

 FROM MANUFACTURERS

 WHERE UPCASE(MANUCITY)='SAN DIEGO';

QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

%PUT &MANUNAME;

Global Comm Corp KPL Enterprises San Diego PC Planet

 112

In the next example, a similar list containing manufacturers from San Diego

is created. But instead of each name being separated with two blanks as in

the previous example, the names are separated by commas.

SQL Code

PROC SQL NOPRINT;

 SELECT MANUNAME

 INTO :MANUNAME SEPARATED BY ', '

 FROM MANUFACTURERS

 WHERE UPCASE(MANUCITY)='SAN DIEGO';

QUIT;

%PUT &MANUNAME;

SAS Log Results

PROC SQL NOPRINT;

 SELECT MANUNAME

 INTO :MANUNAME SEPARATED BY ', '

 FROM MANUFACTURERS

 WHERE UPCASE(MANUCITY)='SAN DIEGO';

QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

%PUT &MANUNAME;

Global Comm Corp, KPL Enterprises, San Diego PC Planet

4.4.1.6 Using Automatic Macro Variables to Control Processing

Three automatic macro variables supplied by SAS are assigned values during

SQL processing for the purpose of providing process control information. SQL

users can determine the number of rows processed with the SQLOBS macro

variable, assess whether a PROC SQL statement was successful or not with the

SQLRC macro variable, or identify the number of iterations the inner loop

of an SQL query processes with the SQLOOPS macro variable. To inspect the

values of all automatic macro variables at your installation, use the

AUTOMATIC option in a %PUT statement.

SQL Code

%PUT _AUTOMATIC_;

 113

SAS Log Results

%PUT _AUTOMATIC_;

AUTOMATIC AFDSID 0

AUTOMATIC AFDSNAME

AUTOMATIC AFLIB

AUTOMATIC AFSTR1

AUTOMATIC AFSTR2

AUTOMATIC FSPBDV

AUTOMATIC SYSBUFFR

AUTOMATIC SYSCC 0

AUTOMATIC SYSCHARWIDTH 1

AUTOMATIC SYSCMD

AUTOMATIC SYSDATE 10JUN04

AUTOMATIC SYSDATE9 10JUN2004

AUTOMATIC SYSDAY Thursday

AUTOMATIC SYSDEVIC

AUTOMATIC SYSDMG 0

AUTOMATIC SYSDSN WORK INVENTORY

AUTOMATIC SYSENDIAN LITTLE

AUTOMATIC SYSENV FORE

AUTOMATIC SYSERR 0

AUTOMATIC SYSFILRC 0

AUTOMATIC SYSINDEX 3

AUTOMATIC SYSINFO 0

AUTOMATIC SYSJOBID 3580

AUTOMATIC SYSLAST WORK.INVENTORY

AUTOMATIC SYSLCKRC 0

AUTOMATIC SYSLIBRC 0

AUTOMATIC SYSMACRONAME

AUTOMATIC SYSMAXLONG 2147483647

AUTOMATIC SYSMENV S

AUTOMATIC SYSMSG

AUTOMATIC SYSNCPU 1

AUTOMATIC SYSPARM

AUTOMATIC SYSPBUFF

AUTOMATIC SYSPROCESSID 41D4E614295031274020000000000000

AUTOMATIC SYSPROCESSNAME DMS Process

AUTOMATIC SYSPROCNAME

AUTOMATIC SYSRC 0

AUTOMATIC SYSSCP WIN

 114

AUTOMATIC SYSSCPL XP_HOME

AUTOMATIC SYSSITE 0045254001

AUTOMATIC SYSSIZEOFLONG 4

AUTOMATIC SYSSIZEOFUNICODE 2

AUTOMATIC SYSSTARTID

AUTOMATIC SYSSTARTNAME

AUTOMATIC SYSTIME 12:50

AUTOMATIC SYSUSERID Valued Sony Customer

AUTOMATIC SYSVER 9.1

AUTOMATIC SYSVLONG 9.01.01M0P111803

AUTOMATIC SYSVLONG4 9.01.01M0P11182003

4.4.2 Building Macro Tools and Applications

The macro facility, combined with the capabilities of the SQL procedure,

enables the creation of versatile macro tools and general-purpose

applications. A principal design goal when writing macros is that they are

useful and simple to use. A macro that has little applicability to user needs

or has complicated and hard to remember macro variable names is best avoided.

As tools, macros should be designed to serve the needs of as many users as

possible. They should contain no ambiguities, consist of distinctive macro

variable names, avoid the possibility of naming conflicts between macro

variables and data set variables, and not try to do too many things. This

utilitarian approach to macro design helps gain widespread approval and

acceptance by users.

4.4.2.1 Creating Simple Macro Tools

Macro tools can be constructed to perform a variety of useful tasks. The most

effective ones are usually those that are simple and perform a common task.

Before constructing one or more macro tools, explore what processes are

currently being performed, then identify common users’ needs with affected

personnel by addressing gaps in the process. Once this has been accomplished,

you will be in a better position to construct simple and useful macro tools

that will be accepted by user personnel.

Suppose during an informal requirements analysis phase that you identified

users who, in the course of their jobs, use a variety of approaches and methods

to create data set and variable cross-reference listings. To prevent

unnecessary and wasteful duplication of effort, you decide to construct a

 115

simple macro tool that can be used by all users to retrieve information about

the columns in one or more SAS data sets.

4.4.2.2 Cross-Referencing Columns

Column cross-reference listings come in handy when you need to quickly

identify all the SAS library data sets a column is defined in. Using the

COLUMNS dictionary table (see Chapter 2, “Working with Data in PROC SQL,”

for more details) a macro can be created that captures column-level

information including column name, type, length, position, label, format,

informat, indexes, as well as a cross-reference listing containing the

location of a column within a designated SAS library. In the next example,

macro COLUMNS consists of a PROC SQL query that accesses any single column

in a SAS library. If the macro was invoked with a user-request consisting

of %COLUMNS(WORK,CUSTNUM), the macro would produce a cross-reference listing

on the user library WORK for the column CUSTNUM in all DATA types.

SQL Code

%MACRO COLUMNS(LIB, COLNAME);

 PROC SQL;

 SELECT LIBNAME, MEMNAME, NAME, TYPE, LENGTH

 FROM DICTIONARY.COLUMNS

 WHERE LIBNAME='&LIB' AND

 UPCASE(NAME)='&COLNAME' AND

 MEMTYPE='DATA';

 QUIT;

%MEND COLUMNS;

%COLUMNS(WORK,CUSTNUM);

It is worth noting that multiple matches could be found in databases

containing case-sensitive names. This would allow both “employee” and

“EMPLOYEE” to be displayed as matches. This is not very likely to occur

too often in practice but is definitely a possibility.

Results

Library Column Column

Name Member Name Column Name Type Length

__

 116

WORK CUSTOMERS custnum num 3

WORK INVOICE custnum num 3

WORK PURCHASES custnum num 4

4.4.2.3 Determining the Number of Rows in a Table

Sometimes it is useful to know the number of observations (or rows) in a table

without first having to read all the rows. Although the number of rows in

a table is available for true SAS System tables, they are not for DBMS tables

using a library engine. In the next example, the TABLES dictionary table is

accessed (refer to Chapter 2 for more details) in a user-defined macro called

NOBS. Macro NOBS is designed to accept and process two user-supplied values:

the library reference and the table name. Once these values are supplied,

the results are displayed in the Output window.

SQL Code

%MACRO NOBS(LIB, TABLE);

 PROC SQL;

 SELECT LIBNAME, MEMNAME, NOBS

 FROM DICTIONARY.TABLES

 WHERE UPCASE(LIBNAME)="&LIB" AND

 UPCASE(MEMNAME)="&TABLE" AND

 UPCASE(MEMTYPE)="DATA";

 QUIT;

%MEND NOBS;

%NOBS(WORK,PRODUCTS);

Results

 The SAS System

Library Number of

Name Member Name Observations

__

WORK PRODUCTS 10

 117

4.4.2.4 Identifying Duplicate Rows in a Table

Sometimes it is handy to be able to identify duplicate rows in a table. In

the next example, the SELECT statement with a COUNT summary function and

HAVING clause are used in a user-defined macro called DUPS. Macro DUPS is

designed to accept and process three user-supplied values: the library

reference, table name, and column(s) in a GROUP BY list. Once these values

are supplied by submitting macro DUPS, the macro is executed with the results

displayed in the Output window.

SQL Code

%MACRO DUPS(LIB, TABLE, GROUPBY);

 PROC SQL;

 SELECT &GROUPBY, COUNT(*) AS Duplicate_Rows

 FROM &LIB..&TABLE

 GROUP BY &GROUPBY

 HAVING COUNT(*) > 1;

 QUIT;

%MEND DUPS;

%DUPS(WORK,PRODUCTS,PRODTYPE);

Results

 The SAS System

 Duplicate_

Product Type Rows

Phone 3

Software 4

Workstation 2

4.5 Summary

1. A CASE expression is a PROC SQL feature that can be used to evaluate

whether a particular condition has been met (see section 4.3).

 118

2. A CASE expression can be used to process a table’s rows (see section

4.3).

3. A single value is returned from its evaluation of each row in a table

(or view) (see section 4.3).

4. Logic conditions can be combined using the logical operators AND and

OR (see section 4.3.3).

5. A missing or null value is returned when an ELSE expression is not

specified and each when-condition is “false” (see section 4.3.3).

6. A missing value is not the same as a value of 0 (zero) or as a blank

character since it represents a unique value or a lack of a value (see

section 4.3.3).

7. PROC SQL can be used with the SAS macro facility to perform common and

repetitive tasks (see section 4.4).

8. Simple, but effective, user-defined macros combined with the SQL

procedure can be created for all users (see section 4.4.2).

9. Identify duplicate rows in a table by creating a user-defined macro

(see section 4.4.2.4).

Chapter 5: Creating, Populating, and

Deleting Tables

5.1 Introduction

Previous chapters provided tables in the examples that had already been

created and populated with data. But what if you need to create a table,

populate it with data, or delete rows of data or tables that are no longer

needed or wanted?

In this chapter, the numerous discussions and examples focus on the way tables

are created, populated and deleted. These are important operations and

essential elements in PROC SQL, especially if you want to increase your

comprehension of SQL processes and improve your understanding of this

powerful language.

5.2 Creating Tables

An important element in table creation is table design. Table design

incorporates how tables are structured — how rows and columns are defined,

 119

how indexes are created, and how columns refer to values in other columns.

Readers seeking a greater understanding in this area are encouraged to review

the many references identified at the end of this book. The following overview

should be kept in mind during the table design process.

When building a table it is important to devote adequate time to planning

its design as well as understanding the needs that each table is meant to

satisfy. This process involves a number of activities such as requirements

and feasibility analysis including cost/benefit of the proposed tables, the

development of a logical description of the data sources, and physical

implementation of the logical data model. Once these tasks are complete, you

assess any special business requirements that each table is to provide. A

business assessment helps by minimizing the number of changes required to

a table once it has been created.

Next, determine what tables will be incorporated into your application's

database. This requires understanding the value that each table is expected

to provide. It also prevents a table of little or no importance from being

incorporated into a database. The final step and one of critical importance

is to define each table’s columns, attributes, and contents.

Once the table design process is complete, each table is then ready to be

created with the CREATE TABLE statement. The purpose of creating a table is

to create an object that does not already exist. In the SAS implementation,

three variations of the CREATE TABLE statement can be specified depending

on your needs:

• Creating a table structure with column-definition lists

• Creating a table structure with the LIKE clause

• Deriving a table structure and data from an existing table

• Creates new columns

5.2.1 Creating a Table Using Column-Definition Lists

Although part of the SQL standard, the column-definition list (like the

LENGTH statement in the DATA step) is a laborious and not very elegant way

to create a table. The disadvantage of creating a table this way is that it

requires the definition of each column’s attributes including their data

type, length, informat, and format. This method is frequently used to create

columns when they are not present in another table. Using this method results

in the creation of an empty table (without rows). The code used to create

 120

the CUSTOMERS table appears below. It illustrates the creation of a table

with column-definition lists.

SQL Code

PROC SQL;

 CREATE TABLE CUSTOMERS

 (CUSTNUM NUM LABEL='Customer Number',

 CUSTNAME CHAR(25) LABEL='Customer Name',

 CUSTCITY CHAR(20) LABEL='Customer''s Home City');

QUIT;

SAS Log Results

 PROC SQL;

 CREATE TABLE CUSTOMERS

 (CUSTNUM NUM LABEL='Customer Number',

 CUSTNAME CHAR(25) LABEL='Customer Name',

 CUSTCITY CHAR(20) LABEL='Customer''s Home City');

NOTE: Table CUSTOMERS created, with 0 rows and 3 columns.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.81 seconds

Readers should be aware that the SQL procedure ignores width specifications

for numeric columns. When a numeric column is defined, it is created with

a width of 8 bytes, which is the maximum precision allowed by the SAS System.

PROC SQL ignores numeric length specifications when the value is less than

8 bytes. To illustrate this point, a partial CONTENTS procedure output is

displayed for the CUSTOMERS table below.

Results

 The CONTENTS Procedure

 -----Alphabetic List of Variables and Attributes-----

 # Variable Type Len Pos Label

 3 CUSTCITY Char 20 33 Customer's Home City

 2 CUSTNAME Char 25 8 Customer Name

 1 CUSTNUM Num 8 0 Customer Number

 121

To conserve storage space (CUSTNUM only requires maximum precision provided

in 3 bytes), a LENGTH statement could be used in a DATA step to define CUSTNUM

as a 3-byte column rather than an 8-byte column. A DROP= data set option is

specified to delete the original CUSTNUM column (created by the CREATE TABLE

statement) in the Program Data Vector or PDV.

DATA Step Code

DATA CUSTOMERS;

 LENGTH CUSTNUM 3.;

 SET CUSTOMERS(DROP=CUSTNUM);

 LABEL CUSTNUM = 'Customer Number';

RUN;

Results

 The CONTENTS Procedure

 -----Alphabetic List of Variables and Attributes-----

 # Variable Type Len Pos Label

 3 CUSTCITY Char 20 25 Customer's Home City

 2 CUSTNAME Char 25 0 Customer Name

 1 CUSTNUM Num 3 45 Customer Number

Let’s look at the column-definition list used to create the PRODUCTS table.

SQL Code

PROC SQL;

 CREATE TABLE PRODUCTS

 (PRODNUM NUM(3) LABEL='Product Number',

 PRODNAME CHAR(25) LABEL='Product Name',

 MANUNUM NUM(3) LABEL='Manufacturer Number',

 PRODTYPE CHAR(15) LABEL='Product Type',

 PRODCOST NUM(5,2) FORMAT=DOLLAR9.2 LABEL='Product Cost');

QUIT;

SAS Log Results

 PROC SQL;

 122

 CREATE TABLE PRODUCTS

 (PRODNUM NUM(3) LABEL='Product Number',

 PRODNAME CHAR(25) LABEL='Product Name',

 MANUNUM NUM(3) LABEL='Manufacturer Number',

 PRODTYPE CHAR(15) LABEL='Product Type',

 PRODCOST NUM(5,2) FORMAT=DOLLAR9.2 LABEL='Product Cost');

NOTE: Table PRODUCTS created, with 0 rows and 5 columns.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

The CONTENTS output for the PRODUCTS table shows once again that the SQL

procedure ignores all width specifications for numeric columns.

Results

 The CONTENTS Procedure

 -----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Label

__

3 MANUNUM Num 8 8 Manufacturer Number

5 PRODCOST Num 8 16 DOLLAR9.2 Product Cost

2 PRODNAME Char 25 24 Product Name

1 PRODNUM Num 8 0 Product Number

4 PRODTYPE Char 15 49 Product Type

As before, to conserve storage space you can use a LENGTH statement in a DATA

step to override the default 8-byte column definition for numeric columns.

DATA Step Code

DATA PRODUCTS;

 LENGTH PRODNUM MANUNUM 3.

 PRODCOST 5.;

 SET PRODUCTS(DROP=PRODNUM MANUNUM PRODCOST);

 LABEL PRODNUM = 'Product Number'

 MANUNUM = 'Manufacturer Number'

 PRODCOST = 'Product Cost';

 FORMAT PRODCOST DOLLAR9.2;

RUN;

 123

Results

 The CONTENTS Procedure

 -----Alphabetic List of Variables and Attributes-----

Variable Type Len Format Label

__

2 MANUNUM Num 3 Manufacturer Number

3 PRODCOST Num 5 DOLLAR9.2 Product Cost

1 PRODNUM Num 3 Product Number

4 PRODNAME Char 25 Product Name

5 PRODTYPE Char 15 Product Type

5.2.2 Creating a Table Using the LIKE Clause

Referencing an existing table in a CREATE TABLE statement is an effective

way of creating a new table. In fact, it can be a great time-saver, because

it prevents having to define each column one at a time as was shown with

column-definition lists. The LIKE clause (in the CREATE TABLE statement)

triggers the existing table’s structure to be copied to the new table minus

any columns dropped with the KEEP= or DROP= data set (table) option. It copies

the column names and attributes from the existing table structure to the new

table structure. Using this method results in the creation of an empty table

(without rows). To illustrate this method of creating a new table, a table
called HOT_PRODUCTS will be created with the LIKE clause.

SQL Code

PROC SQL;

 CREATE TABLE HOT_PRODUCTS

 LIKE PRODUCTS;

QUIT;

SAS Log Results

 PROC SQL;

 CREATE TABLE HOT_PRODUCTS

 LIKE PRODUCTS;

NOTE: Table HOT_PRODUCTS created, with 0 rows and 5 columns.

 QUIT;

 124

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

Readers are reminded that, as a result of executing the LIKE clause in the

CREATE TABLE statement, only those columns in the existing table are copied

to the new table. What this means is that the new table has zero rows of data.

Our next example illustrates how to create a new table by selecting just the

columns you have an interest in. This method is not supported by the SQL ANSI

standard. Suppose you want three columns (PRODNAME, PRODTYPE, and PRODCOST)

from the PRODUCTS table. The following code illustrates how the KEEP= data

set (table) option can be used to accomplish this. (Note that data sets can

also be called tables.)

SQL Code

PROC SQL;

 CREATE TABLE HOT_PRODUCTS(KEEP=PRODNAME PRODTYPE PRODCOST)

 LIKE PRODUCTS;

QUIT;

SAS Log Results

 PROC SQL;

 CREATE TABLE HOT_PRODUCTS(KEEP=PRODNAME PRODTYPE PRODCOST)

 LIKE PRODUCTS;

NOTE: Table HOT_PRODUCTS created, with 0 rows and 3 columns.

 QUIT;

NOTE: PROCEDURE SQL used:

real time 0.00 seconds

5.2.3 Deriving a Table and Data from an Existing Table

Deriving a new table from an existing table is by far the most popular and

effective way to create a table. This method uses a query expression, and

the results are stored in a new table instead of being displayed as SAS output.

This method not only stores the column names and their attributes, but the

rows of data that satisfies the query expression as well. The following

example illustrates how a new table is created using a query expression.

 125

SQL Code

PROC SQL;

 CREATE TABLE HOT_PRODUCTS AS

 SELECT *

 FROM PRODUCTS;

QUIT;

SAS Log Results

 PROC SQL;

 CREATE TABLE HOT_PRODUCTS AS

 SELECT *

 FROM PRODUCTS;

NOTE: Table WORK.HOT_PRODUCTS created, with 10 rows and 5 columns.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

Readers may notice after examining the SAS log in the previous example that

the SELECT statement extracted all rows from the existing table (PRODUCTS)

and copied them to the new table (HOT_PRODUCTS). In the absence of a WHERE

clause, the resulting table (HOT_PRODUCTS) contains the identical number of

rows as the parent table PRODUCTS.

The power of the CREATE TABLE statement, then, is in its ability to create

a new table from an existing table. What is often overlooked in this

definition is the CREATE TABLE statement’s ability to form a subset of a

parent table. More frequently than not, a new table represents a subset of

its parent table. For this reason this method of creating a table is the most

powerful and widely used. Suppose you want to create a new table called

HOT_PRODUCTS containing a subset of “Software” and “Phones” product

types. The following query-expression would accomplish this.

SQL Code

PROC SQL;

 CREATE TABLE HOT_PRODUCTS AS

 SELECT *

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) IN ("SOFTWARE", "PHONE");

QUIT;

 126

SAS Log Results

 PROC SQL;

 CREATE TABLE HOT_PRODUCTS AS

 SELECT *

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) IN ("SOFTWARE", "PHONE");

NOTE: Table WORK.HOT_PRODUCTS created, with 7 rows and 5 columns.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.38 seconds

Let’s look at another example. Suppose you want to create another table

called NOT_SO_HOT_PRODUCTS containing a subset of everything but

“Software” and “Phones” product types. The following query-expression

would accomplish this.

SQL Code

PROC SQL;

 CREATE TABLE NOT_SO_HOT_PRODUCTS AS

 SELECT *

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) NOT IN ("SOFTWARE", "PHONE");

QUIT;

SAS Log Results

 PROC SQL;

 CREATE TABLE NOT_SO_HOT_PRODUCTS AS

 SELECT *

 FROM sql.PRODUCTS

 WHERE UPCASE(PRODTYPE) NOT IN ("SOFTWARE", "PHONE");

NOTE: Table NOT_SO_HOT_PRODUCTS created, with 3 rows and 5 columns.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 1.20 seconds

 127

5.3 Populating Tables

After a table is created, it can then be populated with data. Unless the newly

created table is defined as a subset of an existing table or its content is

to remain static, one or more rows of data may eventually need to be added.

The SQL standard provides the INSERT INTO statement as the vehicle for adding

rows of data. The examples in this section look at how to add data in all

the columns in a row as well as how to add data in only some of the columns

in a row.

5.3.1 Adding Data to All the Columns in a Row

You populate tables with data by using an INSERT INTO statement. In fact,

the INSERT INTO statement really doesn’t insert rows of data at all. It

simply adds each row to the end of the table. Three parameters are specified

with an INSERT INTO statement: the name of the table, the names of the columns

in which values are inserted, and the values themselves. Data values are

inserted into a table with a VALUES clause. Suppose you want to insert (or

add) a single row of data to the CUSTOMERS table and the row consists of three

columns (Customer Number, Customer Name, and Home City).

SQL Code

PROC SQL;

 INSERT INTO CUSTOMERS (CUSTNUM, CUSTNAME, CUSTCITY)

 VALUES (702, 'Mission Valley Computing', 'San Diego');

QUIT;

The SAS log displays the following message noting that one row was inserted

into the CUSTOMERS table.

SAS Log Results

PROC SQL;

 INSERT INTO CUSTOMERS

 (CUSTNUM, CUSTNAME, CUSTCITY)

 VALUES (702, 'Mission Valley Computing', 'San Diego');

NOTE: 1 row was inserted into CUSTOMERS.

 QUIT;

NOTE: PROCEDURE SQL used:

 128

 real time 0.54 seconds

The inserted row of data from the previous INSERT INTO statement is added

to the end of the CUSTOMERS table.

Entering a new row into a table containing an index will automatically add

the value to the index (for more information on indexes, see Chapter 6,

“Modifying and Updating Tables and Indexes”). The following example

illustrates adding three rows of data using the VALUES clause.

SQL Code

PROC SQL;

 INSERT INTO CUSTOMERS

 (CUSTNUM, CUSTNAME, CUSTCITY)

 VALUES (402, 'La Jolla Tech Center', 'La Jolla')

 VALUES (502, 'Alpine Byte Center', 'Alpine')

 VALUES (1702,'Rancho San Diego Tech','Rancho San Diego');

 SELECT *

 FROM CUSTOMERS

 ORDER BY CUSTNUM;

QUIT;

The SAS log shows that the three rows of data were inserted into the CUSTOMERS

table.

 129

SAS Log Results

 PROC SQL;

 INSERT INTO CUSTOMERS

 (CUSTNUM, CUSTNAME, CUSTCITY)

 VALUES (402, 'La Jolla Tech Center', 'La Jolla')

 VALUES (502, 'Alpine Byte Center', 'Alpine')

 VALUES (1701,'Rancho San Diego Tech','Rancho San Diego');

NOTE: 3 rows were inserted into WORK.CUSTOMERS.

 SELECT *

 FROM CUSTOMERS

 ORDER BY CUSTNUM;

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 1.03 seconds

The new rows are displayed in ascending order by CUSTNUM.

Customer

 Number Customer Name Customer's Home City

 101 La Mesa Computer Land La Mesa

 201 Vista Tech Center Vista

 301 Coronado Internet Zone Coronado

 401 La Jolla Computing La Jolla

 402 La Jolla Tech Center La Jolla

 501 Alpine Technical Center Alpine

 502 Alpine Byte Center Alpine

 601 Oceanside Computer Land Oceanside

 701 San Diego Byte Store San Diego

 702 Mission Valley Computing San Diego

 801 Jamul Hardware & Software Jamul

 901 Del Mar Tech Center Del Mar

 1001 Lakeside Software Center Lakeside

 1101 Bonsall Network Store Bonsall

 1201 Rancho Santa Fe Tech Rancho Santa Fe

 1301 Spring Valley Byte Center Spring Valley

 1401 Poway Central Poway

 1501 Valley Center Tech Center Valley Center

 1601 Fairbanks Tech USA Fairbanks Ranch

 130

 1701 Blossom Valley Tech Blossom Valley

 1702 Rancho San Diego Tech Rancho San Diego

 1801 Chula Vista Networks

5.3.2 Adding Data to Some of the Columns in a Row

It is not all that uncommon when adding rows of data to a table, to have one

or more columns with an unassigned value. When this happens SQL must be able

to handle adding the rows to the table as if all the values were present.

But how does SQL handle values that are not specified? You will see in the

following example that SQL assigns missing values to columns that do not have

a value specified. As before, three parameters are specified with the INSERT

INTO statement: the name of the table, the names of the columns in which values

are inserted, and the values themselves. Suppose you had to add two rows of

incomplete data to the CUSTOMERS table where two of three columns were

specified (Customer Number and Customer Name).

SQL Code

PROC SQL;

 INSERT INTO CUSTOMERS

 (CUSTNUM, CUSTNAME)

 VALUES (102, 'La Mesa Byte & Floppy')

 VALUES (902, 'Del Mar Technology Center');

 SELECT *

 FROM CUSTOMERS

 ORDER BY CUSTNUM;

QUIT;

The SAS log shows the two rows of data added to the CUSTOMERS table.

SAS Log Results

 PROC SQL;

 INSERT INTO CUSTOMERS

 (CUSTNUM, CUSTNAME)

 VALUES (102, 'La Mesa Byte & Floppy')

 VALUES (902, 'Del Mar Technology Center');

NOTE: 2 rows were inserted into WORK.CUSTOMERS.

 SELECT *

 FROM CUSTOMERS

 131

 ORDER BY CUSTNUM;

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

The new rows are displayed in ascending order by CUSTNUM with missing values

assigned to the character column CUSTCITY.

Customer

 Number Customer Name Customer's Home City

 101 La Mesa Computer Land La Mesa

 102 La Mesa Byte & Floppy

 201 Vista Tech Center Vista

 301 Coronado Internet Zone Coronado

 401 La Jolla Computing La Jolla

 402 La Jolla Tech Center La Jolla

 501 Alpine Technical Center Alpine

 502 Alpine Byte Center Alpine

 601 Oceanside Computer Land Oceanside

 701 San Diego Byte Store San Diego

 702 Mission Valley Computing San Diego

 801 Jamul Hardware & Software Jamul

 901 Del Mar Tech Center Del Mar

 902 Del Mar Technology Center

 1001 Lakeside Software Center Lakeside

 1101 Bonsall Network Store Bonsall

 1201 Rancho Santa Fe Tech Rancho Santa Fe

 1301 Spring Valley Byte Center Spring Valley

 1401 Poway Central Poway

 1501 Valley Center Tech Center Valley Center

 1601 Fairbanks Tech USA Fairbanks Ranch

 1701 Rancho San Diego Tech Rancho San Diego

 1701 Blossom Valley Tech Blossom Valley

 1801 Chula Vista Networks

In the previous example, missing values were assigned to the character column

CUSTCITY. Suppose you want to add two rows of partial data to the PRODUCTS

table where four of the five columns are specified (Product Number, Product

Name, Product Type, and Product Cost) and the missing value for each row is

the numeric column MANUNUM.

 132

SQL Code

PROC SQL;

 INSERT INTO PRODUCTS

 (PRODNUM, PRODNAME, PRODTYPE, PRODCOST)

 VALUES(6002,'Security Software','Software',375.00)

 VALUES(1701,'Travel Laptop SE', 'Laptop', 4200.00);

 SELECT *

 FROM PRODUCTS

 ORDER BY PRODNUM;

QUIT;

The SAS log displays the two rows of data added to the PRODUCTS table.

SAS Log Results

 PROC SQL;

 INSERT INTO PRODUCTS

 (PRODNUM, PRODNAME, PRODTYPE, PRODCOST)

 VALUES(6002,'Security Software','Software',375.00)

 VALUES(1701,'Travel Laptop SE', 'Laptop', 4200.00);

NOTE: 2 rows were inserted into WORK.PRODUCTS.

 SELECT *

 FROM PRODUCTS

 ORDER BY PRODNUM;

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.75 seconds

The new rows are displayed in ascending order by PRODNUM with missing values

assigned to the numeric column MANUNUM.

Product Manufacturer Product

 Number Product Name Number Product Type Cost

 1110 Dream Machine 111 Workstation $3,200.00

 1200 Business Machine 120 Workstation $3,300.00

 1700 Travel Laptop 170 Laptop $3,400.00

 1701 Travel Laptop SE . Laptop $4,200.00

 2101 Analog Cell Phone 210 Phone $35.00

 133

 2102 Digital Cell Phone 210 Phone $175.00

 2200 Office Phone 220 Phone $130.00

 5001 Spreadsheet Software 500 Software $299.00

 5002 Database Software 500 Software $399.00

 5003 Wordprocessor Software 500 Software $299.00

 5004 Graphics Software 500 Software $299.00

 6002 Security Software . Software $375.00

5.3.3 Adding Data with a SELECT Query

You can also add data to a table using a SELECT query with an INSERT INTO

statement. A query expression essentially executes an enclosed query by first

creating a temporary table and then inserting the contents of the temporary

table into the target table being populated. In the process of populating

the target table, any columns omitted from the column list are automatically

assigned to missing values.

In the next example, a SELECT query is used to add four rows of data from

the SOFTWARE_PRODUCTS table into the PRODUCTS table. The designated query

controls the insertion of data into the target PRODUCTS table using a WHERE

clause.

SQL Code

PROC SQL;

 INSERT INTO PRODUCTS

 (PRODNUM, PRODNAME, PRODTYPE, PRODCOST)

 SELECT PRODNUM, PRODNAME, PRODTYPE, PRODCOST

 FROM SOFTWARE_PRODUCTS

 WHERE PRODTYPE IN ('Software');

QUIT;

The SAS log displays the results of the four rows of data added to the PRODUCTS

table.

SAS Log Results

 PROC SQL;

 INSERT INTO PRODUCTS

 (PRODNUM, PRODNAME, PRODTYPE, PRODCOST)

 134

 SELECT PRODNUM, PRODNAME, PRODTYPE, PRODCOST

 FROM SOFTWARE_PRODUCTS

 WHERE PRODTYPE IN ('Software');

NOTE: 4 rows were inserted into WORK.PRODUCTS.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.04 seconds

 cpu time 0.01 seconds

5.4 Integrity Constraints

The reliability of databases and the data within them is essential to every

organization. Decision-making activities depend on the correctness and

accuracy of any and all data contained in key applications, information

systems, databases, decision support and query tools, as well as other

critical systems. Even the slightest hint of unreliable data can affect

decision-making capabilities, accuracy of reports, and, in those worst case

scenarios, loss of user confidence in the database environment itself.

Because data should be correct and free of problems, an integral part of every

database environment is a set of rules that the data should adhere to. These

rules, often referred to as database-enforced constraints, are applied to

the database table structure itself and determine the type and content of

data that is permitted in columns and tables.

By implementing database-enforced integrity constraints, you can

dramatically reduce data-related problems and additional programming work

in applications. Instead of coding complex data checks and validations in

individual application programs, you can build database-enforced

constraints into the database itself. This work can eliminate the propagation

of column duplication, invalid and missing values, lost linkages, and other

data-related problems.

5.4.1 Defining Integrity Constraints

You define integrity constraints by specifying column definitions and

constraints at the time a table is created with the CREATE TABLE statement

or by adding, changing, or removing a table’s column definitions with the

 135

ALTER TABLE statement. The rows in a table are then validated against the

defined integrity constraints.

5.4.2 Types of Integrity Constraints

The first type of integrity constraint is referred to as a column and table

constraint. This type of constraint essentially establishes rules that are

attached to a specific table or column. The type of constraint is generally

specified through one or two clauses with their distinct values as follows.

Column and Table Constraints

• NOT NULL

• UNIQUE

• CHECK

5.4.3 Preventing Null Values with a NOT NULL Constraint

A null value is essentially a missing or unknown value in the data. When

unchecked, null values can often propagate themselves throughout a database.

When a NULL appears in a mathematical equation, the returned result is also

a null or missing value. When a NULL is used in a comparison or a logical

expression, the returned result is unknown. The occurrence of null values

presents problems during search, joins, and index operations. The ability

to prevent the propagation of null values in a column with a NOT NULL

constraint is a powerful feature of the SQL procedure. This constraint should

be used as a first line of defense against potential problems resulting from

the presence of null values and the interaction of queries processing data.

Using the CREATE TABLE or ALTER TABLE statement, you can apply a NOT NULL

constraint to any column where missing, unknown, or inappropriate values

appear in the data. Suppose you need to avoid the propagation of missing

values in the CUSTCITY (Customer’s Home City) column in the CUSTOMER_CITY

table. By specifying the NOT NULL constraint for the CUSTCITY column in the

CREATE TABLE statement, you prevent the propagation of null values in a table.

SQL Code

PROC SQL;

 CREATE TABLE CUSTOMER_CITY

 136

 (CUSTNUM NUM,

 CUSTCITY CHAR(20) NOT NULL);

QUIT;

Once the CUSTOMER_CITY table is created and the NOT NULL constraint is defined

for the CUSTCITY column, only non-missing data for the CUSTCITY column can

be entered. Using the INSERT INTO statement with a VALUES clause, you can

populate the CUSTOMER_CITY table while adhering to the assigned NOT NULL

integrity constraint.

SQL Code

PROC SQL;

 INSERT INTO CUSTOMER_CITY

 VALUES(101,'La Mesa Computer Land')

 VALUES(1301,'Spring Valley Byte Center');

QUIT;

The SAS log shows the two rows of data satisfying the NOT NULL constraint

and the rows successfully being added to the CUSTOMER_CITY table.

SAS Log Results

 PROC SQL;

 INSERT INTO CUSTOMER_CITY

 VALUES(101,'La Mesa Computer Land')

 VALUES(1301,'Spring Valley Byte Center');

NOTE: 2 rows were inserted into WORK.CUSTOMER_CITY.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.22 seconds

 cpu time 0.02 seconds

When you define a NOT NULL constraint and then attempt to populate a table

with one or more missing data values, the rows will be rejected and the table

restored to its original state. Essentially the insert fails because the NOT

NULL constraint prevents any missing values for a defined column from

populating a table. In the next example, several rows of data with a defined

NOT NULL constraint are prevented from being populated in the CUSTOMER_CITY

table because one row contains a missing CUSTCITY value.

 137

SQL Code

PROC SQL;

 INSERT INTO CUSTOMER_CITY

 VALUES(101,'La Mesa Computer Land')

 VALUES(1301,'Spring Valley Byte Center')

 VALUES(1801,'');

QUIT;

The SAS log shows that the NOT NULL constraint has prevented the three rows

of data from being populated in the CUSTOMER_CITY table. The violation caused

an error message that resulted in the failure of the add/update operation.

The UNDO_POLICY = REQUIRED option reverses all adds/updates that have been

performed to the point of the error. This prevents errors or partial data

from being propagated in the database table. The following SAS log results

illustrate the error condition that caused the add/update operation to fail.

SAS Log Results

 PROC SQL;

 INSERT INTO CUSTOMER_CITY

 VALUES(101,'La Mesa Computer Land')

 VALUES(1301,'Spring Valley Byte Center')

 VALUES(1801,'');

ERROR: Add/Update failed for data set WORK.CUSTOMER_CITY because data

value(s) do not comply with integrity constraint _NM0001_.

NOTE: This insert failed while attempting to add data from VALUES

clause 3 to the data set.

NOTE: Deleting the successful inserts before error noted above to

restore table to a consistent state.

 QUIT;

NOTE: The SAS System stopped processing this step because of errors.

NOTE: PROCEDURE SQL used:

 real time 0.02 seconds

 cpu time 0.00 seconds

A NOT NULL constraint can also be applied to a column in an existing table

containing data with an ALTER TABLE statement. To successfully impose a NOT

NULL constraint you should not have missing or null values in the column the

constraint is being defined for. This means that the presence of one or more

null values in an existing table’s column will prevent the NOT NULL

constraint from being created.

 138

Suppose the CUSTOMERS table contains one or more missing values in the

CUSTCITY column. If you tried to add a NOT NULL constraint, it would be

rejected. You can successfully apply the NOT NULL constraint only when

missing values are reclassified or recoded.

SQL Code

PROC SQL;

 ALTER TABLE CUSTOMERS

 ADD CONSTRAINT NOT_NULL_CUSTCITY NOT NULL(CUSTCITY);

QUIT;

The SAS log shows the NOT NULL constraint cannot be defined in an existing

table when a column’s data contains one or more missing values. The violation

produces an error message that results in the rejection of the constraint.

SAS Log Results

 PROC SQL;

 ALTER TABLE CUSTOMERS

 ADD CONSTRAINT NOT_NULL_CUSTCITY NOT NULL(CUSTCITY);

ERROR: Integrity constraint NOT_NULL_CUSTCITY was rejected because 1

observations failed the constraint.

 QUIT;

NOTE: The SAS System stopped processing this step because of errors.

NOTE: PROCEDURE SQL used:

 real time 0.01 seconds

 cpu time 0.00 seconds

5.4.4 Enforcing Unique Values with a UNIQUE Constraint

A UNIQUE constraint prevents duplicate values from propagating in a table.

If you use a CREATE TABLE statement, you can apply a UNIQUE constraint to

any column where duplicate data is not desired. Suppose you want to avoid

the propagation of duplicate values in the CUSTNUM (Customer Number) column

in a new table called CUSTOMER_CITY. By specifying the UNIQUE constraint for

the CUSTNUM column with the CREATE TABLE statement, you prevent duplicate

values from populating the table.

SQL Code

 139

PROC SQL;

 CREATE TABLE CUSTOMER_CITY

 (CUSTNUM NUM UNIQUE,

 CUSTCITY CHAR(20));

QUIT;

When you define a UNIQUE constraint and attempt to populate a table with

duplicate data values, the rows will be rejected and the table restored to

its original state prior to the add operation taking place. Essentially the

insert fails because the UNIQUE constraint prevents any duplicate values for

a defined column from populating a table. In the next example, several rows

of data with a defined UNIQUE constraint are prevented from being populated

in the CUSTOMER_CITY table because one row contains a duplicate CUSTNUM

value.

SQL Code

PROC SQL;

 INSERT INTO CUSTOMER_CITY

 VALUES(101,'La Mesa Computer Land')

 VALUES(1301,'Spring Valley Byte Center')

 VALUES(1301,'Chula Vista Networks');

QUIT;

The SAS log shows the UNIQUE constraint prevented the three rows of data from

being populated in the CUSTOMER_CITY table. The violation caused an error

message that resulted in the failure of the add/update operation.

SAS Log Results

 PROC SQL;

 INSERT INTO CUSTOMER_CITY

 VALUES(101,'La Mesa Computer Land')

 VALUES(1301,'Spring Valley Byte Center')

 VALUES(1301,'Chula Vista Networks');

ERROR: Add/Update failed for data set WORK.CUSTOMER_CITY because data

value(s) do not comply with integrity constraint _UN0001_.

NOTE: This insert failed while attempting to add data from VALUES

clause 3 to the data set.

NOTE: Deleting the successful inserts before error noted above to

restore table to a consistent state.

 QUIT;

 140

NOTE: The SAS System stopped processing this step because of errors.

NOTE: PROCEDURE SQL used:

 real time 1.12 seconds

 cpu time 0.06 seconds

5.4.5 Validating Column Values with a CHECK Constraint

A CHECK constraint validates data values against a list of values, minimum

and maximum values, as well as a range of values before populating a table.

Using either a CREATE TABLE or ALTER TABLE statement, you can apply a CHECK

constraint to any column that requires data validation to be performed. In

the next example, suppose you want to validate data values in the PRODTYPE

(Product Type) column in the PRODUCTS table. When you specify a CHECK

constraint against the PRODTYPE column using the ALTER TABLE statement,

product type values will first need to match the list of defined values or

the rows will be rejected.

SQL Code

PROC SQL;

 ALTER TABLE PRODUCTS

 ADD CONSTRAINT CHECK_PRODUCT_TYPE

 CHECK (PRODTYPE IN ('Laptop',

 'Phone',

 'Software',

 'Workstation'));

QUIT;

With a CHECK constraint defined, each row must meet the validation rules that

are specified for the column before the table is populated. If any row does

not pass the validation checks based on the established validation rules,

the add/update operation fails and the table is automatically restored to

its original state prior to the operation taking place. In the next example,

three rows of data are validated against the defined CHECK constraint

established for the PRODTYPE column.

SQL Code

PROC SQL;

 INSERT INTO PRODUCTS

 VALUES(5005,'Internet Software',500,'Software',99.)

 141

 VALUES(1701,'Elite Laptop',170,'Laptop',3900.)

 VALUES(2103,'Digital Cell Phone',210,'Fone',199.);

QUIT;

The SAS log displays the results after attempting to add the three rows of

data. Because one row violates the CHECK constraint with a value of “Fone”,

the rows are not added to the PRODUCTS table. The violation produced an error

message that resulted in the failure of the add/update operation.

SAS Log Results

 PROC SQL;

 INSERT INTO PRODUCTS

 VALUES(5005,'Internet Software',500,'Software',99.)

 VALUES(1701,'Elite Laptop',170,'Laptop',3900.)

 VALUES(2103,'Digital Cell Phone',210,'Fone',199.);

ERROR: Add/Update failed for data set WORK.PRODUCTS because data

value(s) do not comply with integrity constraint CHECK_PRODUCT_TYPE.

NOTE: This insert failed while attempting to add data from VALUES

clause 3 to the data set.

NOTE: Deleting the successful inserts before error noted above to

restore table to a consistent state.

 QUIT;

NOTE: The SAS System stopped processing this step because of errors.

NOTE: PROCEDURE SQL used:

 real time 0.09 seconds

 cpu time 0.02 seconds

5.4.6 Referential Integrity Constraints

The second type of constraint that is available in the SQL procedure is

referred to as a referential integrity constraint. Enforced through primary

and foreign keys between two or more tables, referential integrity

constraints are built into a database environment to prevent data integrity

issues from occurring. The specific types of referential integrity

constraints and constraint action clauses are used to enforce update and

delete operations and consist of the following:

Referential Integrity Constraints

• Primary key

 142

• Foreign key

Referential Integrity Constraint Action Clauses

• RESTRICT (Default)

• SET NULL

• CASCADE

The action clauses are discussed in the section, “Establishing a Foreign

Key.”

5.4.7 Establishing a Primary Key

A primary key consists of one or more columns with a unique value that is

used to identify individual rows in a table. Depending on the nature of the

columns used, a single column may be all that is necessary to identify

specific rows. In other cases, two or more columns may be needed to adequately

identify a row in a referenced table. Suppose you needed to uniquely identify

specific rows in the MANUFACTURERS table. By establishing the Manufacturer

Number (MANUNUM) as the unique identifier for rows, a key is established.

The next example specifies the ALTER TABLE statement to create a primary key

using MANUNUM in the MANUFACTURERS table.

SQL Code

PROC SQL;

 ALTER TABLE MANUFACTURERS

 ADD CONSTRAINT PRIM_KEY PRIMARY KEY (MANUNUM);

QUIT;

The SAS log shows that the MANUFACTURERS table has been modified successfully

after creating a primary key using the MANUNUM column.

SAS Log Results

 PROC SQL;

 ALTER TABLE MANUFACTURERS

 ADD CONSTRAINT PRIM_KEY PRIMARY KEY (MANUNUM);

NOTE: Table WORK.MANUFACTURERS has been modified, with 4 columns.

 QUIT;

NOTE: PROCEDURE SQL used:

 143

 real time 0.07 seconds

 cpu time 0.01 seconds

Suppose you also needed to uniquely identify specific rows in the PRODUCTS

table. By specifying PRODNUM (Product Number) as the primary key, the next

example specifies the ALTER TABLE statement to create the unique identifier

for rows in the table.

SQL Code

PROC SQL;

 ALTER TABLE PRODUCTS

 ADD CONSTRAINT PRIM_PRODUCT_KEY PRIMARY KEY (PRODNUM);

QUIT;

The SAS log shows that the PRODUCTS table has been modified successfully after

establishing a primary key using the PRODNUM column.

SAS Log Results

 PROC SQL;

 ALTER TABLE PRODUCTS

 ADD CONSTRAINT PRIM_PRODUCT_KEY PRIMARY KEY (PRODNUM);

NOTE: Table WORK.PRODUCTS has been modified, with 5 columns.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.03 seconds

 cpu time 0.01 seconds

5.4.8 Establishing a Foreign Key

A foreign key consists of one or more columns in a table that references or

relates to values in another table. The column(s) used as a foreign key must

match the column(s) in the table that is referenced. The purpose of a foreign

key is to ensure that rows of data in one table exist in another table thereby

preventing the possibility of lost or missing linkages between tables. The

enforcement of referential integrity rules has a positive and direct effect

on data reliability issues.

Suppose you wanted to ensure that data values in the INVENTORY table have

corresponding and matching data values in the PRODUCTS table. By establishing

 144

PRODNUM (Product Number) as a foreign key in the INVENTORY table you ensure

a strong level of data integrity between the two tables. This essentially

verifies that key data in the INVENTORY table exists in the PRODUCTS table.

In the next example a foreign key is created using the PRODNUM column in the

INVENTORY table by specifying the ALTER TABLE statement.

SQL Code

PROC SQL;

 ALTER TABLE INVENTORY

 ADD CONSTRAINT FOREIGN_PRODUCT_KEY FOREIGN KEY (PRODNUM)

 REFERENCES PRODUCTS

 ON DELETE RESTRICT

 ON UPDATE RESTRICT;

QUIT;

The SAS log displays the successful creation of the PRODNUM column as a

foreign key in the INVENTORY table. By specifying the default values ON DELETE

RESTRICT and ON UPDATE RESTRICT clauses, you restrict the ability to change

the values of primary key data when matching values are found in the foreign

key. The execution of any SQL statement that could violate these referential

integrity rules is prevented during SQL processing.

SAS Log Results

 PROC SQL;

 ALTER TABLE INVENTORY

 ADD CONSTRAINT FOREIGN_PRODUCT_KEY FOREIGN KEY (PRODNUM)

 REFERENCES PRODUCTS

 ON DELETE RESTRICT

 ON UPDATE RESTRICT;

NOTE: Table WORK.INVENTORY has been modified, with 5 columns.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.01 seconds

 cpu time 0.01 seconds

Suppose a product of a particular manufacturer is no longer available and

has been taken off the market. To handle this type of situation, data values

in the INVENTORY table should be set to missing once the product is deleted

from the PRODUCTS table. The next example establishes a foreign key using

 145

the PRODNUM column in the INVENTORY table and sets values to null with the

ON DELETE clause.

SQL Code

PROC SQL;

 ALTER TABLE INVENTORY

 ADD CONSTRAINT FOREIGN_MISSING_PRODUCT_KEY FOREIGN KEY

(PRODNUM)

 REFERENCES PRODUCTS

 ON DELETE SET NULL;

QUIT;

The SAS log displays the successful creation of the PRODNUM column as a

foreign key in the INVENTORY table as well as the effect of the ON DELETE

SET NULL clause. Specifying this clause will change foreign key values to

missing or null for all rows matching values found in the primary key. The

execution of any SQL statement that could violate these referential integrity

rules is prevented during SQL processing.

SAS Log Results

 PROC SQL;

 ALTER TABLE INVENTORY

 ADD CONSTRAINT FOREIGN_MISSING_PRODUCT_KEY FOREIGN KEY (PRODNUM)

 REFERENCES PRODUCTS

 ON DELETE SET NULL;

NOTE: Table WORK.INVENTORY has been modified, with 5 columns.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.02 seconds

 cpu time 0.02 seconds

Suppose you want to ensure that changes to key values in the PRODUCTS table

automatically flow over or cascade through to rows in the INVENTORY table.

This is accomplished by first creating PRODNUM (Product Number) as a foreign

key in the INVENTORY table using the ADD CONSTRAINT clause and referencing

the PRODUCTS table. You then specify the ON UPDATE CASCADE clause to enable

any changes made to the PRODUCTS table to be automatically cascaded through

to the INVENTORY table. This ensures that changes to the product number values

in the PRODUCTS table automatically occur in the INVENTORY table as well.

 146

SQL Code

PROC SQL;

 ALTER TABLE INVENTORY

 ADD CONSTRAINT FOREIGN_PRODUCT_KEY FOREIGN KEY (PRODNUM)

 REFERENCES PRODUCTS

 ON UPDATE CASCADE

 ON DELETE RESTRICT /* DEFAULT VALUE */;

QUIT;

The SAS log displays the successful creation of the PRODNUM column as a

foreign key in the INVENTORY table. When the ON UPDATE and ON DELETE clauses

are specified, the execution of any SQL statement that could violate

referential integrity rules is strictly prohibited.

SAS Log Results

 PROC SQL;

 ALTER TABLE INVENTORY

 ADD CONSTRAINT FOREIGN_PRODUCT_KEY FOREIGN KEY (PRODNUM)

 REFERENCES PRODUCTS

 ON UPDATE CASCADE

 ON DELETE RESTRICT /* DEFAULT VALUE */;

NOTE: Table WORK.INVENTORY has been modified, with 5 columns.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.06 seconds

 cpu time 0.01 seconds

5.4.8.1 Constraints and Change Control

To preserve change control the SAS System prohibits changes or modifications

to a table containing a defined referential integrity constraint. When you

attempt to delete, rename, or replace a table containing a referential

integrity constraint, an error message is generated and processing is stopped.

The next example illustrates a table copy operation that is performed against

a table containing a referential integrity constraint that generates an error

message and stops processing.

SAS Log Results

 147

 PROC COPY IN=SQLBOOK OUT=WORK;

 SELECT INVENTORY;

 RUN;

NOTE: Copying SQLBOOK.INVENTORY to WORK.INVENTORY (memtype=DATA).

ERROR: A rename/delete/replace attempt is not allowed for a data set

involved in a referential integrity constraint. WORK.INVENTORY.DATA

ERROR: File WORK.INVENTORY.DATA has not been saved because copy could

not be completed.

NOTE: Statements not processed because of errors noted above.

NOTE: PROCEDURE COPY used:

 real time 0.44 seconds

 cpu time 0.02 seconds

NOTE: The SAS System stopped processing this step because of errors.

5.4.9 Displaying Integrity Constraints

Using the DESCRIBE TABLE statement, the SQL procedure displays integrity

constraints along with the table description on the SAS log. The ability to

capture this type of information assists with the documentation process by

describing the names and types of integrity constraints as well as the

contributing columns they reference.

SQL Code

PROC SQL;

 DESCRIBE TABLE MANUFACTURERS;

QUIT;

The SAS log shows the SQL statements that were used to create the

MANUFACTURERS table as well as an alphabetical list of integrity constraints

that have been defined.

SAS Log Results

 PROC SQL;

 DESCRIBE TABLE MANUFACTURERS;

NOTE: SQL table WORK.MANUFACTURERS was created like:

create table WORK.MANUFACTURERS(bufsize=4096)

 148

 (

 manunum num label='Manufacturer Number',

 manuname char(25) label='Manufacturer Name',

 manucity char(20) label='Manufacturer City',

 manustat char(2) label='Manufacturer State'

);

create unique index manunum on WORK.MANUFACTURERS(manunum);

 -----Alphabetic List of Integrity Constraints-----

 Integrity

 # Constraint Type Variables

 1 PRIM_KEY Primary Key manunum

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.19 seconds

 cpu time 0.01 seconds

5.5 Deleting Rows in a Table

In the world of data management, the ability to delete unwanted rows of data

from a table is as important as being able to populate a table with data.

In fact, data management activities would be severely hampered without the

ability to delete rows of data. The DELETE statement and an optional WHERE

clause can remove one or more unwanted rows from a table, depending on what

is specified in the WHERE clause.

5.5.1 Deleting a Single Row in a Table

The DELETE statement can be specified to remove a single row of data by

constructing an explicit WHERE clause on a unique value. The construction

of a WHERE clause to satisfy this form of row deletion may require a complex

logic construct. So be sure to test the expression thoroughly before applying

it to the table to determine whether it performs as expected. The following

example illustrates the removal of a single customer in the CUSTOMERS table

by specifying the customer’s name (CUSTNAME) in the WHERE clause.

SQL Code

 149

PROC SQL;

 DELETE FROM CUSTOMERS2

 WHERE UPCASE(CUSTNAME) = "LAUGHLER";

QUIT;

SAS Log Results

 PROC SQL;

 DELETE FROM CUSTOMERS2

 WHERE UPCASE(CUSTNAME) = "LAUGHLER";

NOTE: 1 row was deleted from WORK.CUSTOMERS2.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.37 seconds

5.5.2 Deleting More Than One Row in a Table

Frequently, a row deletion affects more than a single row in a table. In these

cases a WHERE clause references a value occurring multiple times. The

following example illustrates the removal of a single customer in the

PRODUCTS table by specifying the product type (PRODTYPE) in the WHERE clause.

SQL Code

PROC SQL;

 DELETE FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) = 'PHONE';

QUIT;

SAS Log Results

 PROC SQL;

 DELETE FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) = 'PHONE';

NOTE: 3 rows were deleted from WORK.PRODUCTS.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.05 seconds

5.5.3 Deleting All Rows in a Table

 150

SQL provides a simple way to delete all rows in a table. The following example

shows that all rows in the CUSTOMERS table can be removed when the WHERE clause

is omitted. Use care when using this form of the DELETE statement because

every row in the table is automatically deleted.

SQL Code

PROC SQL;

 DELETE FROM CUSTOMERS;

QUIT;

SAS Log Results

 PROC SQL;

 DELETE FROM CUSTOMERS;

NOTE: 28 rows were deleted from WORK.CUSTOMERS.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

5.6 Deleting Tables

The SQL standard permits one or more unwanted tables to be removed (or deleted)

from a database (SAS library). During large program processes, temporary

tables in the WORK library are frequently created. The creation and build-up

of these tables can negatively affect memory and storage performance areas,

causing potential problems due to insufficient resources. It is important

from a database management perspective to be able to delete any unwanted

tables to avoid these types of resource problems. Here are a few guidelines

to keep in mind.

Before a table can be deleted, complete ownership of the table (that is,

exclusive access to the table) should be verified. Although some SQL

implementations require a table to be empty in order to delete it, the SAS

implementation permits a table to be deleted with or without any rows of data

in it. After a table is deleted, any references to that table are no longer

recognized and will result in a syntax error. Additionally, any references

to a deleted table in a view will also result in an error (see Chapter 8,

“Working with Views”). Also, any indexes associated with a deleted table

are automatically dropped (see Chapter 6, “Modifying and Updating Tables

and Indexes”).

 151

5.6.1 Deleting a Single Table

Deleting a table from the database environment is not the same as making a

table empty. Although an empty table contains no data, it still possesses

a structure; a deleted table contains no data or related structure.

Essentially a deleted table does not exist because the table including its

data and structure are physically removed forever. Deleting a single table

from a database environment requires a single table name to be referenced

in a DROP TABLE statement. In the next example, a single table called

HOT_PRODUCTS located in the WORK library is physically removed using a DROP

TABLE statement as follows.

SQL Code

PROC SQL;

 DROP TABLE HOT_PRODUCTS;

QUIT;

SAS Log Results

 PROC SQL;

 DROP TABLE HOT_PRODUCTS;

NOTE: Table WORK.HOT_PRODUCTS has been dropped.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.38 seconds

5.6.2 Deleting Multiple Tables

The SQL standard also permits more than one table to be specified in a single

DROP TABLE statement. The next example and corresponding log shows two tables

(HOT_PRODUCTS and NOT_SO_HOT_PRODUCTS) being deleted from the WORK library.

SQL Code

PROC SQL;

 DROP TABLE HOT_PRODUCTS, NOT_SO_HOT_PRODUCTS;

QUIT;

SAS Log Results

 152

 PROC SQL;

 DROP TABLE HOT_PRODUCTS, NOT_SO_HOT_PRODUCTS;

NOTE: Table WORK.HOT_PRODUCTS has been dropped.

NOTE: Table WORK.NOT_SO_HOT_PRODUCTS has been dropped.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

5.6.3 Deleting Tables Containing Integrity Constraints

As previously discussed in this chapter, to ensure a high-level of data

integrity in a database environment the SQL standard permits the creation

of one or more integrity constraints to be imposed on a table. Under the SQL

standard, a table containing one or more constraints cannot be deleted

without first dropping the defined constraints. This behavior further

safeguards and prevents the occurrence of unanticipated surprises such as

the accidental deletion of primary or supporting tables.

In the next example, the SAS log shows that an error is produced when an

attempt to drop a table containing an ON DELETE RESTRICT referential

integrity constraint is performed. The referential integrity constraint

caused the DROP TABLE statement to fail resulting in the INVENTORY table not

being deleted.

SAS Log

 PROC SQL;

 DROP TABLE INVENTORY;

ERROR: A rename/delete/replace attempt is not allowed for a data set

involved in a referential integrity constraint. WORK.INVENTORY.DATA

WARNING: Table WORK.INVENTORY has not been dropped.

 QUIT;

NOTE: The SAS System stopped processing this step because of errors.

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

 cpu time 0.00 seconds

To enable the deletion of a table containing one or more integrity constraints,

you must specify an SQL statement such as the ALTER TABLE statement and DROP

COLUMN or DROP CONSTRAINT clauses. Once a table’s integrity constraints are

removed, the table can then be deleted.

 153

In the following SAS log, the FOREIGN_PRODUCT_KEY constraint is removed from

the INVENTORY table using the DROP CONSTRAINT clause. With the constraint

removed, the INVENTORY table is then deleted with the DROP TABLE statement.

SAS Log Results

 PROC SQL;

 ALTER TABLE INVENTORY

 DROP CONSTRAINT FOREIGN_PRODUCT_KEY;

NOTE: Integrity constraint FOREIGN_PRODUCT_KEY deleted.

NOTE: Table WORK.INVENTORY has been modified, with 5 columns.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.01 seconds

 cpu time 0.01 seconds

 PROC SQL;

 DROP TABLE INVENTORY;

NOTE: Table WORK.INVENTORY has been dropped.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.34 seconds

 cpu time 0.02 seconds

5.7 Summary

1. Creating a table using a column-definition list is similar to defining

a table’s structure with the LENGTH statement in the DATA step (see

section 5.2.1).

2. Using the LIKE clause copies the column names and attributes from the

existing table structure to the new table structure (see section

5.2.2).

3. Deriving a table from an existing table stores the results in a new

table instead of displaying them as SAS output (see section 5.2.3).

4. In populating a table, three parameters are specified with an INSERT

INTO statement: the name of the table, the names of the columns in which

values are inserted, and the values themselves (see section 5.3.1).

 154

5. Database-enforced constraints can be applied to a database table

structure to enforce the type and content of data that is permitted

(see section 5.4).

6. The DELETE statement combined with a WHERE clause selectively removes

one or more rows of data from a table (see section 5.5.1).

7. The SQL standard permits one or more unwanted tables to be removed from

a database (SAS library) (see section 5.6.2).

Chapter 6: Modifying and Updating

Tables and Indexes

6.1 Introduction

After a table is defined and populated with data, a column as well as its

structure may need modifying. The SQL standard provides Data Definition

Language (DDL) statements to permit changes to a table’s structure and its

data. In this chapter, you will see examples that add and delete columns,

modify column attributes, add and delete indexes, rename tables, and update

values in rows of data.

6.2 Modifying Tables

An important element in PROC SQL is its Data Definition Language (DDL)

capabilities. From creating and deleting tables (see Chapter 5, “Creating,

Populating, and Deleting Tables”) and indexes to altering table structures

and columns, the DDL provides PROC SQL programmers with a way to change (or

redefine) the definition of one or more existing tables. The ALTER TABLE

statement permits columns to be added, modified, or dropped in a table with

the ADD, MODIFY, or DROP clauses. When a table’s columns or attributes are

modified, the table’s structural dynamics also change. The following

sections examine the various ways tables can be modified in the SQL procedure.

6.2.1 Adding New Columns

As requirements and needs change, a database’s initial design may require

one or more new columns to be added. Before any new columns can be added,

complete ownership of the table must be granted. When you have exclusive

 155

access, each new column that you add is automatically added at the end of

the table’s descriptor record. This means that the ALTER TABLE statement’s

ADD clause modifies the table without reading or writing data.

Suppose you were given a new requirement to improve your ability to track

the status of inventory levels. It is determined that your organization can

achieve this new capability by adding a new column to the INVENTORY table.

The ADD clause is used in the ALTER TABLE statement to define the new column,

INVENTORY_STATUS, and its attributes. The new column’s purpose is to

identify the following inventory status values: “In-Stock”,

“Out-of-Stock”, and “Back Ordered”.

SQL Code

PROC SQL;

 ALTER TABLE INVENTORY

 ADD inventory_status char(12);

QUIT;

Once the new column is added, the SAS log indicates that 6 columns exist in

the INVENTORY table.

SAS Log Results

 PROC SQL;

 ALTER TABLE INVENTORY

 ADD inventory_status char(12);

NOTE: Table WORK.INVENTORY has been modified, with 6

columns.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.44 seconds

The output shows the INVENTORY_STATUS column added at the end of the INVENTORY

table.

Results

 The CONTENTS Procedure

 -----Alphabetic List of Variables and Attributes-----

 156

Variable Type Len Pos Format Informat Label

4 invencst Num 6 22 DOLLAR10.2 Inventory Cost

2 invenqty Num 3 19 Inventory Quantity

6 inventory_status Char 12 4

5 manunum Num 3 28 Manufacturer Number

3 orddate Num 4 0 MMDDYY10. MMDDYY10. Date Inventory Last Ordered

1 prodnum Num 3 16 Product Number

 -----Variables Ordered by Position-----

Variable Type Len Pos Format Informat Label

__

1 prodnum Num 3 16 Product Number

2 invenqty Num 3 19 Inventory Quantity

3 orddate Num 4 0 MMDDYY10. MMDDYY10. Date Inventory Last

 Ordered

4 invencst Num 6 22 DOLLAR10.2 Inventory Cost

5 manunum Num 3 28 Manufacturer Number

6 INVENTORY_STATUS Char 12 4

6.2.2 Controlling the Position of Columns in a Table

Column position is not normally important in relational database processing.

But, there are times when a particular column order is desired, for example

when SELECT * (select all) syntax is specified. To add one or more columns

in a designated order, the SQL standard provides a couple of choices. You

can:

1. Create a new table with the columns in the desired order and load the

data into the new table,

2. Create a view that puts the columns in the desired order and then access

the view in lieu of the table (see Chapter 8, “Working with Views,”

for a detailed explanation).

Suppose you had to add the INVENTORY_STATUS column so it is inserted between

the ORDDATE and INVENCST columns and not just added as the last column in

the table. The following example shows how this can be done. As before, we

begin by adding the INVENTORY_STATUS column to the INVENTORY table. Then,

 157

we create a new table called INVENTORY_COPY and load the data from INVENTORY

in the following column order: PRODNUM, INVENQTY, ORDDATE, INVENTORY_STATUS,

INVENCST, and MANUNUM.

SQL Code

PROC SQL;

 ALTER TABLE INVENTORY

 ADD INVENTORY_STATUS CHAR(12);

 CREATE TABLE INVENTORY_COPY AS

 SELECT PRODNUM, INVENQTY, ORDDATE, INVENTORY_STATUS,

 INVENCST, MANUNUM

 FROM INVENTORY;

QUIT;

PROC CONTENTS DATA=INVENTORY_COPY;

RUN;

The PROC CONTENTS output below shows the positioning of the columns in the

new INVENTORY_COPY table including the new INVENTORY_STATUS column that was

added.

Results

 The CONTENTS Procedure

 -----Variables Ordered by Position-----

Variable Type Len Pos Format Informat Label

__

1 prodnum Num 3 16 Product Number

2 invenqty Num 3 19 Inventory Quantity

3 orddate Num 4 0 MMDDYY10. MMDDYY10. Date Inventory Last

 Ordered

4 INVENTORY_STATUS Char 12 4

5 invencst Num 6 22 DOLLAR10.2 Inventory Cost

6 manunum Num 3 28 Manufacturer Number

Another way of controlling a table’s column order is to create a view or

virtual table (for more information on views, see Chapter 8, “Working with

Views”), from an existing table by specifying the desired column order.

Using a CREATE VIEW statement and a SELECT query you can construct a new view

so that the columns appear in a desired order. Essentially the view contains

 158

no data, just the PROC SQL query’s instructions that were used to create

it. The biggest advantage of creating a view to reorder the columns defined

in a table is that a view not only avoids the creation of a physical table,

but hides sensitive data from unauthorized viewing. In the next example, a

new view called INVENTORY_VIEW is created from the INVENTORY table with

selected columns appearing in a specific order.

SQL Code

PROC SQL;

 CREATE VIEW INVENTORY_VIEW AS

 SELECT PRODNUM, INVENQTY, INVENTORY_STATUS

 FROM INVENTORY;

QUIT;

The PROC CONTENTS output below shows the positioning of the columns in the

new view including the new INVENTORY_STATUS column that was added earlier.

Results

 The CONTENTS Procedure

 -----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Label

2 invenqty Num 3 8 Inventory Quantity

3 inventory_status Char 12 11

1 prodnum Num 3 0 Product Number

6.2.3 Changing a Column’s Length

Column definitions (length, informat, format, and label) can be modified with

the MODIFY clause in the ALTER TABLE statement. PROC SQL enables a character

or numeric column to have its length changed. In the next example, suppose

you had to reduce the length of the character column MANUCITY in the

MANUFACTURERS table from 20 bytes to a length of 15 bytes to conserve space.

The CHAR column-definition is used in the MODIFY clause in the ALTER TABLE

statement to redefine the length of the column.

SQL Code

 159

PROC SQL;

 ALTER TABLE MANUFACTURERS

 MODIFY MANUCITY CHAR(15);

QUIT;

SAS Log Results

 PROC SQL;

 ALTER TABLE MANUFACTURERS

 MODIFY MANUCITY CHAR(15);

NOTE: Table WORK.MANUFACTURERS has been modified, with 4 columns.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.50 seconds

The PROC CONTENTS output below illustrates the changed column length made

to the MANUCITY column in the MANUFACTURERS table.

Results

 The CONTENTS Procedure

Data Set Name: WORK.MANUFACTURERS Observations: 6

Member Type: DATA Variables: 4

Engine: V8 Indexes: 0

Created: 14:21 Tuesday, November 9, 1999 Observation Length: 45

 -----Alphabetic List of Variables and Attributes-----

 # Variable Type Len Pos Label

 __

 3 manucity Char 15 25 Manufacturer City

 2 manuname Char 25 0 Manufacturer Name

 1 manunum Num 3 42 Manufacturer Number

 4 manustat Char 2 40 Manufacturer State

The column length can also be changed using the PROC SQL LENGTH= option in

the SELECT clause of the CREATE TABLE statement. This construct avoids your

having to use the ALTER TABLE statement, as illustrated in the previous

example, as well as using a DATA step. The next example shows the LENGTH=

option to reduce the length of the MANUCITY column from 20 bytes to 15 bytes.

 160

SQL Code

PROC SQL;

 CREATE TABLE MANUFACTURERS_MODIFIED AS

 SELECT MANUNUM, MANUNAME, MANUCITY LENGTH=15, MANUSTAT

 FROM MANUFACTURERS;

QUIT;

SAS Log Results

 PROC SQL;

 CREATE TABLE MANUFACTURERS_MODIFIED AS

 SELECT MANUNUM, MANUNAME, MANUCITY LENGTH=15, MANUSTAT

 FROM MANUFACTURERS;

NOTE: Table WORK.MANUFACTURERS_MODIFIED created, with 6 rows and 4 columns.

 QUIT;

NOTE: PROCEDURE SQL used (Total process time):

 real time 0.12 seconds

 cpu time 0.01 seconds

A column that is initially defined as numeric can also have its length changed

in PROC SQL. The SQL procedure ignores a field width in these situations and

defines all numeric columns with a maximum width of 8 bytes. The reason is

that numeric columns are always defined with the maximum precision allowed

by the SAS System. To override this limitation, it is recommended that you

use a LENGTH= option in the SELECT clause of the CREATE TABLE statement or

the LENGTH statement in a DATA step to assign (or reassign) any numeric column

lengths to the desired size. You can also improve query results by assigning

indexes only to those columns that have many unique values or that you use

regularly in joins.

In the next example, the numeric column MANUNUM has its length changed (or

redefined) from 3 bytes to 4 bytes using the LENGTH= option in the SELECT

clause of the CREATE TABLE statement.

 Note Recursive references in the target table can create data integrity
problems. For this reason you should refrain from specifying the same

table name in the CREATE TABLE statement as specified in the FROM clause.

SQL Code

 161

PROC SQL;

 CREATE TABLE MANUFACTURERS_MODIFIED AS

 SELECT MANUNUM LENGTH=4, MANUNAME, MANUCITY, MANUSTAT

 FROM MANUFACTURERS;

QUIT;

The PROC CONTENTS output illustrates the changed column length assigned to

the numeric MANUNUM column in the MANUFACTURERS_MODIFIED table.

Results

 The CONTENTS Procedure

 Alphabetic List of Variables and Attributes

Variable Type Len Label

3 manucity Char 15 Manufacturer City

2 manuname Char 25 Manufacturer Name

1 manunum Num 4 Manufacturer Number

4 manustat Char 2 Manufacturer State

In the next example, the numeric column MANUNUM has its length changed (or

redefined) from 3 bytes to 4 bytes using the LENGTH statement in a DATA step.

To avoid truncation or data problems, you should verify that a column having

a shorter length can handle existing data. Because PROC SQL does not produce

any notes or warnings if numeric values are truncated, you are required to

know your data.

DATA Step Code

DATA MANUFACTURERS;

 LENGTH MANUNUM 4.;

 SET MANUFACTURERS;

RUN;

SAS Log Results

 DATA MANUFACTURERS;

 LENGTH MANUNUM 4.;

 SET MANUFACTURERS;

 RUN;

 162

NOTE: There were 6 observations read from the dataset

WORK.MANUFACTURERS.

NOTE: The data set WORK.MANUFACTURERS has 6 observations and 4

variables.

NOTE: DATA statement used:

 real time 0.44 seconds

The PROC CONTENTS output below illustrates the changed column length assigned

to the numeric MANUNUM column in the MANUFACTURERS table.

Results

 The CONTENTS Procedure

 -----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Label

__

3 manucity Char 15 29 Manufacturer City

2 manuname Char 25 4 Manufacturer Name

1 manunum Num 4 0 Manufacturer Number

4 manustat Char 2 44 Manufacturer State

6.2.4 Changing a Column’s Format

You can permanently change a column’s format with the MODIFY clause of the

ALTER TABLE statement—and not just for the duration of the step. Suppose

you had to increase the size of the DOLLARw.d format from DOLLAR9.2 to
DOLLAR12.2 to allow larger product cost (PRODCOST) values in the PRODUCTS

table to print properly.

SQL Code

PROC SQL;

 ALTER TABLE PRODUCTS

 MODIFY PRODCOST FORMAT=DOLLAR12.2;

QUIT;

SAS Log Results

 163

 PROC SQL;

 ALTER TABLE PRODUCTS

 MODIFY PRODCOST FORMAT=DOLLAR12.2;

NOTE: Table WORK.PRODUCTS has been modified, with 5 columns.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.33 seconds

6.2.5 Changing a Column’s Label

You can modify a column’s label information with the ALTER TABLE statement

MODIFY clause. Because the label information is part of the descriptor record,

changes to this value have no impact on the data itself. Suppose you had to

change the label corresponding to the product cost (PRODCOST) column in the

PRODUCTS table so when printed it displayed “Retail Product Cost”.

SQL Code

PROC SQL;

 ALTER TABLE PRODUCTS

 MODIFY PRODCOST LABEL="Retail Product Cost";

QUIT;

SAS Log Results

 PROC SQL;

 ALTER TABLE PRODUCTS

 MODIFY PRODCOST LABEL="Retail Product Cost";

NOTE: Table WORK.PRODUCTS has been modified, with 5 columns.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

6.2.6 Renaming a Column

The SQL procedure does provide an ANSI approach to renaming columns in a table.

By specifying the SELECT clause in the CREATE TABLE statement, you can rename

columns, although it can be tedious if a large number of columns exist in

the table. The next example illustrates a SELECT clause in a CREATE TABLE

statement being used to rename the ITEM column to ITEM_PURCHASED in the

 164

PURCHASES table. As the example below illustrates you should refrain from

specifying the same table name in the CREATE TABLE statement as specified

in the FROM clause. Recursive references to the target table can cause data

integrity problems.

SQL Code

PROC SQL;

 CREATE TABLE PURCHASES AS

 SELECT CUSTNUM, ITEM AS ITEM_PURCHASED, UNITS, UNITCOST

 FROM PURCHASES;

QUIT;

SAS Log Results

 PROC SQL;

 CREATE TABLE PURCHASES AS

 SELECT CUSTNUM, ITEM AS ITEM_PURCHASED, UNITS, UNITCOST

 FROM PURCHASES;

WARNING: This CREATE TABLE statement recursively references the

target table. A consequence of this is a possible data integrity

problem.

NOTE: Table WORK.PURCHASES created, with 7 rows and 4 columns.

 QUIT;

NOTE: PROCEDURE SQL used (Total process time):

 real time 0.41 seconds

 cpu time 0.02 seconds

An alternative approach to renaming columns in a table consists of using the

RENAME= SAS data set option in a SELECT statement’s FROM clause. Suppose

you needed to rename ITEM in the PURCHASES table to ITEM_PURCHASED. In the

next example, the RENAME= SAS data set option can be specified in one of two

ways, as illustrated below. Either approach is syntactically correct.

SQL Code

PROC SQL;

 SELECT *

 FROM PURCHASES (RENAME=ITEM=ITEM_PURCHASED);

QUIT;

 165

< or >

PROC SQL;

 SELECT *

 FROM PURCHASES (RENAME=(ITEM=ITEM_PURCHASED));

QUIT;

SAS Log Results

 PROC SQL;

 SELECT *

 FROM PURCHASES(RENAME=ITEM=ITEM_PURCHASED);

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.31 seconds

 cpu time 0.02 seconds

6.2.7 Renaming a Table

The SQL procedure does not provide a standard ANSI approach to renaming a

table in a SAS library. Consequently, the DATASETS procedure is the

recommended method to accomplish this relatively simple task. Suppose you

had to rename the PRODUCTS table in the WORK library to

MANUFACTURED_PRODUCTS.

SAS Code

PROC DATASETS LIBRARY=WORK;

 CHANGE PRODUCTS = MANUFACTURED_PRODUCTS;

RUN;

SAS Log Results

PROC DATASETS LIBRARY=work;

 Directory

 Libref WORK

 Engine V9

 Physical Name D:\SAS Version 9.1\SAS Temporary Files_TD1704

 File Name D:\SAS Version 9.1\SAS Temporary Files_TD1704

 166

 Member File

 # Name Type Size Last Modified

 1 CUSTOMERS DATA 5120 16Aug04:23:37:30

 2 CUSTOMERS2 DATA 5120 16Aug04:23:37:30

 3 INVENTORY DATA 5120 16Aug04:23:39:22

 4 INVOICE DATA 5120 16Aug04:23:37:32

 5 MANUFACTURERS DATA 5120 17Aug04:00:07:40

 6 PRODUCTS DATA 17408 17Aug04:00:10:38

 7 PURCHASES DATA 5120 17Aug04:00:17:12

 CHANGE PRODUCTS = MANUFACTURED_PRODUCTS;

 RUN;

NOTE: Changing the name WORK.PRODUCTS to WORK.MANUFACTURED_PRODUCTS (memtype=DATA).

An assortment of novel approaches has been used to rename tables. One approach,

shown below, uses the CREATE TABLE statement with the SELECT query to create

a new table with the desired table name followed by the DROP TABLE statement

to delete the old table. You should be aware, however, that this is not an

efficient method to rename a table.

SQL Code

PROC SQL;

 CREATE TABLE MANUFACTURED_PRODUCTS AS

 SELECT *

 FROM PRODUCTS;

 DROP TABLE PRODUCTS;

QUIT;

6.3 Indexes

An index consists of one or more columns used to uniquely identify each row

within a table. Operating as a SAS object containing the values in one or

more columns in a table, an index is composed of one or more columns and may

be defined as numeric, character, or a combination of both.

There is no rule that says a table has to have an index, but they can often

make information retrieval more efficient and considerably faster.

 167

For example, if you know a specific part number and its location from a list

of thousands, then you can look up the part and find its manufacturer, cost,

and location far more efficiently than if you did not know this information.

6.3.1 Defining Indexes

When defining an index, you should first understand the purpose the index

is to serve. The most important thing to keep in mind about indexes is that

they should be created only when they are absolutely needed. Too many, or

unnecessary, indexes use up computer resources. An index also takes up space

and has to be updated any time a DELETE, INSERT, or UPDATE is performed on

rows in a table. For this reason, care should be used when deciding when and

what indexes to create.

To help determine when indexes are necessary, consider existing data as well

as the way the base table(s) will be used. You also need to know what queries

will be used and how they will access columns of data. If an index is used

to specify some order within a table, such as manufacturer number or product

number in the PRODUCTS table, you should fully assess what the impact of that

index will be.

Sometimes the column(s) making up an index is obvious, and other times it

is not. When determining whether an index provides any value, some very

important rules should be kept in mind. An index should permit the greatest

flexibility so every column in a table can be accessed and displayed. You

can also improve query results by assigning indexes only to those columns

that have many unique values or that you use regularly in joins.

When an index is specified for one or more tables, a join process may actually

occur faster. The PROC SQL processor may use an index when certain conditions

permit its use. Here are a few things to keep in mind before creating an index:

• If the table is small, sequential processing may be just as fast, or

faster, than processing with an index

• If the page count as displayed in the CONTENTS procedure is less than

3 pages, avoid creating or using an index

• Do not create more indexes than you absolutely need

• If the data subset for the index is not small, sequential access may

be more efficient than using the index

• If the percentage of matches is approximately 15% or less then an index

should be used

 168

• The costs associated with an index can outweigh its performance value

– an index is updated each time when rows in a table are added, deleted,

or modified.

Two types of indexes can be defined and used in PROC SQL: simple and composite.
When a simple index is created, it references only a single column. In

contrast, a composite index references two or more columns in a table.

6.3.2 Creating a Simple Index

A simple index is specifically defined for one column in a table and must

be the same name as the column. Suppose you had to create an index consisting

of product type (PRODTYPE) in the PRODUCTS table. Once created, the index

becomes a separate object located in the SAS library.

SQL Code

PROC SQL; [1] [2] [3]

 CREATE INDEX PRODTYPE ON PRODUCTS(PRODTYPE);

QUIT;

SAS Log Results

 PROC SQL; [1] [2] [3]

 CREATE INDEX PRODTYPE ON PRODUCTS(PRODTYPE);

NOTE: Simple index PRODTYPE has been defined.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.37 seconds

[1] The simple index is assigned a name of PRODTYPE, which must be the same
as the column name.

[2] The simple index is defined on the PRODUCTS table.
[3] The PRODTYPE column in the PRODUCTS table is designated as the column to

be used by the index.

6.3.3 Creating a Composite Index

A composite index is specifically defined for two or more columns in a table

and must have a different name from the columns. Suppose you had to create

an index consisting of manufacturer number (MANUNUM) and product type

 169

(PRODTYPE) located in the PRODUCTS table. You should be aware that only one

composite index is allowed per set of columns, but more than one composite

index is allowed. The composite index, as with the simple index, becomes a

separate object located in the SAS library.

SQL Code

PROC SQL;

 CREATE INDEX [1] [2] [3]

 MANUNUM_PRODTYPE ON PRODUCTS(MANUNUM,PRODTYPE);

QUIT;

SAS Log Results

 PROC SQL;

 CREATE INDEX [1] [2] [3]

 MANUNUM_PRODTYPE ON PRODUCTS(MANUNUM,PRODTYPE);

NOTE: Composite index MANUNUM_PRODTYPE has been defined.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

[1] The composite index is assigned a name of MANUNUM_PRODTYPE, which is used
to represent the MANUNUM and PRODTYPE column names.

[2] The composite index is defined on the PRODUCTS table.
[3] The MANUNUM and PRODTYPE columns in the PRODUCTS table are designated as

the columns to be used by the index.

6.3.4 Preventing Duplicate Values in an Index

The UNIQUE keyword prevents the entry of a duplicate value in an index. You

should use this keyword with care because there may be times when more than

one occurrence of a data value in a table is necessary. When multiple

occurrences of the same value appear in a table, the UNIQUE keyword is

rejected and the index is not created for that particular column.

6.3.5 Modifying Columns Containing Indexes

Altering the attributes of a column that contains an associated index (simple

or composite) does NOT prohibit the values in the altered column from using

the index. But, if a column that contains an index is dropped, then the index

 170

is also dropped. Accordingly, when a column is dropped, any data in that index

is also lost.

6.3.6 Deleting (Dropping) Indexes

When one or more indexes are no longer needed, the DROP INDEX statement can

be used to remove them. Suppose you determine that you no longer need the

composite index MANUNUM_PRODTYPE (created earlier) because processing

requirements have changed. The next example illustrates a single composite

index being deleted from the SAS library.

SQL Code

PROC SQL;

 DROP INDEX MANUNUM_PRODTYPE

 FROM PRODUCTS;

QUIT;

SAS Log Results

 PROC SQL;

 DROP INDEX MANUNUM_PRODTYPE

 FROM PRODUCTS;

NOTE: Index MANUNUM_PRODTYPE has been dropped.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

According to the ANSI SQL standard, two or more indexes can also be deleted

in a DROP INDEX statement. The next example illustrates the MANUNUM and

PRODTYPE indexes being deleted from the SAS library in a single DROP INDEX

statement.

SQL Code

PROC SQL;

 DROP INDEX MANUNUM, PRODTYPE

 FROM PRODUCTS;

QUIT;

SAS Log Results

 171

 PROC SQL;

 DROP INDEX MANUNUM, PRODTYPE

 FROM PRODUCTS;

NOTE: Index MANUNUM has been dropped.

NOTE: Index PRODTYPE has been dropped.

 QUIT;

NOTE: PROCEDURE SQL used (Total process time):

 real time 0.00 seconds

 cpu time 0.01 seconds

6.4 Updating Data in a Table

Once a table is populated with data, you may need to update values in one

or more of its rows. Column values in existing rows in a table can be updated

with the UPDATE statement. The key to successful row updates is the creation

of a well-constructed SET clause and WHERE expression. If the WHERE

expression is not constructed correctly, the possibility of an update error

is great.

Suppose all laptops in the PRODUCTS table have just been discounted by 20

percent and the new price is to take effect immediately. The update would

compute the discounted product cost for “Laptop” computers only. For

example, the discounted price for a laptop computer would be reduced to

$2,720.00 from $3,400.00.

SQL Code

PROC SQL;

 UPDATE PRODUCTS

 SET PRODCOST = PRODCOST – (PRODCOST * 0.2)

 WHERE UPCASE(PRODTYPE) = 'LAPTOP';

 SELECT *

 FROM PRODUCTS;

QUIT;

SAS Log Results

 PROC SQL;

 UPDATE PRODUCTS

 SET PRODCOST = PRODCOST - (PRODCOST * 0.2)

 172

 WHERE UPCASE(PRODTYPE) = 'LAPTOP';

NOTE: 1 row was updated in WORK.PRODUCTS.

 SELECT *

 FROM PRODUCTS;

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

Results

Product Manufacturer Retail

 Number Product Name Number Product Type Product Cost

__

 1110 Dream Machine 111 Workstation $3,200.00

 1200 Business Machine 120 Workstation $3,300.00

 1700 Travel Laptop 170 Laptop $2,720.00

 2101 Analog Cell Phone 210 Phone $35.00

 2102 Digital Cell Phone 210 Phone $175.00

 2200 Office Phone 220 Phone $130.00

 5001 Spreadsheet Software 500 Software $299.00

 5002 Database Software 500 Software $399.00

 5003 Wordprocessor Software 500 Software $299.00

 5004 Graphics Software 500 Software $299.00

6.5 Summary

1. Data Definition Language (DDL) statements provide programmers with a

way to redefine the definition of one or more existing tables (see

section 6.2).

2. As one or more new columns are added to a table, each is automatically

added at the end of a table’s descriptor record (see section 6.2.1).

3. To add one or more columns in a designated order, the SQL standard

provides a couple of choices to choose from (see section 6.2.2).

4. PROC SQL enables a character column (but not a numeric column) to have

its length changed (see section 6.2.3).

5. A column’s format and label information can be modified with a MODIFY

clause (see sections 6.2.4 and 6.2.5).

6. The RENAME= SAS data set option must be used in a FROM clause to rename

column names (see section 6.2.6).

 173

7. The DATASETS procedure is the recommended way to rename tables (see

section 6.2.7).

8. An index consists of one or more columns used to uniquely identify each

row within a table (see section 6.3).

9. Column values in existing rows in a table can be modified with the

UPDATE statement (see section 6.4).

Chapter 7: Coding Complex Queries

7.1 Introduction

In previous chapters, our discussion of queries was confined to a single table

referenced with a SELECT statement. The real strength of the relational

approach is the ability it gives you to construct queries that refer to

several tables or even to other queries. These types of queries are referred

to as complex queries. PROC SQL provides a way to construct complex queries
by enabling you to join two or more tables, build queries that control other

queries through a process known as nesting, and combine output as a single

table from multiple queries.

7.2 Introducing Complex Queries

In the previous chapters, the queries could be classified as being relatively

simple because references were always made against a single table. We now

turn our attention to queries of a more complex nature that call on the full

features of the SQL procedure. Four complex query constructs will be

illustrated in this chapter.

Inner Joins Up to 32 tables are referenced in a FROM and optional WHERE

clause of a SELECT statement.

Outer Joins A maximum of two tables are referenced in a FROM and ON clause

of a SELECT statement.

Subqueries A query is embedded (nested) in the WHERE clause of a main

query.

Set A new results table is created from two separate queries.

 174

Operations

7.3 Joins

Joining two or more tables of data is a powerful feature in the relational

model. The SQL procedure enables you to join tables of information quickly

and easily. Linking one piece of information with another piece of

information is made possible when at least one column is common to each table.

A maximum of 32 tables can be combined using conventional (inner) join

techniques, as opposed to a maximum of two tables at a time using outer join

techniques.

This chapter discusses a number of join topics including why joins are

important, the differences between the various join techniques, the

importance of the WHERE clause in creating joins, creating and using table

aliases, joining three or more tables of data, outer (left, right, and full)

joins, subqueries, and set operations. It is important to recognize that many

of these techniques can be accomplished using DATA step programming

techniques, but the simplicity and flexibility found in the SQL procedure

makes it especially useful, if not indispensable, as a tool for the

practitioner.

7.3.1 Why Joins Are Important

As relational database systems continue to grow in popularity, the need to

access normalized data stored in separate tables becomes increasingly

important. By relating matching values in key columns in one table with key

columns in the other table(s), you can retrieve information as if the data

were stored in one huge file. The results can provide new and exciting

insights into possible data relationships.

7.3.2 Information Retrieval Based on Relationships

Being able to define relationships between multiple tables and retrieve

information based on these relationships is a powerful feature of the

relational model. A join of two or more tables provides a means of gathering

and manipulating data in a single SELECT statement. You join two or more

tables by specifying the table names in a SELECT statement. Joins are

 175

specified on a minimum of two tables at a time, where a column from each table

is used for the purpose of connecting the two tables. Connecting columns

should have "like" values and the same column attributes because the join's
success is dependent on these values.

In a typical join, you name the relevant columns in the SELECT statement,

you specify the tables to be joined in the FROM clause, and in the WHERE clause

you specify the relationship you want revealed. That is, you describe the

data subset that you want to produce. To be of use (and of a manageable size)

your join needs a WHERE clause to constrain the results and ensure their

utility and relevance.

 Note When you create a join without a WHERE clause, you are creating an
internal, virtual table called a Cartesian product. This table can be

extremely large because it represents all possible combinations of rows

and columns in the joined tables.

7.3.3 Types of Complex Queries

The SQL procedure supports a great number of complex queries (sometimes

referred to as join types). From inner joins to left, right, and full outer

joins, this chapter provides a comprehensive look at the various forms of

SELECT statements that can be used to perform multiple table management.

Additional topics and examples include subqueries and set operations such

as UNION, INTERSECT, and EXCEPT operations. The next table presents the

various types of complex queries available in the SQL procedure.

Types of Complex Queries

Query Type Description

Cartesian Product

or Cross Join

This type of join creates a table representing all the

combinations of rows and colums from two or more tables.

It is represented by the absence of a WHERE clause.

Inner Joins This type of join is referred to as a conventional type

of join because it only retrieves rows with matching

values from or more tables (maximum of 32 tables).

Equijoin A join with a equality condition (for example, equal sign

“=”) specified between columns in two or more tables.

Non-Equijoin A join with a inequality condition (for example, NE, >,

<) specified between columns in two or more tables.

 176

Types of Complex Queries

Query Type Description

Reflexive or Self

Join

A join that combines a table with itself.

Outer Joins A join that retrieves rows with matching values while

preserving some or all of the unmatched rows from one or

both tables.

Left Outer Join A join that preserves unmatched rows from the left table.

Right Outer Join A join that preserves unmatched rows from the right

tables.

Full Outer Join A join that preserves unmatched rows from the left and

right tables.

Subqueries A query within another query — sometimes referred to as

a nested query that retrieves rows from one table based

on values in another table.

Simple Subquery A self-contained and independent query within another

query that returns single or multiple values from an inner

query.

Correlated

Subquery

An outer query that passes value(s) to an inner query that

after execution passes the results back to the outer

query.

Set Operations These operators combine or concatenate query results

vertically.

UNION Combines all unique (nonduplicate) rows from both

queries.

INTERSECT Combines all matched rows from the first query with rows

in the second query.

EXCEPT Produces rows from the first query that do not appear in

the second query.

OUTER UNION Concatenates (appends) the results from both queries.

7.4 Cartesian Product Joins

As mentioned previously, the Cartesian product (or cross join) represents

all possible combinations of rows and columns from the joined tables. To be

exact, it represents the sum of the number of columns of the input tables

 177

plus the product of the number of rows of the input tables. Put another way,

it represents each row from the first table matched with each possible row

from the second table, and so on and so forth. For example, if you performed

a joint operation on one table consisting of 100,000 rows and a second table

of 10,000 rows, you would get a Cartesian product of 10 million rows.

Although the Cartesian product serves a very useful purpose in the relational

model, it is essentially meaningless for a user to intentionally produce it

as a final table. Besides being large, Cartesian products contain too much

information and make it difficult, if not impossible, for the practitioner

to select what is salient. It is only when you subset the Cartesian product

using a WHERE clause that your data becomes quantifiable and manageable. For

more information on Cartesian Product joins and examples illustrating the

results of these joins, go to the Companion Web Site for this book.

7.5 Inner Joins

As was mentioned earlier, inner joins can handle a maximum of 32 tables at

a time, and are the most recognized and widely used type of join. They are

principally used to restrict rows where the specific search condition is not

met. As a result, only rows satisfying the conditions specified in the WHERE

clause are kept. This is in direct contrast with outer joins (discussed in

a later section).

7.5.1 Equijoins

The most common form of inner join often referred to as an equijoin uses an
equal sign “=” in the WHERE clause to indicate equality between the columns

in two or more tables. Suppose you wanted to match products with their

corresponding manufacturers so that all products from each manufacturer

would be listed. An equijoin is performed to equate the manufacturer number

from tables PRODUCTS and MANUFACTURERS.

SQL Code

PROC SQL;

 SELECT prodname, prodcost,

 manufacturers.manunum, manuname

 [1] [2]

 FROM PRODUCTS, MANUFACTURERS

 178

 WHERE products.manunum = [3]

 manufacturers.manunum;

QUIT;

[1] The PRODUCTS table is the first table specified in the FROM clause.
[2] The MANUFACTURERS table is the second table specified in the FROM clause.
[3] The specification of an equal sign “=” in a WHERE clause between the

columns in the tables indicates an equality type of join.

Results

 The SAS System

 Product Manufacturer

Product Name Cost Number Manufacturer Name

__

Dream Machine $3,200.00 111 Cupid Computer

Business Machine $3,300.00 120 Storage Devices Inc

Analog Cell Phone $35.00 210 Global Comm Corp

Digital Cell Phone $175.00 210 Global Comm Corp

Spreadsheet Software $299.00 500 KPL Enterprises

Database Software $399.00 500 KPL Enterprises

Wordprocessor Software $299.00 500 KPL Enterprises

Graphics Software $299.00 500 KPL Enterprises

The previous example can be further qualified by adding another condition

in the WHERE clause. For example, suppose you wanted to display only those

products from the manufacturer KPL Enterprises. The following join

identifies all the products manufactured by KPL Enterprises as specified in

the WHERE clause (all rows not meeting the condition of the WHERE clause are

automatically excluded from the results of the join).

 Note This join assumes you know KPL Enterprises’s unique manufacturer

number.

SQL Code

PROC SQL;

 SELECT prodname, prodcost,

 manufacturers.manunum, manuname

 FROM PRODUCTS, MANUFACTURERS

 WHERE products.manunum = [1]

 manufacturers.manunum AND

 179

 products.manunum = 500;

QUIT;

[1] The specification of the AND logical operator in the WHERE clause
indicates that both conditions must be true in order to retrieve rows from

both tables.

Results

 The SAS System

 Product Manufacturer

Product Name Cost Number Manufacturer Name

__

Spreadsheet Software $299.00 500 KPL Enterprises

Database Software $399.00 500 KPL Enterprises

Wordprocessor Software $299.00 500 KPL Enterprises

Graphics Software $299.00 500 KPL Enterprises

Let’s extend our knowledge of equijoins a bit further by identifying how

much money is tied up with products manufactured by KPL Enterprises. To

accomplish this, you need to do two things. First, you need to sum the product

cost (PRODCOST) column across all rows that match the WHERE clause condition.

Because the objective of the equijoin is to compute a total amount for

products manufactured by KPL Enterprises, you need to prevent duplicate rows

from displaying in the result. To do so, specify the DISTINCT keyword.

SQL Code

PROC SQL;

 SELECT DISTINCT SUM(prodcost) AS Total_Cost [1]

 FORMAT=DOLLAR10.2,

 manufacturers.manunum

 FROM PRODUCTS, MANUFACTURERS

 WHERE products.manunum =

 manufacturers.manunum AND

 manufacturers.manuname = 'KPL Enterprises';

QUIT;

[1] The DISTINCT keyword prevents duplicate rows from appearing in the result.

Results

 The SAS System

 180

Total_Cost Manufacturer Name

 $1,296.00 KPL Enterprises

7.5.2 Non-Equijoins

Another type of inner join is known as a non-equijoin. As you might guess

from its name, a non-equijoin does not have an equal sign “=” specified

in its WHERE clause. For example, suppose you want to display products

manufactured by KPL Enterprises that cost more than $299.00. The use of the

greater than “>”operator gives this type of join its name.

 Note When the SQL procedure optimizer is unable to optimize a join query by

reducing the Cartesian product, a message is displayed in the SAS log

indicating that the join requires performing one or more Cartesian

product joins and cannot be optimized.

SQL Code

PROC SQL;

 SELECT prodname, prodtype, prodcost,

 manufacturers.manunum, manufacturers.manuname

 FROM PRODUCTS, MANUFACTURERS

 WHERE manufacturers.manunum = 500 AND

 prodtype = 'Software' AND

 prodcost > 299.00; [1]

QUIT;

[1] The specification of the greater than “>”operator in the WHERE clause

indicates a non-equijoin scenario.

SAS Log Results

 PROC SQL;

 SELECT prodname, prodtype, prodcost,

 manufacturers.manunum, manufacturers.manuname

 FROM PRODUCTS, MANUFACTURERS

 WHERE manufacturers.manunum = 500 AND

 prodtype = 'Software' AND

 prodcost > 299.00;

NOTE: The execution of this query involves performing one or more Cartesian

 181

product joins that can not be optimized.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.01 seconds

 cpu time 0.01 seconds

Results

 The SAS System

 Product Product Manufacturer Manufacturer

Product Name Type Cost Number Name

Database Software Software $399.00 500 KPL Enterprises

7.5.3 Reflexive or Self Joins

The final type of inner join is referred to as a reflexive join, or as it

is sometimes called by practitioners a self join. As its name implies, a self

join makes an internal copy of a table and joins the copy to itself.

Essentially a join of this type joins one copy of a table to itself for the

purpose of exploiting and illustrating comparisons between table values. For

example, suppose you want to compare the prices of products side-by-side by

product type with the less expensive product appearing first (in the first

three columns of example result below).

SQL Code

PROC SQL;

 SELECT products.prodname, products.prodtype,

 products.prodcost,

 products_copy.prodname, products_copy.prodtype,

 products_copy.prodcost

 [1] [2]

 FROM PRODUCTS, PRODUCTS PRODUCTS_COPY

 WHERE products.prodtype = [3]

 products_copy.prodtype AND

 products.prodcost <

 products_copy.prodcost;

QUIT;

[1] The PRODUCTS table is the primary table specified in the FROM clause.

 182

[2] A copy of the PRODUCTS table called PRODUCTS_COPY is joined with the
PRODUCTS table.

[3] The WHERE clause requests the same type of products to be compared
side-by-side with the less expensive product appearing first.

Results

 The SAS System

 [1] Product [2]

Product

 Product Name Product Type Cost Product Name Product Type

Cost

__

[3] Dream Machine Workstation $3,200.00 Business Machine Workstation

$3,300.00

 Analog Cell Phone Phone $35.00 Digital Cell Phone Phone

$175.00

 Analog Cell Phone Phone $35.00 Office Phone Phone

$130.00

 Office Phone Phone $130.00 Digital Cell Phone Phone

$175.00

 Spreadsheet Software Software $299.00 Database Software Software

$399.00

 Wordprocessor Software Software $299.00 Database Software Software

$399.00

 Graphics Software Software $299.00 Database Software Software

$399.00

Looking at another example, suppose you want to find out the names and invoice

amounts where, for each customer, you list the names and invoice amounts of

each customer with larger invoice amounts. The next example illustrates a

very useful application of a self join.

SQL Code

PROC SQL;

 SELECT invoice.custnum, invoice.invprice,

 invoice_copy.custnum, invoice_copy.invprice

 183

 [1] [2]

 FROM INVOICE, INVOICE INVOICE_COPY

 WHERE invoice.invprice < [3]

 invoice_copy.invprice;

QUIT;

[1] The INVOICE table is the primary table specified in the FROM clause.
[2] A copy of the INVOICE table called INVOICE_COPY is joined with the INVOICE

table.

[3] The WHERE clause produces names of customers with larger invoice amounts.

Results

 The SAS System

Customer Invoice Unit Customer Invoice Unit

 Number Price Number Price

__

 201 $1,495.00 1301 $1,598.00

 201 $1,495.00 501 $9,600.00

 201 $1,495.00 401 $23,100.00

 1301 $1,598.00 501 $9,600.00

 1301 $1,598.00 401 $23,100.00

 101 $245.00 201 $1,495.00

 101 $245.00 1301 $1,598.00

 101 $245.00 501 $9,600.00

 101 $245.00 801 $798.00

 101 $245.00 901 $396.00

 101 $245.00 401 $23,100.00

 501 $9,600.00 401 $23,100.00

 801 $798.00 201 $1,495.00

 801 $798.00 1301 $1,598.00

 801 $798.00 501 $9,600.00

 801 $798.00 401 $23,100.00

 901 $396.00 201 $1,495.00

 901 $396.00 1301 $1,598.00

 901 $396.00 501 $9,600.00

 901 $396.00 801 $798.00

 901 $396.00 401 $23,100.00

7.5.4 Using Table Aliases in Joins

 184

Every table in a SAS library must have a unique name to reference it. Table

names must conform to valid SAS naming conventions having a maximum length

of 32 characters and starting with a letter or underscore (see the SAS
Language Reference: Concepts for further details).

To minimize the number of keystrokes when referencing the tables specified

in a join query, you can assign an alias or temporary table name reference
to each table. When assigned, these arbitrary aliases provide a short-cut

method to the tables themselves and are in effect for the duration of the

join query but no longer. In the next example, the table alias “P” is

assigned to the PRODUCTS table and the alias “M” is assigned to the

MANUFACTURERS table in the FROM clause. Table name references in the SELECT

statement and WHERE clause are made easier as well.

SQL Code

PROC SQL;

 SELECT prodnum, prodname, prodtype, M.manunum

 FROM PRODUCTS P, MANUFACTURERS M [1]

 WHERE P.manunum = M.manunum AND

 M.manuname = 'KPL Enterprises';

QUIT;

[1] The assignment of the table alias “P” and the table alias “M” in the

FROM clause provides a short-cut method of referencing the longer table

names PRODUCTS and MANUFACTURERS.

Results

 The SAS System

Product Manufacturer

 Number Product Name Product Type Number

 5001 Spreadsheet Software Software 500

 5002 Database Software Software 500

 5003 Wordprocessor Software Software 500

 5004 Graphics Software Software 500

7.5.5 Performing Computations in Joins

 185

Join queries, as with simpler queries, can take full advantage of the power

of the SQL procedure. Logical and arithmetic operators, predicates, and

summary functions are all available for you to use. The join query is an

essential component because stored information is not always available in

the form we need.

PROC SQL provides the ability to perform basic arithmetic operations such

as addition, subtraction, multiplication, and division with columns

containing numeric values. Essentially, this enables any query to perform

column addition, subtraction, multiplication, and division. Suppose you had

to compute the sales tax of 7.75% for all manufactured products sold in the

state of California. In the next example, the SELECT statement shows the

California sales tax (using the product cost column and the fixed sales tax

percentage) computation, assigns a column alias to the result column as well

as a format and label to enhance the readability of the result.

SQL Code

PROC SQL;

 SELECT prodname, prodtype, prodcost,

 prodcost * .0775 AS SalesTax [1]

 FORMAT=dollar10.2 LABEL='California Sales Tax'

 FROM PRODUCTS P, MANUFACTURERS M

 WHERE P.manunum = M.manunum AND

 M.manustat = 'CA';

QUIT;

[1] The ability to perform basic arithmetic operations in a SELECT statement
as well as assign a column alias to the result is part of the SQL ANSI

standard.

Results

 The SAS System

 [1]

 Product California

Product Name Product Type Cost Sales Tax

Business Machine Workstation $3,300.00 $255.75

Analog Cell Phone Phone $35.00 $2.71

Digital Cell Phone Phone $175.00 $13.56

Spreadsheet Software Software $299.00 $23.17

Database Software Software $399.00 $30.92

 186

Wordprocessor Software Software $299.00 $23.17

Graphics Software Software $299.00 $23.17

7.5.6 Joins with Three Tables

Up to this point, our examples have been limited to two-table joins. But what

if more information is needed than the two tables can provide? To extract

the required information, access to a third table may be necessary. A join

with three tables is a fairly simple extension of a two-table join.

As before, each joinable column must possess the same column attributes and

contain the same type of information. Besides listing all required tables

in the FROM clause, the WHERE clause would need to include any and all

restrictions to subset only the rows desired. For example, suppose you want

to display only those products along with their invoice quantity that appear

in the INVOICE table for the manufacturer KPL Enterprises (manunum=500).

SQL Code

PROC SQL;

 SELECT P.prodname,

 P.prodcost,

 M.manuname,

 I.invqty

 FROM PRODUCTS P,

 MANUFACTURERS M,

 INVOICE I

 WHERE P.manunum = M.manunum AND

 P.prodnum = I.prodnum AND

 M.manunum = 500;

QUIT;

Results

 The SAS System

 Invoice

 Quantity

 Product - Units

Product Name Cost Manufacturer Name Sold

__

 187

Spreadsheet Software $299.00 KPL Enterprises 5

Database Software $399.00 KPL Enterprises 2

Let’s examine the construction of the WHERE clause for this three-way join

a bit further. The column containing the manufacturer number from the

PRODUCTS, MANUFACTURERS, and INVOICE tables is joined using an AND logical

operator in the WHERE clause. Additionally, the WHERE clause restricts the

resulting table to only product invoices for manufacturer (manunum=500). In

the next example, a three-way join lists the product names and costs, along

with the customer who bought each product.

SQL Code

PROC SQL;

 SELECT P.prodname,

 P.prodcost,

 C.custname,

 I.invprice

 FROM PRODUCTS P,

 INVOICE I,

 CUSTOMERS C

 WHERE P.prodnum = I.prodnum AND

 I.custnum = C.custnum;

QUIT;

Results

 The SAS System

 Product Invoice

Product Name Cost Customer Name Price

__

Analog Cell Phone $35.00 La Mesa Computer Land $245.00

Spreadsheet Software $299.00 Vista Tech Center $1,495.00

Business Machine $3,300.00 La Jolla Computing $23,100.00

Dream Machine $3,200.00 Alpine Technical Center $9,600.00

Database Software $399.00 Jamul Hardware & Software $798.00

7.5.7 Joins with More Than Three Tables

 188

Occasionally, information needs to be extracted from four, five, or more

tables (up to a maximum of 32 tables). Joins of four or more tables can be

constructed just like those accessing two or three tables. The only

difference is the number of table references in the FROM clause and the level

of complexity in the WHERE clause to restrict what rows are kept. Suppose

you want to know, based on invoices, the number of products ordered before

September 1, 2000. One way to find this information is to perform a join with

four tables.

SQL Code

PROC SQL;

 SELECT sum(inventory.invenqty)

 AS Products_Ordered_Before_09012000

 FROM PRODUCTS,

 INVOICE,

 CUSTOMERS,

 INVENTORY

 WHERE inventory.orddate < mdy(09,01,00) AND

 products.prodnum = invoice.prodnum AND

 invoice.custnum = customers.custnum AND

 invoice.prodnum = inventory.prodnum;

QUIT;

Results

 The SAS System

 Products_

Ordered_Before_

 09012000

 8

If you were wondering whether this result could have been derived another

way, you would be correct. You could also determine, based on invoices, the

number of products ordered before September 1, 2000, with the following

two-way join code. As can be seen, there is often more than one way to

construct a join to extract the information you want.

SQL Code

 189

PROC SQL;

 SELECT sum(inventory.invenqty)

 AS Products_Ordered_Before_09012000

 FROM INVOICE I,

 INVENTORY I2

 WHERE inventory.orddate < mdy(09,01,00) AND

 invoice.prodnum = inventory.prodnum;

QUIT;

Results

 The SAS System

 Products_

Ordered_Before_

 09012000

 8

To expand your understanding of joins with more than three tables, we will

illustrate a four-table join. Suppose you want to know the products being

purchased and who is purchasing them. The next example shows a four-way inner

join that combines data from the MANUFACTURERS, PRODUCTS, INVOICE, and

CUSTOMERS tables.

SQL Code

PROC SQL;

 SELECT products.prodname,

 products.prodtype,

 customers.custname,

 manufacturers.manuname

 FROM MANUFACTURERS,

 PRODUCTS,

 INVOICE,

 CUSTOMERS

 WHERE manufacturers.manunum = products.manunum AND

 manufacturers.manunum = invoice.manunum AND

 products.prodnum = invoice.prodnum AND

 invoice.custnum = customers.custnum;

QUIT;

 190

Results

 The SAS System

Product Name Product Type Customer Name Manufacturer Name

Analog Cell Phone Phone La Mesa Computer Land Global Comm Corp

Spreadsheet Software Software Vista Tech Center Incredible Software

Dream Machine Workstation Alpine Technical Center Cupid Computer

Database Software Software Jamul Hardware & Software KPL Enterprises

7.6 Outer Joins

As the previous examples in this chapter have shown, an inner join disregards

any rows where the search condition is not met. This differs significantly

from the way an outer join groups tables. In contrast with an inner join,
an outer join keeps rows that match the ON (search) condition, as well as

preserving some or all of the unmatched data from one or both of the tables.

Essentially, an outer join retains rows from one table even when they do not

match rows in the second table. This distinction is critical because this

is what truly differentiates an outer join from an inner join.

Next, an outer join is capable of processing a maximum of two tables at a

time, whereas (under the SAS implementation) an inner join is able to process

a maximum of 32 tables.

Another difference has to do with how you specify outer join syntax. The comma

used to designate or delimit one table from the other in the FROM clause of

inner joins is replaced with one of the following keywords: LEFT JOIN, RIGHT

JOIN, or FULL JOIN in outer joins Additionally, the WHERE clause expression

used to restrict what rows are kept in the result table is replaced with the

ON keyword.

Finally, an outer join is considered to be an asymmetric join (Lorie, Raymond

A. and Jean-Jacques Daudenarde, SQL & Its Applications, page 87). Unlike
inner joins, an outer join does not select rows proportionally from its parts

or tables.

7.6.1 Left Outer Joins

 191

Let’s look at how a left join is applied in a real-world situation. Suppose

you want to see a list of all manufacturers, their city locations,

manufacturer numbers, their product types, and product costs (if available)

without leaving out those manufacturers that do not have products yet. This

means that the MANUFACTURERS table (left table) acts as the master table

having its rows preserved while the PRODUCTS table (right table) acts as the

contributing table (subordinate table). The following left outer join

example effectively retains those matched rows from both tables as well as

those rows from the left table that have no match in the right table.

SQL Code

PROC SQL;

 SELECT manuname, manucity, manufacturers.manunum,

 products.prodtype, products.prodcost

 FROM MANUFACTURERS LEFT JOIN PRODUCTS [1]

 ON manufacturers.manunum = [2]

 products.manunum;

QUIT;

[1] The LEFT JOIN specification preserves all the rows in the left table
(MANUFACTURERS) even when there are no matching rows in the right table

(PRODUCTS).

[2] The ON clause acts as a WHERE clause to select the desired rows in the
join results.

As the results from the left outer join illustrate, the rows in the left

(MANUFACTURERS) table that match rows in the right (PRODUCTS) table are

included in the result table. As a result, eight rows match as evidenced by

the value assigned to product type and product cost. Additionally, two rows

from the left table that do not match rows in the right table (based on the

search condition) are also retained (bolded). Therefore, each row from the

MANUFACTURERS table that does not have a matching value in the PRODUCTS table

is added to the resulting virtual table, accompanied by null values in the

product type and product cost columns.

Results

 The SAS System

 Manufacturer Product

 Manufacturer Name Manufacturer City Number Product Type Cost

 192

__

 Cupid Computer Houston 111 Workstation $3,200.00

 Storage Devices Inc San Mate 120 Workstation $3,300.00

 Global Comm Corp San Diego 210 Phone $175.00

 Global Comm Corp San Diego 210 Phone $35.00

 KPL Enterprises San Diego 500 Software $299.00

 KPL Enterprises San Diego 500 Software $299.00

 KPL Enterprises San Diego 500 Software $299.00

 KPL Enterprises San Diego 500 Software $399.00

 World Internet Corp Miami 600 .

 San Diego PC Planet San Diego 700 .

7.6.1.1 Specifying a WHERE Clause

To provide greater subsetting capabilities as well as added flexibility, the

SQL procedure also permits the specification of an optional WHERE clause in

addition to an ON clause when constructing outer joins. The ability to specify

a WHERE clause in conjunction with an ON clause permits greater control over

the subsetting of rows. An example will help illustrate how a WHERE clause

is used in an outer join. Suppose you want to limit the results from the

previous left outer join to only those products costing less than $300. In

this example, the left outer join syntax uses a WHERE clause to subset row

results to nonmissing products that cost less than $300.

SQL Code

PROC SQL;

 SELECT manuname, manucity, manufacturers.manunum,

 products.prodtype, products.prodcost

 FROM MANUFACTURERS LEFT JOIN PRODUCTS

 ON manufacturers.manunum =

 products.manunum

 WHERE prodcost < 300 AND [1]

 prodcost NE .;

QUIT;

[1] The optional WHERE clause specified in addition to an ON clause in an outer
join further subsets the joined results.

Results

 The SAS System

 [2]

 193

 Manufacturer Product

Manufacturer Name Manufacturer City Number Product Type Cost

__

Global Comm Corp San Diego 210 Phone $175.00

Global Comm Corp San Diego 210 Phone $35.00

KPL Enterprises San Diego 500 Software $299.00

KPL Enterprises San Diego 500 Software $299.00

KPL Enterprises San Diego 500 Software $299.00

7.6.1.2 Specifying Aggregate Functions

Suppose you need to produce a monthly report consisting of a total invoice

amount by manufacturer. An aggregate function can be specified with outer

join syntax to perform a group computation using a GROUP BY clause. In the

next example, a left join computes the total invoice amount for each

manufacturer with a SUM function and GROUP BY clause.

SQL Code

PROC SQL;

 SELECT manuname,

 SUM(invoice.invprice) AS Total_Invoice_Amt [1]

 FORMAT=DOLLAR10.2

 FROM MANUFACTURERS LEFT JOIN INVOICE

 ON manufacturers.manunum =

 invoice.manunum

 GROUP BY MANUNAME; [2]

QUIT;

[1] The SUM function computes the total invoice amount for each manufacturer.
[2] The GROUP BY clause groups all rows associated with a manufacturer into

a single row.

The results show that manufacturers with no activity have a null or missing

value in the aggregated Total_Invoice_Amt column.

Results

 The SAS System

 [1]

 [2] Total_

Manufacturer Name Invoice_Amt

 194

Cupid Computer $9,600.00

Global Comm Corp $245.00

KPL Enterprises $25,789.00

San Diego PC Planet .

Storage Devices Inc .

World Internet Corp $1,598.00

7.6.2 Right Outer Joins

Right joins are similar to left joins, except the rows in the right (second)

table are preserved. Consequently, the results will contain the rows of the

symmetric join plus a row for each unmatched row in the right table. Nulls

are automatically substituted for values from the left table. Suppose you

want to see all manufacturers and their respective products. In the next

example, a simple report containing products, product type, manufacturer

number, and manufacturer name is produced from the PRODUCTS and MANUFACTURERS

tables using a right outer join construct.

SQL Code

PROC SQL;

 SELECT prodname, prodtype,

 products.manunum, manuname

 FROM PRODUCTS RIGHT JOIN MANUFACTURERS [1]

 ON products.manunum =

 manufacturers.manunum;

QUIT;

[1] The RIGHT JOIN specification preserves all the rows in the right table
(MANUFACTURERS) even when there are no matching rows in the left table

(PRODUCTS).

The results show that manufacturers appearing in the MANUFACTURERS table with

no products listed in the PRODUCTS table have null or missing values in the

Product Name, Product Type, and Manufacturer Number columns.

 Note To remove rows with missing values in the results, a WHERE clause could
be specified.

Results

 The SAS System

 195

 [1]

 Manufacturer Manufacturer

Product Name Product Type Number Name

Dream Machine Workstation 111 Cupid Computer

Business Machine Workstation 120 Storage Devices Inc

Digital Cell Phone Phone 210 Global Comm Corp

Analog Cell Phone Phone 210 Global Comm Corp

Spreadsheet Software Software 500 KPL Enterprises

Graphics Software Software 500 KPL Enterprises

Wordprocessor Software Software 500 KPL Enterprises

Database Software Software 500 KPL Enterprises

 . World Internet Corp

 . San Diego PC Planet

7.6.3 Full Outer Joins

Full outer joins combine the power of left and right joins by preserving rows

from both the left and right tables. Although a full join is not used as

frequently as left join or right join constructs, it can be useful when

information from both tables is missing. In the next example, a full outer

join is specified to produce a report containing manufacturers with no

products and products with no known manufacturers.

SQL Code

PROC SQL;

 SELECT prodname, prodtype,

 products.manunum, manuname

 FROM PRODUCTS FULL JOIN MANUFACTURERS [1]

 ON products.manunum =

 manufacturers.manunum;

QUIT;

[1] The full join specification preserves all the rows in the left table
(PRODUCTS) as well as all rows in the right table (MANUFACTURERS) even

when there are no matching rows.

Results

 The SAS System

 [1]

 196

 Manufacturer

Product Name Product Type Number Manufacturer Name

Dream Machine Workstation 111 Cupid Computer

Business Machine Workstation 120 Storage Devices Inc

Travel Laptop Laptop 170

Digital Cell Phone Phone 210 Global Comm Corp

Analog Cell Phone Phone 210 Global Comm Corp

Office Phone Phone 220

Spreadsheet Software Software 500 KPL Enterprises

Graphics Software Software 500 KPL Enterprises

Wordprocessor Software Software 500 KPL Enterprises

Database Software Software 500 KPL Enterprises

 . World Internet Corp

 . San Diego PC Planet

7.7 Subqueries

Now that we have seen how two or more tables can be combined in a join query,

we turn our attention to another type of complex query known as a subquery.

A subquery is a query expression that is nested within another query

expression. Its purpose is to have the inner query produce a single value

or multiple values that can then be passed into the outer query for processing.

You achieve this by embedding a SELECT statement inside a WHERE clause of

an outer query’s SELECT statement, INSERT statement, DELETE statement, or

HAVING clause.

 Note You should avoid nesting more than two subqueries deep because of the
conceptual and processing complexities this introduces.

The typical subquery consists of a (inner) query combined inside the

predicate of another (outer or main) query. When processed, the inner query

passes a Boolean value to the outer query consisting of either True if it
returns a minimum of one row or False if no rows are returned by the subquery.
The results of the inner query are stored in a temporary results table and

used as input to the main query. Our exploration of subqueries will involve

using them with comparison operators, the IN predicate, and the ANY and ALL

keywords, and will conclude with a look at a special type of subquery called

a correlated subquery.

 197

7.7.1 Alternate Approaches to Subqueries

A subquery is a very useful construct, especially when information from

multiple tables needs to be interrelated. Unfortunately, a subquery is not

always easy to construct and may even be more difficult to understand. So

before constructing every table relation with a subquery, consider your

options carefully.

When all the information is available in a single table, a simple query is

probably all that needs to be constructed. Suppose you want to produce a

report consisting of the invoice information for Global Comm Corp. Let’s

further assume you know the specific manufacturer number for Global Comm Corp

as well. Knowing this means that you don’t have to go into the MANUFACTURERS

table to find it. In the next example, a simple query is constructed to

retrieve all invoice information from the INVOICE table.

Simple Query

PROC SQL;

 SELECT *

 FROM INVOICE

 WHERE manunum = 210;

QUIT;

Results

 The SAS System

 Invoice

 Quantity

Invoice Manufacturer Customer - Units Invoice Unit Product

 Number Number Number Sold Price Number

__

 1003 210 101 7 $245.00 2101

But what if all the information is not in a single table? And what if the

manufacturer number for Global Comm Corp is not known? As shown earlier, a

join can be constructed just as easily as a subquery. Some users prefer joins

to subqueries because they can be easier to understand as well as maintain.

In fact, a join frequently performs better than a subquery. In the next

example, the manufacturer number for Global Comm Corp is not known.

 198

Consequently, a simple inner join is needed to retrieve all related rows from

the MANUFACTURERS and INVOICE tables for Global Comm Corp.

Simple Join

PROC SQL;

 SELECT M.manunum, M.manuname, I.invnum,

 I.invqty, I.invprice

 FROM MANUFACTURERS M, INVOICE I

 WHERE M.manunum = I.manunum AND

 M.manuname = 'Global Comm Corp';

QUIT;

Results

 The SAS System

 Invoice

 Quantity

Manufacturer Invoice - Units Invoice Unit

 Number Manufacturer Name Number Sold Price

__

 210 Global Comm Corp 1003 7 $245.00

7.7.2 Passing a Single Value with a Subquery

Now let’s see how a subquery could be constructed to provide the same results

as with the join. As before, suppose you want to pull all the invoices for

the manufacturer Global Comm Corp but only know the manufacturer name (or

at least part of the name), but not the manufacturer number (MANUNUM). The

following subquery uses an = (equal sign) in its outer query WHERE clause

to accomplish this.

Since the manufacturer number is not known, a subquery is constructed to first

search for it in the MANUFACTURERS table. Actually, the subquery approach

is more versatile than the previous query approach, because it does not

require a unique manufacturer number, which is often more difficult to

remember than names. It also enables quick searches even if the manufacturer

number changes for a given manufacturer.

 199

When the entire query is executed, SQL first evaluates the inner query (or

subquery) within the outer query’s WHERE clause. It executes the inner query

the same way as if it were a stand-alone query. It searches the MANUFACTURERS

table for any row where the manufacturer name equals the character string

Global Comm Corp and then pulls the MANUNUM values for this row. SQL then

substitutes the derived MANUNUM value of 210 from the inner query inside the

predicate of the main query (outer query). As a result of this substitution,

the SQL query looks identical to the query mentioned previously.

SQL Code

PROC SQL;

 SELECT invnum, INVOICE.manunum, custnum, invqty, invprice,

 prodnum

 FROM INVOICE

 WHERE manunum =

 (SELECT manunum [1]

 FROM MANUFACTURERS

 WHERE manuname = 'Global Comm Corp');

 WHERE INVOICE.manunum=MANUFACTURERS.manunum;

QUIT;

Result of Inner Query

PROC SQL;

 SELECT *

 FROM INVOICE

 WHERE manunum = 210; [2]

QUIT;

[1] PROC SQL evaluates the inner query within the outer query’s WHERE clause

to search for the manufacturer number for manufacturer Global Comm Corp.

[2] The resulting query after substituting the derived manufacturer number
value from the inner query evaluates to a single value and is then executed

as the main (outer) query.

Results

 The SAS System

 Invoice

 [2] Quantity Invoice

Invoice Manufacturer Customer - Units Total Product

 200

 Number Number Number Sold Price Number

 1003 210 101 7 $245.00 2101

Let’s look at another subquery. Suppose you want to retrieve the invoice

from the INVOICE table for the manufacturer that manufactures the Dream

Machine workstation. The following subquery (inner query) extracts the

product number (PRODNUM) associated with the Dream Machine and passes the

single value to the outer query for processing.

SQL Code

PROC SQL;

 SELECT invnum, manunum, custnum, invqty, invprice,

 INVOICE.prodnum

 FROM INVOICE

 (SELECT prodnum [1]

 FROM PRODUCTS

 WHERE prodname LIKE 'Dream%')

 WHERE INVOICE.prodnum=PRODUCTS.prodnum;

QUIT;

Result of Inner Query

PROC SQL;

 SELECT *

 FROM INVOICE

 WHERE prodnum = 1110; [2]

 QUIT;

[1] PROC SQL evaluates the inner query within the outer query’s WHERE clause

to search for the product number for the product Dream Machine.

[2] The resulting inner query after substituting the derived product number
value evaluates to a single value and is then executed as the main (outer)

query.

Results

 The SAS System

 Invoice

 Quantity [2]

Invoice Manufacturer Customer - Units Invoice Unit Product

 201

 Number Number Number Sold Price Number

__

 1004 111 501 3 $9,600.00 1110

It is fortunate that our subquery in the previous example passed only one

row or value to the main (outer) query. Had it returned more than one value

from the PRODUCTS table, it would have made it impossible for the SQL to

evaluate the condition as true or false and would have produced an error in

the outer query. Let’s look at another example where more than one value

is returned by the subquery.

In the next example, more than one row is returned by the inner query making

it impossible for the main query to evaluate as true or false. As a result,

an error is produced and the subquery does not execute. In general, it is

best to avoid using the = (equal sign) and other comparison operators (<,

>, <=, >=, and <>) in a subquery expression, unless you know in advance that

the result of the subquery is a table with a single row of data (although

it may not always be possible to know this beforehand). In a later section

(“Passing More Than One Row with a Subquery”), you will see this problem

alleviated by using the IN predicate.

SQL Code

PROC SQL;

 SELECT *

 FROM INVOICE

 WHERE manunum =

 (SELECT manunum

 FROM MANUFACTURERS

 WHERE UPCASE(manucity) LIKE 'SAN DIEGO%');

QUIT;

SAS Log Result

 PROC SQL;

 SELECT *

 FROM INVOICE

 WHERE manunum =

 (SELECT manunum

 FROM MANUFACTURERS

 WHERE UPCASE(manucity) LIKE 'SAN DIEGO%');

ERROR: Subquery evaluated to more than one row.

 202

 QUIT;

NOTE: The SAS System stopped processing this step because of errors.

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

Let’s look at another subquery example that uses the comparison operator

< (less than). A summary function specified in an inner query forces a single

row to result. In the next example, the subquery uses the AVG summary

(aggregate) function to determine which products (based on their invoice

quantities) were purchased in lower quantities than the average product

purchase.

SQL Code

PROC SQL;

 SELECT prodnum, invnum, invqty, invprice

 FROM INVOICE

 WHERE invqty <

 (SELECT AVG(invqty) [1]

 FROM INVOICE);

QUIT;

Result of Inner Query

PROC SQL;

 SELECT prodnum, invnum, invqty, invprice

 FROM INVOICE

 WHERE invqty < 4.285714; [2]

QUIT;

[1] PROC SQL evaluates the inner query within the outer query’s WHERE clause

to produce an average invoice quantity.

[2] The resulting inner query passes the derived average invoice quantity of
4.285714 as a single value to the main (outer) query for execution.

Results

 The SAS System

 [2]

 Invoice

 Quantity

Product Invoice - Units Invoice Unit

 203

 Number Number Sold Price

__

 6001 1002 2 $1,598.00

 1110 1004 3 $9,600.00

 5002 1005 2 $798.00

 6000 1006 4 $396.00

7.7.3 Passing More Than One Row with a Subquery

To prevent the problem associated with passing more than one value to the

main (outer) query, you can specify the IN predicate in a subquery. Similar

to the IN operator in the DATA step, the IN predicate permits the SQL procedure

to pass multiple row values from the (inner) subquery to the main (outer)

query without producing an error.

 Note PROC SQL does not permit a subquery to select more than one column. The
next example shows how multiple row values are passed from the subquery

to the main (outer) query using the IN predicate for San Diego

manufacturers.

SQL Code

PROC SQL;

 SELECT *

 FROM INVOICE

 WHERE manunum IN [1]

 (SELECT manunum

 FROM MANUFACTURERS

 WHERE UPCASE(manucity) LIKE 'SAN DIEGO%'); [2]

QUIT;

Result of Inner Query

PROC SQL;

 SELECT prodnum, invnum, invqty, invprice

 FROM INVOICE

 WHERE manunum IN (210, 500, 700); [3]

QUIT;

[1] PROC SQL’s IN predicate is specified in the outer query to process a list

of values that are passed from the inner query.

 204

[2] PROC SQL evaluates the inner query within the outer query’s WHERE clause

to produce a list of manufacturer numbers for San Diego manufacturers.

[3] The resulting inner query passes multiple row values to the main (outer)
query for execution.

Result

 The SAS System

 Invoice

 [3] Quantity Invoice

Invoice Manufacturer Customer - Units Total Product

 Number Number Number Sold Price Number

 1001 500 201 5 $1,495.00 5001

 1003 210 101 7 $245.00 2101

 1005 500 801 2 $798.00 5002

 1006 500 901 4 $396.00 6000

 1007 500 401 7 $23,100.00 1200

7.7.4 Comparing a Set of Values

A subquery can have multiple values returned for a single column to the outer

query. But there are special keywords that permit comparison operators to

be used in subqueries to process multiple values. The special keywords ANY

and ALL can be used to compare a set of values returned by a subquery. Let’s

see how these keywords work.

Suppose you want to view the products whose inventory quantity is greater

than or equal to the lowest average inventory quantity. The following example

illustrates a subquery with the ANY keyword specified in the WHERE clause
of the main query expression. When ANY is specified, the entire WHERE clause
is true if the subquery returns at least one value.

SQL Code

PROC SQL;

 SELECT manunum, prodnum, invqty, invprice

 FROM INVOICE

 WHERE invprice GE ANY [1]

 (SELECT invprice

 205

 FROM INVOICE

 WHERE prodnum IN (5001,5002)); [2]

QUIT;

Result of Inner Query

PROC SQL;

 SELECT manunum, prodnum, invqty, invprice

 FROM INVOICE

 WHERE invprice > ANY ($1,495.,$798.); [3]

QUIT;

[1] PROC SQL retrieves any invoices from the outer query where the invoice
price is greater than or equal to the row values passed from the inner

query.

[2] The WHERE clause of the inner query retrieves any invoice prices for
product numbers 5001 and 5002 and passes them to the outer query.

[3] The resulting inner query passes multiple row values to the main (outer)
query for execution.

Results

 The SAS System

 Invoice

 Quantity

Manufacturer Product - Units Invoice Unit

 Number Number Sold Price

 500 5001 5 $1,495.00

 600 6001 2 $1,598.00

 111 1110 3 $9,600.00

 500 5002 2 $798.00

 500 1200 7 $23,100.00

The ALL keyword works very differently from the ANY keyword. When you specify

ALL before a subquery expression, the subquery is true only if the comparison

is true for values returned by the subquery. For example, suppose you want

to view the products whose inventory quantity is less than the average

inventory quantity.

SQL Code

 206

PROC SQL;

 SELECT manunum, prodnum, invqty, invprice

 FROM INVOICE

 WHERE invprice < ALL [1]

 (SELECT invprice

 FROM INVOICE

 WHERE prodnum IN (5001,5002)); [2]

QUIT;

Result of Inner Query

PROC SQL;

 SELECT manunum, prodnum, invqty, invprice

 FROM INVOICE

 WHERE invprice < ALL ($1,495.,$798.); [3]

QUIT;

[1] PROC SQL retrieves all invoices from the outer query where the invoice
price is less than the row values passed from the inner query.

[2] The WHERE clause of the inner query retrieves all invoice prices for
product numbers 5001 and 5002 and passes them to the outer query.

[3] The resulting inner query passes multiple row values to the main (outer)
query for execution.

Results

 The SAS System

 Invoice

 Quantity

Manufacturer Product - Units Invoice Unit

 Number Number Sold Price

__

 210 2101 7 $245.00

 500 6000 4 $396.00

7.7.5 Correlated Subqueries

In the subquery examples shown so far, the subquery (inner query) operates

independently from the main (outer) query. Essentially the subquery’s

results are evaluated and used as input to the main (outer) query. Although

 207

this is a common way subqueries execute, it is not the only way. SQL also

permits a subquery to accept one or more values from its outer query. Once

the subquery executes, the results are then passed to the outer query.

Subqueries of this variety are called correlated subqueries. The ability to
construct subqueries in this manner provides a powerful extension to SQL.

The difference between the subqueries discussed earlier and correlated

subqueries is in the way the WHERE clause is constructed. Correlated

subqueries relate a column in the subquery with a column in the outer query

to determine the rows that match or in certain cases don’t match the

expression. Suppose, for example, that we want to view products in the

PRODUCTS table that do not appear in the INVOICE table. One way to do this

is to construct a correlated subquery.

In the next example, the subquery compares the product number column in the

PRODUCTS table with the product number column in the INVOICE table. If at

least one match is found (the product appears in both the PRODUCTS and INVOICE

tables) then the resulting table from the subquery will not be empty, and

the NOT EXISTS condition will be false. However, if no matches are found,

then the subquery returns an empty table resulting in the NOT EXISTS condition

being true, causing the product number, product name, and product type of

the current row in the main (outer) query to be selected.

SQL Code

PROC SQL;

 SELECT prodnum, prodname, prodtype

 FROM PRODUCTS

 WHERE NOT EXISTS [1]

 (SELECT *

 FROM INVOICE

 WHERE PRODUCTS.prodnum = INVOICE.prodnum); [2]

QUIT;

[1] The (inner) subquery receives its value(s) from the main (outer) query.
With the value(s), the subquery runs and passes the results back to the

main query where the WHERE clause and the NOT EXISTS condition are

processed.

[2] The inner query selects matching product and invoice information and
passes it to the outer query.

Results

 208

 The SAS System

 Product

 Number Product Name Product Type

 __

 1700 Travel Laptop Laptop

 2102 Digital Cell Phone Phone

 2200 Office Phone Phone

 5003 Wordprocessor Software Software

 5004 Graphics Software Software

Correlated subqueries are useful for placing restrictions on the results of

an entire query with a HAVING clause (or, when combined with a GROUP BY clause,

of an entire group). Suppose you want to know which manufacturers have more

than one invoiced product.

In the next example, the subquery compares the manufacturer number in the

PRODUCTS table with the manufacturer number in the INVOICE table. A HAVING

clause and a COUNT function are specified to select all manufacturers with

two or more invoices. Because an aggregate (summary) function is used in an

optional HAVING clause, a GROUP BY clause is not needed to select the

manufacturers with two or more invoices. An EXISTS condition is specified

in the outer query’s WHERE clause to capture only those manufacturers

matching the subquery.

SQL Code

PROC SQL;

 SELECT prodnum, prodname, prodtype

 FROM PRODUCTS

 WHERE EXISTS [1]

 (SELECT *

 FROM INVOICE

 WHERE PRODUCTS.manunum = INVOICE.manunum

 HAVING COUNT(*) > 1); [2]

QUIT;

[1] The (inner) subquery receives its value(s) from the main (outer) query.
With the value(s), the subquery runs and passes the results back to the

main query where the WHERE clause and the EXISTS condition are processed.

[2] The inner query specifies a HAVING clause in order to subset manufacturers

 209

with two or more invoices.

Results

 The SAS System

 Product

 Number Product Name Product Type

__

 5001 Spreadsheet Software Software

 5002 Database Software Software

 5003 Wordprocessor Software Software

 5004 Graphics Software Software

7.8 Set Operations

Now that we have seen how tables are combined with join queries and subqueries,

we turn our attention to another type of complex query. The SQL procedure

provides users with several table operators: INTERSECT, UNION, OUTER UNION,

and EXCEPT, commonly referred to as set operators. In contrast to joins and

subqueries where query results are combined horizontally, the purpose of each

set operator is to combine or concatenate query results vertically.

7.8.1 Accessing Rows from the Intersection of Two Queries

The INTERSECT operator creates query results consisting of all the unique

rows from the intersection of the two queries. Put another way, the

intersection of two queries (A and B) is represented by C, indicating that

the rows that are produced occur in both A and in B. As the following figure

shows, the intersection of both queries is represented in the shaded area

(C).

 210

Figure 7.1: Intersection of Two Queries

To see all products that cost less than $300.00 and product types classified

as “phone”, you could construct a simple query with a WHERE clause or

specify the intersection of two separate queries. The next example

illustrates a simple query that specifies a WHERE clause to display phones

that cost less than $300.

SQL Code

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE prodcost < 300.00 AND

 prodtype = 'Phone';

 QUIT;

Results

 The SAS System

 Product Manufacturer Product

 Number Product Name Number Product Type Cost

__

 2101 Analog Cell Phone 210 Phone $35.00

 2102 Digital Cell Phone 210 Phone $175.00

 2200 Office Phone 220 Phone $130.00

The INTERSECT approach can be constructed to produce the same results as in

the previous example. The INTERSECT process assumes that the tables in each

query are structurally identical to each other. It overlays the columns from

both queries based on position in the SELECT statement. Should you attempt

to intersect two queries with different table structures, the process may

 211

fail due to differing column types, or the produced results may contain data

integrity issues.

The most significant distinction between the two approaches, and one that

may affect large table processing, is that the first query example (using

the AND operator) takes less time to process: 0.05 seconds versus 0.17 seconds

for the second approach (using the INTERSECT operator). The next example

shows how the INTERSECT operator achieves the same result less efficiently.

SQL Code

PROC SQL;

 SELECT * [1]

 FROM PRODUCTS

 WHERE prodcost < 300.00

 INTERSECT [2]

 SELECT * [1]

 FROM PRODUCTS

 WHERE prodtype = "Phone";

QUIT;

[1] It is assumed that the tables in both queries are structurally identical
because the wildcard character “*” is specified in the SELECT statement.

[2] The INTERSECT operator produces rows common to both queries.

Results

 The SAS System

Product Manufacturer Product

 Number Product Name Number Product Type Cost

 2101 Analog Cell Phone 210 Phone $35.00

 2102 Digital Cell Phone 210 Phone $175.00

 2200 Office Phone 220 Phone $130.00

7.8.2 Accessing Rows from the Combination of Two Queries

The UNION operator preserves all the unique rows from the combination of

queries. The result is the same as if an OR operator is used to combine the

 212

results of each query. Put another way, the union of two queries (A and B)

represents rows in A or in B or in both A and B. As illustrated in the figure

below, the union represents the entire shaded area (A, B, and C).

Figure 7.2: Union of Two Queries

UNION automatically eliminates duplicate rows from the results, unless the

ALL keyword is specified as part of the UNION operator. The column names

assigned to the results are derived from the names in the first query.

In order for the union of two or more queries to be successful, each query

must specify the same number of columns of the same or compatible types. Type

compatibility means that column attributes are defined the same way. Because

column names and attributes are derived from the first table, data types must

be of the same type. The data types of the result columns are derived from

the source table(s).

To see all products that cost less than $300.00 or products classified as

a workstation, you have a choice between using OR as in the following query

or UNION as in the next. As illustrated in the output from both queries, the

results are identical no matter which query is used.

SQL Code

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE prodcost < 300.00 OR

 prodtype = "Workstation";

 QUIT;

Results

 213

 The SAS System

 Product Manufacturer Product

 Number Product Name Number Product Type Cost

__

 1110 Dream Machine 111 Workstation $3,200.00

 1200 Business Machine 120 Workstation $3,300.00

 2101 Analog Cell Phone 210 Phone $35.00

 2102 Digital Cell Phone 210 Phone $175.00

 2200 Office Phone 220 Phone $130.00

 5001 Spreadsheet Software 500 Software $299.00

 5003 Wordprocessor Software 500 Software $299.00

 5004 Graphics Software 500 Software $299.00

In the next example, the UNION operator is specified to combine the results

of both queries.

SQL Code

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE prodcost < 300.00

 UNION [1]

 SELECT *

 FROM PRODUCTS

 WHERE prodtype = 'Workstation';

QUIT;

[1] The UNION operator combines the results of two queries.

Results

 The SAS System

 Product Manufacturer Product

 Number Product Name Number Product Type Cost

 1110 Dream Machine 111 Workstation $3,200.00

 1200 Business Machine 120 Workstation $3,300.00

 2101 Analog Cell Phone 210 Phone $35.00

 2102 Digital Cell Phone 210 Phone $175.00

 214

 2200 Office Phone 220 Phone $130.00

 5001 Spreadsheet Software 500 Software $299.00

 5003 Wordprocessor Software 500 Software $299.00

 5004 Graphics Software 500 Software $299.00

7.8.3 Concatenating Rows from Two Queries

The OUTER UNION operator concatenates the results of two queries. As with

a DATA step or PROC APPEND concatenation the results consist of rows combined

vertically. Put another way, the outer union of two queries (A and B)

represents all rows in both A and B with no overlap. As illustrated below,

the outer union represents the entire shaded area (A and B).

Figure 7.3: Outer Union of Two Queries

The next example concatenates the results of two queries. As illustrated in

the output, the results show the rows from both queries are concatenated.

SQL Code

PROC SQL;

 SELECT prodnum, prodname, prodtype, prodcost

 FROM PRODUCTS

 OUTER UNION [1]

 SELECT prodnum, prodname, prodtype, prodcost

 FROM PRODUCTS;

QUIT;

 215

[1] The OUTER UNION operator concatenates the results of both queries.

Results

 The SAS System

 Product Product

Product Type Cost Product Type Cost

Workstation $3,200.00 .

Workstation $3,300.00 .

Laptop $3,400.00 .

Phone $35.00 .

Phone $175.00 .

Phone $130.00 .

Software $299.00 .

Software $399.00 .

Software $299.00 .

Software $299.00 .

 . Workstation $3,200.00

 . Workstation $3,300.00

 . Laptop $3,400.00

 . Phone $35.00

 . Phone $175.00

 . Phone $130.00

 . Software $299.00

 . Software $399.00

 . Software $299.00

 . Software $299.00

The OUTER UNION operator automatically concatenates rows from two queries

with no overlap, unless the CORRESPONDING (CORR) keyword is specified as part

of the operator. The column names assigned to the results are derived from

the names in the first query. In the next example, the CORR keyword enables

columns with the same name and attributes to be overlaid.

SQL Code

PROC SQL;

 SELECT prodnum, prodname, prodtype, prodcost

 FROM PRODUCTS

 216

 OUTER UNION CORR [1]

 SELECT prodnum, prodname, prodtype, prodcost

 FROM PRODUCTS;

QUIT;

[1] The OUTER UNION operator with the CORR keyword concatenates and overlays
the results of both queries.

Results

 The SAS System

Product Product

 Number Product Name Product Type Cost

 1110 Dream Machine Workstation $3,200.00

 1200 Business Machine Workstation $3,300.00

 1700 Travel Laptop Laptop $3,400.00

 2101 Analog Cell Phone Phone $35.00

 2102 Digital Cell Phone Phone $175.00

 2200 Office Phone Phone $130.00

 5001 Spreadsheet Software Software $299.00

 5002 Database Software Software $399.00

 5003 Wordprocessor Software Software $299.00

 5004 Graphics Software Software $299.00

 1110 Dream Machine Workstation $3,200.00

 1200 Business Machine Workstation $3,300.00

 1700 Travel Laptop Laptop $3,400.00

 2101 Analog Cell Phone Phone $35.00

 2102 Digital Cell Phone Phone $175.00

 2200 Office Phone Phone $130.00

 5001 Spreadsheet Software Software $299.00

 5002 Database Software Software $399.00

 5003 Wordprocessor Software Software $299.00

 5004 Graphics Software Software $299.00

7.8.4 Comparing Rows from Two Queries

The EXCEPT operator compares rows from two queries to determine the changes

made to the first table that are not present in the second table. The result

 217

below shows new and changed rows in the first table that are not in the second

table, but not rows that have been deleted from the second table. As

illustrated in figure 7-4, the results of specifying the EXCEPT operator

represent the shaded area (A) in the diagram.

Figure 7.4: Compare Two Tables to Determine Additions and Changes

When working with two tables consisting of similar information, you can use

the EXCEPT operator to determine new and modified rows. The EXCEPT operator

compares rows in both tables to identify the rows existing in the first table

but not in the second table. It also uniquely identifies rows that have

changed from the first to the second tables. Columns are compared in the order

they appear in the SELECT statement. If the wildcard character “*” is

specified in the SELECT statement, it is assumed that the tables are

structurally identical to one another. Let’s look at an example.

Suppose you have master and backup tables of the CUSTOMERS file, and you want

to compare them to determine the new and changed rows. The EXCEPT operator

as illustrated in the next example returns all new or changed rows from the

CUSTOMERS table that do not appear in the CUSTOMERS_BACKUP table. As

illustrated by the output, three new customer rows are added to the CUSTOMERS

table that had not previously existed in the CUSTOMERS_BACKUP table.

SQL Code

PROC SQL;

 SELECT *

 FROM CUSTOMERS

 EXCEPT [1]

 SELECT *

 FROM CUSTOMERS_BACKUP;

 218

QUIT;

[1] The EXCEPT operator compares rows in both tables to identify the rows
existing in the first table but not the second table.

Results

 The SAS System

Customer

 Number Customer Name Customer's Home City

 1302 Software Intelligence Cor Spring Valley

 1901 Shipp Consulting San Pedro

 1902 Gupta Programming Simi Valley

7.9 Summary

1. When one or more relationships or connections between disparate pieces

of data are needed, the PROC SQL join construct is used (see section

7.3.1).

2. You use a join to relate one table with another through a process known

as column matching (see section 7.3.2).

3. You can assign table aliases to tables to minimize the number of

keystrokes when referencing a table in a join query (see section

7.5.4).

4. When a query is placed inside the predicate of another query, it is

called a subquery. Put another way, a subquery is a SELECT statement

that is embedded in the WHERE clause of another SELECT statement (see

section 7.7).

5. The IN predicate permits PROC SQL to pass multiple values from the

subquery to the main query without producing an error (see section

7.7.3).

6. A subquery can also be constructed to evaluate multiple times, once

for each row of data accessed by the main (outer) query (see section

7.7.4).

7. The INTERSECT operator creates an output table consisting of all the

unique rows from the intersection of two query expressions (see section

7.8.1).

8. The UNION operator creates an output table consisting of all the unique

rows from the combination of query expressions (see section 7.8.2).

 219

Chapter 8: Working with Views

8.1 Introduction

In previous chapters, the examples assumed that each table had a physical

existence, that is, the data stored in each table occupied storage space.

In this chapter we turn our attention to a different type of table structure

that has no real physical existence. This structure, known as a virtual table

or view, offers users and programmers an incredible amount of flexibility

and control. This makes views an ideal way to look at data from a variety

of perspectives and according to different users’ needs. Unlike tables,

views store no data and have only a “virtual” existence. You will learn

how to create, access, and delete views as you examine the many examples in

this chapter.

8.2 Views — Windows to Your Data

Views are one of the more powerful features available in the SQL procedure.

They are commonly referred to as “virtual tables” to distinguish them from

base tables. The simple difference is that views are not tables, but files

consisting of executable instructions. As a query, a view appears to behave

as a table with one striking difference — it does not store any data. When

referenced, a view produces results just like a table does. So how does a

view get its data? Views access data from one or more underlying tables (base

tables) or other views, provide you with your own personal access to data,

and can be used in DATA steps as well as by SAS procedures.

Views offer improved control, manageability, and security in dynamic

environments where data duplication or data redundancy, logic complexities,

and data security are an issue. When used properly, views enable improved

change control by providing enhanced data accessibility, hiding certain

columns from unauthorized users, while enabling improved maintainability.

Data references are coded one time and, once a view is tested, can be

conveniently stored in common and shareable libraries making them accessible

for all to use. Views ensure that the most current input data is accessed

and prevent the need for replicating partial or complete copies of the input

data. As a means of shielding users from complex logic constructs, views can

 220

be designed to look as though a database were designed specifically for a

single user as well as for a group of users, each with differing needs.

Views are also beneficial when queries or subqueries are repeated a number

of times throughout an application. In these situations the addition of a

view enables a change to be made only once, improving a your productivity

through a reduction in time and resources. The creation of view libraries

should be considered so users throughout an organization have an easily

accessible array of productivity routines as they would a macro.

8.2.1 What Views Aren’t

Views are not tables, but file constructs containing compiled code that

access one or more underlying tables. Because views do not physically store

data, they are referred to as “virtual” tables. Unlike tables, views do

not physically contain or store rows of data. Views, however, do have a

physical presence and take up space. Storage demands for views are minimal

because the only portion saved is the SELECT statement or query itself. Tables,

on the other hand, store one or more rows of data and their attributes within

their structure.

Views are created with the CREATE VIEW statement while tables are created

with the CREATE TABLE statement. Because you use one or more underlying tables

to create a virtual (derived) table, views provide you with a powerful method

for accessing data sources.

Although views have many unique and powerful features, they also have

pitfalls. First, views generally take longer to process than tables. Each

time a view is referenced, the current underlying table or tables are accessed

and processed. Because a view is not physically materialized until it is

accessed, higher utilization costs are typically involved, particularly for

larger views. Next, views cannot create indexes on the underlying base tables.

This can make it more difficult to optimize views.

8.2.2 Types of Views

Views can be designed to achieve a number of objectives:

• Referencing a single table

• Producing summary data across a row

 221

• Concealing sensitive information

• Creating updatable views

• Grouping data based on summary functions or a HAVING clause

• Using set operators

• Combining two or more tables in join operations

• Nesting one view within another

As a way of distinguishing the various types of views, Joe Celko introduced

a classification system based on the type of SELECT statement used (see SQL
for Smarties: Advanced SQL Programming).

To help you understand the different view types, this chapter describes and

illustrates view construction as well as how they can be used. A view can

also have the characteristics of one or more view types, thereby being

classified as a hybrid. A hybrid view, for example, could be designed to

reference two or more tables, perform updates, and contain complex

computations. The table below presents the different view types along with

a brief description of their purpose.

A Description of the Various View Types

Types of Views Description

Single-table

view

a single-table view references a single underlying (base)

table. It is the most common type of view. Selected columns

and rows can be displayed or hidden depending on need.

Calculated

column views

a calculated column view provides summary data across a row.

Read-only view a read-only view prevents data from being updated (as opposed

to updatable views) and is used to display data only. This

also serves security purposes for the concealment of

sensitive information.

Updatable view an updatable view adds (inserts), modifies, or deletes rows

of data.

Grouped view a grouped view uses query expressions based on a query with

a GROUP BY clause.

Set operation

view

a set operation view includes the union of two tables, the

removal of duplicate rows, the concatenation of results, and

the comparison of query results.

Joined view a joined view is based on the joining of two or more base

tables. This type of view is often used in table-lookup

 222

A Description of the Various View Types

Types of Views Description

operations to expand (or translate) coded data into text.

Nested view a nested view is based on one view being dependent on another

view such as with subqueries.

Hybrid view an integration of one or more view types for the purpose of

handling more complex tasks.

8.2.3 Creating Views

You use the CREATE VIEW statement in the SQL procedure to create a view. When

the SQL processor sees the words CREATE VIEW, it expects to find a name

assigned to the newly created view. The SELECT statement defines the names

assigned to the view’s columns as well as their order.

Views are often constructed so that the order of the columns is different

from the base table. In the next example, a view is created with the columns

appearing in a different order from the original MANUFACTURERS base table.

The view’s SELECT statement does not execute during this step because its

only purpose is to define the view in the CREATE VIEW statement.

SQL Code

PROC SQL;

 CREATE VIEW MANUFACTURERS_VIEW AS

 SELECT manuname, manunum, manucity, manustat

 FROM MANUFACTURERS;

QUIT;

SAS Log Results

 PROC SQL;

 CREATE VIEW MANUFACTURERS_VIEW AS

 SELECT manuname, manunum, manucity, manustat

 FROM MANUFACTURERS;

NOTE: SQL view WORK.MANUFACTURERS_VIEW has been defined.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.44 seconds

 223

When you create a view, you can create columns that are not present in the

base table from which you built your view. That is, you can create columns

that are the result of an operation (addition, subtraction, multiplication,

etc.) on one or more columns in the base tables. You can also build a view

using one or more unmodified columns of one or more base tables. Columns

created this way are referred to as derived columns or calculated columns.

In the next example, say we want to create a view consisting of the product

name, inventory quantity, and inventory cost from the INVENTORY base table

and a derived column of average product costs stored in inventory.

SQL Code

PROC SQL;

 CREATE VIEW INVENTORY_VIEW AS

 SELECT prodnum, invenqty, invencst,

 invencst/invenqty AS AverageAmount

 FROM INVENTORY;

QUIT;

SAS Log Results

 PROC SQL;

 CREATE VIEW INVENTORY_VIEW AS

 SELECT prodnum, invenqty, invencst,

 invencst/invenqty AS AverageAmount

 FROM INVENTORY;

NOTE: SQL view WORK.INVENTORY_VIEW has been defined.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

8.2.4 Displaying a View’s Contents

You would expect the CONTENTS procedure to display information about the

physical characteristics of a SAS data library and its tables. But what you

may not know is that the CONTENTS procedure can also be used to display

information about a view. The output generated from the CONTENTS procedure

shows that the view contains no rows (observations) by displaying a missing

value in the Observations field and a member type of View. The engine used

is the SQLVIEW. The following example illustrates the use of the CONTENTS

 224

procedure in the Windows environment to display the INVENTORY_VIEW view’s

contents.

SQL Code

PROC CONTENTS DATA=INVENTORY_VIEW;

RUN;

SAS Output Results

 The SAS System

 The CONTENTS Procedure

Data Set Name WORK.INVENTORY_VIEW Observations .

Member Type VIEW Variables 4

Engine SQLVIEW Indexes 0

Created Wednesday, August 18, 2004 Observation Length 32

Last Modified Wednesday, August 18, 2004 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation Default

Encoding Default

 -----Alphabetic List of Variables and Attributes-----

Variable Type Len Flags Format Label

4 AverageAmount Num 8 P--

3 invencst Num 6 -C- DOLLAR10.2 Inventory Cost

2 invenqty Num 3 -C- Inventory Quantity

1 prodnum Num 3 --- Product Number

8.2.5 Describing View Definitions

Because views consist of partially compiled executable statements,

ordinarily you will not be able to read the code in a view definition. However,

the SQL procedure provides a statement to inspect the contents of the

executable instructions (stored query expression) contained within a view

definition. Without this capability, a view’s underlying instructions (PROC

 225

SQL code) would forever remain a mystery and would make the ability to modify

or customize the query expressions next to impossible. Whether your job is

to maintain or customize a view, the DESCRIBE VIEW statement is the way you

review the statements that make up a view. Let’s look at how a view definition

is described.

The next example shows the DESCRIBE VIEW statement being used to display the

INVENTORY_VIEW view’s instructions. It should be noted that results are

displayed in the SAS log, not in the Output window.

SQL Code

PROC SQL;

 DESCRIBE VIEW INVENTORY_VIEW;

QUIT;

SAS Log Results

 PROC SQL;

 DESCRIBE VIEW INVENTORY_VIEW;

NOTE: SQL view WORK.INVENTORY_VIEW is defined as:

 select prodnum, invenqty, invencst,

 invencst/invenqty as CostQty_Ratio

 from INVENTORY;

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.05 seconds

8.2.6 Creating and Using Views in the SAS System

Views are accessed the same way as tables. The SQL procedure permits views

to be used in SELECT queries, subsets, joins, other views, and DATA and PROC

steps. Views can reference other views (as will be seen in more detail in

a later section), but the referenced views must ultimately reference one or

more existing base tables.

The only thing that cannot be done is to create a view from a table or view

that does not already exist. When this is attempted, an error message is

written in the SAS log indicating that the view is being referenced

recursively. An error occurs because the view being referenced directly (or

indirectly) by it cannot be located or opened successfully. The next example

 226

shows the error that occurs when a view called NO_CAN_DO_VIEW is created from

a non-existing view by the same name in a SELECT statement FROM clause.

SQL Code

PROC SQL;

 CREATE VIEW NO_CAN_DO_VIEW AS

 SELECT *

 FROM NO_CAN_DO_VIEW;

 SELECT *

 FROM NO_CAN_DO_VIEW;

QUIT;

SAS Log Results

 PROC SQL;

 CREATE VIEW NO_CAN_DO_VIEW AS

 SELECT *

 FROM NO_CAN_DO_VIEW;

NOTE: SQL view WORK.NO_CAN_DO_VIEW has been defined.

 SELECT *

 FROM NO_CAN_DO_VIEW;

ERROR: The SQL View WORK.NO_CAN_DO_VIEW is referenced recursively.

 QUIT;

NOTE: The SAS System stopped processing this step because of errors.

NOTE: PROCEDURE SQL used (Total process time):

 real time 0.00 seconds

 cpu time 0.01 seconds

8.2.7 Views and SAS Procedures

In most cases but not all, views can be used just as input SAS data sets to

the universe of available SAS procedures. In the first example, the

INVENTORY_VIEW view is used as input to the MEANS procedure to produce simple

univariate descriptive statistics for numeric variables. Accessing the

INVENTORY_VIEW view is different from accessing the INVENTORY table because

the view’s internal compiled executable statements are processed providing

current data from the underlying table to the view itself. The view statements

and the statements and options from the MEANS procedure determine what

information is produced.

 227

The next example uses the INVENTORY_VIEW view as input to the MEANS procedure

to produce simple univariate descriptive statistics for numeric variables.

Accessing the INVENTORY_VIEW view is different from accessing the INVENTORY

table because the view derives and provides current data from the underlying

table to the view itself. The view statements and the statements and options

from the MEANS procedure determine what information is produced.

SAS Code

PROC MEANS DATA=INVENTORY_VIEW;

 TITLE1 'Inventory Statistical Report';

 TITLE2 'Demonstration of a View used in PROC MEANS';

RUN;

SAS Log Results

 PROC MEANS DATA=INVENTORY_VIEW;

 TITLE1 'Inventory Statistical Report';

 TITLE2 'Demonstration of a View used in PROC MEANS';

 RUN;

NOTE: There were 7 observations read from the dataset WORK.INVENTORY.

NOTE: There were 7 observations read from the dataset

 WORK.INVENTORY_VIEW.

NOTE: PROCEDURE MEANS used:

 real time 0.32 seconds

Results

 Inventory Statistical Report

 Demonstration of a View used in PROC MEANS

 The MEANS Procedure

Variable Label N Mean Std Dev Minimum

__

prodnum Product Number 7 3974.43 1763.50 1110.00

invenqty Inventory Quantity 7 10.0000000 7.5055535 2.0000000

invencst Inventory Cost 7 11357.14 17866.72 900.0000000

AverageAmount 7 917.1428571 1121.71 70.0000000

__

 Variable Label Maximum

 228

 prodnum Product Number 5004.00

 invenqty Inventory Quantity 20.0000000

 invencst Inventory Cost 45000.00

 AverageAmount 2800.00

The next example uses the INVENTORY_VIEW view as input to the PRINT procedure

to produce a detailed listing of the values contained in the underlying base

table.

 Note It is worth noting that, as with all procedures, all procedure options
and statements are available by views.

SAS Code

PROC PRINT DATA=INVENTORY_VIEW N NOOBS UNIFORM;

 TITLE1 'Inventory Detail Listing';

 TITLE2 'Demonstration of a View used in PROC PRINT';

 format AverageAmount dollar10.2;

RUN;

SAS Log Results

 PROC PRINT DATA=INVENTORY_VIEW N NOOBS UNIFORM;

 TITLE1 'Inventory Detail Listing';

 TITLE2 'Demonstration of a View used in a Procedure';

 format AverageAmount dollar10.2;

 RUN;

NOTE: There were 7 observations read from the dataset WORK.INVENTORY.

NOTE: There were 7 observations read from the dataset

 WORK.INVENTORY_VIEW.

NOTE: PROCEDURE PRINT used:

 real time 0.04 seconds

Results

 Inventory Detail Listing

 Demonstration of a View used in PROC PRINT

 Average

prodnum invenqty invencst Amount

 229

 1110 20 $45,000.00 $2,250.00

 1700 10 $28,000.00 $2,800.00

 5001 5 $1,000.00 $200.00

 5002 3 $900.00 $300.00

 5003 10 $2,000.00 $200.00

 5004 20 $1,400.00 $70.00

 5001 2 $1,200.00 $600.00

 N = 7

8.2.8 Views and DATA Steps

As we have already seen, views can be used as input to SAS procedures as if

they were data sets. You will now see that views are a versatile component

that can be used in a DATA step as well. This gives you a controlled way of

using views to access tables of data in custom report programs. The next

example uses the INVENTORY_VIEW view as input to the DATA step as if it were

a SAS base table. Notice that the KEEP= data set option reads only two of

the variables from the INVENTORY_VIEW view.

SAS Code

DATA _NULL_;

 SET INVENTORY_VIEW (KEEP=PRODNUM AVERAGEAMOUNT);

 FILE PRINT HEADER=H1;

 PUT @10 PRODNUM

 @30 AVERAGEAMOUNT DOLLAR10.2;

RETURN;

H1: PUT @9 'Using a View in a DATA Step'

 /// @5 'Product Number'

 @26 'Average Amount';

RETURN;

RUN;

SAS Log Results

 DATA _NULL_;

 SET INVENTORY_VIEW (KEEP=PRODNUM AVERAGEAMOUNT);

 FILE PRINT HEADER=H1;

 PUT @10 PRODNUM

 230

 @30 AVERAGEAMOUNT DOLLAR10.2;

 RETURN;

 H1: PUT @9 'Using a View in a DATA Step'

 /// @5 'Product Number'

 @26 'Average Amount';

 RETURN;

 RUN;

NOTE: 11 lines were written to file PRINT.

NOTE: There were 7 observations read from the dataset WORK.INVENTORY.

NOTE: There were 7 observations read from the dataset

 WORK.INVENTORY_VIEW.

NOTE: DATA statement used:

 real time 0.00 seconds

Output

 Using a View in a DATA Step

Product Number Average Amount

 1110 $2,250.00

 1700 $2,800.00

 5001 $200.00

 5002 $300.00

 5003 $200.00

 5004 $70.00

 5001 $600.00

8.3 Eliminating Redundancy

Data redundancy commonly occurs when two or more users want to see the same

data in different ways. To prevent redundancy, organizations should create

and maintain a master database environment rather than propagate one or more

subsets of data among its users communities. The latter approach creates an

environment that is not only problematic for the organization but for its

users and customers.

Views provide a way to eliminate or, at least, reduce the degree of data

redundancy. Rather than having the same data exist in multiple forms, views

create a virtual and shareable database environment for all. Problems related

 231

to accessing and reporting outdated information, as well as table and program

change control, are eliminated.

8.4 Restricting Data Access — Security

As data security issues grow increasingly important for organizations around

the globe, views offer a powerful alternative in controlling or restricting

access to sensitive information. Views, like tables, can prevent

unauthorized users from accessing sensitive portions of data. This is

important because security breeches pose great risks not only to an

organization’s data resources but to the customer as well.

Views can be constructed to show a view of data different from what physically

exists in the underlying base tables. Specific columns can be shown while

others are hidden. This helps prevent sensitive information such as salary,

medical, or credit card data from getting into the wrong hands. Or a view

can contain a WHERE clause with any degree of complexity to restrict what

rows appear for a group of users while hiding other rows. In the next example,

a view called SOFTWARE_PRODUCTS_VIEW is created that displays all columns

from the original table except the product cost (PRODCOST) column and

restricts all rows except “Software” from the PRODUCTS table.

SQL Code

PROC SQL;

 CREATE VIEW SOFTWARE_PRODUCTS_VIEW AS

 SELECT prodnum, prodname, manunum, prodtype

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) IN ('SOFTWARE');

QUIT;

SAS Log Results

 PROC SQL;

 CREATE VIEW SOFTWARE_PRODUCTS_VIEW AS

 SELECT prodnum, prodname, manunum, prodtype

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) IN ('SOFTWARE');

NOTE: SQL view WORK.SOFTWARE_PRODUCTS_VIEW has been defined.

 QUIT;

NOTE: PROCEDURE SQL used:

 232

 real time 0.17 seconds

The SOFTWARE_PRODUCTS_VIEW view functions just as if it were a base table,

although it contains no rows of data. All other columns with the exception

of product cost (PRODCOST) are inherited from the selected columns in the

PRODUCTS table. A view determines what columns and rows are processed from

the underlying table and, optionally, the SELECT query referencing the view

can provide additional criteria during processing. In the next example, the

view SOFTWARE_PRODUCTS_VIEW is referenced in a SELECT query and arranged in

ascending order by product name (PRODNAME).

SQL Code

PROC SQL;

 SELECT *

 FROM SOFTWARE_PRODUCTS_VIEW

 ORDER BY prodname;

QUIT;

Results

 The SAS System

 Product Manufacturer

 Number Product Name Number Product Type

__

 5002 Database Software 500 Software

 5004 Graphics Software 500 Software

 5001 Spreadsheet Software 500 Software

 5003 Wordprocessor Software 500 Software

8.5 Hiding Logic Complexities

Because complex logic constructs such as multi-way table joins, subqueries,

or hard-to-understand data relationships may be beyond the skill of other

stuff in your area, you may want to build or customize views so that others

can access the information easily. The next example illustrates how a complex

query containing a two-way join is constructed and saved as a view to simplify

its use by other users.

 233

SQL Code

PROC SQL;

 CREATE VIEW PROD_MANF_VIEW AS

 SELECT DISTINCT SUM(prodcost) FORMAT=DOLLAR10.2,

 M.manunum,

 M.manuname

 FROM PRODUCTS AS P, MANUFACTURERS AS M

 WHERE P.manunum = M.manunum AND

 M.manuname = 'KPL Enterprises';

QUIT;

SAS Log Results

 PROC SQL;

 CREATE VIEW PROD_MANF_VIEW AS

 SELECT DISTINCT SUM(prodcost) FORMAT=DOLLAR10.2,

 M.manunum,

 M.manuname

 FROM PRODUCTS AS P, MANUFACTURERS AS M

 WHERE P.manunum = M.manunum AND

 M.manuname = 'KPL Enterprises';

NOTE: SQL view WORK.PROD_MANF_VIEW has been defined.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

In the next example, the PROD_MANF_VIEW is simply referenced in a SELECT query.

Because the view’s SELECT statement references the product cost (PRODCOST)

column with a summary function but does not contain a GROUP BY clause, the

note "The query requires remerging summary statistics back with the original

data." appears in the SAS log below. This situation causes the sum to be

calculated and then remerged with each row in the tables being processed.

SQL Code

PROC SQL;

 SELECT *

 FROM PROD_MANF_VIEW;

QUIT;

SAS Log Results

 234

 PROC SQL;

 SELECT *

 FROM PROD_MANF_VIEW;

NOTE: The query requires remerging summary statistics back with the

original data.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.05 seconds

Results

 The SAS System

 Manufacturer

 Number Manufacturer Name

 $1,296.00 500 KPL Enterprises

8.6 Nesting Views

An important feature of views is that they can be based on other views. This

is called nesting. One view can access data that comes through another view.

In fact there isn’t a limit to the number of view layers that can be defined.

Because of this, views can be a very convenient and flexible way for

programmers to retrieve information. Although the number of views that can

be nested is virtually unlimited, programmers should use care to avoid

nesting views too deeply. Performance- and maintenance-related issues can

result, especially if the views are built many layers deep.

To see how views can be based on other views, two views will be created —

one referencing the PRODUCTS table and the other referencing the INVOICE

table. In the first example, WORKSTATION_PRODUCTS_VIEW includes only

products related to workstations and excludes the manufacturer number. When

accessed from the SAS Windowing environment, the view produces the results

displayed below.

SQL Code

PROC SQL;

 235

 CREATE VIEW WORKSTATION_PRODUCTS_VIEW AS

 SELECT PRODNUM, PRODNAME, PRODTYPE, PRODCOST

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE)="WORKSTATION";

QUIT;

Results

In the next example, INVOICE_1K_VIEW includes rows where the invoice price

is $1,000.00 or greater and excludes the manufacturer number. When accessed

from the SAS Windowing environment, the view renders the results displayed

below.

SQL Code

PROC SQL;

 CREATE VIEW INVOICE_1K_VIEW AS

 SELECT INVNUM, CUSTNUM, PRODNUM, INVQTY, INVPRICE

 FROM INVOICE

 WHERE INVPRICE >= 1000.00;

QUIT;

Results

The next example illustrates creating a view from the join of the

WORKSTATION_PRODUCTS_VIEW and INVOICE_1K_VIEW views. The resulting view is

nested two layers deep. When accessed from the SAS Windowing environment,

the view renders the results displayed below.

SQL Code

PROC SQL;

 236

 CREATE VIEW JOINED_VIEW AS

 SELECT V1.PRODNUM, V1.PRODNAME,

 V2.CUSTNUM, V2.INVQTY, V2.INVPRICE

 FROM WORKSTATION_PRODUCTS_VIEW V1,

 INVOICE_1K_VIEW V2

 WHERE V1.PRODNUM = V2.PRODNUM;

QUIT;

Results

In the next example, a third layer of view is nested to the previous view

in order to find the largest invoice amount. In the next example, a view is

constructed to find the largest invoice amount using the MAX summary function

to compute the product of the invoice price (INVPRICE) and invoice quantity

(INVQTY) from the JOINED_VIEW view.

When accessed from the SAS Windowing environment, the view produces the

results displayed below.

SQL Code

PROC SQL;

 CREATE VIEW LARGEST_AMOUNT_VIEW AS

 SELECT MAX(INVPRICE*INVQTY) AS Maximum_Price

 FORMAT=DOLLAR12.2

 LABEL="Largest Invoice Amount"

 FROM JOINED_VIEW;

QUIT;

Results

8.7 Updatable Views

 237

Once a view has been created from a physical table, it can then be used to

modify the view’s data of a single underlying table. Essentially when a view

is updated the changes pass through the view to the underlying base table.

A view designed in this manner is called an updatable view and can have INSERT,

UPDATE, and DELETE operations performed into the single table from which

it’s constructed.

Because views are dependent on getting their data from a base table and have

no physical existence of their own, you should exercise care when

constructing an updatable view. Although useful in modifying the rows in a

table, updatable views do have a few limitations that programmers and users

should be aware of.

First, an updatable view can only have a single base table associated with

it. This means that the underlying table cannot be used in a join operation

or with any set operators. Because an updatable view has each of its rows

associated with just a single row in an underlying table, any operations

involving two or more tables will produce an error and result in update

operations not being performed.

An updatable view cannot contain a subquery. A subquery is a complex query

consisting of a SELECT statement contained inside another statement. This

violates the rules for updatable views and is not allowed.

An updatable view can update a column using a view’s column alias, but cannot

contain the DISTINCT keyword, have any aggregate (summary) functions,

calculated columns, or derived columns associated with it. Because these

columns are produced by an expression, they are not allowed.

Finally, an updatable view can contain a WHERE clause but not other clauses

such as ORDER BY, GROUP BY, or HAVING.

In the remaining sections, three types of updatable views will be examined:

• views that insert one or more rows of data,

• views that update existing rows of data, and

• views that delete one or more rows of data from a single underlying

table.

8.7.1 Inserting New Rows of Data

 238

You can add or insert new rows of data in a view using the INSERT INTO statement.

Suppose we have a view consisting of only software products called

SOFTWARE_PRODUCTS_VIEW. The PROC SQL code used to create this view consists

of a SELECT statement with a WHERE clause. There are four defined columns:

product name, product number, product type, and product cost, in that order.

When accessed from the SAS Windowing environment, the view produces the

results displayed below.

SQL Code

PROC SQL;

 CREATE VIEW SOFTWARE_PRODUCTS_VIEW AS

 SELECT prodnum, prodname, prodtype, prodcost

 FORMAT=DOLLAR8.2

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) IN ('SOFTWARE');

QUIT;

Results

Suppose you want to add a new row of data to this view. This can be accomplished

by specifying the corresponding values in a VALUES clause as follows.

SQL Code

PROC SQL;

 INSERT INTO SOFTWARE_PRODUCTS_VIEW

 VALUES(6002,'Security Software','Software',375.00);

QUIT;

As seen from the view results, the INSERT INTO statement added the new row

of data corresponding to the WHERE logic in the view. The view contains the

new row and consists of the value 6002 in product number, “Security

Software” in product name, “Software” in product type, and $375.00 in

product cost, as shown.

View Results

 239

As depicted in the table results, the new row of data was added to the PRODUCTS

table using the view called SOFTWARE_PRODUCTS_VIEW. The new row in the

PRODUCTS table contains the value 6002 in product number, “Security

Software” in product name, “Software” in product type, and $375.00 in

product cost. The manufacturer number column is assigned a null value

(missing value), as shown.

Table Results

Now let’s see what happens when a row of data is added through a view that

does not meet the condition(s) in the WHERE clause in the view. Suppose we

want to add a row of data containing the value 1701 for product number,

“Travel Laptop SE” in product name, “Laptop” in product type, and

$4200.00 in product cost in the SOFTWARE_PRODUCTS_VIEW view.

SQL Code

PROC SQL;

 INSERT INTO SOFTWARE_PRODUCTS_VIEW

 VALUES(1701,'Travel Laptop SE','Laptop',4200.00);

QUIT;

Because the new row’s value for product type is “Laptop”, this value

violates the WHERE clause condition when the view SOFTWARE_PRODUCTS_VIEW was

created. As a result, the new row of data is rejected and is not added to

the table PRODUCTS. The SQL procedure also prevents the new row from appearing

in the view because the base table controls what the view contains.

The updatable view does exactly what it is designed to do — that is, validate

each new row of data as each row is added to the base table. Whenever the

 240

WHERE clause condition is violated the view automatically rejects the row

as invalid and restores the table to its pre-updated state by rejecting the

row in error and deleting all successful inserts before the error occurred.

In our example, we see the following error message was issued to the SAS log

to confirm that the view was restored to its original state before the update

took place.

SAS Log Results

 PROC SQL;

 INSERT INTO PRODUCTS_VIEW

 VALUES(1701,'Travel Laptop SE','Laptop',4200.00);

ERROR: The new values do not satisfy the view's where expression. This update

or add is not allowed.

NOTE: This insert failed while attempting to add data from VALUES clause 1 to

the dataset.

NOTE: Deleting the successful inserts before error noted above to restore table

to a consistent state.

 QUIT;

NOTE: The SAS System stopped processing this step because of errors.

NOTE: PROCEDURE SQL used:

 real time 0.04 seconds

Views will not accept new rows added to a base table when the number of columns

in the VALUES clause does not match the number of columns defined in the view,

unless the columns that are being inserted are specified. In the next example,

a partial list of columns for a row of data is inserted with a VALUES clause.

Because the inserted row of data does not contain a value for product cost,

the new row will not be added to the PRODUCTS table. The resulting error

message indicates that the VALUES clause has fewer columns specified than

exist in the view itself, as shown in the SAS log below.

SQL Code

PROC SQL;

 INSERT INTO SOFTWARE_PRODUCTS_VIEW

 VALUES(6003,'Cleanup Software','Software');

QUIT;

SAS Log Results

 PROC SQL;

 241

 INSERT INTO SOFTWARE_PRODUCTS_VIEW

 VALUES(6003,'Cleanup Software','Software');

ERROR: VALUES clause 1 attempts to insert fewer columns than specified after

the INSERT table name.

 QUIT;

NOTE: The SAS System stopped processing this step because of errors.

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

Suppose a view called SOFTWARE_PRODUCTS_TAX_VIEW was created with the sole

purpose of deriving each software product’s sales tax amount as follows.

SQL Code

PROC SQL;

 CREATE VIEW SOFTWARE_PRODUCTS_TAX_VIEW AS

 SELECT prodnum, prodname, prodtype, prodcost,

 prodcost * .07 AS Tax

 FORMAT=DOLLAR8.2 LABEL='Sales Tax'

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) IN ('SOFTWARE');

QUIT;

In the next example, an attempt is made to add a new row through the

SOFTWARE_PRODUCTS_TAX_VIEW view by inserting a VALUES clause with all

columns defined. The row is rejected and an error produced because an update

was attempted against a view that contains a computed (calculated) column.

Although the VALUES clause contains values for all columns defined in the

view, the reason the row is not inserted into the PRODUCTS table is due to

the reference to a computed (or derived) column TAX (Sales Tax) as shown in

the SAS log results.

SQL Code

PROC SQL;

 INSERT INTO SOFTWARE_PRODUCTS_TAX_VIEW

 VALUES(6003,'Cleanup Software','Software',375.00,26.25);

QUIT;

SAS Log Results

 PROC SQL;

 242

 INSERT INTO SOFTWARE_PRODUCTS_TAX_VIEW

 VALUES(6003,'Cleanup Software','Software',375.00,26.25);

WARNING: Cannot provide Tax with a value because it references a derived column

that can't be inserted into.

 QUIT;

NOTE: The SAS System stopped processing this step because of errors.

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

8.7.2 Updating Existing Rows of Data

The SQL procedure permits rows to be updated through a view. The data

manipulation language statement that is specified to modify existing data

in PROC SQL is the UPDATE statement. Suppose a view were created to select

only laptops from the PRODUCTS table. The SQL procedure code used to create

the view is called LAPTOP_PRODUCTS_VIEW and consists of a SELECT statement

with a WHERE clause. There are four defined columns: product name, product

number, product type, and product cost, in that specific order. When accessed,

the view produces the results displayed below.

SQL Code

PROC SQL;

 CREATE VIEW LAPTOP_PRODUCTS_VIEW AS

 SELECT PRODNUM, PRODNAME, PRODTYPE, PRODCOST

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) = 'LAPTOP';

QUIT;

Results

In the next example, all laptops are to be discounted by twenty percent and

the new price is to take effect immediately. The changes applied through the

LAPTOP_PRODUCTS_VIEW view computes the discounted product cost for

“Laptop” computers in the PRODUCTS table using an UPDATE statement with

corresponding SET clause.

SQL Code

 243

PROC SQL;

 UPDATE LAPTOP_PRODUCTS_VIEW

 SET PRODCOST = PRODCOST – (PRODCOST * 0.2);

QUIT;

SAS Log Results

 PROC SQL;

 UPDATE LAPTOP_DISCOUNT_VIEW

 SET PRODCOST = PRODCOST - (PRODCOST * 0.2);

NOTE: 1 row was updated in WORK.LAPTOP_DISCOUNT_VIEW.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.04 seconds

Results

Sometimes updates applied through a view can change the rows of data in the

base table so that once the update is performed the rows in the base table

no longer meet the criteria in the view. When this occurs, the changed rows

of data cannot be displayed by the view. Essentially the updated rows matching

the conditions in the WHERE clause no longer match the conditions in the

view’s WHERE clause after the updates are made. As a result, the view updates

the rows with the specified changes but is no longer able to display the rows

of data that were changed.

Suppose a view were created to select laptops costing more than $2,800 from

the PRODUCTS table. The SQL procedure code used to create the view called

LAPTOP_DISCOUNT_VIEW consists of a SELECT statement with a WHERE clause.

There are four defined columns: product name, product number, product type,

and product cost, in that order. When accessed, the view produces the results

displayed below.

SQL Code

PROC SQL;

 CREATE VIEW LAPTOP_DISCOUNT_VIEW AS

 SELECT PRODNUM, PRODNAME, PRODTYPE, PRODCOST

 FROM PRODUCTS

 244

 WHERE UPCASE(PRODTYPE) = 'LAPTOP' AND

 PRODCOST > 2800.00;

QUIT;

Results

The next example illustrates how updates are applied through a view in the

Windows environment so the rows in the table no longer meet the view’s

criteria. Suppose a twenty percent discount is applied to all laptops. An

UPDATE statement and SET clause are specified to allow the rows in the

Products table to be updated through the view. Once the update is performed

and the view is accessed, a dialog box appears indicating that no rows are

available to display because the data from the PRODUCTS table no longer meets

the view’s WHERE clause expression.

SQL Code

PROC SQL;

 UPDATE LAPTOP_DISCOUNT_VIEW

 SET PRODCOST = PRODCOST – (PRODCOST * 0.2);

QUIT;

SAS Log Results

 PROC SQL;

 UPDATE LAPTOP_DISCOUNT_VIEW

 SET PRODCOST = PRODCOST - (PRODCOST * 0.2);

NOTE: 1 row was updated in WORK.LAPTOP_DISCOUNT_VIEW.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.06 seconds

Results

 245

8.7.3 Deleting Rows of Data

Now that you have seen how updatable views can add or modify one or more rows

of data, you may have a pretty good idea how to create an updatable view that

deletes one or more rows of data. Consider the following updatable view that

deletes manufacturers whose manufacturer number is 600 from the underlying

PRODUCTS table.

SQL Code

PROC SQL;

 DELETE FROM SOFTWARE_PRODUCTS_VIEW

 WHERE MANUNUM=600;

QUIT;

SAS Log Results

 PROC SQL;

 DELETE FROM SOFTWARE_PRODUCTS_VIEW

 WHERE MANUNUM=600;

NOTE: 2 rows were deleted from WORK.SOFTWARE_PRODUCTS_VIEW.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.04 seconds

8.8 Deleting Views

When a view is no longer needed, it’s nice to know there is a way to remove

it. Without this ability, program maintenance activities would be made more

difficult. To remove an unwanted view, specify the DROP VIEW statement and

the name of the view. In the next example, the INVENTORY_VIEW view is deleted

from the WORK library.

 246

SQL Code

PROC SQL;

 DROP VIEW INVENTORY_VIEW;

QUIT;

SAS Log

 PROC SQL;

 DROP VIEW INVENTORY_VIEW;

NOTE: View WORK.INVENTORY_VIEW has been dropped.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.10 seconds

When more than a single view needs to be deleted, the DROP VIEW statement

works equally as well. Specify a comma between each view name when deleting

two or more views.

SQL Code

PROC SQL;

 DROP VIEW INVENTORY_VIEW, LAPTOP_PRODUCTS_VIEW;

QUIT;

SAS Log

 PROC SQL;

 DROP VIEW INVENTORY_VIEW, LAPTOP_PRODUCTS_VIEW;

NOTE: View WORK.INVENTORY_VIEW has been dropped.

NOTE: View WORK.LAPTOP_PRODUCTS_VIEW has been dropped.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.00 seconds

8.9 Summary

1. Views are not tables and consequently do not store data (see section

8.2).

2. Views access one or more underlying tables (base tables) or other views

(see section 8.2).

 247

3. Views improve the change control process when constructed as a

“common” set of routines (see section 8.2).

4. Views eliminate or reduce data redundancy (see section 8.3).

5. Views hide unwanted or sensitive information while displaying specific

columns and/or rows (see section 8.4).

6. Views shield users from making logic and/or data errors (see section

8.5).

7. Nesting views too deeply can produce unnecessary confusion and

maintenance difficulties (see section 8.6).

8. Updatable views add, modify, or delete rows of data (see section 8.7).

9. Views can be deleted when no longer needed (see section 8.8).

Chapter 9: Troubleshooting and

Debugging

9.1 Introduction

When it comes to tracking down the source of SQL coding problems, users can

be very resourceful. To find all those pesky errors, warnings, notes, and

unexpected results, you need to carefully inspect the SAS log and telltale

clues from code reviews and sample runs. Using reliable troubleshooting and

debugging techniques will help get to the root of any syntax, data,

system-related, and logic errors that are or could be problematic to the

successful execution of a PROC SQL program.

This chapter introduces a number of strategies and techniques for

troubleshooting and debugging SQL procedure coding problems. The guidelines

presented in this chapter will help you learn about the different types of

bugs, the steps involved in troubleshooting problems, the types of errors

that can crop up, and the options and statements that are available in the

SQL procedure to troubleshoot and debug problems.

9.2 The World of Bugs

Ever since the birth of the software industry, software problems (often

referred to as bugs) have been created by programmers (and users) of all skill

 248

levels in virtually every conceivable form. A bug is something the software

or a program does that it is not supposed to do. When the software encounters

a bug, it can cause the software to cease to operate or misbehave.

Bugs come in all forms, shapes, and sizes. A problem that occurs while you’re

using the SQL procedure incorrectly and directly violating the rules of the

language is referred to as a usage error. The severity of these types of errors

depends on the nature of the violation as well as the effect on the user.

Generally speaking though, a usage error results in a syntax error and the

stoppage of the program or step.

Other types of bugs can be problematic too. Bugs such as resource problems,

data dependencies, and implementation errors can cause a program step to stop,

or produce unreliable results, displaying errors or warnings in the SAS log.

9.3 The Debugging Process

The debugging process consists of a number of recommended steps to correct

an identified problem and verify that it does not reappear. The objective

is to identify, classify, fix, and verify a problem in a PROC SQL step, program,

or application as quickly and easily as possible. Not every problem requires

the application of each step recommended in this chapter. Rather, you can

pick and choose from the suggestions to effectively correct problems and make

sure they do not reappear. Adhering to a methodical and effective debugging

process increases the likelihood that problems are identified and fixed

correctly, thereby expediting and improving the way you handle problems.

To further explore this topic see Effective Methods for Software Testing by
William Perry (John Wiley & Sons, Inc., 1995) and The Science of Debugging
by Matt Telles and Yuan Hsieh (The Coriolis Group, 2001).

The debugging process consists of five steps.

Debugging Process Steps and Tasks

Debugging Step Task Description

Problem

Identification

1. Determine if a bug exists in the code.

2. Determine what the problem is by playing

detective.

3. Describe why the problem is a bug.

4. Determine what the code should do.

 249

Debugging Process Steps and Tasks

Debugging Step Task Description

5. Determine what the code is doing.

Information

Collection

1. Collect user comments and feedback.

2. Collect personal observations and symptoms.

3. Review SAS log information.

4. Collect test case(s) highlighting the problem.

5. Capture environmental information (for example,

system settings, operating environment,

external elements, etc.).

Problem Assessment &

Classification

1. Develop a theory about what caused the problem.

2. Review the code.

3. Classify the problem into one of the following

categories:

o Requirements problem

o Syntax error

o CPU problem

o Memory problem

o Storage problem

o I/O problem

o Logic problem

Problem Resolution 1. Propose a solution.

2. Describe why the solution will fix the problem.

3. Verify that the solution will not cause

additional problems.

4. Fix the problem by implementing the solution.

1. Verify whether the problem still exists.

2. Verify whether the problem can be recreated or

reproduced.

3. Determine whether other methods can cause the

same problem to occur.

4. Verify that the solution does not cause other

problems.

Validate Solution

 250

9.4 Types of Problems

The leading causes of SQL programming problems include misusing the language

syntax; referencing data, especially column data, incorrectly; ignoring or

incorrectly specifying system parameters, and constructing syntactically

correct but illogical code that does not produce results as expected.

Usage errors can cause the SAS System to stop processing, produce warnings,

or produce unexpected results. The following table illustrates the four types

of usage errors and briefly describes each.

Types of Usage Errors

Problem Description

Syntax Syntax problems are a result of one or more violations of the

SQL procedure language constructs. These problems can

prevent a program from processing until you make the required

changes. For example, a variable that is referenced in a

SELECT statement but not found in the referenced table causes

the program to stop.

Data Data problems are a result of an inconsistency between the

data and the program specification. These problems can

prevent a program from processing, but may allow processing

to continue resulting in the assignment of missing,

incomplete, or unreliable data. For example, missing values

may be generated in a column when incorrectly referencing

character data as numeric data.

System-related System-related problems frequently result from specifying

incompatible system options or choosing the wrong system

option values. These problems can prevent a program from

processing, but most frequently permit processing to occur

with unsatisfactory results. For example, forgetting to

specify a title statement has little effect on the production

of output but may force the program to be rerun after the

addition of one or more titles.

Logic Logic problems are frequently the result of not specifying

a coding condition correctly. For example, specifying an OR

condition when an AND condition was needed may produce wrong

results without any warnings, errors, or notes.

 251

Other sources of problems can creep into a program for a variety of reasons.

The following table illustrates these other problem sources and briefly

describes each.

Other Types of Errors

Problem Description

Feature Creep Additional features can creep into a program or application

during the design, implementation, or testing phases. This

can create a greater likelihood of problems.

Solution

Complexity

More complex or esoteric solutions can also translate into

problems. Difficult-to-maintain programs can result.

Requirements Requirements may be inadequately stated, misunderstood, or

omitted. In these situations, programs may not meet the needs

of the user community and be classified as bugs.

Testing

Environment

Inadequate testing environments, poor test plans, or

insufficient test time often lead to bug-filled programs. In

these situations, bugs can slip through the testing phase and

into the production environment.

9.5 Troubleshooting and Debugging Techniques

PROC SQL provides numerous troubleshooting and debugging capabilities for

the practitioner to choose from. From statements to options to macro

variables, you can use the various techniques to control the process of

finding and gathering information about SQL procedure coding problems

quickly and easily.

9.5.1 Validating Queries with the VALIDATE Statement

The SQL procedure syntax checker identifies syntax errors before any data

is processed. Syntax checking is automatically turned on in the SQL procedure

without any statements or options being specified. But to enable syntax

checking without automatically executing a step, you can specify a VALIDATE

statement at the beginning of a SELECT statement or, as will be presented

later, specify the NOEXEC option.

The VALIDATE statement is available for SAS users to control what SELECT

statement is checked. Because you specify it before a SELECT statement, you

 252

are better able to control the process of debugging code. A message indicating

syntax correctness is automatically displayed in the SAS log when code syntax

is valid. Otherwise, an error message is displayed identifying the coding

violation. In the next example, a VALIDATE statement is specified at the

beginning of a SELECT statement to enable syntax checking without code

execution. The SAS log shows that the code contains valid syntax and

automatically displays a message to that effect.

SQL Code

PROC SQL;

 VALIDATE

 SELECT *

 FROM PRODUCTS

 WHERE PRODTYPE = 'Software';

QUIT;

SAS Log Results

PROC SQL;

 VALIDATE

 SELECT *

 FROM PRODUCTS

 WHERE PRODTYPE = 'Software';

NOTE: PROC SQL statement has valid syntax.

QUIT;

9.5.2 Documented PROC SQL Options and Statement

This section shows several examples of widely used, documented SQL options

and the RESET statement. A description along with a working example of each

option and statement is presented below.

9.5.2.1 FEEDBACK Option

The FEEDBACK option displays additional documentation with SELECT queries.

When specified, this option expands a SELECT * (wildcard) statement into a

list of columns that it represents by displaying the names of each column

in the underlying table(s) as well as any resolved macro values and macro

variables. The column display order of a SELECT * statement is determined

by the order defined in the table’s record descriptor.

 253

The following example illustrates the FEEDBACK option. Because a SELECT *

statement does not automatically display the columns it represents, it may

be important to expand the individual column names by specifying the FEEDBACK

option. This becomes particularly useful for determining whether a desired

column is present in the output and available for documentation purposes.

The results of the expanded list of columns are displayed in the SAS log.

SQL Code

PROC SQL FEEDBACK;

 SELECT *

 FROM PRODUCTS;

QUIT;

SAS Log Results

PROC SQL FEEDBACK;

 SELECT *

 FROM PRODUCTS;

NOTE: Statement transforms to:

 select PRODUCTS.prodnum, PRODUCTS.prodname, PRODUCTS.manunum,

 PRODUCTS.prodtype, PRODUCTS.prodcost

 from WORK.PRODUCTS;

QUIT;

The FEEDBACK option can be particularly helpful in determining the column

order when joining two or more tables. The next example illustrates the

expansion of the columns in the SELECT * statement in a two-way equijoin.

The FEEDBACK option displays all the columns in both tables.

SQL Code

PROC SQL FEEDBACK;

 SELECT *

 FROM PRODUCTS, MANUFACTURERS

 WHERE PRODUCTS.MANUNUM = MANUFACTURERS.MANUNUM AND

 MANUFACTURERS.MANUNAME = 'KPL Enterprises';

QUIT;

SAS Log Results

 254

PROC SQL FEEDBACK;

 SELECT *

 FROM PRODUCTS, MANUFACTURERS

 WHERE PRODUCTS.MANUNUM = MANUFACTURERS.MANUNUM AND

 MANUFACTURERS.MANUNAME = 'KPL Enterprises';

NOTE: Statement transforms to:

 select PRODUCTS.prodnum, PRODUCTS.prodname, PRODUCTS.manunum,

 PRODUCTS.prodtype, PRODUCTS.prodcost, MANUFACTURERS.manunum,

 MANUFACTURERS.manuname, MANUFACTURERS.manucity,

 MANUFACTURERS.manustat

 from PRODUCTS, MANUFACTURERS

 where (PRODUCTS.manunum=MANUFACTURERS.manunum) and

 (MANUFACTURERS.manuname='KPL Enterprises');

QUIT;

The FEEDBACK option can also be used to display macro value and macro variable

resolution. The next example shows the macro resolution of the macro

variables &LIB, &TABLE, and &GROUPBY for debugging purposes.

SQL Code

%MACRO DUPS(LIB, TABLE, GROUPBY);

 PROC SQL FEEDBACK;

 SELECT &GROUPBY, COUNT(*) AS Duplicate_Rows

 FROM &LIB..&TABLE

 GROUP BY &GROUPBY

 HAVING COUNT(*) > 1;

 QUIT;

%MEND DUPS;

%DUPS(WORK,PRODUCTS,PRODTYPE);

SAS Log Results

%MACRO DUPS(LIB, TABLE, GROUPBY);

 PROC SQL FEEDBACK;

 SELECT &GROUPBY, COUNT(*) AS Duplicate_Rows

 FROM &LIB..&TABLE

 GROUP BY &GROUPBY

 255

 HAVING COUNT(*) > 1;

 QUIT;

%MEND DUPS;

%DUPS(WORK,PRODUCTS,PRODTYPE);

NOTE: Statement transforms to:

 select PRODUCTS.prodtype, COUNT(*) as Duplicate_Rows

 from WORK.PRODUCTS

 group by PRODUCTS.prodtype

 having COUNT(*)>1;

You can also specify a %PUT statement instead of the FEEDBACK option to

display the values of macro variables after macro resolution. The next

example illustrates inserting the macro statement %PUT LIB = &LIB TABLE =

&TABLE GROUPBY = &GROUPBY between the QUIT and %MEND statements to produce

the results illustrated below.

SQL Code

%MACRO DUPS(LIB, TABLE, GROUPBY);

 PROC SQL;

 SELECT &GROUPBY, COUNT(*) AS Duplicate_Rows

 FROM &LIB..&TABLE

 GROUP BY &GROUPBY

 HAVING COUNT(*) > 1;

 QUIT;

 %PUT LIB = &LIB TABLE = &TABLE GROUPBY = &GROUPBY;

%MEND DUPS;

%DUPS(WORK,PRODUCTS,PRODTYPE);

SAS Log Results

 %MACRO DUPS(LIB, TABLE, GROUPBY);

. . . code not shown . . .

 LIB = WORK TABLE = PRODUCTS GROUPBY = PRODTYPE

9.5.2.2 INOBS= Option

 256

The INOBS= option reduces the amount of query execution time by restricting

the number of rows that PROC SQL processes. This option is most often used

for troubleshooting or debugging purposes where a small number of rows are

needed as opposed to all the rows in the table source. Controlling the number

of rows processed on input with the INOBS= option is similar to specifying

the SAS System option to OBS=. The following example illustrates the INOBS=

option being limited to the first ten rows in the PRODUCTS table. A warning

message is also displayed in the SAS log indicating that the number of records

read was restricted to ten.

SQL Code

PROC SQL INOBS=10;

 SELECT *

 FROM PRODUCTS;

QUIT;

SAS Log Results

PROC SQL INOBS=10;

 SELECT *

 FROM PRODUCTS;

WARNING: Only 10 records were read from WORK.PRODUCTS due to INOBS= option.

QUIT;

In the next example, the INOBS= option is set to five in a Cartesian product

join (the absence of a WHERE clause). A two-way join with the INOBS=5

specified without a WHERE clause limits the number of rows from each table

to five producing a maximum of 25 rows.

SQL Code

PROC SQL INOBS=5;

 SELECT prodname, prodcost,

 manufacturers.manunum, manuname

 FROM PRODUCTS, MANUFACTURERS;

QUIT;

SAS Log Results

PROC SQL INOBS=5;

 SELECT prodname, prodcost,

 257

 manufacturers.manunum, manuname

 FROM PRODUCTS, MANUFACTURERS;

NOTE: The execution of this query involves performing one or more Cartesian

product joins that can not be optimized.

WARNING: Only 5 records were read from WORK.MANUFACTURERS due to INOBS= option.

WARNING: Only 5 records were read from WORK.PRODUCTS due to INOBS= option.

QUIT;

9.5.2.3 LOOPS= Option

The LOOPS= option reduces the amount of query execution time by restricting

how many times processing occurs through a query’s inner loop. As with the

INOBS= and OUTOBS= options, the LOOPS= option is used for troubleshooting

or debugging to prevent the consumption of excess computer resources or the

creation of large internal tables as with the processing of multi-table joins.

The following example shows the LOOPS= option being restricted to eight inner

loops through the rows in the PRODUCTS table.

SQL Code

PROC SQL LOOPS=8;

 SELECT *

 FROM PRODUCTS;

QUIT;

SAS Log Results

PROC SQL LOOPS=8;

 SELECT *

 FROM PRODUCTS;

WARNING: PROC SQL statement interrupted by LOOPS=8 option.

QUIT;

Results

 The SAS System

Product Manufacturer Product

 Number Product Name Number Product Type Cost

 258

 1110 Dream Machine 111 Workstation $3,200.00

 1200 Business Machine 120 Workstation $3,300.00

 1700 Travel Laptop 170 Laptop $3,400.00

The next example shows what happens when the LOOPS= option is applied in a

three-way join by restricting the number of processed inner loops to 50 to

prevent the creation of a large and inefficient internal table. To determine

an adequate value to assign to the LOOPS= option, you can specify an &SQLOOPS

macro variable in a %PUT statement. To learn more about this macro variable,

see the section, “Macro Variables,” later in this chapter.

SQL Code

PROC SQL LOOPS=50;

 SELECT P.prodname, P.prodcost,

 M.manuname,

 I.invqty

 FROM PRODUCTS P,

 MANUFACTURERS M,

 INVOICE I

 WHERE P.manunum = M.manunum AND

 P.prodnum = I.prodnum AND

 M.manunum = 500;

QUIT;

Results

 The SAS System

 Invoice

 Quantity

 Product - Units

Product Name Cost Manufacturer Name Sold

Spreadsheet Software $299.00 KPL Enterprises 5

Database Software $399.00 KPL Enterprises 2

9.5.2.4 NOEXEC Option

The NOEXEC option checks all nonquery statements such as CREATE TABLE or ALTER

TABLE within the SQL procedure for syntax-related errors and displays any

identified errors in the SAS log. The NOEXEC option is similar to the VALIDATE

 259

statement because both of them check for syntax correctness without the

execution of any input data. The only difference between the NOEXEC option

and the VALIDATE statement is in the way each is specified. As was presented

earlier, the VALIDATE statement is specified before each SELECT statement;

the NOEXEC option is specified only once as an option in the PROC SQL statement.

The NOEXEC option checks any nonquery statements in the step for syntax

correctness. The following example illustrates the NOEXEC option and what

happens when an error is found in any nonquery statement.

SQL Code

PROC SQL NOEXEC;

 CREATE TABLE NOEXEC_CHECK

 SELECT *

 FROM PRODUCTS

 WHERE PRODTYPE = 'Software';

QUIT;

SAS Log Results

PROC SQL NOEXEC;

 CREATE TABLE NOEXEC_CHECK

 SELECT *

 73

 ERROR 73-322: Expecting an AS.

 FROM PRODUCTS

 WHERE PRODTYPE = 'Software';

QUIT;

9.5.2.5 OUTOBS= Option

The OUTOBS= option reduces the amount of query execution time by restricting

the number of rows that PROC SQL sends as output to a designated output source.

As with the INOBS= option, the OUTOBS= option is most often used for

troubleshooting or debugging purposes where a small number of rows are needed

in an output table. Controlling the number of rows sent as output with the

OUTOBS= option is similar to setting the SAS System option OBS= (or the data

set option OBS=). The following example creates an output table called

PRODUCTS_SAMPLE by specifying five rows for the OUTOBS= option. A warning

message displayed in the SAS log indicates that the new table contains five

rows.

 260

SQL Code

PROC SQL OUTOBS=5;

 CREATE TABLE PRODUCTS_SAMPLE AS

 SELECT *

 FROM PRODUCTS;

QUIT;

SAS Log Results

PROC SQL OUTOBS=5;

 CREATE TABLE PRODUCTS_SAMPLE AS

 SELECT *

 FROM PRODUCTS;

WARNING: Statement terminated early due to OUTOBS=5 option.

NOTE: Table WORK.PRODUCTS_SAMPLE created, with 5 rows and 5 columns.

QUIT;

9.5.2.6 PROMPT Option

The PROMPT option is issued during interactive sessions to prompt users to

continue or stop processing when the limits of an INOBS=, LOOPS=, and/or

OUTOBS= option are reached. If the PROMPT option is specified along with one

or more of these options, a dialog box appears indicating that the limits

of the specified option have been reached and asking whether to stop or

continue processing. This prompting feature is a useful process for stepping

through a running application.

The following example shows the PROMPT option being issued to initiate a

dialogue between the SQL procedure session and the user. The PROMPT option

specifies that the INOBS= option limit input processing to the first five

rows in the PRODUCTS table. A dialog box automatically appears after five

rows are read asking whether processing is to stop or continue. If processing

is continued, another five rows are processed and, if additional rows are

available for processing, another prompt dialog box appears. This dialogue

process continues until all rows are processed or until the user halts

processing.

SQL Code

PROC SQL PROMPT INOBS=5;

 SELECT *

 261

 FROM PRODUCTS;

QUIT;

SAS Log Results

PROC SQL PROMPT INOBS=5;

 SELECT *

 FROM PRODUCTS;

WARNING: Only 5 records were read from WORK.PRODUCTS due to INOBS= option.

QUIT;

9.5.2.7 RESET Statement

The RESET statement is used to add, drop, or change one or more PROC SQL

options without the need of restarting the procedure. Once an option is

specified, it stays in effect until it is changed or reset. Being able to

change options with the RESET statement is a handy debugging technique. The

following example illustrates turning off the FEEDBACK option by resetting

it to NOFEEDBACK. By turning off this option, you prevent the expansion of

a SELECT * (wildcard) statement into a list of columns that it represents.

SQL Code

PROC SQL FEEDBACK;

 SELECT *

 FROM PRODUCTS;

 RESET NOFEEDBACK;

 SELECT *

 FROM PRODUCTS

 WHERE PRODTYPE='Software';

QUIT;

SAS Log Results

SELECT *

 FROM PRODUCTS;

NOTE: Statement transforms to:

select PRODUCTS.prodnum, PRODUCTS.prodname, PRODUCTS.manunum,

 PRODUCTS.prodtype, PRODUCTS.prodcost

 262

 from PRODUCTS;

RESET NOFEEDBACK;

 SELECT *

 FROM PRODUCTS

 WHERE PRODTYPE='Software';

Multiple options can be reset in a single RESET statement. Options in the

PROC SQL and RESET statements can be specified in any order. The next example

shows how, in a single RESET statement, double-spaced output is changed to

single-spaced output with the NODOUBLE option, row numbers are suppressed

with the NONUMBER option, and output rows are changed to the maximum number

of rows with the OUTOBS= option.

SQL Code

PROC SQL DOUBLE NUMBER OUTOBS=1;

 SELECT *

 FROM PRODUCTS

 WHERE PRODTYPE='Software';

 RESET NODOUBLE NONUMBER OUTOBS=MAX;

 SELECT *

 FROM PRODUCTS

 WHERE PRODTYPE='Software';

QUIT;

SAS Log Results

PROC SQL DOUBLE NUMBER OUTOBS=1;

 SELECT *

 FROM PRODUCTS

 WHERE PRODTYPE='Software';

WARNING: Statement terminated early due to OUTOBS=1 option.

 RESET NODOUBLE NONUMBER OUTOBS=MAX;

 SELECT *

 FROM PRODUCTS

 WHERE PRODTYPE='Software';

 263

QUIT;

Output Results

 The SAS System

 Product Manufacturer Product

 Row Number Product Name Number Product Type Cost

__

 1 5001 Spreadsheet Software 500 Software $299.00

 The SAS System

 Product Manufacturer Product

 Number Product Name Number Product Type Cost

__

 5001 Spreadsheet Software 500 Software $299.00

 5002 Database Software 500 Software $399.00

 5003 Wordprocessor Software 500 Software $299.00

 5004 Graphics Software 500 Software $299.00

The next example shows a RESET statement being issued to change the way the

SQL procedure handles updating data in a table. The first UPDATE query is

set to reverse any updates that have been performed up to the point of an

error using the UNDO_POLICY=REQUIRED (default value) option. (Note: Because

this is the default value for this option, it could have been omitted.) A

RESET statement of UNDO_POLICY=NONE is issued before the second update query

to change the way updates are handled in PROC SQL. The NONE option keeps any

updates that have been made regardless of whether an error is detected. A

warning message is displayed on the SAS log alerting you to the change in

the way updates are handled.

SQL Code

PROC SQL UNDO_POLICY=REQUIRED;

 UPDATE PRODUCTS

 SET PRODCOST = PRODCOST - (PRODCOST * 0.2)

 WHERE UPCASE(PRODTYPE) = 'LAPTOP';

 RESET UNDO_POLICY=NONE;

 UPDATE PRODUCTS

 SET PRODCOST = PRODCOST - (PRODCOST * 0.2)

 WHERE UPCASE(PRODTYPE) = 'LAPTOP';

 264

QUIT;

SAS Log Results

PROC SQL UNDO_POLICY=REQUIRED;

 UPDATE PRODUCTS

 SET PRODCOST = PRODCOST - (PRODCOST * 0.2)

 WHERE UPCASE(PRODTYPE) = 'LAPTOP';

NOTE: 1 row was updated in WORK.PRODUCTS.

 RESET UNDO_POLICY=NONE;

 UPDATE PRODUCTS

 SET PRODCOST = PRODCOST - (PRODCOST * 0.2)

 WHERE UPCASE(PRODTYPE) = 'LAPTOP';

WARNING: The SQL option UNDO_POLICY=REQUIRED is not in effect. If an

error is detected when processing this UPDATE statement, that error

will not cause the entire statement to fail.

NOTE: 1 row was updated in WORK.PRODUCTS.

QUIT;

9.6 Undocumented PROC SQL Options

This section lists several undocumented PROC SQL options. Although

undocumented options may be freely explored and used, you should carefully

consider the ramifications before using them. Because of unannounced changes,

possible removal, or nonsupport in future releases, you should exercise care

when using them throughout SQL procedure applications. However, undocumented

options provide a wealth of opportunities for identifying and resolving

coding problems. The table below presents several of these undocumented SQL

procedure options for troubleshooting and debugging purposes.

Undocumented PROC SQL Options

Option Description

_AGGR displays a tree structure in the SAS log with a before-and-after

summary.

_ASGN displays a tree structure in the SAS log consisting of resolved

before-and-after names.

 265

Undocumented PROC SQL Options

Option Description

_DFR displays a before-and-after dataflow and subcall resolution in a

tagged tree structure in the SAS log.

_METHOD displays the various PROC SQL execution options in the SAS log. Note:

This option is explained in greater detail in Chapter 10, “Tuning

for Performance and Efficiency.”

_PJD displays various table attributes including the number of

observations (rows), the logical record length (lrecl), the number

of restricted rows, and the size of the table in bytes.

_RSLV displays a tree structure in the SAS log consisting of

before-and-after early semantic checks.

_SUBQ displays subquery transformations as a tree structure in the SAS log.

_TREE displays a query as a tree structure in the SAS log. The tree

structure consists of the transformed code that the SQL processor

will execute.

_UTIL displays a breakdown in the SAS log of each step defined in the

procedure including each row’s buffer length, each column by name,

and the column position with each row (or offset).

One of my favorite undocumented PROC SQL options is _TREE. As its name implies,

it displays a tree structure or hierarchy illustrating an expanded view of

each statement, clause, and column name within the procedure step. This

provides a handy and unique way of seeing SQL procedure code to aid in

troubleshooting logic and column lists. The next example shows the _TREE

option being used in a simple query that specifies the wildcard character

“*” that represents all columns with a WHERE clause to subset only

“Software” products.

SQL Code

PROC SQL _TREE;

 SELECT *

 FROM PRODUCTS

 WHERE PRODTYPE = 'Software';

QUIT;

SAS Log Results

 266

9.6.1 Macro Variables

To assist with the process of troubleshooting and debugging problematic

coding constructs, PROC SQL assigns values to three automatic macro variables

after the execution of each statement. The contents of these three macro

variables can be used to test the validity of SQL procedure code as well as

to evaluate whether processing should continue.

9.6.1.2 SQLOBS Macro Variable

The SQLOBS macro variable displays the number of rows that are processed by

an SQL procedure statement. To display the contents of the SQLOBS macro

variable in the SAS log, specify a %PUT macro statement. The following example

retrieves the software products from the PRODUCTS table and displays SAS

output with a SELECT statement. The %PUT statement displays the number of

rows processed and sent to SAS output as four rows.

SQL Code

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE PRODTYPE='Software';

 %PUT SQLOBS = &SQLOBS;

QUIT;

 267

SAS Log Results

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE PRODTYPE='Software';

 %PUT SQLOBS = &SQLOBS;

 SQLOBS = 4

QUIT;

The next example shows two new products inserted in the PRODUCTS table with

an INSERT INTO statement. The %PUT statement displays the number of rows added

to the PRODUCTS table as two rows.

SQL Code

PROC SQL;

 INSERT INTO PRODUCTS

 (PRODNUM, PRODNAME, PRODTYPE, PRODCOST)

 VALUES(6002,'Security Software','Software',375.00)

 VALUES(1701,'Travel Laptop SE', 'Laptop', 4200.00);

 %PUT SQLOBS = &SQLOBS;

QUIT;

SAS Log Results

PROC SQL;

 INSERT INTO PRODUCTS

 (PRODNUM, PRODNAME, PRODTYPE, PRODCOST)

 VALUES(6002,'Security Software','Software',375.00)

 VALUES(1701,'Travel Laptop SE', 'Laptop', 4200.00);

NOTE: 2 rows were inserted into WORK.PRODUCTS.

 %PUT SQLOBS = &SQLOBS;

 SQLOBS = 2

 268

QUIT;

9.6.1.3 SQLOOPS Macro Variable

The SQLOOPS macro variable displays the number of times the inner loop is

processed by the SQL procedure. To display the contents of the SQLOOPS macro

variable on the SAS log, specify a %PUT macro statement. The following example

retrieves the software products from the PRODUCTS table and displays SAS

output with a SELECT statement. The %PUT statement displays the number of

times the inner loop is processed as 15 times even though there are only 10

product rows. As a query becomes more complex, the number of times the inner

loop of the SQL procedure processes also increases proportionally.

SQL Code

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE PRODTYPE='Software';

 %PUT SQLOOPS = &SQLOOPS;

QUIT;

SAS Log Results

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE PRODTYPE='Software';

 %PUT SQLOOPS = &SQLOOPS;

 SQLOOPS = 15

QUIT;

9.6.1.4 SQLRC Macro Variable

The SQLRC macro variable displays a status value indicating whether the PROC

SQL statement was successful or not. A %PUT macro statement is specified to

display the contents of the SQLRC macro variable. The following example

retrieves the software products from the PRODUCTS table and displays SAS

 269

output with a SELECT statement. The %PUT statement displays a return code

of zero indicating that the SELECT statement was successful.

SQL Code

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE PRODTYPE='Software';

 %PUT SQLRC = &SQLRC;

QUIT;

SAS Log Results

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE PRODTYPE='Software';

 %PUT SQLRC = &SQLRC;

 SQLRC = 0

QUIT;

9.6.2 Troubleshooting and Debugging Examples

This section shows a number of errors that I have personally experienced while

working on SQL procedure problems. Although not representative of all the

possible errors that may occur, it does illustrate a set of common problems

along with a technical approach for correcting each problem.

ERROR 78-322: Expecting a ','

Problem Description

Syntax errors messages can, at times, provide confusing information about

the specific problem at hand. A case in point is the error, 78-322: Expecting

a ','. In the example below, it initially appears that a comma is missing

between two column names in the SELECT statement. On closer review, the actual

 270

problem points to a violation of the column’s naming conventions caused by

specifying an invalid character in the assigned column alias in the AS

keyword.

Code and Error

PROC SQL;

 SELECT CUSTNUM, ITEM, UNITS * UNITCOST AS Total-Cost

 -

 78

ERROR 78-322: Expecting a ','.

 FROM PURCHASES

 ORDER BY TOTAL;

QUIT;

Corrective Action

Correct the problem associated with the assigned column-alias name by

adhering to valid SAS naming conventions. For example, replace the hyphen

“-” in Total-Cost with an underscore, as in Total_Cost.

ERROR 202-322: The option or parameter is not recognized and will be ignored

Problem Description

Sometimes problems occur because of unfamiliarity with the SQL procedure

language syntax. In the syntax error illustrated below an unrecognized option

or parameter is encountered, resulting in the procedure stopping before any

processing occurs.

Code and Error

PROC SQL;

 SELECT prodtype,

 MIN(prodcost) AS Cheapest

 Format=dollar9.2 Label='Least Expensive'

 FROM PRODUCTS

 ORDER BY cheapest

 GROUP BY prodtype;

 ----- --

 22 202

 271

ERROR 22-322: Syntax error, expecting one of the following: ;,

!, !!, &, (, *, **, +, ',', -, '.', /, <, <=, <>, =, >, >=, ?,

AND, ASC, ASCENDING, BETWEEN, CONTAINS, DESC, DESCENDING, EQ,

EQT, GE, GET, GT, GTT, IN, IS, LE, LET, LIKE, LT, LTT, NE, NET,

NOT, NOTIN, OR, ^, ^=, |, ||, ~, ~=.

ERROR 202-322: The option or parameter is not recognized and

will be ignored.

QUIT;

Corrective Action

This problem is the result of the SELECT statement clauses not being specified

in the correct order. It can be corrected by specifying the SELECT

statement’s GROUP BY clause before the ORDER BY clause.

ERROR Ambiguous reference, column

Problem Description

In the next example, the syntax error points to a problem where a column name

that is specified in a SELECT statement appears in more than one table

resulting in a column ambiguity. This problem not only creates confusion for

the SQL processor, but also prevents the query from executing.

Code and Error

PROC SQL;

 SELECT prodname, prodcost,

 manunum, manuname

 FROM PRODUCTS AS P, MANUFACTURERS AS M

 WHERE P.manunum = M.manunum;

ERROR: Ambiguous reference, column manunum is in more than one

table.

QUIT;

Corrective Action

To remove any and all column ambiguities, you should reference each column

that appears in two or more tables with its respective table name in a SELECT

statement and its clauses. For example, to reference the MANUNUM column in

 272

the MANUFACTURERS table and remove all ambiguities, you would specify the

column in the SELECT statement as MANUFACTURERS.MANUNUM.

ERROR 200-322: The symbol is not recognized and will be ignored

Problem Description

In the next example, the syntax error points to the left parenthesis at the

end of the second SELECT statement’s WHERE clause as being invalid. The key

to finding the actual problem is to work backward, line-by-line, from the

point where the error is marked. Using this approach, you will notice that

the second SELECT statement is a subquery (or inner query) and does not

conform to valid syntax rules. As with other syntax errors, the query as well

as the subquery does not execute.

Code and Error

PROC SQL;

 SELECT *

 FROM INVOICE

 WHERE manunum IN

 SELECT manunum

 FROM MANUFACTURERS

 WHERE UPCASE(manucity) LIKE 'SAN DIEGO%');

 -

 22

 -

 200

ERROR 22-322: Syntax error, expecting one of the following: ;,

!, !!, &, *, **, +, -, /, AND, ESCAPE, EXCEPT, GROUP, HAVING,

INTERSECT, OR, ORDER, OUTER, UNION, |, ||.

ERROR 200-322: The symbol is not recognized and will be

ignored.

QUIT;

Corrective Action

A subquery must conform to valid syntax rules. To correct this problem, a

right parenthesis must be added at the beginning of the second SELECT

statement immediately after the IN clause.

 273

ERROR 22-322: expecting one of the following: a name, (, '.', AS, ON

Problem Description

In the next example, the syntax error identifies a WHERE clause being used

in a left outer join. Although the SQL procedure permits an optional WHERE

clause to be specified in the outer join syntax, an ON clause must be specified

as well.

Code and Error

PROC SQL;

 SELECT prodname, prodtype,

 products.manunum, invenqty

 FROM PRODUCTS LEFT JOIN INVENTORY

 WHERE products.manunum =

 22

 76

ERROR 22-322: Syntax error, expecting one of the following: a

name, (, '.', AS, ON.

ERROR 76-322: Syntax error, statement will be ignored.

 inventory.manunum;

QUIT;

Corrective Action

To correct this problem and to conform to valid outer join syntax requirements,

specify an ON clause before an optional WHERE clause that is used to subset

joined results.

ERROR 180-322: Statement is not valid or it is used out of proper order

Problem Description

In the next example, the syntax error identifies the UNION statement as being

invalid or used out of proper order. On further inspection, it is clear that

one of two problems exists. The SQL procedure code consists of two separate

queries with an invalid UNION operator specified, or a misplaced semicolon

appears at the end of the first SELECT query.

 274

Code and Error

PROC SQL;

 SELECT *

 FROM products

 WHERE prodcost < 300.00;

 UNION

 180

ERROR 180-322: Statement is not valid or it is used out of

proper order.

 SELECT *

 FROM products

 WHERE prodtype = 'Workstation';

QUIT;

Corrective Action

To correct this problem and conform to valid rules of syntax for a UNION

operation, remove the semicolon after the first SELECT query.

ERROR 73-322: Expecting an AS

Problem Description

In the next example, the syntax error identifies a missing AS keyword in the

CREATE VIEW statement and highlights the view’s SELECT statement. If the

AS keyword is not specified, the CREATE VIEW step is not executed and the

view is not created.

Code and Error

PROC SQL;

 CREATE VIEW WORKSTATION_PRODUCTS_VIEW

 SELECT PRODNUM, PRODNAME, PRODTYPE, PRODCOST

 73

ERROR 73-322: Expecting an AS.

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE)="WORKSTATION";

QUIT;

 275

Corrective Action

To correct the problem, add the AS keyword in the CREATE VIEW statement to

follow valid syntax rules and define the view’s query.

9.7 Summary

1. The objective of the debugging process is to identify, classify, fix,

and verify a problem in a PROC SQL step, program, or application as

quickly and easily as possible (see section 9.3).

2. Usage errors can cause the SAS System to stop processing, produce

warnings, or produce unexpected results (see section 9.4).

3. PROC SQL provides numerous troubleshooting and debugging capabilities

for the practitioner (see section 9.5).

4. PROC SQL options provide effective troubleshooting and debugging

techniques for resolving coding problems (see section 9.5.2).

5. Several useful undocumented PROC SQL options are available for

troubleshooting and debugging (see section 9.6).

Chapter 10: Tuning for Performance and

Efficiency

10.1 Introduction

A book on PROC SQL would not be complete without some discussion of query

optimization and performance. Enabling a query to run efficiently involves

writing code that can take advantage of the PROC SQL query optimizer. Because

PROC SQL is designed to handle a variety of processes while accommodating

small to large database environments, this chapter presents a number of query

tuning strategies, techniques, and options to assist you to write more

efficient PROC SQL code. In this chapter you will find tips and suggestions

to help identify areas where a query’s inefficiencies may exist and to

conduct the tuning process to achieve the best performance possible.

10.2 Understanding Performance Tuning

 276

Performance tuning is the process of improving the way a program operates.

It involves taking a program and seeing what can be done to improve

performance in an intelligent, controlled manner. As you might imagine, a

tuned program is one that gets the most from the existing hardware and

software environment.

Performance tuning involves measuring, evaluating, and modifying a program

until it uses the minimum amount of computer resources to complete its

execution. The biggest problem with the tuning process is that it is sometimes

difficult to determine the amount of computer resources a program uses.

Complicating matters further, adequate and complete information about

resource utilization is often unavailable. In fact, no simple formula exists

to determine how efficiently a program runs. Often the only way to assess

whether a program is running efficiently is to evaluate its performance under

varying conditions, such as during interactive use or during shortages of

specific resources including memory and storage.

Performance issues may be difficult to identify. It is possible to have a

program that operates without any apparent problem, but does not perform as

efficiently as it could. In fact a program may perform well in one environment

and poorly in another. Take for example an organization that has a shortage

of Direct Access Storage Device (DASD). A program that uses excessive amounts

of this resource may be deemed a poor performer under these circumstances.

But if the same program were run in an environment that had adequate levels

of DASD, it may not be suspected or tagged as a poor performer. This

distinction demonstrates the subjectivity that is frequently used to

determine how a program performs and how it is linked to the specific needs

(related to resource issues) an organization has at any point in time.

10.3 Sorting and Performance

Sorting data in the SQL procedure, as in other parts of the SAS System, is

a CPU and memory-intensive operation. When sufficient amounts of CPU and

memory resources are available, the process is usually successful. But if

either of these resources is in short supply or simply not available, the

sort step is doomed for failure. The first order of business for SAS users

is to minimize the number of sorts in their programs. By keeping a few simple

guidelines in mind, problems can be minimized.

CPU-related bottlenecks can occur if sorts are performed on disk as opposed

to in memory. Because most disks are slower than physical memory, this

 277

presents an important performance issue. The most logical and efficient place

to perform sorts is in memory. If the sort requires more space than can fit

in available memory, the sort must be performed on disk. The objective is

to determine how much space a sort will require as well as where the sort

will be performed before the sort is executed.

10.3.1 User-Specified Sorting (SORTPGM= System Options)

You can control what sort utility the SAS System uses when performing sorts.

By specifying the SORTPGM= system option, you can direct the SAS System to

use the best possible sort utility for the environment in question. The

SORTPGM= system options are displayed in the following table.

SORTPGM= System Options

Sort

Option

Purpose

BEST The BEST option uses the sort utility best suited to the data.

HOST The HOST option tells the SAS System to use the host sort utility

available on your host computer. This option may be the most

efficient for large tables containing many rows of data.

SAS The SAS option tells the SAS System to use the sort utility supplied

with the SAS System.

The next example illustrates using the SORTPGM= option to select the sort

utility most suited to the data. Both options use the name that is specified

in the SORTNAME= option.

OPTIONS SORTPGM=BEST;

OPTIONS SORTPGM=HOST;

10.3.2 Automatic Sorting

Using the SELECT DISTINCT clause invokes an internal sort to remove duplicate

rows. The single exception is when an index exists. The index is then used

to eliminate the duplicate rows.

 278

The results of a grouped query are automatically sorted using the grouping

columns. When the SELECT clause contains only the columns listed in the GROUP

BY clause along with any summary functions, then the duplicates in each group

based on the grouping columns are removed as soon as any defined summary

functions are performed. If additional columns then appear in the SELECT

clause the rows are not collapsed and therefore duplicates are not removed.

10.4 Splitting Tables

Splitting tables involves moving some of the rows from one table to another

table. Data is split for the purpose of separating some predetermined range

of data, such as historical data from current data, so that query performance

is increased. This reduces the burden imposed on queries that only access

current data. The following PROC SQL example shows the current year’s data

being copied and then removed from a table containing five years of data.

SQL Code

PROC SQL;

 CREATE TABLE INVENTORY_CURRENT AS

 SELECT *

 FROM INVENTORY

 WHERE YEAR(ORDDATE) = YEAR(TODAY());

 DELETE FROM INVENTORY

 WHERE YEAR(ORDDATE) = YEAR(TODAY());

QUIT;

10.5 Indexes and Performance

Indexes can be used to allow rapid access to table rows. Rather than

physically sorting a table (as performed by the ORDER BY clause or PROC SORT),

an index is designed to set up a logical arrangement for the data without

the need to physically sort it. This has the advantage of reducing CPU and

memory requirements. It also reduces data access time when using WHERE clause

processing (discussed in Section 10.7).

Indexes are useful, but they do have drawbacks. As data in a table is inserted,

modified, or deleted, an index must be updated to address the changes. This

 279

automatic feature requires additional CPU resources to process any changes

to a table. Also, as a separate structure in its own right, an index can

consume considerable storage space. As a consequence, care should be

exercised not to create too many indexes but to assign indexes to only those

discriminating variables in a table. Here are a few suggestions for creating

indexes.

• Sort data in ascending order on the key column prior to creating the

index.

• Sort the data by the key variable first to achieve the greatest

performance improvement.

• Sort data in ascending order by the key variable before it is appended

to the table.

• Create simple indexes, when possible, to be used by most queries.

• Avoid creating one single index for all queries.

• Assign indexes to the most discriminating of variables.

• Select columns that are frequently the subject of summary functions

(COUNT, SUM, AVG, MIN, MAX, etc.).

• Only create indexes that are actually needed.

• Avoid taxing CPU resources associated with index maintenance

(maintaining an index during inserts, modifications, and deletions)

by selecting columns that do not change frequently.

• On some operating systems indexes are stored as a separate file on disk,

using additional memory and disk space to store the structure.

• To avoid excessive and unnecessary I/O operations, prior to creating

an index sort data in ascending order by the most discriminating key

column.

• Attempt to define composite indexes using the most discriminating of

the variables as your first variable in the index.

• Select columns that do not have numerous null values because this

results in a large percentage of rows with the same value.

 Note Indexes should only be created on tables where query search time needs
to be optimized. Any unnecessary indexes may force the SAS System to

expend resources needlessly—updating and reorganizing after insert,

update, and delete operations are performed. And even worse, the SQL

optimizer may accidentally use an index when it should not.

10.6 Reviewing CONTENTS Output and System Messages

 280

While no two organizations are alike, it is not surprising to find numerous

causes for a program to run at less than peak efficiency. Performance is

frequently affected by the specific needs of an organization or its lack of

resources. SAS users need to learn as many techniques as possible to correct

problems associated with poorly performing programs. Attention should be

given to individual program functions, because poor program performance

often points to one or more inefficient techniques being used.

Two methods can be used to better understand potential performance issues.

The first approach uses PROC CONTENTS output to examine engine/host

information and library data sets (tables). The CONTENTS output provides

information to determine whether a table is large enough. (The page count

in the following output to show the performance improvements offered by an

index). The general rule that the SQL processor adheres to is when a table

is relatively small (usually fewer than three pages) there is no real

advantage in using an index. In fact, using an index with a small table can

actually degrade performance levels because in these situations sequential

processing would be just as fast as using an index.

Results

 The CONTENTS Procedure

Data Set Name WORK.INVENTORY Observations 7

Member Type DATA Variables 5

Engine V9 Indexes 0

Created Friday, August 20, 2004 Observation Length 20

Last Modified Friday, August 20, 2004 Deleted Observations 0

Protection Compressed NO

Data Set Type Sorted NO

Label

Data Representation Windows_32

Encoding Wlatin1 Western (Windows)

 Engine/Host Dependent Information

Data Set Page Size 4096

Number of Data Set Pages 1

First Data Page 1

Max Obs per Page 202

Obs in First Data Page 7

 281

Number of Data Set Repairs 0

File Name D:\SAS Version 9.1\SAS Temporary Files

 _TD1632\inventory.SAS7bdat

Release Created 9.0101M0

Host Created XP_HOME

 -----Alphabetic List of Variables and Attributes-----

Variable Type Len Pos Format Informat Label

__

4 invencst Num 6 18 DOLLAR10.2 Inventory Cost

2 invenqty Num 3 15 Inventory Quantity

5 manunum Num 3 24 Manufacturer Number

3 orddate Num 4 8 MMDDYY10. MMDDYY10. Date Inventory Last Ordered

1 prodnum Num 3 12 Product Number

 -----Alphabetic List of Indexes and Attributes-----

 Current # of

 Update Update Unique

 # Index Centiles Percent Values Variables

__

 1 invenqty 5 0 5

 --- 2.00036621095932

 --- -8.7692233015159E304

 --- -1.0318151782291E270

 --- 5.00073295836049

 --- -8.7392210587264E304

 --- -1.4195819273297E135

 --- 20.0029327871163

 --- -8.7220769199897E304

The second approach uses PROC SQL to access the dictionary tables, TABLES

and COLUMNS, to determine whether a table is large enough to take advantage

of the performance improvements offered by an index. See the output below.

SQL Code

PROC SQL;

 SELECT MEMNAME, NPAGE

 FROM DICTIONARY.TABLES

 282

 WHERE LIBNAME='WORK' AND

 MEMNAME='INVENTORY';

 SELECT VARNUM, NAME, TYPE, LENGTH, FORMAT,

 INFORMAT, LABEL

 FROM DICTIONARY.COLUMNS

 WHERE LIBNAME='WORK' AND

 MEMNAME='INVENTORY';

QUIT;

Results

 The SAS System

 Number

 Member Name of Pages

 __

 INVENTORY 1

 The SAS System

 Column

 Number Column Column Column Column Column

 in Table Column Type Length Format Informat Label

__

 1 prodnum num 3 Product Number

 2 invenqty num 3 Inventory Quantity

 3 orddate num 4 MMDDYY10. MMDDYY10. Date Inventory Last

Ordered

 4 invencst num 6 DOLLAR10.2 Inventory Cost

 5 manunum num 3 Manufacturer Number

The table below compares sequential table access with indexed table access.

Although performance gains are data dependent, the greatest gains are

realized when an index is applied to a small subset of data in a WHERE clause.

Sequential Versus Indexed Table Access

 283

Condition Sequential Index

Page count < 3 pages (from CONTENTS output) Yes No

Small table Yes No

Frequent updates to table Yes No

Large subset of data based on WHERE processing Yes No

Infrequent access of table Yes No

Limited memory and disk space Yes No

Small subset of data (1% - 25% of population) No Yes

System messages are displayed to provide information that can help tune the

indexes associated with any data sets. Setting the MSGLEVEL= system option

to “I” allows the SAS System to display vital information (if available)

related to the presence of one or more indexes for optimization of WHERE

clause processing. With the MSGLEVEL= option turned on, the SAS log shows

that the simple index INVENQTY was selected in the optimization of WHERE

clause processing.

SAS Log

 PROC SQL;

 CREATE INDEX INVENQTY ON INVENTORY;

NOTE: Simple index invenqty has been defined.

NOTE: PROCEDURE SQL used:

 real time 0.04 seconds

 SELECT *

 FROM INVENTORY

 WHERE invenqty < 3;

INFO: Index invenqty selected for WHERE clause

optimization.

 QUIT;

NOTE: PROCEDURE SQL used:

 real time 0.65 seconds

10.7 Optimizing WHERE Clause Processing with

Indexes

 284

To get the best possible performance from programs containing SQL procedure

code, an index and WHERE clause can be used together (see the list below).

Using a WHERE clause restricts processing in a table to a subset of selected

rows (see Chapter 2, “Working with Data in PROC SQL” for specific details).

When an index exists, the SQL processor determines whether to take advantage

of it during WHERE clause processing. Although the SQL processor determines

whether using an index will ultimately benefit performance, when it does the

result can be an improvement in processing speeds.

• Comparison operators such as EQ (=), LT (<), GT (>), LE (<=), GE (>=),

and NOT

• Comparison operators with the IN operator

• Comparison operators with the colon modifier (for example, NOT

= :“Ab”)

• CONTAINS operator

• IS NULL or IS MISSING operator

• Pattern-matching operators such as LIKE and NOT LIKE

10.7.1 Constructing Efficient Logic Conditions

When constructing a chain of AND conditions in a WHERE clause, specify the

most restrictive conditional values first. This way the SQL processor expends

fewer resources by bypassing rows that do not satisfy the first conditional

value in the WHERE clause. For example, the first PROC SQL step below may

expend more resources because the first condition “SOFTWARE” occurs even

for products costing more than $99.00.

SQL Code (Less Efficient)

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) = 'SOFTWARE' AND

 PRODCOST < 100.00;

QUIT;

For this data, a more efficient way of producing the same results as the

previous example, while reducing CPU resources, is to code the second and

more restrictive condition first so it appears as follows.

SQL Code (More Efficient)

 285

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE PRODCOST < 100.00 AND

 UPCASE(PRODTYPE) = 'SOFTWARE';

QUIT;

Another popular construct uses a series of OR conditions equality tests or

the IN predicate to select rows that match the multiple conditions.

Programmers often order these kinds of lists by order of magnitude or

alphabetically to make the lists easier to maintain. A better and more

efficient way would be to order the list from the most frequently occurring

values to the least frequent.

 Note One way to determine the frequency of values is to submit the following
code: SELECT COUNT(PRODTYPE) FROM SQL.PRODUCTS GROUP BY PRODTYPE;

Once the frequencies are known, they can be specified in that order. This

way the SQL processor expends fewer resources locating frequently occurring

values because it has to perform fewer steps to return a value of TRUE. For

example, the first SQL step below expends more resources because the first

condition “LAPTOP” occurs less frequently than the value “SOFTWARE”.

Consequently, the SQL processor needs to process the second condition in

order to find a match resulting in a value of TRUE being returned.

SQL Code (Less Efficient):

 PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) IN ('LAPTOP', 'SOFTWARE');

 QUIT;

A more efficient way of processing the same data but generating the same

results as the previous code is to place “SOFTWARE” first as follows:

SQL Code (More Efficient):

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) IN ('SOFTWARE', 'LAPTOP');

 286

QUIT;

10.7.2 Avoiding UNIONs

UNIONs are executed by□creating two internal sets, then merge-sorting the

results together. Duplicate rows are automatically eliminated from the final

results. For example, the SQL procedure code illustrated below first

constructs the two result sets from each query, then merges and sorts the

two sets together, and eliminates duplicate rows from the final results.

SQL Code (Less Efficient):

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) = 'LAPTOP'

 UNION

 SELECT *

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) = 'SOFTWARE';

QUIT;

To improve UNION performance, SQL procedure code can be converted to a single

query using OR conditions in a WHERE clause. The next example illustrates

the previous SQL procedure code being made more efficient by converting the

UNION to a single query using an OR operator (or IN predicate) in a WHERE

clause.

SQL Code (More Efficient):

 PROC SQL;

 SELECT DISTINCT *

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) = 'SOFTWARE' OR

 UPCASE(PRODTYPE) = 'LAPTOP';

 QUIT;

<or>

 287

 PROC SQL;

 SELECT DISTINCT *

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) IN ('SOFTWARE', 'LAPTOP');

 QUIT;

Another approach that can aid in improving the way a UNION performs is to

specify the ALL keyword with the UNION operator, as long as duplicates are

not an issue. Because UNION ALL does not remove duplicate rows, CPU resources

may be improved. The next example shows the UNION ALL coding construct being

used to perform what amounts to an append operation, thereby bypassing the

sort altogether because the duplicate rows are not removed.

SQL Code (Less Efficient):

PROC SQL;

 SELECT *

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) = 'LAPTOP'

 UNION ALL

 SELECT *

 FROM PRODUCTS

 WHERE UPCASE(PRODTYPE) = 'SOFTWARE';

QUIT;

10.8 Summary

1. Performance tuning involves measuring, evaluating, and modifying a

query’s execution to achieve an optimal balance between competing

computer resources (see section 10.2).

2. Avoid specifying an ORDER BY clause when creating a table or view (see

section 10.3).

3. When sorting is necessary, specify the SORTPGM= system option to

instruct the SAS System to use the best possible sort utility relative

to the size of the database environment (see section 10.3.1).

4. Care should be exercised to assign indexes to only those discriminating

variables in a table and to avoid creating too many indexes (see section

10.5).

 288

5. There is no advantage in creating or using an index when a table is

relatively small (usually fewer than three pages) (see section 10.6).

6. Setting the MSGLEVEL= system option to “I” allows the SAS System to

display vital information (if available) relative to the presence of

one or more indexes for optimization of WHERE clause processing (see

section 10.6).

7. Apply WHERE clause processing to restrict the number of rows of the

result table (see section 10.7).

8. When constructing a chain of AND conditions in a WHERE clause, specify

the most restrictive conditional values first (see section 10.7.1).

		cs
	2007-07-17T18:42:19-0400
	Administrator
	I am the author of this document

