4Sas.

SAS Publishing

Base SAS’ 9
Procedures Guide

Volume 1

The Power to Know..

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2002.
Base SAS® 9 Procedures Guide. Cary, NC: SAS Institute Inc.

Base SAS® 9 Procedures Guide
Copyright © 2002 by SAS Institute Inc., Cary, NC, USA
ISBN 1-58025-942-1

All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc. This title includes documentation for early
adopter features. THIS DOCUMENTATION FOR AN EARLY ADOPTER FEATURE IS A
PRELIMINARY DRAFT AND IS PROVIDED BY SAS INSTITUTE INC. ON AN "AS IS"
BASIS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTIBILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. The company
does not warrant that this documentation is complete, accurate, similar to that which
may be released to the general public, or that any such documentation will be released.
The company shall not be liable whatsoever for any damages arising out of the use of this
documentation, including any direct, indirect, or consequential damages. The company
reserves the right to alter or abandon use of this documentation at any time.

U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, June 2002

SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at www.sas.com/pubs or call 1-800-727-3228.

SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.

IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ORACLE® is a registered trademark of Oracle Corporation. ®
indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New xi
Overview xi

Details xi

PARTI Concepts 1

Chapter 1 A Choosing the Right Procedure 3
Functional Categories of Base SAS Procedures [3
Report-Writing Procedures [

Statistical Procedures 6}
Utility Procedures [8

Brief Descriptions of Base SAS Procedures

Chapter 2 A Fundamental Concepts for Using Base SAS Procedures |E|
Language Concepts

Procedure Concepts

Output Delivery System [32]

Chapter 3 A Statements with the Same Function in Multiple Procedures @l
Overview [53]
Statements

PARTZ Procedures 67

Chapter 4 A The APPEND Procedure
Overview: APPEND Procedure
Syntax: PROC APPEND

Chapter 5 A The CALENDAR Procedure
Overview: CALENDAR Procedure
Syntax: CALENDAR Procedure
Concepts: CALENDAR Procedure
Results: CALENDAR Procedure |107
Examples: CALENDAR Procedure |108

Chapter 6 A The CATALOG Procedure
Overview: CATALOG Procedure [143
Syntax: PROC CATALOG [144

Concepts: CATALOG Procedure [154
Examples: CATALOG Procedure [158

Chapter 7 A The CHART Procedure
Overview: CHART Procedure [165

Syntax: CHART Procedure [170
Concepts: CHART Procedure [183
Results: CHART Procedure [183
Examples: CHART Procedure [184
References [197

Chapter 8 A The CIMPORT Procedure

Overview: CIMPORT Procedure |199
Syntax: PROC CIMPORT
Results: CIMPORT Procedure
Examples: CIMPORT Procedure

Chapter 9 A The COMPARE Procedure

Overview: COMPARE Procedure
Syntax: COMPARE Procedure [213
Concepts: COMPARE Procedure
Results: COMPARE Procedure
Examples: COMPARE Procedure

Chapter 10 A The CONTENTS Procedure
Overview: CONTENTS Procedure [257
Syntax: PROC CONTENTS

Chapter 11 A The COPY Procedure
Overview: COPY Procedure

Syntax: PROC COPY

Concepts: COPY Procedure
Example: COPY Procedure

Chapter 12 A The CORR Procedure
Overview: CORR Procedure

Syntax: CORR Procedure [267

Concepts: CORR Procedure [276
Statistical Computations: CORR Procedure
Results: CORR Procedure |287
Examples: CORR Procedure (291
References

Chapter 13 A The CPORT Procedure |307
Overview: CPORT Procedure |307
Syntax: PROC CPORT

Concepts: CPORT Procedure |316
Results: CPORT Procedure (317
Examples: CPORT Procedure (317

257

279

Chapter 14 A The CV2VIEW Procedure [323]

Information about the CV2VIEW Procedure

[323]

Chapter 15 A The DATASETS Procedure [325]
Overview: DATASETS Procedure
Syntax: PROC DATASETS

Concepts: DATASETS Procedure (375
Results: DATASETS Procedure |381
Examples: DATASETS Procedure

Chapter 16 A The DBCSTAB Procedure |407
Overview: DBCSTAB Procedure |407

Syntax: DBCSTAB Procedure |407

Details: When Do I Use the DBCSTAB Procedure? [408
Examples: DBCSTAB Procedure

See Also |411

Chapter 17 A The DISPLAY Procedure
Overview: DISPLAY Procedure |[413

Syntax: DISPLAY Procedure 413
Example: DISPLAY Procedure 414

Chapter 18 A The DOCUMENT Procedure |417
Information about the DOCUMENT Procedure [417

Chapter 19 A The EXPLODE Procedure
Overview: EXPLODE Procedure [419
Syntax: EXPLODE Procedure
Examples: EXPLODE Procedure

Chapter 20 A The EXPORT Procedure (427
Overview: EXPORT Procedure [427
Syntax: PROC EXPORT

Examples: PROC EXPORT

Chapter 21 A The FORMAT Procedure
Overview: FORMAT Procedure |441

Syntax: FORMAT Procedure [443

Informat and Format Options
Specifying Values or Ranges

Concepts: FORMAT Procedure
Results: FORMAT Procedure [468
Examples: FORMAT Procedure [474

See Also

Chapter 22 A The FORMS Procedure
Overview: FORMS Procedure
Syntax: FORMS Procedure |497

Concepts: FORMS Procedure
Examples: FORMS Procedure

vi

Chapter 23 A The FREQ Procedure [513]
Overview: FREQ Procedure |515

Syntax: FREQ Procedure |518

Concepts: FREQ Procedure |541
Statistical Computations: FREQ Procedure
Results: FREQ Procedure
Examples: FREQ Procedure
References

Chapter 24 A The FSLIST Procedure |627
Overview: FSLIST Procedure [627
Syntax: FSLIST Procedure |627

Chapter 25 A The IMPORT Procedure
Overview: IMPORT Procedure
Syntax: PROC IMPORT

Examples: IMPORT Procedure |641

Chapter 26 A The MEANS Procedure
Overview: MEANS Procedure

Syntax: MEANS Procedure

Concepts: MEANS Procedure |675
Statistical Computations: MEANS Procedure
Results: MEANS Procedure (681
Examples: MEANS Procedure
References |712

Chapter 27 A The OPTIONS Procedure |713
Overview: OPTIONS Procedure [713
Syntax: OPTIONS Procedure |[716

Results: OPTIONS Procedure |[717
Examples: OPTIONS Procedure |717

Chapter 28 A The OPTLOAD Procedure |721
Overview: OPTLOAD Procedure (721
Syntax: OPTLOAD Procedure |721

Chapter 29 A The OPTSAVE Procedure (723
Overview: OPTSAVE Procedure |[723
Syntax: OPTSAVE Procedure [723

Chapter 30 A The PLOT Procedure |725
Overview: PLOT Procedure |726
Syntax: PLOT Procedure |728

Concepts: PLOT Procedure |744
Results: PLOT Procedure [749
Examples: PLOT Procedure |750

544

678

Chapter 31 A The PMENU Procedure (779
Overview: PMENU Procedure |779
Syntax: PMENU Procedure 780
Concepts: PMENU Procedure |793
Examples: PMENU Procedure |796

Chapter 32 A The PRINT Procedure [817
Overview: PRINT Procedure |[817
Syntax: PRINT Procedure

Results: Print Procedure

Examples: PRINT Procedure |837

Chapter 33 A The PRINTTO Procedure |879
Overview: PRINTTO Procedure (879
Syntax: PRINTTO Procedure |[880
Concepts: PRINTTO Procedure (883
Examples: PRINTTO Procedure |883

Chapter 34 A The PRTDEF Procedure
Overview: PRTDEF Procedure
Syntax: PRTDEF Procedure

Input Data Set: PRTDEF Procedure
Examples: PRTDEF Procedure |[899

See Also

Chapter 35 A The PRTEXP Procedure
Overview: PRTEXP Procedure
Syntax: PRTEXP Procedure
Concepts: PRTEXP Procedure
Examples: PRTEXP Procedure [907

See Also 908

Chapter 36 A The RANK Procedure
Overview: RANK Procedure
Syntax: RANK Procedure [911

Concepts: RANK Procedure (915

Results: RANK Procedure [916
Examples: RANK Procedure [917

References

Chapter 37 A The REGISTRY Procedure
Overview: REGISTRY Procedure

Syntax: REGISTRY Procedure

Creating Registry Files with the REGISTRY Procedure
Examples: REGISTRY Procedure

See Also

vii

viii

Chapter 38 A The REPORT Procedure (937
Overview: REPORT Procedure
Concepts: REPORT Procedure (944

Syntax: REPORT Procedure

REPORT Procedure Windows

How PROC REPORT Builds a Report
Examples: REPORT Procedure

Chapter 39 A The SORT Procedure
Overview: SORT Procedure

Syntax: SORT Procedure

Concepts: SORT Procedure

Integrity Constraints: SORT Procedure
Results: SORT Procedure

Examples: SORT Procedure

Chapter 40 A The SQL Procedure [1113]
Overview: SQL Procedure |[1115

Syntax: SQL Procedure |1117

SQL Procedure Component Dictionary
Concepts: SQL Procedure

PROC SQL and the ANSI Standard
Examples: SQL Procedure

Chapter 41 A The STANDARD Procedure
Overview: STANDARD Procedure |1243

Syntax: STANDARD Procedure [1245

Results: STANDARD Procedure

Statistical Computations: STANDARD Procedure
Examples: STANDARD Procedure

Chapter 42 A The SUMMARY Procedure (1257
Overview: SUMMARY Procedure
Syntax: SUMMARY Procedure

Chapter 43 A The TABULATE Procedure
Overview: TABULATE Procedure
Terminology Used with PROC TABULATE
Syntax: TABULATE Procedure

Concepts: TABULATE Procedure

Results: TABULATE Procedure

Examples: TABULATE Procedure

References

Chapter 44 A The TEMPLATE Procedure
Information about the TEMPLATE Procedure

Chapter 45 A The TIMEPLOT Procedure
Overview: TIMEPLOT Procedure
Syntax: TIMEPLOT Procedure

Results: TIMEPLOT Procedure
Examples: TIMEPLOT Procedure

Chapter 46 A The TRANSPOSE Procedure |1387
Overview: TRANSPOSE Procedure
Syntax: TRANSPOSE Procedure

Results: TRANSPOSE Procedure
Examples: TRANSPOSE Procedure

Chapter 47 A The TRANTAB Procedure
Overview: TRANTAB Procedure
Concepts: TRANTAB Procedure |1410

Syntax: TRANTAB Procedure 1413
Examples: TRANTAB Procedure [1419

Chapter 48 A The UNIVARIATE Procedure
Overview: UNIVARIATE Procedure

Syntax: UNIVARIATE Procedure

Concepts: UNIVARIATE Procedure

Statistical Computations: UNIVARIATE Procedure
Results: UNIVARIATE Procedure

Examples: UNIVARIATE Procedure

References

PART3 Appendices |[1575

Appendix 1 A SAS Elementary Statistics Procedures |1577
Overview

Keywords and Formulas

Statistical Background

References

Appendix 2 A Operating Environment-Specific Procedures
Descriptions of Operating Environment-Specific Procedures

Appendix 3 A Raw Data and DATA Steps
Overview
AIRCRAFT

CENSUS

CHARITY
CUSTOMER_RESPONSE
DJIA 1621

EDUCATION
EMPDATA

ENERGY

GROC
HOMELOANS
MATCH [11]
PROCLIB.DELAY
PROCLIB.EMP95
PROCLIB.EMP96
PROCLIB.INTERNAT
PROCLIB.LAKES
PROCLIB.MARCH
PROCLIB.PAYLIST2
PROCLIB.PAYROLL
PROCLIB.PAYROLL2
PROCLIB.SCHEDULE
PROCLIB.STAFF
PROCLIB.SUPERV

RADIO
STATEPOP

Appendix 4 A Recommended Reading (1673
Recommended Reading

Index (1675

Xi

What’s New

Overview

Enhancements to Base SAS 9 procedures improve ODS formatting, enable import and
export of Microsoft Excel 2002 spreadsheets and Microsoft Access 2002 tables, support
long format and informat names, list and compare SAS registries, support parallel
sorting operations, enhance statistical processing, and enhance printer definitions.

The new DOCUMENT procedure enables you to customize or modify your output
hierarchy and replay your output to different destinations without rerunning the PROC
or DATA step. Enhancements to the TEMPLATE procedure enable you to customize or
create your own markup language for your output. For complete information about
what’s new in ODS, see SAS Output Delivery System User’s Guide.

Details

The CONTENTS Procedure

Output from the CONTENTS procedure and the CONTENTS statement in PROC
DATASETS provides a new look and additional information. The new look for the
output provides a better format for the Output Delivery System (ODS). PROC
CONTENTS output now displays the data representation of a file by reporting the
native platform for each file, rather than just telling you whether the data
representation is native or foreign. Also, PROC CONTENTS output also now provides
the encoding value and whether the data set is part of a generation group.

The COPY Procedure

The follwoing options are new or enhanced in the COPY procedure and the COPY
statement in PROC DATASETS:

0 The FORCE option enables you to use the MOVE option for a SAS data set that
has an audit trail.

Xii

What’s New

o The CLONE option now copies the data representation data set attribute.

The CORR Procedure

0 A list of ODS table names is now provided. You can use these names to reference
the table when using the Output Delivery System (ODS) to select tables and
create output data sets.

The DATASETS Procedure

Directory listings from the DATASETS procedure provide a new look for its output,
which improves the format for the Output Delivery System (ODS).

The EXPORT Procedure

The EXPORT procedure now enables you to

O export to Microsoft Excel 2002 spreadsheets and Microsoft Access 2002 tables. The
new data sources are available for the Windows operating environment on 32-bit
platforms if your site has a license for SAS/ACCESS Interface to PC File Formats.

O specify SAS data set options in the DATA= argument when you are exporting to
all data sources except for delimited, comma-separated, and tab-delimited external
files. For example, if the data set that you are exporting has an assigned
password, use the ALTER=, PW=, READ=, or WRITE= data set option. To export
only data that meets a specified condition, use the WHERE= data set option.

o specify the SHEET= option to identify a specific spreadsheet in a workbook.
Exporting to multiple sheets is available for Microsoft Excel 97, 2000, and 2002

spreadsheets for the Windows operating environment on 32-bit platforms if your
site has a license for SAS/ACCESS Interface to PC File Formats.

The FORMAT Procedure

O The maximum length for character format names is now 31. The maximum length
for numeric format names is now 32.

O The maximum length for character informat names is now 30. The maximum
length for numeric informat names is now 31.

The FREQ Procedure

0 A list of ODS table names is now provided. You can use these names to reference
the table when using the Output Delivery System (ODS) to select tables and
create output data sets.

0 The TABLES statement now has the CONTENTS= option that allows you to
specify the text for the HTML contents file links to crosstabulation tables.

0 The TABLES statement now has the BDT option to request Tarone’s adjustment
in the Breslow-Day test for homogeneity of odds ratios when you use the CMH
option to compute the Breslow-Day test for stratified 2x2 tables.

0 The TABLES statement now has the NOWARN option that suppresses the log

warning message that the asymptotic chi-square test may not be valid when more
than 20 percent of the table cells have expected frequencies less than five.

What’s New xiii

0 The WEIGHT statement now has the ZEROS option to includes observations with
zero weight values. The frequency and crosstabulation tables will display any
levels that correspond to observations with zero weights. PROC FREQ includes
levels with zero weights in the chi-square goodness-of-fit test for one-way tables, in
the binomial computations for one-way tables, and in the computation of kappa
statistics for two-way tables.

The IMPORT Procedure

The IMPORT procedure now enables you to

O import Microsoft Excel 2002 spreadsheets and Microsoft Access 2002 tables. The
new data sources are available for the Windows operating environment on 32-bit
platforms if your site has a license for SAS/ACCESS Interface to PC File Formats.

O specify SAS data set options in the OUT= argument when you are importing from
all data sources except for delimited, comma-separated, and tab-delimited external
files. For example, in order to assign a password for a resulting SAS data set, use
the ALTER=, PW=, READ=, or WRITE= data set option. To import only data that
meets a specified condition, use the WHERE= data set option.

The MEANS Procedure

The new THREADS | NOTHREADS option (SAS 9 Early Adopter Feature) enables or
prevents the activation of multi-threaded processing.

The PRTDEF Procedure

There are 15 new variables now supported by the PRTDEF procedure to control the
default printer settings.

The PRTEXP Procedure

The new PRTEXP procedure enables you to write attributes used by PROC PRTDEF
to define a printer to a SAS data set or the SAS log, which enables you to replicate and
modify those attributes easily.

The REGISTRY Procedure

Ther REGISTRY procedure has three new options:
0 The LISTREG option lists the contents of the registry in the log.

0 The COMPAREREG1 and COMPAREREG?2 options are used together to compare
two registries. The results appear in the log.

The REPORT Procedure

In the REPORT procedure, numeric class variables that do not have a format
assigned to them are automatically formatted with the BEST12. format.

The SORT Procedure

The SORT procedure has two new options:

Xiv What's New

0 The new DATECOPY option copies to the output data set the SAS internal date
and time when the input data set was created and the date and time when it was
last modified prior to the sort.

o The new THREADS | NOTHREADS option enables or prevents the activation of
multi-threaded sorting.

The SQL Procedure

The SQL procedure has the following new features:

o The PROC SQL statement now has a THREADS NOTHREADS option. THREADS
enables PROC SQL to take advantage of the new parallel processing capabilities
in SAS when performing sorting operations.

0 There are new DICTIONARY tables, new columns in existing DICTIONARY
tables, and SASHELP views of the new tables.

0 You can now reference a permanent SAS data set by its physical filename.

0 When using the INTO clause to assign values to a range of macro variables, you
can now specify leading zeroes in the macro variable names. For example,

select * into :x01 -- :x10

will create the macro variables x01, x02, x03, and so on.

The SYLK Procedure (Experimental)

The new SYLK procedure enables you to read an external SYLK-formatted
spreadsheet into SAS, including data, formulas, and formats. You can also use PROC
SYLK as a batch spreadsheet, using programming statements to manipulate data,
perform calculations, generate summaries, and format the output.

For more information on PROC SYLK, go to http://www.sas.com/service/
library/onlinedoc. Select Base SAS from the Product-Specific Documentation list.

The TABULATE Procedure

The TABULATE procedure has the following new features:

O Available statistics include upper and lower confidence limits, skewness, and
kurtosis. PROC TABULATE now supports the ALPHA= option, which enables you
to specify a confidence level.

0 Numeric class variables that do not have a format assigned to them are
automatically formatted with the BEST12. format.

The TIMEPLOT Procedre

The TIMEPLOT procedure now supports the SPLIT= option, which enables you to
specify a character at which labels will be split into multiple lines.

The UNIVARIATE Procedure

The following are new to the UNIVARIATE procedure:

0 A list of ODS table names is now provided. You can use these names to reference
the table when using the Output Delivery System (ODS) to select tables and
create output data sets.

What’s New xv

0 The LOWER= and NOUPPER= suboptions in the KERNEL option in the
HISTOGRAM statement specify the lower and upper bounds for fitted kernel
density curves.

0 The FRONTREF option in the HISTOGRAM statement draws reference lines in
front of the histogram bars instead of behind them.

xvi What's New

PART

Concepts

Chapter 1....... ... Choosing the Right Procedure 3

Chapter2.......... Fundamental Concepts for Using Base SAS Procedures 15
Chapter 3.......... Statements with the Same Function in Multiple

Procedures 53

CHAPTER

Choosing the Right Procedure

Functional Categories of Base SAS Procedures 3
Report Writing 3
Statistics 3
Utilities 4
Report-Writing Procedures 4
Statistical Procedures 6
Efficiency Issues 1
Quantiles 1
Computing Statistics for Groups of Observations 7
Additional Information about the Statistical Procedures 1
Utility Procedures 8
Brief Descriptions of Base SAS Procedures 10

Functional Categories of Base SAS Procedures

Base SAS software provides a variety of procedures that produce reports, compute
statistics, and perform utility operations.

Report Writing

These procedures display useful information, such as data listings (detail reports),
summary reports, calendars, letters, labels, forms, multipanel reports, and graphical

reports:

CALENDAR MEANS" SQL
CHART’ PLOT SUMMARY"
FORMS PRINT TABULATE"
FREQ’ REPORT" TIMEPLOT

* These procedures produce reports and compute statistics.

Statistics

These procedures compute elementary statistical measures that include descriptive
statistics based on moments, quantiles, confidence intervals, frequency counts,

4 Utilities A Chapter 1

cross-tabulations, correlations, and distribution tests. They also rank and standardize

data:

CHART
CORR
FREQ
MEANS

RANK
REPORT
SQL
STANDARD

SUMMARY
TABULATE
UNIVARIATE

Utilities

These procedures perform basic utility operations. They create, edit, sort, and
transpose data sets, create and restore transport data sets, create user-defined formats,
and provide basic file maintenance such as to copy, append, and compare data sets:

APPEND
BMDP"
CATALOG
CIMPORT
COMPARE
CONTENTS
CONVERT"
COPY
CPORT
CV2VIEW ™
DATASETS
DOCUMENT

EXPLODE
EXPORT
FORMAT
FSLIST
IMPORT
OPTIONS
OPTLOAD
OPTSAVE
PDS™

PDSCOPY"™

PMENU
PRINTTO

PRTDEF
PRTEXP
REGISTRY
RELEASE"™
SORT
SOURCE™
SQL
TAPECOPY"
TAPELABEL"
TEMPLATE"
TRANSPOSE
TRANTAB

* See SAS Output Delivery System User’s Guide for a description of these procedures.
** See the SAS documentation for your operating environment for a description of these procedures.
***See SAS/ACCESS for Relational Databases: Reference for a description of this procedure.

Report-Writing Procedures

Table 1.1 on page 5 lists report-writing procedures according to the type of report.

Table 1.1 Report-Writing Procedures by Task

Choosing the Right Procedure /. Report-Writing Procedures

To produce...

Use this procedure...

Which...

Detail reports

PRINT

REPORT

SQL

produces data listings quickly; can supply titles,
footnotes, and column sums.

offers more control and customization than PROC
PRINT; can produce both column and row sums; has
DATA step computation abilities.

combines Structured Query Language and SAS
features such as formats; can manipulate data and
create a SAS data set in the same step that creates the
report; can produce column and row statistics; does not
offer as much control over output as PROC PRINT and
PROC REPORT.

Summary reports

MEANS or
SUMMARY

PRINT

REPORT

SQL

TABULATE

computes descriptive statistics for numeric variables;
can produce a printed report and create an output data
set.

produces only one summary report: can sum the BY
variables.

combines features of the PRINT, MEANS, and
TABULATE procedures with features of the DATA step
in a single report writing tool that can produce a
variety of reports; can also create an output data set.

computes descriptive statistics for one or more SAS
data sets or DBMS tables; can produce a printed
report or create a SAS data set.

produces descriptive statistics in a tabular format; can
produce stub-and-banner reports (multidimensional
tables with descriptive statistics); can also create an
output data set.

Miscellaneous highly formatted reports

Calendars

Labels, Forms

Name/address listings

Multipanel reports
(telephone book listings)

CALENDAR

FORMS

FORMS
REPORT

produces schedule and summary calendars; can
schedule tasks around nonwork periods and holidays,
weekly work schedules, and daily work shifts.

produces labels, such as mailing and inventory, or
other forms that have a repetitive format.

produces multicolumn name and address listings.

produces multipanel reports.

Low-resolution graphical reports*

CHART

produces bar charts, histograms, block charts, pie
charts, and star charts that display frequencies and
other statistics.

6 Statistical Procedures A Chapter 1

To produce... Use this procedure... Which...
PLOT produces scatter diagrams that plot one variable
against another.
TIMEPLOT produces plots of one or more variables over time

intervals.

* These reports quickly produce a simple graphical
reports, use SAS/GRAPH software.

picture of the data. To produce high-resolution graphical

Statistical Procedures

Table 1.2 on page 6 lists statistical procedures according to task. Table Al.1 on page
1579 lists the most common statistics and the procedures that compute them.

Tahle 1.2 Elementary Statistical Procedures by Task

To produce... Use this procedure... Which...
Descriptive statistics CORR computes simple descriptive statistics.
MEANS or computes descriptive statistics; can produce printed output
SUMMARY and output data sets. By default, PROC MEANS produces
printed output and PROC SUMMARY creates an output
data set.
REPORT computes most of the same statistics as PROC TABULATE;
allows customization of format.
SQL computes descriptive statistics for data in one or more
DBMS tables; can produce a printed report or create a SAS
data set.
TABULATE produces tabular reports for descriptive statistics; can
create an output data set.
UNIVARIATE computes the broadest set of descriptive statistics; can
create an output data set.
Frequency and FREQ produces one-way to n-way tables; reports frequency counts;

cross-tabulation tables

computes chi-square tests; computes tests and measures of
association and agreement for two-way to n-way
cross-tabulation tables; can compute exact tests and
asymptotic tests; can create output data sets.

TABULATE produces one-way and two-way cross-tabulation tables; can
create an output data set.
UNIVARIATE produces one-way frequency tables.
Correlation analysis CORR computes Pearson’s, Spearman’s, and Kendall’s correlations
and partial correlations; also computes Hoeffding’s D and
Cronbach’s coefficient alpha.
Distribution analysis UNIVARIATE computes tests for location and tests for normality.
FREQ computes a test for the binomial proportion for one-way

tables; computes a goodness-of-fit test for one-way tables;
computes a chi-square test of equal distribution for two-way
tables.

Choosing the Right Procedure /\ Additional Information about the Statistical Procedures

To produce... Use this procedure...

Which...

Robust estimation UNIVARIATE

computes robust estimates of scale, trimmed means, and
Winsorized means.

Data transformation

Computing ranks RANK

computes ranks for one or more numeric variables across

the observations of a SAS data set and creates an output
data set; can produce normal scores or other rank scores.

Standardizing data STANDARD creates an output data set that contains variables that are

standardized to a given mean and standard deviation.

Low-resolution graphics’

CHART produces a graphical report that can show one of the
following statistics for the chart variable: frequency counts,
percentages, cumulative frequencies, cumulative
percentages, totals, or averages.

UNIVARIATE produces descriptive plots such as stem and leaf, box plot,
and normal probability plot.

* To produce high-resolution graphical reports, use SAS/GRAPH software.

Efficiency Issues

Quantiles

For a large sample size n, the calculation of quantiles, including the median, requires
computing time proportional to nlog(n). Therefore, a procedure, such as UNIVARIATE,
that automatically calculates quantiles may require more time than other data
summarization procedures. Furthermore, because data is held in memory, the procedure
also requires more storage space to perform the computations. By default, the report
procedures PROC MEANS, PROC SUMMARY, and PROC TABULATE require less
memory because they do not automatically compute quantiles. These procedures also
provide an option to use a new fixed-memory quantiles estimation method that is
usually less memory intense. See “Quantiles” on page 680 for more information.

Computing Statistics for Groups of Observations

To compute statistics for several groups of observations, you can use any of the
previous procedures with a BY statement to specify BY-group variables. However,
BY-group processing requires that you previously sort or index the data set, which for
very large data sets may require substantial computer resources. A more efficient way
to compute statistics within groups without sorting is to use a CLASS statement with
one of the following procedures: MEANS, SUMMARY, or TABULATE.

Additional Information about the Statistical Procedures

Appendix 1, “SAS Elementary Statistics Procedures,” on page 1577 lists standard
keywords, statistical notation, and formulas for the statistics that base SAS procedures
compute frequently. The individual statistical procedures discuss the statistical
concepts that are useful to interpret the output of a procedure.

8 Utility Procedures A Chapter 1

Utility Procedures

Table 1.3 on page 8 groups utility procedures according to task.

Table 1.3 Utility Procedures by Task

To perform these utility
tasks...

Use this procedure...

Which...

Supply information

COMPARE

compares the contents of two SAS data sets.

CONTENTS describes the contents of a SAS data library or specific
library members.

OPTIONS lists the current values of all SAS system options.

SQL supplies information through dictionary tables on an
individual SAS data set as well as all SAS files active in
the current SAS session. Dictionary tables can also
provide information about macros, titles, indexes,
external files, or SAS system options.

Manage SAS system options OPTIONS lists the current values of all SAS system options.

OPTLOAD reads SAS system option settings that are stored in the
SAS registry or a SAS data set.

OPTSAVE saves SAS system option settings to the SAS registry or a
SAS data set.

Affect printing and Output DOCUMENT™ manipulates procedure output that is stored in ODS
Delivery System output documents.

EXPLODE produces oversized text on printed output; can produce
displays such as posters, flip charts, and header pages.

FORMAT creates user-defined formats to display and print data.

PRINTTO routes procedure output to a file, a SAS catalog entry, or
a printer; can also redirect the SAS log to a file.

PRTDEF creates printer definitions.

PRTEXP exports printer definition attributes to a SAS data set.

TEMPLATE"™ customizes ODS output.

Create, browse, and edit FSLIST browses external files such as files that contain SAS
data source lines or SAS procedure output.

SQL creates SAS data sets using Structured Query Language
and SAS features.

Transform data FORMAT creates user-defined informats to read data and
user-defined formats to display data.

SORT sorts SAS data sets by one or more variables.

SQL sorts SAS data sets by one or more variables.

TRANSPOSE transforms SAS data sets so that observations become
variables and variables become observations.

TRANTAB creates, edits, and displays customized translation tables.

Manage SAS files APPEND appends one SAS data set to the end of another.

Choosing the Right Procedure A Utility Procedures

To perform these utility

tasks... Use this procedure... Which...

BMDP* invokes a BMDP program to analyze data in a SAS data
set.

CATALOG manages SAS catalog entries.

CIMPORT restores a transport sequential file that PROC CPORT
creates (usually under another operating environment) to
its original form as a SAS catalog, a SAS data set, or a
SAS library.

CONVERT* converts BMDP system files, OSIRIS system files, and
SPSS portable files to SAS data sets.

COPY copies a SAS data library or specific members of the
library.

CPORT converts a SAS catalog, a SAS data set, or a SAS library
to a transport sequential file that PROC CIMPORT can
restore (usually under another operating environment) to
its original form.

CV2VIEW™ converts SAS/ACCESS view descriptors to PROC SQL
views.

DATASETS manages SAS files.

EXPORT reads data from a SAS data set and writes them to an
external data source.

IMPORT reads data from an external data source and writes them
to a SAS data set.

PDS* lists, deletes, and renames the members of a partitioned
data set.

PDSCOPY* copies partitioned data sets from disk to tape, disk to
disk, tape to tape, or tape to disk.

REGISTRY imports registry information to the USER portion of the
SAS registry.

RELEASE* releases unused space at the end of a disk data set under
the OS/390 environment.

SOURCE* provides an easy way to back up and process source
library data sets.

SQL concatenates SAS data sets.

TAPECOPY* copies an entire tape volume or files from one or more
tape volumes to one output tape volume.

TAPELABEL* lists the label information of an IBM standard-labeled
tape volume under the 0OS/390 environment.

Control windows PMENU creates customized pull-down menus for SAS applications.

* See the SAS documentation for your operating environment for a description of these procedures.
** See SAS Output Delivery System User’s Guide for a description of these procedures.
***See SAS/ACCESS for Relational Databases: Reference for a description of this procedure.

10

Brief Descriptions of Base SAS Procedures A Chapter 1

Brief Descriptions of Base SAS Procedures

APPEND procedure
adds observations from one SAS data set to the end of another SAS data set.

BMDP procedure
invokes a BMDP program to analyze data in a SAS data set. See the SAS
documentation for your operating environment for more information.

CALENDAR procedure
displays data from a SAS data set in a monthly calendar format. PROC
CALENDAR can display holidays in the month, schedule tasks, and process data
for multiple calendars with work schedules that vary.

CATALOG procedure
manages entries in SAS catalogs. PROC CATALOG is an interactive,
nonwindowing procedure that enables you to display the contents of a catalog,
copy an entire catalog or specific entries in a catalog, and rename, exchange, or
delete entries in a catalog.

CHART procedure
produces vertical and horizontal bar charts, block charts, pie charts, and star
charts. These charts provide a quick visual representation of the values of a single
variable or several variables. PROC CHART can also display a statistic associated
with the values.

CIMPORT procedure
restores a transport file created by the CPORT procedure to its original form (a
SAS data library, catalog, or data set) in the format appropriate to the operating
environment. Coupled with the CPORT procedure, PROC CIMPORT enables you
to move SAS data libraries, catalogs, and data sets from one operating
environment to another.

COMPARE procedure
compares the contents of two SAS data sets. You can also use PROC COMPARE to
compare the values of different variables within a single data set. PROC
COMPARE produces a variety of reports on the comparisons that it performs.

CONTENTS procedure
prints descriptions of the contents of one or more files in a SAS data library.

CONVERT procedure
converts BMDP system files, OSIRIS system files, and SPSS portable files to SAS
data sets. See the SAS documentation for your operating environment for more
information.

COPY procedure
copies an entire SAS data library or specific members of the library. You can limit
processing to specific types of library members.

CORR procedure
computes Pearson product-moment and weighted product-moment correlation
coefficients between variables and descriptive statistics for these variables. In
addition, PROC CORR can compute three nonparametric measures of association
(Spearman’s rank-order correlation, Kendall’s tau-b, and Hoeffding’s measure of
dependence, D), partial correlations (Pearson’s partial correlation, Spearman’s
partial rank-order correlation, and Kendall’s partial tau-b), and Cronbach’s
coefficient alpha.

Choosing the Right Procedure /A Brief Descriptions of Base SAS Procedures 11

CPORT procedure
writes SAS data libraries, data sets, and catalogs in a special format called a
transport file. Coupled with the CIMPORT procedure, PROC CPORT enables you
to move SAS libraries, data sets, and catalogs from one operating environment to
another.

CV2VIEW procedure
converts SAS/ACCESS view descriptors to PROC SQL views. Starting in Version
9, conversion of SAS/ACCESS view descriptors to PROC SQL views is
recommended because PROC SQL views are platform independent and enable you
to use the LIBNAME statement. See SAS/ACCESS for Relational Databases:
Reference for details.

DATASETS procedure
lists, copies, renames, and deletes SAS files and SAS generation groups, manages
indexes, and appends SAS data sets in a SAS data library. The procedure provides
all the capabilities of the APPEND, CONTENTS, and COPY procedures. You can
also modify variables within data sets, manage data set attributes, such as labels
and passwords, or create and delete integrity constraints.

DOCUMENT procedure
manipulates procedure output that is stored in ODS documents. PROC
DOCUMENT enables a user to browse and edit output objects and hierarchies,
and to replay them to any supported ODS output format. See SAS Output Delivery
System User’s Guide for details.

EXPLODE procedure
produces oversized printing of text to generate displays such as posters, flip
charts, and header pages.

EXPORT procedure
reads data from a SAS data set and writes it to an external data source.

FORMAT procedure
creates user-defined informats and formats for character or numeric variables.
PROC FORMAT also prints the contents of a format library, creates a control data
set to write other informats or formats, and reads a control data set to create
informats or formats.

FORMS procedure
produces labels for envelopes, mailing labels, external tape labels, file cards, and
other printer forms that have a regular pattern.

FREQ procedure
produces one-way to n-way frequency tables and reports frequency counts. PROC
FREQ can compute chi-square tests for one-way to n-way tables, tests and
measures of association and of agreement for two-way to n-way cross-tabulation
tables, risks and risk difference for 2x 2 tables, trends tests, and
Cochran-Mantel-Haenszel statistics. You can also create output data sets.

FSLIST procedure
displays the contents of an external file or copies text from an external file to the
SAS Text Editor.

IMPORT procedure
reads data from an external data source and writes them to a SAS data set.

MEANS procedure
computes descriptive statistics for numeric variables across all observations and
within groups of observations. You can also create an output data set that contains

12 Brief Descriptions of Base SAS Procedures A Chapter 1

specific statistics and identifies minimum and maximum values for groups of
observations.

OPTIONS procedure
lists the current values of all SAS system options.

OPTLOAD procedure
reads SAS system option settings from the SAS registry or a SAS data set, and
puts them into effect.

OPTSAVE procedure
saves SAS system option settings to the SAS registry or a SAS data set.

PDS procedure
lists, deletes, and renames the members of a partitioned data set. See the SAS
documentation for your operating environment for more information.

PDSCOPY procedure
copies partitioned data sets from disk to tape, disk to disk, tape to tape, or tape to
disk. See the SAS documentation for your operating environment for more
information.

PLOT procedure
produces scatter plots that graph one variable against another. The coordinates of
each point on the plot correspond to the two variables’ values in one or more
observations of the input data set.

PMENU procedure
defines menus that you can use in DATA step windows, macro windows, and
SAS/AF windows, or in any SAS application that enables you to specify customized
menus.

PRINT procedure
prints the observations in a SAS data set, using all or some of the variables.
PROC PRINT can also print totals and subtotals for numeric variables.

PRINTTO procedure
defines destinations for SAS procedure output and the SAS log.

PRTDEF procedure
creates printer definitions for individual SAS users or all SAS users.

PRTEXP procedure
exports printer definition attributes to a SAS data set so that they can be easily
replicated and modified.

RANK procedure
computes ranks for one or more numeric variables across the observations of a
SAS data set. The ranks are written to a new SAS data set. Alternatively, PROC
RANK produces normal scores or other rank scores.

REGISTRY procedure
imports registry information into the USER portion of the SAS registry.

RELEASE procedure
releases unused space at the end of a disk data set in the OS/390 environment.
See the SAS documentation for this operating environment for more information.

REPORT procedure
combines features of the PRINT, MEANS, and TABULATE procedures with
features of the DATA step in a single report-writing tool that can produce both
detail and summary reports.

Choosing the Right Procedure /A Brief Descriptions of Base SAS Procedures 13

SORT procedure
sorts observations in a SAS data set by one or more variables. PROC SORT stores
the resulting sorted observations in a new SAS data set or replaces the original
data set.

SOURCE procedure
provides an easy way to back up and process source library data sets. See the SAS
documentation for your operating environment for more information.

SQL procedure
implements a subset of the Structured Query Language (SQL) for use in SAS. SQL
is a standardized, widely used language that retrieves and updates data in SAS
data sets, SQL views, and DBMS tables, as well as views based on those tables.
PROC SQL can also create tables and views, summaries, statistics, and reports
and perform utility functions such as sorting and concatenating.

STANDARD procedure
standardizes some or all of the variables in a SAS data set to a given mean and
standard deviation and produces a new SAS data set that contains the
standardized values.

SUMMARY procedure
computes descriptive statistics for the variables in a SAS data across all
observations and within groups of observations and outputs the results to a new
SAS data set.

TABULATE procedure
displays descriptive statistics in tabular form. The value in each table cell is
calculated from the variables and statistics that define the pages, rows, and
columns of the table. The statistic associated with each cell is calculated on values
from all observations in that category. You can write the results to a SAS data set.

TAPECOPY procedure
copies an entire tape volume or files from one or more tape volumes to one output
tape volume. See the SAS documentation for your operating environment for more
information.

TAPELABEL procedure
lists the label information of an IBM standard-labeled tape volume under the
0S/390 environment. See the SAS documentation for this operating environment
for more information.

TEMPLATE procedure
customizes ODS output for an entire SAS job or a single ODS output object. See
SAS Output Delivery System User’s Guide for details.

TIMEPLOT procedure
produces plots of one or more variables over time intervals.

TRANSPOSE procedure
transposes a data set that changes observations into variables and vice versa.

TRANTAB procedure
creates, edits, and displays customized translation tables.

UNIVARIATE procedure
computes descriptive statistics (including quantiles), confidence intervals, and
robust estimates for numeric variables. Provides detail on the distribution of
numeric variables, which include tests for normality, plots to illustrate the
distribution, frequency tables, and tests of location.

14

15

CHAPTER

Fundamental Concepts for Using
Base SAS Procedures

Language Concepts 16
Temporary and Permanent SAS Data Sets 16
USER Data Library 17
SAS System Options 17
Data Set Options 17
Global Statements 18
Procedure Concepts 19
Input Data Sets 19
RUN-Group Processing 19
Creating Titles That Contain BY-Group Information 19
Suppressing the Default BY Line 19
Inserting BY-Group Information into a Title 20
Example: Inserting a Value from Each BY Variable into the Title 20
Example: Inserting the Name of a BY Variable into a Title 22
Example: Inserting the Complete BY Line into a Title 23
Error Processing of BY-Group Specifications 24
Shortcuts for Specifying Lists of Variable Names 24
Formatted Values 25
Example: Printing the Formatted Values for a Data Set 25
Example: Grouping or Classifying Formatted Data 27
Example: Temporarily Associating a Format with a Variable 28
Example: Temporarily Dissociating a Format from a Variable 29
Formats and BY-Group Processing 30
Formats and Error Checking 30
Processing All the Data Sets in a Library 30
Operating Environment-Specific Procedures 30
Statistic Descriptions 31
Computational Requirements for Statistics 32
Output Delivery System 32
What Is the Output Delivery System? 32
Gallery of ODS Samples 33
Traditional SAS Output 33
Postscript Output 35
HTML Output 36
RTF Output 36
PDF Output 37
XML Output 38
Commonly-Used ODS Terminology 39
How Does ODS Work? 40
Components of SAS Output 40
Features of ODS 42

16 Language Concepts A Chapter 2

What are ODS Destinations? 42
Definition of Destination-Independent Input 42
The SAS Formatted Destinations 43
The Third-Party Formatted Destinations 44
What Controls the Formatting Features of Third-Party Formats? 45
ODS Destinations and System Resources 46
What Are Table Definitions, Table Elements, and Table Attributes? 46
What Are Style Definitions, Style Elements, and Style Attributes? 47
What Style Definitions Are Shipped with the Software? 47
How do I Use Style Definitions with Base Procedures? 48
Customized ODS Output 48
SAS Output 48
Selection and Exclusion Lists 48
How Does ODS Determine the Destinations for an Output Object? 49
Customized Output for an Output Object 50
Conclusion 51

Language Concepts

Temporary and Permanent SAS Data Sets

SAS data sets can have a one-level name or a two-level name. Typically, names of
temporary SAS data sets have only one level and are stored in the WORK data library.
The WORK data library is defined automatically at the beginning of the SAS session
and is automatically deleted at the end of the SAS session. Procedures assume that SAS
data sets that are specified with a one-level name are to be read from or written to the
WORK data library, unless you specify a USER data library (see “USER Data Library”
on page 17). For example, the following PROC PRINT steps are equivalent. The second
PROC PRINT step assumes that the DEBATE data set is in the WORK data library:

proc print data=work.debate;

run;

proc print data=debate;

run;

The SAS system options WORK=, WORKINIT, and WORKTERM affect how you
work with temporary and permanent libraries. See SAS Language Reference:
Dictionary for complete documentation.

Typically, two-level names represent permanent SAS data sets. A two-level name
takes the form libref.SAS-data-set. The libref is a name that is temporarily associated
with a SAS data library. A SAS data library is an external storage location that stores
SAS data sets in your operating environment. A LIBNAME statement associates the
libref with the SAS data library. In the following PROC PRINT step, PROCLIB is the
libref and EMP is the SAS data set within the library:

libname proclib ’'SAS-data-library’;
proc print data=proclib.emp;

run;

Fundamental Concepts for Using Base SAS Procedures A Data Set Options 17

USER Data Library

You can use one-level names for permanent SAS data sets by specifying a USER data
library. You can assign a USER data library with a LIBNAME statement or with the
SAS system option USER=. After you specify a USER data library, the procedure
assumes that data sets with one-level names are in the USER data library instead of
the WORK data library. For example, the following PROC PRINT step assumes that
DEBATE is in the USER data library:

options user='SAS-data-library’;
proc print data=debate;

run;

Note: If you have a USER data library defined, then you can still use the WORK
data library by specifying WORK.SAS-data-set.

SAS System Options

Some SAS system option settings affect procedure output. The following are the SAS
system options that you are most likely to use with SAS procedures:

BYLINE | NOBYLINE

DATE | NODATE

DETAILS | NODETAILS

FMTERR | NOFMTERR

FORMCHAR=

FORMDLIM=

LABEL|NOLABEL

LINESIZE=

NUMBER | NONUMBER

PAGENO=

PAGESIZE=

REPLACE | NOREPLACE

SOURCE | NOSOURCE

For a complete description of SAS system options, see SAS Language Reference:
Dictionary.

Data Set Options

Most of the procedures that read data sets or create output data sets accept data set
options. SAS data set options appear in parentheses after the data set specification.
Here is an example:

proc print data=stocks(obs=25 pw=green);

The individual procedure chapters contain reminders that you can use data set
options where it is appropriate.
SAS data set options are

ALTER= OBS=
BUFNO= OPTSET=
BUFSIZE= OUTREP=

CNTLLEV= POINTOBS=

18 Global Statements A Chapter 2

COMPRESS= PwW=
DLDMGACTION= PWREQ=
DROP= READ=
ENCODING= RENAME=
ENCRYPT= REPEMPTY=
FILECLOSE= REPLACE=
FIRSTOBS= REUSE=
GENMAX= ROLE=
GENNUM= SORTEDBY=
IDXNAME= SORTSEQ=
IDXWHERE= TOBSNO=
IN= TYPE=
INDEX= WHERE=
KEEP= WHEREUP=
LABEL= WRITE=

For a complete description of SAS data set options, see SAS Language Reference:
Dictionary.

Global Statements

You can use these global statements anywhere in SAS programs except after a
DATALINES, CARDS, or PARMCARDS statement:

comment ODS

DM OPTIONS
ENDSAS PAGE
FILENAME RUN
FOOTNOTE %RUN
%INCLUDE SASFILE
LIBNAME SKIP
%LIST TITLE
LOCK X

For information about all but the ODS statement, refer to SAS Language Reference:
Dictionary. For information about the ODS statement, refer to “Output Delivery
System” on page 32 and to SAS Output Delivery System User’s Guide.

Fundamental Concepts for Using Base SAS Procedures /A Creating Titles That Contain BY-Group Information 19

Procedure Goncepts

Input Data Sets

Many base procedures require an input SAS data set. You specify the input SAS data
set by using the DATA= option in the procedure statement, as in this example:

proc print data=emp;

If you omit the DATA= option, the procedure uses the value of the SAS system option
LAST=. The default of _LAST_= is the most recently created SAS data set in the
current SAS job or session. _LAST_= is described in detail in SAS Language Reference:
Dictionary.

RUN-Group Processing

RUN-group processing enables you to submit a PROC step with a RUN statement
without ending the procedure. You can continue to use the procedure without issuing
another PROC statement. To end the procedure, use a RUN CANCEL or a QUIT
statement. Several base SAS procedures support RUN-group processing:

CATALOG

DATASETS

PLOT

PMENU

TRANTAB

See the section on the individual procedure for more information.

Note: PROC SQL executes each query automatically. Neither the RUN nor RUN
CANCEL statement has any effect. A

Creating Titles That Contain BY-Group Information

BY-group processing uses a BY statement to process observations that are ordered,
grouped, or indexed according to the values of one or more variables. By default, when
you use BY-group processing in a procedure step, a BY line identifies each group. This
section explains how to create titles that serve as customized BY lines.

Suppressing the Default BY Line

When you insert BY-group processing information into a title, you usually want to
eliminate the default BY line. To suppress it, use the SAS system option NOBYLINE.

Note: You must use the NOBYLINE option if you insert BY-group information into
titles for the following base SAS procedures:

MEANS
PRINT
STANDARD

20 Creating Titles That Contain BY-Group Information A Chapter 2

SUMMARY

If you use the BY statement with the NOBYLINE option, then these procedures always
start a new page for each BY group. This behavior prevents multiple BY groups from
appearing on a single page and ensures that the information in the titles matches the
report on the pages. A

Inserting BY-Group Information into a Title
The general form for inserting BY-group information into a title is
#BY-specification<.suffix>

BY-specification
is one of the following:

BYVALn | BYVAL(BY-variable)
places the value of the specified BY variable in the title. You specify the BY
variable with one of the following:

n
is the nth BY variable in the BY statement.

BY-variable
is the name of the BY variable whose value you want to insert in the
title.

BYVARn | BYVAR(BY-variable)
places the label or the name (if no label exists) of the specified BY variable in
the title. You designate the BY variable with one of the following:

n
is the nth BY variable in the BY statement.

BY-variable
is the name of the BY variable whose name you want to insert in the
title.

BYLINE
inserts the complete default BY line into the title.

suffix
supplies text to place immediately after the BY-group information that you insert
in the title. No space appears between the BY-group information and the suffix.

Example: Inserting a Value from Each BY Variable into the Title

This example

1 creates a data set, GROC, that contains data for stores from four regions. Each
store has four departments. See “GROC” on page 1626 for the DATA step that
creates the data set.

2 sorts the data by Region and Department.

3 uses the SAS system option NOBYLINE to suppress the BY line that normally
appears in output that is produced with BY-group processing.

4 uses PROC CHART to chart sales by Region and Department. In the first TITLE
statement, #BYVALZ2 inserts the value of the second BY variable, Department, into
the title. In the second TITLE statement, #BYVAL(Region) inserts the value of
Region into the title. The first period after Region indicates that a suffix follows.
The second period is the suffix.

Fundamental Concepts for Using Base SAS Procedures /A Creating Titles That Contain BY-Group Information

5 uses the SAS system option BYLINE to return to the creation of the default BY

line with BY-group processing.

data groc; @

input Region $9. Manager $ Department $ Sales;

datalines;

Southeast Hayes
Southeast Hayes
Southeast Hayes
Southeast Hayes
...more lines of data...
Northeast Fuller
Northeast Fuller
Northeast Fuller
Northeast Fuller

r

proc sort data=groc; @
by region department;

run;

Paper
Produce
Canned
Meat

Paper
Produce
Canned
Meat

options nobyline nodate pageno=1

linesize=64 pagesize=20;

proc chart data=groc;

by region department;

250
100
120

80

200
300
420
125

vbar manager / type=sum sumvar=sales;
titlel 'This chart shows #byval2 sales’;
title2 ’'in the #byval(region)..’;

run;

options byline; (5]

This partial output shows two BY groups with customized BY lines:

Sales Sum

400 + Kk Kk ok
| *kkkk
300 + KKKk ok
| *kkkk
200 + Kok Kk ok
| *kkkk
100 + Kok Kk ok
| *kkkk
Aikmann

*kkk*k

*kkk*k

*kkk*k

*kkk*k

*kkk*k

This chart shows Canned sales
in the Northwest.

*kkk*k

*kkk*k

*kkk*k

*kkk*k

*kk k)

*kkk*k

*kkk*k

*kkk*k

Jeffreys

Manager

21

22

Creating Titles That Contain BY-Group Information A Chapter 2

Sales Sum

75

60

45

30

15

—t—+—+—+—+

This chart shows Meat sales 2

in the Northwest.

*kkk*k

*kk k)

*kkk*k

*kkk*k

*kkk*k

*kkk*k

*kkk*k

*kkk*k

*kkk*k

*kkk*k

Manager

*kkk*k
*kkk*k
*kkk*k
*kkk*k

Jeffreys

Example: Inserting the Name of a BY Variable into a Title

This example inserts the name of a BY variable and the value of a BY variable into

the title. The program

1 uses the SAS system option NOBYLINE to suppress the BY line that normally
appears in output that is produced with BY-group processing.

2 uses PROC CHART to chart sales by Region. In the first TITLE statement,
#BYVAR(Region) inserts the name of the variable Region into the title. (If Region
had a label, #BYVAR would use the label instead of the name.) The suffix al is
appended to the label. In the second TITLE statement, #BYVALI1 inserts the value
of the first BY variable, Region, into the title.

3 uses the SAS system option BYLINE to return to the creation of the default BY
line with BY-group processing.

options nobyline nodate pageno=1

linesize=64 pagesize=20;

proc chart data=groc;

by region;

vbar manager / type=mean sumvar=sales;

titlel ’#byvar(region).al Analysis’;

title2 ‘for the #byvall’;

run;

options byline;

Fundamental Concepts for Using Base SAS Procedures /A Creating Titles That Contain BY-Group Information 23

This partial output shows one BY group with a customized BY line:

Regional Analysis 1
for the Northwest

Sales Mean

300 + * %k k kK
| *kkokk

200 + *kkk*k *kkk*k
| *kkk*k *kkk*k *kkk*k

100 + *kkk*k *kkk*k *kkk*k
| *kkk*k *kkk*k *kkk*k
Aikmann Duncan Jeffreys

Manager

Example: Inserting the Complete BY Line into a Title

This example inserts the complete BY line into the title. The program

1 uses the SAS system option NOBYLINE to suppress the BY line that normally
appears in output that is produced with BY-group processing.

2 uses PROC CHART to chart sales by Region and Department. In the TITLE
statement, #BYLINE inserts the complete BY line into the title.

3 uses the SAS system option BYLINE to return to the creation of the default BY
line with BY-group processing.

options nobyline nodate pageno=1
linesize=64 pagesize=20; @
proc chart data=groc; @
by region department;
vbar manager / type=sum sumvar=sales;
title 'Information for #byline’;
run;

options byline; @

This partial output shows two BY groups with customized BY lines:

Information for Region=Northwest Department=Canned 1

Sales Sum

400 + *kkk*k *kkk*k
| *kkokk *kkokk

300 + *kkk*k *kkk*k
| *kkk*k *kkk*k *kkk*k

200 + *kkk*k *kkk*k *kk k)
| *kkk*k *kkk*k *kkk*k

100 + *kkk*k *kkk*k *kkk*k
| *kkk*k *kkk*k *kkk*k
Aikmann Duncan Jeffreys

Manager

24 Shortcuts for Specifying Lists of Variable Names A Chapter 2

Information for Region=Northwest Department=Meat 2
Sales Sum
75 + *kkk*k *kkk*k
| *kkokk *kkokk
60 + *kkk*k *kkk*k
| *kkokk *kkokk
45 + *kkk*k *kkk*k
| *kkokk *kkokk
30 + *kkk*k *kkk*k *kkk*k
| *kkk*k *kkk*k *kkk*k
15 + *kkk*k *kkk*k *kkk*k
| *kkk*k *kkk*k *kkk*k
Aikmann Duncan Jeffreys
Manager

Error Processing of BY-Group Specifications

SAS does not issue error or warning messages for incorrect #BYVAL, #BYVAR, or
#BYLINE specifications. Instead, the text of the item simply becomes part of the title.

Shortcuts for Specifying Lists of Variahle Names

Several statements in procedures allow multiple variable names. You can use these
shortcut notations instead of specifying each variable name:

Notation Meaning

x1-xn specifies variables X1 through Xn. The numbers must be
consecutive.

X: specifies all variables that begin with the letter X.

x--a specifies all variables between X and A, inclusive. This

notation uses the position of the variables in the data set.

x-numeric-a specifies all numeric variables between X and A, inclusive.
This notation uses the position of the variables in the data set.

x-character-a specifies all character variables between X and A, inclusive.
This notation uses the position of the variables in the data set.

numeric specifies all numeric variables.
character specifies all character variables.
all specifies all variables.

Note: You cannot use shortcuts to list variable names in the INDEX CREATE
statement in PROC DATASETS. A

See SAS Language Reference: Concepts for complete documentation.

Fundamental Concepts for Using Base SAS Procedures /A Formatted Values 25

Formatted Values

Typically, when you print or group variable values, base SAS procedures use the
formatted values. This section contains examples of how base procedures use formatted
values.

Example: Printing the Formatted Values for a Data Set

The following example prints the formatted values of the data set
PROCLIB.PAYROLL. (See “PROCLIB.PAYROLL” on page 1648 for the DATA step that
creates this data set.) In PROCLIB.PAYROLL, the variable Jobcode indicates the job
and level of the employee. For example, TAl indicates that the employee is at the
beginning level for a ticket agent.

libname proclib ‘SAS-data-library’;

options nodate pageno=1
linesize=64 pagesize=40;
proc print data=proclib.payroll(obs=10)
noobs;
title ‘PROCLIB.PAYROLL';
title2 'First 10 Observations Only’;

run;

This is a partial printing of PROCLIB.PAYROLL.:

PROCLIB.PAYROLL 1
First 10 Observations Only

Id

Number Gender Jobcode Salary Birth Hired
1919 M TA2 34376 12SEP60 04JUN87
1653 F ME2 35108 150CT64 09AUG90
1400 M ME1 29769 05NOV67 160CT90
1350 F FA3 32886 31AUG65 29JUL90
1401 M TA3 38822 13DEC50 17NOV85
1499 M ME3 43025 26APR54 07JUN8O
1101 M SCP 18723 06JUNG62 010CT90
1333 M PT2 88606 30MARG61 10FEB81
1402 M TA2 32615 17JAN63 02DEC90
1479 F TA3 38785 22DEC68 050CT89

The following PROC FORMAT step creates the format $JOBFMT., which assigns
descriptive names for each job:

proc format;
value $jobfmt
'FAl'='Flight Attendant Trainee’
'FA2'='Junior Flight Attendant’
'FA3’'='Senior Flight Attendant’
'ME1l'='Mechanic Trainee’
'ME2'='Junior Mechanic’
'ME3'='Senior Mechanic’

26 Formatted Values A Chapter 2

'PT1'='Pilot Trainee’
'PT2'='Junior Pilot’
'PT3'='Senior Pilot’
'TAl’'='Ticket Agent Trainee’

'TA2’'='Junior Ticket Agent’
'TA3’'='Senior Ticket Agent’
'NAl’='Junior Navigator’
'NA2'='Senior Navigator’

"BCK'='Baggage Checker’
"SCP'='Skycap’;

run;

The FORMAT statement in this PROC MEANS step temporarily associates the
$JOBFMT. format with the variable Jobcode:

options nodate pageno=1
linesize=64 pagesize=60;
proc means data=proclib.payroll mean max;
class jobcode;
var salary;
format jobcode $jobfmt.;
title ’'Summary Statistics for’;
title2 ’'Each Job Code’;

run;

Fundamental Concepts for Using Base SAS Procedures /A Formatted Values 27

PROC MEANS produces this output, which uses the $JOBFMT. format:

Summary Statistics for 1
Each Job Code
The MEANS Procedure
Analysis Variable : Salary
N

Jobcode Obs Mean Maximum
Baggage Checker 9 25794.22 26896.00
Flight Attendant Trainee 11 23039.36 23979.00
Junior Flight Attendant 16 27986.88 28978.00
Senior Flight Attendant 7 32933.86 33419.00
Mechanic Trainee 8 28500.25 29769.00
Junior Mechanic 14 35576.86 36925.00
Senior Mechanic 7 42410.71 43900.00
Junior Navigator 5 42032.20 43433.00
Senior Navigator 3 52383.00 53798.00
Pilot Trainee 8 67908.00 71349.00
Junior Pilot 10 87925.20 91908.00
Senior Pilot 2 10504.50 11379.00
Skycap 7 18308.86 18833.00
Ticket Agent Trainee 9 27721.33 28880.00
Junior Ticket Agent 20 33574.95 34803.00
Senior Ticket Agent 12 39679.58 40899.00

Note: Because formats are character strings, formats for numeric variables are
ignored when the values of the numeric variables are needed for mathematical
calculations. A

Example: Grouping or Classifying Formatted Data

If you use a formatted variable to group or classify data, then the procedure uses the
formatted values. The following example creates and assigns a format, §CODEFMT.,
that groups the levels of each job code into one category. PROC MEANS calculates
statistics based on the groupings of the $CODEFMT. format.

proc format;
value S$codefmt
'FAl’,'FA2’','FA3’'='Flight Attendant’
'ME1’,'ME2’, 'ME3'='Mechanic’
'PT1’,'PT2’,'PT3'='Pilot’
"TAl’,'TA2’,'TA3’'='Ticket Agent’
'NAl’,'NA2'='Navigator’
"BCK’'='Baggage Checker’

28

Formatted Values A Chapter 2

'SCP'='Skycap’;

run;

options nodate pageno=1
linesize=64 pagesize=40;
proc means data=proclib.payroll mean max;
class jobcode;
var salary;
format jobcode $codefmt.;
title ’'Summary Statistics for Job Codes’;

title2 ’(Using a Format that Groups the Job Codes)’;

run;

PROC MEANS produces this output:

Summary Statistics for Job Codes

The MEANS Procedure

Analysis Variable : Salary

Example: Temporarily Associating a Format with a Variable

If you want to associate a format with a variable temporarily, then you can use the
FORMAT statement. For example, the following PROC PRINT step associates the
DOLLARS. format with the variable Salary for the duration of this PROC PRINT step

only:

options nodate pageno=1
linesize=64 pagesize=40;
proc print data=proclib.payroll(obs=10)
noobs;
format salary dollar8.;
title ’'Temporarily Associating a Format’;
title2 ‘with the Variable Salary’;

run;

(Using a Format that Groups the Job Codes)

Maximum

26896.

33419.

43900.

53798.

91908.

18833.

00

00

00

00

00

00

Jobcode Obz Mean
Baggage Checker s 25794.22 26896.00
Flight Attendant 34 27404.71
Mechanic 29 35274.24
Navigator 8 45913.75
Pilot 20 72176.25
Skycap 7 18308.86
Ticket Agent 41 34076.73

Fundamental Concepts for Using Base SAS Procedures /A Formatted Values

PROC PRINT produces this output:

Id

1919
1653
1400
1350
1401
1499
1101
1333
1402
1479

Example: Temporarily Dissociating a Format from a Variable

If a variable has a permanent format that you do not want a procedure to use, then
temporarily dissociate the format from the variable by using a FORMAT statement.

In this example, the FORMAT statement in the DATA step permanently associates
the $YRFMT. variable with the variable Year. Thus, when you use the variable in a

MRERERRERAMRAR

Number Gender

Temporarily Associating a Format
with the Variable Salary

Jobcode

TA2
ME2
ME1
FA3
TA3
ME3
SCP
PT2
TA2
TA3

Salary

$34,376
$35,108
$29,769
$32,886
$38,822
$43,025
$18,723
$88,606
$32,615
$38,785

Birth

12SEP60
150CT64
05NOV67
31AUG65
13DEC50
26APR54
06JUN62
30MAR61
17JAN63
22DEC68

Hired

04JUN87
09AUG90
160CT90
29JUL90
17NOV85
07JUN8O
010CT90
10FEBS1
02DEC90
050CT89

29

PROC step, the procedure uses the formatted values. The PROC MEANS step, however,
contains a FORMAT statement that dissociates the $YRFMT. format from Year for this

PROC MEANS step only. PROC MEANS uses the stored value for Year in the output.

proc format;

value S$yrfmt

run;
data debate;

"l1’='Freshman’
'2'='Sophomore’
'3’='Junior’
"4'='Senior’;

input Name $ Gender $

format year $yrfmt.;

datalines;

Capiccio m 1
Bagwell £ 2
Metcalf m 2
Gray £f 3
Baglione f 4
Hall m 4

r

3.

W W w w

598
.722
.342
177
.000
.574

Tucker
Berry
Gold
Syme
Carr
Lewis

options nodate pageno=1

Year $ GPA

.901
.198
.609
.883
.750
.421

8 8 3 3B
s W W N e
W wwwww

linesize=64 pagesize=40;

proc means data=debate mean maxdec=2;

class year;

format year;
title ’'Average GPA’;

run;

ee;

30

Processing All the Data Sets in a Library A Chapter 2

PROC MEANS produces this output, which does not use the YRFMT. format:

Average GPA 1
The MEANS Procedure

Analysis Variable : GPA

Year ObI: Mean
T e
2 3 3.42
3 3 3.56
4 4 3.69

Formats and BY-Group Processing

When a procedure processes a data set, it checks to see if a format is assigned to the
BY variable. If it is, then the procedure adds observations to the current BY groups
until the formatted value changes. If nonconsecutive internal values of the BY
variable(s) have the same formatted value, then the values are grouped into different
BY groups. This results in two BY groups with the same formatted value. Further, if
different and consecutive internal values of the BY variable(s) have the same formatted
value, then they are included in the same BY group.

Formats and Error Checking

If SAS cannot find a format, then it stops processing and prints an error message in
the SAS log. You can suppress this behavior with the SAS system option NOFMTERR.
If you use NOFMTERR, and SAS cannot find the format, then SAS uses a default
format and continues processing. Typically, for the default, SAS uses the BESTw.
format for numeric variables and the $w. format for character variables.

Note: To ensure that SAS can find user-written formats, use the SAS system option
FMTSEARCH=. How to store formats is described in “Storing Informats and Formats”
on page 466. A

Processing All the Data Sets in a Library

You can use the SAS Macro Facility to run the same procedure on every data set in a
library. The macro facility is part of base SAS software.

Example 9 on page 875 shows how to print all the data sets in a library. You can use
the same macro definition to perform any procedure on all the data sets in a library.
Simply replace the PROC PRINT piece of the program with the appropriate procedure
code.

Operating Environment-Specific Procedures

Several base SAS procedures are specific to one operating environment or one
release. Appendix 2, “Operating Environment-Specific Procedures,” on page 1613
contains a table with additional information. These procedures are described in more
detail in the SAS documentation for operating environments.

Fundamental Concepts for Using Base SAS Procedures /A Statistic Descriptions 31

Statistic Descriptions

Table 2.1 on page 31 identifies common descriptive statistics that are available in

several base procedures. See “Keywords and Formulas” on page 1578 for more detailed
information about available statistics and theoretical information.

Table 2.1 Common Descriptive Statistics That Base Procedures Calculate

Statistic

Description

Procedures

confidence intervals

CSS

Cv

goodness-of-fit tests
KURTOSIS
MAX

MEAN

MEDIAN

MIN

MODE

NMISS

NOBS

PCTN

PCTSUM

Pearson correlation

percentiles

RANGE

corrected sum of
squares

coefficient of variation

kurtosis

largest (maximum)
value

mean

median (50" percentile)

smallest (minimum)
value

most frequent value (if
not unique, the
smallest mode is used)

number of observations
on which calculations
are based

number of missing
values

number of observations

the percentage of a cell
or row frequency to a
total frequency

the percentage of a cell
or row sum to a total
sum

range

FREQ, MEANS/SUMMARY, TABULATE, UNIVARIATE

CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

MEANS/SUMMARY, REPORT, SQL, TABULATE,
UNIVARIATE

FREQ, UNIVARIATE
MEANS/SUMMARY, TABULATE, UNIVARIATE

CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

CORR (for nonparametric correlation measures),
MEANS/SUMMARY, TABULATE, UNIVARIATE

CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

UNIVARIATE

CORR, FREQ, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

FREQ, MEANS/SUMMARY, REPORT, SQL, TABULATE,
UNIVARIATE

MEANS/SUMMARY, UNIVARIATE
REPORT, TABULATE

REPORT, TABULATE

CORR

FREQ, MEANS/SUMMARY, REPORT, TABULATE,
UNIVARIATE

CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

32 Computational Requirements for Statistics A Chapter 2
Statistic Description Procedures
robust statistics trimmed means, UNIVARIATE

SKEWNESS

Winsorized means

skewness

Spearman correlation

MEANS/SUMMARY, TABULATE, UNIVARIATE
CORR

STD standard deviation CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE
STDERR the standard error of MEANS/SUMMARY, REPORT, SQL, TABULATE,
the mean UNIVARIATE
SUM sum CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE
SUMWGT sum of weights CORR, MEANS/SUMMARY, REPORT, SQL,

tests of location

TABULATE, UNIVARIATE
UNIVARIATE

USS uncorrected sum of CORR, MEANS/SUMMARY, REPORT, SQL,
squares TABULATE, UNIVARIATE
VAR variance CORR, MEANS/SUMMARY, REPORT, SQL,

TABULATE, UNIVARIATE

Computational Requirements for Statistics

The following requirements are computational requirements for the statistics that
are listed in Table 2.1 on page 31. They do not describe recommended sample sizes.

o N and NMISS do not require any nonmissing observations.

o SUM, MEAN, MAX, MIN, RANGE, USS, and CSS require at least one nonmissing
observation.

o VAR, STD, STDERR, and CV require at least two observations.
o CV requires that MEAN is not equal to zero.

Statistics are reported as missing if they cannot be computed.

Output Delivery System

What Is the Output Delivery System?

Prior to Version 7, most SAS procedures generated output that was designed for a
traditional line-printer. This type of output has limitations that prevents you from
getting the most value from your results:

0 Traditional SAS output is limited to monospace fonts. In a time of desktop
document editors and publishing systems, you want more versatility in printed
output.

0 Some commonly used procedures do not produce output data sets. Prior to ODS, if
you wanted to use output from one of these procedures as input to another

Fundamental Concepts for Using Base SAS Procedures A Gallery of 0DS Samples 33

procedure, then you relied on PROC PRINTTO and the DATA step to retrieve
results that otherwise could not be stored in an output data set.

ODS is designed to overcome these limitations and make it easier for you to format
your output. The SAS Output Delivery System (ODS) gives you greater flexibility in
generating, storing, and reproducing SAS procedure and DATA step output along with a
wide range of formatting options. ODS provides formatting functionality that is not
available from individual procedures or the DATA step alone.

Gallery of 0DS Samples

Here is a sample of the different kinds of formatted output that you can produce with
ODS. The input file contains sales records for a company, TruBlend Coffee Makers, that
distributes coffee machines.

Traditional SAS Output

Traditional SAS output is Listing output. You do not need to change your SAS
programs to create listing output. By default, you continue to create this kind of output
even if you also want to create a type of output that contains more formatting.

34 Gallery of ODS Samples A Chapter 2

Output 2.1 Listing Output

Average Quarterly Sales Amount by Each Sales Representative 1
————————————————————————————————— Quarter=]l -—-————————
The MEANS Procedure

Analysis Variable : AmountSold
N
SalesRep Obs N Mean Std Dev Minimum Maximum
Garcia 8 8 14752.5 22806.1 495.0 63333.7
Hollingsworth 5 5 11926.9 12165.2 774.3 31899.1
Jensen 5 5 10015.7 8009.5 3406.7 20904.8
Average Quarterly Sales Amount by Each Sales Representative 2
————————————————————————————————— Quarter=2 -—————————
The MEANS Procedure
Analysis Variable : AmountSold
N
SalesRep Obs N Mean Std Dev Minimum Maximum
Garcia 6 6 18143.3 20439.6 1238.8 53113.6
Hollingsworth 6 6 16026.8 14355.0 1237.5 34686.4
Jensen 6 6 12455.1 12713.7 1393.7 34376.7
Average Quarterly Sales Amount by Each Sales Representative 3
————————————————————————————————— Quarter=3 -——————————
The MEANS Procedure
Analysis Variable : AmountSold
N
SalesRep Obs N Mean Std Dev Minimum Maximum
Garcia 21 21 10729.8 11457.0 2787.3 38712.5
Hollingsworth 15 15 7313.6 7280.4 1485.0 30970.0
Jensen 21 21 10585.3 7361.7 2227.5 27129.7
Average Quarterly Sales Amount by Each Sales Representative 4
————————————————————————————————— Quarter=4 -—————————
The MEANS Procedure
Analysis Variable : AmountSold
N
SalesRep Obs N Mean Std Dev Minimum Maximum
Garcia 5 5 11973.0 10971.8 3716.4 30970.0
Hollingsworth 6 6 13624.4 12624.6 5419.8 38093.1
Jensen 6 6 19010.4 15441.0 1703.4 38836.4

Fundamental Concepts for Using Base SAS Procedures

Postscript Output

With ODS, you can produce output in PostScript format.

I

n
o
i
il

iy

Lt

sl

“"H“"m Hm ” e e
Eeett]] 08 bt e bl bon bbb
H‘||||“::||||:|:::|llli:Hﬂlﬂll::::IIIJMJ:"H“ mHIIIIH""H“"IH "IIIIIII]III]IIIII]III"IIIIIIIIHIIII] |||||”"mlﬂ|Il|||||||||1||I|||1||||||||||||||‘ ‘ ||||||||||1|Il‘|||||
P RRREL L e e
MHMMJ
“"l!!N!L‘!!!!HH!!L‘H"NN N Nﬂﬂ!ﬂﬂ!::i N \W‘ﬂ!ﬂ\\H“\HHHH!!N”"!!H!!N I\!H!!H!!!NTT!!!!!H!!ll\HH\L‘!!!TH!!!l‘l!!!!!!!!!!H!!H!!N\“\HﬂTN!!!H!!T!H!!Hﬂ!!!m!!!l
MMWMWWWWMWWMMMMN 1@%“\\Mmm\\mmmm
B
eI
HHMMWWM||MM“IHWHMW%||\HH\\HHH
| ||||‘H!‘lm!!muhm 1|‘ N N “‘Imﬂ |J|1|I|::1 N “L MH Lu‘npw‘ IIII1II1IIH ||||I|”|1ﬂ”m L i ‘IIII||||1|||||1|||Im"‘I‘IﬂII‘II||I||||||1||II1IIIIIIII!‘
|1|||||||||1| 1|||I|1|||||1|||1|‘ H !l ‘ ‘ H ‘ i |'|' ﬂ|"| IIH ‘ ‘ ||‘||I||||l il ‘ ‘Illlllﬂﬂlllll ||||||‘
S e E A
TR Gl v S s
R T
HHHMMHMMMWHNH#!HWWVWH Lk
o

“‘ H'”WW”W“““WMW““\HH\MMW\
HVHWWW\W Ll MHMmmMMMMMHWMWWWJ\WWMM
“ll“ \HM
e LTl e M\MH|\M|||\
| |

|) i g
HMmM\\WMM""wMMMH]Mmmwummwmmmmmm
HHMHH\ HH\HHMHHM\HH!!!‘4!!!1!!!\!!‘!!H!L‘HHHHH\HMHHHNH I
i il
U
ARRALDNRI G

R

A Gallery of 0DS Samples 35

36 Gallery of ODS Samples A Chapter 2

HTML Output

With ODS, you can produce output in Hypertext Markup Language (HTML.) You can
browse these files with Internet Explorer, Netscape, or any other browser that fully
supports the HTML 3.2 tagset.

Note: To create HTML 4.0 tagsets, use the ODS HTML4 statement. In SAS 9, the
ODS HTML statement generates HTML3.2 tagsets. In future realeases of SAS, the
ODS HTML statement will support the most current HTML tagsets available. A

Average Quartferly Sales Amount by Each Sales Representative
The MEANS Procedure

Thpaetarst

i Analysis Variable : AmouniSold 3
ES&iesRep MGhs N Mean StdBev Sinimes Maximumg

| Garcla B B 141524% 2080600 4050000000 £333085

§ Mallingzwesth 5 5 1142684 G518 P4 Z50000G 88103

{ sensen 5 8 10576 BODGLAS O 2004 s]
Giuemefarsg

i Analysis Variable : AmountSold
§Saiesﬁep BEChs N Btean St Bov MHodiedss B

! artia B 6 18143.26 2643058 123880 5313358

{ Mallingswisth f 6 1562676 1433504 123750 468640

| sensen 6 1245840 3271073 136385 4aVE TG
Giartarsd

; Arralysis Vartable | AtaotatSold :
ES&iesRep MObs N Mean St Dev Minimoe Madous

Garcia 2 B PR EE 1145708 218G MEM 280

Hallingswith 3% 15 TMAEeE ¥EBGA4 RB8306 MGAT0.6D

Jedsan 2 2% iGEES.Ee Y5150 2EZFEG 2nEhYE
Ciattarsd

Anakyais Variabie | AtacuadSold ;
SakesRep NObs M Mean S Dev Minienum Max!mum%

g Garciz 5 &5 4107300 1027177 ATEG 40 ACATO 3D

i

gﬂmﬂswaﬁh § 4 13624 42 13824.81 D418 38022140

idensen § § 1801047 15440.08 70305 28835048
RTF Output

With ODS, you can produce output in rich text format (RTF) that can be used with
Microsoft Word.

Fundamental Concepts for Using Base SAS Procedures /\ Gallery of 0DS Samples 37

Juarter=1
Anabysis Variahle ; sonoumdsold

SalesRep l]'l:ub: H| Mean | 5id Dev| Moo | hlaxdmom
S| 1473149 13E00 02) 425 0000000 E3333.05
HaIlingvwnrth F1 F| 1152054 | 1216523 T 2500000 SlEmaln
J| 1001370 E0Rte e 2004 75

Tazsun 5

huarter=2
Anabysis Variahle ; sonoumdsold

H
SalesRep Obs| H| Mean| 5 Dev | Nonamoms| Maximoom
Crazcin L b 1314320 | 23055 125830 33113 55
1inde Te| 1435504 125750 S 304D

H
g
1
3

Tumen i E] 145510 1271375 1555 L5 MITET
Jarter=3
Anabesis Variahle : dovoma$old

H
SalesRep Obs| H| Mean| 5 Dev | Nonamoms| Maximoom
Crazcia I1| 11| 107290 | 1145705 ITET 0 3ET12 50
Holingeworth | 15| 15| 751503 (TG4+ 14500 0970 00
Tumen | 2| 105E51R| TEELAS 112750 1711972

Juarter=4

Anabesis Variahle : dovoma$old

H
SalesRep Ohs| M| hlean | Sid Dev| Mmoo | hlaxaroom
Cramaia § 0 5| 119G 00 | 1057 7T ITLE AN 0570 00
HoIlingrwoxth i b 13614 42| 12614 61 1275 &85 10
Tumen i E] 1901042 | 15440 55 1703 55 IFEILIE

PDF Output

With ODS, you can produce output in Portable Document Format (PDF), which can
be viewed with the Adobe Acrobat Reader.

38 Gallery of ODS Samples A Chapter 2

Average Quarterly Sales Amount by Each Sales Representative 1
The MEANS Procedure

Cmoarter=1

Amnalysis Variable : AmountSold

N
SulesRep Obs | N| Mean | Std Dev | Minimum | Maximum
&

Ciarcia & 14752449 | Z2A06.09 | 495 0000000 f1333.45
Haollingsworth 5 5 1192694 | LZL65. 18 | 774, 2500000 LRSS0
Jensen 5 S 000570 BO09.44 340670 TS

Quarter=2

Amnalysis Variable 1 AmountSald

SalesRep Obs| N| Mean | Std Deyv | Minimum | Maximam

{rarcia G 6| 1EL43.26) 2043958 123580 5311355

Haollingswaorth & & | LE0Z6.T6 | 14355.04 123750 diaRn.A0

Jensen & & | 1245500 | 1271573 1393 65 33T
Ooarter=3

Analysis Variable : AmountSold

N
Saleskep | Obs| N| Mean | Std Dey | Minimum | Maximam
(Farcia ILL 20) 072082 11457.03 2TRTI0 3ETI2.50
Hollingswarth I5] 15] Til362| TIR0.44 A09T0.00
Jensen L) 20) I05E5.29 [Tiel.6R 27129.72
Cmarter=4

Amnalysis Variable : AmountSold

SalesKep ﬂh]: N| Mean | Std Dev | Minimum
(farcia 5 S| 0097300 1087177 AT16.40
Hollingswarth [6| 13624.42 | 12624.651 1975 AR093. 10
Jensen G| 6] 190042 | 1544008 170335 ARR36.38

XML Output

With ODS, you can produce output that is tagged with Extensible Markup Language
(XML) tags.

Fundamental Concepts for Using Base SAS Procedures /A Gommonly-Used 0DS Terminology 39

<?xml version="1.0" encoding="windows-1252" ?>
- <adsxml>
- <head>
<meta operator="cabeam" />
<fhead>
- <body>
- <proc name="Means">
<label name="IDX" {>
<tte class="SystemTitle" toc-level="1">Average Quarterly Sales Amount by Each Sales
Representative</tile>
<proc-title class="ProcTitde" toc-level="1">The MEANS Pracedure</proc-title>
- <branch class="ContentProcName" toc-level="1" label="Means">
- <bygroup>
- <branch class="ByContentFolder" toc-level="2" label="Quarter=1">
- <leaf class="ContentItem" toc-level="3" label="Summary statistics" >
<byline class="Byline" toc-level="4">Quarter=1</byline>
- <gutput name="Summary" label="Summary statistics" clabel="Summary
statistics" >
- <gutput-object type="table" class="Table" >

- <sgtyle>
<border spacing="1" padding="7" rules="GROUFPS" frame="BOX" />
<fstyle>
- <colspecs columns="7">
- <colgroup>

<colspec name="1" width="14" type="string" />
<colspec name="2" width="3" align="decimal" type="double" />

merexpd lagged ouput

- <header name="nabs" type="double" class="Data" row="5"
column="2">
<value>6<fvalue>
<fheader>
- <data raw-value="QBgAAARARAAA=" name="n" type="double"
class="Data" row="5" column="3">
<value>6<fvalue>
<fdata>
- <data raw-value="QNKQmsX5LF&=" name="mean"
type="double" class="Data" row="5" column="4">
<value>19010.42<fvalue>
<fdata>
- <data raw-value="QM4ofSEjjrI=" name="stddev" type="double"
class="Data" row="5" column="5">
<value>15440.98<fvalue>
<fdata>
- <data raw-value="QlqdZmZmZmY=" name="min"
type="double" class="Data" row="5" column="6">
<value>1703.35<fvalue>
<fdata>
- <data raw-value="QOLZjCjlwoa8=" name="max" type="double"
class="Data" row="5" column="7">
<value>38836.38<fvalue>
< fdata>
<frow>
<foutput-body>
<foutput-ohject>
<foutput>
<fleaf>
<fbranch>
<{bygroup>
<fbranch>
<fproc>
<fbody>
<fodsxml>

Commonly-Used 0DS Terminology

data component
is a form similar to a SAS data set that contains the results (numbers and
characters) of a DATA step or PROC step that supports ODS.

table definition
is a set of instructions that describes how to format the data. This description
includes but is not limited to

O the order of the columns

O text and order of column headings
o formats for data

o0 font sizes and font faces.

output object

40

How Does ODS Work? A Chapter 2

is an object that contains both the results of DATA step or PROC step and
information about how to format the results. An output object has a name, label,
and path. For example, the Basic Statistical Measurement table generated from
the UNIVARIATE procedure is an output object. It contains the data component
and formatted presentation of the mean, median, mode, standard deviation,
variance, range, and interquartile range.

Note: Although many output objects include formatting instructions, not all of
them do. In some cases the output object consists of only the data component. A

ODS destinations
produce specific types of output. ODS supports a number of destinations, including
the following:

LISTING
produces traditional SAS output (monospace format).

Markup Languages
produce SAS output that is formatted using one of many different markup
languages such as Hypertext Markup Language (HTML), Extensible Markup
Language (XML), and Latex that you can access with a web browser. SAS
supplies many markup languages for you to use ranging from DOCBOOK to
TROFF. You can specify a markup language that SAS supplies or create one
of your own and store it as a user-defined markup language.

DOCUMENT
produces a hierarchy of output objects that enables you to render multiple
ODS output formats without rerunning a PROC or DATA step and gives you
more control over the structure of the output.

OUTPUT
produces a SAS data set.

Printer Family
produces output that is formatted for a high-resolution printer such as a
PostScript (PS), PDF, or PCL file.

RTF
produces output that is formatted for use with Microsoft Word.

ODS output
ODS output consists of formatted output from any of the ODS destinations. For
example, the OUTPUT destination produces SAS data sets; the LISTING
destination produces lisiting output; the HTML destination produces output that
is formatted in hyper-text markup language.

How Does 0DS Work?

Components of SAS Qutput

The Output Delivery System removes responsibility for formatting output from
individual procedures and from the DATA step. The procedure or DATA step supplies
raw data and the name of the table definition that contains the formatting instructions,
and ODS formats the output.

The following figure illustrates how SAS produces ODS output.

Fundamental Concepts for Using Base SAS Procedures /A How Does 0DS Work? 4

ODS Processing: What Goes In and What Comes Out

Data Table
Component \ / Definition
+
Output
Object
|
! Y ' y !
[
DOCUMENT LISTING OUTPUT | HTML MARKUP PRINTER RTF OoDS

I Destinations

[

[

. BN

Document Listing SAS : HTML3.2 MS PS PCL PDF RTF oDSs
Output Output Data Set | Output Windows Output | Outputs

| Printers

: SAS User-defined

| TAGSETS* TAGSETS

SAS Formatted Destinations Third-Party Formatted Destinations

* List of Tagsets that SAS Supplies and Supports
CHTML HTML4 SASREPORT HTMLCSS
SASXMOG CSVALL IMODE SASXMOH
SASXMOIM WML DEFAULT SASXMOR
DOCBOOK SASXML EVENT _MAP SASIOXML
PHTML
COLORLATEX GRAPH PYX TEXT MAP
CSv TPL_STYLE_LIST TPL_STYLE_MAP TROFF
CSVBYLINE LATEX LATEX2 WMLOLIST

42

What are 0DS Destinations? A Chapter 2

NAMEDHTML SHORT_MAP ODSSTYLE STYLE_DISPLAY
GTABLEAPPLET STYLE_POPUP

Features of 0DS

ODS is designed to overcome the limitations of traditional SAS output and to make it
easy to access and create new formatting options that are available to users. ODS is a
method of delivering output in a variey of formats and making the formatted output
easy to access.

Important features of ODS include the following:

0o ODS combines raw data with one or more table definitions to produce one or more
output objects. These objects can be sent to any or all ODS destinations. You
control the specific type of output from the Output Delivery System by selecting an
ODS destination. The currently available ODS destinations can produce

O traditional monospace output

an output data set

a SAS document that contains a hierarchy file of the output objects
output that is formatted for a high-resolution printer

O o o o

output that is formatted in various markup languages such as Hyper-Text
Markup Language (HTML)

O output that is formatted in rich text format for use with Microsoft Word.

o ODS provides table definitions that define the structure of the output from SAS
procedures and from the DATA step. You can customize the output by modifying
these definitions or by creating your own.

o ODS provides a way for you to choose individual output objects to send to ODS
destinations. For instance, PROC UNIVARIATE produces five output objects. You
can easily create HTML output, an output data set, traditional listing output, or
printer output from any or all of these output objects. You can send different
output objects to different destinations.

0 In the SAS windowing environment, ODS stores a link to each output object in the
Results folder in the Results window.

0 Because formatting is now centralized in ODS, the addition of a new ODS
destination does not affect any procedures or the DATA step. As future
destinations are added to ODS, they will automatically become available to the
DATA step and all procedures that support ODS.

o ODS provides a way for you to produce output for numerous destinations from a
single source without having to maintain separate sources for each destination.
This feature saves you time and system resources by enabling you to produce
multiple kinds of output with a single run of your procedure or data query.

What are 0DS Destinations?

Definition of Destination-Independent Input

A fundamental idea of the destination-independent input is that one destination can
support a feature even though another destination does not support it. In this case, the

Fundamental Concepts for Using Base SAS Procedures /A What are 0DS Destinations? 43

request is quietly ignored by the destination that does not support it. Otherwise, ODS
would support features that are the least common denominator. You would be forced to
insert formats into your input making it difficult to move reports from one output
format to another output format. For example, it is easier to use a default style sheet
that SAS provides if you are producing only HTML than to use a stylesheet that is not
specifically designed for HTML output. However, when you try to print that output or
produce a Microsoft Word document from it, you will have to re-do all your work
because the stylesheet is spevific to HTML. ODS provides many output format options
making it possible to use the appropriate format for the output you want.

Each ODS destination is designed with a different purpose in mind. Although it is
possible to use a destination for some other purpose, it is best to use the appropriate
destination suited for your purpose. One of the major goals of ODS is to enable the user
to produce output for numerous destinations from a single source without having to
maintain separate sources for each destination. ODS encourages portable solutions.

The SAS Formatted Destinations

The SAS formatted destinations are designed to create SAS specific entities such as a
SAS data set, SAS output listing, or a SAS document. The statements in the ODS SAS
Formatted category create the SAS entities.

The three SAS formatted destinations are:

DOCUMENT Destination
The DOCUMENT destination enables you to re-structure, navigate, and replay
your data as much as you like to as many destinations as you like without having
to rerun your analysis or repeat your database query. The DOCUMENT
destination makes your entire output stream available in "raw" form and
accessible to you to customize. The output is kept in the original internal
representation as a data component plus a table definition. Once the output is in a
DOCUMENT form, it is possible to rearrange, restructure, retry, and rerender
formatting without rerunning your analysis. Unlike other ODS destinations, the
DOCUMENT destination has a GUI interface. However, everything that you can
do through the GUI, you can do with batch commands using the ODS
DOCUMENT statement and the DOCUMENT procedure.

In the past, each procedure or DATA step produced output that was sent to each
destination that you specified. While you could always send your output to as
many destinations as you wanted, you had to re-run your procedure or data query
if you decided to use another destination that you had not originally designated.
The DOCUMENT destination eliminates the need to re-run procedures or repeat
data queries by enabling you to store your output objects and simply replay them
to different destinations.

LISTING Destination
The LISTING destination produces output that looks the same as the legacy SAS
output. Thus ODS is always being used, even when you do not explicitily invoke
ODS. The LISTING destination is the default destination that opens when you
start your SAS session.

The purpose of the LISTING destination is to enable you to produce output as
you always have. You can feel secure knowing that your listing output maintains
the same look and presentation as it always has.

Because most procedures share some of the same table defitinions, the output is
more consistent. For example, if you have two different procedures producing an
ANOVA table, they will produce it in the same way because each procedure uses
the same template to describe the table. However, there are four procedures that
do not use a defult table definition to porduce their output: PRINT procedure,
REPORT procedure, TABULATE procedure, and FREQ procedure’s n-way tables.

44 What are 0DS Destinations? A Chapter 2

These procedures use the structure that you specified in your program code to
define their tables.

OUTPUT Destination
The OUTPUT destination produces SAS output data sets. Because ODS already
knows the logical structure of the data and its native form, ODS can output a SAS
data set that represents exactly what the procedure worked with internally. The
data sets can be used for further analysis or particularly sophisticated reports
where you want to combine similar statistics across different data sets into a
single table. You can easily access and process your data using all the SAS data
set features. For instance, you can access your data using variable names and
perform where—processing just as you would all data from any other SAS data set.

The Third-Party Formatted Destinations

The third-party formatted destinations are where you can apply styles to the output
objects that are used by applications outside of SAS. For example, these destinations
support attributes such as "font" and "color."

Note: For a list of style elements and valid values, see the style elements appendix
in the SAS Output Delivery System User’s Guide. »

The four categories of third-party formatted destinations are:
0 Hypertext Markup Language (HTML)

The HTML destination produces HTML3.2-compatible output. You can,
however, produce (HTML4 stylesheet) output using the HTML4 tagsets.

The HTML destination can create some or all of the following:

o an HTML file (called the body file) that contains the results from the
procedure

O a table of contents that links to the body file
O a table of pages that links to the body file

O a frame that displays the table of contents, the table of pages, and the body
file.

The body file is required with all ODS HTML output. If you do not want to link
to your output, then you do not have to create a table of contents, a table of pages,
or a frame file. However, if your output is very large, you may want to create a
table of contents and a table of pages for easier reading and transversing through
your file.

The HTML destination is intended only for on-line use, not for printing. To
print hardcopies of the output objects, use the PRINTER destination.

0 Markup Languages (MARKUP) Family

The MARKUP destination uses the idea of "tagsets." Just as table definitions
describe how to lay out a table and style attributes describe the style of the
output, tagsets describe how to produce a markup language output. You can use a
tagset that SAS supplies or you can create your own using the TEMPLATE
procedure. Like a table definition and style attributes, tagsets enable you to
modify your markup language output. For example, each variety of XML can be
specified as a new tagset. SAS supplies you with a collection of XML tagsets and
enables you to produce a customized variety of XML. The important point is that
you can implement a tagset that SAS supplies or a cutomized tagset that you
created without having to wait for the next release of SAS. With the additon of
modifying and creating your own tagsets by using PROC TEMPLATE, now you
have greater flexibility in customizing your output.

Fundamental Concepts for Using Base SAS Procedures /A What are 0DS Destinations? 45

Because the MARKUP destination is so flexible, you can use either the SAS
tagsets or a tagset that you created. For a complete listing of the markup
language tagsets that SAS supplies, see the section on listing tagset names in the
SAS Output Delivery System User’s Guide. To learn how to define your own
tagsets, see the section on methods to create your own tagsets in the SAS Output
Delivery System User’s Guide.

The MARKUP destination cannot replace ODS PRINTER or ODS RTF because
it has one major limitation: it cannot do text measurement. Therefore, it cannot
produce output for a page description language or a hybrid language like RTF
which requires all of the text to be measured and placed at a specific position on
the page.

0 PRINTER Family
The PRINTER destination produces output for

O printing to physical printers such as Windows printers under Windows, PCL,
and PostScript printers on other operating systems

O producing portable PostScript, PCL, and PDF files.

The PRINTER destinations produce ODS output that contain page description
languages: they describe precise positions where each line of text, each rule, and
each graphical element are to be placed on the page. In general, you cannot edit or
alter these formats. Therfore, the output from ODS PRINTER is intended to be
the final form of the report.

O Rich Text Format (RTF)

RTF produces output for Microsoft Word. While there are other applications
that can read RTF files, the RTF output may not work successfully with them.

The RTF destination enables you to edit the RTF output by viewing a file. For
this reason, ODS does not define the “vertical measurement," meaning that SAS
does not determine the optimal place to position each item on the page. For
instance, page breaks are not always fixed, so when you edit your text, you do not
want your RTF output tables to split at inapporpriate places. Your tables can
remain whole and in tact on one page or have logical breaks where you specified.

However, because Microsoft Word needs to know the widths of table columns
and it doesn’t know how to "panel" tables if they are too wide for the page, ODS
does measure the width of the text and tables (horizontal measurement).
Therefore, all the column widths can be set properly by SAS and the table can be
divided into panels if it is too wide to fit on a single page.

In short, when producing RTF output for input to Microsoft Word, SAS
determines the horizontal measurement and lets Microsoft Word handle the
vertical measurement. Because Microsoft Word knows how much room there is on
the page even when you edit the file, your tables will display consistently as you
specified.

What Controls the Formatting Features of Third-Party Formats?

All the formatting features that control the appearance of the third-party formatted
destinations beyond what the LISTING destination can do are controlled by two
mechanisms:

o ODS statement options
o ODS style attributes

The ODS statement options control three things:

1 Features that are extremely specific to a given destination, such as stylesheets for
HTML.

46 What Are Table Definitions, Table Elements, and Table Attributes? A Chapter 2

2 Features that are global to the document, such as AUTHOR and table of contents
generation.

3 Features that we expect users to change on virtually every document, such as the
output file name.

The ODS style features control the way that individual elements are rendered.
Attributes are aspects of a given style, such as type face, weight, font size, and color.
The values of the attributes collectively determine the appearance of each part of the
document to which the style is applied. The style attributes prevent the necessity to
insert destination-specific code (such as raw HTML) into the document by providing a
mechanism to describe what the document is intended to do. Each output destination
will interpret the attributes to render the best presentation of the document. Because
not all destinations are the same, not all attributes can be interpreted by all
destinations. The style is defined so that any aspects of the style that cannot be handled
by a given destination are ignored by it. For example, PostScript does not support
active links, so the URL= attribute is ignored when producing PostScript output.

0DS Destinations and System Resources

ODS destinations can be open or closed. You open and close a destination with the
appropriate ODS statement. When a destination is open, ODS sends the output objects
to it. An open destination uses system resources even if you use the selection and
exclusion features of ODS to select or exclude all objects from the destination.
Therefore, to conserve resources, close unnecessary destinations. For more information
about using each destination, see the chapter on ODS statements in the SAS Output
Delivery System User’s Guide.

By default, the LISTING destination is open and all other destinations are closed.
Consequently, if you do nothing, your SAS programs run and produce listing output
looking just as they did in previous releases of SAS before ODS was available.

What Are Table Definitions, Table Elements, and Table Attributes?

A table definition describes how to render the output for a tabular output object.
(Almost all ODS output is tabular.) A table definition determines the order of column
headers and the order of variables, as well the overall look of the output object that
uses it. For information about customizing the table definition, see the chapter on the
TEMPLATE procedure in the SAS Output Delivery System User’s Guide.

In addition to the parts of the table definition that order the headers and columns,
each table definition contains or references table elements. A table element is a
collection of table attributes that apply to a particular header, footer, or column.
Typically, a table atiribute specifies something about the data rather than about its
presentation. For example, FORMAT specifies the SAS format to use in a column such
as the number of decimals to use. However, some table attributes describe presentation
aspects of the data such as how many blank characters to place between columns.

Note: The parts of table definitions that control the presentation of the data have no
effect on output objects that go to the LISTING or OUTPUT destination. However, the
parts that control the structure of the table and the data values do affect listing
output. &

For information on table attributes, see the section on table attributes in the SAS
Output Delivery System User’s Guide.

Fundamental Concepts for Using Base SAS Procedures /A What Are Style Definitions, Style Elements, and Style Attributes? 47

What Are Style Definitions, Style Elements, and Style Attributes?

To customize the output at the level of your entire output stream in a SAS session,
you specify a style definition. A style definition describes how to render the presentation
aspects (color, font face, font size, and so forth) of the entire SAS output. A style
definition determines the overall look of the documents that use it.

Each style definition is composed of style elements. A style element is a collection of
style attributes that apply to a particular part of the output. For example, a style
element may contain instructions for the presentation of column headers or for the
presentation of the data inside cells. Style elements may also specify default colors and
fonts for output that uses the style definition.

Each style attribute specifies a value for one aspect of the presentation. For example,
the BACKGROUND-= attribute specifies the color for the background of an HTML table
or for a colored table in printed output. The FONT_STYLE= attribute specifies whether
to use a Roman, a slant, or an italic font. For information on style attributes, see the
section on style attributes in the SAS Output Delivery System User’s Guide.

Note: Because style definitions control the presentation of the data, they have no
effect on output objects that go to the LISTING or OUTPUT destination. A

What Style Definitions Are Shipped with the Software?

Base SAS software is shipped with many style definitions. To see a list of these
styles, you can view them in the SAS Explorer Window, use the TEMPLATE procedure,
or use the SQL procedure.

0o SAS Explorer Window:

To display a list of the available styles using the SAS Explorer Window, follow
these steps:
1 From any window in an interactive SAS session, select

‘ View ‘ > ‘ Results ‘

2 In the Results window, select

‘ View ‘ > ‘ Templates ‘

3 In the Templates window, select and open Sashelp.tmplmst.

4 Select and open the styles folder, which contains a list of available style
definitions. If you want to view the underlying SAS code for a style
definition, then select the style and open it.

Operating Environment Information: For information on navigating in the
Explorer window without a mouse, see the section on “Window Controls and
General Navigation” in the SAS documentation for your operating
environment. A

0 TEMPLATE Procedure:
You can also display a list of the available styles by submitting the following
PROC TEMPLATE statements:

proc template;
list styles;

run;
0 SQL Procedure:

proc sql;
select * from styles.style--name;

48 Customized 0DS Output A Chapter 2

The style-name is the name of any style from the template store (for example,
styles.default or styles.beige).

For more information on how ODS destinations use styles and how you can
customize styles, see the section on the DEFINE STYLE statement in the SAS Ouitput
Delivery System User’s Guide.

How do | Use Style Definitions with Base Procedures?

0 Most Base Procedures

Most Base SAS procedures that support ODS use one or more table definitions
to produce output objects. These table definitions include definitions for table
elements: columns, headers, and footers. Each table element can specify the use of
one or more style elements for various parts of the output. These style elements
cannot be specified within the syntax of the procedure, but you can use customized
styles for the ODS destinations that you use. For more information abotu
customizing tale and styles, see the TEMPLATE procedure in the SAS Output
Delivery System User’s Guide.

o The PRINT, REPORT and TABULATE Procedures

The PRINT, REPORT and TABULATE procedures provide a way for you to
access table elements from the procedure step itself. Accessing the table elements
enables you to do such things as specify background colors for specific cells, change
the font face for column headers, and more. The PRINT, REPORT, and
TABULATE procedures provide a way for you to customize the markup language
and printed output directly from the procedure statements that create the report.

For more information about customizing the styles for these procedures, see the
Base SAS Procedures Guide

Customized 0DS Output

SAS Output

By default, ODS output is formatted according to instructions that a PROC step or
DATA step defines. However, ODS provides ways for you to customize the output. You
can customize the output for an entire SAS job, or you can customize the output for a
single output object.

Selection and Exclusion Lists

You can specify which output objects that you want to produce by selecting or
excluding them in a list. For each ODS destination, ODS maintains either a selection
list or an exclusion list. A selection list is a list of output objects that are sent to the
destination. An exclusion list is a list of output objects that are excluded from the
destination. ODS also maintains an overall selection list or an overall exclusion list. You
can use these lists to control which output objects go to the specified ODS destinations.

To see the contents of the lists use the ODS SHOW statement. The lists are written
to the SAS log. The following table shows the default lists:

Fundamental Concepts for Using Base SAS Procedures /A Customized 0DS Output

Table 2.2 Default List for Each ODS Destination

49

ODS Destination Default List
OUTPUT EXCLUDE ALL
All others SELECT ALL

How Does ODS Determine the Destinations for an Qutput Object?

To specify an output object, you need to know what output objects your SAS program

produces. The ODS TRACE statement writes a trace record to the SAS log which
includes the path, the label, and other information about each output object that is
produced. For more information, see the ODS TRACE statement in the SAS Ouitput
Delivery System User’s Guide. You can specify an output object as

o a full path. For example,

Univariate.City Pop 90.TestsForLocation

is the full path of the output object.

O a partial path. A partial path consists of any part of the full path that begins
immediately after a period (.) and continues to the end of the full path. For
example, if the full path is

Univariate.City Pop 90.TestsForLocation
then the partial paths are:

City Pop_ 90.TestsForLocation

TestsForLocation

O a label that is surrounded by quotation marks.
For example,

"The UNIVARIATE Procedure"

O a label path. For example, the label path for the output object is

"The UNIVARIATE Procedure"."CityPop 90"
."Tests For Location"

Note: The trace record shows the label path only if you specify the LABEL
option in the ODS TRACE statement. A

O a partial label path. A partial label path consists of any part of the label that
begins immediately after a period (.) and continues to the end of the label. For
example, if the label path is

"The UNIVARIATE Procedure"."CityPop 90"
."Tests For Location"

then the partial label paths are:

"CityPop_90"."Tests For Location"

"Tests For Location"

O a mixture of labels and paths.

50 Customized 0DS Output A Chapter 2

O any of these specifications followed by a pound sign (#) and a number. For example,
TestsForLocation#3 refers to the third output object named TestsForLocation.

As each output object is produced, ODS uses the selection and exclusion lists to
determine which destination or destinations to send the output object. The following
figure illustrates this process:

Figure 2.1 Directing an Output Object to a Destination

For each destination, ODS first asks if the list for that destination includes the object. If it does
not, ODS does not send the output object to that destination. If the list for that destination does
include the object, ODS reads the overall list. If the overall list includes the object, ODS sends
it to the destination. If the overall list does not include the object, ODS does not send it to the
destination.

Does the destination list
include the output object
to the destination?

yes

}

Does the overall list no
include the object ? \
| no
yes
v \4 v
ODS passes the object ODS doesn't pass the
to the destination object to the destination

Note: Although you can maintain a selection list for one destination and an
exclusion list for another, it is easier to understand the results if you maintain the same
types of lists for all the destinations where you route output. A

Customized Output for an Output Object

For a procedure, the name of the table definition that is used for an output object
comes from the procedure code. The DATA step uses a default table definition unless
you specify an alternative with the TEMPLATE= suboption in the ODS option in the
FILE statement. For more information, see the section on the suboption TEMPLATE=
in the SAS Output Delivery System User’s Guide.

To find out which table definitions a procedure or the DATA step uses for the output
objects, you must look at a trace record. To produce a trace record in your SAS log,
submit the following SAS statements:

ods trace on;
your-proc-or-DATA-step
ods trace off;

Remember that not all procedures use table definitions. If you produce a trace record
for one of these procedures, no definition appears in the trace record. Conversely, some
procedures use multiple table definitions to produce their output, such as the more

Fundamental Concepts for Using Base SAS Procedures /A Conclusion 51

complex statistical procedures. If you produce a trace record for one of these
procedures, more than one definition appears in the trace record.

The trace record refers to the table definition as a template. For a detailed
explanation of the trace record, see the section on the ODS TRACE statement in the
SAS Output Delivery System User’s Guide.

You can use PROC TEMPLATE to modify an entire table definition. When a
procedure or DATA step uses a table definition, it uses the elements that are defined or
referenced in its table definition. In general, you cannot directly specify a table element
for your procedure or DATA step to use without modifying the definition itself.

Note: Three base procedures, PROC PRINT, PROC REPORT and PROC
TABULATE, do provide a way for you to access table elements from the procedure step
itself. Accessing the table elements enables you to customize your report . For more
information about these procedures, see the Base SAS Procedures Guide »

Conclusion

In the past, the term “output “ has generally referred to the outcome of a SAS
procedure and DATA step. With the advent of the Output Delivery System, “output”
takes on a much broader meaning. ODS is designed to optimize output from SAS
procedures and the DATA step. It provides a wide range of formatting options and
greater flexibility in generating, storing, and reproducing SAS output.

Important features of ODS include the following:

0o ODS combines raw data with one or more table definitions to produce one or more
output objects. An output object tells ODS how to format the results of a procedure
or DATA step.

o ODS provides table definitions that define the structure of the output from SAS
procedures and from the DATA step. You can customize the output by modifying
these definitions or by creating your own.

o ODS provides a way for you to choose individual output objects to send to ODS
destinations.

0 ODS stores a link to each output object in the Results folder in the Results
window for easy retrieval and access.

0 As future destinations are added to ODS, they will automatically become available
to the DATA step and all procedures that support ODS.

One of the major goals of ODS is to enable you to produce output for numerous
destinations from a single source without having to maintain separate sources for each
destination. ODS supports many destinations:

DOCUMENT
enables you to capture output objects from single run of the analysis and produce
multiple reports in various formats whenever you want without re-running your
SAS programs.

LISTING
produces output that looks the same as the legacy SAS v6 output.

HTML
produces output meant for on-line viewing.

MARKUP
produces output meant for markup language tagsets.

OUTPUT

52 Conclusion A Chapter 2

produces SAS output data sets thereby eliminating the need to parse PROC
PRINTTO output.

PRINTER
produces presentation-ready printed reports.

RTF
produces output suitable for Microsoft Word reports.

By default, ODS output is formatted according to instructions that the procedure or
DATA step defines. However, ODS provides ways for you to customize the output. You
can customize the output for an entire SAS job, or you can customize the output for a
single output object.

53

CHAPTER

Statements with the Same
Function in Multiple Procedures

Overview 53

Statements 54
BY 54
FREQ® 56
QUIT 58
WEIGHT 59
WHERE 63

Overview

Several statements are available and have the same function in a number of base
SAS procedures. Some of the statements are fully documented in SAS Language
Reference: Dictionary, and others are documented in this section. The following list
shows you where to find more information about each statement:

ATTRIB

affects the procedure output and the output data set. The ATTRIB statement does
not permanently alter the variables in the input data set. The LENGTH= option
has no effect. See SAS Language Reference: Dictionary for complete
documentation.

BY
orders the output according to the BY groups. See “BY” on page 54.
FORMAT
affects the procedure output and the output data set. The FORMAT statement does
not permanently alter the variables in the input data set. The DEFAULT= option
is not valid. See SAS Language Reference: Dictionary for complete documentation.
FREQ
treats observations as if they appear multiple times in the input data set. See
“FREQ” on page 56.
LABEL

affects the procedure output and the output data set. The LABEL statement does
not permanently alter the variables in the input data set except when it is used
with the MODIFY statement in PROC DATASETS. See SAS Language Reference:
Dictionary for complete documentation.

QUIT

executes any statements that have not executed and ends the procedure. See
“QUIT” on page 58.

WEIGHT

54

Statements A Chapter 3

specifies weights for analysis variables in the statistical calculations. See
“WEIGHT” on page 59.

WHERE
subsets the input data set by specifying certain conditions that each observation
must meet before it is available for processing. See “WHERE” on page 63.

Statements

BY

Orders the output according to the BY groups.

See also: “Creating Titles That Contain BY-Group Information” on page 19

BY <DESCENDING> variable-1
<... <DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, then the observations in the data set must either be sorted by all the
variables that you specify, or they must be indexed appropriately. Variables in a BY
statement are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of

BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, then the procedure treats each contiguous set as a separate BY
group.

Note: You cannot use the NOTSORTED option in a PROC SORT step. 2

Statements with the Same Function in Multiple Procedures /A BY 55

Note: You cannot use the GROUPFORMAT option, which is available in the BY
statement in a DATA step, in a BY statement in any PROC step. 2

BY-Group Processing

Procedures create output for each BY group. For example, the elementary statistics
procedures and the scoring procedures perform separate analyses for each BY group.
The reporting procedures produce a report for each BY group.

Note: All base procedures except PROC PRINT process BY groups completely
independently. PROC PRINT can report the number of observations in each BY group
as well as the number of observations in all BY groups. Similarly, PROC PRINT can
sum numeric variables in each BY group and across all BY groups. 2

You can use only one BY statement in each PROC step. When you use a BY
statement, the procedure expects an input data set that is sorted by the order of the BY
variables or one that has an appropriate index. If your input data set does not meet
these criteria, then an error occurs. Either sort it with the SORT procedure or create an
appropriate index on the BY variables.

Depending on the order of your data, you may need to use the NOTSORTED or
DESCENDING option in the BY statement in the PROC step.

For more information on

o0 the BY statement, see SAS Language Reference: Dictionary.
o PROC SORT, see Chapter 39, “The SORT Procedure,” on page 1091.
O creating indexes, see “INDEX CREATE Statement” on page 363.

Procedures That Support the BY Statement

CALENDAR RANK

CHART REPORT (nonwindowing environment only)
COMPARE SORT (required)

CORR STANDARD

FORMS SUMMARY

FREQ TABULATE

MEANS TIMEPLOT

PLOT TRANSPOSE

PRINT UNIVARIATE

Note: In the SORT procedure, the BY statement specifies how to sort the data. With
the other procedures, the BY statement specifies how the data are currently sorted. A

Example

This example uses a BY statement in a PROC PRINT step. There is output for each
value of the BY variable, Year. The DEBATE data set is created in “Example:
Temporarily Dissociating a Format from a Variable” on page 29.

56 FREQ A Chapter 3

options nodate pageno=1 linesize=64
pagesize=40;
proc print data=debate noobs;
by year;
title 'Printing of Team Members’;
title2 'by Year'’;

run;

Printing of Team Members 1
by Year

Name Gender GPA
Capiccio m 3.598
Tucker m 3.901

Name Gender GPA
Bagwell £ 3.722
Berry m 3.198
Metcalf m 3.342

Name Gender GPA
Gold £ 3.609
Gray f 3.177
Syme £ 3.883

Name Gender GPA
Baglione £ 4.000
Carr m 3.750
Hall m 3.574
Lewis m 3.421

FREQ

Treats observations as if they appear multiple times in the input data set.

Tip: You can use a WEIGHT statement and a FREQ statement in the same step of any
procedure that supports both statements.

FREQ variable;

Required Arguments

variable
specifies a numeric variable whose value represents the frequency of the observation.

If you use the FREQ statement, then the procedure assumes that each observation

Statements with the Same Function in Multiple Procedures /A FREQ

represents n observations, where n is the value of variable. If variable is not an
integer, then SAS truncates it. If variable is less than 1 or is missing, then the

procedure does not use that observation to calculate statistics. If a FREQ statement
does not appear, then each observation has a default frequency of 1.

The sum of the frequency variable represents the total number of observations.

Procedures That Support the FREQ Statement

o o o o o o o

Note:

CORR
FORMS

MEANS/SUMMARY

REPORT

STANDARD
TABULATE
UNIVARIATE

PROC FORMS does not calculate statistics. In PROC FORMS, the value of

the frequency variable affects the number of form units that are printed for each
observation. A

Example

The data in this example represent a ship’s course and speed (in nautical miles per
hour), recorded every hour. The frequency variable, Hours, represents the number of

57

hours that the ship maintained the same course and speed. Each of the following PROC

MEANS steps calculates average course and speed. The different results demonstrate

the effect of using Hours as a frequency variable.
The following PROC MEANS step does not use a frequency variable:

options nodate pageno=1 linesize=64 pagesize=40;

data track;
input Course Speed Hours @@;

30
75
80
83

datalines;

4 8 50
10 30 30
9 22 20
11 6 20

7 20
8 10
8 25
6 20

proc means data=track maxdec=2 n mean;

var course Speed H

title ’'Average Course and Speed’;

run;

58 QUIT A Chapter 3

Without a frequency variable, each observation has a frequency of 1, and the total
number of observations is 8.

Average Course and Speed 1

The MEANS Procedure

Variable N Mean
Course 8 48.50
Speed 8 7.88

The second PROC MEANS step uses Hours as a frequency variable:

proc means data=track maxdec=2 n mean;
var course speed;
freq hours;
title ’'Average Course and Speed’;

run;

When you use Hours as a frequency variable, the frequency of each observation is the
value of Hours, and the total number of observations is 141 (the sum of the values of
the frequency variable).

Average Course and Speed 1

The MEANS Procedure

Variable N Mean
Course 141 49.28
Speed 141 8.06

QuIT

Executes any statements that have not executed and ends the procedure.

QUIT;

Procedures That Support the QUIT Statement

CATALOG
DATASETS
PLOT
PMENU
SQL

o o o o o

Statements with the Same Function in Multiple Procedures /A WEIGHT 59

WEIGHT

Specifies weights for analysis variables in the statistical calculations.

Tip: You can use a WEIGHT statement and a FREQ statement in the same step of any
procedure that supports both statements.

WEIGHT variable;

Required Arguments

variable
specifies a numeric variable whose values weight the values of the analysis variables.
The values of the variable do not have to be integers. The behavior of the procedure
when it encounters a nonpositive weight variable value is as follows:

Weight value ... The procedure ...
0 counts the observation in the total number of observations
less than 0 converts the weight value to zero and counts the observation in

the total number of observations

missing excludes the observation from the analysis

Different behavior for nonpositive values is discussed in the WEIGHT statement
syntax under the individual procedure.

Prior to Version 7 of SAS, no base procedure excluded the observations with
missing weights from the analysis. Most SAS/STAT procedures, such as PROC GLM,
have always excluded not only missing weights but also negative and zero weights
from the analysis. You can achieve this same behavior in a base procedure that
supports the WEIGHT statement by using the EXCLNPWGT option in the PROC
statement.

The procedure substitutes the value of the WEIGHT variable for w,;, which
appears in “Keywords and Formulas” on page 1578.

Procedures That Support the WEIGHT Statement

CORR

FREQ

MEANS/SUMMARY

REPORT

STANDARD

TABULATE

UNIVARIATE

Note: In PROC FREQ, the value of the variable in the WEIGHT statement

represents the frequency of occurrence for each observation. See “WEIGHT Statement”
on page 540 for more information. A

O 0O oooo o

60

WEIGHT A Chapter 3

Calculating Weighted Statistics

The procedures that support the WEIGHT statement also support the VARDEF=
option, which lets you specify a divisor to use in the calculation of the variance and
standard deviation.

By using a WEIGHT statement to compute moments, you assume that the ith
observation has a variance that is equal to o? /w;. When you specify VARDEF=DF (the
default), the computed variance is a weighted least squares estimate of o’ Similarly,
the computed standard deviation is an estimate of 0. Note that the computed variance
is not an estimate of the variance of the ith observation, because this variance involves
the observation’s weight which varies from observation to observation.

If the values of your variable are counts that represent the number of occurrences of
each observation, then use this variable in the FREQ statement rather than in the
WEIGHT statement. In this case, because the values are counts, they should be
integers. (The FREQ statement truncates any noninteger values.) The variance that is
computed with a FREQ variable is an estimate of the common variance, 02, of the
observations.

Note: If your data come from a stratified sample where the weights w; represent
the strata weights, then neither the WEIGHT statement nor the FREQ statement
provides appropriate stratified estimates of the mean, variance, or variance of the
mean. To perform the appropriate analysis, consider using PROC SURVEYMEANS,
which is a SAS/STAT procedure that is documented in the SAS/STAT User’s Guide. A

Weighted Statistics Example

As an example of the WEIGHT statement, suppose 20 people are asked to estimate
the size of an object 30 cm wide. Each person is placed at a different distance from the
object. As the distance from the object increases, the estimates should become less
precise.

The SAS data set SIZE contains the estimate (ObjectSize) in centimeters at each
distance (Distance) in meters and the precision (Precision) for each estimate. Notice
that the largest deviation (an overestimate by 20 cm) came at the greatest distance (7.5
meters from the object). As a measure of precision, 1/Distance, gives more weight to
estimates that were made closer to the object and less weight to estimates that were
made at greater distances.

The following statements create the data set SIZE:

options nodate pageno=1 linesize=64 pagesize=60;
data size;

input Distance ObjectSize @@;
Precision=1/distance;

datalines;
1.5 30 1.5 20 1.5 30 1.5 25
3 43 3 33 3 25 3 30
4.5 25 4.5 36 4.5 48 4.5 33
6 43 6 36 6 23 6 48
7.5 30 7.5 25 7.5 50 7.5 38

The following PROC MEANS step computes the average estimate of the object size
while ignoring the weights. Without a WEIGHT variable, PROC MEANS uses the
default weight of 1 for every observation. Thus, the estimates of object size at all

distances are given equal weight. The average estimate of the object size exceeds the
actual size by 3.55 cm.

Statements with the Same Function in Multiple Procedures /A WEIGHT 61

proc means data=size maxdec=3 n mean var stddev;

var objectsize;

titlel 'Unweighted Analysis of the SIZE Data Set’;
run;

Unweighted Analysis of the SIZE Data Set 1
The MEANS Procedure
Analysis Variable : ObjectSize

N Mean Variance Std Dev

The next two PROC MEANS steps use the precision measure (Precision) in the
WEIGHT statement and show the effect of using different values of the VARDEF=
option. The first PROC step creates an output data set that contains the variance and
standard deviation. If you reduce the weighting of the estimates that are made at

greater distances, the weighted average estimate of the object size is closer to the actual
size.

proc means data=size maxdec=3 n mean var stddev;
weight precision;
var objectsize;
output out=wtstats var=Est_SigmaSq std=Est_Sigma;
titlel 'Weighted Analysis Using Default VARDEF=DF’;
run;

proc means data=size maxdec=3 n mean var std
vardef=weight;
weight precision;
var objectsize;

titlel 'Weighted Analysis Using VARDEF=WEIGHT';
run;

In the first PROC MEANS step, the variance is an estimate of o2, where the
variance of the ith observation is assumed to be var (:z'l) = o2 / w; and w; is the weight
for the ith observation. In the second PROC MEANS step, the computed variance is an
estimate of (n — 1/n) o2/, where 0 is the average weight. For large n, this is an
approximate estimate of the variance of an observation with average weight.

Weighted Analysis Using Default VARDEF=DF 1
The MEANS Procedure
Analysis Variable : ObjectSize

N Mean Variance Std Dev

62 WEIGHT A Chapter 3

Weighted Analysis Using VARDEF=WEIGHT 2
The MEANS Procedure
Analysis Variable : ObjectSize

N Mean Variance Std Dev

The following statements create and print a data set with the weighted variance and
weighted standard deviation of each observation. The DATA step combines the output
data set that contains the variance and the standard deviation from the weighted
analysis with the original data set. The variance of each observation is computed by
dividing Est_SigmaSq, the estimate of o2 from the weighted analysis when
VARDEF=DF, by each observation’s weight (Precision). The standard deviation of each
observation is computed by dividing Est_Sigma, the estimate of ¢ from the weighted
analysis when VARDEF=DF, by the square root of each observation’s weight (Precision).

data wtsize(drop=_freq__type);
set size;
if n =1 then set wtstats;
Est_VarObs=est_sigmasq/precision;
Est_StdObs=est_sigma/sqrt(precision);

proc print data=wtsize noobs;
title 'Weighted Statistics’;
by distance;
format est_varobs est_stdobs

est_sigmasq est_sigma precision 6.3;

Statements with the Same Function in Multiple Procedures /A WHERE 63

run;

Weighted Statistics 4
————————————————————————— Distance=1.5 ————————
Object Est_ Est_ Est_ Est_
Size Precision SigmaSq Sigma VarObs StdObs

30 0.667 20.678 4.547 31.017 5.569

20 0.667 20.678 4.547 31.017 5.569

30 0.667 20.678 4.547 31.017 5.569

25 0.667 20.678 4.547 31.017 5.569
—————————————————————————— Distance=3 —————————

Object Est_ Est_ Est_ Est_

Size Precision SigmaSq Sigma VarObs StdObs

43 0.333 20.678 4.547 62.035 7.876

33 0.333 20.678 4.547 62.035 7.876

25 0.333 20.678 4.547 62.035 7.876

30 0.333 20.678 4.547 62.035 7.876
————————————————————————— Distance=4.5 ——————————mmm—

Object Est_ Est_ Est_ Est_

Size Precision SigmaSq Sigma VarObs StdObs

25 0.222 20.678 4.547 93.052 9.646

36 0.222 20.678 4.547 93.052 9.646

48 0.222 20.678 4.547 93.052 9.646

33 0.222 20.678 4.547 93.052 9.646
—————————————————————————— Distance=6 —--—-———————————

Object Est_ Est_ Est_ Est_

Size Precision SigmaSq Sigma VarObs StdObs

43 0.167 20.678 4.547 124.07 11.139

36 0.167 20.678 4.547 124.07 11.139

23 0.167 20.678 4.547 124.07 11.139

48 0.167 20.678 4.547 124.07 11.139
————————————————————————— Distance=7.5 ———————— e~

Object Est_ Est_ Est_ Est_

Size Precision SigmaSq Sigma VarObs StdObs

30 0.133 20.678 4.547 155.09 12.453

25 0.133 20.678 4.547 155.09 12.453

50 0.133 20.678 4.547 155.09 12.453

38 0.133 20.678 4.547 155.09 12.453

WHERE

Subsets the input data set by specifying certain conditions that each observation must meet hefore
it is available for processing.

WHERE where-expression,;

64

WHERE A Chapter 3

Required Arguments

where-expression
is a valid arithmetic or logical expression that generally consists of a sequence of
operands and operators. See SAS Language Reference: Dictionary for more
information on where processing.

Procedures That Support the WHERE Statement

You can use the WHERE statement with any of the following base SAS procedures
that read a SAS data set:

CALENDAR RANK
CHART REPORT
COMPARE SORT

CORR SQL
DATASETS (APPEND statement) STANDARD
FORMS TABULATE
FREQ TIMEPLOT
MEANS/SUMMARY TRANSPOSE
PLOT UNIVARIATE
PRINT

Details

0 The CALENDAR and COMPARE procedures and the APPEND statement in
PROC DATASETS accept more than one input data set. See the documentation for
the specific procedure for more information.

0 To subset the output data set, use the WHERE= data set option:
proc report data=debate nowd

out=onlyfr (where=(year='1"));

run;

For more information on WHERE=, see SAS Language Reference: Dictionary.

Example

In this example, PROC PRINT prints only those observations that meet the condition
of the WHERE expression. The DEBATE data set is created in “Example: Temporarily
Dissociating a Format from a Variable” on page 29.

options nodate pageno=1 linesize=64
pagesize=40;

proc print data=debate noobs;
where gpa>3.5;
title 'Team Members with a GPA';

Statements with the Same Function in Multiple Procedures /A WHERE

title2 ’'Greater than 3.5';
run;
Team Members with a GPA
Greater than 3.5
Name Gender Year GPA
Capiccio m Freshman 3.598
Tucker m Freshman 3.901
Bagwell £ Sophomore 3.722
Gold £ Junior 3.609
Syme £ Junior 3.883
Baglione £ Senior 4.000
Carr m Senior 3.750
Hall m Senior 3.574

65

66

67

PART

Procedures

Chapter4.......... The APPEND Procedure 7I
Chapter The CALENDAR Procedure 73
Chapter 6. The CATALOG Procedure 143
Chapter 7. The CHART Procedure 165
Chapter 8. The CIMPORT Procedure 799
Chapter 9. The COMPARE Procedure 209
Chapter 10. The CONTENTS Procedure 257
Chapter 11...... ... The COPY Procedure 259
Chapter 12. The CORR Procedure 263
Chapter 13. The CPORT Procedure 307
Chapter 14. The CV2VIEW Procedure 323
Chapter 15. The DATASETS Procedure 325
Chapter 16. The DBCSTAB Procedure 407
Chapter 17. The DISPLAY Procedure 413
Chapter 18. The DOCUMENT Procedure 417

Chapter 19. The EXPLODE Procedure 419

68

Chapter 20.
Chapter 21...... ...
Chapter 22.
Chapter 23.
Chapter 24.
Chapter 25.
Chapter 26.
Chapter 27.
Chapter 28.
Chapter 29.
Chapter 30.
Chapter 31....... ..
Chapter 32.
Chapter 33.
Chapter 34.
Chapter 35.
Chapter 36.
Chapter 37.
Chapter 38.
Chapter 39.
Chapter 40.
Chapter41....... ..
Chapter 42.
Chapter 43.

Chapter44.

The EXPORT Procedure 427
The FORMAT Procedure 441
The FORMS Procedure <495
The FREQ Procedure 513

The FSLIST Procedure 627
The IMPORT Procedure 633
The MEANS Procedure 649
The OPTIONS Procedure 713
The OPTLOAD Procedure 721
The OPTSAVE Procedure 723
The PLOT Procedure 725

The PMENU Procedure 779
The PRINT Procedure 817

The PRINTTO Procedure 879
The PRTDEF Procedure 893
The PRTEXP Procedure 905
The RANK Procedure 909

The REGISTRY Procedure 925
The REPORT Procedure 937
The SORT Procedure 17091

The SQL Procedure 17713

The STANDARD Procedure 71243
The SUMMARY Procedure 1257
The TABULATE Procedure 1259

The TEMPLATE Procedure 1363

69

PART

Procedures

Chapter 45. The TIMEPLOT Procedure 1365
Chapter 46. The TRANSPOSE Procedure 1387
Chapter47. The TRANTAB Procedure 1409

Chapter 48. The UNIVARIATE Procedure 1435

70

"

CHAPTER

4

The APPEND Procedure

Overview: APPEND Procedure 71
Syntax: PROC APPEND 11

Overview: APPEND Procedure

The APPEND procedure adds the observations from one SAS data set to the end of
another SAS data set.

Generally, the APPEND procedure functions the same as the APPEND statement in
the DATASETS procedure. The only difference between the APPEND procedure and
the APPEND statement in PROC DATASETS is the default for /ibref in the BASE= and
DATA= arguments. For PROC APPEND, the default is either WORK or USER. For the
APPEND statement, the default is the libref of the procedure input library.

Syntax: PROC APPEND

Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.

Reminder: You can use data set options with the BASE= and DATA= options. See “Data
Set Options” on page 17 for a list.

Reminder: Complete documentation for the APPEND statement and the APPEND
procedure is in “APPEND Statement” on page 335 .

PROC APPEND BASE=<libref.>SAS-data-set <DATA=<libref.>SAS-data-set>
<FORCE> <APPENDVER=V6>;

12

CHAPTER

The CALENDAR Procedure

Overview: CALENDAR Procedure 174
Simple Schedule Calendar — 7-Day Default Calendar 715
Advanced Schedule Calendar 716
More Advanced Scheduling and Project Management Tasks 171
Simple Summary Calendar 178
Syntax: CALENDAR Procedure 19
PROC CALENDAR Statement 80
BY Statement 87
CALID Statement 88
DUR Statement 89
FIN Statement 90
HOLIDUR Statement 90
HOLIFIN Statement 91
HOLISTART Statement 92
HOLIVAR Statement 92
MEAN Statement 93
OUTDUR Statement 93
OUTFIN Statement 94
OUTSTART Statement 94
START Statement 95
SUM Statement 95
VAR Statement 96
Concepts: CALENDAR Procedure 97
Type of Calendars 97
Schedule Calendar 97
Definition 97
Required Statements 97
Examples 98
Summary Calendar 98
Definition 98
Required Statements 98
Multiple Events on a Single Day 98
Examples 98
The Default Calendars 98
Description 98
When You Unexpectedly Produce a Default Calendar
Examples 99
Calendars and Multiple Calendars 99
Definitions 99
Why Create Multiple Calendars 100
Houw to Identify Multiple Calendars 100

99

73

74 Overview: CALENDAR Procedure A Chapter 5

Using Holidays or Calendar Data Sets with Multiple Calendars 100
Types of Reports That Contain Multiple Calendars 101
Houw to Identify Calendars with the CALID Statement and the Special Variable _CAL_ 101
When You Use Holidays or Calendar Data Sets 101
Examples 102
Input Data Sets 102
Activities Data Set 102
Purpose 102
Requirements and Restrictions 102
Structure 102
Multiple Activities per Day in Summary Calendars 103
Examples 103
Holidays Data Set 103
Purpose 103
Structure 103
No Sorting Needed 104
Using SAS Date Versus SAS Datetime Values 104
Create a Generic Holidays Data Set 104
Examples 104
Calendar Data Set 104
Purpose 104
Structure 104
Using Default Workshifts Instead of a Workdays Data Set 105
Examples 105
Workdays Data Set 106
Purpose 106
Use Default Work Shifts or Create Your Own? 106
Structure 106
How Missing Values Are Treated 106
Examples 106
Missing Values in Input Data Sets 106
Results: CALENDAR Procedure 107
What Affects the Quantity of PROC CALENDAR Output 107
How Size Affects the Format of PROC CALENDAR Output 108
What Affects the Lines that Show Activity Duration 108
Customizing the Calendar Appearance 108
Examples: CALENDAR Procedure 108
Example 1: Schedule Calendar with Holidays — 5-Day Default 108
Example 2: Schedule Calendar Containing Multiple Calendars 112
Example 3: Multiple Schedule Calendars with Atypical Workshifts (Separated Output) 115
Example 4: Multiple Schedule Calendars with Atypical Workshifts (Combined and Mixed
Output) 120
Example 5: Schedule Calendar, Blank or with Holidays 125
Example 6: Calculating a Schedule Based on Completion of Predecessor Tasks 128
Example 7: Summary Calendar with MEAN Values By Observation 134
Example 8: Multiple Summary Calendars with Atypical Workshifts (Separated Output) 138

Overview: CALENDAR Procedure

The CALENDAR procedure displays data from a SAS data set in a monthly calendar
format. You can produce a schedule calendar, which schedules events around holidays
and nonwork periods. Or you can produce a summary calendar, which summarizes data

The CALENDAR Procedure /A Simple Schedule Calendar — 7-Day Default Calendar 75

and displays only one-day events and holidays. When you use PROC CALENDAR you
can

0 schedule work around holidays and other nonwork periods

o display holidays

O process data about multiple calendars in a single step and print them in a
separate, mixed, or combined format

o apply different holidays, weekly work schedules, and daily work shifts to multiple
calendars in a single PROC step

O produce a mean and a sum for variables based on either the number of days in a
month or the number of observations.

PROC CALENDAR also contains features specifically designed to work with PROC
CPM in SAS/OR software, a project management scheduling tool.

Simple Schedule Calendar — 7-Day Default Calendar

Output 5.1 on page 75 illustrates the simplest kind of schedule calendar that you can
produce. This calendar output displays activities planned by a banking executive. The
following statements produce Output 5.1 on page 75.

options nodate pageno=1 linesize=132 pagesize=60;
proc calendar data=allacty;
start date;

dur long;

run;

For the activities data set shown in this calendar, see Example 1 on page 108.

76

Output 5.1

Advanced Schedule Calendar

Simple Schedule Calendar

A Chapter 5

This calendar uses one of the two default calendars, the 24-hour-day, 7-day-week calendar.

The SAS System

July 1996
Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday

+ + + + + +
| 1 | 2 | 3 | 4 | 5 | 6
		+=Interview/Jw==+		
+Dist. Mtg./All=+	+====Mgrs. Meeting/District 6=====+		+VIP Banquet/Jw=+	
+ + + + + +

7 | 8 | 9 | 10 | 11 | 12 | 13
			+Planning Counci+	+=Seminar/White=+
+ Trade Show/Kno: +	+ grs. Meeting/District 7=====+			
+ Sales Drive/District +				
+ + + + + +

14 | 15 | 16 | 17 | 18 | 19 | 20
			+NewsLetter Dead+	+Co. Picnic/All=+
	+==Dentist/JW===+	+Bank Meeting/ls+	+Planning Counci+	+=Seminar/White=+
+ Sales Drive/District 7 +				
+ + + + + +

21 | 22 | 23 | 24 | 25 | 26 | 27
			I	
		+=Birthday/Mary=+	+======Close Sale/WYGIX Co.=======+	
==Inventors Show/Melvin== +	+Planning Counci+			
+ + + + + +

28 | 29 30 31
| |
| |
| |
| |
| |
I I

Advanced Schedule Calendar

Output 5.2 on page 77 is an advanced schedule calendar produced by PROC
CALENDAR. The statements that create this calendar

schedule activities around holidays

I R I R B B |

identify separate calendars

print multiple calendars in the same report

apply different holidays to different calendars

The CALENDAR Procedure /A More Advanced Scheduling and Project Management Tasks 77
o apply different work patterns to different calendars.
For an explanation of the program that produces this calendar, see Example 4 on
page 120.
Output 5.2 Advanced Schedule Calendar
Well Drilling Work Schedule: Combined Calendars 1

|
| July 1996
|
|
| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday
+ + + + + + +
| | | | | 2 | 3 | 4 | 5 | s
[EEEEETErE PN eeeee [eeeee [P I oo oo
car1					**Independence**	+Assemble Tank/>
						+Lay Power Line>
		+==============Drill Well/$1,000.00==============>		<Drill well/$1,+		
[EEEEEEEE PN [eeeee [eeeeee [P I oo [oo						
car2				+ cavate/$3,500.00		
+ + + + + + +						
	7	8	9	10	11	12
[EEEEERErE e [eeeee oo [P I oo oo						
caL1		+ uild Pump House/$2,000.00 +				
		< Assemble Tank/$1,000.00 k				
		<===Lay Power Line/$2,000.00====+		+===Pour Foundation/$1,500.00===>		
[EEEEEEEE [eeeee [eeeee oo [P I oo oo						
caL2		<Excavate/$3,50>	****Vacation****	<Excavate/$3,50+		
+ + + + + + +						
	14	15	16	17	18	19
[EEEETTEr [eeeee [eeeee e [P I oo e						
caL1		+ Install Pump/$500.00 +				
		<===========Pour Foundation/$1,500.00============+		+Install Pipe/$>		
					I I	
+ + + + + + +						
I I 21 I 22 I 23 I 24 I 25 I 26 I 27						
[EEEEETEE [eeeee [eeeeee ool [P I I oo						
car1		+ rect Tower/$2,500.00 >				
		<====Install Pipe/$1,000.00=====+				
			I I I			
+ + + + + +						
I I 28 I 29 I 30 31 I I						
[EEEEETEr oo [eeeee I I oo oo						
CAL1		<Erect Tower/$2+				
I I I I I I

More Advanced Scheduling and Project Management Tasks

For more complex scheduling tasks, consider using the CPM procedure in SAS/OR
software. PROC CALENDAR requires that you specify the starting date of each
activity. When the beginning of one task depends on the completion of others and a
date slips in a schedule, recalculating the schedule can be time-consuming. Instead of
manually recalculating dates, you can use PROC CPM to calculate dates for project

78

Simple Summary Calendar A Chapter 5

activities based on an initial starting date, activity durations, and which tasks are
identified as successors to others. For an example, see Example 6 on page 128.

Simple Summary Calendar

Output 5.3 on page 78 shows a simple summary calendar that displays the number
of meals served daily in a hospital cafeteria:

options nodate pageno=1 linesize=132 pagesize=60;

proc calendar data=meals;
start date;
sum brkfst lunch dinner;
mean brkfst lunch dinner;

run;

In a summary calendar, each piece of information for a given day is the value of a
variable for that day. The variables can be either numeric or character, and you can
format them as necessary. You can use the SUM and MEAN options to calculate sums
and means for any numeric variables. These statistics appear in a box below the
calendar, as shown in Output 5.3 on page 78. The data set shown in this calendar is
created in Example 7 on page 134.

Qutput 5.3 Simple Summary Calendar

The CALENDAR Procedure /\ Syntax: CALENDAR Procedure

79

The SAS System

December 1996

| |
| |
| |
| |
| Sunday | Monday | Tuesday | wWednesday | Thursday | Friday | Saturday |
| + + + + + + |
1	2	3	4	5	6	7
	123	188	123	200	176	
	234	188	183	267	165	
	238	198	176	243	177	
+ + + + + +						
8	9	10	11	12	13	14
	178	165	187	176	187	
	198	176	176	187	187	
	187	187	231	222	123	
+ + + + + +						
15	16	17	18	19	20	21
	176	156	198	178	165	
	165	.	143	198	176	
	177	167	167	187	187	
+ + + + + +						
22	23	24	25	26	27	28
	187					
	187					
	123					
+ + + + + +						
29	30	31				

| | Sum | Mean |

| | | |

| Brkfst | 2763 | 172.688 |

| Lunch | 2830 | 188.667 |

| Dinner | 2990 | 186.875 |

Syntax: CALENDAR Procedure

Required: You must use a START statement.
Required: For schedule calendars, you must also use a DUR or a FIN statement.
Tip: If you use a DUR or FIN statement, PROC CALENDAR produces a schedule

calendar.

Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32

for details.

Reminder: You can use the FORMAT, LABEL, and WHERE statements as well as any

global statements.

80 PROC CALENDAR Statement A Chapter 5

PROC CALENDAR <option(s)>;
START variable;
BY <DESCENDING> variable-1

<...<DESCENDING> variable-n>

<NOTSORTED>;
CALID variable

</ OUTPUT=COMBINE | MIX | SEPARATE >;

DUR variable;
FIN variable;

HOLISTART variable;
HOLIDUR variable;
HOLIFIN variable;
HOLIVAR variable;

MEAN variable(s) </ FORMAT=format-name>;

OUTSTART day-of-week;
OUTDUR number-of-days;
OUTFIN day-of-week;

SUM variable(s) </ FORMAT=format-name>;

VAR variable(s);

The following table lists the statements and options available in the CALENDAR

procedure according to function.

To do this

Use this statement

Create summary calendar

Create schedule calendar
Create multiple calendars

Specify holidays

Control display

Specify grouping

MEAN
SUM

DUR or FIN
CALID

HOLISTART
HOLIDUR
HOLIFIN
HOLIVAR

OUTSTART
OUTDUR
OUTFIN

BY
CALID

PROC CALENDAR Statement

PROC CALENDAR <option(s)>;

The CALENDAR Procedure /A PROC CALENDAR Statement 81

To do this Use this option

Specify data sets containing

weekly work schedules CALEDATA=
activities DATA=
holidays HOLIDATA=
unique shift patterns WORKDATA=

Control printing

display all months, even if no activities exist FILL

define characters used for outlines, dividers, and so on FORMCHAR=
specify the type of heading for months HEADER=
display month and weekday names in local language LOCALE
(experimental)

specify how to show missing values MISSING
suppress the display of Saturdays and Sundays WEEKDAYS

Specify time or duration
specify that START and FIN variables are in DATETIME format DATETIME
specify the number of hours in a standard work day DAYLENGTH=
specify the units of the DUR and HOLIDUR variables INTERVAL=

Control summary information

identify variables in the calendar LEGEND
specify the type of mean to calculate MEANTYPE=
Options

CALEDATA=SAS-data-set
specifies the calendar data set, a SAS data set that contains weekly work schedules
for multiple calendars.

Default: If you omit the CALEDATA= option, PROC CALENDAR uses a default
work schedule, as described in “The Default Calendars” on page 98.

Tip: A calendar data set is useful if you are using multiple calendars or a
nonstandard work schedule.

See also: “Calendar Data Set” on page 104

Featured in: Example 3 on page 115

DATA=SAS-data-set
specifies the activities data set, a SAS data set that contains starting dates for all
activities and variables to display for each activity. Activities must be sorted or
indexed by starting date.
Default: If you omit the DATA= option, the most recently created SAS data set is
used.

82 PROC CALENDAR Statement A Chapter 5

See also: “Activities Data Set” on page 102
Featured in: All examples. See “Examples: CALENDAR Procedure” on page 108

DATETIME
specifies that START and FIN variables contain values in DATETIME. format.

Default: If you omit the DATETIME option, PROC CALENDAR assumes that the
START and FIN values are in the DATE. format.

Featured in: Example 3 on page 115

DAYLENGTH=hours
gives the number of hours in a standard working day. The hour value must be a SAS
TIME value.

Default: 24 if INTERVAL=DAY (the default), 8 if INTERVAL=WORKDAY.
Restriction: DAYLENGTH= applies only to schedule calendars.

Interaction: If you specify the DAYLENGTH= option and the calendar data set
contains a D LENGTH variable, PROC CALENDAR uses the DAYLENGTH=
value only when the D_LENGTH value is missing.

Interaction: When INTERVAL=DAY and you have no CALEDATA= data set,
specifying a DAYLENGTH= value has no effect.

Tip: The DAYLENGTH= option is useful when you use the DUR statement and
your work schedule contains days of varying lengths, for example, a 5 half-day
work week. In a work week with varying day lengths, you need to set a standard
day length to use in calculating duration times. For example, an activity with a
duration of 3.0 workdays lasts 24 hours if DAYLENGTH=8:00 or 30 hours if
DAYLENGTH=10:00.

Tip: Instead of specifying the DAYLENGTH= option, you can specify the length of
the working day by using a D_LENGTH variable in the CALEDATA= data set. If
you use this method, you can specify different standard day lengths for different
calendars.

See also: “Calendar Data Set” on page 104 for more information on setting the
length of the standard workday

FILL
displays all months between the first and last activity, start and finish dates
inclusive, including months that contain no activities.

Default: If you do not specify FILL, PROC CALENDAR prints only months that
contain activities. (Months that contain only holidays are not printed.)

Featured in: Example 5 on page 125

FORMCHAR <(position(s))>="formatting-character(s)’
defines the characters to use for constructing the outlines and dividers for the cells in
the calendar as well as all identifying markers (such as asterisks and arrows) used to
indicate holidays or continuation of activities in PROC CALENDAR output.

position(s)

identifies the position of one or more characters in the SAS formatting-character

string. A space or a comma separates the positions.

Default: Omitting (position(s)) is the same as specifying all 20 possible system
formatting characters, in order.

Range: PROC CALENDAR uses 17 of the 20 formatting characters that SAS
provides. Table 5.1 on page 83 shows the formatting characters that PROC
CALENDAR uses. Figure 5.1 on page 84 illustrates their use in PROC
CALENDAR output.

formatting-character(s)

The CALENDAR Procedure /A PROC CALENDAR Statement 83

lists the characters to use for the specified positions. PROC CALENDAR assigns
characters in formatting-character(s) to position(s), in the order that they are listed.
For instance, the following option assigns an asterisk (¥) to the twelfth position,
assigns a single dash (-) to the thirteenth, and does not alter remaining characters:

formchar (12 13)="*-"

These new settings change the activity line from this:

ACTIVITY

to this:

Interaction: The SAS system option FORMCHAR= specifies the default formatting
characters. The SAS system option defines the entire string of formatting
characters. The FORMCHAR= option in a procedure can redefine selected
characters.

Tip: You can use any character in formatting-characters, including hexadecimal
characters. If you use hexadecimal characters, you must put an x after the closing
quote. For instance, the following option assigns the hexadecimal character 2D to
the third formatting character, the hexadecimal character 7C to the seventh
character, and does not alter the remaining characters:

formchar(3,7)='2D7C’'x

See also: For information on which hexadecimal codes to use for which characters,
consult the documentation for your hardware.

Table 5.1 Formatting Characters Used by PROC CALENDAR

Position Default Used to draw

| vertical bar

- horizontal bar

- cell: upper left corner

- cell: upper middle intersection
cell: upper right corner

| cell: middle left cell side

+ cell: middle middle intersection

| cell: middle right cell side

© O N & L A W N R
,

- cell: lower left corner

=
(=]
'

cell: lower middle intersection

=
-
'

cell: lower right corner

—
[\
+

activity start and finish

—_
w
Il

activity line

=
<2}
~

activity separator

—
[e]
A

activity continuation from

84 PROC CALENDAR Statement A Chapter 5

Position Default Used to draw
19 > activity continuation to
20 * holiday marker

Figure 5.1 Formatting Characters in PROC CALENDAR Output

i o5
|
1 4 4 July 1996 4 4 I—1
D — B S S S q
6 Monday Tuesday Wednesday Thursday Friday 8
Drmmmmmmmmmmm oo mmmm e B - mmm oo - mm e om e B - mmm e “@rggmmmmmmmmmmmmee 4
1 7} 2 7} 3 7} k 5
ndependencelaiaD| + kx4 k¥ acationk * 4k kkkx
+=====Interview/Jw:
===Mgrs. Meeting/District 6===
+Planning Councim =====
Trade Show/Knox:
ales Drive/District 6 @—-19
+====VIP Banquet/ grs. Meeting/District 7=============+
7777777777777777777777777 e e At e e L L e e e e e L PP L
15 16 17 18 19
Dentist/J +NewsLetter Deadline/All+|+====Co. Picnic/All=====+
ales Drive/District 7
18-—@):::::::::::::Sales Drive/District 6==============+|+=Bank Meeting/lst Natl=+|+Planning Council/Group +|+=====Sem: inar/Whit
7777777777777777777777777 e et et R e L L LD L
22 23 24 25 26
+=====Birthday/Mary===== lose Sale/WYGIX Co.===============+
Inventors Show/Melvin +Planning Council/Group +
7777777777777777777777777 e et e et e e e L L LD
29 30 31
O R Qe Qe Qe o—l11

HEADER=SMALL | MEDIUM | LARGE
specifies the type of heading to use in printing the name of the month.

SMALL
prints the month and year on one line.

MEDIUM
prints the month and year in a box four lines high.

LARGE
prints the month seven lines high using asterisks (*). The year is included if space

is available.
Default: MEDIUM

HOLIDATA=SAS-data-set
specifies the holidays data set, a SAS data set containing the holidays you want to
display in the output. One variable must contain the holiday names and another
must contain the starting dates for each holiday. PROC CALENDAR marks holidays
in the calendar output with asterisks (*) when space permits.

The CALENDAR Procedure /A PROC CALENDAR Statement 85

Interaction: Displaying holidays on a calendar requires a holidays data set and a
HOLISTART statement. A HOLIVAR statement is recommended for naming
holidays. HOLIDUR is required if any holiday lasts longer than one day.

Tip: The holidays data set does not require sorting.
See also: “Holidays Data Set” on page 103
Featured in: All examples. See “Examples: CALENDAR Procedure” on page 108

INTERVAL=DAY | WORKDAY
specifies the units of the DUR and HOLIDUR variables to one of two default
daylengths:

DAY
specifies the values of the DUR and HOLIDUR variables in units of 24-hour days
and specifies the default 7-day calendar. For instance, a DUR value of 3.0 is
treated as 72 hours. The default calendar work schedule consists of seven working
days, all starting at 00:00 with a length of 24:00.

WORKDAY
specifies the values of the DUR and HOLIDUR variables in units of 8-hour days
and specifies that the default calendar contains five days a week, Monday through
Friday, all starting at 09:00 with a length of 08:00. When WORKDAY is specified,
PROC CALENDAR treats the values of the DUR and HOLIDUR variables in units
of working days, as defined in the DAYLENGTH= option, the CALEDATA= data
set, or the default calendar. For example, if the working day is 8 hours long, a
DUR value of 3.0 is treated as 24 hours.

Default: DAY

Interaction: In the absence of a CALEDATA= data set, PROC CALENDAR uses
the work schedule defined in a default calendar.

Interaction: The WEEKDAYS option automatically sets the INTERVAL= value to
WORKDAY.

See also: “Calendars and Multiple Calendars” on page 99 and “Calendar Data Set”
on page 104 for more information on the INTERVAL= option and the specification
of working days; “The Default Calendars” on page 98

Featured in: Example 5 on page 125

LEGEND
prints the names of the variables whose values appear in the calendar. This
identifying text, or legend box, appears at the bottom of the page for each month if
space permits; otherwise, it is printed on the following page. PROC CALENDAR
identifies each variable by name or by label if one exists. The order of variables in
the legend matches their order in the calendar.

Restriction: LEGEND applies only to summary calendars.
Interaction: If you use the SUM and MEAN statements, the legend box also
contains SUM and MEAN values.

Featured in: Example 8 on page 138

LOCALE (Experimental)
prints the names of months and weekdays in the language that is indicated by the
value of the LOCALE= SAS system option. The LOCALE option in PROC
CALENDAR does not change the starting day of the week.
Default: If LOCALE is not specified, then names of months and weekdays are
printed in English.

CAUTION:
LOCALE is an experimental option that is available in Version 9. Do not use this option
in production jobs. A

86 PROC CALENDAR Statement A Chapter 5

MEANTYPE=NOBS | NDAYS
specifies the type of mean to calculate for each month.

NOBS
calculates the mean over the number of observations displayed in the month.

NDAYS
calculates the mean over the number of days displayed in the month.
Default: NOBS
Restriction: MEANTYPE= applies only to summary calendars.
Interaction: Normally, PROC CALENDAR displays all days for each month.

However, it may omit some days if you use the OUTSTART statement with the
OUTDUR or OUTFIN statement.

Featured in: Example 7 on page 134

MISSING
determines how missing values are treated, based on the type of calendar.

Summary Calendar
If there is a day without an activity scheduled, PROC CALENDAR prints the
values of variables for that day using the SAS or user-defined format specified for
missing values.

Default: If you omit MISSING, days without activities contain no values.

Schedule Calendar
variables with missing values appear in the label of an activity, using the format
specified for missing values.
Default: If you do not specify MISSING, PROC CALENDAR ignores missing
values in labeling activities.
See also: “Missing Values in Input Data Sets” on page 106 for more information on
missing values

WEEKDAYS
suppresses the display of Saturdays and Sundays in the output. It also specifies that
the value of the INTERVAL= option is WORKDAY.

Default: If you omit WEEKDAYS, the calendar displays all seven days.

Tip: The WEEKDAYS option is an alternative to using the combination of
INTERVAL=WORKDAY and the OUTSTART and OUTFIN statements, as shown
here:

Example Code 5.1 lllustration of Formatting Characters in PROC CALENDAR Output

proc calendar weekdays;
start date;
run;

proc calendar interval=workday;
start date;
outstart monday;
outfin friday;

run;
Featured in: Example 1 on page 108
WORKDATA=SAS-data-set

The CALENDAR Procedure /A BY Statement 87

specifies the workdays data set, a SAS data set that defines the work pattern during
a standard working day. Each numeric variable in the workdays data set denotes a
unique workshift pattern during one working day.

Tip: The workdays data set is useful in conjunction with the calendar data set.
See also: “Workdays Data Set” on page 106 and “Calendar Data Set” on page 104
Featured in: Example 3 on page 115

BY Statement

Processes activities separately for each BY group, producing a separate calendar for each value of
the BY variable.

Calendar type: Summary and schedule

Main discussion: “BY” on page 54

See also: “CALID Statement” on page 88

BY <DESCENDING> variable-1
<...<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable, but the observations in the data set must be sorted by all the
variables that you specify or have an appropriate index. Variables in a BY statement
are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.

Showing Multiple Calendars in Related Groups

When you use the CALID statement, you can process activities that apply to
different calendars, indicated by the value of the CALID variable. Because you can
specify only one CALID variable, however, you can create only one level of grouping.
For example, if you want a calendar report to show the activities of several departments
within a company, you can identify each department with the value of the CALID
variable and produce calendar output that shows the calendars for all departments.

88

CALID Statement A Chapter 5

When you use a BY statement, however, you can further divide activities into related
groups. For example, you can print calendar output that groups departmental
calendars by division. The observations for activities must contain a variable that
identifies which department an activity belongs to and a variable that identifies the
division that a department resides in. Specify the variable that identifies the
department with the CALID statement. Specify the variable that identifies the division
with the BY statement.

CALID Statement

Processes activities in groups defined by the values of a calendar identifier variable.

Calendar type: Summary and schedule

Tip: Useful for producing multiple schedule calendars and for use with SAS/OR
software.

See also: “Calendar Data Set” on page 104
Featured in: Example 2 on page 112, Example 3 on page 115, and Example 6 on page 128

CALID variable
</ OUTPUT=COMBINE | MIX | SEPARATE>;

Required Arguments

variable
a character or numeric variable that identifies which calendar an observation
contains data for.

Requirement: If you specify the CALID variable, both the activities and holidays
datasets must contain this variable. If either of them does not contain it, a default
calendar is used.

Interaction: SAS/OR software uses this variable to identify which calendar an
observation contains data for.

Tip: You do not need to use a CALID statement to create this variable. You can
include the default variable _CALID_ in the input data sets.

See also: “Calendar Data Set” on page 104

Options

OUTPUT=COMBINE | MIX | SEPARATE
controls the amount of space required to display output for multiple calendars.

COMBINE
produces one page for each month that contains activities and subdivides each day
by the CALID value.

Restriction: The input data must be sorted by or indexed on the START variable.
Featured in: Example 2 on page 112 and Example 4 on page 120

MIX

The CALENDAR Procedure /A DUR Statement 89

produces one page for each month that contains activities and does not identify
activities by the CALID value.
Restriction: The input data must be sorted by or indexed on the START variable.
Tip: MIX requires the least space for output.
Featured in: Example 4 on page 120

SEPARATE
produces a separate page for each value of the CALID variable.

Restriction: The input data must be sorted by the CALID variable and then by the
START variable or must contain an appropriate composite index.

Featured in: Example 3 on page 115 and Example 8 on page 138
Default: COMBINE

DUR Statement

Specifies the variable that contains the duration of each activity.

Alias: DURATION

Calendar type: Schedule

Interaction: If you use both a DUR and a FIN statement, DUR is ignored.

Tip: To produce a schedule calendar, you must use either a DUR or FIN statement.
Featured in: All schedule calendars (see “Examples: CALENDAR Procedure” on page 108)

DUR variable;

Required Arguments

variable
contains the duration of each activity in a schedule calendar.

Range: The duration may be a real or integral value.

Restriction: This variable must be in the activities data set.

See also: For more information on activity durations, see “Activities Data Set” on
page 102 and “Calendar Data Set” on page 104

Duration

0 Duration is measured inclusively from the start of the activity (as given in the
START variable). In the output, any activity lasting part of a day is displayed as
lasting a full day.

0 The INTERVAL= option in a PROC CALENDAR statement automatically sets the
unit of the duration variable, depending on its own value as follows:

If INTERVAL=. . . Then the default length of the duration unit is . . .

DAY (the default) 24 hours
WORKDAY 8 hours

90 FIN Statement A Chapter 5

0 You can override the default length of a duration unit by using
o the DAYLENGTH= option
0 a D_LENGTH variable in the CALEDATA= data set.

FIN Statement

Specifies the variable in the activities data set that contains the finishing date of each activity.
Alias: FINISH

Calendar type: Schedule

Interaction: If you use both a FIN and a DUR statement, FIN is used.

Tip: To produce a schedule calendar, you must use either a FIN or DUR statement.
Featured in: Example 6 on page 128

FIN variable;

Required Arguments

variable
contains the finishing date of each activity.

Restriction: The values of variable must be either SAS date or datetime values.

Restriction: If the FIN variable contains datetime values, you must specify the
DATETIME option in the PROC CALENDAR statement.

Restriction: Both the START and FIN variables must have matching formats. For
example, if one contains datetime values, so must the other.

HOLIDUR Statement

Specifies the variable in the holidays data set that contains the duration of each holiday for a
schedule calendar.

Alias: HOLIDURATION

Calendar type: Schedule

Default: If you do not use a HOLIDUR or HOLIFIN statement, all holidays last one day.
Restriction: Cannot use with a HOLIFIN statement.

Featured in: Example 1 on page 108 through Example 5 on page 125

HOLIDUR variable;

Required Arguments

variable

The CALENDAR Procedure /A HOLIFIN Statement 91

contains the duration of each holiday.

Range: The duration may be a real or integral value.
Restriction: This variable must be in the holidays data set.
Featured in: Example 3 on page 115 and Example 8 on page 138

Holiday Duration

o If you use both the HOLIFIN and HOLIDUR statement, PROC CALENDAR uses
the HOLIFIN variable value to define each holiday’s duration.

0 Set the unit of the holiday duration variable in the same way that you set the unit
of the duration variable; use either the INTERVAL= and DAYLENGTH= options
or the CALEDATA= data set.

0 Duration is measured inclusively from the start of the holiday (as given in the
HOLISTART variable). In the output, any holiday lasting at least half a day
appears as lasting a full day.

HOLIFIN Statement

Specifies the variable in the holidays data set containing the finishing date of each holiday.

Alias: HOLIFINISH
Calendar type: Schedule
Default: If you do not use a HOLIFIN or HOLIDUR statement, all holidays last one day.

HOLIFIN variable;

Required Arguments

variable
contains the finishing date of each holiday.

Restriction: This variable must be in the holidays data set.
Restriction: Values of variable must be in either SAS date or datetime values.

Restriction: If the HOLIFIN variable contains datetime values, you must specify
the DATETIME option in the PROC CALENDAR statement.

Holiday Duration

If you use both the HOLIFIN and the HOLIDUR statement, PROC CALENDAR uses
only the HOLIFIN variable.

92

HOLISTART Statement A Chapter 5

HOLISTART Statement

Specifies a variable in the holidays data set that contains the starting date of each holiday.

Alias: HOLISTA, HOLIDAY

Calendar type: Summary and schedule

Requirement: When you use a holidays data set, HOLISTART is required.
Featured in: Example 1 on page 108 through Example 5 on page 125

HOLISTART variable;

Required Arguments

variable
contains the starting date of each holiday.

Restriction: Values of variable must be in either SAS date or datetime values.

Restriction: If the HOLISTART variable contains datetime values, specify the
DATETIME option in the PROC CALENDAR statement.

Details

0 The holidays data set need not be sorted.
o All holidays last only one day, unless you use a HOLIFIN or HOLIDUR statement.

o If two or more holidays occur on the same day, PROC CALENDAR uses only the
first observation.

HOLIVAR Statement

Specifies a variable in the holidays data set whose values are used to label the holidays.

Alias: HOLIVARIABLE, HOLINAME
Calendar type: Summary and schedule

Default: If you do not use a HOLIVAR statement, PROC CALENDAR uses the word
DATE to identify holidays.

Featured in: Example 1 on page 108 through Example 5 on page 125

HOLIVAR variable;

Required Arguments

variable
a variable whose values are used to label the holidays. Typically, this variable
contains the names of the holidays.

The CALENDAR Procedure /A QUTDUR Statement 93

Range: character or numeric.
Restriction: This variable must be in the holidays data set.
Tip: You can format the HOLIVAR variable as you like.

MEAN Statement

Specifies numeric variables in the activities data set for which mean values are to be calculated
for each month.

Calendar type: Summary

Tip: You can use multiple MEAN statements.

Featured in: Example 7 on page 134

MEAN variable(s) </ FORMAT=format-name>;

Required Arguments

variable(s)
numeric variable for which mean values are calculated for each month.

Restriction: This variable must be in the activities data set.

Options

FORMAT=format-name
names a SAS or user-defined format to be used in displaying the means requested.

Alias: F=
Default: BEST. format
Featured in: Example 7 on page 134

What Is Displayed and How

0 The means appear at the bottom of the summary calendar page, if there is room,;
otherwise they appear on the following page.

0 The means appear in the LEGEND box if you specify the LEGEND option.

o PROC CALENDAR automatically displays variables named in a MEAN statement
in the calendar output, even if the variables are not named in the VAR statement.

OUTDUR Statement

Specifies in days the length of the week to be displayed.

Alias: OUTDURATION
Requirement: The OUTSTART statement is required.

94

OUTFIN Statement A Chapter 5

OUTDUR number-of-days;

Required Arguments

number-of-days
an integer expressing the length in days of the week to be displayed.

Length of Week

Use either the OUTDUR or OUTFIN statement to supply the procedure with
information about the length of the week to display. If you use both, PROC
CALENDAR ignores the OUTDUR statement.

OUTFIN Statement

Specifies the last day of the week to display in the calendar.

Alias: OUTFINISH
Requirement: The OUTSTART statement is required.
Featured in: Example 3 on page 115 and Example 8 on page 138

OUTFIN day-of-week;

Required Arguments

day-of-week
the name of the last day of the week to display. For example,

outfin friday;

Length of Week

Use either the OUTFIN or OUTDUR statement to supply the procedure with
information about the length of the week to display. If you use both, PROC
CALENDAR uses only the OUTFIN statement.

OUTSTART Statement

Specifies the starting day of the week to display in the calendar.

Alias: OUTSTA
Default: If you do not use OUTSTART, each calendar week begins with Sunday.
Featured in: Example 3 on page 115 and Example 8 on page 138

The CALENDAR Procedure /A SUM Statement 95

OUTSTART day-of-week;

Required Arguments

day-of-week
the name of the starting day of the week for each week in the calendar. For example,

outstart monday;

Interaction with OUTDUR and OUTFIN

By default, a calendar displays all seven days in a week. Use OUTDUR or OUTFIN,
in conjunction with OUTSTART, to control how many days are displayed and which day
starts the week.

START Statement

Specifies the variable in the activities data set that contains the starting date of each activity.

Alias: STA, DATE, ID
Required: START is required for both summary and schedule calendars.
Featured in: All examples

START variable;

Required Arguments

variable
contains the starting date of each activity.

Restriction: This variable must be in the activities data set.
Restriction: Values of variable must be in either SAS date or datetime values.

Restriction: If you use datetime values, specify the DATETIME option in the
PROC CALENDAR statement.

Restriction: Both the START and FIN variables must have matching formats. For
example, if one contains datetime values, so must the other.

SUM Statement

Specifies numeric variables in the activities data set to total for each month.

Calendar type: Summary

Tip: To apply different formats to variables being summed, use multiple SUM
statements.

Featured in: Example 7 on page 134 and Example 8 on page 138

96

VAR Statement A Chapter 5

SUM variable(s) </ FORMAT=format-name>;

Required Arguments

variable(s)
specifies one or more numeric variables to total for each month.

Restriction: This variable must be in the activities data set.

Options

FORMAT=format-name
names a SAS or user-defined format to use in displaying the sums requested.

Alias: F=
Default: BEST. format
Featured in: Example 7 on page 134 and Example 8 on page 138

What Is Displayed and How

0 The sum appears at the bottom of the calendar page, if there is room; otherwise, it
appears on the following page.

0 The sum appears in the LEGEND box if you specify the LEGEND option.

o PROC CALENDAR automatically displays variables named in a SUM statement
in the calendar output, even if the variables are not named in the VAR statement.

VAR Statement

Specifies the variables that you want to display for each activity.
Alias: VARIABLE

VAR variable(s);

Required Arguments

variable(s)
specifies one or more variables that you want to display in the calendar.

Range: The values of variable can be either character or numeric.
Restriction: These variables must be in the activities data set.
Tip: You can apply a format to this variable.

Details
When VAR Is Not Used

If you do not use a VAR statement, the procedure displays all variables in the activities
data set in the order that they occur in the data set, except for the BY, CALID, START,

The CALENDAR Procedure /A Schedule Calendar 97

DUR, and FIN variables. All variables are not displayed, however, if the LINESIZE=
and PAGESIZE= settings do not allow enough space in the calendar.

Display of Variables

o PROC CALENDAR displays variables in the order that they appear in the VAR
statement. All variables are not displayed, however, if the LINESIZE= and
PAGESIZE= settings do not allow enough space in the calendar.

o PROC CALENDAR also displays any variable named in a SUM or MEAN
statement for each activity in the calendar output, even if you do not name that

variable in a VAR statement.

Concepts: CALENDAR Procedure

Type of Calendars

PROC CALENDAR can produce two kinds of calendars: schedule and summary.

Use a ... if you want to ... and can accept this
restriction
schedule calendar schedule activities around holidays cannot calculate sums and

and nonwork periods

schedule activities that last more
than one day

summary calendar calculate sums and means

means

activities can last only one
day

Note: PROC CALENDAR produces a summary calendar if you do not use a DUR or

FIN statement in the PROC step. A

Schedule Calendar

Definition

A report in calendar format that shows when activities and holidays start and end.

Required Statements

You must supply a START statement and either a DUR or FIN statement.

98 Summary Calendar A Chapter 5

Use this statement . . . to specify a variable whose value indicates the . . .
START starting date of an activity

DUR* duration of an activity

FIN* ending date of an activity

* Choose one of these. If you do not use a DUR or FIN statement CALENDAR assumes you want
to create a summary calendar report.

Examples

See “Simple Schedule Calendar — 7-Day Default Calendar” on page 75, “Advanced
Schedule Calendar” on page 76, as well as Example 1 on page 108, Example 2 on page
112, Example 3 on page 115, Example 4 on page 120, Example 5 on page 125, and
Example 6 on page 128

Summary CGalendar

Definition

A report in calendar format that displays activities and holidays that last only one
day and that can provide summary information in the form of sums and means.

Required Statements

You must supply a START statement. This statement identifies the variable in the
activities data set that contains an activity’s starting date.

Multiple Events on a Single Day

A summary calendar report can display only one activity on a given date. If more
than one activity has the same START value, therefore, only the last observation that
was read is used. In such situations, you may find PROC SUMMARY useful in
collapsing your data set to contain one activity per starting date.

Examples

See “Simple Summary Calendar” on page 78, Example 7 on page 134, and Example 8
on page 138

The Default Calendars

Description

PROC CALENDAR provides two default calendars for simple applications. You can
produce calendars without having to specify detailed workshifts and weekly work
patterns if your application can use one of two simple work patterns. Consider using a
default calendar if

O your application uses a 5-day work week with 8-hour days or a 7-day work week
with 24-hour days. See Table 5.2 on page 99.

The CALENDAR Procedure /A Calendars and Multiple Calendars 99

O you want to print all activities on the same calendar.
O you do not need to identify separate calendars.

Table 5.2 Default Calendar Settings and Examples

If scheduled work days Then set By default So work periods are Shown in
are INTERVAL= DAYLENGTH= Example
7 (M-Sun) DAY 24 24-hour days 2
5 (M-F) WORKDAY 8 8-hour days 1

When You Unexpectedly Produce a Default Calendar

If you want to produce a specialized calendar, but do not provide all the necessary
information, PROC CALENDAR attempts to produce a default calendar. These errors
cause PROC CALENDAR to produce a calendar with default features:

o If the activities data set does not contain a CALID variable, then PROC
CALENDAR produces a default calendar.

0 If both the holidays and calendar data sets do not contain a CALID variable, then
PROC CALENDAR produces a default calendar even if the activities data set
contains a CALID variable.

o If the activities and calendar data sets contain the CALID variable, but the
holidays data set does not, then the default holidays are used.

Examples

See the 7-day default calendar in Output 5.1 on page 75 and the 5-day default
calendar in Example 1 on page 108

Calendars and Multiple Calendars

Definitions

calendar
a logical entity that represents a weekly work pattern, which consists of weekly
work schedules and daily shifts. PROC CALENDAR contains two default work
patterns: 5-day week with an 8-hour day or a 7-day week with a 24-hour day. You
can also define your own work patterns using CALENDAR and WORKDAYS data

sets.

calendar report
a report in calendar format that displays activities, holidays, and nonwork periods.
A calendar report can contain multiple calendars in one of three formats

separate
Each identified calendar prints on separate output pages.

combined
All identified calendars print on the same output pages and each is identified.

mixed

100

Calendars and Multiple Calendars A Chapter 5

All identified calendars print on the same output pages but are not identified
as belonging to separate calendars.

multiple calendar
a logical entity that represents multiple weekly work patterns.

Why Create Multiple Calendars

Create a multiple calendar if you want to print a calendar report that shows
activities that follow different work schedules or different weekly work patterns. For
example, a construction project report might need to use different work schedules and
weekly work patterns for work crews on different parts of the project.

Another use for multiple calendars is to identify activities so that you can choose to
print them in the same calendar report. For example, if you identify activities as
belonging to separate departments within a division, you can choose to print a calendar
report that shows all departmental activities on the same calendar.

And finally, using multiple calendars, you can produce separate calendar reports for
each calendar in a single step. For example, if activities are identified by department,
you can produce a calendar report that prints the activities of each department on
separate pages.

How to Identify Multiple Calendars

Because PROC CALENDAR can process only one data set of each type (activities,
holidays, calendar, workdays) in a single PROC step, you must be able to identify for
PROC CALENDAR which calendar an activity, holiday, or weekly work pattern belongs
to. Use the CALID statement to specify the variable whose values identify the
appropriate calendar. This variable can be numeric or character.

You can use the special variable name _CAL_ or you can use another variable name.
PROC CALENDAR automatically looks for a variable named _CAL_ in the holiday and
calendar data sets, even when the activities data set uses a variable with another name
as the CALID variable. Therefore, if you use the name _CAL_, at least in your holiday
and calendar data sets, you can more easily reuse these data sets for different calendar
applications.

Using Holidays or Calendar Data Sets with Multiple Calendars

When using a holidays or calendar data set with multiple calendars, PROC
CALENDAR treats the variable values in the following way:

0 Every value of the CALID variable that appears in either the holidays or calendar
data sets defines a calendar.

o If a CALID value appears in the HOLIDATA= data set but not in the
CALEDATA= data set, the work schedule of the default calendar is used.

o If a CALID value appears in the CALEDATA= data set but not in the
HOLIDATA= data set, the holidays of the default calendar are used.

o If a CALID value does not appear in either the HOLIDATA= or CALEDATA= data
set, the work schedule and holidays of the default calendar are used.

o If the CALID variable is not found in the holiday or calendar data sets, PROC
CALENDAR looks for the default variable _CAL_ instead. If neither the CALID
variable nor a _CAL_ variable appears in a data set, the observations in that data
set are applied to a default calendar.

The CALENDAR Procedure /A Calendars and Multiple Calendars 101

Types of Reports That Contain Multiple Calendars

Because you can associate different observations with different calendars, you can
print a calendar report that shows activities that follow different work schedules or
different work shifts or that contain different holidays. You can

O print separate calendars on the same page and identify each one.
O print separate calendars on the same page without identifying them.
O print separate pages for each identified calendar.

As an example, consider a calendar that shows the activities of all departments
within a division. Each department can have its own calendar identification value and,
if necessary, can have individual weekly work patterns, daily work shifts, and holidays.

If you place activities associated with different calendars in the same activities data
sets, you use PROC CALENDAR to produce calendar reports that print

0 the schedule and events for each department on a separate pages (separate output)

0 the schedule and events for the entire division, each identified by department
(combined output)

O the schedule and events for the entire division, but rot identified by department
(mixed output).

The multiple-calendar feature was added specifically to enable PROC CALENDAR to
process the output of PROC CPM in SAS/OR software, a project management tool. See
Example 6 on page 128.

How to Identify Calendars with the CALID Statement and the Special
Variable _CAL_

To identify multiple calendars, you must use the CALID statement to specify the
variable whose values identify which calendar an event belongs with. This variable can
be numeric or character.

You can use the special variable name _CAL_ or you can use another variable name.
PROC CALENDAR automatically looks for a variable named _CAL_ in the holiday and
calendar data sets, even when the activities data set uses a variable with another name
as the CALID variable. Therefore, if you use the name _CAL_, at least in your holiday
and calendar data sets, you can more easily reuse these data sets for different calendar
applications.

When You Use Holidays or Calendar Data Sets

When you use a holidays or calendar data set with multiple calendars, PROC
CALENDAR treats the variable values in the following way:

0 Every value of the CALID variable that appears in either the holidays or calendar
data sets defines a calendar.

o If a CALID value appears in the HOLIDATA= data set but not in the
CALEDATA= data set, the work schedule of the default calendar is used.

o If a CALID value appears in the CALEDATA= data set but not in the
HOLIDATA= data set, the holidays of the default calendar are used.

o If a CALID value does not appear in either the HOLIDATA= or CALEDATA= data
set, the work schedule and holidays of the default calendar are used.

o If the CALID variable is not found in the holiday or calendar data sets, PROC
CALENDAR looks for the default variable _CAL_ instead. If neither the CALID
variable nor a _CAL_ variable appear in a data set, the observations in that data
set are applied to a default calendar.

102

Input Data Sets A Chapter 5

Examples

Example 2 on page 112, Example 3 on page 115, Example 4 on page 120, and
Example 8 on page 138

Input Data Sets

You may need several data sets to produce a calendar, depending on the complexity
of your application. PROC CALENDAR can process one of each of four data sets. See
Table 5.3 on page 102.

Table 5.3 Four Possible Input Data Sets for PROC CALENDAR

Data Set Description Specify with the . . .

activities Each observation contains information = DATA= option
about a single activity.

holidays Each observation contains information = HOLIDATA= option
about a holiday

calendar Each observation defines one weekly CALEDATA= option
work schedule.

workdays Each variable represents one daily WORKDATA= option

schedule of alternating work and
nonwork periods.

Activities Data Set

Purpose

The activities data set, specified with the DATA= option, contains information about
the activities to be scheduled by PROC CALENDAR. Each observation describes a

single activity.

Requirements and Restrictions

O An activities data set is required. (If you do not specify one with the DATA=
option, PROC CALENDAR uses the _LAST_ data set.)

O Only one activities data set is allowed.

0 The activities data set must always be sorted or indexed by the START variable.

0 If you use a CALID (calendar identifier) variable and want to produce output that
shows multiple calendars on separate pages, the activities data set must be sorted
by or indexed on the CALID variable and then by the START variable.

o If you use a BY statement, the activities data set must be sorted by or indexed on
the BY variables.

Structure

Each observation in the activities data set contains information about one activity.
One variable must contain the starting date. If you are producing a schedule calendar,

The CALENDAR Procedure /A Holidays Data Set 103

another variable must contain either the activity duration or finishing date. Other
variables can contain additional information about an activity.

If a variable contains an activity’s For this type of
Specify it with the . . . calendar. . .
starting date START statement Schedule
Summary
duration DUR statement Schedule
finishing date FIN statement Schedule

Multiple Activities per Day in Summary Calendars

A summary calendar can display only one activity on a given date. If more than one
activity has the same START value, therefore, only the last observation read is used. In
such situations, you may find PROC SUMMARY useful to collapse your data set to
contain one activity per starting date.

Examples

Every example in the Examples section uses an activities data set.

Holidays Data Set

Purpose

You can use a holidays data set, specified with the HOLIDATA= option, to
O identify holidays on your calendar output

0 identify days that are not available for scheduling work. (In a schedule calendar,
PROC CALENDAR does not schedule activities on these days.)

Structure

Each observation in the holidays data set must contain at least the holiday starting
date. A holiday lasts only one day unless a duration or finishing date is specified.
Supplying a holiday name is recommended, though not required. If you do not specify
which variable contains the holiday name, PROC CALENDAR uses the word DATE to
identify each holiday.

If a variable contains a Then specify it with this statement . . .
holiday’s . . .

starting date HOLISTART

name HOLIVAR

duration HOLIDUR

finishing date HOLIFIN

104

Calendar Data Set A Chapter 5

No Sorting Needed

You do not need to sort or index the holidays data set.

Using SAS Date Versus SAS Datetime Values

PROC CALENDAR calculates time using SAS datetime values. Even when your data
are in DATE. format, the procedure automatically calculates time in minutes and
seconds. If you specify only date values, therefore, PROC CALENDAR prints messages
similar to the following ones to the SAS log:

NOTE: All holidays are assumed to start at the
time/date specified for the holiday variable
and last one DTWRKDAY.

WARNING: The units of calculation are SAS datetime
values while all the holiday variables are
not. All holidays are converted to SAS
datetime values.

Create a Generic Holidays Data Set

If you have many applications that require PROC CALENDAR output, consider
creating a generic holidays data set that contains standard holidays. You can begin
with the generic holidays and add observations that contain holidays or nonwork events
specific to an application.

CAUTION:
Do not schedule holidays during nonwork periods. Holidays defined in the HOLIDATA=
data set cannot occur during nonwork periods defined in the work schedule. For
example, you cannot schedule Sunday as a vacation day if the work week is defined
as Monday through Friday. When such a conflict occurs, the holiday is rescheduled to
the next available working period following the nonwork day. A

Examples

Every example in the Examples section uses a holidays data set.

Calendar Data Set

Purpose

You can use a calendar data set, specified with the CALEDATA= option, to specify
work schedules for different calendars.

Structure

Each observation in the calendar data set defines one weekly work schedule. The
data set created in the DATA step shown below defines weekly work schedules for two
calendars, CALONE and CALTWO.

data cale;
input sun_ $ mon_$ tue_ $ wed $ _thu_$ /
fri § sat$ _cal_ $ d_length timeé6.;
datalines;
holiday workday workday workday workday

The CALENDAR Procedure /A Calendar Data Set 105

workday holiday calone 8:00
holiday shiftl shiftl shiftl shiftl
shift2 holiday caltwo 9:00

The variables in this calendar data set consist of

SUN through _SAT_
the name of each day of the week that appears in the calendar. The values of
these variables contain the name of workshifts. Valid values for workshifts are

O WORKDAY (the default workshift)
O HOLIDAY (a nonwork period)

O names of variables in the WORKDATA= data set (in this example, SHIFT1
and SHIFT2).

CAL

the CALID (calendar identifier) variable. The values of this variable identify
different calendars. If this variable is not present, the first observation in this
data set defines the work schedule that is applied to all calendars in the activities
data set.

If the CALID variable contains a missing value, the character or numeric value
for the default calendar (DEFAULT or 0) is used. See “The Default Calendars” on
page 98 for further details.

D_LENGTH

the daylength identifier variable. Values of D_LENGTH indicate the length of the
standard workday to be used in calendar calculations. You can set the workday
length either by placing this variable in your calendar data set or by using the
DAYLENGTH= option.

Missing values for this variable default to the number of hours specified in the
DAYLENGTH-= option; if the DAYLENGTH-= option is not used, the day length
defaults to 24 hours if INTERVAL=DAY, or 8 hours if INTERVAL=WORKDAY.

Using Default Workshifts Instead of a Workdays Data Set

You can use a calendar data set with or without a workdays data set. Without a
workdays data set, WORKDAY in the calendar data set is equal to one of two standard
workdays, depending on the setting of the INTERVAL= option:

If INTERVAL= Then the work-shift begins at . . And the day length is . . .
DAY 00:00 24 hours
WORKDAY 9:00 8 hours

You can reset the length of the standard workday with the DAYLENGTH= option or
a D_LENGTH variable in the calendar data set. You can define other work shifts in a
workdays data set.

Examples

Example 3 on page 115, Example 4 on page 120, and Example 7 on page 134 feature
a calendar data set.

106

Workdays Data Set A Chapter 5

Workdays Data Set

Purpose

You can use a workdays data set, specified with the WORKDATA= option, to define
the daily workshifts named in a CALEDATA= data set.

Use Default Work Shifts or Create Your Own?

You do not need a workdays data set if your application can use one of two default
work shifts:

If INTERVAL= Then the work-shift begins at . . And the day length is. . .
DAY 00:00 24 hours
WORKDAY 9:00 8 hours

See the INTERVAL= option on page 85.

Structure

Each variable in the workdays data set contains one daily schedule of alternating
work and nonwork periods. For example, this DATA step creates a data set that
contains specifications for two work shifts:

data work;
input shiftl time6. shift2 timeé6.;
datalines;

7:00 7:00

12:00 11:00

13:00

17:00

r

The variable SHIFT1 specifies a 10-hour workday, with one nonwork period (a lunch
hour); the variable SHIFT2 specifies a 4-hour workday with no nonwork periods.

How Missing Values Are Treated

The missing values default to 00:00 in the first observation and to 24:00 in all other
observations. Two consecutive values of 24:00 define a zero-length time period, which is
ignored.

Examples
See Example 3 on page 115

Missing Values in Input Data Sets

Table 5.4 on page 107 summarizes the treatment of missing values for variables in
the data sets used by PROC CALENDAR.

Table 5.4 Treatment of

The CALENDAR Procedure

Missing Values in PROC CALENDAR

A What Affects the Quantity of PROC CALENDAR Output

107

Data set Variable Treatment of missing values
Activities (DATA=) CALID default calendar value is used
START observation is not used
DUR 1.0 is used
FIN START value + daylength is used
VAR if a summary calendar or the MISSING
option is specified, the missing value is
used; otherwise, no value is used
SUM, MEAN 0
Calendar (CALEDATA=) CALID default calendar value is used

Holiday (HOLIDATA=)

SUN through _SAT _

D_LENGTH

SUM, MEAN

CALID
HOLISTART
HOLIDUR

HOLIFIN

HOLIVAR

Workdays (WORKDATA=) any

corresponding shift for default calendar
is used

if available, DAYLENGTH-= value is
used; otherwise, if INTERVAL=DAY,
24:00 is used; otherwise 8:00 is used

0

all holidays apply to all calendars
observation is not used

if available, HOLIFIN value is used
instead of HOLIDUR value; otherwise
1.0 is used

if available, HOLIDUR value is used
instead of HOLIFIN value; otherwise,
HOLISTART value + day length is used

no value is used

for the first observation, 00:00 is used,;
otherwise, 24:00 is used

Results: CALENDAR Procedure

What Affects the Quantity of PROC CALENDAR Output

The quantity of printed calendar output depends on

O

O
O
O

the range of dates in the activities data set
whether the FILL option is specified

the BY statement
the CALID statement.

108

How Size Affects the Format of PROC CALENDAR Output A Chapter 5

PROC CALENDAR always prints one calendar for every month that contains any
activities. If you specify the FILL option, the procedure prints every month between the
first and last activities, including months that contain no activities. Using the BY
statement prints one set of output for each BY value. Using the CALID statement with
OUTPUT=SEPARATE prints one set of output for each value of the CALID variable.

How Size Affects the Format of PROC CALENDAR Output

PROC CALENDAR always attempts to fit the calendar within a single page, as
defined by the SAS system options PAGESIZE= and LINESIZE=. If the PAGESIZE=
and LINESIZE= values do not allow sufficient room, PROC CALENDAR may print the
legend box on a separate page. If necessary, PROC CALENDAR truncates or omits
values to make the output fit the page and prints messages to that effect in the SAS log.

What Affects the Lines that Show Activity Duration

In a schedule calendar, the duration of an activity is shown by a continuous line
through each day of the activity. Values of variables for each activity are printed on the
same line, separated by slashes (/). Each activity begins and ends with a plus sign (+).
If an activity continues from one week to another, PROC CALENDAR displays arrows
(< >) at the points of continuation.

The length of the activity lines depends on the amount of horizontal space available.
You can increase this by specifying

O a larger linesize with the LINESIZE= option in the OPTIONS statement

0 the WEEKDAYS option to suppress the printing of Saturday and Sunday, which
provides more space for Monday through Friday.

Customizing the Calendar Appearance

PROC CALENDAR uses 17 of the 20 SAS formatting characters to construct the
outline of the calendar and to print activity lines and to indicate holidays. You can use
the FORMCHAR= option to customize the appearance of your PROC CALENDAR
output by substituting your own characters for the default. See Table 5.1 on page 83
and Figure 5.1 on page 84.

If your printer supports an extended character set (one that includes graphics
characters in addition to the regular alphanumeric characters), you can greatly improve
the appearance of your output by using the FORMCHAR= option to redefine formatting
characters with hexadecimal characters. For information on which hexadecimal codes
to use for which characters, consult the documentation for your hardware. For an
example of assigning hex values, see FORMCHAR= on page 83.

Examples: CALENDAR Procedure

Example 1: Schedule Calendar with Holidays — 5-Day Default

Procedure features:

PROC CALENDAR statement options:

DATA=
HOLIDATA=
WEEKDAYS

DUR statement
HOLISTART statement
HOLIVAR statement
HOLIDUR statement
START statement

Other features:
PROC SORT statement

BY statement
5-day default calendar

This example

O

O

O

creates a schedule calendar

The CALENDAR Procedure

uses one of the two default work patterns: 8-hour day, 5-day week

schedules activities around holidays

displays a 5-day week

Program

Create the activities data set. ALLACTY contains both personal and business activities

information for a bank president.

data allacty;

input date : date7.

datalines;

event $§ 9-36 who $§ 37-48 long;

01JUL96 Dist. Mtg. All 1
17JUL96 Bank Meeting 1st Natl 1
02JUL96 Mgrs. Meeting District 6 2
11JUL96 Mgrs. Meeting District 7 2
03JUL96 Interview JW 1
08JUL96 Sales Drive District 6 5
15JUL96 Sales Drive District 7 5
08JUL96 Trade Show Knox 3
22JUL96 Inventors Show Melvin 3
11JUL96 Planning Council Group II 1
18JUL96 Planning Council Group III 1
25JUL96 Planning Council Group IV 1
12JUL96 Seminar White 1
19JUL96 Seminar White 1
18JUL96 NewsLetter Deadline All 1
05JUL96 VIP Banquet JW 1
19JUL96 Co. Picnic All 1
16JUL96 Dentist JW 1
24JUL96 Birthday Mary 1

A Program

109

110

Program A Chapter 5

25JUL96 Close Sale WYGIX Co. 2

r

Create the holidays data set.

data hol;
input date : date7. holiday $ 11-25 holilong @27;
datalines;

05jul9e Vacation

04julge6 Independence 1

r

Sort the activities data set by the variable containing the starting date. You are not
required to sort the holidays data set.

proc sort data=allacty;
by date;

run;

Set LINESIZE= appropriately. If the linesize is not long enough to print the variable values,
PROC CALENDAR either truncates the values or produces no calendar output.

options nodate pageno=1 linesize=132 pagesize=60;

Create the schedule calendar. DATA= identifies the activities data set; HOLIDATA= identifies
the holidays data set. WEEKDAYS specifies that a week consists of five eight-hour work days.

proc calendar data=allacty holidata=hol weekdays;

The START statement specifies the variable in the activities data set that contains the starting
date of the activities; DUR specifies the variable that contains the duration of each activity.
Creating a schedule calendar requires START and DUR.

start date;
dur long;

The HOLISTART, HOLIVAR, and HOLIDUR statements specify the variables in the holidays
data set that contain the start date, name, and duration of each holiday, respectively. When you
use a holidays data set, HOLISTART is required. Because at least one holiday lasts more than
one day, HOLIDUR is required.

holistart date;

holivar holiday;

holidur holilong;

titlel ‘Summer Planning Calendar: Julia Cho'’;
title2 ’President, Community Bank’;

run;

The CALENDAR Procedure A Output 111
Output
Output 5.4 Schedule Calendar: 5-Day Week with Holidays
Summer Planning Calendar: Julia Cho 1
President, Community Bank
| |
| July 1996 |
| |
| |
| Monday | Tuesday | Wednesday | Thursday | Friday
| + + + +
1	2	3	4	5
			#%% %% * Independence** ¥ %%	********Vacation******xx
		+=====Interview/JW======+		
+====Dist. Mtg./All +	+ grs. Meeting/District 6=============+			
+ + + +				
I 8 I 9 I 10 I 11 I 12 I				
********Vacation*********	********Vacation*********	I I I		
			+Planning Council/Group +	+=====Seminar/Whit +
		+ Trade Show/Kno! +		
		+ Sales Drive/District >		
		+====VIP Banquet/J +]+ grs. Meeting/District 7=============+		
+ + + +				
I 15 I 16 I 17 I 18 I 19 I				
	+======Dentist/JW=======+		+NewsLetter Deadline/All+	+====Co. Picnic/All=====+
+ Sales Drive/District 7 +				
<=============Sales Drive/District 6==============+	+=Bank Meeting/lst Natl=+	+Planning Council/Group +	+=====Seminar/Whit +	
+ + + +				
I 22 I 23 I 24 I 25 I 26 I				
			I	
		+=====Birthday/Mary +]+ lose Sale/WYGIX Co.===============+		
+ Inventors Show/Melvir +	+Planning Council/Group +			
+ + + +				
29	30	31		
I I I | | |

112 Example 2: Schedule Calendar Containing Multiple Calendars A Chapter 5

Example 2: Schedule Calendar Containing Multiple Calendars

Procedure features:
CALID statement:

CAL variable
OUTPUT=COMBINE option

DUR statement
24-hour day, 7-day week

This example builds on Example 1 by identifying activities as belonging to one of two
calendars, business or personal. This example

produces a schedule calendar report

prints two calendars on the same output page

schedules activities around holidays

uses one of the two default work patterns: 24-hour day, 7-day week

O 0o o d

identifies activities and holidays by calendar name.

Program

Create the activities data set and identify separate calendars. ALLACTY2 contains both
personal and business activities for a bank president. The _CAL_ variable identifies which
calendar an event belongs to.

data allacty2;
input date:date7. happen $ 10-34 who $ 35-47 _CAL_$ long;

datalines;
01JUL96 Dist. Mtg. All CAL1 1
02JUL96 Mgrs. Meeting District 6 CAL1 2
03JUL96 Interview JW CAL1 1
05JUL96 VIP Banquet JW CALl 1
06JUL96 Beach trip family CAL2 2
08JUL96 Sales Drive District 6 CAL1 5
08JUL96 Trade Show Knox CAL1 3
09JUL96 Orthodontist Meagan CAL2 1
11JUL96 Mgrs. Meeting District 7 CAL1 2
11JUL96 Planning Council Group II CAL1 1
12JUL96 Seminar White CAL1l 1
14JUL96 Co. Picnic All CAL1l 1
14JUL96 Business trip Fred CAL2 2
15JUL96 Sales Drive District 7 CAL1l 5
16JUL96 Dentist JW CAL1 1
17JUL96 Bank Meeting lst Natl CAL1 1
17JUL96 Real estate agent Family CAL2 1
18JUL96 NewsLetter Deadline All CAL1 1
18JUL96 Planning Council Group III CAL1 1
19JUL96 Seminar White CALl 1
22JUL96 Inventors Show Melvin CAL1 3
24JUL96 Birthday Mary CAL1 1

The CALENDAR Procedure /A Program 113

25JUL96 Planning Council Group IV CAL1 1
25JUL96 Close Sale WYGIX Co. CAL1 2
27JUL96 Ballgame Family CAL2 1

r

Create the holidays data set and identify which calendar a holiday affects. The _CAL_
variable identifies which calendar a holiday belongs to.

data vac;
input hdate:date7. holiday $ 11-25 CAL_ $;
datalines;

29JUL96 vacation CAL2

04JUL96 Independence CALl

r

Sort the activities data set by the variable containing the starting date. When creating
a calendar with combined output, you sort only by the activity starting date, not by the CALID
variable. You are not required to sort the holidays data set.

proc sort data=allacty2;
by date;

run;

Set LINESIZE= appropriately. If the linesize is not long enough to print the variable values,
PROC CALENDAR either truncates the values or produces no calendar output.

options nodate pageno=1 pagesize=60 linesize=132;

Create the schedule calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set. By default, the output calendar displays a 7-day week.

proc calendar data=allacty2 holidata=vac;

The CALID statement specifies the variable that identifies which calendar an event belongs to.
OUTPUT=COMBINE places all events and holidays on the same calendar.

calid _CAL_/ output=combine;

Schedule an activity. The START statement specifies the variable in the activities data set
that contains the starting date of the activities; DUR specifies the variable that contains the
duration of each activity. Creating a schedule calendar requires START and DUR.

start date ;

dur long;

114 Output A Chapter 5

The HOLISTART and HOLIVAR statements specify the variables in the holidays data set that

contain the start date and name of each holiday, respectively. HOLISTART is required when you
use a holidays data set.

holistart hdate;

holivar holiday;

titlel ‘Summer Planning Calendar: Julia Cho'’;
title2 'President, Community Bank’;

title3 ’'Work and Home Schedule’;

run;

Output

The CALENDAR Procedure /A Example 3: Multiple Schedule Calendars with Atypical Workshifts (Separated Output) 115

Output 5.5 Schedule Calendar Containing Multiple Calendars

Summer Planning Calendar: Julia Cho 1
President, Community Bank
Work and Home Schedule

| |
| July 1996 |
| |
| |
| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday
+ + + + + + +

| | | 1 | 2 | 3 | 4 | 5 | 6 |

[EEEEERErE [eeeee oo e [I oo oo |

| caL2 | | | | | | |+Beach trip/fam>|

[EEEEEREE eeeee ool e [P I oo oo |

| caL1 | | | | +=Interview/JwW=+|**Independence** | |

| | |+Dist. Mtg./All+|+===Mgrs. Meeting/District 6====+| |+VIP Banquet/Jw+| |

| | | | I I I I |

| + + + + + + +

| | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

[EEEEEREE [eeeeee [eeeee oo [P I oo oo |

| caL2 |<Beach trip/famt+| | +orthodontist/M+| | | |

[EEEEEREE oo eeeeel oo [P I oo oo |

| car1 | | | | |+Planning Counc+|+Seminar/White=+|

| | | +================Trade Show/Kno: +|+===Mgrs. Meeting/District 7====+|

| | |+ Sales Drive/District +|

| + + + + + + +

| | |

|

|

|

|

|

|

| + + + + + +

I I 21 I 22 I 23 I 24 I 25 I 26

[EEEEEREE [eeeee oo [eeeeee [P I oo

| carz | | | | | |

[EEEEEREE [eeee oo [eeeeee [P I oo

| caL1 | | | | +Birthday/Mary=+|+ Close Sale/WYGIX Co.=

| | | +=============Inventors Show/Melvin==============+|+Planning Counc+|

| I | | I I I

| + + + + + +

I I 28 I 29 I 30 I 31 I

[EEEEEREr PN oo oo [P I oo oo |

| caL2 | | ¥***vacation# x| | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

I I I I | | | | |

Example 3: Multiple Schedule Calendars with Atypical Workshifts
(Separated Output)

Procedure features:
PROC CALENDAR statement options:

CALEDATA=
DATETIME

116 Producing Different Output for Multiple Calendars A Chapter 5

WORKDATA=
CALID statement:

CAL variable
OUTPUT=SEPARATE option

DUR statement
OUTSTART statement
OUTFIN statement

This example

O produces separate output pages for each calendar in a single PROC step
0 schedules activities around holidays

O displays an 8-hour day, 5 1/2-day week

O uses separate work patterns and holidays for each calendar.

Producing Different Output for Multiple Calendars

This example and Example 4 on page 120 use the same input data for multiple
calendars to produce different output. The only differences in these programs are how
the activities data set is sorted and how the OUTPUT= option is set.

To print . . . Sort the activities And set OUTPUT=to See Example
data set by . . .

Separate pages for each calendar id and SEPARATE 3,8

calendar starting date

All activities on the same starting date COMBINE 4,2

page and identify each

calendar

All activities on the same starting date MIX 4

page and NOT identify
each calendar

Program

Specify a library so that you can permanently store the activities data set.

libname well ’'SAS-data-library’;

Create the activities data set and identify separate calendars. WELL.ACT is a
permanent SAS data set that contains activities for a well construction project. The _CAL_
variable identifies the calendar that an activity belongs to.

data well.act;
input task & $16. dur : 5. date : datetimel6é. _cal_ $ cost;
datalines;

Drill wWell

Lay Power Line
Assemble Tank
Build Pump House
Pour Foundation
Install Pump
Install Pipe
Erect Tower
Deliver Material
Excavate

r

Create the holidays data set. The _CAL_ variable identifies the calendar that a holiday

belongs to.

data well.hol;

BN YN W W W

.50
.00
.00
.00
.00
.00
.00
.00
.00
.75

01JUL96:12:
04JUL96:12:
05JUL96:08:
08JUL96:12:
11JUL96:08:
15JUL96:14:
19JUL96:08:
20JUL96:08:
01JUL96:12:
03JUL96:08:

input date date. holiday $ 11-25

datalines;
09JUL96
04JUL96

r

Create the calendar data set. Each observation defines the workshifts for an entire week.
The _CAL_ variable identifies to which calendar the workshifts apply. CAL1 uses the default

Vacation

Independence

CAL2
CAL1

00:00
00:00
00:00
00:00
00:00
00:00
00:00
00:00
00:00
00:00

cal

The CALENDAR Procedure

CAL1l
CAL1l
CAL1l
CAL1l
CAL1l
CAL1l
CAL1l
CAL1l
CAL2
CAL2

$;

1000
2000
1000
2000
1500

500
1000
2500

500
3500

A Program

8-hour workshifts for Monday through Friday. CAL2 uses a half day on Saturday and the
default 8-hour workshift for Monday through Friday.

data well.cal;

input _sun_ S _sat_ S _mon__ S _tue_ S _wed_ S _thu_ S
cal $;

fri§
datalines;

Holiday Holiday Workday Workday Workday Workday Workday CALl
Holiday Halfday Workday Workday Workday Workday Workday CAL2

r

117

Create the workdays data set. This data set defines the daily workshifts that are named in
the calendar data set. Each variable — not observation — contains one daily schedule of

alternating work and nonwork periods. The HALFDAY workshift lasts 4 hours.

data well.wor;

input halfday time5.;

datalines;
08:00
12:00

r

Sort the activities data set by the variables containing the calendar identification and
the starting date, respectively. You are not required to sort the holidays data set.

118

Program A Chapter 5

proc sort data=well.act;
by _cal_ date;

run;

Set LINESIZE= appropriately. If the linesize is not long enough to print the variable values,
PROC CALENDAR either truncates the values or produces no calendar output.

options nodate pageno=1 linesize=132 pagesize=60;

Create the schedule calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set; CALEDATA= identifies the calendar data set; WORKDATA=
identifies the workdays data set. DATETIME specifies that the variable specified with the
START statement contains values in SAS datetime format.

proc calendar data=well.act
holidata=well.hol
caledata=well.cal
workdata=well.wor
datetime;

The CALID statement specifies that the _CAL_ variable identifies calendars.
OUTPUT=SEPARATE prints information for each calendar on separate pages.

calid _cal_ / output=separate;

The START statement specifies the variable in the activities data set that contains the activity
starting date; DUR specifies the variable that contains the activity duration. START and DUR
are required for a schedule calendar.

start date;
dur dur;

HOLISTART and HOLIVAR specify the variables in the holidays data set that contain the start
date and name of each holiday, respectively. HOLISTART is required when you use a holidays
data set.

holistart date;
holivar holiday;

OUTSTART and OUTFIN specify that the calendar display a 6-day week, Monday through
Saturday.

outstart Monday;

outfin Saturday;

titlel 'Well Drilling Work Schedule: Separate Calendars’;
format cost dollar9.2;

run;

Output

Output 5.6 Separate Output for Multiple Schedule Calendars

The CALENDAR Procedure /A Qutput

119

Well Drilling Work Schedule: Separate Calendars

July

|

|

|

|

| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday
| + + + + +

| 1 | 2 | 3 | 4 | 5 | 6
| | | | ****Independencex*** |

| | | | | |

| | | | | |

| | | | | +Assemble Tank/$1,0>|

| | | | |+Lay Power Line/$2,>|

|+ Drill Well/$1,000.00 >| |<Drill Well/$1,000.+|

| + + + + +

| 8 | 9 | 10 | 11 | 12 | 13
| | | | | |

| | | | | |

| I I | | |

|+ uild Pump House/$2,000.00 +|

|< Assemble Tank/$1,000.00 +|

| <=======Lay Power Line/$2,000.00========+| | Pour Foundation/$1,500.00=======>|

| + + + + +

| 15 | 16 | 17 | 18 | 19 | 20
| | | | | |

| | | | | |

| | | | | |

| I I I I |

|+ Install Pump/$500.00 +

| <=================Pour Foundation/$1,500.00==================4| |+Install Pipe/$1,00>|

| + + + + +

| 22 | 23 | 24 | 25 | 26 | 27
| | | | | |

| | | | | |

| | | | | |

| I I | | |

|+ Erect Tower/$2,500.00 >|
|<========Install Pipe/$1,000.00=========+|

| + + +

| 29 30 31

| |

| |

| |

| |

| |

I I

<Erect Tower/$2,500+

e VN

|
+
|
|
|
|
|
|
I

120 Example 4: Multiple Schedule Calendars with Atypical Workshifts (Combined and Mixed Output) A Chapter 5

Well Drilling Work Schedule: Separate Calendars 2
.. €Al SCAL2 tieiititttitt ittt ittt ettt

| |
| July 1996 |
| |
| I
| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday

| + + + + +

1	2	3	4	5	6
		+ cavate/$3,500.00 >			
#==================peliver Material/$500.00==================+					
+ + + + +					

| 8 | 9 | 10 | 11 | 12 | 13 |
I |******Vacation******| I I I I
<Excavate/$3,500.00>		<Excavate/$3,500.00+]			

| + + + + +

15	16	17	18	19	20
+ + + + +					

22	23	24	25	26	27
+ + + + +					

29	30	31			

Example 4: Multiple Schedule Calendars with Atypical Workshifts
(Combined and Mixed Output)

Procedure features:
PROC CALENDAR statementoptions:

CALEDATA=
DATETIME
WORKDATA=
CALID statement:
CAL variable

The CALENDAR Procedure /A Program for Combined Calendars 121

OUTPUT=COMBINE option
OUTPUT=MIXED option

DUR statement
OUTSTART statement
OUTFIN statement

Data sets:
There are input data sets on page 116.

This example

produces a schedule calendar

schedules activities around holidays

uses separate work patterns and holidays for each calendar

uses an 8-hour day, 5 1/2-day work week

displays and identifies multiple calendars on each calendar page (combined output)

O oo o o o

displays but does not identify multiple calendars on each calendar page (mixed
output).

Two Programs and Two Pieces of Qutput

This example creates both combined and mixed output. Producing combined or
mixed calendar output requires only one change to a PROC CALENDAR step: the
setting of the OUTPUT= option in the CALID statement. Combined output is produced
first, then mixed output.

Producing Different Output for Multiple Calendars

This example and Example 3 on page 115 use the same input data for multiple
calendars to produce different output. The only differences in these programs are how
the activities data set is sorted and how the OUTPUT= option is set.

To print . . . Sort the activities And set OUTPUT=to See Example
data set by . . .

Separate pages for each calendar id and SEPARATE 3,8

calendar starting date

All activities on the same starting date COMBINE 4,2

page and identify each

calendar

All activities on the same starting date MIX 4

page and NOT identify
each calendar

Program for Combined Calendars

Specify the SAS data library where the activities data set is stored.

122

Program for Combined Calendars A Chapter 5

libname well ’'SAS-data-library’;

Sort the activities data set by the variable containing the starting date. Do not sort by
the CALID variable when producing combined calendar output.

proc sort data=well.act;
by date;

run;

Set PAGESIZE= and LINESIZE= appropriately. When you combine calendars, check the
value of PAGESIZE= to ensure that there is enough room to print the activities from multiple
calendars. If LINESIZE= is too small for the variable values to print, PROC CALENDAR either
truncates the values or produces no calendar output.

options nodate pageno=1 linesize=132 pagesize=60;

Create the schedule calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set; CALEDATA= identifies the calendar data set; WORKDATA=
identifies the workdays data set. DATETIME specifies that the variable specified with the
START statement contains values in SAS datetime format.

proc calendar data=well.act
holidata=well.hol
caledata=well.cal
workdata=well.wor
datetime;
titlel ‘Well Drilling Work Schedule: Combined Calendars’;
format cost dollar9.2;

The CALID statement specifies that the _CAL_ variable identifies the calendars.
OUTPUT=COMBINE prints multiple calendars on the same page and identifies each calendar.

calid _cal_ / output=combine;

The START statement specifies the variable in the activities data set that contains the starting
date of the activities; DUR specifies the variable that contains the duration of each activity.
START and DUR are required for a schedule calendar.

start date;

dur dur;

HOLISTART and HOLIVAR specify the variables in the holidays data set that contain the start
date and name of each holiday, respectively. HOLISTART is required when you use a holidays
data set.

holistart date;
holivar holiday;

The CALENDAR Procedure /A Program for Mixed Calendars 123
run;
-
Output for Combined Calendars
Output 5.7 Multiple Schedule Calendars with Atypical Workshifts (Combined Output)

Well Drilling Work Schedule: Combined Calendars 1
| |
| July 1996 |
| |
| |
| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday
+ + + + + + +

| | | | | 2 | 3 | 4 | 5 | s |
[I I I e I o o |
car1					**Independence**	+Assemble Tank/>
						+Lay Power Line>
		==Drill Well/$1,000.00===	<Drill well/$1,+			
[I	I o					
car2		cavate/$3,500.00 >				
+ + + +						
	7		12	13		
[I	I o					
caL1		+ uild Pump House/$2,000.00 +				
		< Assemble Tank/$1,000.00 +				
		<===Lay Power Line/$2,000.00====+		+===Pour Foundation/$1,500.00===>		
[o					
cacz						
+ + + + + + +						
	14	15	16	17	18	19
[I I I I e I o						
caL1		+ Install Pump/$500.00 +				
		<===========Pour Foundation/$1,500.00============+		+Install Pipe/$>		
I I I I I						
+ + + + + + +						
I I 21 I 22 I 23 I 24 I 25 I 26 I 27 I						
[I I I I I I o						
caL1		+ rect Tower/$2,500.00 >				
		<====Install Pipe/$1,000.00=====+				
I	I I I I I					
+ + + + + + +						
	28	29	30	31		
[I I I I I o o						
caL1		<Erect Tower/$2+				
					I I	

Program for Mixed Calendars

To produce mixed output instead of combined, use the same program and change the

setting of the OUTPUT= option to OUTPUT=MIX:

124 Output for Mixed Calendars A Chapter 5

proc calendar data=well.act

holidata=well.hol
caledata=well.cal
workdata=well.wor
datetime;

calid _cal_/ output=mix;

start date;

dur dur;

holistart date;

holivar holiday;

outstart Monday;

outfin Saturday;

titlel 'Well Drilling Work Schedule: Mixed Calendars’;

format cost dollar9.2;

run;

Output for Mixed Calendars

The CALENDAR Procedure /A Example 5: Schedule Calendar, Blank or with Holidays 125

Output 5.8 Multiple Schedule Calendar with Atypical Workshifts (Mixed Output)

+
|
|
|
|
I

=Install Pipe/$1,000.00=
+

29 30

Well Drilling Work Schedule: Mixed Calendars 1
| |
| July 1996
| |
| |
| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday
| + + + + +
1	2	3	4	5	6
				+Assemble Tank/$1,0>	
		+ cavate/$3,500.00 >			
+==================Deliver Material/$500.00==================+	****Independence****	+Lay Power Line/$2,>			
+ Drill Well/$1,000.00 >	****Independence****	<Drill Well/$1,000.+]			
+ + + + +					
8	9	10	11	12 13	
I I					
+ uild Pump House/$2,000.00 +					
< Assemble Tank/$1,000.00 +					
<=======Lay Power Line/$2,000.00========+					

|
| + + + +
15 | 16 | 17 | 18 | 19 20
I I I I |
+ Install Pump/$500.00 +
|+Install Pipe/$1,00>
+ |
22 23 25 26 27
|
|
|
|
|
|
|
|
|
|
|
|
|
I

|
|
|
|
|
|
|
+
|
|
|
|
|
|
I
+
|
|
|
|
|
|
I
+
|
|
|
|
|
|
I

|

+
| |
| |
| |
| |
| |
| |
I I

<Erect Tower/$2,500+

Example 5: Schedule Calendar, Blank or with Holidays

Procedure features:
PROC CALENDAR statement options:

FILL
HOLIDATA=
INTERVAL=WORKDAY

126

Program A Chapter 5

DUR statement
HOLIDUR statement
HOLISTART statement
HOLIVAR statement

This example produces a schedule calendar that displays only holidays. You can use
this same code to produce a set of blank calendars by removing the HOLIDATA= option
and the HOLISTART, HOLIVAR, and HOLIDUR statements from the PROC
CALENDAR step.

Program

Create the activities data set. Specify one activity in the first month and one in the last, each
with a duration of 0. PROC CALENDAR does not print activities with zero durations in the
output.

data acts;
input sta : date7. act $ 11-30 dur;
datalines;
01JAN97 Start 0
31DEC97 Finish

r

Create the holidays data set.

data holidays;
input sta : date7. act $ 11-30 dur;
datalines;
01JAN97 New Year's
28MAR97 Good Friday
30MAY97 Memorial Day
04JUL97 Independence Day
01SEP97 Labor Day
27NOV97 Thanksgiving
25DEC97 Christmas Break

AN R B P B

r

Set PAGESIZE= and LINESIZE= appropriately. To create larger boxes for each day in the
calendar output, increase the value of PAGESIZE=.

options nodate pageno=1 linesize=132 pagesize=30;

Create the calendar. DATA= identifies the activities data set; HOLIDATA= identifies the
holidays data set. FILL displays all months, even those with no activities. By default, only
months with activities appear in the report. INTERVAL=WORKDAY specifies that activities and
holidays are measured in 8-hour days and that PROC CALENDAR schedules activities only
Monday through Friday.

The CALENDAR Procedure /A Qutput 127

proc calendar data=acts holidata=holidays fill interval=workday;

The START statement specifies the variable in the activities data set that contains the starting
date of the activities; DUR specifies the variable that contains the duration of each activity.
Creating a schedule calendar requires START and DUR.

start sta;
dur dur;

The HOLISTART, HOLIVAR, and HOLIDUR statements specify the variables in the holidays
data set that contain the start date, name, and duration of each holiday, respectively. When you
use a holidays data set, HOLISTART is required. Because at least one holiday lasts more than
one day, HOLIDUR (or HOLIFIN) is required.

holistart sta;

holivar act;

holidur dur;

titlel ’‘Calendar of Holidays Only’;

run;

Output

Output 5.9 Schedule Calendars with Holidays Only (Partial Output).

Without INTERVAL=WORKDAY, the 5-day Christmas break would be scheduled through the weekend.

Calendar of Holidays Only 1

January 1997

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

1

***New Year's**xx

2 3 4

8 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31

—_— —— — — — — = — + —

| |
+ +
| |
| |
+ +
| |
| |
+ +
| |
| |
+ +
| |
I I
+ +
| |
| |

—_—t —— + —— + — — + — — + —

128 Example 6: Calculating a Schedule Based on Completion of Predecessor Tasks A Chapter 5

Calendar of Holidays Only

February 1997

| |

| |

| |

| I

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday

| + + + + + +

| | | | | | | 1 |

| | | | | | | |

| + + + + + +

| 2 | 3 | 4 | 5 | 6 | 7 | 8 |

| | | | | | I |

| + + + + + +

| 9 | 10 | 11 | 12 | 13 | 14 | 15 |

| | | | | | | |

| + + + + + +

| 16 | 17 | 18 | 19 | 20 | 21 | 22 |

| | | | | | | |

| + + + + + +

| 23 | 24 | 25 | 26 | 27 | 28 | |

I | | | | | | |
Calendar of Holidays Only

| |

| December 1997

| |

| I

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday

| + + + + + +

| | 1 | 2 | 3 | 4 | 5 | 6 |

| | | | | | | |

| + + + + + +

| 7 | 8 | 9 | 10 | 11 | 12 | 13 |

| | | | | | | |

| + + + + + +

| 14 | 15 | 16 | 17 | 18 | 19 | 20 |

| | | | | | | |

| + + + + + +

| 21 | 22 | 23 | 24 | 25 | 26 | 27 |

| | | | | *Christmas Break*|*Christmas Break*|

| + + + + +

| 28 | 29 | 30 | 31 | | |

| | |

+
|
|

| *Christmas Break*|*Christmas Break*|*Christmas Break*|

Example 6: Calculating a Schedule Based on Completion of Predecessor
Tasks

Procedure features:
PROC CALENDAR statement

CALID statement

FIN statement

VAR statement
Other features:

The CALENDAR Procedure /A Program 129

PROC CPM step
PROC SORT step

Automating Your Scheduling Task with SAS/OR Software

When changes occur to a schedule, you have to adjust the activity starting dates
manually if you use PROC CALENDAR to produce a schedule calendar. Alternatively,
you can use PROC CPM in SAS/OR software to reschedule work when dates change.
Even more important, you can provide only an initial starting date for a project and let
PROC CPM calculate starting dates for activities, based on identified successor tasks,
that is, tasks that cannot begin until their predecessors end.

In order to use PROC CPM, you must

1 create an activities data set that contains activities with durations. (You can
indicate nonwork days, weekly work schedules, and workshifts with holidays,
calendar, and workshift data sets.)

2 indicate which activities are successors to others (precedence relationships).

3 define resource limitations if you want them considered in the schedule.

4 provide an initial starting date.

PROC CPM can process your data to generate a data set that contains the start and
end dates for each activity. PROC CPM schedules the activities, based on the duration
information, weekly work patterns, workshifts, as well as holidays and nonwork days
that interrupt the schedule. You can generate several views of the schedule that is

computed by PROC CPM, from a simple listing of start and finish dates to a calendar, a
Gantt chart, or a network diagram.

Highlights of This Example

This example

O calculates a project schedule containing multiple calendars (PROC CPM)
0 produces a listing of the PROC CPM output data set (PROC PRINT)

O displays the schedule in calendar format (PROC CALENDAR).

This example features PROC CPM’s ability to calculate a schedule that
O is based on an initial starting date

o applies different non-work periods to different calendars, such as personal
vacation days to each employee’s schedule

O includes milestones (activities with a duration of 0).

See Also

This example introduces users of PROC CALENDAR to more advanced SAS
scheduling tools. For an introduction to project management tasks and tools and
several examples, see Project Management Using the SAS System. For more examples,
see SAS/OR Software: Project Management Examples. For complete reference
documentation, see SAS/OR User’s Guide: Project Management, Version 6, First
Edition.

Program

130

Program A Chapter 5

Set appropriate options. If the linesize is not long enough to print the variable values, PROC
CALENDAR either truncates the values or produces no calendar output. A longer linesize also

makes it easier to view a listing of a PROC CPM output data set.

options nodate pageno=1 linesize=132 pagesize=60;

Create the activities data set and identify separate calendars. These data identify two
calendars: the professor’s (the value of _CAL_ is Prof.) and the student’s (the value of _CAL_ is
Student). The Succl variable identifies which activity cannot begin until the current one ends.
For example Analyze Exp 1 cannot begin until Run Exp 1 is completed. The DAYS value of 0
for JOBNUM 3, 6, and 8 indicates that these are milestones.

data grant;

input jobnum Task $ 4-22 Days Succl $ 27-45 aldate

cal $;
format aldate date7.;

datalines;

date7. altype $

1 Run Exp 1 11 Analyze Exp 1 . . Student
2 Analyze Exp 1 5 Send Report 1 . . Prof.
3 Send Report 1 0 Run Exp 2 . . Prof.
4 Run Exp 2 11 Analyze Exp 2 . . Student
5 Analyze Exp 2 4 Send Report 2 . . Prof.
6 Send Report 2 0 Write Final Report . . Prof.
7 Write Final Report 4 Send Final Report . . Prof.
8 Send Final Report 0 . . Student
9 Site Visit 1 18jul96 ms Prof.

~e

Create the holidays data set and identify which calendar a nonwork day belongs to.
The two holidays are listed twice, once for the professor’s calendar and once for the student’s.
Because each person is associated with a separate calendar, PROC CPM can apply the personal
vacation days to the appropriate calendars.

data nowork;
format holista date7. holifin date7.;
input holista : date7. holifin : date7. name $ 17-32 _cal_ §;
datalines;

04jul96 04jul96 Independence Day Prof.

02sep96 02sep96 Labor Day Prof.

04jul96 04jul96 Independence Day Student

02sep96 02sep96 Labor Day Student

15jul96 16jul96 PROF Vacation Prof.

15aug96 16aug96 STUDENT Vacation Student

r

Calculate the schedule with PROC CPM. PROC CPM uses information supplied in the
activities and holidays data sets to calculate start and finish dates for each activity. The DATE=
option supplies the starting date of the project. The CALID statement is not required, even
though this example includes two calendars, because the calendar identification variable has the
special name _CAL._.

The CALENDAR Procedure /A Program 131

proc cpm data=grant

date='01jul96'd
interval=weekday
out=gcpml
holidata=nowork;

activity task;

successor succl;

duration days;

calid _cal_;

id task;

aligndate aldate;

aligntype altype;

holiday holista / holifin=holifin;

run;

Print the output data set created with PROC CPM. This step is not required. PROC PRINT
is a useful way to view the calculations produced by PROC CPM. See Output 5.10 on page 132.

proc print data=gcpml;
title ’'Data Set GCPM1l, Created with PROC CPM’;

run;

Sort GCPM1 by the variable that contains the activity start dates before using it with
PROC CALENDAR.

proc sort data=gcpml;
by e _start;

run;

Create the schedule calendar. GCPM1 is the activity data set. PROC CALENDAR uses the
S_START and S_FINISH dates, calculated by PROC CPM, to print the schedule. The VAR
statement selects only the variable TASK to display on the calendar output. See Output 5.11 on
page 132.

proc calendar data=gcpml

holidata=nowork
interval=workday;

start e_start;

fin e _finish;

calid _cal_ / output=combine;

holistart holista;

holifin holifin;

holivar name;

var task;

title ’'Schedule for Experiment X-15';

title2 'Professor and Student Schedule’;

run;

132 Output A Chapter 5

Output

Output 5.10 The Data Set GCPM1

PROC PRINT displays the observations in GCPM1, showing the scheduling calculations created by PROC CPM.

Data Set GCPM1, Created with PROC CPM 1
Obs Task Succl Days _cal_ E_START E_FINISH L_START L FINISH T FLOAT F_FLOAT
1 Run Exp 1 Analyze Exp 1 11 Student 01JUL96 16JUL96 01JUL96 16JUL96 0 0
2 Analyze Exp 1 Send Report 1 5 Prof. 17JUL96 23JUL96 17JUL96 23JUL96 0 0
3 Send Report 1 Run Exp 2 0 Prof. 24JUL96 24JUL96 24JUL96 24JUL96 0 0
4 Run Exp 2 Analyze Exp 2 11 Student 24JUL96 07AUG96 24JUL96 07AUG96 0 0
5 Analyze Exp 2 Send Report 2 4 Prof. 08AUGY96 13AUG96 08AUGY96 13AUG96 0 0
6 Send Report 2 Write Final Report 0 Prof. 14AUG96 14AUG96 14AUG96 14AUG96 0 0
7 Write Final Report Send Final Report 4 Prof. 14AUG96 19AUG96 14AUG96 19AUG96 0 0
8 Send Final Report 0 Student 20AUGY96 20AUGY96 20AUGY96 20AUGY96 0 0
9 Site Visit 1 Prof. 18JUL96 18JUL96 18JUL96 18JUL96 0 0

The CALENDAR Procedure /A Output 133

Output 5.11 Schedule Calendar Based on Output from PROC CPM

PROC CALENDAR created this schedule calendar by using the S_START and S_FINISH dates that were
calculated by PROC CPM. The activities on July 24th and August 14th, because they are milestones, do not
delay the start of a successor activity. Note that Site Visit occurs on July 18, the same day that Analyze Exp 1

occurs. To prevent this overallocation of resources, you can use resource constrained scheduling, available
in SAS/OR software.

Schedule for Experiment X-15 2
Professor and Student Schedule
| |
| July 1996 |
| |
| |
| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday
+ + + + + + +
| | | 1 | 2 | 3 | 4 | 5 | 6 |
[P I I I [[[[|
| PROF | | | | | Independence Day| |
[P I I I [[[[|
STUDENT		+ un Exp 1 >	Independence Day	<==Run Exp l===>			
I I							
+ + + + + + +							
	7	8	9	10	11	12	13
[P I I I [[I [
STUDENT		< Run Exp 1 >					
	I						
+ + +							
[P							
PROF							
[P							
STUDENT							
I I							
+ + +							
[P							
PROF							
[P							
STUDENT							
+ + +							
[P							
STUDENT							

134 Example 7: Summary Calendar with MEAN Values By Observation A Chapter 5

Schedule for Experiment X-15
Professor and Student Schedule

August 1996

Sunday Monday Tuesday Wednesday Saturday

STUDENT

]
b
o
o]

e e 3 =

STUDENT

—_——— t — —

]
b
o
o]

<=========Analyze Exp 2=========+

| STUDENT Vacation|STUDENT Vacation

]
b
o
o]

+Send Final Rep+

STUDENT

25 26 27 28 29 30 31

—_—_——— - - ———— e — e —_——— e —— e — — — —
-
-

—_—_——— - — ——— — — — — ——— — — — — + — —

|
|
|
+
|
[
|
[
|
|
|
+
|
|
|
|
|
|
I

| |
| |
| |
| |
| |
| |
| |
+ +
| |
| |
| |
| |
| |
| |
| |

Example 7: Summary Calendar with MEAN Values By Observation

Procedure features:
CALID statement:

CAL variable
OUTPUT=SEPARATE option

FORMAT statement
LABEL statement

MEAN statement
SUM statement

Other features:

PROC FORMAT:

PICTURE statement

This example

O produces a summary calendar
o displays holidays
produces sum and mean values by business day (observation) for three variables

O o g

MEAN Values by Number of Days

To produce MEAN values based on the number of days in the calendar month, use
MEANTYPE=NDAYS. By default, MEANTYPE=NOBS, which calculates the MEAN

prints a legend and uses variable labels
uses picture formats to display values.

The CALENDAR Procedure

values according to the number of days for which data exist.

Program

Create the activities data set. MEALS records how many meals were served for breakfast,

lunch, and dinner on the days that the cafeteria was open for business.

data meals;

input date :

datalines;
02Dec96
03Dec96
04Dec96
05Dec96
06Dec96
09Dec96
10Dec96
11Dec96
12Dec96
13Dec96
16Dec96
17Dec96
18Dec96
19Dec96
20Dec96
23Dec96

r

123
188
123
200
176
178
165
187
176
187
176
156
198
178
165
187

date7.

234
188
183
267
165
198
176
176
187
187
165

143
198
176
187

Brkfst Lunch Dinner;

238
198
176
243
177
187
187
231
222
123
177
167
167
187
187
123

Create the holidays data set.

data closed;

input date date. holiday $ 11-25;

A Program

135

136 Program A Chapter 5

datalines;
26DEC96 Repairs
27DEC96 Repairs
30DEC96 Repairs
31DEC96 Repairs
24DEC96 Christmas Eve
25DEC96 Christmas

r

Sort the activities data set by the activity starting date. You are not required to sort the
holidays data set.

proc sort data=meals;
by date;

run;

Create picture formats for the variables that indicate how many meals were served.

proc format;

picture bfmt other = ’000 Brkfst’;

picture lfmt other = ’000 Lunch ’;

picture dfmt other = ’000 Dinner’;
run;

Set PAGESIZE= and LINESIZE= appropriately. The legend box prints on the next page if
PAGESIZE= is not set large enough. LINESIZE= controls the width of the cells in the calendar.

options nodate pageno=1 linesize=132 pagesize=60;

Create the summary calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set. The START statement specifies the variable in the activities
data set that contains the activity starting date; START is required.

proc calendar data=meals holidata=closed;
start date;

The HOLISTART and HOLIVAR statements specify the variables in the holidays data set that
contain the start date and the name of each holiday, respectively. HOLISTART is required when
you use a holidays data set.

holistart date;
holiname holiday;

The SUM and MEAN statements calculate sum and mean values for three variables and print
them with the specified format. The LABEL statement prints a legend and uses labels instead
of variable names. The FORMAT statement associates picture formats with three variables.

The CALENDAR Procedure /A Qutput 137

sum brkfst lunch dinner / format=4.0;
mean brkfst lunch dinner / format=6.2;

label brkfst = 'Breakfasts Served’
lunch = ' Lunches Served’
dinner = ' Dinners Served'’;
format brkfst bfmt.
lunch 1lfmt.

dinner dfmt.;
title ’'Meals Served in Company Cafeteria’;
title2 ’'Mean Number by Business Day’;

run;

Output

138 Example 8: Multiple Summary Calendars with Atypical Workshifts (Separated Output) A Chapter 5
Output 5.12 Summary Calendar with MEAN Values by Observation
Meals Served in Company Cafeteria
Mean Number by Business Day
| |
| December 1996
| |
| |
| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Ssaturday
| + + + + + +
1	2	3	4	5	6	7
	123 Brkfst	188 Brkfst	123 Brkfst	200 Brkfst	176 Brkfst	
	234 Lunch	188 Lunch	183 Lunch	267 Lunch	165 Lunch	
	238 Dinner	198 Dinner	176 Dinner	243 Dinner	177 Dinner	
+ + + + + +						
I 8 I 9 I 10 I 11 I 12 I 13 I 14 I						
	178 Brkfst	165 Brkfst	187 Brkfst	176 Brkfst	187 Brkfst	
	198 Lunch	176 Lunch	176 Lunch	187 Lunch	187 Lunch	
	187 Dinner	187 Dinner	231 Dinner	222 Dinner	123 Dinner	
+ + + + + +						
15	16	17	18	19	20	21
	176 Brkfst	156 Brkfst	198 Brkfst	178 Brkfst	165 Brkfst	
	165 Lunch		143 Lunch	198 Lunch	176 Lunch	
	177 Dinner	167 Dinner	167 Dinner	187 Dinner	187 Dinner	
+ + + + + +						
I 22 I 23 I 24 I 25 I 26 I 27 I 28 I						
		Christmas Ev	*Christmas**	**Repairs**	**Repairs##*	
	187 Brkfst					
	187 Lunch					
	123 Dinner					
+ + +						
I 29 I 30 I 31 I I						

Repairs*|**Repairs**

|
|
I
+
|
[
|
|
I

|
|
I
+
|
|
|
|
I

|
I
+
|
|
|
|
I

|
|
| Breakfasts Served | 2763
|
|

Lunches Served |
Dinners Served |

| Sum

1

Mean

2830 | 188.67
2990 | 186.88

|
|
72.69 |
|
|

Example 8: Multiple Summary Calendars with Atypical Workshifts

(Separated Output)

Procedure features:

PROC CALENDAR statementoptions:

DATETIME
LEGEND

CALID statement:
CAL variable

OUTPUT=SEPARATE option

OUTSTART statement
OUTFIN statement

SUM statement
Data sets:

The CALENDAR Procedure /A Program 139

WELL.ACT on page 116 and WELL.HOL on page 117.

This example

O produces a summary calendar for multiple calendars in a single PROC step

O prints the calendars on separate pages
O displays holidays
O

uses separate work patterns, work shifts, and holidays for each calendar

Producing Different Output for Multiple Calendars

This example produces separate output for multiple calendars. To produce combined
or mixed output for these data, you need to change only two things:

O how the activities data set is sorted
0 how the OUTPUT= option is set.

To print . . .

Sort the activities
data set by . . .

And set OUTPUT=to See Example

Separate pages for each
calendar

All activities on the same
page and identify each
calendar

All activities on the same
page and NOT identify
each calendar

calendar id and
starting date

starting date

starting date

SEPARATE 3,8
COMBINE 4,2
MIX 4

Program

Specify the SAS data library where the activities data set is stored.

libname well ’'SAS-data-library’;

run;

Sort the activities data set by the variables containing the calendar identification and
the starting date, respectively.

proc sort data=well.act;

by _cal_date;

140

Program A Chapter 5

run;

Set PAGESIZE= and LINESIZE= appropriately. The legend box prints on the next page if
PAGESIZE= is not set large enough. LINESIZE= controls the width of the boxes.

options nodate pageno=1 linesize=132 pagesize=60;

Create the summary calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set; CALDATA= identifies the calendar data set; WORKDATA=
identifies the workdays data set. DATETIME specifies that the variable specified with the
START statement contains a SAS datetime value. LEGEND prints text that identifies the
variables.

proc calendar data=well.act
holidata=well.hol
datetime legend;

The CALID statement specifies that the _CAL_ variable identifies calendars.
OUTPUT=SEPARATE prints information for each calendar on separate pages.

calid _cal_/ output=separate;

The START statement specifies the variable in the activities data set that contains the activity
starting date. The HOLISTART and HOLIVAR statements specify the variables in the holidays
data set that contain the start date and name of each holiday, respectively. These statements
are required when you use a holidays data set.

start date;
holistart date;
holivar holiday;

The SUM statement totals the COST variable for all observations in each calendar.

sum cost / format=dollarl0.2;

Display a 6-day week. OUTSTART and OUTFIN specify that the calendar display a 6-day
week, Monday through Saturday.

outstart Monday;

outfin Saturday;

title 'Well Drilling Cost Summary’;
title2 ’Separate Calendars’;

format cost dollarl0.2;

run;

The CALENDAR Procedure /A Qutput 4

Output

Output 5.13 Separated Output for Multiple Summary Calendars

Well Drilling Cost Summary 1
Separate Calendars
.. €Al SCALL tietitittitt ittt ittt ettt

| |
| July 1996 |
| |
| |
| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday
| + + + + +
1	2	3	4	5	6
			***Independencex**		
Drill well			Lay Power Line	Assemble Tank	
3.5			3] 4		
$1,000.00			$2,000.00	$1,000.00	
+ + + + +					
8	9	10	11	12	13
Build Pump House			Pour Foundation		
3]		4			
$2,000.00			$1,500.00		
+ + + + +					
15	16	17	18	19	20
Install Pump				Install Pipe	Erect Tower
4			2	6	
$500.00				$1,000.00	$2,500.00
+ + + + +					
22	23	24	25	26	27
I I I I I					
+ + + + +					
29	30	31			
I I I I I I I

| Legend | Sum

| | |

| task | |

| dur | |

| cost | $11,500.00 |

A Chapter 5

Output

142

Well Drilling Cost Summary

Separate Calendars

7N 7

cal

1996

July

Friday Saturday

| Tuesday | Wednesday | Thursday

Monday

Excavate

$500.00

13

12

11

10

20

19

18

17

16

15

27

26

25

24

23

22

31

30

29

Sum

143

CHAPTER

The CATALOG Procedure

Overview: CATALOG Procedure 143
Syntax: PROC CATALOG 144
PROC CATALOG Statement 145
CHANGE Statement 146
CONTENTS Statement 147
COPY Statement 148
DELETE Statement 150
EXCHANGE Statement 150
EXCLUDE Statement 151
MODIFY Statement 152
SAVE Statement 152
SELECT Statement 153
Concepts: CATALOG Procedure 154
Interactive Processing with RUN Groups 154
Definition 154
How to End a PROC CATALOG Step 154
Error Handling and RUN Groups 154
Specifying an Entry Type 155
Four Ways to Supply an Entry Type 155
Why Use the ENTRYTYPE= Option? 155
Avoid a Common Error 155
The ENTRYTYPE= Option 156
Catalog Concatenation 157
Restrictions 151
Examples: CATALOG Procedure 158
Example 1: Copying, Deleting, and Moving Catalog Entries from Multiple Catalogs 158
Example 2: Displaying Contents, Changing Names, and Changing a Description 162

Overview: CATALOG Procedure

The CATALOG procedure manages entries in SAS catalogs. PROC CATALOG is an
interactive, statement-driven procedure that enables you to

O create a listing of the contents of a catalog

O copy a catalog or selected entries within a catalog

O rename, exchange, or delete entries within a catalog

0 change the name of a catalog entry

0 modify, by changing or deleting, the description of a catalog entry.

For more information on SAS data libraries and catalogs, refer to SAS Language
Reference: Concepts.

144

Syntax: PROC CATALOG A Chapter 6

To learn how to use the SAS windowing environment to manage entries in a SAS
catalog, see the SAS online Help for the SAS Explorer window. You may prefer to use
the Explorer window instead of using PROC CATALOG. The window can do most of
what the procedure does.

Syntax: PROC CATALOG

Tip: Supports RUN-group processing.

Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.

Reminder: You can perform similar functions with the SAS Explorer window and with
dictionary tables in the SQL procedure. For information on the Explorer window, see
the online Help. For information on PROC SQL, see Chapter 40, “The SQL Procedure,”
on page 1113.

PROC CATALOG CATALOG=<libref.>catalog <ENTRYTYPE=etype> <FORCE>
<KILL>;

CONTENTS <OUT=SAS-data-set> <FILE=fileref>;

COPY OUT=<libref.>catalog <options>;
SELECT eniry(s) </ ENTRYTYPE=etype>;
EXCLUDE entry(s) </ ENTRYTYPE=etype>;

CHANGE old-name-1=new-name-1
<...old-name-n=new-name-n>
</ ENTRYTYPE=etype>;

EXCHANGE name-I1=other-name-1
<...name-n=other-name-n>
</ ENTRYTYPE=etype>;

DELETE entry(s) </ ENTRYTYPE=etype>;
MODIFY entry (DESCRIPTION=<<’>entry-description<’>>)</ ENTRYTYPE=etype>;
SAVE entry(s) </ ENTRYTYPE=etype>;

To do this Use this statement

Copy entries from one SAS catalog to another
Copy or move all entries COPY (with MOVE option)

Copy entries to a new catalog (overwriting the catalog COPY (with NEW option)
if it already exists)

Copy only selected entries COPY, SELECT
Copy all except the entries specified COPY, EXCLUDE

Delete entries from a SAS catalog

Delete all entries PROC CATALOG (with KILL option)
Delete specified entries DELETE
Delete all except the entries specified SAVE

Alter names and descriptions

The CATALOG Procedure /A PROC CATALOG Statement

145

To do this

Use this statement

Change the names of catalog entries

Switch the names of two catalog entries

Change the description of a catalog entry
Print

Print the contents of a catalog

CHANGE
EXCHANGE
MODIFY

CONTENTS

PROC CATALOG Statement

PROC CATALOG CATALOG=<libref.>catalog <ENTRYTYPE=etype> <FORCE>

<KILL>;

To do this

Use this option

Restrict processing to one entry type
Delete all catalog entries

Force certain statements to execute on a catalog opened by
another process

ENTRYTYPE=
KILL
FORCE

Required Arguments

CATALOG=<libref.>catalog
specifies the SAS catalog to process.

Alias: CAT=, C=

Default: If ENTRYTYPE= is not specified, PROC CATALOG processes all entries in

the catalog.

Options

ENTRYTYPE=etype

restricts processing of the current PROC CATALOG step to one entry type.

Alias: ET=

Default: If you omit ENTRYTYPE=, PROC CATALOG processes all entries in a

catalog.

Interaction: The specified entry type applies to any one-level entry names used in a

subordinate statement. You cannot override this specification in a subordinate

statement.

Interaction: ENTRYTYPE= does not restrict the effects of the KILL option.

146 CHANGE Statement A Chapter 6

Tip: In order to process multiple entry types in a single PROC CATALOG step, use
ENTRYTYPE= in a subordinate statement, not in the PROC CATALOG statement.

See also: “Specifying an Entry Type” on page 155.
Featured in: Example 1 on page 158 and Example 2 on page 162

FORCE
forces statements to execute on a catalog opened by another process.

Some CATALOG statements require exclusive access to the catalog they operate
on if the statement can radically change the contents of a catalog. If exclusive access
cannot be obtained, the action fails. The statements and the catalogs that are
affected are

KILL affects the specified catalog
COPY affects the OUT= catalog
COPY MOVE affects the IN= and the OUT= catalogs
SAVE affects the specified catalog.
Tip: Use FORCE to execute the statement, even if exclusive access cannot be
obtained.
KILL

deletes all entries in a SAS catalog.

Interaction: The KILL option deletes all catalog entries even when ENTRYTYPE=
is specified.

Interaction: The SAVE statement has no effect because the KILL option deletes all
entries in a SAS catalog before any other statements are processed.

Tip: KILL deletes all entries but does not remove an empty catalog from the SAS
data library. You must use another method, such as PROC DATASETS or the DIR
window to delete an empty SAS catalog.

CAUTION:
Do not attempt to limit the effects of the KILL option. This option deletes all entries in a
SAS catalog before any option or other statement takes effect. ~

CHANGE Statement

Renames one or more catalog entries.

Tip: You can change multiple names in a single CHANGE statement or use multiple
CHANGE statements.

Featured in: Example 2 on page 162

CHANGE old-name-I1=new-name-1
<...old-name-n=new-name-n>
</ ENTRYTYPE=etype>;

Required Arguments

old-name=new-name

The CATALOG Procedure /A CONTENTS Statement 147

specifies the current name of a catalog entry and the new name you want to assign to
it. Specify any valid SAS name.

Restriction: You must designate the type of the entry, either with the name
(ename.etype) or with the ENTRYTYPE= option.

Options

ENTRYTYPE=etype
restricts processing to one entry type.

See: “The ENTRYTYPE= Option” on page 156
See also: “Specifying an Entry Type” on page 155

CONTENTS Statement

Lists the contents of a catalog in the procedure output or writes a list of the contents to a SAS
data set, an external file, or both.

Featured in: Example 2 on page 162

CONTENTS <OUT=SAS-data-set> <FILE=fileref>;

Without Options

The output is sent to the procedure output.

Options

Note: The ENTRYTYPE= (ET=) option is not available for the CONTENTS
statement. A

CATALOG=<libref.>catalog
specifies the SAS catalog to process.
Alias: CAT=, C=
Default: None

FILE=fileref
sends the contents to an external file, identified with a SAS fileref.

Interaction: If fileref has not been previously assigned to a file, then the file is
created and named according to operating environment-dependent rules for
external files.

OUT=SAS-data-set
sends the contents to a SAS data set. When the statement executes, a message on
the SAS log reports that a data set has been created. The data set contains six
variables in this order:

148 COPY Statement A Chapter 6

LIBNAME the libref

MEMNAME the catalog name

NAME the names of entries

TYPE the types of entries

DESC the descriptions of entries

DATE the dates entries were last modified.
COPY Statement

Copies some or all of the entries in one catalog to another catalog.
Restriction: A COPY statement’s effect ends at a RUN statement or at the beginning of a
statement other than the SELECT or EXCLUDE statement.

Tip: Use SELECT or EXCLUDE statements, but not both, after the COPY statement to
limit which entries are copied.

Tip: You can copy entries from multiple catalogs in a single PROC step, not just the one
specified in the PROC CATALOG statement.

Tip: The ENTRYTYPE= option does not require a forward slash (/) in this statement.
Featured in: Example 1 on page 158

COPY OUT=<libref.>catalog <options>;

To do this Use this option
Restrict processing to one type of entry ENTRYTYPE=
Copy from a different catalog in the same step IN=

Move (copy and then delete) a catalog entry MOVE

Copy entries to a new catalog (overwriting the catalog if it NEW

already exists)

Protect several types of SAS/AF entries from being edited with NOEDIT
PROC BUILD

Not copy source lines from a PROGRAM, FRAME, or SCL entry NOSOURCE

Required Arguments

OUT=<libref.>catalog
names the catalog to which entries are copied.

The CATALOG Procedure /A COPY Statement 149

Options

ENTRYTYPE=etype
restricts processing to one entry type for the current COPY statement and any
subsequent SELECT or EXCLUDE statements.

See: “The ENTRYTYPE= Option” on page 156

See also: “Specifying an Entry Type” on page 155
IN=<libref.>catalog

specifies the catalog to copy.

Interaction: The IN= option overrides a CATALOG= argument that was specified
in the PROC CATALOG statement.

Featured in: Example 1 on page 158

MOVE
deletes the original catalog or entries after the new copy is made.

Interaction: When MOVE removes all entries from a catalog, the procedure deletes
the catalog from the library.

NEW
overwrites the destination (specified by OUT=) if it already exists. If you omit NEW,
PROC CATALOG updates the destination. For information about using the NEW
option with concatenated catalogs, see “Catalog Concatenation” on page 157.

NOEDIT
prevents the copied version of the following SAS/AF entry types from being edited by
the BUILD procedure:

CBT PROGRAM
FRAME SCL

HELP SYSTEM
MENU

Restriction: If you specify the NOEDIT option for an entry that is not one of these
types, it is ignored.

Tip: When creating SAS/AF applications for other users, use NOEDIT to protect the
application by preventing certain catalog entries from being altered.

Featured in: Example 1 on page 158

NOSOURCE
omits copying the source lines when you copy a SAS/AF PROGRAM, FRAME, or SCL

entry.
Alias: NOSRC

Restriction: If you specify this option for an entry other than a PROGRAM,
FRAME, or SCL entry, it is ignored.

150

DELETE Statement A Chapter 6

DELETE Statement

Deletes entries from a SAS catalog.

Tip: Use DELETE to delete only a few entries; use SAVE when it is more convenient to
specify which entries not to delete.

Tip: You can specify multiple entries. You can also use multiple DELETE statements.
See also: “SAVE Statement” on page 152

Featured in: Example 1 on page 158

DELETE entry(s) </ ENTRYTYPE=etype>;

Required Arguments

entry(s)
specifies the name of one or more SAS catalog entries.

Restriction: You must designate the type of the entry, either with the name
(ename.etype) or with the ENTRYTYPE= option.

Options

ENTRYTYPE=etype
restricts processing to one entry type.

See: “The ENTRYTYPE= Option” on page 156
See also: “Specifying an Entry Type” on page 155

EXCHANGE Statement

Switches the name of two catalog entries.

Restriction: The catalog entries must be of the same type.

EXCHANGE name-1=other-name-1
<...name-n=other-name-n>
</ ENTRYTYPE=etype>;

Required Arguments

name=other-name
specifies two catalog entry names that the procedure will switch.
Interaction: You can specify only the entry name without the entry type if you use
the ENTRYTYPE= option on either the PROC CATALOG statement or the
EXCHANGE statement.

The CATALOG Procedure /A EXCLUDE Statement 151

See also: “Specifying an Entry Type” on page 155

Options

ENTRYTYPE=etype
restricts processing to one entry type.

See: “The ENTRYTYPE= Option” on page 156
See also: “Specifying an Entry Type” on page 155

EXCLUDE Statement

Specifies entries that the COPY statement does not copy.

Restriction: Requires the COPY statement.
Restriction: Do not use the EXCLUDE statement with the SELECT statement.
Tip: You can specify multiple entries in a single EXCLUDE statement.

Tip: You can use multiple EXCLUDE statements with a single COPY statement within
a RUN group.

See also: “COPY Statement” on page 148 and “SELECT Statement” on page 153
Featured in: Example 1 on page 158

EXCLUDE entry(s) </ ENTRYTYPE=etype>;

Required Arguments

entry(s)
specifies the name of one or more SAS catalog entries.

Restriction: You must designate the type of the entry, either when you specify the
name (ename.etype) or with the ENTRYTYPE= option.

See also: “Specifying an Entry Type” on page 155

Options

ENTRYTYPE=etype
restricts processing to one entry type.

See: “The ENTRYTYPE= Option” on page 156
See also: “Specifying an Entry Type” on page 155

152 MODIFY Statement A Chapter 6

MODIFY Statement

Changes the description of a catalog entry.

Featured in: Example 2 on page 162

MODIFY entry (DESCRIPTION=<<’>entry-description<’>>) </ ENTRYTYPE=etype>;

Required Arguments

entry
specifies the name of one SAS catalog entry. Optionally, you can specify the entry
type with the name.

Restriction: You must designate the type of the entry, either when you specify the
name (ename.etype) or with the ENTRYTYPE= option.

See also: “Specifying an Entry Type” on page 155
DESCRIPTION=<<’>entry-description<’>>
changes the description of a catalog entry by replacing it with a new description, up

to 256 characters long, or by removing it altogether. Optionally, you can enclose the
description in single or double quotes.

Alias: DESC
Tip: Use DESCRIPTION= with no text to remove the current description.

Options

ENTRYTYPE=etype
restricts processing to one entry type.

See: “The ENTRYTYPE= Option” on page 156
See also: “Specifying an Entry Type” on page 155

SAVE Statement

Specify entries not to delete from a SAS catalog.

Restriction: Cannot limit the effects of the KILL option.

Tip: Use SAVE to delete all but a few entries in a catalog. Use DELETE when it is
more convenient to specify which entries to delete.

Tip: You can specify multiple entries and use multiple SAVE statements.
See also: “DELETE Statement” on page 150

SAVE entry(s) </ ENTRYTYPE=etype>;

The CATALOG Procedure /A SELECT Statement 153

Required Arguments

entry(s)
specifies the name of one or more SAS catalog entries.

Restriction: You must designate the type of the entry, either with the name
(ename.etype) or with the ENTRYTYPE= option.

Options

ENTRYTYPE=etype
restricts processing to one entry type.

See: “The ENTRYTYPE= Option” on page 156
See also: “Specifying an Entry Type” on page 155

SELECT Statement

Specifies entries that the COPY statement will copy.

Restriction: Requires the COPY statement.
Restriction: Cannot be used with an EXCLUDE statement.
Tip: You can specify multiple entries in a single SELECT statement.

Tip: You can use multiple SELECT statements with a single COPY statement within a
RUN group.

See also: “COPY Statement” on page 148 and “EXCLUDE Statement” on page 151
Featured in: Example 1 on page 158

SELECT enitry(s) </ ENTRYTYPE=etype>;

Required Arguments

entry(s)
specifies the name of one or more SAS catalog entries.

Restriction: You must designate the type of the entry, either when you specify the
name (ename.etype) or with the ENTRYTYPE= option.

Options

ENTRYTYPE=etype
restricts processing to one entry type.

See: “The ENTRYTYPE= Option” on page 156.
See also: “Specifying an Entry Type” on page 155.

154

Concepts: CATALOG Procedure A Chapter 6

Concepts: CATALOG Procedure

Interactive Processing with RUN Groups

Definition

The CATALOG procedure is interactive. Once you submit a PROC CATALOG
statement, you can continue to submit and execute statements or groups of statements
without repeating the PROC CATALOG statement.

A set of procedure statements ending with a RUN statement is called a RUN group.
The changes specified in a given group of statements take effect when a RUN statement
is encountered.

How to End a PROC CATALOG Step

In the DATA step and most SAS procedures, a RUN statement is a step boundary
and ends the step. A simple RUN statement does not, however, end an interactive
procedure. To terminate a PROC CATALOG step, you can

O submit a QUIT statement

O submit a RUN statement with the CANCEL option
0 submit another DATA or PROC statement

O end your SAS session.

Note: When you enter a QUIT, DATA, or PROC statement, any statements following
the last RUN group execute before the CATALOG procedure terminates. If you enter a
RUN statement with the CANCEL option, however, the remaining statements do not
execute before the procedure ends. A

See Example 2 on page 162.

Error Handling and RUN Groups

Error handling is based in part on the division of statements into RUN groups. If a
syntax error is encountered, none of the statements in the current RUN group execute,
and execution proceeds to the next RUN group.

For example, the following statements contain a misspelled DELETE statement:

proc catalog catalog=misc entrytype=help;
copy out=drink;
select coffee tea;
del juices; /* INCORRECT!!! x/
exchange glass=plastic;
run;
change calstats=nutri;

run;

Because the DELETE statement is incorrectly specified as DEL, no statements in
that RUN group execute, except the PROC CATALOG statement itself. The CHANGE
statement does execute, however, because it is in a different RUN group.

The CATALOG Procedure [/ Specifying an Entry Type 155

CAUTION:
Be careful when setting up batch jobs in which one RUN group’s statements depend on the
effects of a previous RUN group, especially when deleting and renaming entries. »

Specifying an Entry Type

Four Ways to Supply an Entry Type

There is no default entry type, so if you do not supply one, PROC CATALOG
generates an error. You can supply an entry type in one of four ways. See Table 6.1 on
page 155.

Table 6.1 Supplying an Entry Type

You can supply an entry
type with... Example

the entry name delete
testl.program
testl.log test2.log;

ET= in parentheses delete
testl (et=program);
ET= after a slash! delete testl (et=program)
testl test2 / et=log;
ENTRYTYPE= without a proc catalog catalog=mycat et=log;
slash? delete testl test2;

1 in a subordinate statement
2 in the PROC CATALOG or the COPY statement

Note: All statements, except the CONTENTS statement, accept the ENTRYTYPE=
(alias ET=) option. 2

Why Use the ENTRYTYPE= Option?

ENTRYTYPE= can save keystrokes when you are processing multiple entries of the
same type.

To create a default for entry type for all statements in the current step, use
ENTRYTYPE= in the PROC CATALOG statement. To set the default for only the
current statement, use ENTRYTYPE= in a subordinate statement.

If many entries are of one type, but a few are of other types, you can use
ENTRYTYPE= to specify a default and then override that for individual entries with
(ENTRYTYPE=) in parentheses after those entries.

Avoid a Common Error

You cannot specify the ENTRYTYPE= option in both the PROC CATALOG statement
and a subordinate statement. For example, these statements generate an error and do
not delete any entries because the ENTRYTYPE= specifications contradict each other:

/* THIS IS INCORRECT CODE. */
proc catalog cat=sample et=help;

156 Specifying an Entry Type A Chapter 6

delete a b ¢ / et=program;

run;

The ENTRYTYPE= Option

The ENTRYTYPE= option is available in every statement in the CATALOG
procedure except CONTENTS.

ENTRYTYPE=etype
not in parentheses, sets a default entry type for the entire PROC step when used
in the PROC CATALOG statement. In all other statements, this option sets a
default entry type for the current statement.

Alias: ET=
Default: If you omit ENTRYTYPE=, PROC CATALOG processes all entries in the
catalog.

Interaction: If you specify ENTRYTYPE= in the PROC CATALOG statement, do
not specify either ENTRYTYPE= or (ENTRYTYPE=) in a subordinate statement.

Interaction: (ENTRYTYPE=etype) in parentheses immediately following an entry
name overrides ENTRYTYPE= in that same statement.

Tip: On all statements except the PROC CATALOG and COPY statements, this
option follows a slash.

Tip: To process multiple entry types in a single PROC CATALOG step, use
ENTRYTYPE= in a subordinate statement, not in the PROC CATALOG
statement.

See also: “Specifying an Entry Type” on page 155.
Featured in: Example 1 on page 158
(ENTRYTYPE=etype)
in parentheses, identifies the type of the entry just preceding it.
Alias: (ET=)

Restriction: (ENTRYTYPE=etype) immediately following an entry name in a
subordinate statement cannot override an ENTRYTYPE= option in the PROC
CATALOG statement. 1t generates a syntax error.

Interaction: (ENTRYTYPE=etype) immediately following an entry name
overrides ENTRYTYPE= in that same statement.

Tip: This form is useful mainly for specifying exceptions to an ENTRYTYPE=
option used in a subordinate statement. The following statement deletes
A .HELP, BFORMAT, and C.HELP:

delete a b (et=format) c / et=help;

Tip: For the CHANGE and EXCHANGE statements, specify (ENTRYTYPE=) in
parentheses only once for each pair of names following the second name in the
pair. For example,

change oldl=newl (et=log)
oldl=new2 (et=help);

See also: “Specifying an Entry Type” on page 155
Featured in: Example 1 on page 158 and Example 2 on page 162

The CATALOG Procedure / GCatalog Concatenation 157

Catalog Concatenation

The CATALOG procedure supports both implicit and explicit concatenation of
catalogs. All statements and options that can be used on single (unconcatenated)
catalogs can be used on catalog concatenations.

Restrictions

When you use the CATALOG procedure to copy concatenated catalogs and you use
the NEW option, the following rules apply:

1 If the input catalog is a concatenation and if the output catalog exists in any level
of the input concatenation, the copy is not allowed.

2 If the output catalog is a concatenation and if the input catalog exists in the first
level of the output concatenation, the copy is not allowed.

For example, the following code demonstrates these two rules, and the copy fails:

libname first ’‘path-namel’;
libname second ’'path-name2’;
/* create contat.x */

libname concat (first second);

/* fails rule #1 */
proc catalog c=concat.x;

copy out=first.x new;
run;

quit;

/* fails rule #2 */

proc catalog c=first.x;
copy out=concat.x new;

run;

quit;

In summary, the following table shows when copies are allowed. In the table, A and
B are libraries, and each contains catalog X. Catalog C is an implicit concatenation of A
and B, and catalog D is an implicit concatenation of B and A.

Input catalog Output catalog Copy allowed?
CX BX No
CX DX No
DX CX No
AX AX No
AX BX Yes
BX AX Yes
CX AX No
BX CX Yes

AX CX No

158 Examples: CATALOG Procedure A Chapter 6

Examples: CATALOG Procedure

Example 1: Copying, Deleting, and Moving Catalog Entries from Multiple
Catalogs

Procedure features:
PROC CATALOG statement:

CATALOG= argument
COPY statement options:

IN=

MOVE

NOEDIT

DELETE statement options:
ENTRYTYPE= or ET=
EXCLUDE statement options:

ENTRYTYPE= or ET=
(ENTRYTYPE=) or (ET=)

QUIT statement

RUN statement

SELECT statement options:
ENTRYTYPE= or ET=

This example
copies entries by excluding a few entries
copies entries by specifying a few entries
protects entries from being edited

deletes entries

o
o

o

O moves entries
o

O processes entries from multiple catalogs
o

processes entries in multiple run groups.

Input Catalogs
The SAS catalog PERM.SAMPLE contains the following entries:

DEFAULT FORM Default form for printing

FSLETTER FORM Standard form for letters (HP Laserjet)
LOAN FRAME Loan analysis application

LOAN HELP Information about the application
BUILD KEYS Function Key Definitions

LOAN KEYS Custom key definitions for application
CREDIT LOG credit application log

TEST1 LOG Inventory program

The CATALOG Procedure /\ Program 159

TEST2 LOG Inventory program

TEST3 LOG Inventory program

LOAN PMENU Custom menu definitions for applicaticm
CREDIT PROGRAM credit application pgm

TEST1 PROGRAM testing budget applic.

TEST2 PROGRAM testing budget applic.

TEST3 PROGRAM testing budget applic.

LOAN SCL SCL code for loan analysis application
PASSIST SLIST User profile

PRTINFO KPRINTER Printing Parameters

The SAS catalog PERM.FORMATS contains the following entries:

REVENUE FORMAT FORMAT :MAXLEN=16,16,12
DEPT FORMATC FORMAT :MAXLEN=1,1,14
Program

Set the SAS system options. Write the source code to the log by specifying the SOURCE SAS
system option.

options nodate pageno=1 linesize=80 pagesize=60 source;

Assign a library reference to a SAS data library. The LIBNAME statement assigns the
libref PERM to the SAS data library that contains a permanent SAS catalog.

libname perm ’'SAS-data-library’;

Delete two entries from the PERM.SAMPLE catalog.

proc catalog cat=perm.sample;
delete credit.program credit.log;

run;

Copy all entries in the PERM.SAMPLE catalog to the WORK.TCATALL catalog.

copy out=tcatall;

run;

Copy everything except three LOG entries and PASSIST.SLIST from PERM.SAMPLE
to WORK.TESTCAT. The EXCLUDE statement specifies which entries not to copy. ET=
specifies a default type. (ET=) specifies an exception to the default type.

copy out=testcat;
exclude testl test2 test3 passist (et=slist) / et=log;

run;

160

Program A Chapter 6

Move three LOG entries from PERM.SAMPLE to WORK.LOGCAT. The SELECT
statement specifies which entries to move. ET= restricts processing to LOG entries.

copy out=logcat move;
select testl test2 test3 / et=log;

run;

Copy five SAS/AF software entries from PERM.SAMPLE to PERM.FINANCE. The
NOEDIT option protects these entries in PERM.FINANCE from further editing with PROC
BUILD.

copy out=perm.finance noedit;
select loan.frame loan.help loan.keys loan.pmenu;

run;

Copy two formats from PERM.FORMATS to PERM.FINANCE. The IN= option enables
you to copy from a different catalog than the one specified in the PROC CATALOG statement.
Note the entry types for numeric and character formats: REVENUE.FORMAT is a numeric
format and DEPT.FORMATC is a character format. The COPY and SELECT statements execute
before the QUIT statement ends the PROC CATALOG step.

copy in=perm.formats out=perm.finance;
select revenue.format dept.formatc;

quit;

Log

The CATALOG Procedure /A Log

161

1

2
3
4
5

libname perm ‘SAS-data-library’;

Engine:

Physical Name:

V9

NOTE: Directory for library PERM contains files of mixed engine types.
NOTE: Libref PERM was successfully assigned as follows:

’SAS-data-library’
options nodate pageno=1 linesize=80 pagesize=60 source;

proc catalog cat=perm.sample;

delete credit.program credit.log;

run;
NOTE: Deleting entry CREDIT.PROGRAM in catalog PERM.SAMPLE.
NOTE: Deleting entry CREDIT.LOG in catalog PERM.SAMPLE.

Copying entry DEFAULT.FORM from catalog PERM.SAMPLE to catalog

WORK.TCATALL.

FSLETTER.FORM

from catalog PERM.SAMPLE to catalog

LOAN.FRAME from catalog PERM.SAMPLE to catalog WORK.TCATALL.
LOAN.HELP from catalog PERM.SAMPLE to catalog WORK.TCATALL.
BUILD.KEYS from catalog PERM.SAMPLE to catalog WORK.TCATALL.
LOAN.KEYS from catalog PERM.SAMPLE to catalog WORK.TCATALL.
TEST1.LOG from catalog PERM.SAMPLE to catalog WORK.TCATALL.
TEST2.LOG from catalog PERM.SAMPLE to catalog WORK.TCATALL.
TEST3.LOG from catalog PERM.SAMPLE to catalog WORK.TCATALL.

LOAN.PMENU from catalog PERM.SAMPLE to catalog WORK.TCATALL.

TEST1.PROGRAM

TEST2 .PROGRAM

TEST3.PROGRAM

LOAN.SCL from
PASSIST.SLIST

6 copy out=tcatall;
7 run;
NOTE:
WORK.TCATALL.
NOTE: Copying entry
WORK.TCATALL.
NOTE: Copying entry
NOTE: Copying entry
NOTE: Copying entry
NOTE: Copying entry
NOTE: Copying entry
NOTE: Copying entry
NOTE: Copying entry
NOTE: Copying entry
NOTE: Copying entry
WORK.TCATALL.
NOTE: Copying entry
WORK.TCATALL.
NOTE: Copying entry
WORK.TCATALL.
NOTE: Copying entry
NOTE: Copying entry
WORK.TCATALL.
NOTE: Copying entry

from catalog PERM.SAMPLE to catalog
from catalog PERM.SAMPLE to catalog
from catalog PERM.SAMPLE to catalog

catalog PERM.SAMPLE to catalog WORK.TCATALL.
from catalog PERM.SAMPLE to catalog

PRTINFO.XPRINTER from catalog PERM.SAMPLE to catalog

162 Example 2: Displaying Contents, Changing Names, and Changing a Description A Chapter 6

8
9
10

11
12
13

14
15
16

17
18
19

NOTE:

NOTE:

NOTE:
NOTE:
NOTE:
NOTE:
NOTE:
NOTE:

NOTE:

NOTE:

NOTE:
NOTE:

NOTE:
NOTE:
NOTE:

NOTE:
NOTE:
NOTE:
NOTE:

NOTE:

NOTE:

copy out=testcat;
exclude testl test2 test3 passist (et=slist) / et=log;

run;
Copying entry
WORK.TESTCAT.
Copying entry
WORK.TESTCAT.
Copying entry
Copying entry
Copying entry
Copying entry
Copying entry
Copying entry
WORK.TESTCAT.
Copying entry
WORK.TESTCAT.
Copying entry
WORK.TESTCAT.
Copying entry
Copying entry
WORK.TESTCAT.

DEFAULT.FORM from catalog PERM.SAMPLE to catalog
FSLETTER.FORM from catalog PERM.SAMPLE to catalog

LOAN.FRAME from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
LOAN.HELP from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
BUILD.KEYS from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
LOAN.KEYS from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
LOAN.PMENU from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
TEST1.PROGRAM from catalog PERM.SAMPLE to catalog

TEST2.PROGRAM from catalog PERM.SAMPLE to catalog
TEST3.PROGRAM from catalog PERM.SAMPLE to catalog

LOAN.SCL from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
PRTINFO.XPRINTER from catalog PERM.SAMPLE to catalog

copy out=logcat move;
select testl test2 test3 / et=log;

run;

Moving entry TEST1.LOG from catalog PERM.SAMPLE to catalog WORK.LOGCAT.
Moving entry TEST2.LOG from catalog PERM.SAMPLE to catalog WORK.LOGCAT.
Moving entry TEST3.LOG from catalog PERM.SAMPLE to catalog WORK.LOGCAT.
copy out=perm.finance noedit;
select loan.frame loan.help loan.keys loan.pmenu;

run;
Copying entry
Copying entry
Copying entry
Copying entry

LOAN.FRAME from catalog PERM.SAMPLE to catalog PERM.FINANCE.
LOAN.HELP from catalog PERM.SAMPLE to catalog PERM.FINANCE.
LOAN.KEYS from catalog PERM.SAMPLE to catalog PERM.FINANCE.
LOAN.PMENU from catalog PERM.SAMPLE to catalog PERM.FINANCE.

copy in=perm.formats out=perm.finance;
select revenue.format dept.formatc;

quit;

Copying entry
PERM.FINANCE.
Copying entry
PERM.FINANCE.

REVENUE.FORMAT from catalog PERM.FORMATS to catalog

DEPT.FORMATC from catalog PERM.FORMATS to catalog

Example 2: Displaying Contents, Changing Names, and Changing a

Description

Procedure features:
PROC CATALOG statement

CHANGE statement options:
(ENTRYTYPE=) or (ET=)
CONTENTS statement options:

FILE=
MODIFY statement
RUN statement
QUIT statement

This example

O lists the entries in a catalog and routes the output to a file

The CATALOG Procedure /\ Program 163

O changes entry names
0 changes entry descriptions
O processes entries in multiple run groups.

Program

Set the SAS system options. The system option SOURCE writes the source code to the log.

options nodate pageno=1 linesize=80 pagesize=60 source;

Assign a library reference. The LIBNAME statement assigns a libref to the SAS data library
that contains a permanent SAS catalog.

libname perm ’'SAS-data-library’;

List the entries in a catalog and route the output to a file. The CONTENTS statement
creates a listing of the contents of the SAS catalog PERM.FINANCE and routes the output to a
file.

proc catalog catalog=perm.finance;
contents;
titlel ‘Contents of PERM.FINANCE before changes are made’;

run;

Change entry names. The CHANGE statement changes the name of an entry that contains a
user-written character format. (ET=) specifies the entry type.

change dept=deptcode (et=formatc);

run;

Process entries in multiple run groups. The MODIFY statement changes the description of
an entry. The CONTENTS statement creates a listing of the contents of PERM.FINANCE after
all the changes have been applied. QUIT ends the procedure.

modify loan.frame (description=’'Loan analysis app. - verl’);
contents;

titlel ‘Contents of PERM.FINANCE after changes are made’;

run;

quit;

164 Output A Chapter 6

Output
Output 6.1
Contents of PERM.FINANCE before changes are made 1
Contents of Catalog PERM.FINANCE
Name Type Create Date Modified Date Description

$$
REVENUE FORMAT 160CT1996:13:48:11 160CT1996:13:48:11 FORMAT:MAXLEN=16,16,12
2 DEPT FORMATC 300CT1996:13:40:42 300CT1996:13:40:42 FORMAT:MAXLEN=1,1,14

3 LOAN FRAME 300CT1996:13:40:43 300CT1996:13:40:43 Loan analysis
application

4 LOAN HELP 160CT1996:13:48:10 160CT1996:13:48:10 Information about
the application

5 LOAN KEYS 160CT1996:13:48:10 160CT1996:13:48:10 Custom key definitions
for application

6 LOAN PMENU 160CT1996:13:48:10 160CT1996:13:48:10 Custom menu
definitions for
application

7 LOAN SCL 160CT1996:13:48:10 160CT1996:13:48:10 SCL code for loan

analysis application

Contents of PERM.FINANCE after changes are made 2
Contents of Catalog PERM.FINANCE
Name Type Create Date Modified Date Description

B e N e e e e e e e e e e e R RN
1 REVENUE FORMAT 160CT1996:13:48:11 160CT1996:13:48:11 FORMAT :MAXLEN=

16,16,12

2 DEPTCODE FORMATC 300CT1996:13:40:42 300CT1996:13:40:42 FORMAT:MAXLEN=1,1,14

3 LOAN FRAME 300CT1996:13:40:43 11FEB2002:13:20:50 Loan analysis
app. - verl

4 LOAN HELP 160CT1996:13:48:10 160CT1996:13:48:10 Information about
the application

5 LOAN KEYS 160CT1996:13:48:10 160CT1996:13:48:10 Custom key
definitions for
application

6 LOAN PMENU 160CT1996:13:48:10 160CT1996:13:48:10 Custom menu
definitions for
application

7 LOAN SCL 160CT1996:13:48:10 160CT1996:13:48:10 SCL code for loan

analysis application

165

CHAPTER

The CHART Procedure

Overview: CHART Procedure 165
About Bar Charts 166
About Block Charts 167
About Pie Charts 168
About Star Charts 169
Syntax: CHART Procedure 170
PROC CHART Statement 111
BLOCK Statement 173
BY Statement 174
HBAR Statement 174
PIE Statement 175
STAR Statement 176
VBAR Statement 176
Customizing All Types of Charts 177
Concepts: CHART Procedure 183
Variable Characteristics 183
Results: CHART Procedure 183
Missing Values 183
Examples: CHART Procedure 184
Example 1: Producing a Simple Frequency Count 184
Example 2: Producing a Percentage Bar Chart 186
Example 3: Subdividing the Bars into Categories 187
Example 4: Producing Side-by-Side Bar Charts 190
Example 5: Producing a Horizontal Bar Chart for a Subset of the Data 192
Example 6: Producing Block Charts for BY Groups 194
References 197

Overview:

CHART Procedure

The CHART procedure produces vertical and horizontal bar charts, block charts, pie
charts, and star charts. These types of charts graphically display values of a variable or
a statistic associated with those values. The charted variable can be numeric or
character.

PROC CHART is a useful tool to visualize data quickly, but if you need to produce
presentation-quality graphics that include color and various fonts, you can use
SAS/GRAPH software. The GCHART procedure in SAS/GRAPH software produces the
same types of charts as PROC CHART does. In addition, PROC GCHART can produce
donut charts.

166 About Bar Charts A Chapter 7

The following sections explain the different types of charts that PROC CHART can
produce. All of the charts illustrate the results from a multiple-choice survey of 568
people, with five possible responses that range from “always” to “never.”

Ahout Bar Charts

Horizontal and vertical bar charts display the magnitude of data with bars, each of
which represents a category of data. The length or height of the bars represents the
value of the chart statistic for each category.

Output 7.1 on page 166 shows a vertical bar chart that displays the number of
responses for the five categories from the survey data. The following statements
produce the output:

options nodate pageno=1 linesize=80
pagesize=30;

proc chart data=survey;
vbar response / sumvar=count
midpoints='Always’ ‘Usually’
'Sometimes’ ‘Rarely’ 'Never’;

run;

Qutput 7.1 Vertical Bar Chart

The SAS System 1
Count Sum
200 + * Kk kokk
*kkk*k
*kkk*k
*kkk*k
*kkk*k
150 + * Kk kokk
*kkk*k
*kkk*k
*kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
100 + *kkk*k *kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k *kkk*k
50 + *kkk*k *kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k *kkk*k *kkk*k
Always Usually Sometimes Rarely Never
Response

Output 7.2 on page 167 shows the same data presented in a horizontal bar chart.
The two types of bar charts have essentially the same characteristics, except that
horizontal bar charts by default display a table of statistic values to the right of the
bars. The following statements produce the output:

The CHART Procedure /A About Block Charts 167

options nodate pageno=1 linesize=80
pagesize=60;

proc chart data=survey;
hbar response / sumvar=count
midpoints='Always’ ‘Usually’
'Sometimes’ ‘Rarely’ 'Never’;

run;

Output 7.2 Horizontal Bar Chart

The SAS System 1

Response Count
Sum
Always R R R R R EEEEEEEEEEEES 106'0000
Usually R RS RS RS SR RS EEE SRR EEEEEEEEEEEEES 202'0000
sOmetimes R EE RS RS EEEEEEEEEEEEEEEE 119'0000
Rarely EEE R R R E SRR EEEEEEEEE 97_0000
Never ede dedede e ke ek 44.0000

BT T T e E

20 40 60 80 100 120 140 160 180 200

Count Sum

Ahout Block Charts

Block charts display the relative magnitude of data by using blocks of varying height,
each set in a square that represents a category of data. Output 7.3 on page 167 shows
the number of each survey response in the form of a block chart.

options nodate pageno=1 linesize=80

pagesize=30;

proc chart data=survey;
block response / sumvar=count
midpoints='Always’ ‘Usually’
'Sometimes’ ‘Rarely’ 'Never’;

run;

168 About Pie Charts A Chapter 7

Output 7.3 Block Chart

The SAS System 1
Sum of Count by Response
/7
* %
* %
* %
_ o /7| _
7| - %] | —7|
_| *| | ________ D I [|**| | ________ |**| | _____________________
/] | /| /e | /e | r_ /
AR AN S L O I L I A R
A L A I L T A o N A L N B
A R VA xx |/ / [**|/ 7/ [**|/ 7/ [**|/ 7/
/ / / / / /
/ 106 / 202 / 119 / 97 / 44 /
[mmm [mmm [mm [mmmm [mm /
Always Usually Sometimes Rarely Never
Response

Ahout Pie Charts

Pie charts represent the relative contribution of parts to the whole by displaying data
as wedge-shaped slices of a circle. Each slice represents a category of the data. Output
7.4 on page 168 shows the survey results divided by response into five pie slices. The
following statements produce the output:

options nodate pageno=1 linesize=80
pagesize=35;

proc chart data=survey;
pie response / sumvar=count;

run;

The CHART Procedure /A About Star Charts 169

Output 7.4 Pie Chart

The SAS System 1
Sum of Count by Response
Never
EEE R R R RS
Rarely *k k% . *k k%
* % . . * %
* % . 44 . * %
* .7.75%. * Always
** 97 . .. * %
** 17.08% . . **
* 106 *
* . 18.66% *
* .. *
* *
* + *
* 119 *
* 20.95% *
Sometimes * *
* %k . 202 *%*
* .. 35.56% *
* . *
*k **
* % * %
*k k% *k k%
kkkkkkkkhhk Usually

About Star Charts

With PROC CHART, you can produce star charts that show group frequencies, totals,
or mean values. A star chart is similar to a vertical bar chart, but the bars on a star
chart radiate from a center point, like spokes in a wheel. Star charts are commonly
used for cyclical data, such as measures taken every month or day or hour, or for data
like these in which the categories have an inherent order ("always" meaning more
frequent than "usually" which means more frequent than "sometimes"). Output 7.5 on
page 169 shows the survey data displayed in a star chart. The following statements
produce the output:

options nodate pageno=1 linesize=80
pagesize=60;

proc chart data=survey;
star response / sumvar=count;

run;

170 Syntax: CHART Procedure A Chapter 7

Qutput 7.5 Star Chart

Center 0 Sum o

*kkk*k
* % %
* % %
* %
*

Rarely **

*
* % X
*

* %k ¥ 3k X X F X

* O *
* Xk

*
*
*

Sometimes **

119

*
* %
* % %
* % %
*kkk*k

The SAS System 1

f Count by Response Outside = 202
Never
EEE R R E SR SRS 44
*kkk*k
* % %
* % %
* %
*
* %
*
* %
*
*
* %
.. *
------ * **x
----- *
*
.. *
B * * Always
.. * 106
*
*
* %
*
* %
*
*
*
*
* %
*
* %
* % %
.. * %k %
* , kkk
Khkkkkkkkkkkkk Usually
202

Syntax: CHART Procedure

Requirement: You must use at least
Tip:
for details.
Reminder:

page 18 for a list.

PROC CHART <option(s)>;

one of the chart-producing statements.

Supports the Output Delivery System. See “Output Delivery System” on page 32

You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on

BLOCK variable(s) </ option(s)>;

The CHART Procedure /A PROC CHART Statement 17

BY <DESCENDING> variable-1
<...<DESCENDING> variable-n>
<NOTSORTED>;

HBAR variable(s) </ option(s)>;
PIE variable(s) </ option(s)>;

STAR variable(s) </ option(s)>;
VBAR variable(s) </ option(s)>;

PROC CHART Statement

PROC CHART <option(s)>;

Options

DATA=SAS-data-set
identifies the input SAS data set.

Main discussion: “Input Data Sets” on page 19

Restriction: You cannot use PROC CHART with an engine that supports
concurrent access if another user is updating the data set at the same time.

FORMCHAR <(position(s))>="formatting-character(s)’
defines the characters to use for constructing the horizontal and vertical axes,
reference lines, and other stuctural parts of a chart. It also defines the symbols to
use to create the bars, blocks, or sections in the output.

position(s)
identifies the position of one or more characters in the SAS formatting-character
string. A space or a comma separates the positions.

Default: Omitting (position(s)), is the same as specifying all 20 possible SAS
formatting characters, in order.

Range: PROC CHART uses 6 of the 20 formatting characters that SAS provides.
Table 7.1 on page 172 shows the formatting characters that PROC CHART uses.

Figure 7.1 on page 172 illustrates the use of formatting characters commonly
used in PROC CHART.

formatting-character(s)
lists the characters to use for the specified positions. PROC CHART assigns
characters in formatting-character(s) to position(s), in the order that they are
listed. For instance, the following option assigns the asterisk (¥) to the second
formatting character, the pound sign (#) to the seventh character, and does not
alter the remaining characters:

formchar(2,7)="*4#"'

Interaction: The SAS system option FORMCHAR= specifies the default formatting
characters. The system option defines the entire string of formatting characters.
The FORMCHAR= option in a procedure can redefine selected characters.

Tip: You can use any character in formatting-characters, including hexadecimal
characters. If you use hexadecimal characters, you must put an x after the closing

172 PROC CHART Statement A Chapter 7

quote. For instance the following option assigns the hexadecimal character 2D to
the second formatting character, the hexadecimal character 7C to the seventh
character, and does not alter the remaining characters:

formchar(2,7)='2D7C’'x

See also: For information on which hexadecimal codes to use for which characters,
consult the documentation for your hardware.

Table 7.1 Formatting Characters Used by PROC CHART

Position ... Default Used to draw

1 | Vertical axes in bar charts, the sides of the blocks in block charts, and
reference lines in horizontal bar charts. In side-by-side bar charts, the first
and second formatting characters appear around each value of the group
variable (below the chart) to indicate the width of each group.

2 - Horizontal axes in bar charts, the horizontal lines that separate the blocks
in a block chart, and reference lines in vertical bar charts. In side-by-side
bar charts, the first and second formatting characters appear around each
value of the group variable (below the chart) to indicate the width of each

group.

7 + Tick marks in bar charts and the centers in pie and star charts.

9 - Intersection of axes in bar charts.

16 / Ends of blocks and the diagonal lines that separate blocks in a block chart.
20 * Circles in pie and star charts.

Figure 7.1 Formatting Characters Commonly Used in PROC CHART Output

Mean Yearly Pie Sales Grouped by Flavor 1
within Bakery Location

Pies_Sold Mean

400 +
* k * * k k
300 Fo—k*k_ koK kKK KKK
* k * * k * * k k * k k * %k
Kk Kk _kkk__kkk_________ Kkk _ _kk ok __kkk_________ kk ok __ kk . ____
7 * k * * Kk Kk * k * * k * * Kk * * k k * %k * %k
100 Kk Kk _kkk__kkk_________ Kkk _ _kk ok __kkk_________ Kk kk ok _kkk______________
‘ * k * * Kk Kk * k * * Kk Kk * k * * Kk * * %k * Kk * * %k * Kk * * %k * Kk *
97 a b c r a b c r a b c r Flavor
p 1 h h p 1 h h P 1 h h
p u e u p u e u p u e u
1 e r b 1 e r b 1 e r b
e b r a e b r a e b r a
e vy r e v r e v r
r b r b r b
r r r

/g:}—;;) Clyde ----| |-==--- Oak ----- | |---- Samford ---| Bakery

LPI=value
specifies the proportions of PIE and STAR charts. The value is determined by

The CHART Procedure /A BLOCK Statement 173

(lines per inch / columns per inch) * 10

For example, if you have a printer with 8 lines per inch and 12 columns per inch,
specify LPI=6.6667.

Default: 6

BLOCK Statement

Produces a block chart.
Featured in: Example 6 on page 194

BLOCK variable(s) </ option(s)>;

Required Arguments

variable(s)
specifies the variables for which PROC CHART produces a block chart, one chart for
each variable.

Options

The options available on the BLOCK, HBAR, PIE, STAR, and VBAR statements are
documented in “Customizing All Types of Charts” on page 177.

Statement Results

Because each block chart must fit on one output page, you may have to adjust the
SAS system options LINESIZE= and PAGESIZE= if you have a large number of charted
values for the BLOCK variable and for the variable specified in the GROUP= option.

Table 7.2 on page 173 shows the maximum number of charted values of BLOCK
variables for selected LINESIZE= (L.S=) specifications that can fit on a 66-line page.

Table 7.2 Maximum Number of Bars of BLOCK Variables

GROUP= Value LS= 132 LS= 120 LS= 105 LS=90 LS= 176 LS= 64
0,1 6 5 4

2

9
8
3 8
4 7
7

SN I 3 o ™

7
7 4
6 3
6 3
5 2

A SO (O B- N
w B A

5,6

If the value of any GROUP= level is longer than three characters, the maximum
number of charted values for the BLOCK variable that can fit may be reduced by one.

174 BY Statement A Chapter 7

BLOCK level values truncate to 12 characters. If you exceed these limits, PROC
CHART produces a horizontal bar chart instead.

BY Statement

Produces a separate chart for each BY group.

Main discussion: “BY” on page 54
Featured in: Example 6 on page 194

BY <DESCENDING> variable-1
<...<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately. Variables in a BY statement
are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED

specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

HBAR Statement

Produces a horizontal bar chart.

Tip: HBAR charts can print either the name or the label of the chart variable.
Featured in: Example 5 on page 192

The CHART Procedure A PIE Statement 175

HBAR variable(s) </ option(s)>;

Required Argument

variable(s)
specifies the variables for which PROC CHART produces a horizontal bar chart, one
chart for each variable.

Options

The options available on the BLOCK, HBAR, PIE, STAR, and VBAR statements are
documented in “Customizing All Types of Charts” on page 177.

Statement Results

Each chart occupies one or more output pages, depending on the number of bars;
each bar occupies one line, by default.

By default, for horizontal bar charts of TYPE=FREQ, CFREQ, PCT, or CPCT, PROC
CHART prints the following statistics: frequency, cumulative frequency, percentage,
and cumulative percentage. If you use one or more of the statistics options, PROC
CHART prints only the statistics that you request, plus the frequency.

PIE Statement

Produces a pie chart.

PIE variable(s) </ option(s)>;

Required Argument

variable(s)
specifies the variables for which PROC CHART produces a pie chart, one chart for
each variable.

Options

The options available on the BLOCK, HBAR, PIE, STAR, and VBAR statements are
documented in “Customizing All Types of Charts” on page 177.

Statement Results

PROC CHART determines the number of slices for the pie in the same way that it
determines the number of bars for vertical bar charts. Any slices of the pie accounting
for less than three print positions are grouped together into an "OTHER" category.

The pie’s size is determined only by the SAS system options LINESIZE= and
PAGESIZE=. By default, the pie looks elliptical if your printer does not print 6 lines per

176

STAR Statement A Chapter 7

inch and 10 columns per inch. To make a circular pie chart on a printer that does not
print 6 lines and 10 columns per inch, use the LPI= option on the PROC CHART
statement. See the decription of LPI= on page 172 for the formula that gives you the
proper LPI= value for your printer.

If you try to create a PIE chart for a variable with more than 50 levels, PROC
CHART produces a horizontal bar chart instead.

STAR Statement

Produces a star chart.

STAR variable(s) </ option(s)>;

Required Argument

variable(s)
specifies the variables for which PROC CHART produces a star chart, one chart for
each variable.

Options

The options available on the BLOCK, HBAR, PIE, STAR, and VBAR statements are
documented in “Customizing All Types of Charts” on page 177.

Statement Results

The number of points in the star is determined in the same way as the number of
bars for vertical bar charts.

If all the data have positive values, the center of the star represents zero and the
outside circle represents the maximum value. If the data contain negative values, the
center represents the minimum. See the description of the AXIS= option on page 178
for more information about how to specify maximum and minimum values. For
information about how to specify the proportion of the chart, see the description of the
LPI= option on page 172.

If you try to create a star chart for a variable with more than 24 levels, PROC
CHART produces a horizontal bar chart instead.

VBAR Statement

Produces a vertical bar chart.

Featured in: Example 1 on page 184, Example 2 on page 186, Example 3 on page 187,
Example 4 on page 190

The CHART Procedure /A Gustomizing All Types of Charts 177

VBAR variable(s) </ option(s)>;

Required Argument

variable(s)
specifies the variables for which PROC CHART produces a vertical bar chart, one
chart for each variable.

Options

The options available on the BLOCK, HBAR, PIE, STAR, and VBAR statements are
documented in “Customizing All Types of Charts” on page 177.

Statement Results

PROC CHART prints one page per chart. Along the vertical axis, PROC CHART
describes the chart frequency, the cumulative frequency, the chart percentage, the
cumulative percentage, the sum, or the mean. At the bottom of each bar, PROC CHART
prints a value according to the value of the TYPE= option, if specified. For character
variables or discrete numeric variables, this value is the actual value represented by
the bar. For continuous numeric variables, the value gives the midpoint of the interval
represented by the bar.

PROC CHART can automatically scale the vertical axis, determine the bar width,
and choose spacing between the bars. However, by using options, you can choose bar
intervals and the number of bars, include missing values in the chart, produce
side-by-side charts, and subdivide the bars. If the number of characters per line
(LINESIZE=) is not sufficient to display all vertical bars, PROC CHART produces a
horizontal bar chart instead.

Customizing All Types of Charts

Many options in PROC CHART are valid in more than one statement. This section
describes the options that you can use on the chart-producing statements.

To do this Use this option
Specify that numeric variables are discrete DISCRETE
Specify a frequency variable FREQ=
Specify that missing values are valid levels MISSING
Specify the variable for which values or means are displayed SUMVAR=
Specify the statistic represented in the chart TYPE=

Specify groupings

Group the bars in side-by-side charts GROUP=
Specify that group percentages sum to 100 G100
Group the bars in side-by-side charts GROUP=

Specify the number of bars for continuous variables LEVELS=

178

Customizing All Types of Charts A Chapter 7

To do this Use this option
Define ranges for continuous variables MIDPOINTS=
Divide the bars into categories SUBGROUP=

Compute statistics
Compute the cumulative frequency for each bar CFREQ
Compute the cumulative percentage for each bar CPERCENT
Compute the frequency for each bar FREQ
Compute the mean of the observations for each bar MEAN
Compute the percentage of total observations for each bar PERCENT
Compute the total number of observations for each bar SUM

Control output format
Print the bars in ascending order of size ASCENDING
Specify the values for the response axis AXIS=
Print the bars in descending order of size DESCENDING
Specify extra space between groups of bars GSPACE=
Suppress the default header line NOHEADER
Allow no space between vertical bars NOSPACE
Suppress the statistics NOSTATS
Suppress the subgroup legend or symbol table NOSYMBOL
Suppress the bars with zero frequency NOZEROS
Draw reference lines REF=
Specify the spaces between bars SPACE=
Specify the symbols within bars or blocks SYMBOL=
Specify the width of bars WIDTH=

Options

ASCENDING

prints the bars and any associated statistics in ascending order of size within groups.
Alias: ASC

Restriction: Available only on the HBAR and VBAR statements

AXIS=value-expression
specifies the values for the response axis, where value-expression is a list of
individual values, each separated by a space, or a range with a uniform interval for
the values. For example, the following range specifies tick marks on a bar chart from
0 to 100 at intervals of 10:

hbar x / axis=0 to 100 by 10;

Restriction: Not available on the PIE statement
Restriction: Values must be uniformly spaced, even if you specify them individually.

The CHART Procedure /A Customizing All Types of Charts 179

Restriction: For frequency charts, values must be integers.

Interaction: For BLOCK charts, AXIS= sets the scale of the tallest block. To set
the scale, PROC CHART uses the maximum value from the AXIS= list. If no value
is greater than 0, PROC CHART ignores the AXIS= option.

Interaction: For HBAR and VBAR charts, AXIS= determines tick marks on the
response axis. If the AXIS= specification contains only one value, the value
determines the minimum tick mark if the value is less than 0, or determines the
maximum tick mark if the value is greater than 0.

Interaction: For STAR charts, a single AXIS= value sets the minimum (the center
of the chart) if the value is less than zero, or sets the maximum (the outside circle)
if the value is greater than zero. If the AXIS= specification contains more than one
value, PROC CHART uses the minimum and maximum values from the list.

Interaction: If you use AXIS= and the BY statement, PROC CHART produces
uniform axes over BY groups.

CAUTION:
Values in value-expression override the range of the data. For example, if the data
range is 1 to 10 and you specify a range of 3 to 5, only the data in the range 3 to 5
appear on the chart. Values out of range produce a warning message in the SAS
log. 2

CFREQ
prints the cumulative frequency.
Restriction: Available only on the HBAR statement

CPERCENT
prints the cumulative percentages.

Restriction: Available only on the HBAR statement

DESCENDING
prints the bars and any associated statistics in descending order of size within groups.

Alias: DESC
Restriction: Available only on the HBAR and VBAR statements

DISCRETE
specifies that a numeric chart variable is discrete rather than continuous. Without
DISCRETE, PROC CHART assumes that all numeric variables are continuous and
automatically chooses intervals for them unless you use MIDPOINTS= or LEVELS=.

FREQ
prints the frequency of each bar to the side of the chart.

Restriction: Available only on the HBAR statement

FREQ=variable
specifies a data set variable that represents a frequency count for each observation.
Normally, each observation contributes a value of one to the frequency counts. With
FREQ=, each observation contributes its value of the FREQ= value.

Restriction: If the FREQ= values are not integers, PROC CHART truncates them.

Interaction: If you use SUMVAR=, PROC CHART multiplies the sums by the
FREQ= value.

GROUP=variable
produces side-by-side charts, with each chart representing the observations that have
a common value for the GROUP= variable. The GROUP= variable can be character
or numeric and is assumed to be discrete. For example, the following statement
produces a frequency bar chart for men and women in each department:

180 Customizing All Types of Charts A Chapter 7

vbar gender / group=dept;

Missing values for a GROUP= variable are treated as valid levels.
Restriction: Available only on the BLOCK, HBAR, and VBAR statements

Featured in: Example 4 on page 190, Example 5 on page 192, Example 6 on page
194

GSPACE=n
specifies the amount of extra space between groups of bars. Use GSPACE=0 to leave
no extra space between adjacent groups of bars.
Restriction: Available only on the HBAR and VBAR statements

Interaction: PROC CHART ignores GSPACE= if you omit GROUP=

G100
specifies that the sum of percentages for each group equals 100. By default, PROC
CHART uses 100 percent as the total sum. For example, if you produce a bar chart
that separates males and females into three age categories, the six bars, by default,
add to 100 percent; however, with G100, the three bars for females add to 100
percent, and the three bars for males add to 100 percent.
Restriction: Available only on the BLOCK, HBAR, and VBAR statements

Interaction: PROC CHART ignores G100 if you omit GROUP=.

LEVELS=number-of-midpoints
specifies the number of bars that represent each chart variable when the variables
are continuous.

MEAN
prints the mean of the observations represented by each bar.

Restriction: Available only on the HBAR statement and only when you use
SUMVAR= and TYPE=
Restriction: Not available when TYPE=CFREQ, CPERCENT, FREQ, or PERCENT

MIDPOINTS=midpoint-specification | OLD
defines the range of values that each bar, block, or section represents by specifying

the range midpoints.
The value for MIDPOINTS= is one of the following:

midpoint-specification
specifies midpoints, either individually, or across a range at a uniform interval.
For example, the following statement produces a chart with five bars; the first bar
represents the range of values of X with a midpoint of 10, the second bar
represents the range with a midpoint of 20, and so on:

vbar x / midpoints=10 20 30 40 50;

Here is an example of a midpoint specification for a character variable:
vbar x / midpoints='JAN’ 'FEB’ 'MAR’;

Here is an example of specifying midpoints across a range at a uniform interval:
vbar x / midpoints=10 to 100 by 5;

OLD
specifies an algorithm that PROC CHART used in previous versions of SAS to
choose midpoints for continuous variables. The old algorithm was based on the
work of Nelder (1976). The current algorithm that PROC CHART uses if you omit
OLD is based on the work of Terrell and Scott (1985).

Default: Without MIDPOINTS=, PROC CHART displays the values in the SAS
System’s normal sorted order.

The CHART Procedure /A Gustomizing All Types of Charts 181

Restriction: When the VBAR variables are numeric, the midpoints must be given
in ascending order.

MISSING
specifies that missing values are valid levels for the chart variable.

NOHEADER
suppresses the default header line printed at the top of a chart.
Alias: NOHEADING
Restriction: Available only on the BLOCK, PIE, and STAR statements
Featured in: Example 6 on page 194
NOSTATS
suppresses the statistics on a horizontal bar chart.
Alias: NOSTAT
Restriction: Available only on the HBAR statement
NOSYMBOL
suppresses printing of the subgroup symbol or legend table.
Alias: NOLEGEND
Restriction: Available only on the BLOCK, HBAR, and VBAR statements
Interaction: PROC CHART ignores NOSYMBOL if you omit SUBGROUP=.

NOZEROS
suppresses any bar with zero frequency.

Restriction: Available only on the HBAR and VBAR statements

PERCENT
prints the percentages of observations having a given value for the chart variable.

Restriction: Available only on the HBAR statement

REF=value(s)
draws reference lines on the response axis at the specified positions.

Restriction: Available only on the HBAR and VBAR statements
Tip: The REF= values should correspond to values of the TYPE= statistic.
Featured in: Example 4 on page 190

SPACE=n
specifies the amount of space between individual bars.

Restriction: Available only on the HBAR and VBAR statements
Tip: Use SPACE=0 to leave no space between adjacent bars.

Tip: Use the GSPACE= option to specify the amount of space between the bars
within each group.

SUBGROUP=variable
subdivides each bar or block into characters that show the contribution of the values
of variable to that bar or block. PROC CHART uses the first character of each value
to fill in the portion of the bar or block that corresponds to that value, unless more
than one value begins with the same first character. In that case, PROC CHART
uses the letters A, B, C, and so on to fill in the bars or blocks. If the variable is
formatted, PROC CHART uses the first character of the formatted value.

The characters used in the chart and the values that they represent are given in a
legend at the bottom of the chart. The subgroup symbols are ordered A through Z
and 0 through 9 with the characters in ascending order.

PROC CHART calculates the height of a bar or block for each subgroup
individually and then rounds the percentage of the total bar up or down. So the total

182 Customizing All Types of Charts A Chapter 7

height of the bar may be higher or lower than the same bar without the
SUBGROUP= option.

Restriction: Available only on the BLOCK, HBAR, and VBAR statements

Interaction: If you use both TYPE=MEAN and SUBGROUP=, PROC CHART first
calculates the mean for each variable listed in the SUMVAR= option, then
subdivides the bar into the percentages contributed by each subgroup.

Featured in: Example 3 on page 187
SUM
prints the total number of observations that each bar represents.

Restriction: Available only on the HBAR statement and only when you use both
SUMVAR= and TYPE=

Restriction: Not available when TYPE=CFREQ, CPERCENT, FREQ, or PERCENT
SUMVAR=variable

specifies the variable for which either values or means (depending on the value of
TYPE=) PROC CHART displays in the chart.

Interaction: If you use SUMVAR= and you use TYPE= with a value other than
MEAN or SUM, TYPE=SUM overrides the specified TYPE= value.

Tip: Both HBAR and VBAR charts can print labels for SUMVAR= variables if you
use a LABEL statement.

Featured in: Example 3 on page 187, Example 4 on page 190, Example 5 on page
192, Example 6 on page 194

SYMBOL=character(s)
specifies the character or characters that PROC CHART uses in the bars or blocks of
the chart when you do not use the SUBGROUP= option.

Default: asterisk (*)
Restriction: Available only on the BLOCK, HBAR, and VBAR statements

Interaction: If the SAS system option OVP is in effect and if your printing device
supports overprinting, you can specify up to three characters to produce
overprinted charts.

Featured in: Example 6 on page 194
TYPE-=statistic

specifies what the bars or sections in the chart represent. The statistic is one of the
following:

CFREQ
specifies that each bar, block, or section represent the cumulative frequency.

CPERCENT
specifies that each bar, block, or section represent the cumulative percentage.
Alias: CPCT

FREQ

specifies that each bar, block, or section represent the frequency with which a
value or range occurs for the chart variable in the data.

MEAN
specifies that each bar, block, or section represent the mean of the SUMVAR=
variable across all observations belonging to that bar, block, or section.

Interaction: With TYPE=MEAN, you can only compute MEAN and FREQ statistics.
Featured in: Example 4 on page 190

PERCENT

The CHART Procedure /A Missing Values 183

specifies that each bar, block, or section represent the percentage of observations
that have a given value or that fall into a given range of the chart variable.

Alias: PCT
Featured in: Example 2 on page 186

SUM
specifies that each bar, block, or section represent the sum of the SUMVAR=
variable for the observations corresponding to each bar, block, or section.

Default: FREQ (unless you use SUMVAR=, which causes a default of SUM)
Interaction: With TYPE=SUM, you can only compute SUM and FREQ statistics.
WIDTH=n
specifies the width of the bars on bar charts.
Restriction: Available only on the HBAR and VBAR statements

Concepts: CHART Procedure

Variable Characteristics

0 Character variables and formats cannot exceed a length of 16.

0 For continuous numeric variables, PROC CHART automatically selects display
intervals, although you can explicitly define interval midpoints.

o For character variables and discrete numeric variables, which contain several
distinct values rather than a continuous range, the data values themselves define
the intervals.

Results: CHART Procedure

Missing Values

0 Missing values are not considered as valid levels for the chart variable when you
use the MISSING option.

o0 Missing values for a GROUP= or SUBGROUP= variable are treated as valid levels.

o PROC CHART ignores missing values for the FREQ= option and the SUMVAR=
option.

o If the value of the FREQ= variable is missing, zero, or negative, the observation is
excluded from the calculation of the chart statistic.

o If the value of the SUMVAR= variable is missing, the observation is excluded from
the calculation of the chart statistic.

184 Examples: CHART Procedure A Chapter 7

Examples: CHART Procedure

With PROC CHART, you can produce several types of charts within a single PROC
step, but in this chapter, each example shows only one chart.

Example 1: Producing a Simple Frequency Count

Procedure features:
VBAR statement

This example produces a vertical bar chart that shows a frequency count for the
values of the chart variable.

Program

options nodate pageno=1 linesize=80 pagesize=60;

Create the input data set SHIRTS. The data set SHIRTS contains the sizes of a particular
shirt that is sold during a week at a clothing store, with one observation for each shirt sold.

data shirts;
input Size $ @@;

datalines;
medium large
large large
large medium
medium small
small medium
medium large
small medium
large large
large small
medium medium
medium medium
medium large
small small

r

Create a vertical bar chart with frequency counts. The VBAR statement produces a
vertical bar chart for the frequency counts of the Size values.

proc chart data=shirts;
vbar size;
title 'Number of Each Shirt Size Sold’;

run;

Output

The CHART Procedure /A Qutput

The frequency chart shows the store’s sales of the shirt for the week: 9

large shirts, 11 medium shirts, and 6 small shirts.

Frequency

11 +

10 +

Number of Each Shirt Size Sold 1

*kkk*k

*kkk*k

*kkk*k

*kkk*k

*kkk*k

*kkk*k

*kkk*k

*kkk*k
*kkk*k *kkk*k
*kkk*k *kkk*k
*kkk*k *kkk*k
*kkk*k *kk k)
*kkk*k *kkk*k
*kkk*k *kkk*k
*kkk*k *kkk*k
*kkk*k *kkk*k
*kkk*k *kkk*k
*kkk*k *kkk*k
*kkk*k *kkk*k
*kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
large medium small

Size

185

186 Example 2: Producing a Percentage Bar Chart A Chapter 7

Example 2: Producing a Percentage Bar Chart

Procedure features:
VBAR statement option:

TYPE=
Data set: SHIRTS on page 184

This example produces a vertical bar chart. The chart statistic is the percentage for
each category of the total number of shirts sold.

Program

options nodate pageno=1 linesize=80 pagesize=60;

Create a vertical bar chart with percentages. The VBAR statement produces a vertical bar
chart. TYPE= specifies percentage as the chart statistic for the variable Size.

proc chart data=shirts;
vbar size / type=percent;
title ’'Percentage of Total Sales for Each Shirt Size';

run;

Output

The CHART Procedure A

Example 3: Subdividing the Bars into Categories

The chart shows the percentage of total sales for each shirt size. Of all
the shirts sold, about 42.3 percent were medium, 34.6 were large, and

23.1 were small.

Percentage of Total Sales for Each Shirt Size 1
Percentage
| *kkokk
| *kkokk
40 + *kkk*k
*kkk*k
*kkk*k
*kkk*k
*kk k)
35 + *kkk*k *kk k)
*kkk*k *kkk*k
*kkk*k *kkk*k
*kkk*k *kkk*k
*kkk*k *kkk*k
30 + *kkk*k *kkk*k
*kkk*k *kkk*k
*kkk*k *kkk*k
*kkk*k *kkk*k
*kkk*k *kkk*k
25 + *kkk*k *kkk*k
*kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kk k)
*kkk*k *kkk*k *kkk*k
20 + *kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
15 + *kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
10 + *kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
5 + *kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
*kkk*k *kkk*k *kkk*k
large medium small
Size

187

Example 3: Subdividing the Bars into Categories

Procedure features:

VBAR statement options:
SUBGROUP=

SUMVAR=

188

Program A Chapter 7

This example

0 produces a vertical bar chart for categories of one variable with bar lengths that
represent the values of another variable.

0 subdivides each bar into categories based on the values of a third variable.

Program

options nodate pageno=1 linesize=80 pagesize=60;

Create the input data set PIESALES. The PIESALES data set contains the number of each
flavor of pie sold for two years at three bakeries owned by the same company — one bakery on
Samford Avenue, one on Oak Street, and one on Clyde Drive.

data piesales;

input Bakery $ Flavor

datalines;

Samford apple
Samford apple
Samford blueberry
Samford blueberry
Samford cherry
Samford cherry
Samford rhubarb
Samford rhubarb
Oak apple

Oak apple

Oak blueberry
Oak blueberry
Oak cherry
Oak cherry
Oak rhubarb
Oak rhubarb
Clyde apple
Clyde apple
Clyde blueberry
Clyde blueberry
Clyde cherry
Clyde cherry
Clyde rhubarb
Clyde rhubarb

r

1995
1996
1995
1996
1995
1996
1995
1996
1995
1996
1995
1996
1995
1996
1995
1996
1995
1996
1995
1996
1995
1996
1995
1996

$ Year Pies_sSold;

234
288
103
143
173
195

26

28
319
371
174
206
246
311

51

56
313
415
177
201
250
328

60

59

Create a vertical bar chart with the bars that are subdivided into categories. The
VBAR statement produces a vertical bar chart with one bar for each pie flavor. SUBGROUP=
divides each bar into sales for each bakery.

proc chart data=piesales;

vbar flavor / subgroup=bakery

The CHART Procedure /A Qutput 189

Specify the bar length variable. SUMVAR= specifies Pies_Sold as the variable whose values
are represented by the lengths of the bars.

sumvar=pies_sold;
title 'Pie Sales by Flavor Subdivided by Bakery Location’;

run;

Output

190 Example 4: Producing Side-by-Side Bar Charts A Chapter 7

The bar that represents the sales of apple pies, for example, shows 1,940 total pies across both
years and all three bakeries. The symbol for the Samford Avenue bakery represents the 522
pies at the top, the symbol for the Oak Street bakery represents the 690 pies in the middle, and
the symbol for the Clyde Drive bakery represents the 728 pies at the bottom of the bar for apple
pies. By default, the labels along the horizontal axis are truncated to eight characters.

Pie Sales by Flavor Subdivided by Bakery Location 1
Pies_Sold Sum
SSSSS
SSSSS
SSSSS
1800 + SSSSS
SSSSS
SSSSS
SSSSS
1600 + SSSSS
SSSSS
SSSSS SSSSS
00000 SSSSS
1400 + 00000 SSSSS
00000 SSSSS
00000 SSSSS
00000 SSSSS
1200 + 00000 SSSSS
00000 00000
00000 00000
00000 SSSSS 00000
1000 + 00000 SSSSS 00000
00000 SSSSS 00000
00000 SSSSS 00000
00000 SSSSS 00000
800 + 00000 00000 00000
Ccccc 00000 00000
Ccccce 00000 00000
Ccccc 00000 00000
600 + Ccccce 00000 Ccccc
Ccccc 00000 Ccccce
Ccccce 00000 Ccccc
Ccccc 00000 Ccccc
400 + Ccccc Ccccc Ccccc
Ccccc Ccccc Ccccc
Ccccc Ccccc Ccccc
Ccccc Ccccc Ccccc SSSSS
200 + Ccccce Ccccce Ccccc 00000
Ccccc Ccccc Ccccc 00000
Ccccc Ccccce Ccccc Ccccc
Ccccc Ccccce Ccccc Ccccc
apple blueberr cherry rhubarb
Flavor
Symbol Bakery Symbol Bakery Symbol Bakery
[¢] Clyde (0] Oak S Samford

Example 4: Producing Side-by-Side Bar Charts

Procedure features:
VBAR statement options:

The CHART Procedure /A Output 191

GROUP=
REF=
SUMVAR=
TYPE=

Data set: PIESALES on page 188

This example
O charts the mean values of a variable for the categories of another variable
O creates side-by-side bar charts for the categories of a third variable

O draws reference lines across the charts.

Program

options nodate pageno=1 linesize=80 pagesize=60;

Create a side-by-side vertical bar chart. The VBAR statement produces a side-by-side
vertical bar chart to compare the sales across values of Bakery, specified by GROUP=. Each
Bakery group contains a bar for each Flavor value.

proc chart data=piesales;
vbar flavor / group=bakery

Create reference lines. REF= draws reference lines to mark pie sales at 100, 200, and 300.

ref=100 200 300

Specify the bar length variable. SUMVAR= specifies Pies_Sold as the variable that is
represented by the lengths of the bars.

sumvar=pies sold

Specify the statistical variable. TYPE= averages the sales for 1995 and 1996 for each
combination of bakery and flavor.

type=mean;
title 'Mean Yearly Pie Sales Grouped by Flavor’;
title2 ‘within Bakery Location’;

run;

Output

192 Example 5: Producing a Horizontal Bar Chart for a Subset of the Data A Chapter 7

The side-by-side bar charts compare the sales of apple pies, for example, across bakeries. The
mean for the Clyde Drive bakery is 364, the mean for the Oak Street bakery is 345, and the
mean for the Samford Avenue bakery is 261.

Mean Yearly Pie Sales Grouped by Flavor 1
within Bakery Location
Pies_Sold Mean
| * % %
350 + Kk * %%
* % % * % %
* % % * % %
* % % * % %
* % % * % %
300 +=—FF* o KKK e e e e
* % % * % % * % %
* % % * % % * % % * % %
* % % * %% * % % * % %
* % % * % % * % % * % % * % %
250 + * %% * % % * % % * % % * %%
* % % * % % * % % * % % * % %
* % % * % % * % % * % % * % %
* % % * % % * % % * % % * % %
* % % * % % * % % * % % * % %
200 e KK e S — KEK e I —— KK K e e ————
* % % * %% * %% * % % * % % * % % * % %
* % % * %% * % % * % % * % % * % % * % % * % %
* % % * % % * % % * % % * % % * % % * %% * % %
* %% * % % * % % * % % * % % * % % * % % * % %
150 + * % % * % % * %% * %% * % % * % % * % % * % %
* %% * % % * %% * % % * % % * % % * % % * % %
* %% * % % * %% * % % * % % * % % * % % * % %
* % % * % % * % % * % % * % % * % % * % % * % % * % %
* % % * % % * % % * % % * % % * % % * % % * % % * % %
100 B b) NN R R R R S L N R L S EE R R S S ——
| * % % * % % * % % * % % * % % * % % * % % * % % * % %
| * % % * % % * % % * % % * % % * % % * % % * % % * % %
| * % % * % % * % % * % % * % % * % % * % % * % % * % %
| * % % * % % * % % * % % * % % * % % * % % * % % * % % * % %
50 + * % % * % % * % % * % % * % % * % % * % % * % % * % % * % % * % %
| * % % * % % * % % * % % * % % * % % * % % * % % * % % * % % * % %
| * % % * % % * % % * % % * % % * % % * % % * % % * % % * % % * % % * % %
| * % % * % % * % % * % % * % % * % % * % % * % % * % % * % % * %% * % %
| * % % * % % * % % * % % * % % * % % * % % * % % * % % * % % * % % * % %
a b c r a b c r a b c r Flavor
P 1 h h P 1 h h P 1 h h
P u e u P u e u P u e u
1 e r b 1 e r b 1 e r b
e b r a e b r a e b r a
e y r e y r e y r
r b r b r b
r r r
————— Clyde ----| | ------ 0ak -----| | ---- samford ---| Bakery

Example 5: Producing a Horizontal Bar Chart for a Subset of the Data

Procedure features:
HBAR statement options:
GROUP=
SUMVAR=

The CHART Procedure /\ Program 193

Other features:
WHERE= data set option

Data set: PIESALES on page 188

This example

O produces horizontal bar charts only for observations with a common value
0 charts the values of a variable for the categories of another variable

O creates side-by-side bar charts for the categories of a third variable.

Program

options nodate pageno=1 linesize=80 pagesize=60;

Specify the variable value limitation for the horizontal bar chart. WHERE= limits the
chart to only the 1995 sales totals.

proc chart data=piesales(where=(year=1995));

Create a side-by-side horizontal bar chart. The HBAR statement produces a side-by-side
horizontal bar chart to compare sales across values of Flavor, specified by GROUP=. Each
Flavor group contains a bar for each Bakery value.

hbar bakery / group=flavor

Specify the bar length variable. SUMVAR= specifies Pies_Sold as the variable whose values
are represented by the lengths of the bars.

sumvar=pies_sold;
title '1995 Pie Sales for Each Bakery According to Flavor';

run;

194 Output A Chapter 7

Output

Flavor

apple

blueberr

cherry

rhubarb

1995 Pie Sales for Each Bakery According to Flavor

Bakery

Clyde
Oak
Samford

Clyde
Oak
Samford

Clyde
Oak
Samford

Clyde
Oak
Samford

IR EE RS RS E SRS SRR SRR EEEEREEEEEEEEEEES]
IR E R RS SRS EEE SRR SR EE SRR EEEEEEEEEEEEEEEE]
EEEE RS SRS RS S EEEEEEEEEEEEEEE RS

R R R RS SRS EEEEEEEEEEEEEE
EEEE RS RS E SRR RS EEEEEEEEE
ERE R R R R R R R RS

EEEE RS EEEEEEE SRS EEEEEEEEEEEEEESS
EEEE RS RS S EEE SRS EEEEEEEEEEEEEESS
EEEE RS SRR EEEEEEEEEEEEE

*kkkkkk*k
*kkkkkk
* % %

S S
30 60 90 120 150 180 210 240 270 300

Pies_Sold Sum

Pies_

313.
319.
234.

177.
174.
103.

250.
246.
173.

60.
51.
26.

Sold
Sum

0000
0000
0000

0000
0000
0000

0000
0000
0000

0000
0000
0000

Example 6: Producing Block Charts for BY Groups

Procedure features:
BLOCK statement options:
GROUP=
NOHEADER=
SUMVAR=
SYMBOL=
BY statement

Other features:

PROC SORT

SAS System options:

NOBYLINE

OvVP

TITLE statement:
#BYVAL specification

Data set: PIESALES on page 188

This example

O sorts the data set

0 produces a block chart for each BY group

O organizes the blocks into a three-dimensional chart

The CHART Procedure /\ Program 195

O prints BY group-specific titles.

Program

options nodate pageno=1 linesize=80 pagesize=60;

Sort the input data set PIESALES. PROC SORT sorts PIESALES by year. This is required
to produce a separate chart for each year.

proc sort data=piesales out=sorted piesales;
by year;

run;

Suppress BY lines and allow overprinted characters in the block charts. NOBYLINE
suppresses the usual BY lines in the output. OVP allows overprinted characters in the charts.

options nobyline ovp;

Specify the BY group for multiple block charts. The BY statement produces one chart for
1995 sales and one for 1996 sales.

proc chart data=sorted_piesales;
by year;

Create a block chart. The BLOCK statement produces a block chart for each year. Each chart
contains a grid (Bakery values along the bottom, Flavor values along the side) of cells that
contain the blocks.

block bakery / group=flavor

Specify the bar length variable. SUMVAR= specifies Pies_Sold as the variable whose values
are represented by the lengths of the blocks.

sumvar=pies sold

Suppress the default header line. NOHEADER suppresses the default header line.

noheader

Specify the block symbols and create the chart titles. SYMBOL= specifies the symbols in
the blocks.

196 Output A Chapter 7

symbol='0X";
title 'Pie Sales for Each Bakery and Flavor';

Create the second line of the title with an input variable. The #BYVAL specification
inserts the year into the second line of the title.

title2 ’#byval(year)’;

run;

Reset the printing of the default BY line. The SAS system option BYLINE resets the
printing of the default BY line.

options byline;

Output

Pie Sales for Each Bakery and Flavor 1
1995

7 /7 o /
rhubarb /7| |@@| /7| |ea| /71 /
aa ag|/ 4 aa|/ / |aa|/ /
a@
[:1:1 60 L] 51 /— 7] 26 /
/|a@ /|aa /@@ /
/ |aa / |aa / |aa /
/ |ea / |ea / |e@ /
cherry / aa / aa / aa@ /
aa|/ / aa|/ / aa|/ /
7 / / /
aa 250 /7| 246 / 173 /
a@| [--- /|@@| [------ /e -
/— 7| |aa /— 7| |aa awawi /
as aa as as / |&& /
blueberr |a@ aa aa aa aa /
aa ea|/ |a@ as|/ /7| |ea|/ /
a@ a@ aa@
aa 177 aa 174 aa 103 /
Flavor /|aa /|aa /|aa /
/ |aa / |aa / |aa /
/ |ea / |e@ / |ea /
apple / ag / ag / a@ /
/ ag|/ / aa|/ / ag|/ /
/ / / /
/ 313 / 319 / 234 /
/ / / /
Clyde oak Samford

Bakery

The CHART Procedure /\ References

Pie Sales for Each Bakery and Flavor
1996

/ / / /
- / / /
rhubarb /— 7| /7| — 7| / 7] /
@| | |@|/ /7| |&@&|/ o/ (&@l|/ s
aa aa /
aa 59 a6 56 /7] 28 /
/|aa /|aa /@@ /
/ |aa / |aa / |a@ /
/ |aa / |aa / |ea /
cherry / aa / aa / aa /
aal/ / aal/ // aal/ /
// 328 /[7] 311 / 195/
/ |a@ /|@@ /== /
/— 7| |aa [:C:1 i /
e [:0:3 /7| |aa / |&& /
blueberr |&& aa aa aa aa /
aa a@l/ |a@ aa|/ /— 7| |aal|/ /
aa - [0} - @a| -
aa 201 aa 206 aa 143 /
Flavor /| @@ /|aa /|aa /
/ |a@ / |aa / |a@ /
/ |aa / |ea / |aa /
apple / aa / aa / aa /
aal/ / aa|/ / aal/ /
/ - / / /
/ 415 / 371 / 288 /
/ / / /
Clyde oak samford
Bakery

197

References

Nelder, J.A. (1976), “A Simple Algorithm for Scaling Graphs,” Applied Statistics,

Volume 25, Number 1, London: The Royal Statistical Society.
Terrell, G.R. and Scott, D.W. (1985), “Oversmoothed Nonparametric Density

Estimates,” Journal of the American Statistical Association, 80, 389, 209-214.

198

199

CHAPTER

The CIMPORT Procedure

Overview: CIMPORT Procedure 199
Syntax: PROC CIMPORT 200
PROC CIMPORT Statement 200
EXCLUDE Statement 203
SELECT Statement 204
Results: CIMPORT Procedure 205
Data Control Block Characteristics for Mainframe Environments 205
Examples: CIMPORT Procedure 205
Example 1: Importing an Entire Data Library 205
Example 2: Importing Individual Catalog Entries 206
Example 3: Importing a Single Indexed SAS Data Set 207

Overview:

CIMPORT Procedure

The CIMPORT procedure imports a transport file that was created (exported) by the
CPORT procedure. PROC CIMPORT restores the transport file to its original form as a
SAS catalog, SAS data set, or SAS data library. Transport files are sequential files that
each contain a SAS data library, a SAS catalog, or a SAS data set in transport format.
The transport format that PROC CPORT writes is the same for all environments and
for many releases of SAS.

PROC CIMPORT can read only transport files that PROC CPORT creates. For
information on the transport files that the transport engine creates, see the section on
SAS files in SAS Language Reference: Concepts.

PROC CIMPORT also converts SAS files, which means that it changes the format of
a SAS file from the format appropriate for one version of SAS to the format appropriate
for another version. For example, you can use PROC CPORT and PROC CIMPORT to
move files from earlier releases of SAS to more recent releases. In such cases, PROC
CIMPORT automatically converts the contents of the transport file as it imports it.

PROC CIMPORT produces no output, but it does write notes to the SAS log.

To export and import files, follow these steps:

1 Use PROC CPORT to export the SAS files that you want to transport.
2 If you are changing operating environments, move the transport file to the new
machine by using either communications software or a magnetic medium.

Note: If you use communications software to move the transport file, be sure that
it treats the transport file as a binary file and that it modifies neither the
attributes nor the contents of the file. A

3 Use PROC CIMPORT to translate the transport file into the format appropriate
for the new operating environment or release.

200 Syntax: PROC CIMPORT A Chapter 8

Syntax: PROC CIMPORT

PROC CIMPORT destination=libref | <libref.>member-name <option(s)>;

EXCLUDE SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></
ENTRYTYPE=entry-type>;

SELECT SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></
ENTRYTYPE=entry-type>;

PROC CIMPORT Statement

PROC CIMPORT destination=libref | <libref.> member-name<option(s)>;

To do this Use this option

Identify the input transport file

Specify a previously defined fileref or the filename of the INFILE=
transport file to read

Read the input transport file from a tape TAPE
Select files to import

Exclude specified entry types from the import process EET=

Specify entry types to import ET=
Control the contents of the transport file

Import a SAS file without changing the created and modified DATECOPY
date and time
Specify whether to extend by 1 byte the length of short EXTENDSN=
numerics (less than 8 bytes) when you import them
Specify that only data sets, only catalogs, or both, be moved MEMTYPE=
when a library is imported
Enable access to a locked catalog FORCE
Create a new catalog for the imported transport file, and delete NEW
any existing catalog with the same name
Import SAS/AF PROGRAM and SCL entries without edit NOEDIT
capability
Suppress the importing of source code for SAS/AF entries that NOSRC

contain compiled SCL code

The CIMPORT Procedure /A PROC CIMPORT Statement 201

Required Arguments

destination=libref | <libref. >member-name
identifies the type of file to import and specifies the specific catalog, SAS data set, or
SAS data library to import.

destination
identifies the file or files in the transport file as a single catalog, as a single SAS
data set, or as the members of a SAS data library. The destination argument can
be one of the following:

CATALOG | CAT | C
DATA | DS | D
LIBRARY | LIB | L

libref | <libref. > member-name
specifies the specific catalog, SAS data set, or SAS data library as the destination
of the transport file. If the destination argument is CATALOG or DATA, you can
specify both a libref and a member name. If the libref is omitted, PROC CIMPORT
uses the default library as the libref, which is usually the WORK library. If the
destination argument is LIBRARY, specify only a libref.

Options

DATECOPY

copies the SAS internal date and time when the SAS file was created and the date

and time when it was last modified to the resulting destination file. Note that the

operating environment date and time are not preserved.

Restriction: DATECOPY can be used only when the destination file uses the V8 or
V9 engine.

Tip: You can alter the file creation date and time with the DTC= option on the
MODIFY statement“MODIFY Statement” on page 366 in a PROC DATASETS step.

EET=(etype(s))
excludes specified entry types from the import process. If the etype is a single entry
type, then you can omit the parentheses. Separate multiple values with spaces.

Interaction: You cannot specify both the EET= option and the ET= option in the
same PROC CIMPORT step.

ET=(etype(s))
specifies the entry types to import. If the etype is a single entry type, then you can
omit the parentheses. Separate multiple values with spaces.

Interaction: You cannot specify both the EET= option and the ET= option in the
same PROC CIMPORT step.

EXTENDSN=YES | NO
specifies whether to extend by 1 byte the length of short numerics (fewer than 8
bytes) when you import them. You can avoid a loss of precision when you transport a
short numeric in IBM format to IEEE format if you extend its length. You cannot
extend the length of an 8-byte short numeric.

Default: YES
Restriction: This option applies only to data sets.
Tip: Do not store fractions as short numerics.

202

PROC CIMPORT Statement A Chapter 8

FORCE

enables access to a locked catalog. By default, PROC CIMPORT locks the catalog
that it is updating to prevent other users from accessing the catalog while it is being
updated. The FORCE option overrides this lock, which allows other users to access
the catalog while it is being imported, or allows you to import a catalog that is
currently being accessed by other users.

CAUTION:
The FORCE option can lead to unpredictable results. The FORCE option allows
multiple users to access the same catalog entry simultaneously. A

INFILE=fileref | ’filename’

specifies a previously defined fileref or the filename of the transport file to read. If
you omit the INFILE= option, then PROC CIMPORT attempts to read from a
transport file with the fileref SASCAT. If a fileref SASCAT does not exist, then PROC
CIMPORT attempts to read from a file named SASCAT.DAT.

Alias: FILE=

Featured in: Example 1 on page 205.

MEMTYPE=mtype

specifies that only data sets, only catalogs, or both, be moved when a SAS library is
imported. Values for mtype can be

ALL
both catalogs and data sets

CATALOG | CAT
catalogs

DATA | DS
SAS data sets

NEW

creates a new catalog to contain the contents of the imported transport file when the
destination you specify has the same name as an existing catalog. NEW deletes any
existing catalog with the same name as the one you specify as a destination for the
import. If you do not specify NEW, and the destination you specify has the same
name as an existing catalog, PROC CIMPORT appends the imported transport file to
the existing catalog.

NOEDIT

imports SAS/AF PROGRAM and SCL entries without edit capability.

You obtain the same results if you create a new catalog to contain SCL code by
using the MERGE statement with the NOEDIT option in the BUILD procedure of
SAS/AF software.

Note: The NOEDIT option affects only SAS/AF PROGRAM and SCL entries. It
does not affect FSEDIT SCREEN and FSVIEW FORMULA entries. A

Alias: NEDIT

NOSRC

suppresses the importing of source code for SAS/AF entries that contain compiled
SCL code.

You obtain the same results if you create a new catalog to contain SCL code by
using the MERGE statement with the NOSOURCE option in the BUILD procedure
of SAS/AF software.

Alias: NSRC

Interaction: PROC CIMPORT ignores the NOSRC option if you use it with an
entry type other than FRAME, PROGRAM, or SCL.

The CIMPORT Procedure / EXCLUDE Statement 203

TAPE
reads the input transport file from a tape.

Default: PROC CIMPORT reads from disk.

EXCLUDE Statement

Excludes specified files or entries from the import process.
Tip: There is no limit to the number of EXCLUDE statements you can use in one
invocation of PROC CIMPORT.

Interaction: You can use either EXCLUDE statements or SELECT statements in a PROC
CIMPORT step, but not both.

EXCLUDE SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></ ENTRYTYPE=
entry-type>;

Required Arguments

SAS file(s) | catalog entry(s)
specifies either the name(s) of one or more SAS files or the name(s) of one or more
catalog entries to be excluded from the import process. Specify SAS filenames if you
import a data library; specify catalog entry names if you import an individual SAS
catalog. Separate multiple filenames or entry names with a space. You can use
shortcuts to list many like-named files in the EXCLUDE statement. For more
information, see “Shortcuts for Specifying Lists of Variable Names” on page 24.

Options

ENTRYTYPE=entry-type
specifies a single entry type for the catalog entry(s) listed in the EXCLUDE
statement. See SAS Language Reference: Concepts for a complete list of catalog entry
types.
Restriction: ENTRYTYPE= is valid only when you import an individual SAS
catalog.

Alias: ETYPE=, ET=
MEMTYPE=mtype

specifies a single member type for the SAS file(s) listed in the EXCLUDE statement.
Values for mtype can be

ALL
both catalogs and data sets

CATALOG
catalogs

DATA
SAS data sets.

204

SELECT Statement A Chapter 8

You can also specify the MEMTYPE= option, enclosed in parentheses, immediately
after the name of a file. In parentheses, MEMTYPE= identifies the type of the
filename that just precedes it. When you use this form of the option, it overrides the
MEMTYPE= option that follows the slash in the EXCLUDE statement, but it must
match the MEMTYPE= option in the PROC CIMPORT statement.

Restriction: MEMTYPE-= is valid only when you import a SAS data library.
Alias: MTYPE=, MT=
Default: ALL

SELECT Statement

Specifies individual files or entries to import.
Tip: There is no limit to the number of SELECT statements you can use in one
invocation of PROC CIMPORT.

Interaction: You can use either EXCLUDE statements or SELECT statements in a PROC
CIMPORT step, but not both.

Featured in: Example 2 on page 206

SELECT SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></
ENTRYTYPE=entry-type>;

Required Arguments

SAS file(s) | catalog entry(s)
specifies either the name(s) of one or more SAS files or the name(s) of one or more
catalog entries to import. Specify SAS filenames if you import a data library; specify
catalog entry names if you import an individual SAS catalog. Separate multiple
filenames or entry names with a space. You can use shortcuts to list many
like-named files in the SELECT statement. For more information, see “Shortcuts for
Specifying Lists of Variable Names” on page 24.

Options

ENTRYTYPE=entry-type
specifies a single entry type for the catalog entry(s) listed in the SELECT statement.
See SAS Language Reference: Concepts for a complete list of catalog entry types.
Restriction: ENTRYTYPE= is valid only when you import an individual SAS
catalog.
Alias: ETYPE=, ET=

MEMTYPE=mtype
specifies a single member type for the SAS file(s) listed in the SELECT statement.
Valid values are CATALOG or CAT, DATA, or ALL.
You can also specify the MEMTYPE= option, enclosed in parentheses, immediately
after the name of a file. In parentheses, MEMTYPE= identifies the type of the

The CIMPORT Procedure /A Example 1: Importing an Entire Data Library 205

filename that just precedes it. When you use this form of the option, it overrides the
MEMTYPE= option that follows the slash in the SELECT statement, but it must
match the MEMTYPE= option in the PROC CIMPORT statement.

Restriction: MEMTYPE= is valid only when you import a SAS data library.
Alias: MTYPE=, MT=
Default: ALL

Results: CIMPORT Procedure

Data Control Block Characteristics for Mainframe Environments

A common problem when you create or import a transport file under the OS/390
environment is a failure to specify the correct Data Control Block (DCB) characteristics.
When you reference a transport file you must specify the following DCB characteristics:

LRECL: 80
BLKSIZE: 8000
RECFM: FB

Note: A BLKSIZE value of less than 8000 may be more efficient for your storage
device in some cases. The BLKSIZE value must be an exact multiple of the LRECL

value. A

Another common problem can occur if you use communications software to move files
from another environment to OS/390. In some cases, the transport file does not have the
proper DCB characteristics when it arrives on 0S/390. If the communications software
does not allow you to specify file characteristics, try the following approach for OS/390:

1 Create a file under OS/390 with the correct DCB characteristics and initialize the
file.

2 Move the transport file from the other environment to the newly created file under
0S/390 using binary transfer.

Examples: CIMPORT Procedure

Example 1: Importing an Entire Data Library

Procedure features:
PROC CIMPORT statement option:

INFILE=

This example shows how to use PROC CIMPORT to read from disk a transport file,
named TRANFILE, that PROC CPORT created from a SAS data library in another
operating environment. The transport file was moved to the new operating environment
by means of communications software or magnetic medium. PROC CIMPORT imports

206 Program A Chapter 8

the transport file to a SAS data library, called NEWLIB, in the new operating
environment.

Program

Specify the library name and filename. The LIBNAME statement specifies a libname for
the new SAS data library. The FILENAME statement specifies the filename of the transport file
that PROC CPORT created and enables you to specify any operating environment options for
file characteristics.

libname newlib ‘SAS-data-library’;
filename tranfile 'transport-file’
host-option(s)-for-file-characteristics;

Import the SAS data library in the NEWLIB library. PROC CIMPORT imports the SAS
data library into the library named NEWLIB.

proc cimport library=newlib infile=tranfile;

run;

SAS Log

NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.FINANCE
NOTE: Entry LOAN.FRAME has been imported.

NOTE: Entry LOAN.HELP has been imported.

NOTE: Entry LOAN.KEYS has been imported.

NOTE: Entry LOAN.PMENU has been imported.

NOTE: Entry LOAN.SCL has been imported.

NOTE: Total number of entries processed in catalog NEWLIB.FINANCE: 5

NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.FORMATS
NOTE: Entry REVENUE.FORMAT has been imported.

NOTE: Entry DEPT.FORMATC has been imported.

NOTE: Total number of entries processed in catalog NEWLIB.FORMATS: 2

Example 2: Importing Individual Catalog Entries

Procedure features:
PROC CIMPORT statement options:

INFILE=
SELECT statement

This example shows how to use PROC CIMPORT to import the individual catalog
entries LOAN.PMENU and LOAN.SCL from the transport file TRANS2, which was
created from a single SAS catalog.

The CIMPORT Procedure /\ Program 207

Program

Specify the library name, filename, and operating environment options. The LIBNAME
statement specifies a libname for the new SAS data library. The FILENAME statement specifies
the filename of the transport file that PROC CPORT created and enables you to specify any
operating environment options for file characteristics.

libname newlib ‘SAS-data-library’;
filename trans2 'transport-file’
host-option(s)-for-file-characteristics;

Import the specified catalog entries to the new SAS catalog. PROC CIMPORT imports
the individual catalog entries from the TRANS2 transport file and stores them in a new SAS
catalog called NEWLIB.FINANCE. The SELECT statement selects only the two specified
entries from the transport file to be imported into the new catalog.

proc cimport catalog=newlib.finance infile=trans2;
select loan.pmenu loan.scl;

run;

SAS Log

NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.FINANCE
NOTE: Entry LOAN.PMENU has been imported.

NOTE: Entry LOAN.SCL has been imported.

NOTE: Total number of entries processed in catalog NEWLIB.FINANCE: 2

Example 3: Importing a Single Indexed SAS Data Set

Procedure features:
PROC CIMPORT statement option:
INFILE=

This example shows how to use PROC CIMPORT to import an indexed SAS data set
from a transport file that was created by PROC CPORT from a single SAS data set.

Program

Specify the library name, filename, and operating environment options. The LIBNAME
statement specifies a libname for the new SAS data library. The FILENAME statement specifies
the filename of the transport file that PROC CPORT created and enables you to specify any
operating environment options for file characteristics.

208 SAS Log A Chapter 8

libname newdata ‘'SAS-data-library’;
filename trans3 ’‘transport-file’
host-option(s)-for-file-characteristics;

Import the SAS data set. PROC CIMPORT imports the single SAS data set that you identify
with the DATA= specification in the PROC CIMPORT statement. PROC CPORT exported the
data set NEWDATA.TIMES in the transport file TRANS3.

proc cimport data=newdata.times infile=trans3;

run;

SAS Log

Proc CIMPORT begins to create/update data set NEWDATA.TIME
The data set index x is defined.

Data set contains 2 variables and 2 observations.
Logical record length is 16

209

CHAPTER

The COMPARE Procedure

Overview: COMPARE Procedure 209
Syntax: COMPARE Procedure 213
PROC COMPARE Statement 213
BY Statement 220
ID Statement 221
VAR Statement 223
WITH Statement 223
Concepts: COMPARE Procedure 224
A Comparison by Position of Observations 224
A Comparison with an ID Variable 225
The Equality Criterion 226
Definition of Difference and Percent Difference 227
How PROC COMPARE Handles Variable Formats 228
Results: COMPARE Procedure 228
SAS Log 228
Macro Return Codes (SYSINFO) 228
Procedure Output 230
Data Set Summary 230
Variables Summary 230
Observation Summary 231
Values Comparison Summary 232
Value Comparison Results 233
Table of Summary Statistics 233
Comparison Results for Observations (Using the TRANSPOSE Option) 235
Output Data Set (OUT=) 236
Output Statistics Data Set (OUTSTATS=) 237
Examples: COMPARE Procedure 239
Example 1: Producing a Complete Report of the Differences 239
Example 2: Comparing Variables in Different Data Sets 243
Example 3: Comparing a Variable Multiple Times 244
Example 4: Comparing Variables That Are in the Same Data Set 246
Example 5: Comparing Observations with an ID Variable 248
Example 6: Comparing Values of Observations Using an Output Data Set (OUT=) 251
Example 7: Creating an Output Data Set of Statistics (OUTSTATS=) 253

Overview: COMPARE Procedure

The COMPARE procedure compares the contents of two SAS data sets, selected
variables in different data sets, or variables within the same data set.

210 Overview: COMPARE Procedure A Chapter 9

PROC COMPARE compares two data sets: the base data set and the comparison
data set. The procedure determines matching variables and matching observations.
Matching variables are variables with the same name or variables that you explicitly
pair by using the VAR and WITH statements. Matching variables must be of the same
type. Matching observations are observations that have the same values for all ID
variables that you specify or, if you do not use the ID statement, that occur in the same
position in the data sets. If you match observations by ID variables, both data sets
must be sorted by all ID variables.

When you compare data sets using PROC COMPARE, you receive the following type
of information:

0 whether matching variables have different values

whether one data set has more observations than the other

what variables the two data sets have in common

how many variables are in one data set but not in the other
whether matching variables have different formats, labels, or types.

O o o o o

a comparison of the values of matching observations.

Further, PROC COMPARE creates two kinds of output data sets that give detailed
information about the differences between observations of variables it is comparing.

The following example compares the data sets PROCLIB.ONE and PROCLIB.TWO,
which contain similar data about students:

data proclib.one(label='First Data Set');
input student year $ state $ grl gr2;
label year='Year of Birth’;
format grl 4.1;
datalines;

1000 1970 NC 85 87

1042 1971 MD 92 92

1095 1969 PA 78 72

1187 1970 MA 87 94

r

data proclib.two(label='Second Data Set’);
input student $ year $ state $ grl
gr2 major $;
label state='Home State’;
format grl 5.2;
datalines;
1000 1970 NC 84 87 Math
1042 1971 MA 92 92 History
1095 1969 PA 79 73 Physics
1187 1970 MD 87 74 Dance
1204 1971 NC 82 96 French

r

PROC COMPARE produces lengthy output. You can use one or more options to
determine the kinds of comparisons to make and the degree of detail in the report. For
example, in the following PROC COMPARE step, the NOVALUES option suppresses
the part of the output that shows the differences in the values of matching variables:

proc compare base=proclib.one
compare=proclib.two novalues;

run;

The COMPARE Procedure /A Qverview: COMPARE Procedure

Output 9.1 Comparison of Two Data Sets

211

Dataset

Number
Number
Number
Number

Variable

year

state

PROCLIB.ONE 13MAY98:
PROCLIB.TWO 13MAY98:

The SAS System

COMPARE Procedure

Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Data Set Summary
Created Modified NVar NObs Label
15:01:42 13MAY98:15:01:42 5 4 First Data Set
15:01:44 13MAY98:15:01:44 6 5 Second Data Set

Var

of Variables
of Variables
of Variables
of Variables

iables Summary

in Common: 5.

in PROCLIB.TWO but not in PROCLIB.ONE:
with Conflicting Types: 1.

with Differing Attributes: 3.

Listing of Common Variables with Conflicting Types

Variable Dataset Type Length
student PROCLIB.ONE Num 8
PROCLIB.TWO Char 8

Dataset

PROCLIB.ONE
PROCLIB.TWO
PROCLIB.ONE
PROCLIB.TWO

Listing of Common Variables with Differing Attributes

Type Length Format Label

Char 8 Year of Birth
Char 8

Char 8

Char 8 Home State

1.

212 Overview: COMPARE Procedure A Chapter 9

The SAS System 2
COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO
(Method=EXACT)

Listing of Common Variables with Differing Attributes

Variable Dataset Type Length Format Label
grl PROCLIB.ONE Num 8 4.1
PROCLIB.TWO Num 8 5.2

Observation Summary

Observation Base Compare
First Obs 1 1
First Unequal 1 1
Last Unequal 4 4
Last Match 4 4
Last Obs 5

Number of Observations in Common: 4.

Number of Observations in PROCLIB.TWO but not in PROCLIB.ONE: 1.
Total Number of Observations Read from PROCLIB.ONE: 4.

Total Number of Observations Read from PROCLIB.TWO: 5.

Number of Observations with Some Compared Variables Unequal: 4.
Number of Observations with All Compared Variables Equal: 0.

The SAS System 3
COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO
(Method=EXACT)
Values Comparison Summary
Number of Variables Compared with All Observations Equal: 1.
Number of Variables Compared with Some Observations Unequal: 3.
Total Number of Values which Compare Unequal: 6.
Maximum Difference: 20.

Variables with Unequal Values

Variable Type Len Compare Label Ndif MaxDif

state CHAR 8 Home State 2
grl NUM 8 2 1.000
gr2 NUM 8 2 20.000

“Procedure Output” on page 230 shows the default output for these two data sets.
Example 1 on page 239 shows the complete output for these two data sets.

The COMPARE Procedure /A PROC COMPARE Statement 213

Syntax: COMPARE Procedure

Restriction: You must use the VAR statement when you use the WITH statement.

Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.

Reminder: You can use the LABEL, ATTRIB, FORMAT, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.

PROC COMPARE <option(s)>;

BY <DESCENDING> variable-1
<...<DESCENDING> variable-n>
<NOTSORTED>;

ID <DESCENDING> variable-1
<...<DESCENDING> variable-n>
<NOTSORTED>;

VAR variable(s);
WITH variable(s);

To do this Use this statement
Produce a separate comparison for each BY group BY

Identify variables to use to match observations ID

Restrict the comparison to values of specific variables VAR

Compare variables of different names WITH and VAR
Compare two variables in the same data set WITH and VAR

PROC COMPARE Statement

Restriction: If you omit COMPARE=, you must use the WITH and VAR statements.

Restriction. PROC COMPARE reports errors differently if one or both of the compared
data sets are not RADIX addressable. Version 6 compressed files are not RADIX
addressable, while, beginning with Version 7, compressed files are RADIX addressable.
(The integrity of the data is not compromised; the procedure simply numbers the
observations differently.)

Reminder: You can use data set options with the BASE= and COMPARE= options.

PROC COMPARE <option(s)>;

214 PROC COMPARE Statement A Chapter 9

To do this Use this option

Specify the data sets to compare

values

Judge missing values equal to any value

Control the details in the default report

Include the values for all matching observations

Print a table of summary statistics for all pairs of
matching variables

Specify the base data set BASE=
Specify the comparison data set COMPARE=
Control the output data set
Create an output data set OUT=
Write an observation for each observation in the BASE= OUTALL
and COMPARE-= data sets
Write an observation for each observation in the BASE= OUTBASE
data set
Write an observation for each observation in the OUTCOMP
COMPARE= data set
Write an observation that contains the differences for OUTDIF
each pair of matching observations
Suppress the writing of observations when all values OUTNOEQUAL
are equal
Write an observation that contains the percent OUTPERCENT
differences for each pair of matching observations
Create an output data set that contains summary statistics OUTSTATS=
Specify how the values are compared
Specify the criterion for judging the equality of numeric = CRITERION=
values
Specify the method for judging the equality of numeric METHOD=

NOMISSBASE and NOMISSCOMP

ALLOBS
ALLSTATS and STATS

Include in the report the values and differences for all ALLVARS
matching variables

Print only a short comparison summary BRIEFSUMMARY
Change the report for numbers between 0 and 1 FUZZ=

Restrict the number of differences to print MAXPRINT=
Suppress the print of creation and last-modified dates NODATE
Suppress all printed output NOPRINT
Suppress the summary reports NOSUMMARY
Suppress the value comparison results. NOVALUES
Produce a complete listing of values and differences PRINTALL

The COMPARE Procedure /A PROC COMPARE Statement 215

To do this Use this option
Print the value differences by observation, not by TRANSPOSE
variable

Control the listing of variables and observations

List all variables and observations found in only one LISTALL

data set

List all variables and observations found only in the LISTBASE
base data set

List all observations found only in the base data set LISTBASEOBS
List all variables found only in the base data set LISTBASEVAR
List all variables and observations found only in the LISTCOMP

comparison data set

List all observations found only in the comparison data ~ LISTCOMPOBS
set

List all variables found only in the comparison data set =~ LISTCOMPVAR

List variables whose values are judged equal LISTEQUALVAR
List all observations found in only one data set LISTOBS
List all variables found in only one data set LISTVAR
Options
ALLOBS

includes in the report of value comparison results the values and, for numeric
variables, the differences for all matching observations, even if they are judged equal.

Default: If you omit ALLOBS, PROC COMPARE prints values only for observations
that are judged unequal.

Interaction: When used with the TRANSPOSE option, ALLOBS invokes the
ALLVARS option and displays the values for all matching observations and
variables.

ALLSTATS
prints a table of summary statistics for all pairs of matching variables.

See also: “Table of Summary Statistics” on page 233 for information on the
statistics produced

ALILVARS
includes in the report of value comparison results the values and, for numeric
variables, the differences for all pairs of matching variables, even if they are judged
equal.
Default: If you omit ALLVARS, PROC COMPARE prints values only for variables
that are judged unequal.

Interaction: When used with the TRANSPOSE option, ALLVARS displays unequal
values in context with the values for other matching variables. If you omit the
TRANSPOSE option, ALLVARS invokes the ALLOBS option and displays the
values for all matching observations and variables.

216 PROC COMPARE Statement A Chapter 9

BASE=SAS-data-set
specifies the data set to use as the base data set.

Alias: DATA=

Default: the most recently created SAS data set

Tip: You can use the WHERE= data set option with the BASE= option to limit the
observations that are available for comparison.

BRIEFSUMMARY
produces a short comparison summary and suppresses the four default summary
reports (data set summary report, variables summary report, observation summary
report, and values comparison summary report).

Alias: BRIEF

Tip: By default, a listing of value differences accompanies the summary reports. To
suppress this listing, use the NOVALUES option.

Featured in: Example 4 on page 246
COMPARE=SAS-data-set

specifies the data set to use as the comparison data set.

Aliases: COMP=, C=

Default: If you omit COMPARE=, the comparison data set is the same as the base
data set, and PROC COMPARE compares variables within the data set.

Restriction: If you omit COMPARE=, you must use the WITH statement.
Tip: You can use the WHERE= data set option with COMPARE= to limit the
observations that are available for comparison.

CRITERION=~
specifies the criterion for judging the equality of numeric values. Normally, the value
of v (gamma) is positive, in which case the number itself becomes the equality
criterion. If you use a negative value for v, PROC COMPARE uses an equality
criterion proportional to the precision of the computer on which SAS is running.

Default: 0.00001

See also: “The Equality Criterion” on page 226 for more information
ERROR

displays an error message in the SAS log when differences are found.

Interaction: This option overrides the WARNING option.
FUZZ=number

alters the values comparison results for numbers less than number. PROC
COMPARE prints

o 0 for any variable value that is less than number
O a blank for difference or percent difference if it is less than number
o 0 for any summary statistic that is less than number.

Default 0

Range: 0-1

Tip: A report that contains many trivial differences is easier to read in this form.
LISTALL

lists all variables and observations that are found in only one data set.

Alias LIST

Interaction: using LISTALL is equivalent to using the following four options:
LISTBASEOBS, LISTCOMPOBS, LISTBASEVAR, and LISTCOMPVAR.

The COMPARE Procedure /A PROC COMPARE Statement 217

LISTBASE
lists all observations and variables that are found in the base data set but not in the
comparison data set.

Interaction: Using LISTBASE is equivalent to using the LISTBASEOBS and
LISTBASEVAR options.

LISTBASEOBS
lists all observations that are found in the base data set but not in the comparison
data set.

LISTBASEVAR
lists all variables that are found in the base data set but not in the comparison data
set.

LISTCOMP
lists all observations and variables that are found in the comparison data set but not
in the base data set.

Interaction: Using LISTCOMP is equivalent to using the LISTCOMPOBS and
LISTCOMPVAR options.

LISTCOMPOBS
lists all observations that are found in the comparison data set but not in the base
data set.

LISTCOMPVAR
lists all variables that are found in the comparison data set but not in the base data
set.

LISTEQUALVAR
prints a list of variables whose values are judged equal at all observations in addition
to the default list of variables whose values are judged unequal.

LISTOBS
lists all observations that are found in only one data set.
Interaction: Using LISTOBS is equivalent to using the LISTBASEOBS and
LISTCOMPOBS options.

LISTVAR
lists all variables that are found in only one data set.

Interaction: Using LISTVAR is equivalent to using both the LISTBASEVAR and
LISTCOMPVAR options.

MAXPRINT=total | (per-variable, total)
specifies the maximum number of differences to print, where

total
is the maximum total number of differences to print. The default value is 500
unless you use the ALLOBS option (or both the ALLVAR and TRANSPOSE
options), in which case the default is 32000.

per-variable
is the maximum number of differences to print for each variable within a BY
group. The default value is 50 unless you use the ALLOBS option (or both the
ALLVAR and TRANSPOSE options), in which case the default is 1000.
The MAXPRINT= option prevents the output from becoming extremely large when
data sets differ greatly.

METHOD=ABSOLUTE | EXACT | PERCENT | RELATIVE<($)>
specifies the method for judging the equality of numeric values. The constant 6
(delta) is a number between 0 and 1 that specifies a value to add to the denominator
when calculating the equality measure. By default, ¢ is 0.

218 PROC COMPARE Statement A Chapter 9

Unless you use the CRITERION= option, the default method is EXACT. If you use
CRITERION=, the default method is RELATIVE(¢), where ¢ (phi) is a small number
that depends on the numerical precision of the computer on which SAS is running
and on the value of CRITERION=.

See also: “The Equality Criterion” on page 226

NODATE

suppresses the display in the data set summary report of the creation dates and the
last modified dates of the base and comparison data sets.

NOMISSBASE
judges a missing value in the base data set equal to any value. (By default, a missing
value is equal only to a missing value of the same kind, that is .=., .*=.A, .A=.A,

A”=B, and so on.)

You can use this option to determine the changes that would be made to the
observations in the comparison data set if it were used as the master data set and
the base data set were used as the transaction data set in a DATA step UPDATE
statement. For information on the UPDATE statement, see the chapter on SAS
language statements in SAS Language Reference: Dictionary.

NOMISSCOMP
judges a missing value in the comparison data set equal to any value. (By default, a
missing value is equal only to a missing value of the same kind, that is .=., .*=.A,

A=A, .A*=B, and so on.)

You can use this option to determine the changes that would be made to the
observations in the base data set if it were used as the master data set and the
comparison data set were used as the transaction data set in a DATA step UPDATE
statement. For information on the UPDATE statement, see the chapter on SAS
language statements in SAS Language Reference: Dictionary.

NOMISSING
judges missing values in both the base and comparison data sets equal to any value.

By default, a missing value is only equal to a missing value of the same kind, that is
=, . "=A A=A, .A*=B, and so on.

Alias: NOMISS
Interaction: Using NOMISSING is equivalent to using both NOMISSBASE and
NOMISSCOMP.
NOPRINT
suppresses all printed output.

Tip: You may want to use this option when you are creating one or more output
data sets.

Featured in: Example 6 on page 251

NOSUMMARY

suppresses the data set, variable, observation, and values comparison summary
reports.

Tips: NOSUMMARY produces no output if there are no differences in the matching
values.

Featured in: Example 2 on page 243
NOTE

displays notes in the SAS log describing the results of the comparison, whether or
not differences were found.

NOVALUES
suppresses the report of the value comparison results.

The COMPARE Procedure /A PROC COMPARE Statement 219

Featured in: “Overview: COMPARE Procedure” on page 209

OUT=SAS-data-set
names the output data set. If SAS-data-set does not exist, PROC COMPARE creates
it. SAS-data-set contains the differences between matching variables.
See also: “Output Data Set (OUT=)” on page 236

Featured in: Example 6 on page 251

OUTALL
writes an observation to the output data set for each observation in the base data set
and for each observation in the comparison data set. The option also writes
observations to the output data set containing the differences and percent differences
between the values in matching observations.
Tip: Using OUTALL is equivalent to using the following four options: OUTBASE,
OUTCOMP, OUTDIF, and OUTPERCENT.

See also: “Output Data Set (OUT=)” on page 236

OUTBASE
writes an observation to the output data set for each observation in the base data set,
creating observations in which _TYPE_=BASE.

See also: “Output Data Set (OUT=)” on page 236
Featured in: Example 6 on page 251

OUTCOMP
writes an observation to the output data set for each observation in the comparison
data set, creating observations in which _TYPE_=COMP.

See also: “Output Data Set (OUT=)” on page 236
Featured in: Example 6 on page 251

OUTDIF
writes an observation to the output data set for each pair of matching observations.
The values in the observation include values for the differences between the values
in the pair of observations. The value of _"TYPE_ in each observation is DIF.

Default: The OUTDIF option is the default unless you specify the OUTBASE,
OUTCOMP, or OUTPERCENT option. If you use any of these options, you must
explicitly specify the OUTDIF option to create _TYPE_=DIF observations in the
output data set.

See also: “Output Data Set (OUT=)” on page 236
Featured in: Example 6 on page 251

OUTNOEQUAL
suppresses the writing of an observation to the output data set when all values in
the observation are judged equal. In addition, in observations containing values for
some variables judged equal and others judged unequal, the OUTNOEQUAL option
uses the special missing value ".E" to represent differences and percent differences
for variables judged equal.

See also: “Output Data Set (OUT=)” on page 236
Featured in: Example 6 on page 251
OUTPERCENT
writes an observation to the output data set for each pair of matching observations.
The values in the observation include values for the percent differences between the

values in the pair of observations. The value of _TYPE_ in each observation is
PERCENT.

See also: “Output Data Set (OUT=)” on page 236

220 BY Statement A Chapter 9

OUTSTATS=SAS-data-set
writes summary statistics for all pairs of matching variables to the specified
SAS-data-set.

Tip: If you want to print a table of statistics in the procedure output, use the
STATS, ALLSTATS, or PRINTALL option.

See also: “Output Statistics Data Set (OUTSTATS=)” on page 237 and “Table of
Summary Statistics” on page 233.

Featured in: Example 7 on page 253

PRINTALL
invokes the following options: ALLVARS, ALLOBS, ALLSTATS, LISTALL, and
WARNING.

Featured in: Example 1 on page 239

STATS
prints a table of summary statistics for all pairs of matching numeric variables that
are judged unequal.
See also: “Table of Summary Statistics” on page 233 for information on the
statistics produced.

TRANSPOSE
prints the reports of value differences by observation instead of by variable.

Interaction: If you also use the NOVALUES option, the TRANSPOSE option lists
only the names of the variables whose values compare as unequal for each
observation, not the values and differences.

See also: “Comparison Results for Observations (Using the TRANSPOSE Option)”
on page 235.
WARNING
displays a warning message in the SAS log when differences are found.
Interaction: The ERROR option overrides the WARNING option.

BY Statement

Produces a separate comparison for each BY group.

Main discussion: “BY” on page 54

BY <DESCENDING> variable-1
<...<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must be sorted by all the variables that
you specify. Variables in a BY statement are called BY variables.

The COMPARE Procedure A ID Statement 221

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED

specifies that observations are not necessarily sorted in alphabetic or numeric order.

The observations are grouped in another way, for example, chronological order.

The requirement for ordering observations according to the values of BY variables is
suspended for BY-group processing when you use the NOTSORTED option. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

BY Processing with PROC COMPARE

To use a BY statement with PROC COMPARE, you must sort both the base and
comparison data sets by the BY variables. The nature of the comparison depends on
whether all BY variables are in the comparison data set and, if they are, whether their
attributes match those of the BY variables in the base data set. The following table
shows how PROC COMPARE behaves under different circumstances:

Condition Behavior of PROC COMPARE

All BY variables are in the comparison Compares corresponding BY groups
data set and all attributes match exactly

None of the BY variables are in the Compares each BY group in the base data set with
comparison data set the entire comparison data set

Some BY variables are not in the Writes an error message to the SAS log and
comparison data set terminates

Some BY variables have different types in Writes an error message to the SAS log and
the two data sets terminates

ID Statement

Lists variables to use to match observations.

See also: “A Comparison with an ID Variable” on page 225
Featured in: Example 5 on page 248

ID <DESCENDING> variable-1
<...<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

222

ID Statement A Chapter 9

variable
specifies the variable that the procedure uses to match observations. You can specify
more than one variable, but the data set must be sorted by the variable or variables
you specify. These variables are ID variables. ID variables also identify observations
on the printed reports and in the output data set.

Options

DESCENDING
specifies that the data set is sorted in descending order by the variable that
immediately follows the word DESCENDING in the ID statement.

If you use the DESCENDING option, you must sort the data sets. SAS does not
use an index to process an ID statement with the DESCENDING option. Further,
the use of DESCENDING for ID variables must correspond to the use of the
DESCENDING option in the BY statement in the PROC SORT step that was used to
sort the data sets.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data are grouped in another way, for example, chronological order.

See also: “Comparing Unsorted Data” on page 222

Requirements for ID Variables

o ID variables must be in the BASE= data set or PROC COMPARE stops processing.

o If an ID variable is not in the COMPARE= data set, PROC COMPARE prints a
warning to the SAS log and does not use that variable to match observations in
the comparison data set (but does write it to the OUT= data set).

o ID variables must be of the same type in both data sets.

0 You should sort both data sets by the common ID variables (within the BY
variables, if any) unless you specify the NOTSORTED option.

Comparing Unsorted Data

If you do not want to sort the data set by the ID variables, you can use the
NOTSORTED option. When you specify the NOTSORTED option, or if the ID
statement is omitted, PROC COMPARE matches the observations one-to-one. That is,
PROC COMPARE matches the first observation in the base data set with the first
observation in the comparison data set, the second with the second, and so on. If you
use NOTSORTED, and the ID values of corresponding observations are not the same,
PROC COMPARE prints an error message and stops processing.

If the data sets are not sorted by the common ID variables and you do not specify the
NOTSORTED option, PROC COMPARE prints a warning message and continues to
process the data sets as if you had specified NOTSORTED.

Avoiding Duplicate ID Values

The observations in each data set should be uniquely labeled by the values of the ID
variables. If PROC COMPARE finds two successive observations with the same ID
values in a data set, it

O prints the warning Duplicate Observations for the first occurrence for that data

set

The COMPARE Procedure /A WITH Statement 223

O prints the total number of duplicate observations found in the data set in the
observation summary report

O uses the first observation with the duplicate value for the comparison.

When the data sets are not sorted, PROC COMPARE detects only those duplicate
observations that occur in succession.

VAR Statement

Restricts the comparison of the values of variables to those named in the VAR statement.

Featured in: Example 2 on page 243, Example 3 on page 244, and Example 4 on page 246

VAR variable(s);

Required Arguments

variable(s)
one or more variables that appear in the BASE= and COMPARE= data sets or only
in the BASE= data set.

Details

0 If you do not use the VAR statement, PROC COMPARE compares the values of all
matching variables except those appearing in BY and ID statements.

o If a variable in the VAR statement does not exist in the COMPARE= data set,
PROC COMPARE writes a warning to the SAS log and ignores the variable.

o If a variable in the VAR statement does not exist in the BASE= data set, PROC
COMPARE stops processing and gives an error message.

0 The VAR statement restricts only the comparison of values of matching variables.
PROC COMPARE still reports on the total number of matching variables and
compares their attributes. However, it produces neither error nor warning
messages about these variables.

WITH Statement

Compares variables in the base data set with variables that have different names in the
comparison data set, and compares different variables that are in the same data set.

Restriction: You must use the VAR statement when you use the WITH statement.
Featured in: Example 2 on page 243, Example 3 on page 244, and Example 4 on page 246

WITH variable(s);

224

Concepts: COMPARE Procedure A Chapter 9

Required Arguments

variable(s)
one or more variables to compare with variables in the VAR statement.

Comparing Selected Variables

If you want to compare variables in the base data set with variables with different
names in the comparison data set, specify the names of the variables in the base data
set in the VAR statement and the names of the matching variables in the WITH
statement. The first variable that you list in the WITH statement corresponds to the
first variable that you list in the VAR statement, the second with the second, and so on.
If the WITH statement list is shorter than the VAR statement list, PROC COMPARE
assumes that the extra variables in the VAR statement have the same names in the
comparison data set as they do in the base data set. If the WITH statement list is
longer than the VAR statement list, PROC COMPARE ignores the extra variables.

A variable name can appear any number of times in the VAR statement or the WITH
statement. By selecting VAR and WITH statement lists, you can compare the variables
in any permutation.

If you omit the COMPARE= option in the PROC COMPARE statement, you must use
the WITH statement. In this case, PROC COMPARE compares the values of variables
with different names in the BASE= data set.

Concepts: COMPARE Procedure

PROC COMPARE first compares the following:
O data set attributes (set by the data set options TYPE= and LABEL=).

o variables. PROC COMPARE checks each variable in one data set to determine
whether it matches a variable in the other data set.

O attributes (type, length, labels, formats, and informats) of matching variables.

O observations. PROC COMPARE checks each observation in one data set to
determine whether it matches an observation in the other data set. PROC
COMPARE either matches observations by their position in the data sets or by the
values of the ID variable.

After making these comparisons, PROC COMPARE compares the values in the parts
of the data sets that match. PROC COMPARE either compares the data by the position
of observations or by the values of an ID variable.

A Comparison hy Position of Observations

Figure 9.1 on page 225 shows two data sets. The data inside the shaded boxes show
the part of the data sets that the procedure compares. Assume that variables with the
same names have the same type.

Figure 9.1

IDNUM

2998
9866
2118
3847
2342

IDNUM

2998
9866
2118
3847
2342
7565
1755

When you use PROC COMPARE to compare data set TWO with data set ONE, the

The COMPARE Procedure /A A Comparison with an ID Variable

Comparison by the Positions of Observations

Data Set ONE
NAME GENDER
Bagwell f
Metcalf m
Gray f
Baglione f
Hall m

Data Set TWO
NAME GENDER
Bagwell f
Metcalf m
Gray f
Baglione f
Hall m
Gold f
Syme f

GPA

3.722
3.342
3.177
4.000
3.574

GPA

3.722
3.342
3.177
4.000
3.574
3.609
3.883

W N B R W NN

225

procedure compares the first observation in data set ONE with the first observation in

data set TWO, and it compares the second observation in the first data set with the
second observation in the second data set, and so on. In each observation that it
compares, the procedure compares the values of the IDNUM, NAME, GENDER, and

GPA.

The procedure does not report on the values of the last two observations or the

variable YEAR in data set TWO because there is nothing to compare them with in data

set ONE.

A Comparison with an ID Variable

In a simple comparison, PROC COMPARE uses the observation number to determine
which observations to compare. When you use an ID variable, PROC COMPARE uses
the values of the ID variable to determine which observations to compare. ID variables

should have unique values and must have the same type.

For the two data sets shown in Figure 9.2 on page 226, assume that IDNUM is an ID
variable and that IDNUM has the same type in both data sets. The procedure compares

the observations that have the same value for IDNUM. The data inside the shaded
boxes show the part of the data sets that the procedure compares.

226

The Equality Criterion A Chapter 9

Figure 9.2 Comparison by the Value of the ID Variable

Data Set ONE
IDNUM NAME GENDER GPA
2998 Bagwell f 3.722
9866 Metcalf m 3.342
2118 Gray f 3.177
3847 Baglione f 4.000
2342 Hall m 3.574
Data Set TWO
IDNUM NAME GENDER GPA YEAR
2998 Bagwell f 3.722 2
9866 Metcalf m 3.342 2
2118 Gray f 3.177 3
3847 Baglione f 4.000 4
2342 Hall m 3.574 4
7565 Gold f 3.609 2
1755 Syme f 3.883 3

The data sets contain three matching variables: NAME, GENDER, and GPA. They
also contain five matching observations: the observations with values of 2998, 9866,
2118, 3847, and 2342 for IDNUM.

Data Set TWO contains two observations IDNUM=7565 and IDNUM=1755) for
which data set ONE contains no matching observations. Similarly, no variable in data
set ONE matches the variable YEAR in data set TWO.

See Example 5 on page 248 for an example that uses an ID variable.

The Equality Criterion

The COMPARE procedure judges numeric values unequal if the magnitude of their
difference, as measured according to the METHOD= option, is greater than the value of
the CRITERION= option. PROC COMPARE provides four methods for applying
CRITERION=:

0 The EXACT method tests for exact equality.

0 The ABSOLUTE method compares the absolute difference to the value specified by
CRITERION-=.

0 The RELATIVE method compares the absolute relative difference to the value
specified by CRITERION=.

0 The PERCENT method compares the absolute percent difference to the value
specified by CRITERION=.

For a numeric variable compared, let x be its value in the base data set and let y be
its value in the comparison data set. If both x and y are nonmissing, the values are
judged unequal according to the value of METHOD= and the value of CRITERION= (v)
as follows:

o If METHOD=EXACT, the values are unequal if y does not equal x.
o If METHOD=ABSOLUTE, the values are unequal if

The COMPARE Procedure A The Equality Criterion 221

ABS(y —z) >~

o If METHOD=RELATIVE, the values are unequal if

ABS (y —) / ((ABS () + ABS (y)) /2 + 6) > 4

The values are equal if x=y=0.
o If METHOD=PERCENT, the values are unequal if

100 (ABS(y — 2) JABS(2)) >~ for #0

or

y#0 for x=0 .

If x or y is missing, then the comparison depends on the NOMISSING option. If
NOMISSING is in effect, a missing value will always compare equal to anything.
Otherwise, a missing value is judged equal only to a missing value of the same type,
(that is, .=., .*=.A, .A=.A, A*=B, and so on).

If the value specified for CRITERION= is negative, the actual criterion used is made
equal to the absolute value of + times a very small number ¢ (epsilon) that depends on
the numerical precision of the computer. This number ¢ is defined as the smallest
positive floating-point value such that, using machine arithmetic, 1-e<1<1+¢. Round-off
or truncation error in floating-point computations is typically a few orders of magnitude
larger than ¢. This means that CRITERION=-1000 often provides a reasonable test of
the equality of computed results at the machine level of precision.

The value 6 added to the denominator in the RELATIVE method is specified in
parentheses after the method name: METHOD=RELATIVE(é). If not specified in
METHOD-=, ¢ defaults to 0. The value of § can be used to control the behavior of the
error measure when both x and y are very close to 0. If ¢ is not given and x and y are
very close to 0, any error produces a large relative error (in the limit, 2).

Specifying a value for § avoids this extreme sensitivity of the RELATIVE method for
small values. If you specify METHOD=RELATIVE($) CRITERION=+ when both x and y
are much smaller than ¢ in absolute value, the comparison is as if you had specified
METHOD=ABSOLUTE CRITERION=¢v. However, when either x or y is much larger
than ¢ in absolute value, the comparison is like METHOD=RELATIVE CRITERION=.
For moderate values of x and y, METHOD=RELATIVE(5) CRITERION=~ is, in effect, a
compromise between METHOD=ABSOLUTE CRITERION=¢ ~ and
METHOD=RELATIVE CRITERION=+.

For character variables, if one value has a greater length than the other, the shorter
value is padded with blanks for the comparison. Nonblank character values are judged
equal only if they agree at each character. If NOMISSING is in effect, blank character
values compare equal to anything.

Definition of Difference and Percent Difference

In the reports of value comparisons and in the OUT= data set, PROC COMPARE
displays difference and percent difference values for the numbers compared. These
quantities are defined using the value from the base data set as the reference value.

228 How PROC COMPARE Handles Variable Formats A Chapter 9

For a numeric variable compared, let x be its value in the base data set and let y be its
value in the comparison data set. If x and y are both nonmissing, the difference and
percent difference are defined as follows:

Difference =y — x
Percent Difference = (y —) /x % 100 for « #0
Percent Difference = missing for x = 0.

How PROC COMPARE Handles Variable Formats

PROC COMPARE compares unformatted values. If you have two matching variables
that are formatted differently, PROC COMPARE lists the formats of the variables.

Results: COMPARE Procedure

PROC COMPARE reports the results of its comparisons in the following ways:
o0 the SAS log

O return codes stored in the automatic macro SYSINFO

O procedure output
O

output data sets.

SAS Log

When you use the WARNING, PRINTALL, or ERROR option, PROC COMPARE
writes a description of the differences to the SAS log.

Macro Return Codes (SYSINFO)

PROC COMPARE stores a return code in the automatic macro variable SYSINFO.
The value of the return code provides information about the result of the comparison.
By checking the value of SYSINFO after PROC COMPARE has run and before any
other step begins, SAS macros can use the results of a PROC COMPARE step to
determine what action to take or what parts of a SAS program to execute.

Table 9.1 on page 228 is a key for interpreting the SYSINFO return code from PROC
COMPARE. For each of the conditions listed, the associated value is added to the
return code if the condition is true. Thus, the SYSINFO return code is the sum of the
codes listed in Table 9.1 on page 228 for the applicable conditions:

Table 9.1 Macro Return Codes

Bit Condition Code Hex Description

1 DSLABEL 1 0001X Data set labels differ

2 DSTYPE 2 0002X Data set types differ

3 INFORMAT 4 0004X Variable has different informat
4 FORMAT 8 0008X Variable has different format

5 LENGTH 16 0010X Variable has different length

The COMPARE Procedure /A Macro Return Codes (SYSINFO) 229

Bit Condition Code Hex Description

6 LABEL 32 0020X Variable has different label

7 BASEOBS 64 0040X Base data set has observation not in
comparison

8 COMPOBS 128 0080X Comparison data set has observation not
in base

9 BASEBY 256 0100X Base data set has BY group not in
comparison

10 COMPBY 512 0200X Comparison data set has BY group not in
base

11 BASEVAR 1024 0400X Base data set has variable not in
comparison

12 COMPVAR 2048 0800X Comparison data set has variable not in
base

13 VALUE 4096 1000X A value comparison was unequal

14 TYPE 8192 2000X Conflicting variable types

15 BYVAR 16384 4000X BY variables do not match

16 ERROR 32768 8000X Fatal error: comparison not done

These codes are ordered and scaled to allow a simple check of the degree to which the
data sets differ. For example, if you want to check that two data sets contain the same
variables, observations, and values, but you do not care about differences in labels,
formats, and so forth, use the following statements:

proc compare base=SAS-data-set
compare=SAS-data-set;

run;

$if &sysinfo >= 64 %then
%do;
handle error;
%end;

You can examine individual bits in the SYSINFO value by using DATA step
bit-testing features to check for specific conditions. For example, to check for the
presence of observations in the base data set that are not in the comparison data set,
use the following statements:

proc compare base=SAS-data-set
compare=SAS-data-set;

run;

%let rc=&sysinfo;
data _null ;
if &rc='1l...... b then
put ’‘Observations in Base but not
in Comparison Data Set’;

run;

230

Procedure Output

A Chapter 9

PROC COMPARE must run before you check SYSINFO and you must obtain the
SYSINFO value before another SAS step starts because every SAS step resets

SYSINFO.

Procedure Output

The following sections show and describe the default output of the two data sets
shown in “Overview: COMPARE Procedure” on page 209. Because PROC COMPARE

produces lengthy output, the output is presented in seven pieces.

Data Set Summary

This report lists the attributes of the data sets being compared. These attributes

include the following:
O the data set names
the data set types, if any
the data set labels, if any
the dates created and last modified
the number of variables in each data set

O o oo o

the number of observations in each data set.

Output 9.2 on page 230 shows the Data Set Summary.

Output 9.2 Partial Output

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO
(Method=EXACT)

Data Set Summary

Variables Summary

This report compares the variables in the two data sets. The first part of the report

lists the following:
O the number of variables the data sets have in common

0 the number of variables in the base data set that are not in the comparison data

set and vice versa
0 the number of variables in both data sets that have different types

Dataset Created Modified NVar NObs Label
PROCLIB.ONE 11SEP97:15:11:07 11SEP97:15:11:09 5 4 First Data Set
PROCLIB.TWO 11SEP97:15:11:10 11SEP97:15:11:10 6 5 Second Data Set

O

the number of variables that differ on other attributes (length, label, format, or
informat)

the number of BY, ID, VAR, and WITH variables specified for the comparison.

The second part of the report lists matching variables with different attributes and
shows how the attributes differ. (The COMPARE procedure omits variable labels if the
line size is too small for them.)

The COMPARE Procedure /A Procedure Qutput

Output 9.3 on page 231 shows the Variables Summary.

Output 9.3 Partial Output

231

Variables Summary

Number of Variables in Common: 5.

Number of Variables in PROCLIB.TWO but not in PROCLIB.ONE: 1.
Number of Variables with Conflicting Types: 1.

Number of Variables with Differing Attributes: 3.

Listing of Common Variables with Conflicting Types

Variable Dataset Type Length
student PROCLIB.ONE Num 8
PROCLIB.TWO Char 8

Listing of Common Variables with Differing Attributes

Variable Dataset Type Length Format Label
year PROCLIB.ONE Char 8 Year of Birth
PROCLIB.TWO Char 8
state PROCLIB.ONE Char 8
PROCLIB.TWO Char 8 Home State
grl PROCLIB.ONE Num 8 4.1
PROCLIB.TWO Num 8 5.2

Observation Summary

This report provides information about observations in the base and comparison data
sets. First of all, the report identifies the first and last observation in each data set, the
first and last matching observations, and the first and last differing observations. Then,

the report lists the following:
O the number of observations that the data sets have in common

O the number of observations in the base data set that are not in the comparison
data set and vice versa

the total number of observations in each data set

the number of matching observations for which PROC COMPARE judged some
variables unequal

0 the number of matching observations for which PROC COMPARE judged all
variables equal.

Output 9.4 on page 231 shows the Observation Summary.

232

Procedure Output

A Chapter 9

Output 9.4 Partial Output

Observation Summary

Observation Base Compare
First Obs 1 1
First Unequal 1 1
Last Unequal 4 4
Last Match 4 4
Last Obs 5

Number of Observations in Common: 4.

Number of Observations in PROCLIB.TWO but not in PROCLIB.ONE: 1.
Total Number of Observations Read from PROCLIB.ONE: 4.

Total Number of Observations Read from PROCLIB.TWO: 5.

Number of Observations with Some Compared Variables Unequal: 4.
Number of Observations with All Compared Variables Equal: 0.

Values Comparison Summary
This report first lists the following:

O

O
O
O
O

the number of variables compared with all observations equal

the number of variables compared with some observations unequal

the number of variables with differences involving missing values, if any
the total number of values judged unequal

the maximum difference measure between unequal values for all pairs of matching
variables (for differences not involving missing values).

In addition, for the variables for which some matching observations have unequal
values, the report lists

O

O
O
O

the name of the variable

other variable attributes

the number of times PROC COMPARE judged the variable unequal

the maximum difference measure found between values (for differences not
involving missing values)

the number of differences caused by comparison with missing values, if any.

Output 9.5 on page 232 shows the Values Comparison Summary.

Output 9.5 Partial Output

Values Comparison Summary

Number of Variables Compared with All Observations Equal: 1.
Number of Variables Compared with Some Observations Unequal: 3.
Total Number of Values which Compare Unequal: 6.

Maximum Difference: 20.

Variables with Unequal Values

Variable Type Len Compare Label Ndif MaxDif
state CHAR 8 Home State 2

grl NUM 8 2 1.000
gr2 NUM 8 2 20.000

The COMPARE Procedure /A Procedure Qutput 233

Value Comparison Results

This report consists of a table for each pair of matching variables judged unequal at
one or more observations. When comparing character values, PROC COMPARE
displays only the first 20 characters. When you use the TRANSPOSE option, it displays
only the first 12 characters. Each table shows

O

O o o g

the number of the observation or, if you use the ID statement, the values of the ID
variables

the value of the variable in the base data set
the value of the variable in the comparison data set
the difference between these two values (numeric variables only)

the percent difference between these two values (numeric variables only).

Output 9.6 on page 233 shows the Value Comparison Results for Variables.

Output 9.6 Partial Output

Value Comparison Results for Variables
|| Home State
|| Base value Compare Value
Obs || state state
[
[
2 || wmp MA
4 || ma MD
|l Base Compare
Obs || grl grl Diff. % Diff
[
[
1]| 85.0 84.00 -1.0000 -1.1765
3] 78.0 79.00 1.0000 1.2821
|| Base Compare
Obs || gr2 gr2 Diff. % Diff
[
[
3] 72.0000 73.0000 1.0000 1.3889
4 || 94.0000 74.0000 -20.0000 -21.2766

You can suppress the value comparison results with the NOVALUES option. If you
use both the NOVALUES and TRANSPOSE options, PROC COMPARE lists for each
observation the names of the variables with values judged unequal but does not display
the values and differences.

Table of Summary Statistics

If you use the STATS, ALLSTATS, or PRINTALL options, the Value Comparison
Results for Variables section contains summary statistics for the numeric variables
being compared. The STATS option generates these statistics for only the numeric

234

Procedure OQutput A Chapter 9

variables whose values are judged unequal. The ALLSTATS and PRINTALL options
generate these statistics for all numeric variables, even if all values are judged equal.

Note: In all cases PROC COMPARE calculates the summary statistics based on all
matching observations that do not contain missing values, not just on those containing
unequal values. A

Output 9.7 on page 234 shows the following summary statistics for base data set
values, comparison data set values, differences, and percent differences:

N

the number of nonmissing values

MEAN
the mean, or average, of the values

STD
the standard deviation

MAX
the maximum value

MIN
the minimum value

STDERR
the standard error of the mean

T
the T ratio MEAN/STDERR)

PROB> | T |
the probability of a greater absolute T value if the true population mean is 0.

NDIF
the number of matching observations judged unequal, and the percent of the
matching observations that were judged unequal.

DIFMEANS
the difference between the mean of the base values and the mean of the
comparison values. This line contains three numbers. The first is the mean
expressed as a percentage of the base values mean. The second is the mean
expressed as a percentage of the comparison values mean. The third is the
difference in the two means (the comparison mean minus the base mean).

R
the correlation of the base and comparison values for matching observations that
are nonmissing in both data sets.

RSQ
the square of the correlation of the base and comparison values for matching
observations that are nonmissing in both data sets.

Output 9.7 on page 234 is from the ALLSTATS option using the two data sets shown
in “Overview”:

Output 9.7 Partial Output

The COMPARE Procedure /A Procedure Qutput

235

Value Comparison Results for Variables

Base Compare
Obs grl grl Diff. % Diff
1 85.0 84.00 -1.0000 -1.1765
3 78.0 79.00 1.0000 1.2821

N 4 4 4 4
Mean 85.5000 85.5000 0 0.0264
Std 5.8023 5.4467 0.8165 1.0042
Max 92.0000 92.0000 1.0000 1.2821
Min 78.0000 79.0000 -1.0000 -1.1765

StdErr 2.9011 2.7234 0.4082 0.5021

t 29.4711 31.3951 0.0000 0.0526

Prob>|t| <.0001 <.0001 1.0000 0.9614
Ndif || 2 50.000%

DifMeans || 0.000% 0.000% 0

r, rsq || 0.991 0.983
Base Compare

Obs gr2 gr2 Diff. % Diff

3 72.0000 73.0000 1.0000 1.3889

4 || 94.0000 74.0000 -20.0000 -21.2766

[

N 4 4 4 4
Mean 86.2500 81.5000 -4.7500 -4.9719
std 9.9457 9.4692 10.1776 10.8895
Max 94.0000 92.0000 1.0000 1.3889
Min 72.0000 73.0000 -20.0000 -21.2766

StdErr 4.9728 4.7346 5.0888 5.4447
t 17.3442 17.2136 -0.9334 -0.9132
Prob>|t| 0.0004 0.0004 0.4195 0.4285
Ndif 2 50.000%
DifMeans -5.507% -5.828% -4.7500
r, rsq | 0.451 0.204

Note:

If you use a wide line size with PRINTALL, PROC COMPARE prints the

value comparison result for character variables next to the result for numeric variables.

In that case, PROC COMPARE calculates only NDIF for the character variables. A

Comparison Results for Observations (Using the TRANSPOSE Option)

The TRANSPOSE option prints the comparison results by observation instead of by
variable. The comparison results precede the observation summary report. By default,

the source of the values for each row of the table is indicated by the following label:

_OBS_l=number-1 _OBS_2=number-2

236

Output Data Set (OUT=) A Chapter 9

where number-1 is the number of the observation in the base data set for which the
value of the variable is shown, and number-2 is the number of the observation in the
comparison data set.

Output 9.8 on page 236 shows the differences in PROCLIB.ONE and PROCLIB.TWO
by observation instead of by variable.

Output 9.8 Partial Output

Comparison Results for Observations

_OBs_1=1 _O0Bs_2=1:
Variable Base Value Compare Diff. % Diff
grl 85.0 84.00 -1.000000 -1.176471

_OBS_1=2 _OBS_2=2:
Variable Base Value Compare

state MD MA

OBS_1=3 _OBS_2=3:

Variable Base Value Compare Diff. % Diff
grl 78.0 79.00 1.000000 1.282051
gr2 72.000000 73.000000 1.000000 1.388889

OBS_1=4 _OBS_2=4:

Variable Base Value Compare Diff. % Diff
gr2 94.000000 74.000000 -20.000000 -21.276596
state MA MD

If you use an ID statement, the identifying label has the following form:
ID-1=ID-value-1 ... ID-n=ID-value-n
where ID is the name of an ID variable and ID-value is the value of the ID variable.

Note: When you use the TRANSPOSE option, PROC COMPARE prints only the
first 12 characters of the value. A

Output Data Set (OUT=)

By default, the OUT= data set contains an observation for each pair of matching
observations. The OUT= data set contains the following variables from the data sets
you are comparing:

o all variables named in the BY statement

o all variables named in the ID statement

o all matching variables or, if you use the VAR statement, all variables listed in the
VAR statement.

In addition, the data set contains two variables created by PROC COMPARE to
identify the source of the values for the matching variables: "TYPE_ and _OBS_.

TYPE
is a character variable of length 8. Its value indicates the source of the values for
the matching (or VAR) variables in that observation. (For ID and BY variables,
which are not compared, the values are the values from the original data sets.)
TYPE has the label Type of Observation. The four possible values of this
variable are as follows:

BASE

The COMPARE Procedure /A Output Statistics Data Set (OUTSTATS=) 237

The values in this observation are from an observation in the base data set.
PROC COMPARE writes this type of observation to the OUT= data set when
you specify the OUTBASE option.

COMPARE
The values in this observation are from an observation in the comparison
data set. PROC COMPARE writes this type of observation to the OUT= data
set when you specify the OUTCOMP option.

DIF
The values in this observation are the differences between the values in the
base and comparison data sets. For character variables, PROC COMPARE
uses a period (.) to represent equal characters and an X to represent unequal
characters. PROC COMPARE writes this type of observation to the OUT=
data set by default. However, if you request any other type of observation
with the OUTBASE, OUTCOMP, or OUTPERCENT option, you must specify
the OUTDIF option to generate observations of this type in the OUT= data
set.

PERCENT
The values in this observation are the percent differences between the values
in the base and comparison data sets. For character variables the values in

observations of type PERCENT are the same as the values in observations of
type DIF.

OBS
is a numeric variable containing a number further identifying the source of the
OUT= observations.

For observations with _TYPE_ equal to BASE, _OBS_ is the number of the
observation in the base data set from which the values of the VAR variables were
copied. Similarly, for observations with _'TYPE_ equal to COMPARE, _OBS_ is the
number of the observation in the comparison data set from which the values of the
VAR variables were copied.

For observations with _TYPE_ equal to DIF or PERCENT, _OBS_ is a sequence
number that counts the matching observations in the BY group.

OBS has the label observation Number.

The COMPARE procedure takes variable names and attributes for the OUT= data
set from the base data set except for the lengths of ID and VAR variables, for which it
uses the longer length regardless of which data set that length is from. This behavior
has two important repercussions:

0 If you use the VAR and WITH statements, the names of the variables in the OUT=
data set come from the VAR statement. Thus, observations with _'TYPE_ equal to
BASE contain the values of the VAR variables, while observations with _TYPE_
equal to COMPARE contain the values of the WITH variables.

o If you include a variable more than once in the VAR statement in order to compare
it with more than one variable, PROC COMPARE can include only the first
comparison in the OUT= data set because each variable must have a unique name.
Other comparisons produce warning messages.

For an example of the OUT= option, see Example 6 on page 251.

Output Statistics Data Set (OUTSTATS=)

When you use the OUTSTATS= option, PROC COMPARE calculates the same
summary statistics as the ALLSTATS option for each pair of numeric variables
compared (see “Table of Summary Statistics” on page 233). The OUTSTATS= data set

238 Output Statistics Data Set (OUTSTATS=) A Chapter 9

contains an observation for each summary statistic for each pair of variables. The data
set also contains the BY variables used in the comparison and several variables created
by PROC COMPARE:

VAR
is a character variable containing the name of the variable from the base data set
for which the statistic in the observation was calculated.

WITH
is a character variable containing the name of the variable from the comparison
data set for which the statistic in the observation was calculated. The _WITH _
variable is not included in the OUTSTATS= data set unless you use the WITH
statement.

TYPE
is a character variable containing the name of the statistic contained in the
observation. Values of the _TYPE_ variable are N, MEAN, STD, MIN, MAX, STDERR, T,
PROBT, NDIF, DIFMEANS, and R, RSQ.

BASE
is a numeric variable containing the value of the statistic calculated from the
values of the variable named by _VAR_ in the observations in the base data set
with matching observations in the comparison data set.

COMP
is a numeric variable containing the value of the statistic calculated from the
values of the variable named by the _VAR_ variable (or by the _-WITH_ variable if
you use the WITH statement) in the observations in the comparison data set with
matching observations in the base data set.

DIF
is a numeric variable containing the value of the statistic calculated from the
differences of the values of the variable named by the _VAR_ variable in the base
data set and the matching variable (named by the _"VAR_ or _WITH_ variable) in
the comparison data set.

PCTDIF
is a numeric variable containing the value of the statistic calculated from the
percent differences of the values of the variable named by the _VAR_ variable in
the base data set and the matching variable (named by the _"VAR_ or _-WITH_
variable) in the comparison data set.

Note: For both types of output data sets, PROC COMPARE assigns one of the
following data set labels:

Comparison of base-SAS-data-set

with comparison-SAS-data-set

Comparison of variables in base-SAS-data-set
A

Labels are limited to 40 characters.
See Example 7 on page 253 for an example of an OUTSTATS= data set.

The COMPARE Procedure /A Output 239

Examples: COMPARE Procedure

Example 1: Producing a Complete Report of the Differences

Procedure features:
PROC COMPARE statement options

BASE=
PRINTALL
COMPARE=

Data sets:
PROCLIB.ONE, PROCLIB.TWO on page 210

This example shows the most complete report that PROC COMPARE produces as
procedure output.

Program

libname proclib ’'SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=40;

Create a complete report of the differences between two data sets. BASE= and
COMPARE-= specify the data sets to compare. PRINTALL prints a full report of the differences.

proc compare base=proclib.one compare=proclib.two printall;
title ’'Comparing Two Data Sets: Full Report’;

run;

Output

240

Output

A Chapter 9

A > in the output marks information that is in the full report but not in the default report. The
additional information includes a listing of variables found in one data set but not the other, a
listing of observations found in one data set but not the other, a listing of variables with all
equal values, and summary statistics. For an explanation of the statistics, see “Table of

Summary Statistics” on page 233.

Comparing Two Data Sets: Full Report
COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO
(Method=EXACT)

Data Set Summary

Dataset Created Modified NVar NObs Label

PROCLIB.ONE 11SEP97:16:19:59 11SEP97:16:20:01 5
PROCLIB.TWO 11SEP97:16:20:01 11SEP97:16:20:01 6

(SIS

Variables Summary

Number of Variables in Common: 5.

Number of Variables in PROCLIB.TWO but not in PROCLIB.ONE:

Number of Variables with Conflicting Types: 1.
Number of Variables with Differing Attributes: 3.

Listing of Variables in PROCLIB.TWO but not in PROCLIB.ONE

Variable Type Length

> major Char 8

Listing of Common Variables with Conflicting Types
Variable Dataset Type Length

student PROCLIB.ONE Num 8
PROCLIB.TWO Char 8

First Data Set
Second Data Set

1.

The COMPARE Procedure /A Output

24

Comparing Two Data Sets: Full Report 2
COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO
(Method=EXACT)

Listing of Common Variables with Differing Attributes

Variable Dataset Type Length Format Label
year PROCLIB.ONE Char 8 Year of Birth
PROCLIB.TWO Char 8
state PROCLIB.ONE Char 8
PROCLIB.TWO Char 8 Home State
grl PROCLIB.ONE Num 8 4.1
PROCLIB.TWO Num 8 5.2

Comparison Results for Observations

> Observation 5 in PROCLIB.TWO not found in PROCLIB.ONE.

Observation Summary

Observation Base Compare
First Obs 1 1
First Unequal 1 1
Last Unequal 4 4
Last Match 4 4
Last Obs . 5

Number of Observations in Common: 4.

Number of Observations in PROCLIB.TWO but not in PROCLIB.ONE: 1.
Total Number of Observations Read from PROCLIB.ONE: 4.

Total Number of Observations Read from PROCLIB.TWO: 5.

Number of Observations with Some Compared Variables Unequal: 4.
Number of Observations with All Compared Variables Equal: 0.

Comparing Two Data Sets: Full Report 3
COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO
(Method=EXACT)
Values Comparison Summary
Number of Variables Compared with All Observations Equal: 1.
Number of Variables Compared with Some Observations Unequal: 3.
Total Number of Values which Compare Unequal: 6.
Maximum Difference: 20.
Variables with All Equal Values
> Variable Type Len Label
year CHAR 8 Year of Birth
Variables with Unequal Values
Variable Type Len Compare Label Ndif MaxDif
state CHAR 8 Home State 2

grl NUM 2 1.000
gr2 NUM 8 2 20.000

ee}

242

Output

A

Chapter 9
Comparing Two Data Sets: Full Report
COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO
(Method=EXACT)
Value Comparison Results for Variables
Year of Birth
Base Value Compare Value
Obs year year
1 1970 1970
2 1971 1971
3 1969 1969
4 1970 1970
Home State
Base Value Compare Value
Obs state state
1 NC NC
2 MD MA
3 PA PA
4 MA MD
Comparing Two Data Sets: Full Report
COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO
(Method=EXACT)
Value Comparison Results for Variables
Base Compare
Obs grl grl Diff. % Diff
1 85.0 84.00 -1.0000 -1.1765
2 92.0 92.00 0 0
3 78.0 79.00 1.0000 1.2821
4 87.0 87.00 0 0
>
N 4 4 4 4
Mean 85.5000 85.5000 0 0.0264
Std 5.8023 5.4467 0.8165 1.0042
Max 92.0000 92.0000 1.0000 1.2821
Min 78.0000 79.0000 -1.0000 -1.1765
StdErr 2.9011 2.7234 0.4082 0.5021
t 29.4711 31.3951 0.0000 0.0526
Prob>|t| <.0001 <.0001 1.0000 0.9614
Ndif 2 50.000%
DifMeans 0.000% 0.000% 0
r, rsq 0.991 0.983

The COMPARE Procedure /A Program 243
Comparing Two Data Sets: Full Report 6
COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO
(Method=EXACT)
Value Comparison Results for Variables
Base Compare
Obs gr2 gr2 Diff. % Diff
1 87.0000 87.0000 0 0
2 92.0000 92.0000 0 0
3 72.0000 73.0000 1.0000 1.3889
4 94.0000 74.0000 -20.0000 -21.2766
>
N 4 4 4 4
Mean 86.2500 81.5000 -4.7500 -4.9719
std 9.9457 9.4692 10.1776 10.8895
Max 94.0000 92.0000 1.0000 1.3889
Min || 72.0000 73.0000 -20.0000 -21.2766
StdErr || 4.9728 4.7346 5.0888 5.4447
t 17.3442 17.2136 -0.9334 -0.9132
Prob>|t| 0.0004 0.0004 0.4195 0.4285
Ndif 2 50.000%
DifMeans -5.507% -5.828% -4.7500
r, rsq 0.451 0.204

Example 2: Comparing Variables in Different Data Sets

Procedure features:
PROC COMPARE statement option

NOSUMMARY
VAR statement
WITH statement

Data sets:
PROCLIB.ONE, PROCLIB.TWO on page 210.

This example compares a variable from the base data set with a variable in the

comparison data set. All summary reports are suppressed.

Program

libname proclib ’'SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=40;

244 Output A Chapter 9

Suppress all summary reports of the differences between two data sets. BASE=
specifies the base data set and COMPARE-= specifies the comparison data set. NOSUMMARY
suppresses all summary reports.

proc compare base=proclib.one compare=proclib.two nosummary;

Specify one variable from the base data set to compare with one variable from the
comparison data set. The VAR and WITH statements specify the variables to compare. This
example compares GR1 from the base data set with GR2 from the comparison data set.

var grl;
with gr2;
title ’'Comparison of Variables in Different Data Sets’;

run;

Output

Comparison of Variables in Different Data Sets 1
COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO
(Method=EXACT)
NOTE: Data set PROCLIB.TWO contains 1 observations not in PROCLIB.ONE.

NOTE: Values of the following 1 variables compare unequal: grl”®=gr2

Value Comparison Results for Variables

|| Base Compare
Obs || grl gr2 Diff. % Diff
[l
[l
1]| 85.0 87.0000 2.0000 2.3529
3] 78.0 73.0000 -5.0000 -6.4103
4 || 87.0 74.0000 -13.0000 -14.9425

Example 3: Comparing a Variable Multiple Times

Procedure features:
VAR statement

WITH statement

Data sets:
PROCLIB.ONE, PROCLIB.TWO on page 210.

This example compares one variable from the base data set with two variables in the
comparison data set.

The COMPARE Procedure /A Qutput 245

Program
libname proclib ’'SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=40;

Suppress all summary reports of the differences between two data sets. BASE=
specifies the base data set and COMPARE-= specifies the comparison data set. NOSUMMARY
suppresses all summary reports.

proc compare base=proclib.one compare=proclib.two nosummary;

Specify one variable from the base data set to compare with two variables from the
comparison data set. The VAR and WITH statements specify the variables to compare. This
example compares GR1 from the base data set with GR1 and GR2 from the comparison data set.

var grl grl;
with grl gr2;
title ’'Comparison of One Variable with Two Variables’;

run;

Output

246 Example 4: Comparing Variables That Are in the Same Data Set A Chapter 9

The Value Comparison Results section shows the result of the comparison.

Comparison of One Variable with Two Variables 1
COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO
(Method=EXACT)
NOTE: Data set PROCLIB.TWO contains 1 observations not in PROCLIB.ONE.

NOTE: Values of the following 2 variables compare unequal: grl”®=grl grl”=gr2

Value Comparison Results for Variables

|| Base Compare
Obs || grl grl Diff. % Diff
[
[
1] 85.0 84.00 -1.0000 -1.1765
3] 78.0 79.00 1.0000 1.2821
|| Base Compare
Obs || grl gr2 Diff. $ Diff
[
[
1] 85.0 87.0000 2.0000 2.3529
3] 78.0 73.0000 -5.0000 -6.4103
4 || 87.0 74.0000 -13.0000 -14.9425

Example 4: Comparing Variables That Are in the Same Data Set

Procedure features:
PROC COMPARE statement options

ALLSTATS
BRIEFSUMMARY

VAR statement
WITH statement

Data set:
PROCLIB.ONE on page 210.

This example shows that PROC COMPARE can compare two variables that are in
the same data set.

Program

libname proclib ‘SAS-data-library’;

The COMPARE Procedure /A Qutput 247

options nodate pageno=1 linesize=80 pagesize=40;

Create a short summary report of the differences within one data set. ALLSTATS prints
summary statistics. BRIEFSUMMARY prints only a short comparison summary.

proc compare base=proclib.one allstats briefsummary;

Specify two variables from the base data set to compare. The VAR and WITH statements
specify the variables in the base data set to compare. This example compares GR1 with GR2.
Because there is no comparison data set, the variables GR1 and GR2 must be in the base data
set.

var grl;
with gr2;
title ’'Comparison of Variables in the Same Data Set’;

run;

Output

Comparison of Variables in the Same Data Set 1
COMPARE Procedure
Comparisons of variables in PROCLIB.ONE
(Method=EXACT)

NOTE: Values of the following 1 variables compare unequal: grl”®=gr2

Value Comparison Results for Variables

Base Compare
Obs grl gr2 Diff. % Diff
1 85.0 87.0000 2.0000 2.3529
3 78.0 72.0000 -6.0000 -7.6923
4 87.0 94.0000 7.0000 8.0460
N 4 4 4 4
Mean 85.5000 86.2500 0.7500 0.6767
Std 5.8023 9.9457 5.3774 6.5221
Max 92.0000 94.0000 7.0000 8.0460
Min 78.0000 72.0000 -6.0000 -7.6923
StdErr 2.9011 4.9728 2.6887 3.2611
t 29.4711 17.3442 0.2789 0.2075
Prob>|t| <.0001 0.0004 0.7984 0.8489
Ndif 3 75.000%
DifMeans 0.877% 0.870% 0.7500
r, rsq 0.898 0.807

248 Example 5: Comparing Observations with an ID Variabhle A Chapter 9

Example 5: Comparing Observations with an ID Variable

Procedure features:
ID statement

In this example, PROC COMPARE compares only the observations that have
matching values for the ID variable.

Program
libname proclib ’'SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=40;

Create the PROCLIB.EMP95 and PROCLIB.EMP96 data sets. PROCLIB.EMP95 and
PROCLIB.EMP96 contain employee data. IDNUM works well as an ID variable because it has
unique values. A DATA step on page 1643 creates PROCLIB.EMP95. A DATA step on page 1644
creates PROCLIB.EMP96.

data proclib.emp95;
input #1 idnum $4. @6 name $15.
#2 address $42.
#3 salary 6.;
datalines;
2388 James Schmidt
100 Apt. C Blount St. SW Raleigh NC 27693
92100
2457 Fred Williams
99 West Lane Garner NC 27509
33190
. more data lines...
3888 Kim Siu
5662 Magnolia Blvd Southeast Cary NC 27513
77558

r

data proclib.emp96;
input #1 idnum $4. @6 name $15.
#2 address $42.
#3 salary 6.;
datalines;
2388 James Schmidt
100 Apt. C Blount St. SW Raleigh NC 27693
92100
2457 Fred Williams
99 West Lane Garner NC 27509
33190
...more data lines...

The COMPARE Procedure /A Qutput 249

6544 Roger Monday

3004 Crepe Myrtle Court Raleigh NC 27604
47007

r

Sort the data sets by the ID variable. Both data sets must be sorted by the variable that will

be used as the ID variable in the PROC COMPARE step. OUT= specifies the location of the
sorted data.

proc sort data=proclib.emp95 out=emp95 byidnum;

by idnum;

run;

proc sort data=proclib.emp96 out=emp96 byidnum;
by idnum;

run;

Create a summary report that compares observations with matching values for the ID
variable. The ID statement specifies IDNUM as the ID variable.

proc compare base=emp95_ byidnum compare=emp96_ byidnum;

id idnum;

title ’'Comparing Observations that Have Matching IDNUMs';
run;

Output

250 Output A Chapter 9

PROC COMPARE identifies specific observations by the value of IDNUM. In the

Value Comparison Results for Variables section, PROC COMPARE prints the
nonmatching addresses and nonmatching salaries. For salaries, PROC COMPARE computes the
numerical difference and the percent difference. Because ADDRESS is a character variable,
PROC COMPARE displays only the first 20 characters. For addresses where the observation
has an IDNUM of 0987, 2776, or 3888, the differences occur after the 20th character and the
differences do not appear in the output. The plus sign in the output indicates that the full value
is not shown. To see the entire value, create an output data set. See Example 6 on page 251.

Comparing Observations that Have Matching IDNUMs 1
COMPARE Procedure
Comparison of WORK.EMP95_ BYIDNUM with WORK.EMP96_BYIDNUM
(Method=EXACT)

Data Set Summary

Dataset Created Modified NVar NObs
WORK.EMP95_BYIDNUM 13MAY98:16:03:36 13MAY98:16:03:36 4 10
WORK.EMP96_BYIDNUM 13MAY98:16:03:36 13MAY98:16:03:36 4 12

Variables Summary

Number of Variables in Common: 4.
Number of ID Variables: 1.

Observation Summary

Observation Base Compare ID

First Obs 1 1 idnum=0987
First Unequal 1 1 idnum=0987
Last Unequal 10 12 idnum=9857
Last Obs 10 12 idnum=9857

Number of Observations in Common: 10.

Number of Observations in WORK.EMP96_ BYIDNUM but not in WORK.EMP95 BYIDNUM: 2.
Total Number of Observations Read from WORK.EMP95 BYIDNUM: 10.

Total Number of Observations Read from WORK.EMP96 BYIDNUM: 12.

Number of Observations with Some Compared Variables Unequal: 5.
Number of Observations with All Compared Variables Equal: 5.
Comparing Observations that Have Matching IDNUMs 2

COMPARE Procedure
Comparison of WORK.EMP95_BYIDNUM with WORK.EMP96_BYIDNUM
(Method=EXACT)

Values Comparison Summary

Number of Variables Compared with All Observations Equal: 1.
Number of Variables Compared with Some Observations Unequal: 2.
Total Number of Values which Compare Unequal: 8.

Maximum Difference: 2400.

The COMPARE Procedure / Example 6: Comparing Values of Observations Using an Output Data Set (OUT=)

251

Variables with Unequal Values
Variable Type Len Ndif MaxDif

address CHAR 42 4
salary NUM 8 4 2400

Value Comparison Results for Variables

|| Base value Compare Value
idnum || address address
|| + +
[l
0987 || 2344 Persimmons Bran 2344 Persimmons Bran
2776 || 12988 Wellington Far 12988 Wellington Far
3888 || 5662 Magnolia Blvd S 5662 Magnolia Blvd S
9857 || 1000 Taft Ave. Morri 100 Taft Ave. Morris
Comparing Observations that Have Matching IDNUMs 3

COMPARE Procedure
Comparison of WORK.EMP95_BYIDNUM with WORK.EMP96_BYIDNUM
(Method=EXACT)

Value Comparison Results for Variables

Base Compare
idnum salary salary Diff. % Diff
I
0987 | 44010 45110 1100 2.4994
3286 87734 89834 2100 2.3936
3888 77558 79958 2400 3.0945
9857 38756 40456 1700 4.3864

Example 6: Comparing Values of Observations Using an Output Data Set

(OUT=)

Procedure features:
PROC COMPARE statement options:

NOPRINT
OUT=
OUTBASE
OUTBASE
OUTCOMP
OUTDIF
OUTNOEQUAL

Other features: PRINT procedure
Data sets: PROCLIB.EMP95 and PROCLIB.EMP96 on page 248

This example creates and prints an output data set that shows the differences
between matching observations.

252 Program A Chapter 9

In Example 5 on page 248, the output does not show the differences past the 20th
character. The output data set in this example shows the full values. Further, it shows
the observations that occur in only one of the data sets.

Program

libname proclib ‘SAS-data-library’;

options nodate pageno=1 linesize=120 pagesize=40;

Sort the data sets by the ID variable. Both data sets must be sorted by the variable that will
be used as the ID variable in the PROC COMPARE step. OUT= specifies the location of the
sorted data.

proc sort data=proclib.emp95 out=emp95 byidnum;

by idnum;

run;

proc sort data=proclib.emp96 out=emp96 byidnum;
by idnum;

run;

Specify the data sets to compare. BASE= and COMPARE-= specify the data sets to compare.

proc compare base=emp95 byidnum compare=emp96_byidnum

Create the output data set RESULT and include all unequal observations and their
differences. OUT= names and creates the output data set. NOPRINT suppresses the printing
of the procedure output. OUTNOEQUAL includes only observations that are judged unequal.
OUTBASE writes an observation to the output data set for each observation in the base data
set. OUTCOMP writes an observation to the output data set for each observation in the
comparison data set. OUTDIF writes an observation to the output data set that contains the
differences between the two observations.

out=result outnoequal outbase outcomp outdif

noprint;

Specify the ID variable. The ID statement specifies IDNUM as the ID variable.

id idnum;

run;

Print the output data set RESULT and use the BY and ID statements with the ID
variable. PROC PRINT prints the output data set. Using the BY and ID statements with the
same variable makes the output easy to read. See Chapter 32, “The PRINT Procedure,” on page
817 for more information on this technique.

The differences for character variables are noted with an X or a period (.). An X shows that the characters do
not match. A period shows that the characters do match. For numeric variables, an E means that there is no
difference. Otherwise, the numeric difference is shown. By default, the output data set shows that two

The COMPARE Procedure A

proc print data=result noobs;
by idnum;
id idnum;

Example 7: Creating an Output Data Set of Statistics (OUTSTATS=)

title ’'The Output Data Set RESULT’;

run;

Output

253

observations in the comparison data set have no matching observation in the base data set. You do not have to
use an option to make those observations appear in the output data set.

idnum

0987

2776

3278

3286

3888

6544

9857

The Output Data Set RESULT
TYPE _OBS_ name address
BASE 1 Dolly Lunford 2344 Persimmons Branch Apex NC 27505
COMPARE 1 Dolly Lunford 2344 Persimmons Branch Trail Apex NC 27505
DIF 1 e i ittt e ieeceeeceeaeeaaaa XXXXX . XXXXXXXXXXXXX
BASE 5 Robert Jones 12988 Wellington Farms Ave. Cary NC 27512
COMPARE 5 Robert Jones 12988 Wellington Farms Ave. Cary NC 27511
DIF B hiieiiceiienss sessssessssssessssssesssessensrasnennnnn X.
COMPARE 6 Mary Cravens 211 N. Cypress St. Cary NC 27512
BASE 6 Hoa Nguyen 2818 Long St. Cary NC 27513
COMPARE 7 Hoa Nguyen 2818 Long St. Cary NC 27513
DIF Bt ee it iieceaees eeeeeeseeeeseeeaseeetaeeaaaaaataaaarnannn
BASE 7 Kim Siu 5662 Magnolia Blvd Southeast Cary NC 27513
COMPARE 8 Kim Siu 5662 Magnolia Blvd Southwest Cary NC 27513
DIF T teeiicsssessess esssessesssessesssessens D .
COMPARE 9 Roger Monday 3004 Crepe Myrtle Court Raleigh NC 27604
BASE 10 Kathy Krupski 1000 Taft Ave. Morrisville NC 27508
COMPARE 12 Kathy Krupski 100 Taft Ave. Morrisville NC 27508
DIF N BID 9.9:0.9.0.0.0.0.0.0.0.0.0.85.0.0.0.0.85.0.9.0.0.0.0.0.0.0.0. CUNIINININ

salary

44010
45110
1100

29025
29025
E

35362

87734
89834
2100

77558
79958
2400

47007
38756

40456
1700

Example 7: Creating an Output Data Set of Statistics (OUTSTATS=)

Procedure features:

PROC COMPARE statement options:

NOPRINT
OUTSTATS=
Data sets: PROCLIB.EMP95, PRO

This example creates an output data set that contains summary statistics for the

CLIB.EMP96 on page 248

numeric variables that are compared.

254 Program A Chapter 9

Program

libname proclib ’'SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=40;

Sort the data sets by the ID variable. Both data sets must be sorted by the variable that will
be used as the ID variable in the PROC COMPARE step. OUT= specifies the location of the
sorted data.

proc sort data=proclib.emp95 out=emp95 byidnum;
by idnum;

run;

proc sort data=proclib.emp96 out=emp96 byidnum;
by idnum;

run;

Create the output data set of statistics and compare observations that have matching
values for the ID variable. BASE= and COMPARE-= specify the data sets to compare.
OUTSTATS= creates the output data set DIFFSTAT. NOPRINT suppresses the procedure
output. The ID statement specifies IDNUM as the ID variable. PROC COMPARE uses the
values of IDNUM to match observations.

proc compare base=emp95_ byidnum compare=emp96_ byidnum
outstats=diffstat noprint;
id idnum;

run;

Print the output data set DIFFSTAT. PROC PRINT prints the output data set DIFFSTAT.

proc print data=diffstat noobs;
title 'The DIFFSTAT Data Set’;

run;

Output

The variables are described in “Output Statistics Data Set (OUTSTATS=)" on page 237.

The COMPARE Procedure /A Output

255

_VAR

salary
salary
salary
salary
salary
salary
salary
salary
salary
salary
salary

TYPE

N

MEAN
STD
MAX
MIN
STDERR
T
PROBT
NDIF
DIFMEANS
R,RSQ

The DIFFSTAT Data Set

BASE _CoMP_

10.00 10.00
52359.00 53089.00
24143.84 24631.01

92100.00 92100.00
29025.00 29025.00

7634.95 7789.01
6.86 6.82
0.00 0.00
4.00 40.00
1.39 1.38
1.00 1.00

DIF

10.
730.
996.

2400.
.00
315.
.32
.05

730.

00
00
72
00

19

00

PCTDIF

ONOO WK FFO

.0000
.2374
.6826
.3864
.0000
.5321
.3255
.0451

256

257

CHAPTER

10

The CONTENTS Procedure

Overview: CONTENTS Procedure 257
Syntax: PROC CONTENTS 257

Overview: CONTENTS Procedure

The CONTENTS procedure shows the contents of a SAS data set and prints the
directory of the SAS data library.

Generally, the CONTENTS procedure functions the same as the CONTENTS
statement in the DATASETS procedure. The differences between the CONTENTS
procedure and the CONTENTS statement in PROC DATASETS are as follows:

O The default for libref in the DATA= option in PROC CONTENTS is either WORK
or USER. For the CONTENTS statement, the default is the libref of the procedure
input library.

0o PROC CONTENTS can read sequential files. The CONTENTS statement cannot.

Syntax: PROC CONTENTS

Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.

Reminder: You can use the ATTRIB, FORMAT, and LABEL statements. See Chapter 3,
“Statements with the Same Function in Multiple Procedures,” on page 53 for details.
You can also use any global statements as well. See “Global Statements” on page 18 for
a list.

Reminder: You can use data set options with the DATA= and OUT= options. See “Data
Set Options” on page 17 for a list.

Reminder: Complete documentation for the CONTENTS statement and the CONTENTS
procedure is in “CONTENTS Statement” on page 344.

PROC CONTENTS <option(s)>;

258 Syntax: PROC CONTENTS A Chapter 10

To do this Use this option

Print centiles information for indexed variables CENTILES

Specify the input data set DATA=

Include information in the output about the DETAILS | NODETAILS

number of observations, number of variables, and
data set labels

Print a list of the SAS files in the SAS data library DIRECTORY
Print the length of a variable’s informat or format FMTLEN
Restrict processing to one or more types of SAS file MEMTYPE=

Suppress the printing of individual files NODS
Suppress the printing of the output NOPRINT
Specify the output data set OUT=
Specify an output data set that contains OoUT2=

information about constraints
Print abbreviated output SHORT

Print a list of the variables by their logical position =~ VARNUM
in the data set

259

CHAPTER

11

The COPY Procedure

Overview: COPY Procedure 259
Syntax: PROC COPY 259
Concepts: COPY Procedure 260
Transporting SAS Data Sets between Hosts 260
Example: COPY Procedure 260
Example 1: Copying SAS Data Sets between Hosts 260

Overview: COPY Procedure

The COPY procedure copies one or more SAS files from a SAS data library.
Generally, the COPY procedure functions the same as the COPY statement in the
DATASETS procedure. The two differences are as follows:

0 The IN= argument is required with PROC COPY. In the COPY statement, IN= is
optional. If IN= is omitted, the default value is the libref of the procedure input
library.

o PROC DATASETS cannot work with libraries that allow only sequential data
access.

Syntax: PROC COPY

Reminder: See Chapter 3, “Statements with the Same Function in Multiple Procedures,”
on page 53 for details. You can also use any global statements as well. See “Global
Statements” on page 18 for a list.

Reminder: Complete documentation for the COPY statement and the COPY procedure is
in “COPY Statement” on page 347.

Restriction:. PROC COPY ignors explicit concatenations with catalogs. Use PROC
CATALOG COPY to copy concatenated catalogs.

PROC COPY OUT=libref-1 IN=libref-2
<CLONE |[NOCLONE>
<CONSTRAINT=YES | NO>
<DATECOPY>
<INDEX=YES |NO>
<MEMTYPE=(mtype(s))>
<MOVE <ALTER=alter-password>>;

EXCLUDE SAS-file(s) </ MEMTYPE=mtype>;

SELECT SAS-file(s) </ <MEMTYPE=mtype>

260 Concepts: COPY Procedure A Chapter 11

<ALTER=alter-password>>;

Concepts: COPY Procedure

Transporting SAS Data Sets hetween Hosts

The COPY procedure, along with the XPORT engine and the XML engine, can create
and read transport files that can be moved from one host to another. PROC COPY can
create transport files only with SAS data sets, not with catalogs or other types of SAS
files.

Transporting is a three-step process:

1 Use PROC COPY to copy one or more SAS data sets to a file that is created with

either the transport (XPORT) engine or the XML engine. This file is referred to as
a transport file and is always a sequential file.

2 After the file is created, you can move it to another operating environment via
communications software, such as FTP, or tape. If you use communications
software, be sure to move the file in binary format to avoid any type of conversion.
If you are moving the file to a mainframe, the file must have certain attributes.
Consult the SAS documentation for your operating environment and the SAS
Technical Support Web page for more information.

3 After you have successfully moved the file to the receiving host, use PROC COPY
to copy the data sets from the transport file to a SAS data library.

For an example, see Example 1 on page 260.

For details on transporting files, see Moving and Accessing SAS Files across
Operating Environments.

The CPORT and CIMPORT procedures also provide a way to transport SAS files. For
information, see Chapter 8, “The CIMPORT Procedure,” on page 199 and Chapter 13,
“The CPORT Procedure,” on page 307.

Example: COPY Procedure

Example 1: Copying SAS Data Sets hetween Hosts
Features:
PROC COPY statement options:
IN=
MEMTYPE=
OUT=
Other features: XPORT engine

This example illustrates how to create a transport file on a host and read it on
another host.

In order for this example to work correctly, the transport file must have certain
characteristics, as described in the SAS documentation for your operating environment.

The COPY Procedure /A SAS Log

In addition, the transport file must be moved to the receiving operating system in

binary format.

Program

Assign library references. Assign a libref, such as SOURCE, to the SAS data library that

261

contains the SAS data set that you want to transport. Also, assign a libref to the transport file

and use the XPORT keyword to specify the XPORT engine.

libname source 'SAS-data-library-on-sending-host’;
libname xptout xport ’filename-on-sending-host’;

Copy the SAS data sets to the transport file. Use PROC COPY to copy the SAS data sets

from the IN= library to the transport file. MEMTYPE=DATA specifies that only SAS data sets

are copied. SELECT selects the data sets that you want to copy.

proc copy in=source out=xptout memtype=data;
select bonus budget salary;

run;

SAS Log

SAS Log on Sending Host

1 libname source 'SAS-data-library-on-sending-host ';
NOTE: Libref SOURCE was successfully assigned as follows:
Engine: V9
Physical Name: SAS-data-library-on-sending-host
2 libname xptout xport ’filename-on-sending-host’;
NOTE: Libref XPTOUT was successfully assigned as follows:
Engine: XPORT
Physical Name: filename-on-sending-host
3 proc copy in=source out=xptout memtype=data;
4 select bonus budget salary;
5 run;

NOTE: Copying SOURCE.BONUS to XPTOUT.BONUS (memtype=DATA).

NOTE: The data set XPTOUT.BONUS has 1 observations and 3 variables.
NOTE: Copying SOURCE.BUDGET to XPTOUT.BUDGET (memtype=DATA).

NOTE: The data set XPTOUT.BUDGET has 1 observations and 3 variables.
NOTE: Copying SOURCE.SALARY to XPTOUT.SALARY (memtype=DATA).

NOTE: The data set XPTOUT.SALARY has 1 observations and 3 variables.

Enable the procedure to read data from the transport file. The XPORT engine in the

LIBNAME statement enables the procedure to read the data from the transport file.

libname insource xport ’filename-on-receiving-host’;

262

SAS Log A Chapter 11

Copy the SAS data sets to the receiving host. After you copy the files (for example, by using
FTP in binary mode to the Windows NT host), use PROC COPY to copy the SAS data sets to the
WORK data library on the receiving host.

proc copy in=insource out=work;

run;

SAS Log on Receiving Host

1 libname insource xport 'filename-on-receiving-host’';
NOTE: Libref INSOURCE was successfully assigned as follows:
Engine: XPORT
Physical Name: filename-on-receiving-host
2 proc copy in=insource out=work;
3 run;

NOTE: Input library INSOURCE is sequential.

NOTE: Copying INSOURCE.BUDGET to WORK.BUDGET (memtype=DATA).

NOTE: BUFSIZE is not cloned when copying across different engines.
System Option for BUFSIZE was used.

NOTE: The data set WORK.BUDGET has 1 observations and 3 variables.

NOTE: Copying INSOURCE.BONUS to WORK.BONUS (memtype=DATA).

NOTE: BUFSIZE is not cloned when copying across different engines.
System Option for BUFSIZE was used.

NOTE: The data set WORK.BONUS has 1 observations and 3 variables.

NOTE: Copying INSOURCE.SALARY to WORK.SALARY (memtype=DATA).

NOTE: BUFSIZE is not cloned when copying across different engines.
System Option for BUFSIZE was used.

NOTE: The data set WORK.SALARY has 1 observations and 3 variables.

CHAPTER

12

The CORR Procedure

263

Overview: CORR Procedure 263
Syntax: CORR Procedure 267
PROC CORR Statement 268
BY Statement 2713
FREQ Statement 273
PARTIAL Statement 274
VAR Statement 2714
WEIGHT Statement 275
WITH Statement 276
Concepts: CORR Procedure 276
Interpreting Correlation Coefficients 216
Determining Computer Resources 217
Statistical Computations: CORR Procedure 279
Pearson Product-Moment Correlation 279
Spearman Rank-Order Correlation 280
Kendall’s tau-b 280
Hoeffding’s Measure of Dependence, D 281
Partial Correlation 282
Cronbach’s Coefficient Alpha 284
Probability Values 286
Results: CORR Procedure 287
Missing Values 287
ODS Table Names 281
Output 289
Output Data Sets 290
Examples: CORR Procedure 291

Example 1: Computing Pearson Correlations and Other Measures of Association

Example 2: Computing Rectangular Correlation Statistics with Missing Data 295
Example 3: Computing Cronbach’s Coefficient Alpha
Example 4: Storing Partial Correlations in an Output Data Set

References 306

Overview:

CORR Procedure

The CORR procedure is a statistical procedure for numeric random variables that

computes Pearson correlation coefficients, three nonparametric measures of association,
and the probabilities associated with these statistics. The correlation statistics include

0 Pearson product-moment and weighted product-moment correlation

0O Spearman rank-order correlation

264 Overview: CORR Procedure A Chapter 12

o Kendall’s tau-b
0 Hoeffding’s measure of dependence, D
0 Pearson, Spearman, and Kendall partial correlation.

PROC CORR also computes Cronbach’s coefficient alpha for estimating reliability.

The default correlation analysis includes descriptive statistics, Pearson correlation
statistics, and probabilities for each analysis variable. You can save the correlation
statistics in a SAS data set for use with other statistical and reporting procedures.

Output 12.1 on page 264 is the simplest form of PROC CORR output. Pearson
correlation statistics are computed for all numeric variables from a study investigating
the effect of exercise on physical fitness. The statements that produce the output follow:

options pagesize=60;
proc corr data=fitness;

run;

Output 12.1 Simple Correlation Analysis for a Fitness Study Using PROC CORR

The SAS System 1
The CORR Procedure

4 Variables: Age Weight Runtime Oxygen

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum
Age 30 47.56667 5.26330 1427 38.00000 57.00000
Weight 30 77.70500 8.34152 2331 59.08000 91.63000
Runtime 29 10.61448 1.41655 307.82000 8.17000 14.03000
oxygen 29 47.06445 5.32129 1365 37.38800 60.05500

Pearson Correlation Coefficients
Prob > |r| under HO: Rho=0
Number of Observations

Age Weight Runtime Ooxygen

Age 1.00000 -0.21777 0.19528 -0.32899

0.2477 0.3100 0.0814

30 30 29 29

Weight -0.21777 1.00000 0.15155 -0.19900

0.2477 0.4326 0.3007

30 30 29 29

Runtime 0.19528 0.15155 1.00000 -0.78346

0.3100 0.4326 <.0001

29 29 29 28

oxygen -0.32899 -0.19900 -0.78346 1.00000
0.0814 0.3007 <.0001

29 29 28 29

Output 12.2 on page 265 and Output 12.3 on page 266 illustrate the use of PROC
CORR to calculate partial correlation statistics for the fitness study and to store the
results in an output data set. The statements that produce the analysis also

O suppress the descriptive statistics

The CORR Procedure /A Qverview: CORR Procedure 265

select and label analysis variables

exclude all observations with missing values
calculate the partial covariance matrix

calculate three types of partial correlation coefficients

O o o o d

generate an output data set that contains Pearson correlation statistics and print
the output data set.

For an explanation of the program that produces the following output, see Example 4
on page 302.

266 Overview: CORR Procedure A Chapter 12

Output 12.2 Customized Correlation Analysis with Partial Covariances and Correlation Statistics

Weight
Oxygen
Runtime

Partial Correlations for a Fitness and Exercise Study

The CORR Procedure

1 Partial Variables: Age
3 Variables: Weight Oxygen Runtime
Partial Covariance Matrix, DF = 26
Weight Oxygen
Wt in kg 72.43742055 -12.75113194
02 use -12.75113194 27.01654904
1.5 mi in minutes 2.06766763 -5.59370556

Pearson Partial Correlation Coefficients, N = 28
Prob > |r| under HO: Partial Rho=0

Weight Oxygen Runtime
Weight 1.00000 -0.28824 0.17419
Wt in kg 0.1448 0.3849
oxygen -0.28824 1.00000 -0.77163
02 use 0.1448 <.0001
Runtime 0.17419 -0.77163 1.00000
1.5 mi in minutes 0.3849 <.0001

Spearman Partial Correlation Coefficients, N = 28
Prob > |r| under HO: Partial Rho=0

Weight Oxygen Runtime
Weight 1.00000 -0.16407 0.08708
Wt in kg 0.4135 0.6658
oxygen -0.16407 1.00000 -0.67112
02 use 0.4135 0.0001
Runtime 0.08708 -0.67112 1.00000
1.5 mi in minutes 0.6658 0.0001

Kendall Partial Tau b Correlation Coefficients, N = 28

Weight Oxygen Runtime
Weight 1.00000 -0.09021 0.02854
Wt in kg
oxygen -0.09021 1.00000 -0.52158
02 use
Runtime 0.02854 -0.52158 1.00000

1.5 mi in minutes

Runtime

2.06766763
-5.59370556
1.94512451

The CORR Procedure /A Syntax: CORR Procedure

Output 12.3 Output Data Set with Pearson Partial Correlation Statistics

267

TYPE

cov
cov
cov
MEAN
STD
N
CORR
CORR
CORR

Output Data Set from PROC CORR

_NAME Weight Ooxygen
Weight 72.4374 -12.7511
Oxygen -12.7511 27.0165
Runtime 2.0677 -5.5937

0.0000 0.0000

8.5110 5.1977

28.0000 28.0000
Weight 1.0000 -0.2882
Oxygen -0.2882 1.0000
Runtime 0.1742 -0.7716

Pearson Correlation Statistics Using the PARTIAL Statement

Runtime

2.0677
-5.5937
1.9451
0.0000
1.3947
28.0000
0.1742
-0.7716
1.0000

Syntax: CORR Procedure

Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32

for details.

Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See

Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for

details. You can also use any global statements as well. See “Global Statements” on

page 18 for a list.

PROC CORR <option(s)>;

BY <DESCENDING> variable-1<...<DESCENDING> variable-n>
<NOTSORTED>;

FREQ frequency-variable;
PARTIAL variable(s);

VAR variable(s);

WEIGHT weight-variable;

WITH variable(s);

To do this

Use this statement

Produce separate correlation analyses for each BY group

Identify a variable whose values represent the frequency of each

observation

Identify controlling variables to compute Pearson, Spearman, or

Kendall partial correlation coefficients

Identify variables to correlate and their order in the correlation

matrix

BY
FREQ

PARTIAL

VAR

268 PROC CORR Statement A Chapter 12

To do this

Use this statement

Identify a variable whose values weight each observation to compute
Pearson weight product-moment correlation

Compute correlations for specific combinations of variables

WEIGHT

WITH

PROC CORR Statement

PROC CORR <option(s)>;

To do this

Use this option

Specify the input data set

Create output data sets
Specify an output data set to contain Hoeffding’s D statistics
Specify an output data set to contain Kendall correlations
Specify an output data set to contain Pearson correlations
Specify an output data set to contain Spearman correlations

Control statistical analysis

Exclude observations with nonpositive weight values from the
analysis

Request Hoeffding’s measure of dependence, D
Request Kendall’s tau-b
Request Pearson product-moment correlation
Request Spearman rank-order correlation
Control Pearson correlation statistics
Compute Cronbach’s coefficient alpha
Compute covariances
Compute corrected sums of squares and crossproducts
Exclude missing values
Specify singularity criterion
Compute sums of squares and crossproducts
Specify the divisor for variance calculations
Control printed output
Specify the number and order of correlation coefficients
Suppress Pearson correlations

Suppress all printed output

DATA=

OUTH=
OUTK=
OUTP=
OUTS=

EXCLNPWGT

HOEFFDING
KENDALL
PEARSON
SPEARMAN

ALPHA

cov

CSSCP
NOMISS
SINGULAR=
SSCP
VARDEF=

BEST=
NOCORR
NOPRINT

The CORR Procedure /A PROC CORR Statement 269

To do this Use this option
Suppress significance probabilities NOPROB
Suppress descriptive statistics NOSIMPLE
Change the order of correlation coefficients RANK

Options

ALPHA

calculates and prints Cronbach’s coefficient alpha. PROC CORR computes separate
coefficients using raw and standardized values (scaling the variables to a unit
variance of 1). For each VAR statement variable, PROC CORR computes the
correlation between the variable and the total of the remaining variables. It also
computes Cronbach’s coefficient alpha using only the remaining variables.

Main discussion: “Cronbach’s Coefficient Alpha” on page 284

Restriction: If you use a WITH statement, ALPHA is invalid.

Interaction: ALPHA invokes PEARSON.

Interaction: If you specify OUTP=, the output data set also contains six
observations with Cronbach’s coefficient alpha.

Interaction: When you use the PARTIAL statement, PROC CORR calculates
Cronbach’s coefficient alpha for partialled variables.

See also: OUTP= option
Featured in: Example 3 on page 299
BEST=n
prints n correlation coefficients for each variable. Correlations are ordered from

highest to lowest in absolute value. Otherwise, PROC CORR prints correlations in a
rectangular table using the variable names as row and column labels.

Interaction: When you specify HOEFFDING, PROC CORR prints the D statistics
in order from highest to lowest.

Range: 1 to the maximum number of variables
cov

calculates and prints covariances.

Interaction: COV invokes PEARSON.

Interaction: If you specify OUTP=, the output data set contains the covariance
matrix and the _TYPE_ variable value is COV.

Interaction: When you use the PARTIAL statement, PROC CORR computes a
partial covariance matrix.

See also: OUTP= option

Featured in: Example 2 on page 295 and Example 4 on page 302
CSSCP

prints the corrected sums of squares and crossproducts.

Interaction: CSSCP invokes PEARSON.

Interaction: If you specify OUTP=, the output data set contains a CSSCP matrix
and the _TYPE_ variable value is CSSCP. If you use a PARTIAL statement, the
output data set contains a partial CSSCP matrix.

270 PROC CORR Statement A Chapter 12

Interaction: When you use a PARTIAL statement, PROC CORR prints both an
unpartial and a partial CSSCP matrix.

See also: OUTP= option
DATA=SAS-data-set
specifies the input SAS data set.
Main discussion: “Input Data Sets” on page 19
EXCLNPWGT
excludes observations with nonpositive weight values (zero or negative) from the

analysis. By default, PROC CORR treats observations with negative weights like
those with zero weights and counts them in the total number of observations.

Requirement: You must use a WEIGHT statement.
See also: “WEIGHT Statement” on page 275
HOEFFDING
calculates and prints Hoeffding’s D statistics. This D statistic is 30 times larger than

the usual definition and scales the range between -0.5 and 1 so that only large
positive values indicate dependence.

Main discussion: “Hoeffding’s Measure of Dependence, D” on page 281

Restriction: When you use a WEIGHT or PARTIAL statement, HOEFFDING is
invalid.

Featured in: Example 1 on page 291
KENDALL

calculates and prints Kendall tau-b coefficients based on the number of concordant
and discordant pairs of observations. Kendall’s tau-b ranges from -1 to 1.

Main discussion: “Kendall’s tau-b” on page 280
Restriction: When you use a WEIGHT statement, KENDALL is invalid.

Interactions: When you use a PARTIAL statement, probability values for Kendall’s
partial tau-b are not available.

Featured in: Example 4 on page 302
NOCORR
suppresses calculating and printing of Pearson correlations.

Interaction: If you specify OUTP=, the data set type remains CORR. To change the
data set type to COV, CSSCP, or SSCP, use the TYPE= data set option.

See also: “Output Data Sets” on page 290
Featured in: Example 3 on page 299
NOMISS

excludes observations with missing values from the analysis. Otherwise, PROC
CORR computes correlation statistics using all the nonmissing pairs of variables.

Main discussion: “Missing Values” on page 287
Tip: Using NOMISS is computationally more efficient.
Featured in: Example 3 on page 299
NOPRINT
suppresses all printed output.
Tip: Use NOPRINT when you want to create an output data set only.

NOPROB
suppresses printing the probabilities associated with each correlation coefficient.

NOSIMPLE

The CORR Procedure /A PROC CORR Statement 21

suppresses printing simple descriptive statistics for each variable. However, if you
request an output data set, the output data set still contains simple descriptive
statistics for the variables.

Featured in: Example 2 on page 295

OUTH=output-data-set
creates an output data set containing Hoeffding’s D statistics. The contents of the
output data set are similar to the OUTP= data set.
Main discussion: “Output Data Sets” on page 290

Interaction: OUTH-= invokes HOEFFDING.

OUTK=output-data-set
creates an output data set containing Kendall correlation statistics. The contents of
the output data set are similar to the OUTP= data set.
Main discussion: “Output Data Sets” on page 290

Interaction: OUTK= option invokes KENDALL.

OUTP=output-data-set
creates an output data set containing Pearson correlation statistics. This data set
also includes means, standard deviations, and the number of observations. The value
of the _"TYPE_ variable is CORR.
Main discussion: “Output Data Sets” on page 290
Interaction: OUTP= invokes PEARSON.
Interaction: If you specify ALPHA, the output data set also contains six

observations with Cronbach’s coefficient alpha.

Featured in: Example 4 on page 302

OUTS=SAS-data-set
creates an output data set containing Spearman correlation statistics. The contents
of the output data set are similar to the OUTP= data set.
Main discussion: “Output Data Sets” on page 290

Interaction: OUTS= invokes SPEARMAN.

PEARSON
calculates and prints Pearson product-moment correlations when you use the
HOEFFDING, KENDALL, or SPEARMAN option. If you omit the correlation type,
PROC CORR automatically produces Pearson correlations. The correlations range
from -1 to 1.
Main discussion: “Pearson Product-Moment Correlation” on page 279

Featured in: Example 1 on page 291

RANK
prints the correlation coefficients for each variable. Correlations are ordered from
highest to lowest in absolute value. Otherwise, PROC CORR prints correlations in a
rectangular table using the variable names as row and column labels.
Interaction: If you use HOEFFDING, PROC CORR prints the D statistics in order
from highest to lowest.

SINGULAR=p
specifies the criterion for determining the singularity of a variable when you use a
PARTIAL statement. A variable is considered singular if its corresponding diagonal
element after Cholesky decomposition has a value less than p times the original
unpartialed corrected sum of squares of that variable.
Main discussion: “Partial Correlation” on page 282

Default: 1E-8

272

PROC CORR Statement A Chapter 12

Range: between 0 and 1

SPEARMAN

calculates and prints Spearman correlation coefficients based on the ranks of the
variables. The correlations range from -1 to 1.

Main discussion: “Spearman Rank-Order Correlation” on page 280
Restriction: When you specify a WEIGHT statement, SPEARMAN is invalid.
Featured in: Example 1 on page 291

SSCP

prints the sums of squares and crossproducts.
Interaction: SSCP invokes PEARSON.

Interaction: When you specify OUTP=, the output data set contains a SSCP matrix
and the _TYPE_ variable value is SSCP. If you use a PARTIAL statement, the
output data set does not contain an SSCP matrix.

Interaction: When you use a PARTIAL statement, PROC CORR prints the
unpartial SSCP matrix.

Featured in: Example 2 on page 295

VARDEF=divisor

specifies the divisor to use in the calculation of variances, standard deviations, and
covariances.

Table 12.1 on page 272 shows the possible values for divisor and associated
divisors where & is the number of PARTIAL statement variables.

Table 12.1 Possible Values for VARDEF=

Value Divisor Formula
DF degrees of freedom n-k-1

N number of observations n

WDF sum of weights minus one iw)-k-1
WEIGHT | WGT sum of weights Y w;

The procedure computes the variance as C'SS/divisor, where C'SS is the corrected
sums of squares and equals » (x; — 5)2. When you weight the analysis variables,
C'SS equals > w; (z; — Ty)~, where Ty, is the weighted mean.

Default: DF

Tip: When you use the WEIGHT statement and VARDEF=DF, the variance is an
estimate of 0%, where the variance of the ith observation is var (z;) = o2 /w; and
w; is the weight for the ith observation. This yields an estimate of the variance of
an observation with unit weight.

Tip: When you use the WEIGHT statement and VARDEF=WGT, the computed
variance is asymptotically (for large n) an estimate of o’ /W, where w is the
average weight. This yields an asymptotic estimate of the variance of an
observation with average weight.

Main discussion: Weighted statistics “Weighted Statistics Example” on page 60.

The CORR Procedure /A FREQ Statement 273

BY Statement

Calculates separate correlation statistics for each BY group.

Main discussion: “BY” on page 54

BY <DESCENDING> variable-1 <...<DESCENDING> variable-n><NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately. Variables in a BY statement
are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED

specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, such as chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

FREQ Statement

Treats observations as if they appear multiple times in the input data set.

Tip: The effects of the FREQ and WEIGHT statements are similar except when
calculating degrees of freedom.

See also: For an example that uses the FREQ statement, see “FREQ” on page 56

FREQ variable;

Required Arguments

274

PARTIAL Statement A Chapter 12

variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the FREQ statement, the procedure assumes that each observation
represents n observations, where n is the value of variable. If n is not an integer,
SAS truncates it. If n is less than 1 or is missing, the procedure does not use that
observation to calculate statistics.
The sum of the frequency variable represents the total number of observations.

PARTIAL Statement

Computes Pearson partial correlation, Spearman partial rank-order correlation, or Kendall’s partial
tau-b.

Restriction: Not valid with the HOEFFDING option.

Interaction: Invokes the NOMISS option to exclude all observations with missing values.
Main discussion: “Partial Correlation” on page 282

Featured in: Example 4 on page 302

PARTIAL variable(s);

Required Arguments

variable(s)
identifies one or more variables to use in the calculation of partial correlation
statistics.

Using PROC CORR Statement Options with the PARTIAL Statement

0 If you use the PEARSON option, PROC CORR also prints the partial variance and
standard deviation for each VAR or WITH statement variable.

o If you use the KENDALL option, PROC CORR cannot compute probability values
for Kendall’s partial tau-b.

VAR Statement

Specifies the variables to use to calculate correlation statistics.

Default: If you omit this statement, PROC CORR computes correlations for all numeric
variables not listed in the other statements.

Featured in: Example 1 on page 291 and Example 2 on page 295

VAR variable(s);

Required Arguments

The CORR Procedure /A WEIGHT Statement 275

variable(s)
identifies one or more variables to use in the calculation of correlation coefficients.

WEIGHT Statement

Specifies weights for the analysis variables in the calculation of Pearson weighted
product-moment correlation.

Restriction: Not valid with the HOEFFDING, KENDALL, or SPEARMAN option.

See also: For information about calculating weighted correlations, see “Pearson
Product-Moment Correlation” on page 279.

WEIGHT variable;

Required Arguments

variable
specifies a numeric variable to use to compute weighted product-moment correlation
coefficients. The variable does not have to be an integer. If the value of the weight
variable is

Weight value... PROC CORR...
0 counts the observation in the total number of observations
less than 0 converts the value to zero and counts the observation in the total

number of observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,
exclude negative and zero weights by default.

Tip: When you use the WEIGHT statement, consider which value of the VARDEF=
option is appropriate. See the discussion of the VARDEF= option on page 272 for
more information.

Note: Prior to Version 8 of SAS, the procedure did not exclude the observations with

missing weights from the count of observations. 2

276 WITH Statement A Chapter 12

WITH Statement

Determines the variables to use in conjunction with the VAR statement variables to calculate
limited combinations of correlation coefficients.

Restriction: Not valid with the ALPHA option.
Featured in: Example 2 on page 295

WITH variable(s);

Required Argument

variable(s)
lists one or more variables to obtain correlations for specific combinations of
variables. The WITH statement variables appear down the side of the correlation
matrix and the VAR statement variables appear across the top of the correlation
matrix. PROC CORR computes the following correlations for the VAR statement
variables A and B and the WITH statement variables X, Y, and Z:

X and A X and B
Y and A Y and B
Z and A Z and B

Concepts: CORR Procedure

Interpreting Correlation Coefficients

Correlation coefficients contain information on both the strength and direction of a
linear relationship between two numeric random variables. If one variable x is an exact
linear function of another variable y, a positive relationship exists when the correlation
is 1 and an inverse relationship exists when the correlation is -1. If there is no linear
predictability between the two variables, the correlation is 0. If the variables are normal
and correlation is 0, the two variables are independent. However, correlation does not
imply causality because, in some cases, an underlying causal relationship may exist.

The scatterplots in Figure 12.1 on page 277 depict the relationship between two
numeric random variables.

The CORR Procedure /\ Determining Computer Resources 277

Figure 12.1 Examining Correlations Using Scatterplots

Positive Correlation Negative Correlation

No Correlation,

No Correlation Dependence

When the relationship between two variables is nonlinear or when outliers are
present, the correlation coefficient incorrectly estimates the strength of the relationship.
Plotting the data before computing a correlation coefficient enables you to verify the
linear relationship and to identify the potential outliers.

Determining Computer Resources

The only factor limiting the number of variables that you can analyze is the amount
of available memory. The computer resources that PROC CORR requires depend on
which statements and options you specify. To determine the computer resources that
you need, use

N number of observations in the data set.
C number of correlation types (1 to 4).
A% number of VAR statement variables.
w number of WITH statement variables.
P number of PARTIAL statement variables.
so that
T= V+W+P
K= V¥W when W>0
V*#(V+1)/2 when W=0
L= K when P=0

T*(T+1)/2 when P>0

2718

Determining Computer Resources A Chapter 12

For small N and large K, the CPU time varies as K for all types of correlations. For
large N, the CPU time depends on the type of correlation. To calculate CPU time use

K*N with PEARSON (default)
T*N*log N with SPEARMAN
K*N*log N with HOEFFDING or KENDALL

You can reduce CPU time by specifying NOMISS. Without NOMISS, processing is much
faster when most observations do not contain missing values.

The options and statements you use in the procedure require different amounts of
storage to process the data. For Pearson correlations, the amount of temporary storage
in bytes (M) is

40T+16L with NOMISS and NOSIMPLE
40T+16L+56T with NOMISS
40T+16L+56K with NOSIMPLE

40T+16L+56K+56T with no options

Using a PARTIAL statement increases the amount of temporary storage by 12T bytes.
Using the ALPHA option increases the amount of temporary storage by 32V+16 bytes.
The following example uses a PARTIAL statement, which invokes NOMISS.

proc corr;
var x1 x2;
with y1 y2 y3;
partial zl;

Therefore, using 40T+16L+56T+12T, the minimum temporary storage equals 984 bytes
(T=2+3+1 and L=T(T+1)/2).

Using the SPEARMAN, KENDALL, or HOEFFDING option requires additional
temporary storage for each observation. For the most time-efficient processing, the
amount of temporary storage in bytes is

40T+8K+8L*C+12T*N+28N+QS+QP+QK

where

QS= 0 with NOSIMPLE
68T otherwise

QP= 56K with PEARSON and without NOMISS
0 otherwise

QK = 32N with KENDALL or HOEFFDING
0 otherwise.

The following example uses KENDALL:

The CORR Procedure A\ Pearson Product-Moment Correlation 279

proc corr kendall;
var x1 x2 x3;

Therefore, the minimum temporary storage in bytes is
40*3+8*6+8%6%1+12*3N+28N+3*68+32N = 420+96N

where N is the number of observations.

If M bytes are not available, PROC CORR must process the data multiple times to
compute all the statistics. This reduces the minimum temporary storage you need by
12(T-2)N bytes. When this occurs, PROC CORR prints a note suggesting a larger
memory region.

Statistical Computations: CORR Procedure

PROC CORR computes several parametric and nonparametric correlation statistics
as measures of association. The formulas for computing these measures and the
associated probabilities follow.

Pearson Product-Moment Correlation

The Pearson product-moment correlation is a parametric measure of association for
two continuous random variables. The formula for the true Pearson product-moment
correlation, denoted gy, is

cov (x,y)

var (@) var (y)

__E((z—FEx)(y - Ey))
\/E (z — Ex)’E(y — Ey)’

Pzy —

The sample correlation, such as a Pearson product-moment correlation or weighted
product-moment correlation, estimates the true correlation. The formula for the
Pearson product-moment correlation is

I e
V(i =2 S i — 9)°

where x is the sample mean of and ¥ is the sample mean of ¥.
The formula for a weighted Pearson product-moment correlation is

roy = 2 wi (#i — Tw) (Yi — Yu)
\/E wi (2 — 2w)* Y wi (yi — Yu)’

where

280

Spearman Rank-Order Correlation A Chapter 12

%ZE}W#Zﬂi
o= wiyi/ > wi

Note that z,, is the weighted mean of x, 7,, is the weighted mean of ¥, and w; is the
weight.

When one variable is dichotomous (0,1) and the other variable is continuous, a
Pearson correlation is equivalent to a point biserial correlation. When both variables
are dichotomous, a Pearson correlation coefficient is equivalent to the phi coefficient.

Spearman Rank-Order Correlation

Spearman rank-order correlation is a nonparametric measure of association based on
the rank of the data values. The formula is

> (Ri—R) (Si =)

0 =
VI (R - R (8- 9)°

where R; is the rank of the ith = value, S; is the rank of the ¢th y value, R is the
mean of the R; values, and S is the mean of the S; values.

PROC CORR computes the Spearman’s correlation by ranking the data and using
the ranks in the Pearson product-moment correlation formula. In case of ties, the
averaged ranks are used.

Kendall’s tau-b

Kendall’s tau-b is a nonparametric measure of association based on the number of
concordances and discordances in paired observations. Concordance occurs when paired
observations vary together, and discordance occurs when paired observations vary
differently. The formula for Kendall’s tau-b is

> sgn (xi — ;) sgn (yi — yj)
1< 2

- V(To —Tq) (To — Ty)

where

To=n(n—-1)/2
Ty=> ti(ti—1)/2
Ty=> ui(ui—1)/2
and where 7; is the number of tied = values in the ¢th group of tied x values, v; is the

number of tied y values in the 2th group of tied y values, [is the number of
observations, and sgn(z) is defined as

The CORR Procedure /\ Hoeffding’s Measure of Dependence, D 281

1 ifz2>0
sgn(z) = ? %Zzg
— 1z <

PROC CORR computes Kendall’s correlation by ranking the data and using a method
similar to Knight (1966). The data are double sorted by ranking observations according
to values of the first variable and reranking the observations according to values of the
second variable. PROC CORR computes Kendall’s tau-b from the number of
interchanges of the first variable and corrects for tied pairs (pairs of observations with
equal values of X or equal values of Y).

Hoeffding’s Measure of Dependence, D

Hoeffding’s measure of dependence, D, is a nonparametric measure of association
that detects more general departures from independence. The statistic approximates a
weighted sum over observations of chi-square statistics for two-by-two classification
tables (Hoeffding 1948). Each set of (2, y) values are cut points for the classification.
The formula for Hoeffding’s D is

(n—2)(n—3)D1—I—DZ—Q(n—Q)T)g

D = 30 n(n—1)(n—2)(n—3)(n—41)

where

D1:Z(Qz’—1)(Qz’—2)

i

Dy = (Ri—1)(Ri —2)(Si — 1)(Si —2)

i

Dy =) (Ri—2)(Si—2)(Qi— 1)

i

R, is the rank of x;, S; is the rank of y;, and (); (also called the bivariate rank) is 1
plus the number of points with both & and y values less than the :th point. A point
that is tied on only the x value or y value contributes 1/2 to (; if the other value is less
than the corresponding value for the :th point. A point that is tied on both = and y
contributes 1/4 to Q);.

PROC CORR obtains the (); values by first ranking the data. The data are then
double sorted by ranking observations according to values of the first variable and
reranking the observations according to values of the second variable. Hoeffding’s D
statistic is computed using the number of interchanges of the first variable.

When no ties occur among data set observations, the D statistic values are between
-0.5 and 1, with 1 indicating complete dependence. However, when ties occur, the D
statistic may result in a smaller value. That is, for a pair of variables with identical
values, the Hoeffding’s D statistic may be less than 1. With a large number of ties in a
small data set, the D statistic may be less than -0.5 . For more information about
Hoeffding’s D, see Hollander and Wolfe (1973, p. 228).

282

Partial Correlation A Chapter 12

Partial Correlation

A partial correlation measures the strength of a relationship between two variables,
while controlling the effect of one or more additional variables. The Pearson partial
correlation for a pair of variables may be defined as the correlation of errors after
regression on the controlling variables. Let y= (y7,y2, ..., Yy) be the set of variables
to correlate. Also let & and 3 be sets of regression parameters and z be the set of
controlling variables, where o = (a1, a2, ...,), 3 is the slope, and
z= (%1, 22,...,%). Suppose

E(y)=a+2z8

is a regression model for y given z. The population Pearson partial correlation between
the ¢th and the jth variables of y given z is defined as the correlation between errors
(yi — E(yi)) and (y; — E(y;)).

If the exact values of & and (3 are unknown, you can use a sample Pearson partial
correlation to estimate the population Pearson partial correlation. For a given sample
of observations, you estimate the sets of unknown parameters ¢ and (3 using the

least-squares estimators & and 3. Then the fitted least-squares regression model is

y=a+2B

The partial corrected sums of squares and crossproducts (CSSCP) of y given Z are
the corrected sums of squares and crossproducts of the residuals y — y. Using these
partial corrected sums of squares and crossproducts, you can calculate the partial
variances, partial covariances, and partial correlations.

PROC CORR derives the partial corrected sums of squares and crossproducts matrix
by applying the Cholesky decomposition algorithm to the CSSCP matrix. For Pearson
partial correlations, let S be the partitioned CSSCP matrix between two sets of
variables, Z and y:

S — Szz Szy
Slzy Syy

PROC CORR calculates Syy .5, the partial CSSCP matrix of y after controlling for z,
by applying the Cholesky decomposition algorithm sequentially on the rows associated
with z, the variables being partialed out.

After applying the Cholesky decomposition algorithm to each row associated with
variables z, PROC CORR checks all higher numbered diagonal elements associated
with z for singularity. After the Cholesky decomposition, a variable is considered
singular if the value of the corresponding diagonal element is less than p times the
original unpartialed corrected sum of squares of that variable. You can specify the
singularity criterion p using the SINGULAR= option. For Pearson partial correlations,
a controlling variable z is considered singular if the R? for predicting this variable from
the variables that are already partialed out exceeds 1 — p. When this happens, PROC
CORR excludes the variable from the analysis. Similarly, a variable is considered
singular if the R? for predicting this variable from the controlling variables exceeds
1 — p. When this happens, its associated diagonal element and all higher numbered
elements in this row or column are set to zero.

The CORR Procedure A\ Partial Correlation 283

After the Cholesky decomposition algorithm is performed on all rows associated with
z, the resulting matrix has the form

where T, is an upper triangular matrix with

TIZZTZZ — Szz’
leszy = Szy’
Syy.z = Syy — leyTZY'

If Sy is positive definite, then the partial CSSCP matrix Syy.; is identical to the
matrix derived from the formula

Syy~z = Syy - Slzy Sz_zl Szy

The partial variance-covariance matrix is calculated with the variance divisor
(VARDEF= option). PROC CORR can then use the standard Pearson correlation
formula on the partial variance-covariance matrix to calculate the Pearson partial
correlation matrix. Another way to calculate Pearson partial correlation is by applying
the Cholesky decomposition algorithm directly to the correlation matrix and by using
the correlation formula on the resulting matrix.

To derive the corresponding Spearman partial rank-order correlations and Kendall
partial tau-b correlations, PROC CORR applies the Cholesky decomposition algorithm
to the Spearman rank-order correlation matrix and Kendall tau-b correlation matrix
and uses the correlation formula. The singularity criterion for nonparametric partial
correlations is identical to Pearson partial correlation except that PROC CORR uses a
matrix of nonparametric correlations and sets a singular variable’s associated
correlations to missing. The partial tau-b correlations range from —1 to 1. However, the
sampling distribution of this partial tau-b is unknown; therefore, the probability values
are not available.

When a correlation matrix (Pearson, Spearman, or Kendall tau-b correlation matrix)
is positive definite, the resulting partial correlation between variables = and y after
adjusting for a single variable z is identical to that obtained from the first-order partial
correlation formula

Tey — TxzTyz

T e -)

where 74y, 13-, and 1y, are the appropriate correlations.

The formula for higher-order partial correlations is a straightforward extension of
the above first-order formula. For example, when the correlation matrix is positive
definite, the partial correlation between x and y controlling for both z1 and 29 is
identical to the second-order partial correlation formula

284

Cronbach’s Coefficient Alpha A Chapter 12

Toyzy = Tawzez1Tyz21

Tyy.z12, =
\/(1 - r%22'21> <1 o r?2122'21>

where 1'yy.2,, T'¢2,.2,, and 1'y,,.., are first-order partial correlations among variables ,
y, and zo given 27.

Cronbach’s Coefficient Alpha

Analyzing latent constructs such as job satisfaction, motor ability, sensory
recognition, or customer satisfaction requires instruments to accurately measure the
constructs. Interrelated items may be summed to obtain an overall score for each
participant. Cronbach’s coefficient alpha estimates the reliability of this type of scale by
determining the internal consistency of the test or the average correlation of items
within the test (Cronbach 1951).

When a value is recorded, the observed value contains some degree of measurement
error. Two sets of measurements on the same variable for the same individual may not
have identical values. However, repeated measurements for a series of individuals will
show some consistency. Reliability measures internal consistency from one set of
measurements to another. The observed value Y is divided into two components, a true
value T and a measurement error E. The measurement error is assumed to be
independent of the true value, that is,

Y=T4+E, cov(T,E)=0

The reliability coefficient of a measurement test is defined as the squared correlation
between the observed value Y and the true value T, that is,

cov (Y, T)2
var (Y) var (T)
var (T)2
var (Y) var (T)
var (T)
var (Y)

p2 (Y, T) =

which is the proportion of the observed variance due to true differences among
individuals in the sample. If Y is the sum of several observed variables measuring the
same feature, you can estimate var(T). Cronbach’s coefficient alpha, based on a lower
bound for var(T), is an estimate of the reliability coefficient.

Suppose p variables are used with Y; = T'; + E; fory = 1,2,...,p, where Y is
the observed value, Tj is the true value, and Ej is the measurement error. The
measurement errors (I5;) are independent of the true values (T;) and are also
independent of each other. Let Yo = > Y ; be the total observed score and Ty = > T,
be the total true score. Because

(p—1) Zvar (T;) > Zcov (T:,7T5),

i1#)

The CORR Procedure /\ Cronbach’s Coefficient Alpha 285

a lower bound for var (T) is given by

Ll ZCOV (T4, Ty)
P= iz

With cov (Y;, Y;) = cov (T;, T;) for ¢ # j, a lower bound for the reliability
coefficient is then given by the Cronbach’s coefficient alpha:

Y cov(Yi,Y;)

P £
o —
<p -1 var (Yo)

S var (Y;)
Sy

If the variances of the items vary widely, you can standardize the items to a standard
deviation of 1 before computing the coefficient alpha. If the variables are dichotomous
(0,1), the coefficient alpha is equivalent to the Kuder-Richardson 20 (KR-20) reliability
measure.

When the correlation between each pair of variables is 1, the coefficient alpha has a
maximum value of 1. With negative correlations between some variables, the coefficient
alpha can have a value less than zero. The larger the overall alpha coefficient, the more
likely that items contribute to a reliable scale. Nunnally (1978) suggests .70 as an
acceptable reliability coefficient; smaller reliability coefficients are seen as inadequate.
However, this varies by discipline.

To determine how each item reflects the reliability of the scale, you calculate a
coefficient alpha after deleting each variable independently from the scale. The
Cronbach’s coefficient alpha from all variables except the kth variable is given by

> var (Y;)

_(p—l) |
var | > Y,
£k

If the reliability coefficient increases after deleting an item from the scale, you can
assume that the item is not correlated highly with other items in the scale. Conversely,
if the reliability coefficient decreases you can assume that the item is highly correlated
with other items in the scale. See SAS Communications, 4th Quarter 1994, for more
information on how to interpret Cronbach’s coefficient alpha.

Listwise deletion of observations with missing values is necessary to correctly
calculate Cronbach’s coefficient alpha. PROC CORR does not automatically use listwise
deletion when you specify ALPHA. Therefore, use the NOMISS option if the data set
contains missing values. Otherwise, PROC FREQ prints a warning message in the SAS
log indicating the need to use NOMISS with ALPHA.

286

Probability Values A Chapter 12

Probability Values

Probability values for the Pearson and Spearman correlations are computed by
treating

(n —2)1/2r

(1—r2)"/?

as coming from a ¢ distribution with n — 2 degrees of freedom, where r is the
appropriate correlation.

Probability values for the Pearson and Spearman partial correlations are computed
by treating

(n—k— 2)1/2 r
(1—r2)?

as coming from a ¢ distribution with n — k& — 2 degrees of freedom, where r is the
appropriate partial correlation and % is the number of variables being partialed out.
Probability values for Kendall correlations are computed by treating

S

var (s)

as coming from a normal distribution when

s = ngn(xi — ;) sgn (yi — y5)

1<y

and where z; are the values of the first variable, 1; are the values of the second
variable, and the function sgn(z) is defined as

1 ifz>0
sgn (z) = ? 1£Z:8
— 1z <

The formula for the variance of s, var(s), is computed as

Vo — Vi — Vy Vi V2

var (s) = I3 +2n(n_1)+9n(n—1)(n—2)

where
vo=n(n—1)(2n+5)
vy = Zti (ti — 1) (Qtl' + 5)

The CORR Procedure /A 0DS Table Names 287

vy = pou (u; — 1) (2u; + 5)
vi= (2t (ti = 1)) Qi (ui — 1))
ve = (20t (L — 1) (4 = 2)) (2w (wi — 1) (ui — 2))

The sums are over tied groups of values where ¢; is the number of tied = values and
u; is the number of tied y values (Noether 1967). The sampling distribution of
Kendall’s partial tau-b is unknown; therefore, the probability values are not available.

The probability values for Hoeffding’s D statistic are computed using the asymptotic
distribution computed by Blum, Kiefer, and Rosenblatt (1961). The formula is

(n—1)7r4 7t
60 D+ 72

which comes from the asymptotic distribution. When the sample size is less than 10,
see the tables for the distribution of D in Hollander and Wolfe (1973).

Results: CORR Procedure

Missing Values

By default, PROC CORR uses pairwise deletion when observations contain missing
values. PROC CORR includes all nonmissing pairs of values for each pair of variables
in the statistical computations. Therefore, the correlations statistics may be based on
different numbers of observations.

If you specify the NOMISS option, PROC CORR uses listwise deletion when a value
of the BY, FREQ, VAR, WEIGHT, or WITH statement variable is missing. PROC CORR
excludes all observations with missing values from the analysis. Therefore, the number
of observations for each pair of variables is identical. The PARTIAL statement always
excludes the observations with missing values by automatically invoking NOMISS.
Listwise deletion is needed to correctly calculate Cronbach’s coefficient alpha when data
are missing. If a data set contains missing values, when you specify ALPHA use the
NOMISS option

There are two reasons to specify NOMISS and, thus, to avoid pairwise deletion.
First, NOMISS is computationally more efficient, so you use fewer computer resources.
Second, if you use the correlations as input to regression or other statistical procedures,
a pairwise-missing correlation matrix leads to several statistical difficulties. Pairwise
correlation matrices may not be nonnegative definite, and the pattern of missing values
may bias the results.

0DS Table Names

PROC CORR assigns a name to each table it creates. You can use these names to
reference the table when using the Output Delivery System (ODS) to select tables and
create output data sets. For more information, see SAS Output Delivery System User’s
Guide.

288

0DS Table Names A Chapter 12

Table 12.2 0ODS Tables Produced with the PROC CORR Statement

ODS Name Description Option

Cov Covariances Cov
Row/Column variable variance, DF (missing
values)

CronbachAlpha Coefficient Alpha ALPHA

CronbachAlphaDel Coefficient Alpha with Deleted Variable ALPHA

Csscp Corrected sums of squares and crossproducts CSSCP
Row/Column variable corrected sums of
squares (missing values)

HoeffdingCorr Hoeffding’s D statistics HOEFFDING
p values (NOPROB is not specified)
number of observations (missing values)

KendallCorr Kendall tau-b coefficients KENDALL
p values (NOPROB is not specified)
number of observations (missing values)

PearsonCorr Pearson correlations omit NOCORR or
p-value (NOPROB is not specified) PEARSON
number of observations (missing values)

SimpleStats Simple descriptive statistics omit NOSIMPLE

SpearmanCorr Spearman correlations SPEARMAN
p values (NOPROB is not specified)
number of observations (missing values)

Sscp Sums of squares and crossproducts SSCP
Row/Column variable sums of squares
(missing values)

VarInformation Variable Information default

Table 12.3 ODS Tables Produced with the PARTIAL Statement

ODS Name Description PROC CORR

statement Option

PartialCsscp Partial corrected sums of squares and CSSCP
crossproduct

PartialCov Partial covariances Cov

PartialKendallCorr Partial Kendall tau-b coefficients KENDALL

PartialPearsonCorr Partial Pearson correlations default
p values (NOPROB is not specified)

PartialSpearmanCorr Partial Spearman correlations SPEARMAN

p values (NOPROB is not specified)

The CORR Procedure /A Output 289

Output

By default, PROC CORR prints a report that includes descriptive statistics and
correlation statistics for each variable. The descriptive statistics include the number of
observations with nonmissing values, the mean, the standard deviation, the minimum,
and the maximum. PROC CORR reports the following additional descriptive statistics
when you request various correlation statistics:

sum
for Pearson correlation only

median
for nonparametric measures of association

partial variance
for Pearson partial correlation

partial standard deviation
for Pearson partial correlation.

If variable labels are available, PROC CORR labels the variables.

When you specify the CSSCP, SSCP, or COV option, the appropriate sum-of-squares
and crossproducts and covariance matrix appears at the top of the correlation report. If
the data set contains missing values, PROC CORR prints additional statistics for each
pair of variables. These statistics, calculated from the observations with nonmissing
row and column variable values, may include

SSCP(W’,'V’)

uncorrected sum-of-squares and crossproducts
USS(W’)

uncorrected sum-of-squares for the row variable

USS(V)

uncorrected sum-of-squares for the column variable
CSSCP(W’,V’)

corrected sum-of-squares and crossproducts
CSS(W)

corrected sum-of-squares for the row variable

CSS(V")

corrected sum-of-squares for the column variable
COV (W,'V’)

covariance

VAR (W)

variance for the row variable

VAR (V)

variance for the column variable

DF(W’,V’)
divisor for calculating covariance and variances.

For each pair of variables, PROC CORR always prints the correlation coefficients, the
number of observations used to calculate the coefficient, and the significance probability.
When you specify the ALPHA option, PROC CORR prints Cronbach’s coefficient alpha,
the correlation between the variable and the total of the remaining variables, and
Cronbach’s coefficient alpha using the remaining variables for the raw variables and
the standardized variables.

290 Output Data Sets A Chapter 12

Output Data Sets

When you specify the OUTP=, OUTS=, OUTK=, or OUTH= option, PROC CORR
creates an output data set containing statistics for Pearson correlation, Spearman
correlation, Kendall correlation, or Hoeffding’s D, respectively. By default, the output
data set is a special data set type (TYPE=CORR) that many SAS/STAT procedures
recognize, including PROC REG and PROC FACTOR. When you specify the NOCORR
option and the COV, CSSCP, or SSCP option, use the TYPE= data set option to change
the data set type to COV, CSSCP, or SSCP. For example, the following statement

proc corr nocorr cov outp=b(type=cov);

specifies the output data set type as COV.

PROC CORR does not print the output data set. Use PROC PRINT, PROC REPORT,
or another SAS reporting tool to print the output data set.

The output data set includes the following variables

BY variables
identifies the BY group when using a BY statement.

TYPE variable
identifies the type of observation.

NAME variable
identifies the variable that corresponds to a given row of the correlation matrix.

INTERCEP variable
identifies variable sums when specifying the SSCP option.

VAR variables
identifies the variables listed in the VAR statement.

You can use a combination of the "TYPE_ and _NAME_ variables to identify the
contents of an observation. The _NAME_ variable indicates which row of the correlation
matrix the observation corresponds to. The values of the _TYPE_ variable are

SSCP
uncorrected sums of squares and crossproducts

CSSCP
corrected sums of squares and crossproducts

cov

covariances

MEAN
mean of each variable

STD
standard deviation of each variable

N

number of nonmissing observations for each variable

SUMWGT
sum of the weights for each variable when using a WEIGHT statement

CORR
correlation statistics for each variable.

When you specify the SSCP option, the OUTP= data set includes an additional
observation that contains intercept values. When you specify the ALPHA option, the
OUTP= data set also includes observations with the following _"TYPE_ values:

The CORR Procedure /A Example 1: Computing Pearson Correlations and Other Measures of Association 291

RAWALPHA
Cronbach’s coefficient alpha for raw variables

STDALPHA
Cronbach’s coefficient alpha for standardized variables

RAWALDEL
Cronbach’s coefficient alpha for raw variables after deleting one variable

STDALDEL

Cronbach’s coefficient alpha for standardized variables after deleting one variable
RAWCTDEL

correlation between a raw variable and the total of the remaining raw variables

STDCTDEL
correlation between a standardized variable and the total of the remaining
standardized variables.

When you use a PARTIAL statement, the previous statistics are calculated after the

variables are partialed. If PROC CORR computes Pearson correlation statistics, MEAN
equals zero and STD equals the partial standard deviation associated with the partial
variance for the OUTP=, OUTK=, or OUTS= data set. Otherwise, PROC CORR assigns
missing values to MEAN and STD. Output 12.4 on page 291 lists the observations in an
OUTP= data set when the COV option and PARTIAL statement are used to compute
Pearson partial correlations. The _TYPE_ variable identifies COV, MEAN, STD, N, and
CORR as the statistical values for the variables Weight, Oxygen, and Runtime. MEAN
always equals 0, while STD is a partial standard deviation.

Output 12.4 OUTP= Data Set with Pearson Partial Correlations

Pearson Correlation Statistics Using the PARTIAL Statement 1
Output Data Set from PROC CORR
_TYPE__ _NAME Weight Ooxygen Runtime
Cov Weight 72.4374 -12.7511 2.0677
cov Oxygen -12.7511 27.0165 -5.5937
Ccov Runtime 2.0677 -5.5937 1.9451
MEAN 0.0000 0.0000 0.0000
STD 8.5110 5.1977 1.3947
N 28.0000 28.0000 28.0000
CORR Weight 1.0000 -0.2882 0.1742
CORR Ooxygen -0.2882 1.0000 -0.7716
CORR Runtime 0.1742 -0.7716 1.0000

Examples: CORR Procedure

Example 1: Computing Pearson Correlations and Other Measures of

Association

Procedure features:

292 Program A Chapter 12

PROC CORR statement options:

HOEFFDING
PEARSON
SPEARMAN

VAR statement

This example

O produces a correlation analysis with descriptive statistics, Pearson
product-moment correlation, Spearman rank-order correlation, and Hoeffding’s
measure of dependence, D

O selects the analysis variables.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the FITNESS data set. This data set contains measurements from a study of physical
fitness of 30 participants between the ages 38 and 57. Each observation represents one person.
Two observations contain missing values.

data fitness;

input Age Weight Runtime Oxygen @@;

datalines;
57 73.37 12.63 39.407 54 79.38 11.17 46.080
52 76.32 9.63 45.441 50 70.87 8.92 .
51 67.25 11.08 45.118 54 91.63 12.88 39.203
51 73.71 10.47 45.790 57 59.08 9.93 50.545
49 76.32 . 48.673 48 61.24 11.5 47.920
52 82.78 10.5 47.467 44 73.03 10.13 50.541
45 87.66 14.03 37.388 45 66.45 11.12 44.754
47 79.15 10.6 47.273 54 83.12 10.33 51.855
49 81.42 8.95 40.836 51 77.91 10.00 46.672
48 91.63 10.25 46.774 49 73.37 10.08 50.388
44 89.47 11.37 44.609 40 75.07 10.07 45.313
44 85.84 8.65 54.297 42 68.15 8.17 59.571
38 89.02 9.22 49.874 47 77.45 11.63 44.811
40 75.98 11.95 45.681 43 81.19 10.85 49.091
44 81.42 13.08 39.442 38 81.87 8.63 60.055

~e

Generate the correlation statistics. PEARSON, SPEARMAN, and HOEFFDING compute
correlation statistics. When you request nonparametric correlations, specify PEARSON to
compute Pearson correlations.

The CORR Procedure /A Output

proc corr data=fitness pearson spearman hoeffding;

Specify the analysis variables. The VAR statement specifies that Weight, Oxygen, and
Runtime are the analysis variables and specifies the order in which to print them.

var weight oxygen runtime;

Specify the title. The TITLE statement specifies a title for the report.

title 'Measures of Association for';
title2 'a Physical Fitness Study’;

run;

Output

293

294 Output A Chapter 12

The correlation report includes descriptive statistics, Pearson’s rho, Spearman’s rho, and
Hoeffding’s D. The report uses the median, instead of the sum, as a descriptive measure when
PROC CORR computes nonparametric measures of association.

Because missing data are excluded pairwise, the number of observations PROC CORR uses to
calculate the correlation coefficients varies.

Measures of Association for 1
a Physical Fitness Study

The CORR Procedure

3 Variables: Weight Ooxygen Runtime

Simple Statistics

Variable N Mean Std Dev Median Minimum Maximum
Weight 30 77.70500 8.34152 77.68000 59.08000 91.63000
oxygen 29 47.06445 5.32129 46.67200 37.38800 60.05500
Runtime 29 10.61448 1.41655 10.47000 8.17000 14.03000

Pearson Correlation Coefficients
Prob > |r| under HO: Rho=0
Number of Observations

Weight Ooxygen Runtime

Weight 1.00000 -0.19900 0.15155

0.3007 0.4326

30 29 29

oxygen -0.19900 1.00000 -0.78346

0.3007 <.0001

29 29 28

Runtime 0.15155 -0.78346 1.00000
0.4326 <.0001

29 28 29

Spearman Correlation Coefficients
Prob > |r| under HO: Rho=0
Number of Observations

Weight oxygen Runtime

Weight 1.00000 -0.13110 0.10546

0.4979 0.5861

30 29 29

Ooxygen -0.13110 1.00000 -0.68363

0.4979 <.0001

29 29 28

Runtime 0.10546 -0.68363 1.00000
0.5861 <.0001

29 28 29

The CORR Procedure /A Program 295

Measures of Association for 2
a Physical Fitness Study

The CORR Procedure
Hoeffding Dependence Coefficients

Prob > D under HO: D=0
Number of Observations

Weight Ooxygen Runtime

Weight 0.97559 -0.01789 -0.02418

<.0001 0.9775 1.0000

30 29 29

oxygen -0.01789 1.00000 0.16554

0.9775 <.0001

29 29 28

Runtime -0.02418 0.16554 1.00000
1.0000 <.0001

29 28 29

Example 2: Computing Rectangular Correlation Statistics with Missing Data

Procedure features:
PROC CORR statement options:

cov
NOSIMPLE
SSCP

VAR statement
WITH statement

This example

O suppresses descriptive statistics
O prints uncorrected sum-of-squares and crossproducts

O calculates a rectangular covariance matrix

O calculates a rectangular correlation matrix

O excludes observations with missing values using pairwise deletion (default
method).

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

296

Program A Chapter 12

Create the SETOSA data set. This data set contains measurements for four iris parts: sepal
length, sepal width, petal length, and petal width based on Fisher’s iris data (1936). Fifty iris
specimens from the species Iris setosa are used. Each observation represents one specimen.
Three observations contain missing values. The LABEL statement associates a label with each
variable.

data setosa;
input SepallLength SepalWidth PetalLength PetalWidth @@;
label sepallength='Sepal Length in mm.’
sepalwidth='Sepal Width in mm.’
petallength='Petal Length in mm.’
petalwidth='Petal Width in mm.’;
datalines;
50 33 14 02 46 34 14 03 46 36 . 02
51 33 17 05 55 35 13 02 48 31 16 02
52 34 14 02 49 36 14 01 44 32 13 02
50 35 16 06 44 30 13 02 47 32 16 02
48 30 14 03 51 38 16 02 48 34 19 02
50 30 16 02 50 32 12 02 43 30 11 .
58 40 12 02 51 38 19 04 49 30 14 02
51 35 14 02 50 34 16 04 46 32 14 02
57 44 15 04 50 36 14 02 54 34 15 04
52 41 15 . 55 42 14 02 49 31 15 02
54 39 17 04 50 34 15 02 44 29 14 02
47 32 13 02 46 31 15 02 51 34 15 02
50 35 13 03 49 31 15 01 54 37 15 02
54 39 13 04 51 35 14 03 48 34 16 02
48 30 14 01 45 23 13 03 57 38 17 03
51 38 15 03 54 34 17 02 51 37 15 04
52 35 15 02 53 37 15 02

~e

Generate the correlation statistics but suppress descriptive statistics. SSCP displays
the uncorrected sum-of-squares and crossproducts matrix and invokes PEARSON. COV
calculates the covariance matrix. NOSIMPLE suppresses descriptive statistics.

proc corr data=setosa sscp cov nosimple;

Generate a rectangular correlation matrix. The WITH statement together with the VAR
statement produces a rectangular correlation matrix. The matrix rows are PetallLLength and
PetalWidth while the matrix columns are SepalLength and SepalWidth.

var sepallength sepalwidth;
with petallength petalwidth;

Specify the title. The TITLE statement specifies a title for the report.

title ’'Fisher (1936) Iris Setosa Data’;

run;

The CORR Procedure /A QOutput 297

Output

298 Output A Chapter 12

The correlation report includes rectangular sum-of-squares and crossproducts, covariances, and
the correlation matrix using the two WITH variables and two VAR variables. The descriptive
statistics do not appear. PROC CORR uses variable labels to label matrix rows (WITH
variables).

PROC CORR calculates sum-of-squares and crossproducts and covariances statistics for each
pair of variables by using observations with nonmissing row and column variable values.

Because missing data are excluded pairwise, the number of observations PROC CORR uses to
calculate the correlation coefficients changes.

Fisher (1936) Iris Setosa Data 1
The CORR Procedure
2 With Variables: PetalLength PetalWidth

2 Variables: SepalLength SepalWidth

Sums of Squares and Crossproducts
SSCP / Row Var SS / Col Var SS

PetalLength

Petal Length in mm.

SepalLength

36214.00000
10735.00000

Sepalwidth

24756.00000
10735.00000

123793.0000 58164.0000
PetalWidth 6113.00000 4191.00000
Petal Width in mm. 355.00000 355.00000
121356.0000 56879.0000

Variances and Covariances

Covariance / Row Var Variance / Col Var Variance / DF

PetalLength

Petal Length in mm.

PetalWidth

Petal Width in mm.

SepalLength

1.270833333
2.625000000
12.33333333

48

0.911347518
1.063386525
11.80141844

47

Sepalwidth

1.363095238
2.625000000
14.60544218

48

1.048315603
1.063386525
13.62721631

47

Pearson Correlation Coefficients
Prob > |r| under HO: Rho=0
Number of Observations

Sepal Sepal

Length wWidth

PetallLength 0.22335 0.22014
Petal Length in mm. 0.1229 0.1285
49 49

PetalWidth 0.25726 0.27539
Petal Width in mm. 0.0775 0.0582

48 48

The CORR Procedure /A Program 299

Example 3: Computing Cronbach’s Coefficient Alpha

Procedure features:
PROC CORR statement options:
ALPHA

NOCORR
NOMISS

This example
o computes Cronbach’s coefficient alpha for a multiple-item mixed-rating scale
O suppresses Pearson correlation statistics

O excludes observations with missing values using listwise deletion.

This example does not examine the correlation matrix but assumes that all items are
positively correlated. Normally, you want to examine the correlation and covariance
matrices to make sure that all variables are positively correlated. Positive correlation is
needed because items measure a common entity. You exclude negatively correlated
items from the analysis because they do not measure the same construct.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the PYSCHDAT data set. This data set contains responses to a questionnaire
assessing the mental stability of 30 randomly selected female psychiatric patients.* Each
observation represents one patient. The scale includes seven items. The LABEL statement
provides a label for each item. Seven observations contain missing values.

data psychdat;
input Age Anxiety Depression Sleep Sex Life WeightChange @@;

label age = ’'age in years’
anxiety = ’anxiety level’
depression = 'depression level’
sleep = 'normal sleep (l=y 2=n)’
sex = ’sexual (1l=n 2=y)’
life = ’'suicidal (1l=n 2=y)’
weightchange = 'recent weight change’;

datalines;
39 2 2 2 2 2 4.9 41 2 2 2 2 2 2.2

* Data are from Assignments in Applied Statistics by Simon Conrad. Copyright © 1989 by John Wiley & Sons, Inc. Reprinted
with permission from the publisher.

300 Program A Chapter 12

42 3 3 . 2 2 4.0 30 2 2 2 2 2 -2.6
35 2 1 1 2 1 -0.3 44 . 1 2 1 1 0.9
31 2 2 . 2 2 -1.5 39 3 2 2 2 1 3.5
35 3 2 2 2 2 -1.2 33 2 2 2 2 2 0.8
38 2 1 1 1 1 -1.9 31 2 2 2 . 1 5.5
40 3 2 2 2 1 2.7 44 2 2 2 2 2 4.4
43 3 2 2 2 2 3.2 32 1 1 1 2 1 -1.5
32 1 2 2 . 1 -1.9 43 4 3 2 2 2 8.3
46 3 2 2 2 2 3.6 30 2 2 2 2 1 1.4
34 3 3 . 2 2 . 37 3 2 2 2 1 .

35 2 1 2 2 1 -1.0 45 2 2 2 2 2 6.5
35 2 2 2 2 1 -2.1 31 2 2 2 2 1 -0.4
32 2 2 2 2 1 -1.9 44 2 2 2 2 2 3.

40 3 3 2 2 2 4.5 42 3 3 2 2 2 4.2

~e

Generate Cronbach’s alpha for all the analysis variables. Suppress Pearson
correlation statistics. ALPHA computes Cronbach’s alpha and invokes PEARSON. NOCORR
suppresses Pearson correlation statistics. NOMISS excludes observations with missing values.
Omitting a VAR statement causes PROC CORR to use all numeric variables.

proc corr data=psychdat alpha nocorr nomiss;

Specify the title. The TITLE statement specifies a title for the report.

titlel ‘Mental Stability Scale for Female Psychiatric Patients’;

run;

Output

The CORR Procedure /A QOutput 301

The correlation report includes descriptive statistics and Cronbach’s coefficient alpha, the
correlation between the variable and the total of the remaining variables, and Cronbach’s
coefficient alpha using the remaining variables for both the raw variables and the standardized
variables. These calculations use the 23 observations without missing values.

Because the variances of some variables vary widely, you use the standardized scores to
estimate reliability. The overall standardized alpha of .85 is an acceptable reliability coefficient.
This is greater than Nunnally’s suggested value of .70.

The standardized alpha provides information on how each item reflects the reliability of the
scale. Notice that the standardized alpha decreases after removing Depression from the
construct. Therefore, this variable appears strongly correlated with other items in the scale.
The standardized alpha increases slightly after removing Sex from the construct. Thus,
removing this variable from the scale makes the construct more reliable.

Mental

7 Variables:

Variable

Age

Anxiety
Depression
Sleep

Sex

Life
WeightChange

Variable

Age

Anxiety
Depression
Sleep

Sex

Life
WeightChange

Stability Scale for Female Psychiatric Patients 1
The CORR Procedure
Age Anxiety Depression Sleep Sex

Life WeightChange

Simple Statistics

N Mean Std Dev Sum
23 37.91304 5.13378 872.00000
23 2.34783 0.64728 54.00000
23 1.95652 0.56232 45.00000
23 1.86957 0.34435 43.00000
23 1.95652 0.20851 45.00000
23 1.56522 0.50687 36.00000
23 1.78261 3.06381 41.00000

Simple Statistics

Minimum Maximum Label
30.00000 46.00000 age in years
1.00000 4.00000 anxiety level
1.00000 3.00000 depression level
1.00000 2.00000 normal sleep (l=y 2=n)
1.00000 2.00000 sexual (1l=n 2=y)
1.00000 2.00000 suicidal (1l=n 2=y)
-2.60000 8.30000 recent weight change

Cronbach Coefficient Alpha

Variables Alpha

Raw 0.627754
Standardized 0.845339

302

Example 4: Storing Partial Correlations in an Output Data Set A Chapter 12

Cronbach Coefficient Alpha with Deleted Variable

Raw Variables Standardized Variables
Deleted Correlation Correlation
Variable with Total Alpha with Total Alpha
Age 0.742614 0.557515 0.546856 0.832207

Cronbach Coefficient Alpha with Deleted Variable

Deleted
Variable Label
Age age in years
Mental Stability Scale for Female Psychiatric Patients 2

The CORR Procedure

Cronbach Coefficient Alpha with Deleted Variable

Raw Variables Standardized Variables

Deleted Correlation Correlation

Variable with Total Alpha with Total Alpha
Anxiety 0.577129 0.600944 0.590851 0.825643
Depression 0.554983 0.608273 0.770956 0.797610
Sleep 0.378930 0.630242 0.618367 0.821482
Sex 0.155115 0.642017 0.333368 0.862537
Life 0.622207 0.607333 0.625338 0.820421
WeightChange 0.843939 0.341006 0.749261 0.801087

Cronbach Coefficient Alpha with Deleted Variable

Deleted

Variable Label

Anxiety anxiety level
Depression depression level
Sleep normal sleep (1l=y 2=n)
Sex sexual (1l=n 2=y)

Life suicidal (1l=n 2=y)
WeightChange recent weight change

Example 4: Storing Partial Correlations in an Output Data Set

Procedure features:
PROC CORR statement options:
Ccov
KENDALL
NOSIMPLE
OUTP=
SPEARMAN

The CORR Procedure /A Program 303

PARTIAL statement
VAR statement
Data set: FITNESS on page 292

This example

suppresses descriptive statistics

calculates three types of partial correlation coefficients

calculates a partial covariance matrix

excludes observations with missing values using listwise deletion
selects the analysis variables

O 0o o o o o

creates an output data set with Pearson correlation statistics.

See “Output Data Sets” on page 290 for a listing of the output data set.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=120 pagesize=60;

Generate the correlation statistics and create the output data set FITCORR.
SPEARMAN and KENDALL request correlation statistics. COV calculates the covariance
matrix and invokes PEARSON. NOSIMPLE suppresses descriptive statistics. OUT= creates the
FITCORR data set that contains Pearson correlation statistics.

proc corr data=fitness spearman kendall cov nosimple
outp=fitcorr;

Specify the analysis variable. The VAR statement specifies that Weight, Oxygen, and
Runtime are the analysis variables and specifies the order in which to print them.

var weight oxygen runtime;

Generate the partial correlations. The PARTIAL statement calculates partial correlations
using Age as the controlling variable.

partial age;

Specify the labels for the report. The LABEL statement associates a label with each
variable for the duration of the PROC step.

304 Output A Chapter 12

label age = 'Age of subject’
weight = 'Wt in kg’
runtime = ‘1.5 mi in minutes’
oxygen = '02 use’;

Specify the title. The TITLE statement specifies a title for the report.

titlel ‘Partial Correlations for a Fitness and Exercise Study’;

run;

Output

The CORR Procedure /A Output

305

The report includes a partial covariance matrix and partial correlations for Pearson’s rho, Spearman’s rho, and
Kendall’s tau-b. The p-values for Kendall’s tau-b are not available. Because observations with missing data are
excluded, PROC CORR uses 28 observations to calculate correlation coefficients.

Weight
Oxygen
Runtime

Partial Correlations for a Fitness and Exercise Study

The CORR Procedure

1 Partial Variables: Age
3 Variables: Weight Oxygen Runtime
Partial Covariance Matrix, DF = 26
Weight Oxygen
Wt in kg 72.43742055 -12.75113194
02 use -12.75113194 27.01654904

1.5 mi in minutes 2.06766763 -5.59370556

Pearson Partial Correlation Coefficients, N = 28
Prob > |r| under HO: Partial Rho=0

Weight Oxygen Runtime
Weight 1.00000 -0.28824 0.17419
Wt in kg 0.1448 0.3849
oxygen -0.28824 1.00000 -0.77163
02 use 0.1448 <.0001
Runtime 0.17419 -0.77163 1.00000
1.5 mi in minutes 0.3849 <.0001

Spearman Partial Correlation Coefficients, N = 28

Prob > |r| under HO: Partial Rho=0

Weight
Weight 1.00000
Wt in kg
oxygen -0.16407
02 use 0.4135
Runtime 0.08708
1.5 mi in minutes 0.6658

Oxygen Runtime

-0.16407 0.08708

0.4135 0.6658

1.00000 -0.67112

0.0001

-0.67112 1.00000
0.0001

Kendall Partial Tau b Correlation Coefficients, N = 28

Weight
Weight 1.00000
Wt in kg
oxygen -0.09021
02 use
Runtime 0.02854

1.5 mi in minutes

Oxygen Runtime
-0.09021 0.02854
1.00000 -0.52158
-0.52158 1.00000

Runtime

2.06766763
-5.59370556
1.94512451

306 References A Chapter 12

References

Blum, J.R., Kiefer, J., and Rosenblatt, M. (1961), "Distribution Free Tests of
Independence Based on the Sample Distribution Function," Annals of
Mathematical Statistics, 32, 485—498.

Conover, W.J. (1998), Practical Nonparametric Statistics, Third Edition, New York:
John Wiley & Sons, Inc.

Cronbach, L.J. (1951), "Coefficient Alpha and the Internal Structure of Tests,"
Psychometrika, 16, 297-334.

Fisher, R.A. (1936), "The Use of Multiple Measurements in Taxonomic Problems,"
Annals of Eugenics, 7, 179-188.

Hoeffding, W. (1948), "A Non-Parametric Test of Independence," Annals of
Mathematical Statistics, 19, 546-557.

Hollander, M. and Wolfe, D. (1999), Nonparametric Statistical Methods, Second
Edition, New York: John Wiley & Sons, Inc.

Knight, W.E. (1966), "A Computer Method for Calculating Kendall’s Tau with
Ungrouped Data," Journal of the American Statistical Association, 61, 436—439.

Moore, D.S. (2000), Statistics: Concepts and Controversies, 5th Edition, New York:
W.H. Freeman & Company.

Noether, G.E. (1967), Elements of Nonparametric Statistics, New York: John Wiley &
Sons, Inc.

Novick, M.R. (1967), "Coefficient Alpha and the Reliability of Composite
Measurements," Psychometrika, 32, 1-13.

Nunnally, J. C. and Bernstein, I.H. (1994), Psychometric theory, Third Edition, New
York: McGraw-Hill Companies.

Ott, R. L. and Longnecker, M.T. (2000), An Introduction to Statistical Methods and
Data Analysis, 5th Edition, Belmont: Wadsworth Publishing Company.

SAS Institute Inc., "Measuring the Internal Consistency of a Test, Using PROC CORR
to Compute Cronbach’s Coefficient Alpha," SAS Communications, 20:4, TT2-TT5.

Spector, P.E. (1992). Summated Rating Scale Construction: An Introduction,
Newbury Park: Sage.

307

CHAPTER

13

The CPORT Procedure

Overview: CPORT Procedure 307
Syntax: PROC CPORT 308
PROC CPORT Statement 308
EXCLUDE Statement 313
SELECT Statement 314
TRANTAB Statement 315
Concepts: CPORT Procedure 316
Transporting Password-Protected Data Sets 316
Results: CPORT Procedure 317
Data Control Block Characteristics for Mainframe Environments 317
Examples: CPORT Procedure 317
Example 1: Exporting Multiple Catalogs 317
Example 2: Exporting Individual Catalog Entries 318
Example 3: Exporting a Single SAS Data Set 319
Example 4: Applying a Translation Table 320
Example 5: Exporting Entries Based on Modification Date 321

Overview:

CPORT Procedure

The CPORT procedure writes SAS data sets, SAS catalogs, or SAS data libraries to
sequential file formats (transport files). Use PROC CPORT with the CIMPORT
procedure to move files from one environment to another. Transport files are sequential
files that each contain a SAS data library, a SAS catalog, or a SAS data set in transport
format. The transport format that PROC CPORT writes is the same for all
environments and for many releases of SAS. In PROC CPORT, export means to put a
SAS data library, a SAS catalog, or a SAS data set into transport format. PROC
CPORT exports catalogs and data sets, either singly or as a SAS data library. PROC
CIMPORT restores (imports) the transport file to its original form as a SAS catalog,
SAS data set, or SAS data library.

Only PROC CIMPORT can read the transport files that PROC CPORT creates. For
information on the transport files that the transport engine creates, see the section on
SAS files in SAS Language Reference: Concepts.

PROC CPORT also converts SAS files, which means that it changes the format of a
SAS file from the format appropriate for one version of SAS to the format appropriate
for another version. For example, you can use PROC CPORT and PROC CIMPORT to
move files from earlier releases of SAS to more recent releases. In such cases, PROC
CIMPORT automatically converts the contents of the transport file as it imports it.

PROC CPORT produces no output (other than the transport files), but it does write
notes to the SAS log.

To export and import files, follow these steps:

308 Syntax: PROC CPORT A Chapter 13

1 Use PROC CPORT to export the SAS files that you want to transport.
2 If you are changing operating environments, move the transport file to the new
machine by using either communications software or a magnetic medium.

Note: If you use communications software to move the transport file, be sure that
it treats the transport file as a binary file and that it modifies neither the
attributes nor the contents of the file. A

3 Use PROC CIMPORT to translate the transport file into the format appropriate
for the new operating environment or release.

Syntax: PROC CPORT

PROC CPORT source-type=libref | <libref.>member-name<option(s)>;

EXCLUDE SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></
ENTRYTYPE=entry-type>;

SELECT SAS file(s) | catalog entry(s) </ MEMTYPE=mtype></
ENTRYTYPE=entry-type>;

TRANTAB NAME=translation-table-name
<option(s)>;

PROC CPORT Statement

PROC CPORT source-type=libref | <libref.>member-name<option(s)>;

To do this Use this option

Identify the transport file

Specify the transport file to write to FILE=
Direct the output from PROC CPORT to a TAPE
tape

Select files to export

Export copies of all data sets or catalog AFTER=
entries that have a modification date equal to
or later than the date you specify

Exclude specified entry types from the EET=
transport file

Include specified entry types in the transport ET=
file

Specify whether to export all generations of a GENERATION=
data set

The CPORT Procedure /A PROC CPORT Statement

309

To do this Use this option
Specify that only data sets, only catalogs, or MEMTYPE=
both, be moved when a library is exported

Control the contents of the transport file
Suppress the conversion of displayed ASIS
character data to transport format
Control the exportation of integrity CONSTRAINT
constraints
Copy the created and modified date and time = DATECOPY
to the transport file
Control the exportation of indexes with INDEX
indexed SAS data sets
Suppress the compression of binary zeros and NOCOMPRESS
blanks in the transport file
Write all alphabetic characters to the OUTTYPE=
transport file in uppercase UPCASE
Translate specified characters from one TRANSLATE
ASCII or EBCDIC value to another

Export SAS/AF PROGRAM and SCL entries without NOEDIT

edit capability when you import them

Specify that exported catalog entries contain compiled NOSRC

SCL code, but not the source code

Specify a libref associated with a SAS data library OUTLIB=

Required Arguments

source-type=libref | <libref.>member-name
identifies the type of file to export and specifies the catalog, SAS data set, or SAS
data library to export.

source-type
identifies the file(s) to export as a single catalog, as a single SAS data set, or as
the members of a SAS data library. The source-type argument can be one of the

following:
CATALOG | CAT | C
DATA | DS | D

LIBRARY | LIB | L

libref | <libref.>member-name
specifies the specific catalog, SAS data set, or SAS data library to export. If
source-type is CATALOG or DATA, you can specify both a libref and a member
name. If the libref is omitted, PROC CPORT uses the default library as the libref,
which is usually the WORK library. If the source-type argument is LIBRARY,
specify only a libref. If you specify a library, PROC CPORT exports only data sets
and catalogs from that library. You cannot export other types of files.

310

PROC CPORT Statement A Chapter 13

Options

AFTER=date
exports copies of all data sets or catalog entries that have a modification date later
than or equal to the date you specify. The modification date is the most recent date
when the contents of the data set or catalog entry changed. Specify date as a SAS
date literal or as a numeric SAS date value.

Tip: You can determine the modification date of a catalog entry by using the
CATALOG procedure.

Featured in: Example 5 on page 321.

ASIS
suppresses the conversion of displayed character data to transport format. Use this
option when you move files that contain DBCS (double-byte character set) data from
one operating environment to another if both operating environments use the same
type of DBCS data.

Interaction: The ASIS option invokes the NOCOMPRESS option.

Interaction: You cannot use both the ASIS option and the OUTTYPE= options in
the same PROC CPORT step.

CONSTRAINT=YES | NO
controls the exportation of integrity constraints that have been defined on a data set.
When you specify CONSTRAINT=YES, all types of integrity constraints are exported
for a library; only general integrity constraints are exported for a single data set.
When you specify CONTRAINT=NO, indexes created without integrity constraints
are ported, but neither integrity constraints nor any indexes created with integrity
constraints are ported. For more information on integrity constraints, see the section
on SAS files in SAS Language Reference: Concepts.

Alias: CON=

Default: YES

Interaction: You cannot specify both CONSTRAINT= and INDEX= in the same
PROC CPORT step.

Interaction: If you specify INDEX=NO, no integrity constraints are exported.

DATECOPY
copies the SAS internal date and time when the SAS file was created and the date
and time when it was last modified to the resulting transport file. Note that the
operating environment date and time are not preserved.

Restriction: DATECOPY can be used only when the destination file uses the V8 or
V9 engine.

Tip: You can alter the file creation date and time with the DTC= option on the
MODIFY statement“MODIFY Statement” on page 366 in a PROC DATASETS step.

EET=(etype(s))
excludes specified entry types from the transport file. If etype is a single entry type,
then you can omit the parentheses. Separate multiple values with a space.

Interaction: You cannot use both the EET= option and the ET= option in the same
PROC CPORT step.

ET=(etype(s))
includes specified entry types in the transport file. If etype is a single entry type,
then you can omit the parentheses. Separate multiple values with a space.

Interaction: You cannot use both the EET= option and the ET= option in the same
PROC CPORT step.

The CPORT Procedure /A PROC CPORT Statement 311

FILE=fileref | ’filename’
specifies a previously defined fileref or the filename of the transport file to write to. If
you omit the FILE= option, then PROC CPORT writes to the fileref SASCAT, if
defined. If the fileref SASCAT is not defined, PROC CPORT writes to SASCAT.DAT
in the current directory.

Note: The behavior of PROC CPORT when SASCAT is undefined varies from one
operating environment to another. For details, see the SAS documentation for your
operating environment. A

Featured in: All examples.

GENERATION=YES | NO
specifies whether to export all generations of a SAS data set. To export only the base
generation of a data set, specify GENERATION=NO in the PROC CPORT statement.
To export a specific generation number, use the GENNUM= data set option when you
specify a data set in the PROC CPORT statement. For more information on
generation data sets, see SAS Language Reference: Concepts.

Note: PROC CIMPORT imports all generations of a data set that are present in
the transport file. It deletes any previous generation set with the same name and
replaces it with the imported generation set, even if the number of generations does
not match. A
Alias: GEN=
Default: YES for libraries; NO for single data sets

INDEX=YES | NO
specifies whether to export indexes with indexed SAS data sets.
Default: YES

Interaction: You cannot specify both INDEX= and CONSTRAINT= in the same
PROC CPORT step.

Interaction: If you specify INDEX=NO, no integrity constraints are exported.
INTYPE=DBCS-type
specifies the type of DBCS data stored in the SAS files to be exported. Double-byte

character set (DBCS) data uses up to two bytes for each character in the set.
DBCS-type must be one of the following values:

IBM | HITAC | for OS/390

FACOM
IBM for VSE
DEC | SJIS for OpenVMS

PCIBM | SJIS for OS/2

Restriction The INTYPE= option is allowed only if SAS is built with Double-Byte
Character Set (DBCS) extensions. Because these extensions require significant
computing resources, there is a special distribution for those sites that require it.
An error is reported if this option is used at a site for which DBCS extensions are
not enabled.

Default: If the INTYPE= option is not used, the DBCS type defaults to the value of
the SAS system option DBCSTYPE=.

Interaction: Use the INTYPE= option in conjunction with the OUTTYPE= option to
change from one type of DBCS data to another.

Interaction: The INTYPE= option invokes the NOCOMRPESS option.

Interaction: You cannot use the INTYPE= option and the ASIS option in the same
PROC CPORT step.

312 PROC CPORT Statement A Chapter 13

Tip: You can set the value of the SAS system option DBCSTYPE= in your
configuration file.

MEMTYPE=mtype
restricts the type of SAS file that PROC CPORT writes to the transport file.
MEMTYPE-= restricts processing to one member type. Values for mt¢ype can be

ALL
both catalogs and data sets

CATALOG | CAT
catalogs

DATA | DS
SAS data sets
Alias: MT=
Default: ALL
Featured in: Example 1 on page 317.
NOCOMPRESS
suppresses the compression of binary zeros and blanks in the transport file.
Alias: NOCOMP

Default: By default, PROC CPORT compresses binary zeros and blanks to conserve
space.

Interaction: The ASIS, INTYPE=, and OUTTYPE= options invoke the
NOCOMPRESS option.

Note: Compression of the transport file does not alter the flag in each catalog and
data set that indicates whether the original file was compressed. A

NOEDIT
exports SAS/AF PROGRAM and SCL entries without edit capability when you
import them.
The NOEDIT option produces the same results as when you create a new catalog
to contain SCL code by using the MERGE statement with the NOEDIT option in the
BUILD procedure of SAS/AF software.

Note: The NOEDIT option affects only SAS/AF PROGRAM and SCL entries. It
does not affect FSEDIT SCREEN or FSVIEW FORMULA entries. A

Alias: NEDIT

NOSRC
specifies that exported catalog entries contain compiled SCL code but not the source
code.

The NOSRC option produces the same results as when you create a new catalog to
contain SCL code by using the MERGE statement with the NOSOURCE option in
the BUILD procedure of SAS/AF software.

Alias: NSRC

OUTLIB=libref

specifies a libref associated with a SAS data library. If you specify the OUTLIB=

option, PROC CIMPORT is invoked automatically to re-create the input data library,

data set, or catalog in the specified library.

Alias: OUT=

Tip: Use the OUTLIB= option when you change SAS files from one DBCS type to
another within the same operating environment if you want to keep the original
data intact.

The CPORT Procedure A EXCLUDE Statement 313

OUTTYPE=UPCASE
writes all displayed characters to the transport file and to the OUTLIB= file in
uppercase.
Interaction: The OUTTYPE= option invokes the NOCOMPRESS option.

TAPE
directs the output from PROC CPORT to a tape.

Default: The output from PROC CPORT is sent to disk.
TRANSLATE=(translation-list)
translates specified characters from one ASCII or EBCDIC value to another. Each
element of translation-list has the form
ASClII-value-1 TO ASCII-value-2

EBCDIC-value-1 TO EBCDIC-value-2

You can use hexadecimal or decimal representation for ASCII values. If you use
the hexadecimal representation, values must begin with a digit and end with an x.
Use a leading zero if the hexadecimal value begins with an alphabetic character.

For example, to translate all left brackets to left braces, specify the TRANSLATE=
option as follows (for ASCII characters):

translate=(5bx to 7bx)

The following example translates all left brackets to left braces and all right
brackets to right braces:

translate=(5bx to 7bx 5dx to 7dx)

EXCLUDE Statement

Excludes specified files or entries from the transport file.

Tip: There is no limit to the number of EXCLUDE statements you can use in one
invocation of PROC CPORT.

Interaction: You can use either EXCLUDE statements or SELECT statements in a PROC
CPORT step, but not both.

EXCLUDE SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></
ENTRYTYPE=entry-type>;

Required Arguments

SAS file(s) | catalog entry(s)
specifies either the name(s) of one or more SAS files or the names of one or more
catalog entries to be excluded from the transport file. Specify SAS filenames when
you export a SAS data library; specify catalog entry names when you export an
individual SAS catalog. Separate multiple filenames or entry names with a space.
You can use shortcuts to list many like-named files in the EXCLUDE statement. For
more information, see “Shortcuts for Specifying Lists of Variable Names” on page 24.

Options

314

SELECT Statement A Chapter 13

ENTRYTYPE=entry-type
specifies a single entry type for the catalog entries listed in the EXCLUDE statement.
See SAS Language Reference: Concepts for a complete list of catalog entry types.

Restriction: ENTRYTYPE= is valid only when you export an individual SAS
catalog.

Alias: ETYPE=, ET=

MEMTYPE=mtype
specifies a single member type for the SAS file(s) listed in the EXCLUDE statement.
Valid values are CATALOG or CAT, DATA, or ALL. If you do not specify the
MEMTYPE-= option in the EXCLUDE statement, then processing is restricted to
those member types specified in the MEMTYPE= option in the PROC CPORT
statement.

You can also specify the MEMTYPE= option, enclosed in parentheses, immediately
after the name of a file. In parentheses, MEMTYPE= identifies the type of the file
name that just precedes it. When you use this form of the option, it overrides the
MEMTYPE= option that follows the slash in the EXCLUDE statement, but it must
match the MEMTYPE= option in the PROC CPORT statement:

Restriction: MEMTYPE= is valid only when you export a SAS data library.

Restriction: If you specify a member type for MEMTYPE= in the PROC CPORT
statement, it must agree with the member type that you specify for MEMTYPE=
in the EXCLUDE statement.

Alias: MTYPE=, MT=
Default: If you do not specify MEMTYPE= in the PROC CPORT statement or in
the EXCLUDE statement, the default is MEMTYPE=ALL.

SELECT Statement

Includes specified files or entries in the transport file.
Tip: There is no limit to the number of SELECT statements you can use in one
invocation of PROC CPORT.

Interaction: You can use either EXCLUDE statements or SELECT statements in a PROC
CPORT step, but not both.

Featured in: Example 2 on page 318

SELECT SAS file(s) | catalog entry(s)</ MEMTYPE=mtype> </
ENTRYTYPE=entry-type> ;

Required Arguments

SAS file(s) | catalog entry(s)
specifies either the name(s) of one or more SAS files or the names of one or more
catalog entries to be included in the transport file. Specify SAS filenames when you
export a SAS data library; specify catalog entry names when you export an
individual SAS catalog. Separate multiple filenames or entry names with a space.
You can use shortcuts to list many like-named files in the SELECT statement. For
more information, see “Shortcuts for Specifying Lists of Variable Names” on page 24.

The CPORT Procedure /A TRANTAB Statement 315

Options

ENTRYTYPE=entry-type
specifies a single entry type for the catalog entries listed in the SELECT statement.
See SAS Language Reference: Concepts for a complete list of catalog entry types.

Restriction: ENTRYTYPE= is valid only when you export an individual SAS
catalog.

Alias: ETYPE=, ET=

MEMTYPE=mtype
specifies a single member type for the SAS file(s) listed in the SELECT statement.
Valid values are CATALOG or CAT, DATA, or ALL. If you do not specify the
MEMTYPE-= option in the SELECT statement, then processing is restricted to those
member types specified in the MEMTYPE= option in the PROC CPORT statement.

You can also specify the MEMTYPE= option, enclosed in parentheses, immediately

after the name of a member. In parentheses, MEMTYPE= identifies the type of the
member name that just precedes it. When you use this form of the option, it
overrides the MEMTYPE= option that follows the slash in the SELECT statement,
but it must match the MEMTYPE= option in the PROC CPORT statement.

Restriction: MEMTYPE= is valid only when you export a SAS data library.

Restriction: If you specify a member type for MEMTYPE= in the PROC CPORT
statement, it must agree with the member type that you specify for MEMTYPE=
in the SELECT statement.

Alias: MTYPE=, MT=

Default: If you do not specify MEMTYPE= in the PROC CPORT statement or in
the SELECT statement, the default is MEMTYPE=ALL.

TRANTAB Statement

Specifies translation tables for characters in catalog entries you export.

Tip: You can specify only one table for each TRANTAB statement, but there is no limit
to the number of TRANTAB statements you can use in one invocation of PROC CPORT.
Featured in: Example 4 on page 320.

See also: Chapter 47, “The TRANTAB Procedure,” on page 1409

TRANTAB NAME=translation-table-name
<option(s)>;

Required Arguments

NAME-=¢ranslation-table-name
specifies the name of the translation table to apply to the character data in the SAS
file you export. The ¢ranslation-table-name is the name of a catalog entry in either
the SASUSER.PROFILE catalog or the SASHELP.HOST catalog. PROC CPORT
prints an error message in the SAS log if it cannot find the translation table.

316

Concepts: CPORT Procedure A Chapter 13

Note: The translation takes place before PROC CPORT writes to the transport file. A

Options

OPT=

specifies how to apply the translation table. Use one of the following values for the
OPT= option:

DISP
applies the translation table to all the DISPLAY window text.

SRC
applies the translation table to all the SCL text.

(DISP SRC)
applies the translation table to all the DISPLAY window text and SOURCE
window text.

Default: PROC CPORT applies all options to the specified translation table.

TYPE=(target-list)

applies the translation table only to the specified targets. If the target-list is a single
target, then you can omit the parentheses. The target-list can be one of the following

types:

etype-list
applies the translation table only to the entries with the catalog entry type you
specify.

CATDESC
applies the translation table to the description of each exported catalog entry.

DATASET
applies the translation table to the observations, the data set label, and the
variable labels in each exported data set.

Default: PROC CPORT applies the translation table to all entries and data sets in
the specified catalog.

Featured in: Example 4 on page 320.

Concepts: CPORT Procedure

Transporting Password-Protected Data Sets

For password-protected data sets, the password(s) are applied to the destination data

set when it is imported. If the data set is transported as part of a library, it is not
necessary to supply the password. If the data set is transported singly, you must supply
the read password. If you omit the password in the PROC CPORT step, SAS prompts
you for the password. If the target SAS engine does not support passwords, then the
import will fail. For example, the following SAS code transports a password-protected
data set called WORK.ONE:

proc cport data=one(read=hithere) file='bin’;

The CPORT Procedure /A Example 1: Exporting Multiple Catalogs 317

Results: CPORT Procedure

Data Control Block Characteristics for Mainframe Environments

A common problem when you create or import a transport file under the OS/390
environment is a failure to specify the correct Data Control Block (DCB) characteristics.
When you reference a transport file, you must specify the following DCB characteristics:

LRECL 80
BLKSIZE 8000
RECFM FB

Note: A BLKSIZE value of less than 8000 may be more efficient for your storage

device in some cases. The BLKSIZE value should be an exact multiple of the LRECL
value. A

Another common problem can occur if you use communications software to move files
from another environment to OS/390. In some cases, the transport file does not have the
proper DCB characteristics when it arrives on 0S/390. If the communications software
does not allow you to specify file characteristics, try the following approach for OS/390:

1 Create a file under 0S/390 with the correct DCB characteristics and initialize the
file.

2 Move the transport file from the other environment to the newly created file under
0S/390 using binary transfer.

Examples: CPORT Procedure

Example 1: Exporting Multiple Catalogs

Procedure features:
PROC CPORT statement options:

FILE=
MEMTYPE=

This example shows how to use PROC CPORT to export entries from all of the SAS
catalogs in the SAS data library you specify.

318 Program A Chapter 13

Program

Specify the library reference for the SAS data library that contains the source files to
be exported and the file reference to which the output transport file is written. The
LIBNAME statement assigns a libref for the SAS data library. The FILENAME statement
assigns a fileref and any operating environment options for file characteristics for the transport
file that PROC CPORT creates.

libname source 'SAS-data-library’;
filename tranfile 'transport-file’
host-option(s)-for-file-characteristics;

Create the transport file. The PROC CPORT step executes on the operating environment
where the source library is located. MEMTYPE=CATALOG writes all SAS catalogs in the source
library to the transport file.

proc cport library=source file=tranfile memtype=catalog;

run;

SAS Log

NOTE: Proc CPORT begins to transport catalog SOURCE.FINANCE

NOTE: The catalog has 5 entries and its maximum logical record length is 866.
NOTE: Entry LOAN.FRAME has been transported.

NOTE: Entry LOAN.HELP has been transported.

NOTE: Entry LOAN.KEYS has been transported.

NOTE: Entry LOAN.PMENU has been transported.

NOTE: Entry LOAN.SCL has been transported.

NOTE: Proc CPORT begins to transport catalog SOURCE.FORMATS

NOTE: The catalog has 2 entries and its maximum logical record length is 104.
NOTE: Entry REVENUE.FORMAT has been transported.

NOTE: Entry DEPT.FORMATC has been transported.

Example 2: Exporting Individual Catalog Entries

Procedure features:
PROC CPORT statement options:

FILE=
SELECT statement

This example shows how to use PROC CPORT to export individual catalog entries,
rather than all of the entries in a catalog.

Program

The CPORT Procedure /\ Program 319

Assign library references. The LIBNAME and FILENAME statements assign a libref for the
source library and a fileref for the transport file, respectively.

libname source 'SAS-data-library’;
filename tranfile 'transport-file’

host-option(s)-for-file-characteristics;

Write an entry to the transport file. SELECT writes only the LOAN.SCL entry to the
transport file for export.

proc cport catalog=source.finance file=tranfile;
select loan.scl;

run;

SAS Log

NOTE: Proc CPORT begins to transport catalog SOURCE.FINANCE
NOTE: The catalog has 5 entries and its maximum logical record length is 866.
NOTE: Entry LOAN.SCL has been transported.

Example 3: Exporting a Single SAS Data Set

Procedure features:
PROC CPORT statement option:

FILE=

This example shows how to use PROC CPORT to export a single SAS data set.

Program

Assign library references. The LIBNAME and FILENAME statements assign a libref for the
source library and a fileref for the transport file, respectively.

libname source 'SAS-data-library’;
filename tranfile 'transport-file’

host-option(s)-for-file-characteristics;

Specify the type of file that you are exporting. The DATA= specification in the PROC
CPORT statement tells the procedure that you are exporting a SAS data set rather than a
library or a catalog.

proc cport data=source.times file=tranfile;

run;

320 SAS Log A Chapter 13

SAS Log

Proc CPORT begins to transport data set SOURCE.TIMES
The data set contains 2 variables and 2 observations.

Logical record length is 16.
Transporting data set index information.

Example 4: Applying a Translation Table

Procedure features:
PROC CPORT statement option:

FILE=
TRANTAB statement option:
TYPE=

This example shows how to apply a customized translation table to the transport file
before PROC CPORT exports it. For this example, assume that you have already
created a customized translation table called TTABLE].

Program

Assign library references. The LIBNAME and FILENAME statements assign a libref for the
source library and a fileref for the transport file, respectively.

libname source 'SAS-data-library’;
filename tranfile 'transport-file’

host-option(s)-for-file-characteristics;

Apply the translation specifics. The TRANTAB statement applies the translation that you
specify with the customized translation table TTABLE1. TYPE= limits the translation to
FORMAT entries.

proc cport catalog=source.formats file=tranfile;
trantab name=ttablel type=(format);

run;

SAS Log

: Proc CPORT begins to transport catalog SOURCE.FORMATS
: The catalog has 2 entries and its maximum logical record length is 104.

: Entry REVENUE.FORMAT has been transported.
: Entry DEPT.FORMATC has been transported.

The CPORT Procedure /A SAS Log 321

Example 5: Exporting Entries Based on Modification Date

Procedure features:
PROC CPORT statement options:

AFTER=
FILE=

This example shows how to use PROC CPORT to transport only the catalog entries
with modification dates equal to or later than the date you specify in the AFTER=
option.

Program

Assign library references. The LIBNAME and FILENAME statements assign a libref for the
source library and a fileref for the transport file, respectively.

libname source 'SAS-data-library’;
filename tranfile 'transport-file’

host-option(s)-for-file-characteristics;

Specify the catalog entries to be written to the transport file. AFTER= specifies that only
catalog entries with modification dates on or after September 9, 1996, should be written to the
transport file.

proc cport catalog=source.finance file=tranfile
after='09sepl996’'d;
run;

SAS Log

PROC CPORT writes messages to the SAS log to inform you that it began the export process for
all the entries in the specified catalog. However, PROC CPORT wrote only the entries
LOAN.FRAME and LOAN.HELP in the FINANCE catalog to the transport file because only
those two entries had a modification date equal to or later than September 9, 1996. That is, of
all the entries in the specified catalog, only two met the requirement of the AFTER= option.

NOTE: Proc CPORT begins to transport catalog SOURCE.FINANCE

NOTE: The catalog has 5 entries and its maximum logical record length is 866.
NOTE: Entry LOAN.FRAME has been transported.

NOTE: Entry LOAN.HELP has been transported.

322

323

CHAPTER

14

The GV2VIEW Procedure

Information about the CV2VIEW Procedure 323

Information ahout the CV2VIEW Procedure

See: For complete documentation of the CV2VIEW procedure, see SAS/ACCESS for
Relational Databases: Reference.

324

325

CHAPTER

15

The DATASETS Procedure

Overview: DATASETS Procedure 326
Notes 328
Syntax: PROC DATASETS 329
PROC DATASETS Statement 330
AGE Statement 333
APPEND Statement 335
AUDIT Statement 340
CHANGE Statement 342
CONTENTS Statement 344
COPY Statement 341
DELETE Statement 353
EXCHANGE Statement 356
EXCLUDE Statement 357
FORMAT Statement 358
IC CREATE Statement 359
IC DELETE Statement 361
IC REACTIVATE Statement 362
INDEX CENTILES 362
INDEX CREATE Statement 363
INDEX DELETE Statement 364
INFORMAT Statement 365
LABEL Statement 366
MODIFY Statement 366
RENAME Statement 370
REPAIR Statement 311
SAVE Statement 373
SELECT Statement 374
Concepts: DATASETS Procedure 375
Procedure Execution 375
RUN-Group Processing 375
Error Handling 376
Password Errors 377
Forcing a RUN Group with Errors to Execute 317
Ending the Procedure 377
Using Passwords with the DATASETS Procedure 377
Restricting Member Types for Processing 378
In the PROC DATASETS Statement 378
In Subordinate Statements 318
Member Types 379
Restricting Processing for Generation Data Sets 380
Results: DATASETS Procedure 381

326 Overview: DATASETS Procedure A Chapter 15

Directory Listing to the SAS Log 381
Directory Listing as SAS Output 381
PROC DATASETS and the Output Delivery System (ODS) 382
Procedure Output 382
Data Set Attributes 382
Engine and Operating Environment-Dependent Information 384
Alphabetic List of Variables and Attributes 384
Alphabetic List of Indexes and Attributes 385
Sort Information 385
Output Data Sets 386
The OUT= Data Set 386
The OUT2= Data Set 391
Examples: DATASETS Procedure 392
Example 1: Manipulating SAS Files 392
Example 2: Saving SAS Files from Deletion 397
Example 3: Modifying SAS Data Sets 398
Example 4: Describing a SAS Data Set 400
Example 5: Concatenating Two SAS Data Sets 403
Example 6: Aging SAS Data Sets 405

Overview: DATASETS Procedure

The DATASETS procedure is a utility procedure that manages your SAS files. With
PROC DATASETS, you can

O copy SAS files from one SAS library to another
rename SAS files

repair SAS files

delete SAS files

list the SAS files that are contained in a SAS library

list the attributes of a SAS data set, such as the date when the data was last
modified, whether the data is compressed, whether the data is indexed, and so on

O 0o o o o

manipulate passwords on SAS files

append SAS data sets

modify attributes of SAS data sets and variables within the data sets
create and delete indexes on SAS data sets

create and manage audit files for SAS data sets

O 0o o o o o

create and delete integrity constraints on SAS data sets.

For example, the following DATASETS procedure

1 copies all data sets from the CONTROL library to the HEALTH library
2 lists the contents of the HEALTH library

3 deletes the SYNDROME data set from the HEALTH library

4 changes the name of the PRENAT data set to INFANT.

The SAS log is shown in Output 15.1 on page 327.

libname control ’'SAS-data-library-1';
libname health ’'SAS-data-library-2';

The DATASETS Procedure /A Overview

proc datasets memtype=data;
copy in=control out=health;

run;

proc datasets library=health memtype=data details;
delete syndrome;
change prenat=infant;

run;

quit;

: DATASETS Procedure

327

328 Notes A Chapter 15

Output 15.1 Log from PROC DATASETS

59 proc datasets library=health memtype=data details;

Directory

Libref HEALTH

Engine V9

Physical Name external-file

File Name external-file

Member Obs, Entries File
Name Type or Indexes Vars Label Size Last Modified
1 ALL DATA 23 17 13312 29JAN2002:08:06:46
2 BODYFAT DATA 1 2 5120 29JAN2002:08:06:46
3 CONFOUND DATA 8 4 5120 29JAN2002:08:06:46
4 CORONARY DATA 39 4 5120 29JAN2002:08:06:46
5 DRUG1 DATA 6 2 JAN95 Data 5120 29JAN2002:08:06:46
6 DRUG2 DATA 13 2 MAY95 Data 5120 29JAN2002:08:06:46
7 DRUG3 DATA 11 2 JUL95 Data 5120 29JAN2002:08:06:46
8 DRUG4 DATA 7 2 JAN92 Data 5120 29JAN2002:08:06:46
9 DRUGS5 DATA 1 2 JUL92 Data 5120 29JAN2002:08:06:46
10 GROUP DATA 148 11 25600 29JAN2002:08:06:46
11 MLSCL DATA 32 4 Multiple Sclerosis Data 5120 29JAN2002:08:06:46
12 NAMES DATA 7 4 5120 29JAN2002:08:06:46
13 OXYGEN DATA 31 7 9216 29JAN2002:08:06:46
14 PERSONL DATA 148 11 25600 29JAN2002:08:06:46
15 PHARM DATA 6 3 Sugar Study 5120 29JAN2002:08:06:46
16 POINTS DATA 6 6 5120 29JAN2002:08:06:46
17 PRENAT DATA 149 6 17408 29JAN2002:08:06:46
18 RESULTS DATA 10 5 5120 29JAN2002:08:06:46
19 SLEEP DATA 108 6 9216 29JAN2002:08:06:46
20 SYNDROME DATA 46 8 9216 29JAN2002:08:06:46
21 TENSION DATA 4 3 5120 29JAN2002:08:06:46
22 TEST2 DATA 15 5 5120 29JAN2002:08:06:46
23 TRAIN DATA 7 2 5120 29JAN2002:08:06:47
24 VISION DATA 16 3 5120 29JAN2002:08:06:47
25 WEIGHT DATA 83 13 California Results 13312 29JAN2002:08:06:47
26 WGHT DATA 83 13 California Results 13312 29JAN2002:08:06:47
60 delete syndrome;
61 change prenat=infant;

62 run;

NOTE: Deleting HEALTH.SYNDROME (memtype=DATA).

NOTE: Changing the name HEALTH.PRENAT to HEALTH.INFANT (memtype=DATA).
63 quit;

Notes

0 Although the DATASETS procedure can perform some operations on catalogs,
generally the CATALOG procedure is the best utility to use for managing catalogs.
For documentation of PROC CATALOG, see “Overview: CATALOG Procedure” on
page 143.

0 The term member often appears as a synonym for SAS file. If you are unfamiliar
with SAS files and SAS libraries, see “SAS Files Concepts” in SAS Language
Reference: Concepts.

o PROC DATASETS cannot work with sequential data libraries.

The DATASETS Procedure /A Syntax: PROC DATASETS

329

Syntax: PROC DATASETS

Tip:

Tip

Reminder:

Supports RUN-group processing.

. Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.

Statements” on page 18 for a list.

PROC DATASETS <option(s)>;

AGE current-name related-SAS-file(s)
</ <ALTER=alter-password>
<MEMTYPE=mtype>>;

APPEND BASE=<libref.>SAS-data-set
<APPENDVER=V6>
<DATA=<Iibref.>SAS-data-set>
<FORCE>;

AUDIT SAS-file <(SAS-password)>;
INITIATE;
<LOG < BEFORE_IMAGE=YES |NO>
<DATA_IMAGE=YES |NO>
<ERROR_IMAGE=YES |NO>>;
<USER_VAR variable-1 <... variable-n>>;

AUDIT SAS-file <(<SAS-password> <GENNUM-= integer>)>;
SUSPEND | RESUME | TERMINATE;

CHANGE old-name-1=new-name-1
<...old-name-n=new-name-n >
</ <ALTER=alter-password>

<GENNUM=ALL | integer>
<MEMTYPE=mtype>>;

CONTENTS<option(s)>;

COPY OUT=libref-1
<CLONE |[NOCLONE>
<CONSTRAINT=YES | NO>
<DATECOPY>
<FORCE>
<IN=libref-2>
<INDEX=YES |[NO>
<MEMTYPE=(mtype(s))>
<MOVE <ALTER=alter-password>>;
EXCLUDE SAS-file(s) < / MEMTYPE=mtype>;
SELECT SAS-file(s)
</ <ALTER=alter-password>
<MEMTYPE= mtype>>;

DELETE SAS-file(s)
</ <ALTER=alter-password>
<GENNUM=ALL | HIST | REVERT | integer>
<MEMTYPE=mtype>>;

EXCHANGE name-1=other-name-1
<...name-n=other-name-n>

See Chapter 3, “Statements with the Same Function in Multiple Procedures,”
on page 53 for details. You can also use any global statements as well. See “Global

330 PROC DATASETS Statement A Chapter 15

</ <ALTER=alter-password>
<MEMTYPE=mtype> >;

MODIFY SAS-file <(option(s))>
</ <DTC=SAS-date-time>
<GENNUM=integer>
<MEMTYPE=mtype>>;
FORMAT variable-list-1 <format-1>
<...variable-list-n <format-n>>;
IC CREATE <constraint-name=> constraint
<MESSAGE="message-string’ <MSGTYPE=USER>>;
IC DELETE constraint-name(s)| _ALL_;
IC REACTIVATE foreign-key-name REFERENCES libref;
INDEX CENTILES index(s)
</ <REFRESH>
<UPDATECENTILES= ALWAYS | NEVER | integer>>;
INDEX CREATE index-specification(s)
</ <NOMISS>
<UNIQUE>
<UPDATECENTILES=ALWAYS | NEVER | integer>>;
INDEX DELETE index(s) | _ALL_;
INFORMAT variable-list-1 <informat-1>
<...variable-list-n <informat-n>>;
LABEL variable-1=<’label-1’|’ >
<...variable-n=<’label-n’|’’ >>;
RENAME old-name-1=new-name-1
<...old-name-n=new-name-n>;
REPAIR SAS-file(s)
</ <ALTER=alter-password>
<GENNUM=integer>
<MEMTYPE=mtype>>;

SAVE SAS-file(s) </ MEMTYPE=mtype>;

PROC DATASETS Statement

PROC DATASETS <option(s)>;

To do this Use this option

Specify the procedure input library LIBRARY=

Provide alter access to any alter-protected SAS ALTER=
file in the SAS data library

Include information in the log about the number DETAILS | NODETAILS
of observations, number of variables, number of
indexes, and data set labels

Force a RUN group to execute even when there FORCE
are errors

The DATASETS Procedure /A PROC DATASETS Statement

331

To do this Use this option
Force an append operation FORCE

Restrict processing for generation data sets GENNUM=
Delete SAS files KILL

Restrict processing to a certain type of SAS file MEMTYPE=
Suppress the printing of the directory NOLIST
Suppress error processing NOWARN
Provide read, write, or alter access PW=

Provide read access READ=

Options

ALTER=alter-password

provides the alter password for any alter-protected SAS files in the SAS data library.
See also: “Using Passwords with the DATASETS Procedure” on page 377

DETAILS | NODETAILS

determines whether the following columns are written to the log:

Obs, Entries, or Indexes

gives the number of observations for SAS files of type AUDIT, DATA, and VIEW;

the number of entries for type CATALOG; and the number of files of type INDEX

that are associated with a data file, if any. If SAS cannot determine the number of

observations in a SAS data set, the value in this column is set to missing. For

example, in a very large data set, if the number of observations or deleted

observations exceeds the number that can be stored in a double-precision integer,

the count will show as missing. The value for type CATALOG is the total number

of entries. For other types, this column is blank.

Tip: The value for files of type INDEX includes both user-defined indexes and
indexes created by integrity constraints. To view index ownership and attribute

information, use PROC DATASETS with the CONTENTS statement and the
OUT2 option.

Vars
gives the number of variables for types AUDIT, DATA and VIEW. If SAS cannot
determine the number of variables in the SAS data set, the value in this column is
set to missing. For other types, this column is blank.

Label

contains the label associated with the SAS data set. This column prints a label

only for the type DATA.

The DETAILS option affects output only when a directory is specified and requires
read access to all read-protected SAS files in the SAS data library. If you do not
supply the read password, the directory listing contains missing values for the
columns produced by the DETAILS option.

Default: If neither DETAILS or NODETAILS is specified, the default is the system
option setting. The default system option setting is NODETAILS.

Tip: If you are using the SAS windowing environment and specify the DETAILS
option for a library that contains read-protected SAS files, a requestor window

332 PROC DATASETS Statement A Chapter 15

prompts you for each read password that you do not specify in the PROC
DATASETS statement. Therefore, you may want to assign the same read
password to all SAS files in the same SAS data library.

Featured in: Example 1 on page 392

FORCE
performs two separate actions:

o forces a RUN group to execute even if errors are present in one or more
statements in the RUN group. See “RUN-Group Processing” on page 375 for a
discussion of RUN-group processing and error handling.

o forces all APPEND statements to concatenate two data sets even when the
variables in the data sets are not exactly the same. The APPEND statement
drops the extra variables and issues a warning message. Without the FORCE
option, the procedure issues an error message and stops processing if you try to
perform an append operation with two SAS data sets whose variables are not
exactly the same. Refer to “APPEND Statement” on page 335 for more
information on the FORCE option.

GENNUM=ALL | HIST | REVERT | integer
restricts processing for generation data sets. Valid values are as follows:

ALL
for subordinate CHANGE and DELETE statements, refers to the base version and
all historical versions in a generation group.

HIST
for a subordinate DELETE statement, refers to all historical versions, but excludes
the base version in a generation group.

REVERT |0
for a subordinate DELETE statement, refers to the base version in a generation
group and changes the most current historical version, if it exists, to the base
version.

integer
for subordinate AUDIT, CHANGE, MODIFY, DELETE, and REPAIR statements,
refers to a specific version in a generation group. Specifying a positive number is
an absolute reference to a specific generation number that is appended to a data set
name; that is, gennum=2 specifies MYDATA#002. Specifying a negative number is
a relative reference to a historical version in relation to the base version, from the
youngest to the oldest; that is, gennum=-1 refers to the youngest historical version.

See also: “Restricting Processing for Generation Data Sets” on page 380
See also: “Understanding Generation Data Sets” in SAS Language Reference:
Concepts

KILL
deletes all SAS files in the SAS data library that are available for processing. The
MEMTYPE-= option subsets the member types that the statement deletes.

CAUTION:
The KILL option deletes the SAS files immediately after you submit the statement. ~

LIBRARY-=libref
names the library that the procedure processes. This library is the procedure input
library.
Aliases: DDNAME=, DD=, LIB=
Default: WORK or USER. See “Temporary and Permanent SAS Data Sets” on page
16 for more information on the WORK and USER libraries.

The DATASETS Procedure /A AGE Statement 333

Restriction: A SAS library that is accessed via a sequential engine (such as a tape
format engine) cannot be specified as the value of the LIBRARY= option.

Featured in: Example 1 on page 392

MEMTYPE=(mtype(s))
restricts processing to one or more member types and restricts the listing of the data
library directory to SAS files of the specified member types. For example, the
following PROC DATASETS statement limits processing to SAS data sets in the
default data library and limits the directory listing in the SAS log to SAS files of
member type DATA:

proc datasets memtype=data;

Aliases: MTYPE=, MT=
Default: ALL
See also: “Restricting Member Types for Processing” on page 378

NODETAILS
See the description of DETAILS on page 331.

NOLIST
suppresses the printing of the directory of the SAS files in the SAS log.

Featured in: Example 3 on page 398

Note: If you specify the ODS RTF destination, PROC DATASETS output will go
to both the SAS log and the ODS output area. The NOLIST option will suppress
output to both. To see the output only in the SAS log, use the ODS EXCLUDE
statement by specifying the member directory as the exclusion. A

NOWARN
suppresses the error processing that occurs when a SAS file that is specified in a
SAVE, CHANGE, EXCHANGE, REPAIR, DELETE, or COPY statement or listed as
the first SAS file in an AGE statement is not in the procedure input library. When an
error occurs and the NOWARN option is in effect, PROC DATASETS continues
processing that RUN group. If NOWARN is not in effect, PROC DATASETS stops
processing that RUN group and issues a warning for all operations except DELETE,
for which it does not stop processing.

PW= password
provides the password for any protected SAS files in the SAS data library. PW= can
act as an alias for READ=, WRITE=, or ALTER=.

See also: “Using Passwords with the DATASETS Procedure” on page 377
READ=read-password

provides the read-password for any read-protected SAS files in the SAS data library.

See also: “Using Passwords with the DATASETS Procedure” on page 377

AGE Statement

Renames a group of related SAS files in a library.

Featured in: Example 6 on page 405

AGE current-name related-SAS-file(s)

334

AGE Statement A Chapter 15

</ <ALTER=alter-password>
<MEMTYPE=mtype>>;

Required Arguments

current-name
is a SAS file that the procedure renames. current-name receives the name of the first
name in related-SAS-file(s).

related-SAS-file(s)
is one or more SAS files in the SAS data library.

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files named in the AGE
statement. Because an AGE statement renames and deletes SAS files, you need alter
access to use the AGE statement. You can use the option either in parentheses after
the name of each SAS file or after a forward slash.

See also: “Using Passwords with the DATASETS Procedure” on page 377

MEMTYPE=mtype
restricts processing to one member type. All of the SAS files that you name in the
AGE statement must be the same member type. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.

Aliases: MTYPE=, MT=

Default: If you do not specify MEMTYPE= in the PROC DATASETS statement, the
default is DATA.

See also: “Restricting Member Types for Processing” on page 378

Details

0 The AGE statement renames current-name to the name of the first name in
related-SAS-file(s), renames the first name in related-SAS-file(s) to the second
name in related-SAS-file(s), and so on until it changes the name of the next-to-last
SAS file in related-SAS-file(s) to the last name in related-SAS-file(s). The AGE
statement then deletes the last file in related-SAS-file(s).

o If the first SAS file named in the AGE statement does not exist in the SAS data
library, PROC DATASETS stops processing the RUN group containing the AGE
statement and issues an error message. The AGE statement does not age any of
the related-SAS-file(s). To override this behavior, use the NOWARN option in the
PROC DATASETS statement.

If one of the related-SAS-file(s) does not exist, the procedure prints a warning
message to the SAS log but continues to age the SAS files that it can.

o If you age a data set that has an index, the index continues to correspond to the
data set.

0 You can age only entire generation groups. For example, if data sets A and B have
generation groups, then the following statement deletes generation group B and
ages (renames) generation group A to the name B:

The DATASETS Procedure /A APPEND Statement 335

age a b;

For example, suppose the generation group for data set A has 3 historical versions
and the generation group for data set B has 2 historical versions. Then aging A to
B has this effect:

Old Name Version New Name Version
A base B base

A 1 B 1

A 2 B 2

A 3 B 3

B base is deleted

B 1 is deleted

B 2 is deleted

APPEND Statement

Adds the observations from one SAS data set to the end of another SAS data set.

Reminder: You can use data set options with the BASE= and DATA= options. See “Data
Set Options” on page 17 for a list. You can also use any global statements as well. See
“Global Statements” on page 18.

Requirement: The BASE= data set must be a member of a SAS library that supports
update processing.

Default: If the BASE= data set is accessed through a SAS server and if no other user
has the data set open at the time the APPEND statement begins processing, the
BASE= data set defaults to CNTLLEV=MEMBER (member-level locking). When this
happens, no other user can update the file while the data set is processed.

Tip: If a failure occurs during processing, the data set is marked as damaged and is
reset to its pre-append condition at the next REPAIR statement. If the data set has an
index, the index is not updated with each observation but is updated once at the end.
(This is Version 7 and later behavior, as long as APPENDVER=VG6 is not set.)

Featured in: Example 5 on page 403

APPEND BASE=<libref. >SAS-data-set
<APPENDVER=V6>
<DATA=<libref.>SAS-data-set>
<FORCE>;

Required Arguments

BASE=<libref.> SAS-data-set
names the data set to which you want to add observations.

libref

336 APPEND Statement A Chapter 15

specifies the library that contains the SAS data set. If you omit the libref, the
default is the libref for the procedure input library. If you are using PROC
APPEND, the default for libref is either WORK or USER.

SAS-data-set

names a SAS data set. If the APPEND statement cannot find an existing data set

with this name, it creates a new data set in the library. That is, you can use the

APPEND statement to create a data set by specifying a new data set name in the

BASE= argument.

The BASE= data set is the current SAS data set after all append operations
regardless of whether you are creating a new data set or appending to an existing
data set.

Alias: OUT=

Featured in: Example 5 on page 403

Options

APPENDVER=V6
uses the Version 6 behavior for appending observations to the BASE= data set, which
is to append one observation at a time. Beginning in Version 7, to improve
performance, the default behavior changed so that all observations are appended
after the data set is processed.

See also: “Appending to an Indexed Data Set” on page 338
DATA=<libref.> SAS-data-set

names the SAS data set containing observations that you want to append to the end
of the SAS data set specified in the BASE= argument.

libref
specifies the library that contains the SAS data set. If you omit libref, the default
is the libref for the procedure input library. The DATA= data set can be from any
SAS data library, but you must use the two-level name if the data set resides in a
library other than the procedure input library.

SAS-data-set
names a SAS data set. If the APPEND statement cannot find an existing data set
with this name, it stops processing.

Alias: NEW=
Default: the most recently created SAS data set, from any SAS data library
See also: “Appending with Generation Groups” on page 339
Featured in: Example 5 on page 403
FORCE

forces the APPEND statement to concatenate data sets when the DATA= data set
contains variables that either

O are not in the BASE= data set
O do not have the same type as the variables in the BASE= data set
O are longer than the variables in the BASE= data set.

See also: “Appending to Data Sets with Different Variables” on page 339

See also: “Appending to Data Sets That Contain Variables with Different
Attributes” on page 339

Featured in: Example 5 on page 403

The DATASETS Procedure /A APPEND Statement 337

Tip: You can use the GENNUM= data set option to append to or from a specific
version in a generation group. Here are some examples:

/* appends historical version to base A */
proc datasets;
append base=a
data=a (gennum=2);

/* appends current version of A to historical version */
proc datasets;
append base=a (gennum=1)
data=a;

Restricting the Observations That Are Appended

You can use the WHERE= data set option with the DATA= data set in order to
restrict the observations that are appended. Likewise, you can use the WHERE
statement in order to restrict the observations from the DATA= data set. The WHERE
statement has no effect on the BASE= data set. If you use the WHERE= data set option
with the BASE= data set, WHERE= has no effect.

CAUTION:
For an existing BASE= data set: If there is a WHERE statement on the BASE= data
set, it will take effect only if the WHEREUP= option is set to YES. 2

CAUTION:
For the non-existent BASE= data set: If there is a WHERE statement on the
non-existent BASE= data set, regardless of the WHEREUP option setting, you use
the WHERE statement. A

Note: You cannot append a data set to itself by using the WHERE= data set
option. A

Choosing between the SET Statement and the APPEND Statement

If you use the SET statement in a DATA step to concatenate two data sets, SAS must
process all the observations in both data sets to create a new one. The APPEND
statement bypasses the processing of data in the original data set and adds new
observations directly to the end of the original data set. Using the APPEND statement
can be more efficient than using a SET statement if

0 the BASE= data set is large

o all variables in the BASE= data set have the same length and type as the
variables in the DATA= data set and if all variables exist in both data sets.

Note: You can use the CONTENTS statement to see the variable lengths and
types. A

The APPEND statement is especially useful if you frequently add observations to a
SAS data set (for example, in production programs that are constantly appending data
to a journal-type data set).

Appending Password-Protected SAS Data Sets

In order to use the APPEND statement, you need read access to the DATA= data set
and write access to the BASE= data set. To gain access, use the READ= and WRITE=
data set options in the APPEND statement the way you would use them in any other
SAS statement, which is in parentheses immediately after the data set name. When
you are appending password-protected data sets, use the following guidelines:

338

APPEND Statement A Chapter 15

o If you do not give the read password for the DATA= data set in the APPEND
statement, by default the procedure looks for the read password for the DATA=
data set in the PROC DATASETS statement. However, the procedure does not
look for the write password for the BASE= data set in the PROC DATASETS
statement. Therefore, you must specify the write password for the BASE= data set
in the APPEND statement.

o If the BASE= data set is read-protected only, you must specify its read password in
the APPEND statement.

Appending to a Compressed Data Set

You can concatenate compressed SAS data sets. Either or both of the BASE= and
DATA= data sets can be compressed. If the BASE= data set allows the reuse of space
from deleted observations, the APPEND statement may insert the observations into the
middle of the BASE= data set to make use of available space.

For information on the COMPRESS= and REUSE= data set and system options, see
SAS Language Reference: Dictionary.

Appending to an Indexed Data Set

Beginning with Version 7, the behavior of appending to an indexed data set changed
to improve performance.

0 In Version 6, when you appended to an indexed data set, the index was updated
for each added observation. Index updates tend to be random; therefore, disk I/O
could have been high.

O Currently, SAS does not update the index until all observations are added to the
data set. After the append, SAS internally sorts the observations and inserts the
data into the index in sequential order, which reduces most of the disk I/O and
results in a faster append method.

The current method is used by default when the following requirements are met;
otherwise, the Version 6 method is used:

o The BASE= data set is open for member-level locking.
0 The BASE= data set does not contain referential integrity constraints.

0 The BASE= data set is not accessed using the Cross Environment Data Access
(CEDA) facility.

0 The BASE= data set is not using a WHERE= data set option.

To display information in the SAS log about the append method that is being used,
you can specify the MSGLEVEL= system option as follows:

options msglevel=i;

Either a message displays if the fast-append method is in use or a message or messages
display as to why the fast-append method is not in use.

The current append method initially adds observations to the BASE= data set
regardless of the restrictions that are determined by the index. For example, a variable
that has an index that was created with the UNIQUE option does not have its values
validated for uniqueness until the index is updated. Then, if a nonunique value is
detected, the offending observation is deleted from the data set. This means that after
observations are appended, some of them may subsequently be deleted.

For a simple example, consider that the BASE= data set has ten observations
numbered from 1 to 10 with a UNIQUE index for the variable ID. You append a data
set that contains five observations numbered from 1 to 5, and observations 3 and 4 both
contain the same value for ID. The following occurs

The DATASETS Procedure /A APPEND Statement 339

1 After the observations are appended, the BASE= data set contains 15 observations
numbered from 1 to 15.

2 SAS updates the index for ID, validates the values, and determines that
observations 13 and 14 contain the same value for ID.

3 SAS deletes one of the observations from the BASE= data set, resulting in 14
observations that are numbered from 1 to 15. For example, observation 13 is
deleted. Note that you cannot predict which observation will be deleted, because
the internal sort may place either observation first. (In Version 6, you could
predict that observation 13 would be added and observation 14 would be rejected.)

If you do not want the current behavior (which could result in deleted observations)
or if you want to be able to predict which observations are appended, request the
Version 6 append method by specifying the APPENDVER=V6 option:

proc datasets;
append base=a data=b appendver=v6;

run;

Note: In Version 6, deleting the index and then recreating it after the append could
improve performance. The current method may eliminate the need to do that. However,
the performance depends on the nature of your data. 2

Appending to Data Sets with Different Variables

If the DATA= data set contains variables that are not in the BASE= data set, use the
FORCE option in the APPEND statement to force the concatenation of the two data
sets. The APPEND statement drops the extra variables and issues a warning message.

If the BASE= data set contains a variable that is not in the DATA= data set, the
APPEND statement concatenates the data sets, but the observations from the DATA=
data set have a missing value for the variable that was not present in the DATA= data
set. The FORCE option is not necessary in this case.

Appending to Data Sets That Contain Variables with Different Attributes

If a variable has different attributes in the BASE= data set than it does in the
DATA= data set, the attributes in the BASE= data set prevail.

If the length of a variable is longer in the DATA= data set than in the BASE= data
set, or if the same variable is a character variable in one data set and a numeric
variable in the other, use the FORCE option. Using FORCE has these consequences:

O The length of the variables in the BASE= data set takes precedence. SAS
truncates values from the DATA= data set to fit them into the length that is
specified in the BASE= data set.

O The type of the variables in the BASE= data set takes precedence. The APPEND
statement replaces values of the wrong type (all values for the variable in the
DATA= data set) with missing values.

Appending Data Sets That Contain Integrity Constraints

If the DATA= data set contains integrity constraints and the BASE= data set does
not exist, the APPEND statement copies the general constraints. Note that the
referential constraints are not copied. If the BASE= data set exists, the APPEND action
copies only observations.

Appending with Generation Groups

You can use the GENNUM-= data set option to append to a specific version in a
generation group. Here are examples:

340

AUDIT Statement A Chapter 15

SAS Statements Result

proc datasets; appends historical version B#002 to base A
append base=a
data=b (gennum=2) ;

proc datasets; appends historical version B#002 to

append base=a(gennum=2) historical version A#002
data=b (gennum=2) ;

Using the APPEND Procedure instead of the APPEND Statement

The only difference between the APPEND procedure and the APPEND statement in
PROC DATASETS, is the default for /ibref in the BASE= and DATA= arguments. For
PROC APPEND, the default is either WORK or USER. For the APPEND statement,
the default is the libref of the procedure input library.

System Failures

If a system failure or some other type of interruption occurs while the procedure is
executing, the append operation may not be successful; it is possible that not all,
perhaps none, of the observations will be added to the BASE= data set. In addition, the
BASE= data set may suffer damage. The APPEND operation performs an update in
place, which means that it does not make a copy of the original data set before it begins
to append observations. If you want to be able to restore the original observations, you
can initiate an audit trail for the base data file and select to store a before-update
image of the observations. Then you can write a DATA step to extract and reapply the
original observations to the data file. For information about initiating an audit trail,
see the PROC DATASETS “AUDIT Statement” on page 340.

AUDIT Statement

Initiates and controls event logging to an audit file as well as suspends, resumes, or terminates
event logging in an audit file.

See also: “Understanding an Audit Trail” in SAS Language Reference: Concepts

Tip: The AUDIT statement takes one of two forms, depending on whether you are
initiating the audit trail or suspending, resuming, or terminating event logging in an
audit file.

AUDIT SAS-file <(SAS-password)>;

INITIATE;
<LOG <BEFORE_IMAGE=YES |[NO>
<DATA_IMAGE=YES |NO>
<ERROR_IMAGE=YES |[NO>>;
<USER_VAR variable-1 <... variable-n>>;

AUDIT SAS-file <(<SAS-password> <GENNUM-= integer>)>;
SUSPEND | RESUME | TERMINATE;

The DATASETS Procedure /A AUDIT Statement 3

Required Arguments and Statements

SAS-file
specifies the SAS data file in the procedure input library that you want to audit.

INITIATE
creates an audit file that has the same name as the SAS data file and a data set type
of AUDIT. The audit file logs additions, deletions, and updates to the SAS data file.
You must initiate an audit trail before you can suspend, resume, or terminate it.

Options

SAS-password
specifies the password for the SAS data file, if one exists. The parentheses are
required.

GENNUM-=integer
specifies that the SUSPEND, RESUME, or TERMINATE action be performed on the
audit trail of a generation file. You cannot initiate an audit trail on a generation file.
Valid values for GENNUM-= are integer, which is a number that references a specific
version from a generation group. Specifying a positive number is an absolute
reference to a specific generation number that is appended to a data set’s name; that
is, gennum=2 specifies MYDATA#002. Specifying a negative number is a relative
reference to a historical version in relation to the base version, from the youngest to
the oldest; that is, gennum=-1 refers to the youngest historical version. Specifying 0,
which is the default, refers to the base version. The parentheses are required.

LOG
specifies the audit settings. The audit settings are

BEFORE_IMAGE=YES|NO
controls the storage of before-update record images.

DATA_IMAGE=YES|NO
controls the storage of after-update record images.

ERROR_IMAGE=YES |NO
controls the storage of unsuccessful after-update record images.
When the LOG statement is omitted, the default behavior is to log all images.

USER_VAR variable-1 < ... variable-n>
defines optional variables to be logged in the audit file with each update to an
observation. The syntax for defining variables is

USER_VAR variable-name-1 <$> <length> <LABEL="variable-label’ >
<... variable-name-n <$> <length> <LABEL="variable-label’> >

where

variable-name
is a name for the variable.

$

indicates that the variable is a character variable.

length
specifies the length of the variable. If a length is not specified, the default is 8.

LABEL="variable-label’

342 CHANGE Statement A Chapter 15

specifies a label for the variable.
You can define attributes such as format and informat for the user variables in the
data file by using the PROC DATASETS MODIFY statement.

SUSPEND
suspends event logging to the audit file, but does not delete the audit file.

RESUME
resumes event logging to the audit file, if it was suspended.

TERMINATE
terminates event logging and deletes the audit file.

Creating an Audit File

The following example creates the audit file MYLIB.MYFILE.AUDIT to log updates
to the data file MYLIB.MYFILE.DATA, storing all available record images:

proc datasets library=MyLib;
audit MyFile (alter=MyPassword);
initiate;

run;
The following example creates the same audit file but stores only error record images:

proc datasets library=MyLib;
audit MyFile (alter=MyPassword);
initiate;
log data_image=NO before_image=NO;

run;

CHANGE Statement

Renames one or more SAS files in the same SAS data library.
Featured in: Example 1 on page 392

CHANGE old-name-1=new-name-1
<...old-name-n=new-name-n >
</ <ALTER=alter-password>
<GENNUM=ALL | integer>
<MEMTYPE=mtype>>;

Required Arguments

old-name=new-name
changes the name of a SAS file in the input data library. old-name must be the name
of an existing SAS file in the input data library.

Featured in: Example 1 on page 392

Options

The DATASETS Procedure /A CHANGE Statement 343

ALTER=alter-password
provides the alter password for any alter-protected SAS files named in the CHANGE
statement. Because a CHANGE statement changes the names of SAS files, you need
alter access to use the CHANGE statement for new-name. You can use the option
either in parentheses after the name of each SAS file or after a forward slash.

See also: “Using Passwords with the DATASETS Procedure” on page 377

GENNUM-=ALL |integer
restricts processing for generation data sets. You can use the option either in
parentheses after the name of each SAS file or after a forward slash. Valid values are

ALL | 0
refers to the base version and all historical versions of a generation group.

integer
refers to a specific version from a generation group. Specifying a positive number
is an absolute reference to a specific generation number that is appended to a data
set’s name; that is, gennum=2 specifies MYDATA#002. Specifying a negative
number is a relative reference to a historical version in relation to the base
version, from the youngest to the oldest; that is, gennum=-1 refers to the youngest
historical version.
For example, the following statements change the name of version A#003 to base B:

proc datasets;
change A=B / gennum=3;

proc datasets;
change A(gennum=3)=B;

The following CHANGE statement produces an error:

proc datasets;
change A(gennum=3)=B(gennum=3);

See also: “Restricting Processing for Generation Data Sets” on page 380
See also: “Understanding Generation Data Sets” in SAS Language Reference:
Concepts

MEMTYPE=mtype
restricts processing to one member type. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.
Aliases: MTYPE=, MT=
Default: If you do not specify MEMTYPE= in the PROC DATASETS statement, the
default is MEMTYPE=ALL.

See also: “Restricting Member Types for Processing” on page 378

Details

0 The CHANGE statement changes names by the order that the old-names occur in
the directory listing, not in the order that you list the changes in the CHANGE
statement.

o If the old-name SAS file does not exist in the SAS data library, PROC DATASETS
stops processing the RUN group containing the CHANGE statement and issues an
error message. To override this behavior, use the NOWARN option in the PROC
DATASETS statement.

o If you change the name of a data set that has an index, the index continues to
correspond to the data set.

344

CONTENTS Statement A Chapter 15

CONTENTS Statement

Describes the contents of one or more SAS data sets and prints the directory of the SAS data

library.

Reminder: You can use data set options with the DATA=, OUT=, and OUT2= options.
See “Data Set Options” on page 17 for a list. You can use any global statements as well.

See “Global Statements” on page 18.
Featured in: Example 4 on page 400

CONTENTS <option(s)>;

To do this Use this option
Specify the input data set DATA=

Specify the name for an output data set OUT=

Specify the name of an output data set to contain OoUT2=

information about indexes and integrity constraints

Include information in the output about the number
of observations, number of variables, number of
indexes, and data set labels

DETAILS | NODETAILS

Print a list of the SAS files in the SAS data library DIRECTORY
Print the length of a variable’s informat or format FMTLEN
Restrict processing to one or more types of SAS files MEMTYPE=
Suppress the printing of individual files NODS
Suppress the printing of the output NOPRINT
Print a list of the variables by their position in the VARNUM
data set

Print abbreviated output SHORT
Print centiles information for indexed variables CENTILES

Options

CENTILES

prints centiles information for indexed variables.
The following additional fields are printed in the default report of PROC

CONTENTS when the CENTILES option is selected and an index exists on the data
set. Note that the additional fields depend on whether the index is simple or complex.

number of the index on the data set.

Index name of the index.

The DATASETS Procedure /A CONTENTS Statement 345

Update Centiles percent of the data values that must be changed before the
CENTILES for the indexed variables are automatically updated.

Current Update percent of index updated since CENTILES were refreshed.
Percent

of Unique number of unique indexed values.
Values
Variables names of the variables used to make up the index. Centile

information is listed below the variables.

DATA=SAS-file-specification
specifies an entire library or a specific SAS data set within a library.
SAS-file-specification can take one of the following forms:

<libref.>SAS-data-set
names one SAS data set to process. The default for libref is the libref of the
procedure input library. For example, to obtain the contents of the SAS data set
HTWT from the procedure input library, use the following CONTENTS statement:

contents data=HtWt;

To obtain the contents of a specific version from a generation group, use the
GENNUM-= data set option as shown in the following CONTENTS statement:

contents data=HtWt(gennum=3);

<libref.>_ALL_
gives you information about all SAS data sets that have the type or types specified
by the MEMTYPE= option. libref refers to the SAS data library. The default for
libref is the libref of the procedure input library.

o If you are using the _ALL_ keyword, you need read access to all
read-protected SAS data sets in the SAS data library.

o DATA=_ALL_ automatically prints a listing of the SAS files that are
contained in the SAS library. Note that for SAS views, all librefs that are
associated with the views must be assigned in the current session in order for
them to be processed for the listing.

Default: most recently created data set in your job or session, from any SAS data
library.

Tip: If you specify a read-protected data set in the DATA= option but do not give
the read password, by default the procedure looks in the PROC DATASETS
statement for the read password. However, if you do not specify the DATA= option
and the default data set (last one created in the session) is read protected, the
procedure does not look in the PROC DATASETS statement for the read password.

Featured in: Example 4 on page 400

DETAILS | NODETAILS

DETAILS includes these additional columns of information in the output, but only if

DIRECTORY is also specified.

Default: If neither DETAILS or NODETAILS is specified, the defaults are as
follows: for the CONTENTS procedure, the default is the system option setting,
which is NODETAILS; for the CONTENTS statement, the default is whatever is
specified on the PROC DATASETS statement, which also defaults to the system
option setting.

See also: description of the additional columns in “Options” in “PROC DATASETS
Statement” on page 330

DIRECTORY

346 CONTENTS Statement A Chapter 15

prints a list of all SAS files in the specified SAS data library. If DETAILS is also
specified, using DIRECTORY causes the additional columns described in
DETAILS | NODETAILS on page 331 to be printed.

FMTLEN
prints the length of the informat or format. If you do not specify a length for the
informat or format when you associate it with a variable, the length does not appear
in the output of the CONTENTS statement unless you use the FMTLEN option. The
length also appears in the FORMATL or INFORML variable in the output data set.

MEMTYPE=(mtype(s))
restricts processing to one or more member types. The CONTENTS statement
produces output only for member types DATA, VIEW, and ALL, which includes DATA
and VIEW.
MEMTYPE= in the CONTENTS statement differs from MEMTYPE= in most of
the other statements in the DATASETS procedure in the following ways:

0 A slash does not precede the option.

o0 You cannot enclose the MEMTYPE= option in parentheses to limit its effect to
only the SAS file immediately preceding it.

Specifying the MEMTYPE= option in the PROC DATASETS statement affects the
CONTENTS statement only if you specify the _ALL_ keyword in the DATA= option.
For example, the following statements produce the contents of only the SAS data sets
with member type DATA:

proc datasets memtype=data;
contents data=_all ;
run;
Aliases: MT=, MTYPE=
Default: DATA

NODS
suppresses printing the contents of individual files when you specify _ALL_ in the
DATA= option. The CONTENTS statement prints only the SAS data library
directory. You cannot use the NODS option when you specify only one SAS data set
in the DATA= option.

NODETAILS
See the description of DETAILS | NODETAILS.

NOPRINT
suppresses printing the output of the CONTENTS statement.

OUT=SAS-data-set
names an output SAS data set.

Tip: OUT= does not suppress the printed output from the statement. If you want to
suppress the printed output, you must use the NOPRINT option.

See also: “The OUT= Data Set” on page 386 for a description of the variables in the
OUT= data set.

OUT2=SAS-data-set
names the output data set to contain information about indexes and integrity
constraints.

Tip: OUT2= does not suppress the printed output from the statement. To suppress
the printed output, use the NOPRINT option.

See also: “The OUT2= Data Set” on page 391 for a description of the variables in
the OUT2= data set.

The DATASETS Procedure /A COPY Statement 347

SHORT
prints only the list of variable names, the index information, and the sort
information for the SAS data set.

VARNUM
prints a list of the variable names in the order of their logical position in the data
set. By default, the CONTENTS statement lists the variables alphabetically. The
physical position of the variable in the data set is engine-dependent.

Using the CONTENTS Procedure instead of the CONTENTS Statement

The only difference between the CONTENTS procedure and the CONTENTS
statement in PROC DATASETS is the default for libref in the DATA= option. For
PROC CONTENTS, the default is either WORK or USER. For the CONTENTS
statement, the default is the libref of the procedure input library.

COPY Statement

Copies all or some of the SAS files in a SAS library.
Featured in: Example 1 on page 392

COPY OUT=libref-1
<CLONE |[NOCLONE>
<CONSTRAINT=YES |[NO>
<DATECOPY>
<FORCE>
<IN=libref-2>
<INDEX=YES |[NO>
<MEMTYPE=(mtype(s))>
<MOVE <ALTER=alter-password>> ;

Required Arguments

OUT=libref-1
names the SAS library to copy SAS files to.

Aliases: OUTLIB= and OUTDD=
Featured in: Example 1 on page 392

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files that you are moving
from one data library to another. Because the MOVE option deletes the SAS file from
the original data library, you need alter access to move the SAS file.

See also: “Using Passwords with the DATASETS Procedure” on page 377
CLONE | NOCLONE

348

COPY Statement A Chapter 15

specifies whether to copy the following data set attributes:
O size of input/output buffers
0 whether the data set is compressed
0 whether free space is reused

O data representation of input data set, library, or operating environment.

You specify these attributes with either data set options, SAS system options, or
LIBNAME statement options:

0 BUFSIZE= value for the size of the input/output buffers
0 COMPRESS= value for whether the data set is compressed
o REUSE= value for whether free space is reused

0 OUTREP= value for data representation.

For the BUFSIZE= attribute, the following table summarizes how the COPY
statement works:

Table 15.1 CLONE and the BUFSIZE= Attribute

If you use... the COPY statement...

CLONE uses the BUFSIZE= value from the input data set for the output data
set.

NOCLONE uses the current setting of the SAS system option BUFSIZE= for the

output data set.

neither determines the type of access method, sequential or random, used by
the engine for the input data set and the engine for the output data
set. If both engines use the same type of access, the COPY statement
uses the BUFSIZE= value from the input data set for the output data
set. If the engines do not use the same type of access, the COPY
statement uses the setting of SAS system option BUFSIZE= for the
output data set.

For the COMPRESS= and REUSE= attributes, the following table summarizes
how the COPY statement works:

Table 15.2 CLONE and the COMPRESS= and REUSE= Attributes

If you use... the COPY statement...

CLONE uses the values from the input data set for the output data set. If the
engine for the input data set does not support the COMPRESS= or
REUSE= attribute, the COPY statement uses the current setting of
the corresponding SAS system option.

NOCLONE uses the current setting of the SAS system options COMPRESS= or
REUSE= for the output data set.
neither defaults to CLONE.

For data representation:

CLONE results in a copy with the data representation of the input data
set.

The DATASETS Procedure /A COPY Statement 349

NOCLONE results in a copy with the data representation of the data library
(if specified) or the native data representation of the operating
environment.

Data representation is the format in which data is represented on a computer
architecture or in an operating environment. For example, on an IBM PC, character
data is represented by its ASCII encoding and byte-swapped integers. Native data
representation refers to an environment for which the data representation compares
with the CPU that is accessing the file. For example, a file that is in Windows data
representation is native to the Windows operating environment.

CONSTRAINT=YES |NO
specifies whether to copy all integrity constraints when copying a data set.
Default: NO

DATECOPY
copies the SAS internal date and time when the SAS file was created and the date

and time when it was last modified to the resulting copy of the file. Note that the
operating environment date and time are not preserved.

Restriction: DATECOPY cannot be used with encrypted files or catalogs.

Restriction: DATECOPY can be used only when the resulting SAS file uses the V8
or V9 engine.

Tip: You can alter the file creation date and time with the DTC= option on the
MODIFY statement. See “MODIFY Statement” on page 366.

Tip: If the file that you are copying has attributes that require additional
processing, the last modified date is changed to the current date. For example,
when you copy a data set that has an index, the index must be rebuilt, and this
changes the last modified date to the current date. Other attributes that require
additional processing and that could affect the last modified date include integrity
constraints and a sort indicator.

FORCE
allows you to use the MOVE option for a SAS data set on which an audit trail exists.

Note: The AUDIT file is not moved with the audited data set. A
IN=libref-2
names the SAS library containing SAS files to copy.
Aliases: INLIB= and INDD=
Default: the libref of the procedure input library
To copy only selected members, use the SELECT or EXCLUDE statements.
INDEX=YES |NO

specifies whether to copy all indexes for a data set when copying the data set to
another SAS data library.

Default: YES

MEMTYPE=(ntype(s))
restricts processing to one or more member types.
Aliases: MT=, MTYPE=

Default: If you omit MEMTYPE= in the PROC DATASETS statement, the default
is MEMTYPE=ALL.

See also: “Specifying Member Types When Copying or Moving SAS Files” on page
350

See also: “Member Types” on page 379
Featured in: Example 1 on page 392

350

COPY Statement A Chapter 15

MOVE

moves SAS files from the input data library (named with the IN= option) to the

output data library (named with the OUT= option) and deletes the original files from

the input data library.

Restriction: The MOVE option can be used to delete a member of a SAS library
only if the IN= engine supports the deletion of tables. A tape format engine does
not support table deletion. If you use a tape format engine, SAS suppresses the
MOVE operation and prints a warning.

Featured in: Example 1 on page 392

NOCLONE
See the description of CLONE.

Copying an Entire Library

To copy an entire SAS data library, simply specify an input data library and an output
data library following the COPY statement. For example, the following statements copy
all the SAS files in the SOURCE data library into the DEST data library:

proc datasets library=source;
copy out=dest;

run;

Copying Selected SAS Files

To copy selected SAS files, use a SELECT or EXCLUDE statement. For more
discussion of using the COPY statement with a SELECT or an EXCLUDE statement,
see “Specifying Member Types When Copying or Moving SAS Files” on page 350and see
Example 1 on page 392 for an example. Also, see “EXCLUDE Statement” on page 357
and “SELECT Statement” on page 374.

You can also select or exclude an abbreviated list of members. For example, the
following statement selects members TABS, TEST1, TEST2, and TESTS3:

select tabs testl-test3;

Also, you can select a group of members whose names begin with the same letter or
letters by entering the common letters followed by a colon (:). For example, you can
select the four members in the previous example and all other members having names
that begin with the letter T by specifying the following statement:

select t:;

You specify members to exclude in the same way that you specify those to select.
That is, you can list individual member names, use an abbreviated list, or specify a
common letter or letters followed by a colon (:). For example, the following statement

excludes the members STATS, TEAMS1, TEAMS2, TEAMS3, TEAMS4 and all the
members that begin with the letters RBI from the copy operation:

exclude stats teamsl-teams4 rbi:;

Note that the MEMTYPE= option affects which types of members are available to be
selected or excluded.

Specifying Member Types When Copying or Moving SAS Files

The MEMTYPE= option in the COPY statement differs from the MEMTYPE= option
in other statements in the procedure in several ways:

0 A slash does not precede the option.

The DATASETS Procedure /A COPY Statement 351

o0 You cannot limit its effect to the member immediately preceding it by enclosing
the MEMTYPE= option in parentheses.

0 The SELECT and EXCLUDE statements and the IN= option (in the COPY
statement) affect the behavior of the MEMTYPE= option in the COPY statement
according to the following rules:

1 MEMTYPE= in a SELECT or EXCLUDE statement takes precedence over
the MEMTYPE= option in the COPY statement. The following statements
copy only VISION.CATALOG and NUTR.DATA from the default data library
to the DEST data library; the MEMTYPE= value in the first SELECT
statement overrides the MEMTYPE= value in the COPY statement.

proc datasets;
copy out=dest memtype=data;
select vision(memtype=catalog) nutr;

run;

2 If you do not use the IN= option, or you use it to specify the library that
happens to be the procedure input library, the value of the MEMTYPE=
option in the PROC DATASETS statement limits the types of SAS files that
are available for processing. The procedure uses the order of precedence
described in rule 1 to further subset the types available for copying. The
following statements do not copy any members from the default data library
to the DEST data library; instead, the procedure issues an error message
because the MEMTYPE= value specified in the SELECT statement is not one
of the values of the MEMTYPE= option in the PROC DATASETS statement.

/* This step fails! */
proc datasets memtype=(data program);
copy out=dest;
select apples / memtype=catalog;

run;

3 If you specify an input data library in the IN= option other than the
procedure input library, the MEMTYPE= option in the PROC DATASETS
statement has no effect on the copy operation. Because no subsetting has yet
occurred, the procedure uses the order of precedence described in rule 1 to
subset the types available for copying. The following statements successfully
copy BODYFAT.DATA to the DEST data library because the SOURCE library
specified in the IN= option in the COPY statement is not effected by the
MEMTYPE= option in the PROC DATASETS statement.

proc datasets library=work memtype=catalog;
copy in=source out=dest;
select bodyfat / memtype=data;

run;

Copying Password-Protected SAS Files

You can copy a password-protected SAS file without specifying the password. In
addition, because the password continues to correspond to the SAS file, you must know
the password in order to access and manipulate the SAS file after you copy it.

Copying Data Sets with Long Variable Names

If the VALIDVARNAME=V6 system option is set and the data set has long variable
names, the long variable names are truncated, unique variables names are generated,
and the copy succeeds. The same is true for index names. If VALIDVARNAME=ANY or

352

COPY Statement A Chapter 15

MIXEDCASE, the copy fails with an error if the OUT= engine does not support long
variable names.

When a variable name is truncated, the variable name is shortened to eight bytes. If
this name has already been defined in the data set, the name is shortened and a digit is
added, starting with the number 2. The process of truncation and adding a digit
continues until the variable name is unique. For example, a variable named
LONGVARNAME becomes LONGVARN, provided that a variable with that name does
not already exist in the data set. In that case, the variable name becomes LONGVAR2.

CAUTION:
Truncated variable names can collide with names already defined in the input data set.
This is possible when the variable name that is already defined is exactly eight bytes
long and ends in a digit. In that case, the truncated name is defined in the output
data set and the name from the input data set is changed. For example,

options validvarname=mixedcase;

data test;
lonvarl0='aLongVariableName’;
retain longvarl-longvar5 0;

run;

options validvarname=vé6;
proc copy in=work out=sasuser;
select test;

run;

In this example, LONGVAR10 is truncated to LONVAR1 and placed in the output
data set. Next, the original LONGVARI is copied. Its name is no longer unique and
so it is renamed LONGVARZ2. The other variables in the input data set are also
renamed according to the renaming algorithm. A

Using the COPY Procedure instead of the COPY Statement
Generally, the COPY procedure functions the same as the COPY statement in the
DATASETS procedure. The differences are

0 The IN= argument is required with PROC COPY. In the COPY statement, IN= is
optional. If omitted, the default value is the libref of the procedure input library.

o PROC DATASETS cannot work with libraries that allow only sequential data
access.

0 The COPY statement honors the NOWARN option but PROC COPY does not.
Copying Generation Groups

You can use the COPY statement to copy an entire generation group. However, you
cannot copy a specific version in a generation group.

Transporting SAS Data Sets hetween Hosts

Typically, you use PROC COPY to transport SAS data sets between hosts. See
Chapter 11, “The COPY Procedure,” on page 259 for more information and an example.

The DATASETS Procedure /A DELETE Statement 353

DELETE Statement

Deletes SAS files from a SAS data library.
Featured in: Example 1 on page 392

DELETE SAS-file(s)
</ <ALTER=alter-password>
<GENNUM=ALL | HIST | REVERT | integer>
<MEMTYPE=mtype>>;

Required Arguments

SAS-file(s)
specifies one or more SAS files that you want to delete.

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files that you want to delete.
You can use the option either in parentheses after the name of each SAS file or after
a forward slash.

See also: “Using Passwords with the DATASETS Procedure” on page 377

GENNUM=ALL | HIST | REVERT | integer
restricts processing for generation data sets. You can use the option either in
parentheses after the name of each SAS file or after a forward slash. Valid values are

ALL
refers to the base version and all historical versions in a generation group.

HIST
refers to all historical versions, but excludes the base version in a generation group.

REVERT |0
deletes the base version and changes the most current historical version, if it
exists, to the base version.

integer
is a number that references a specific version from a generation group. Specifying
a positive number is an absolute reference to a specific generation number that is
appended to a data set’s name; that is, gennum=2 specifies MYDATA#002.
Specifying a negative number is a relative reference to a historical version in
relation to the base version, from the youngest to the oldest; that is, gennum=-1
refers to the youngest historical version.

See also: “Restricting Processing for Generation Data Sets” on page 380
See also: “Understanding Generation Data Sets” in SAS Language Reference:
Concepts

MEMTYPE=mtype
restricts processing to one member type. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.

354

DELETE Statement A Chapter 15

Aliases: MT=, MTYPE=
Default: DATA
See also: “Restricting Member Types for Processing” on page 378

Featured in: Example 1 on page 392

Details

O

SAS immediately deletes SAS files when the RUN group executes. You do not
have an opportunity to verify the delete operation before it begins.

If you attempt to delete a SAS file that does not exist in the procedure input
library, PROC DATASETS issues a message and continues processing. If
NOWARN is used, no message is issued.

When you use the DELETE statement to delete a data set that has indexes
associated with it, the statement also deletes the indexes.

You cannot use the DELETE statement to delete a data file that has a foreign key
integrity constraint or a primary key with foreign key references. For data files
that have foreign keys, you must remove the foreign keys before you delete the
data file. For data files that have primary keys with foreign key references, you

must remove the foreign keys that reference the primary key before you delete the
data file.

Working with Generation Groups

When you are working with generation groups, you can use the DELETE statement to

O
O

O
O
O

delete the base version and all historical versions

delete the base version and rename the youngest historical version to the base
version

delete an absolute version
delete a relative version
delete all historical versions and leave the base version.

Deleting the Base Version and All Historical Versions
The following statements delete the base version and all historical versions where the
data set name is A:

proc datasets;

delete A(gennum=all);

proc datasets;

delete A / gennum=all;

proc datasets gennum=all;

delete A;

The following statements delete the base version and all historical versions where
the data set name begins with the letter A:

proc datasets;

delete A:(gennum=all);

proc datasets;

delete A: / gennum=all;

proc datasets gennum=all;

The DATASETS Procedure /A DELETE Statement 355

delete A:;

Deleting the Base Version and Renaming the Youngest Historical Version to the Base
Version

The following statements delete the base version and rename the youngest historical
version to the base version, where the data set name is A:

proc datasets;
delete A(gennum=revert);

proc datasets;
delete A / gennum=revert;

proc datasets gennum=revert;
delete A;

The following statements delete the base version and rename the youngest historical
version to the base version, where the data set name begins with the letter A:

proc datasets;
delete A:(gennum=revert);

proc datasets;
delete A: / gennum=revert;

proc datasets gennum=revert;
delete A:;

Deleting a Version with an Absolute Number
The following statements use an absolute number to delete the first historical version:

proc datasets;
delete A(gennum=1);

proc datasets;
delete A / gennum=1;

proc datasets gennum=1;
delete A;

The following statements delete a specific historical version, where the data set name
begins with the letter A:

proc datasets;
delete A:(gennum=1);

proc datasets;
delete A: / gennum=1;

proc datasets gennum=1;
delete A:;

Deleting a Version with a Relative Number
The following statements use a relative number to delete the youngest historical
version, where the data set name is A:

proc datasets;
delete A(gennum=-1);

356 EXCHANGE Statement A Chapter 15

proc datasets;
delete A / gennum=-1;

proc datasets gennum=-1;
delete A;

The following statements use a relative number to delete the youngest historical
version, where the data set name begins with the letter A:

proc datasets;
delete A:(gennum=-1);

proc datasets;
delete A: / gennum=-1;

proc datasets gennum=-1;
delete A:;

Deleting All Historical Versions and Leaving the Base Version
The following statements delete all historical versions and leave the base version,
where the data set name is A:

proc datasets;

delete A(gennum=hist);

proc datasets;
delete A / gennum=hist;

proc datasets gennum=hist;
delete A;

The following statements delete all historical versions and leave the base version,
where the data set name begins with the letter A:

proc datasets;

delete A:(gennum=hist);

proc datasets;
delete A: / gennum=hist;

proc datasets gennum=hist;
delete A:;

EXCHANGE Statement

Exchanges the names of two SAS files in a SAS library.

Featured in: Example 1 on page 392

EXCHANGE name-1=other-name-1
<...name-n=other-name-n>
</ <ALTER=alter-password>

The DATASETS Procedure /A EXCLUDE Statement 357

<MEMTYPE=mtype>>;

Required Arguments

name=other-name
exchanges the names of SAS files in the procedure input library. Both name and
other-name must already exist in the procedure input library.

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files whose names you want
to exchange. You can use the option either in parentheses after the name of each
SAS file or after a forward slash.

See also: “Using Passwords with the DATASETS Procedure” on page 377

MEMTYPE=mtype
restricts processing to one member type. You can only exchange the names of SAS
files of the same type. You can use the option either in parentheses after the name of
each SAS file or after a forward slash.

Default: If you do not specify MEMTYPE= in the PROC DATASETS statement, the
default is ALL.

See also: “Restricting Member Types for Processing” on page 378

Details

0 When you exchange more than one pair of names in one EXCHANGE statement,
PROC DATASETS performs the exchanges in the order that the names of the SAS
files occur in the directory listing, not in the order that you list the exchanges in
the EXCHANGE statement.

0 If the name SAS file does not exist in the SAS data library, PROC DATASETS
stops processing the RUN group that contains the EXCHANGE statement and
issues an error message. To override this behavior, specify the NOWARN option in
the PROC DATASETS statement.

0 The EXCHANGE statement also exchanges the associated indexes so that they
correspond with the new name.

0 The EXCHANGE statement only allows two existing generation groups to
exchange names. You cannot exchange a specific generation number with either an
existing base version or another generation number.

EXCLUDE Statement

Excludes SAS files from copying.

Restriction: Must follow a COPY statement
Restriction: Cannot appear in the same COPY step with a SELECT statement
Featured in: Example 1 on page 392

358

FORMAT Statement A Chapter 15

EXCLUDE SAS-file(s) </ MEMTYPE=mtype>;

Required Arguments

SAS-file(s)
specifies one or more SAS files to exclude from the copy operation. All SAS files you
name in the EXCLUDE statement must be in the library that is specified in the IN=
option in the COPY statement. If the SAS files are generation groups, the EXCLUDE
statement allows only selection of the base versions.

Options

MEMTYPE=mtype
restricts processing to one member type. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.

Aliases: MTYPE=, MT=

Default: If you do not specify MEMTYPE= in the PROC DATASETS statement, the
COPY statement, or in the EXCLUDE statement, the default is MEMTYPE=ALL.

See also: “Restricting Member Types for Processing” on page 378

See also: “Specifying Member Types When Copying or Moving SAS Files” on page
350

Excluding Many Like-Named Files

You can use shortcuts for listing many SAS files in the EXCLUDE statement. For
more information, see “Shortcuts for Specifying Lists of Variable Names” on page 24.

FORMAT Statement

Permanently assigns, changes, and removes variable formats in the SAS data set specified in the
MODIFY statement.

Restriction: Must appear in a MODIFY RUN group
Featured in: Example 3 on page 398

FORMAT variable-list-1 <format-1>
<...variable-list-n <format-n>>;

Required Arguments

variable-list
specifies one or more variables whose format you want to assign, change, or remove.
If you want to disassociate a format with a variable, list the variable last in the list
with no format following. For example:

format x1-x3 4.1 time hhmm2.2 age;

The DATASETS Procedure /A IC CREATE Statement 359

Options

format
specifies a format to apply to the variable or variables listed before it. If you do not
specify a format, the FORMAT statement removes any format associated with the
variables in variable-list.

Note: You can use shortcut methods for specifying variables, such as the keywords
_NUMERIC, _CHARACTER_, and _ALL_. See “Shortcuts for Specifying Lists of
Variable Names” on page 24 for more information. A

IC CREATE Statement

Creates an integrity constraint.

Restriction: Must be in a MODIFY RUN group
See also: “Understanding Integrity Constraints” in SAS Language Reference: Concepts

IC CREATE <constraint-name=> constraint <MESSAGE="message-string’
<MSGTYPE=USER>>;

Required Arguments

constraint
is the type of constraint. Valid values are as follows:

NOT NULL (variable)
specifies that variable does not contain a SAS missing value, including special
missing values.

UNIQUE (variables)
specifies that the values of variables must be unique. This constraint is identical
to DISTINCT.

DISTINCT (variables)
specifies that the values of variables must be unique. This constraint is identical
to UNIQUE.

CHECK (WHERE-expression)
limits the data values of variables to a specific set, range, or list of values. This is
accomplished with a WHERE expression.

PRIMARY KEY (variables)
specifies a primary key, that is, a set of variables that do not contain missing
values and whose values are unique.

Note: A primary key affects the values of an individual data file until it has a
foreign key referencing it. A

FOREIGN KEY (variables) REFERENCES table-name
<ON DELETE referential-action> <ON UPDATE referential-action>

360

IC CREATE Statement A Chapter 15

specifies a foreign key, that is, a set of variables whose values are linked to the
values of the primary key variables in another data file. The referential actions
are enforced when updates are made to the values of a primary key variable that
is referenced by a foreign key.

There are three types of referential actions: RESTRICT, SET NULL, and
CASCADE. For a RESTRICT referential action,

a delete operation
deletes the primary key row, but only if no foreign key values match the deleted
value.

an update operation
updates the primary key value, but only if no foreign key values match the
current value to be updated.

For a