
Base SAS® 9
Procedures Guide
Volume 1

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2002.
Base SAS ® 9 Procedures Guide. Cary, NC: SAS Institute Inc.

Base SAS® 9 Procedures Guide
Copyright © 2002 by SAS Institute Inc., Cary, NC, USA
ISBN 1-58025-942-1
All rights reserved. Printed in the United States of America. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, or otherwise, without the prior written
permission of the publisher, SAS Institute Inc. This title includes documentation for early
adopter features. THIS DOCUMENTATION FOR AN EARLY ADOPTER FEATURE IS A
PRELIMINARY DRAFT AND IS PROVIDED BY SAS INSTITUTE INC. ON AN "AS IS"
BASIS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTIBILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. The company
does not warrant that this documentation is complete, accurate, similar to that which
may be released to the general public, or that any such documentation will be released.
The company shall not be liable whatsoever for any damages arising out of the use of this
documentation, including any direct, indirect, or consequential damages. The company
reserves the right to alter or abandon use of this documentation at any time.
U.S. Government Restricted Rights Notice. Use, duplication, or disclosure of the
software and related documentation by the U.S. government is subject to the Agreement
with SAS Institute and the restrictions set forth in FAR 52.227-19 Commercial Computer
Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
1st printing, June 2002
SAS Publishing provides a complete selection of books and electronic products to help
customers use SAS software to its fullest potential. For more information about our
e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site
at www.sas.com/pubs or call 1-800-727-3228.
SAS® and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries.® indicates USA
registration.
IBM® and DB2® are registered trademarks or trademarks of International Business
Machines Corporation. ORACLE® is a registered trademark of Oracle Corporation. ®

indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their
respective companies.

Contents

What’s New xi

Overview xi

Details xi

P A R T 1 Concepts 1

Chapter 1 � Choosing the Right Procedure 3
Functional Categories of Base SAS Procedures 3

Report-Writing Procedures 4

Statistical Procedures 6

Utility Procedures 8

Brief Descriptions of Base SAS Procedures 10

Chapter 2 � Fundamental Concepts for Using Base SAS Procedures 15
Language Concepts 16

Procedure Concepts 19

Output Delivery System 32

Chapter 3 � Statements with the Same Function in Multiple Procedures 53
Overview 53

Statements 54

P A R T 2 Procedures 67

Chapter 4 � The APPEND Procedure 71
Overview: APPEND Procedure 71

Syntax: PROC APPEND 71

Chapter 5 � The CALENDAR Procedure 73
Overview: CALENDAR Procedure 74

Syntax: CALENDAR Procedure 79

Concepts: CALENDAR Procedure 97

Results: CALENDAR Procedure 107

Examples: CALENDAR Procedure 108

Chapter 6 � The CATALOG Procedure 143
Overview: CATALOG Procedure 143

Syntax: PROC CATALOG 144

Concepts: CATALOG Procedure 154

Examples: CATALOG Procedure 158

Chapter 7 � The CHART Procedure 165
Overview: CHART Procedure 165

iv

Syntax: CHART Procedure 170

Concepts: CHART Procedure 183

Results: CHART Procedure 183

Examples: CHART Procedure 184

References 197

Chapter 8 � The CIMPORT Procedure 199
Overview: CIMPORT Procedure 199

Syntax: PROC CIMPORT 200

Results: CIMPORT Procedure 205

Examples: CIMPORT Procedure 205

Chapter 9 � The COMPARE Procedure 209
Overview: COMPARE Procedure 209

Syntax: COMPARE Procedure 213

Concepts: COMPARE Procedure 224

Results: COMPARE Procedure 228

Examples: COMPARE Procedure 239

Chapter 10 � The CONTENTS Procedure 257
Overview: CONTENTS Procedure 257

Syntax: PROC CONTENTS 257

Chapter 11 � The COPY Procedure 259
Overview: COPY Procedure 259

Syntax: PROC COPY 259

Concepts: COPY Procedure 260

Example: COPY Procedure 260

Chapter 12 � The CORR Procedure 263
Overview: CORR Procedure 263

Syntax: CORR Procedure 267

Concepts: CORR Procedure 276

Statistical Computations: CORR Procedure 279

Results: CORR Procedure 287

Examples: CORR Procedure 291

References 306

Chapter 13 � The CPORT Procedure 307
Overview: CPORT Procedure 307

Syntax: PROC CPORT 308

Concepts: CPORT Procedure 316

Results: CPORT Procedure 317

Examples: CPORT Procedure 317

Chapter 14 � The CV2VIEW Procedure 323
Information about the CV2VIEW Procedure 323

v

Chapter 15 � The DATASETS Procedure 325
Overview: DATASETS Procedure 326

Syntax: PROC DATASETS 329

Concepts: DATASETS Procedure 375

Results: DATASETS Procedure 381

Examples: DATASETS Procedure 392

Chapter 16 � The DBCSTAB Procedure 407
Overview: DBCSTAB Procedure 407

Syntax: DBCSTAB Procedure 407

Details: When Do I Use the DBCSTAB Procedure? 408

Examples: DBCSTAB Procedure 409

See Also 411

Chapter 17 � The DISPLAY Procedure 413
Overview: DISPLAY Procedure 413

Syntax: DISPLAY Procedure 413

Example: DISPLAY Procedure 414

Chapter 18 � The DOCUMENT Procedure 417
Information about the DOCUMENT Procedure 417

Chapter 19 � The EXPLODE Procedure 419
Overview: EXPLODE Procedure 419

Syntax: EXPLODE Procedure 420

Examples: EXPLODE Procedure 423

Chapter 20 � The EXPORT Procedure 427
Overview: EXPORT Procedure 427

Syntax: PROC EXPORT 428

Examples: PROC EXPORT 434

Chapter 21 � The FORMAT Procedure 441
Overview: FORMAT Procedure 441

Syntax: FORMAT Procedure 443

Informat and Format Options 462

Specifying Values or Ranges 464

Concepts: FORMAT Procedure 465

Results: FORMAT Procedure 468

Examples: FORMAT Procedure 474

See Also 493

Chapter 22 � The FORMS Procedure 495
Overview: FORMS Procedure 495

Syntax: FORMS Procedure 497

Concepts: FORMS Procedure 503

Examples: FORMS Procedure 505

vi

Chapter 23 � The FREQ Procedure 513
Overview: FREQ Procedure 515

Syntax: FREQ Procedure 518

Concepts: FREQ Procedure 541

Statistical Computations: FREQ Procedure 544

Results: FREQ Procedure 585

Examples: FREQ Procedure 592

References 623

Chapter 24 � The FSLIST Procedure 627
Overview: FSLIST Procedure 627

Syntax: FSLIST Procedure 627

Chapter 25 � The IMPORT Procedure 633
Overview: IMPORT Procedure 633

Syntax: PROC IMPORT 634

Examples: IMPORT Procedure 641

Chapter 26 � The MEANS Procedure 649
Overview: MEANS Procedure 650

Syntax: MEANS Procedure 652

Concepts: MEANS Procedure 675

Statistical Computations: MEANS Procedure 678

Results: MEANS Procedure 681

Examples: MEANS Procedure 683

References 712

Chapter 27 � The OPTIONS Procedure 713
Overview: OPTIONS Procedure 713

Syntax: OPTIONS Procedure 716

Results: OPTIONS Procedure 717

Examples: OPTIONS Procedure 717

Chapter 28 � The OPTLOAD Procedure 721
Overview: OPTLOAD Procedure 721

Syntax: OPTLOAD Procedure 721

Chapter 29 � The OPTSAVE Procedure 723
Overview: OPTSAVE Procedure 723

Syntax: OPTSAVE Procedure 723

Chapter 30 � The PLOT Procedure 725
Overview: PLOT Procedure 726

Syntax: PLOT Procedure 728

Concepts: PLOT Procedure 744

Results: PLOT Procedure 749

Examples: PLOT Procedure 750

vii

Chapter 31 � The PMENU Procedure 779
Overview: PMENU Procedure 779

Syntax: PMENU Procedure 780

Concepts: PMENU Procedure 793

Examples: PMENU Procedure 796

Chapter 32 � The PRINT Procedure 817
Overview: PRINT Procedure 817

Syntax: PRINT Procedure 820

Results: Print Procedure 834

Examples: PRINT Procedure 837

Chapter 33 � The PRINTTO Procedure 879
Overview: PRINTTO Procedure 879

Syntax: PRINTTO Procedure 880

Concepts: PRINTTO Procedure 883

Examples: PRINTTO Procedure 883

Chapter 34 � The PRTDEF Procedure 893
Overview: PRTDEF Procedure 893

Syntax: PRTDEF Procedure 893

Input Data Set: PRTDEF Procedure 895

Examples: PRTDEF Procedure 899

See Also 903

Chapter 35 � The PRTEXP Procedure 905
Overview: PRTEXP Procedure 905

Syntax: PRTEXP Procedure 905

Concepts: PRTEXP Procedure 906

Examples: PRTEXP Procedure 907

See Also 908

Chapter 36 � The RANK Procedure 909
Overview: RANK Procedure 909

Syntax: RANK Procedure 911

Concepts: RANK Procedure 915

Results: RANK Procedure 916

Examples: RANK Procedure 917

References 923

Chapter 37 � The REGISTRY Procedure 925
Overview: REGISTRY Procedure 925

Syntax: REGISTRY Procedure 925

Creating Registry Files with the REGISTRY Procedure 929

Examples: REGISTRY Procedure 932

See Also 936

viii

Chapter 38 � The REPORT Procedure 937
Overview: REPORT Procedure 939

Concepts: REPORT Procedure 944

Syntax: REPORT Procedure 958

REPORT Procedure Windows 1000

How PROC REPORT Builds a Report 1024

Examples: REPORT Procedure 1037

Chapter 39 � The SORT Procedure 1091
Overview: SORT Procedure 1091

Syntax: SORT Procedure 1093

Concepts: SORT Procedure 1100

Integrity Constraints: SORT Procedure 1102

Results: SORT Procedure 1102

Examples: SORT Procedure 1103

Chapter 40 � The SQL Procedure 1113
Overview: SQL Procedure 1115

Syntax: SQL Procedure 1117

SQL Procedure Component Dictionary 1154

Concepts: SQL Procedure 1197

PROC SQL and the ANSI Standard 1204

Examples: SQL Procedure 1207

Chapter 41 � The STANDARD Procedure 1243
Overview: STANDARD Procedure 1243

Syntax: STANDARD Procedure 1245

Results: STANDARD Procedure 1250

Statistical Computations: STANDARD Procedure 1250

Examples: STANDARD Procedure 1251

Chapter 42 � The SUMMARY Procedure 1257
Overview: SUMMARY Procedure 1257

Syntax: SUMMARY Procedure 1257

Chapter 43 � The TABULATE Procedure 1259
Overview: TABULATE Procedure 1260

Terminology Used with PROC TABULATE 1263

Syntax: TABULATE Procedure 1266

Concepts: TABULATE Procedure 1291

Results: TABULATE Procedure 1299

Examples: TABULATE Procedure 1310

References 1361

Chapter 44 � The TEMPLATE Procedure 1363
Information about the TEMPLATE Procedure 1363

ix

Chapter 45 � The TIMEPLOT Procedure 1365
Overview: TIMEPLOT Procedure 1365

Syntax: TIMEPLOT Procedure 1367

Results: TIMEPLOT Procedure 1375

Examples: TIMEPLOT Procedure 1376

Chapter 46 � The TRANSPOSE Procedure 1387
Overview: TRANSPOSE Procedure 1387

Syntax: TRANSPOSE Procedure 1389

Results: TRANSPOSE Procedure 1395

Examples: TRANSPOSE Procedure 1396

Chapter 47 � The TRANTAB Procedure 1409
Overview: TRANTAB Procedure 1409

Concepts: TRANTAB Procedure 1410

Syntax: TRANTAB Procedure 1413

Examples: TRANTAB Procedure 1419

Chapter 48 � The UNIVARIATE Procedure 1435
Overview: UNIVARIATE Procedure 1436

Syntax: UNIVARIATE Procedure 1442

Concepts: UNIVARIATE Procedure 1511

Statistical Computations: UNIVARIATE Procedure 1517

Results: UNIVARIATE Procedure 1540

Examples: UNIVARIATE Procedure 1543

References 1572

P A R T 3 Appendices 1575

Appendix 1 � SAS Elementary Statistics Procedures 1577
Overview 1577

Keywords and Formulas 1578

Statistical Background 1586

References 1611

Appendix 2 � Operating Environment-Specific Procedures 1613
Descriptions of Operating Environment-Specific Procedures 1613

Appendix 3 � Raw Data and DATA Steps 1615
Overview 1615

AIRCRAFT 1615

CENSUS 1616

CHARITY 1617

CUSTOMER_RESPONSE 1619

DJIA 1621

EDUCATION 1622

EMPDATA 1623

x

ENERGY 1625

GROC 1626

HOMELOANS 1627

MATCH_11 1641

PROCLIB.DELAY 1642

PROCLIB.EMP95 1643

PROCLIB.EMP96 1644

PROCLIB.INTERNAT 1645

PROCLIB.LAKES 1646

PROCLIB.MARCH 1646

PROCLIB.PAYLIST2 1647

PROCLIB.PAYROLL 1648

PROCLIB.PAYROLL2 1651

PROCLIB.SCHEDULE 1651

PROCLIB.STAFF 1654

PROCLIB.SUPERV 1657

RADIO 1658

STATEPOP 1670

Appendix 4 � Recommended Reading 1673
Recommended Reading 1673

Index 1675

xi

What’s New

Overview

Enhancements to Base SAS 9 procedures improve ODS formatting, enable import and
export of Microsoft Excel 2002 spreadsheets and Microsoft Access 2002 tables, support
long format and informat names, list and compare SAS registries, support parallel
sorting operations, enhance statistical processing, and enhance printer definitions.

The new DOCUMENT procedure enables you to customize or modify your output
hierarchy and replay your output to different destinations without rerunning the PROC
or DATA step. Enhancements to the TEMPLATE procedure enable you to customize or
create your own markup language for your output. For complete information about
what’s new in ODS, see SAS Output Delivery System User’s Guide.

Details

The CONTENTS Procedure
Output from the CONTENTS procedure and the CONTENTS statement in PROC

DATASETS provides a new look and additional information. The new look for the
output provides a better format for the Output Delivery System (ODS). PROC
CONTENTS output now displays the data representation of a file by reporting the
native platform for each file, rather than just telling you whether the data
representation is native or foreign. Also, PROC CONTENTS output also now provides
the encoding value and whether the data set is part of a generation group.

The COPY Procedure
The follwoing options are new or enhanced in the COPY procedure and the COPY

statement in PROC DATASETS:

� The FORCE option enables you to use the MOVE option for a SAS data set that
has an audit trail.

xii What’s New

� The CLONE option now copies the data representation data set attribute.

The CORR Procedure
� A list of ODS table names is now provided. You can use these names to reference

the table when using the Output Delivery System (ODS) to select tables and
create output data sets.

The DATASETS Procedure
Directory listings from the DATASETS procedure provide a new look for its output,

which improves the format for the Output Delivery System (ODS).

The EXPORT Procedure
The EXPORT procedure now enables you to

� export to Microsoft Excel 2002 spreadsheets and Microsoft Access 2002 tables. The
new data sources are available for the Windows operating environment on 32-bit
platforms if your site has a license for SAS/ACCESS Interface to PC File Formats.

� specify SAS data set options in the DATA= argument when you are exporting to
all data sources except for delimited, comma-separated, and tab-delimited external
files. For example, if the data set that you are exporting has an assigned
password, use the ALTER=, PW=, READ=, or WRITE= data set option. To export
only data that meets a specified condition, use the WHERE= data set option.

� specify the SHEET= option to identify a specific spreadsheet in a workbook.
Exporting to multiple sheets is available for Microsoft Excel 97, 2000, and 2002
spreadsheets for the Windows operating environment on 32-bit platforms if your
site has a license for SAS/ACCESS Interface to PC File Formats.

The FORMAT Procedure
� The maximum length for character format names is now 31. The maximum length

for numeric format names is now 32.

� The maximum length for character informat names is now 30. The maximum
length for numeric informat names is now 31.

The FREQ Procedure
� A list of ODS table names is now provided. You can use these names to reference

the table when using the Output Delivery System (ODS) to select tables and
create output data sets.

� The TABLES statement now has the CONTENTS= option that allows you to
specify the text for the HTML contents file links to crosstabulation tables.

� The TABLES statement now has the BDT option to request Tarone’s adjustment
in the Breslow-Day test for homogeneity of odds ratios when you use the CMH
option to compute the Breslow-Day test for stratified 2�2 tables.

� The TABLES statement now has the NOWARN option that suppresses the log
warning message that the asymptotic chi-square test may not be valid when more
than 20 percent of the table cells have expected frequencies less than five.

What’s New xiii

� The WEIGHT statement now has the ZEROS option to includes observations with
zero weight values. The frequency and crosstabulation tables will display any
levels that correspond to observations with zero weights. PROC FREQ includes
levels with zero weights in the chi-square goodness-of-fit test for one-way tables, in
the binomial computations for one-way tables, and in the computation of kappa
statistics for two-way tables.

The IMPORT Procedure
The IMPORT procedure now enables you to
� import Microsoft Excel 2002 spreadsheets and Microsoft Access 2002 tables. The

new data sources are available for the Windows operating environment on 32-bit
platforms if your site has a license for SAS/ACCESS Interface to PC File Formats.

� specify SAS data set options in the OUT= argument when you are importing from
all data sources except for delimited, comma-separated, and tab-delimited external
files. For example, in order to assign a password for a resulting SAS data set, use
the ALTER=, PW=, READ=, or WRITE= data set option. To import only data that
meets a specified condition, use the WHERE= data set option.

The MEANS Procedure
The new THREADS|NOTHREADS option (SAS 9 Early Adopter Feature) enables or

prevents the activation of multi-threaded processing.

The PRTDEF Procedure
There are 15 new variables now supported by the PRTDEF procedure to control the

default printer settings.

The PRTEXP Procedure
The new PRTEXP procedure enables you to write attributes used by PROC PRTDEF

to define a printer to a SAS data set or the SAS log, which enables you to replicate and
modify those attributes easily.

The REGISTRY Procedure
Ther REGISTRY procedure has three new options:
� The LISTREG option lists the contents of the registry in the log.
� The COMPAREREG1 and COMPAREREG2 options are used together to compare

two registries. The results appear in the log.

The REPORT Procedure
In the REPORT procedure, numeric class variables that do not have a format

assigned to them are automatically formatted with the BEST12. format.

The SORT Procedure
The SORT procedure has two new options:

xiv What’s New

� The new DATECOPY option copies to the output data set the SAS internal date
and time when the input data set was created and the date and time when it was
last modified prior to the sort.

� The new THREADS|NOTHREADS option enables or prevents the activation of
multi-threaded sorting.

The SQL Procedure
The SQL procedure has the following new features:
� The PROC SQL statement now has a THREADS NOTHREADS option. THREADS

enables PROC SQL to take advantage of the new parallel processing capabilities
in SAS when performing sorting operations.

� There are new DICTIONARY tables, new columns in existing DICTIONARY
tables, and SASHELP views of the new tables.

� You can now reference a permanent SAS data set by its physical filename.
� When using the INTO clause to assign values to a range of macro variables, you

can now specify leading zeroes in the macro variable names. For example,

select * into :x01 -- :x10

will create the macro variables x01, x02, x03, and so on.

The SYLK Procedure (Experimental)
The new SYLK procedure enables you to read an external SYLK-formatted

spreadsheet into SAS, including data, formulas, and formats. You can also use PROC
SYLK as a batch spreadsheet, using programming statements to manipulate data,
perform calculations, generate summaries, and format the output.

For more information on PROC SYLK, go to http://www.sas.com/service/
library/onlinedoc. Select Base SAS from the Product-Specific Documentation list.

The TABULATE Procedure
The TABULATE procedure has the following new features:
� Available statistics include upper and lower confidence limits, skewness, and

kurtosis. PROC TABULATE now supports the ALPHA= option, which enables you
to specify a confidence level.

� Numeric class variables that do not have a format assigned to them are
automatically formatted with the BEST12. format.

The TIMEPLOT Procedre
The TIMEPLOT procedure now supports the SPLIT= option, which enables you to

specify a character at which labels will be split into multiple lines.

The UNIVARIATE Procedure
The following are new to the UNIVARIATE procedure:
� A list of ODS table names is now provided. You can use these names to reference

the table when using the Output Delivery System (ODS) to select tables and
create output data sets.

What’s New xv

� The LOWER= and NOUPPER= suboptions in the KERNEL option in the
HISTOGRAM statement specify the lower and upper bounds for fitted kernel
density curves.

� The FRONTREF option in the HISTOGRAM statement draws reference lines in
front of the histogram bars instead of behind them.

xvi What’s New

1

P A R T1

Concepts

Chapter 1.Choosing the Right Procedure 3

Chapter 2.Fundamental Concepts for Using Base SAS Procedures 15

Chapter 3.Statements with the Same Function in Multiple
Procedures 53

2

3

C H A P T E R

1
Choosing the Right Procedure

Functional Categories of Base SAS Procedures 3
Report Writing 3

Statistics 3

Utilities 4

Report-Writing Procedures 4

Statistical Procedures 6
Efficiency Issues 7

Quantiles 7

Computing Statistics for Groups of Observations 7

Additional Information about the Statistical Procedures 7

Utility Procedures 8

Brief Descriptions of Base SAS Procedures 10

Functional Categories of Base SAS Procedures
Base SAS software provides a variety of procedures that produce reports, compute

statistics, and perform utility operations.

Report Writing
These procedures display useful information, such as data listings (detail reports),

summary reports, calendars, letters, labels, forms, multipanel reports, and graphical
reports:

CALENDAR MEANS* SQL*

CHART* PLOT SUMMARY*

FORMS PRINT TABULATE*

FREQ* REPORT* TIMEPLOT

* These procedures produce reports and compute statistics.

Statistics
These procedures compute elementary statistical measures that include descriptive

statistics based on moments, quantiles, confidence intervals, frequency counts,

4 Utilities � Chapter 1

cross-tabulations, correlations, and distribution tests. They also rank and standardize
data:

CHART RANK SUMMARY

CORR REPORT TABULATE

FREQ SQL UNIVARIATE

MEANS STANDARD

Utilities
These procedures perform basic utility operations. They create, edit, sort, and

transpose data sets, create and restore transport data sets, create user-defined formats,
and provide basic file maintenance such as to copy, append, and compare data sets:

APPEND EXPLODE PRTDEF

BMDP** EXPORT PRTEXP

CATALOG FORMAT REGISTRY

CIMPORT FSLIST RELEASE**

COMPARE IMPORT SORT

CONTENTS OPTIONS SOURCE**

CONVERT** OPTLOAD SQL

COPY OPTSAVE TAPECOPY**

CPORT PDS** TAPELABEL**

CV2VIEW*** PDSCOPY** TEMPLATE*

DATASETS PMENU TRANSPOSE

DOCUMENT* PRINTTO TRANTAB

* See SAS Output Delivery System User’s Guide for a description of these procedures.
** See the SAS documentation for your operating environment for a description of these procedures.
***See SAS/ACCESS for Relational Databases: Reference for a description of this procedure.

Report-Writing Procedures
Table 1.1 on page 5 lists report-writing procedures according to the type of report.

Choosing the Right Procedure � Report-Writing Procedures 5

Table 1.1 Report-Writing Procedures by Task

To produce… Use this procedure… Which…

Detail reports PRINT produces data listings quickly; can supply titles,
footnotes, and column sums.

REPORT offers more control and customization than PROC
PRINT; can produce both column and row sums; has
DATA step computation abilities.

SQL combines Structured Query Language and SAS
features such as formats; can manipulate data and
create a SAS data set in the same step that creates the
report; can produce column and row statistics; does not
offer as much control over output as PROC PRINT and
PROC REPORT.

Summary reports MEANS or
SUMMARY

computes descriptive statistics for numeric variables;
can produce a printed report and create an output data
set.

PRINT produces only one summary report: can sum the BY
variables.

REPORT combines features of the PRINT, MEANS, and
TABULATE procedures with features of the DATA step
in a single report writing tool that can produce a
variety of reports; can also create an output data set.

SQL computes descriptive statistics for one or more SAS
data sets or DBMS tables; can produce a printed
report or create a SAS data set.

TABULATE produces descriptive statistics in a tabular format; can
produce stub-and-banner reports (multidimensional
tables with descriptive statistics); can also create an
output data set.

Miscellaneous highly formatted reports

Calendars CALENDAR produces schedule and summary calendars; can
schedule tasks around nonwork periods and holidays,
weekly work schedules, and daily work shifts.

Labels, Forms FORMS produces labels, such as mailing and inventory, or
other forms that have a repetitive format.

Name/address listings FORMS produces multicolumn name and address listings.

Multipanel reports
(telephone book listings)

REPORT produces multipanel reports.

Low-resolution graphical reports*

CHART produces bar charts, histograms, block charts, pie
charts, and star charts that display frequencies and
other statistics.

6 Statistical Procedures � Chapter 1

To produce… Use this procedure… Which…

PLOT produces scatter diagrams that plot one variable
against another.

TIMEPLOT produces plots of one or more variables over time
intervals.

* These reports quickly produce a simple graphical picture of the data. To produce high-resolution graphical
reports, use SAS/GRAPH software.

Statistical Procedures
Table 1.2 on page 6 lists statistical procedures according to task. Table A1.1 on page

1579 lists the most common statistics and the procedures that compute them.

Table 1.2 Elementary Statistical Procedures by Task

To produce… Use this procedure… Which…

Descriptive statistics CORR computes simple descriptive statistics.

MEANS or
SUMMARY

computes descriptive statistics; can produce printed output
and output data sets. By default, PROC MEANS produces
printed output and PROC SUMMARY creates an output
data set.

REPORT computes most of the same statistics as PROC TABULATE;
allows customization of format.

SQL computes descriptive statistics for data in one or more
DBMS tables; can produce a printed report or create a SAS
data set.

TABULATE produces tabular reports for descriptive statistics; can
create an output data set.

UNIVARIATE computes the broadest set of descriptive statistics; can
create an output data set.

Frequency and
cross-tabulation tables

FREQ produces one-way to n-way tables; reports frequency counts;
computes chi-square tests; computes tests and measures of
association and agreement for two-way to n-way
cross-tabulation tables; can compute exact tests and
asymptotic tests; can create output data sets.

TABULATE produces one-way and two-way cross-tabulation tables; can
create an output data set.

UNIVARIATE produces one-way frequency tables.

Correlation analysis CORR computes Pearson’s, Spearman’s, and Kendall’s correlations
and partial correlations; also computes Hoeffding’s D and
Cronbach’s coefficient alpha.

Distribution analysis UNIVARIATE computes tests for location and tests for normality.

FREQ computes a test for the binomial proportion for one-way
tables; computes a goodness-of-fit test for one-way tables;
computes a chi-square test of equal distribution for two-way
tables.

Choosing the Right Procedure � Additional Information about the Statistical Procedures 7

To produce… Use this procedure… Which…

Robust estimation UNIVARIATE computes robust estimates of scale, trimmed means, and
Winsorized means.

Data transformation

Computing ranks RANK computes ranks for one or more numeric variables across
the observations of a SAS data set and creates an output
data set; can produce normal scores or other rank scores.

Standardizing data STANDARD creates an output data set that contains variables that are
standardized to a given mean and standard deviation.

Low-resolution graphics*

CHART produces a graphical report that can show one of the
following statistics for the chart variable: frequency counts,
percentages, cumulative frequencies, cumulative
percentages, totals, or averages.

UNIVARIATE produces descriptive plots such as stem and leaf, box plot,
and normal probability plot.

* To produce high-resolution graphical reports, use SAS/GRAPH software.

Efficiency Issues

Quantiles

For a large sample size n, the calculation of quantiles, including the median, requires
computing time proportional to nlog(n). Therefore, a procedure, such as UNIVARIATE,
that automatically calculates quantiles may require more time than other data
summarization procedures. Furthermore, because data is held in memory, the procedure
also requires more storage space to perform the computations. By default, the report
procedures PROC MEANS, PROC SUMMARY, and PROC TABULATE require less
memory because they do not automatically compute quantiles. These procedures also
provide an option to use a new fixed-memory quantiles estimation method that is
usually less memory intense. See “Quantiles” on page 680 for more information.

Computing Statistics for Groups of Observations

To compute statistics for several groups of observations, you can use any of the
previous procedures with a BY statement to specify BY-group variables. However,
BY-group processing requires that you previously sort or index the data set, which for
very large data sets may require substantial computer resources. A more efficient way
to compute statistics within groups without sorting is to use a CLASS statement with
one of the following procedures: MEANS, SUMMARY, or TABULATE.

Additional Information about the Statistical Procedures
Appendix 1, “SAS Elementary Statistics Procedures,” on page 1577 lists standard

keywords, statistical notation, and formulas for the statistics that base SAS procedures
compute frequently. The individual statistical procedures discuss the statistical
concepts that are useful to interpret the output of a procedure.

8 Utility Procedures � Chapter 1

Utility Procedures
Table 1.3 on page 8 groups utility procedures according to task.

Table 1.3 Utility Procedures by Task

To perform these utility
tasks… Use this procedure… Which…

Supply information COMPARE compares the contents of two SAS data sets.

CONTENTS describes the contents of a SAS data library or specific
library members.

OPTIONS lists the current values of all SAS system options.

SQL supplies information through dictionary tables on an
individual SAS data set as well as all SAS files active in
the current SAS session. Dictionary tables can also
provide information about macros, titles, indexes,
external files, or SAS system options.

Manage SAS system options OPTIONS lists the current values of all SAS system options.

OPTLOAD reads SAS system option settings that are stored in the
SAS registry or a SAS data set.

OPTSAVE saves SAS system option settings to the SAS registry or a
SAS data set.

Affect printing and Output
Delivery System output

DOCUMENT** manipulates procedure output that is stored in ODS
documents.

EXPLODE produces oversized text on printed output; can produce
displays such as posters, flip charts, and header pages.

FORMAT creates user-defined formats to display and print data.

PRINTTO routes procedure output to a file, a SAS catalog entry, or
a printer; can also redirect the SAS log to a file.

PRTDEF creates printer definitions.

PRTEXP exports printer definition attributes to a SAS data set.

TEMPLATE** customizes ODS output.

Create, browse, and edit
data

FSLIST browses external files such as files that contain SAS
source lines or SAS procedure output.

SQL creates SAS data sets using Structured Query Language
and SAS features.

Transform data FORMAT creates user-defined informats to read data and
user-defined formats to display data.

SORT sorts SAS data sets by one or more variables.

SQL sorts SAS data sets by one or more variables.

TRANSPOSE transforms SAS data sets so that observations become
variables and variables become observations.

TRANTAB creates, edits, and displays customized translation tables.

Manage SAS files APPEND appends one SAS data set to the end of another.

Choosing the Right Procedure � Utility Procedures 9

To perform these utility
tasks… Use this procedure… Which…

BMDP* invokes a BMDP program to analyze data in a SAS data
set.

CATALOG manages SAS catalog entries.

CIMPORT restores a transport sequential file that PROC CPORT
creates (usually under another operating environment) to
its original form as a SAS catalog, a SAS data set, or a
SAS library.

CONVERT* converts BMDP system files, OSIRIS system files, and
SPSS portable files to SAS data sets.

COPY copies a SAS data library or specific members of the
library.

CPORT converts a SAS catalog, a SAS data set, or a SAS library
to a transport sequential file that PROC CIMPORT can
restore (usually under another operating environment) to
its original form.

CV2VIEW*** converts SAS/ACCESS view descriptors to PROC SQL
views.

DATASETS manages SAS files.

EXPORT reads data from a SAS data set and writes them to an
external data source.

IMPORT reads data from an external data source and writes them
to a SAS data set.

PDS* lists, deletes, and renames the members of a partitioned
data set.

PDSCOPY* copies partitioned data sets from disk to tape, disk to
disk, tape to tape, or tape to disk.

REGISTRY imports registry information to the USER portion of the
SAS registry.

RELEASE* releases unused space at the end of a disk data set under
the OS/390 environment.

SOURCE* provides an easy way to back up and process source
library data sets.

SQL concatenates SAS data sets.

TAPECOPY* copies an entire tape volume or files from one or more
tape volumes to one output tape volume.

TAPELABEL* lists the label information of an IBM standard-labeled
tape volume under the OS/390 environment.

Control windows PMENU creates customized pull-down menus for SAS applications.

* See the SAS documentation for your operating environment for a description of these procedures.
** See SAS Output Delivery System User’s Guide for a description of these procedures.
***See SAS/ACCESS for Relational Databases: Reference for a description of this procedure.

10 Brief Descriptions of Base SAS Procedures � Chapter 1

Brief Descriptions of Base SAS Procedures

APPEND procedure
adds observations from one SAS data set to the end of another SAS data set.

BMDP procedure
invokes a BMDP program to analyze data in a SAS data set. See the SAS
documentation for your operating environment for more information.

CALENDAR procedure
displays data from a SAS data set in a monthly calendar format. PROC
CALENDAR can display holidays in the month, schedule tasks, and process data
for multiple calendars with work schedules that vary.

CATALOG procedure
manages entries in SAS catalogs. PROC CATALOG is an interactive,
nonwindowing procedure that enables you to display the contents of a catalog,
copy an entire catalog or specific entries in a catalog, and rename, exchange, or
delete entries in a catalog.

CHART procedure
produces vertical and horizontal bar charts, block charts, pie charts, and star
charts. These charts provide a quick visual representation of the values of a single
variable or several variables. PROC CHART can also display a statistic associated
with the values.

CIMPORT procedure
restores a transport file created by the CPORT procedure to its original form (a
SAS data library, catalog, or data set) in the format appropriate to the operating
environment. Coupled with the CPORT procedure, PROC CIMPORT enables you
to move SAS data libraries, catalogs, and data sets from one operating
environment to another.

COMPARE procedure
compares the contents of two SAS data sets. You can also use PROC COMPARE to
compare the values of different variables within a single data set. PROC
COMPARE produces a variety of reports on the comparisons that it performs.

CONTENTS procedure
prints descriptions of the contents of one or more files in a SAS data library.

CONVERT procedure
converts BMDP system files, OSIRIS system files, and SPSS portable files to SAS
data sets. See the SAS documentation for your operating environment for more
information.

COPY procedure
copies an entire SAS data library or specific members of the library. You can limit
processing to specific types of library members.

CORR procedure
computes Pearson product-moment and weighted product-moment correlation
coefficients between variables and descriptive statistics for these variables. In
addition, PROC CORR can compute three nonparametric measures of association
(Spearman’s rank-order correlation, Kendall’s tau-b, and Hoeffding’s measure of
dependence, D), partial correlations (Pearson’s partial correlation, Spearman’s
partial rank-order correlation, and Kendall’s partial tau-b), and Cronbach’s
coefficient alpha.

Choosing the Right Procedure � Brief Descriptions of Base SAS Procedures 11

CPORT procedure
writes SAS data libraries, data sets, and catalogs in a special format called a
transport file. Coupled with the CIMPORT procedure, PROC CPORT enables you
to move SAS libraries, data sets, and catalogs from one operating environment to
another.

CV2VIEW procedure
converts SAS/ACCESS view descriptors to PROC SQL views. Starting in Version
9, conversion of SAS/ACCESS view descriptors to PROC SQL views is
recommended because PROC SQL views are platform independent and enable you
to use the LIBNAME statement. See SAS/ACCESS for Relational Databases:
Reference for details.

DATASETS procedure
lists, copies, renames, and deletes SAS files and SAS generation groups, manages
indexes, and appends SAS data sets in a SAS data library. The procedure provides
all the capabilities of the APPEND, CONTENTS, and COPY procedures. You can
also modify variables within data sets, manage data set attributes, such as labels
and passwords, or create and delete integrity constraints.

DOCUMENT procedure
manipulates procedure output that is stored in ODS documents. PROC
DOCUMENT enables a user to browse and edit output objects and hierarchies,
and to replay them to any supported ODS output format. See SAS Output Delivery
System User’s Guide for details.

EXPLODE procedure
produces oversized printing of text to generate displays such as posters, flip
charts, and header pages.

EXPORT procedure
reads data from a SAS data set and writes it to an external data source.

FORMAT procedure
creates user-defined informats and formats for character or numeric variables.
PROC FORMAT also prints the contents of a format library, creates a control data
set to write other informats or formats, and reads a control data set to create
informats or formats.

FORMS procedure
produces labels for envelopes, mailing labels, external tape labels, file cards, and
other printer forms that have a regular pattern.

FREQ procedure
produces one-way to n-way frequency tables and reports frequency counts. PROC
FREQ can compute chi-square tests for one-way to n-way tables, tests and
measures of association and of agreement for two-way to n-way cross-tabulation
tables, risks and risk difference for 2�2 tables, trends tests, and
Cochran-Mantel-Haenszel statistics. You can also create output data sets.

FSLIST procedure
displays the contents of an external file or copies text from an external file to the
SAS Text Editor.

IMPORT procedure
reads data from an external data source and writes them to a SAS data set.

MEANS procedure
computes descriptive statistics for numeric variables across all observations and
within groups of observations. You can also create an output data set that contains

12 Brief Descriptions of Base SAS Procedures � Chapter 1

specific statistics and identifies minimum and maximum values for groups of
observations.

OPTIONS procedure
lists the current values of all SAS system options.

OPTLOAD procedure
reads SAS system option settings from the SAS registry or a SAS data set, and
puts them into effect.

OPTSAVE procedure
saves SAS system option settings to the SAS registry or a SAS data set.

PDS procedure
lists, deletes, and renames the members of a partitioned data set. See the SAS
documentation for your operating environment for more information.

PDSCOPY procedure
copies partitioned data sets from disk to tape, disk to disk, tape to tape, or tape to
disk. See the SAS documentation for your operating environment for more
information.

PLOT procedure
produces scatter plots that graph one variable against another. The coordinates of
each point on the plot correspond to the two variables’ values in one or more
observations of the input data set.

PMENU procedure
defines menus that you can use in DATA step windows, macro windows, and
SAS/AF windows, or in any SAS application that enables you to specify customized
menus.

PRINT procedure
prints the observations in a SAS data set, using all or some of the variables.
PROC PRINT can also print totals and subtotals for numeric variables.

PRINTTO procedure
defines destinations for SAS procedure output and the SAS log.

PRTDEF procedure
creates printer definitions for individual SAS users or all SAS users.

PRTEXP procedure
exports printer definition attributes to a SAS data set so that they can be easily
replicated and modified.

RANK procedure
computes ranks for one or more numeric variables across the observations of a
SAS data set. The ranks are written to a new SAS data set. Alternatively, PROC
RANK produces normal scores or other rank scores.

REGISTRY procedure
imports registry information into the USER portion of the SAS registry.

RELEASE procedure
releases unused space at the end of a disk data set in the OS/390 environment.
See the SAS documentation for this operating environment for more information.

REPORT procedure
combines features of the PRINT, MEANS, and TABULATE procedures with
features of the DATA step in a single report-writing tool that can produce both
detail and summary reports.

Choosing the Right Procedure � Brief Descriptions of Base SAS Procedures 13

SORT procedure
sorts observations in a SAS data set by one or more variables. PROC SORT stores
the resulting sorted observations in a new SAS data set or replaces the original
data set.

SOURCE procedure
provides an easy way to back up and process source library data sets. See the SAS
documentation for your operating environment for more information.

SQL procedure
implements a subset of the Structured Query Language (SQL) for use in SAS. SQL
is a standardized, widely used language that retrieves and updates data in SAS
data sets, SQL views, and DBMS tables, as well as views based on those tables.
PROC SQL can also create tables and views, summaries, statistics, and reports
and perform utility functions such as sorting and concatenating.

STANDARD procedure
standardizes some or all of the variables in a SAS data set to a given mean and
standard deviation and produces a new SAS data set that contains the
standardized values.

SUMMARY procedure
computes descriptive statistics for the variables in a SAS data across all
observations and within groups of observations and outputs the results to a new
SAS data set.

TABULATE procedure
displays descriptive statistics in tabular form. The value in each table cell is
calculated from the variables and statistics that define the pages, rows, and
columns of the table. The statistic associated with each cell is calculated on values
from all observations in that category. You can write the results to a SAS data set.

TAPECOPY procedure
copies an entire tape volume or files from one or more tape volumes to one output
tape volume. See the SAS documentation for your operating environment for more
information.

TAPELABEL procedure
lists the label information of an IBM standard-labeled tape volume under the
OS/390 environment. See the SAS documentation for this operating environment
for more information.

TEMPLATE procedure
customizes ODS output for an entire SAS job or a single ODS output object. See
SAS Output Delivery System User’s Guide for details.

TIMEPLOT procedure
produces plots of one or more variables over time intervals.

TRANSPOSE procedure
transposes a data set that changes observations into variables and vice versa.

TRANTAB procedure
creates, edits, and displays customized translation tables.

UNIVARIATE procedure
computes descriptive statistics (including quantiles), confidence intervals, and
robust estimates for numeric variables. Provides detail on the distribution of
numeric variables, which include tests for normality, plots to illustrate the
distribution, frequency tables, and tests of location.

14

15

C H A P T E R

2
Fundamental Concepts for Using
Base SAS Procedures

Language Concepts 16
Temporary and Permanent SAS Data Sets 16

USER Data Library 17

SAS System Options 17

Data Set Options 17

Global Statements 18
Procedure Concepts 19

Input Data Sets 19

RUN-Group Processing 19

Creating Titles That Contain BY-Group Information 19

Suppressing the Default BY Line 19

Inserting BY-Group Information into a Title 20
Example: Inserting a Value from Each BY Variable into the Title 20

Example: Inserting the Name of a BY Variable into a Title 22

Example: Inserting the Complete BY Line into a Title 23

Error Processing of BY-Group Specifications 24

Shortcuts for Specifying Lists of Variable Names 24
Formatted Values 25

Example: Printing the Formatted Values for a Data Set 25

Example: Grouping or Classifying Formatted Data 27

Example: Temporarily Associating a Format with a Variable 28

Example: Temporarily Dissociating a Format from a Variable 29
Formats and BY-Group Processing 30

Formats and Error Checking 30

Processing All the Data Sets in a Library 30

Operating Environment-Specific Procedures 30

Statistic Descriptions 31

Computational Requirements for Statistics 32
Output Delivery System 32

What Is the Output Delivery System? 32

Gallery of ODS Samples 33

Traditional SAS Output 33

Postscript Output 35
HTML Output 36

RTF Output 36

PDF Output 37

XML Output 38

Commonly-Used ODS Terminology 39
How Does ODS Work? 40

Components of SAS Output 40

Features of ODS 42

16 Language Concepts � Chapter 2

What are ODS Destinations? 42
Definition of Destination-Independent Input 42

The SAS Formatted Destinations 43

The Third-Party Formatted Destinations 44

What Controls the Formatting Features of Third-Party Formats? 45

ODS Destinations and System Resources 46
What Are Table Definitions, Table Elements, and Table Attributes? 46

What Are Style Definitions, Style Elements, and Style Attributes? 47

What Style Definitions Are Shipped with the Software? 47

How do I Use Style Definitions with Base Procedures? 48

Customized ODS Output 48

SAS Output 48
Selection and Exclusion Lists 48

How Does ODS Determine the Destinations for an Output Object? 49

Customized Output for an Output Object 50

Conclusion 51

Language Concepts

Temporary and Permanent SAS Data Sets
SAS data sets can have a one-level name or a two-level name. Typically, names of

temporary SAS data sets have only one level and are stored in the WORK data library.
The WORK data library is defined automatically at the beginning of the SAS session
and is automatically deleted at the end of the SAS session. Procedures assume that SAS
data sets that are specified with a one-level name are to be read from or written to the
WORK data library, unless you specify a USER data library (see “USER Data Library”
on page 17). For example, the following PROC PRINT steps are equivalent. The second
PROC PRINT step assumes that the DEBATE data set is in the WORK data library:

proc print data=work.debate;
run;

proc print data=debate;
run;

The SAS system options WORK=, WORKINIT, and WORKTERM affect how you
work with temporary and permanent libraries. See SAS Language Reference:
Dictionary for complete documentation.

Typically, two-level names represent permanent SAS data sets. A two-level name
takes the form libref.SAS-data-set. The libref is a name that is temporarily associated
with a SAS data library. A SAS data library is an external storage location that stores
SAS data sets in your operating environment. A LIBNAME statement associates the
libref with the SAS data library. In the following PROC PRINT step, PROCLIB is the
libref and EMP is the SAS data set within the library:

libname proclib ’SAS-data-library’;
proc print data=proclib.emp;
run;

Fundamental Concepts for Using Base SAS Procedures � Data Set Options 17

USER Data Library
You can use one-level names for permanent SAS data sets by specifying a USER data

library. You can assign a USER data library with a LIBNAME statement or with the
SAS system option USER=. After you specify a USER data library, the procedure
assumes that data sets with one-level names are in the USER data library instead of
the WORK data library. For example, the following PROC PRINT step assumes that
DEBATE is in the USER data library:

options user=’SAS-data-library’;
proc print data=debate;
run;

Note: If you have a USER data library defined, then you can still use the WORK
data library by specifying WORK.SAS-data-set.

SAS System Options
Some SAS system option settings affect procedure output. The following are the SAS

system options that you are most likely to use with SAS procedures:
BYLINE|NOBYLINE
DATE|NODATE
DETAILS|NODETAILS
FMTERR|NOFMTERR
FORMCHAR=
FORMDLIM=
LABEL|NOLABEL
LINESIZE=
NUMBER|NONUMBER
PAGENO=
PAGESIZE=
REPLACE|NOREPLACE
SOURCE|NOSOURCE

For a complete description of SAS system options, see SAS Language Reference:
Dictionary.

Data Set Options
Most of the procedures that read data sets or create output data sets accept data set

options. SAS data set options appear in parentheses after the data set specification.
Here is an example:

proc print data=stocks(obs=25 pw=green);

The individual procedure chapters contain reminders that you can use data set
options where it is appropriate.

SAS data set options are

ALTER= OBS=

BUFNO= OPTSET=

BUFSIZE= OUTREP=

CNTLLEV= POINTOBS=

18 Global Statements � Chapter 2

COMPRESS= PW=

DLDMGACTION= PWREQ=

DROP= READ=

ENCODING= RENAME=

ENCRYPT= REPEMPTY=

FILECLOSE= REPLACE=

FIRSTOBS= REUSE=

GENMAX= ROLE=

GENNUM= SORTEDBY=

IDXNAME= SORTSEQ=

IDXWHERE= TOBSNO=

IN= TYPE=

INDEX= WHERE=

KEEP= WHEREUP=

LABEL= WRITE=

For a complete description of SAS data set options, see SAS Language Reference:
Dictionary.

Global Statements

You can use these global statements anywhere in SAS programs except after a
DATALINES, CARDS, or PARMCARDS statement:

comment ODS

DM OPTIONS

ENDSAS PAGE

FILENAME RUN

FOOTNOTE %RUN

%INCLUDE SASFILE

LIBNAME SKIP

%LIST TITLE

LOCK X

For information about all but the ODS statement, refer to SAS Language Reference:
Dictionary. For information about the ODS statement, refer to “Output Delivery
System” on page 32 and to SAS Output Delivery System User’s Guide.

Fundamental Concepts for Using Base SAS Procedures � Creating Titles That Contain BY-Group Information 19

Procedure Concepts

Input Data Sets
Many base procedures require an input SAS data set. You specify the input SAS data

set by using the DATA= option in the procedure statement, as in this example:

proc print data=emp;

If you omit the DATA= option, the procedure uses the value of the SAS system option
LAST=. The default of _LAST_= is the most recently created SAS data set in the
current SAS job or session. _LAST_= is described in detail in SAS Language Reference:
Dictionary.

RUN-Group Processing
RUN-group processing enables you to submit a PROC step with a RUN statement

without ending the procedure. You can continue to use the procedure without issuing
another PROC statement. To end the procedure, use a RUN CANCEL or a QUIT
statement. Several base SAS procedures support RUN-group processing:

CATALOG

DATASETS

PLOT

PMENU

TRANTAB

See the section on the individual procedure for more information.

Note: PROC SQL executes each query automatically. Neither the RUN nor RUN
CANCEL statement has any effect. �

Creating Titles That Contain BY-Group Information
BY-group processing uses a BY statement to process observations that are ordered,

grouped, or indexed according to the values of one or more variables. By default, when
you use BY-group processing in a procedure step, a BY line identifies each group. This
section explains how to create titles that serve as customized BY lines.

Suppressing the Default BY Line
When you insert BY-group processing information into a title, you usually want to

eliminate the default BY line. To suppress it, use the SAS system option NOBYLINE.

Note: You must use the NOBYLINE option if you insert BY-group information into
titles for the following base SAS procedures:

MEANS

PRINT

STANDARD

20 Creating Titles That Contain BY-Group Information � Chapter 2

SUMMARY

If you use the BY statement with the NOBYLINE option, then these procedures always
start a new page for each BY group. This behavior prevents multiple BY groups from
appearing on a single page and ensures that the information in the titles matches the
report on the pages. �

Inserting BY-Group Information into a Title
The general form for inserting BY-group information into a title is

#BY-specification<.suffix>

BY-specification
is one of the following:

BYVALn | BYVAL(BY-variable)
places the value of the specified BY variable in the title. You specify the BY
variable with one of the following:

n
is the nth BY variable in the BY statement.

BY-variable
is the name of the BY variable whose value you want to insert in the
title.

BYVARn | BYVAR(BY-variable)
places the label or the name (if no label exists) of the specified BY variable in
the title. You designate the BY variable with one of the following:

n
is the nth BY variable in the BY statement.

BY-variable
is the name of the BY variable whose name you want to insert in the
title.

BYLINE
inserts the complete default BY line into the title.

suffix
supplies text to place immediately after the BY-group information that you insert
in the title. No space appears between the BY-group information and the suffix.

Example: Inserting a Value from Each BY Variable into the Title
This example

1 creates a data set, GROC, that contains data for stores from four regions. Each
store has four departments. See “GROC” on page 1626 for the DATA step that
creates the data set.

2 sorts the data by Region and Department.
3 uses the SAS system option NOBYLINE to suppress the BY line that normally

appears in output that is produced with BY-group processing.
4 uses PROC CHART to chart sales by Region and Department. In the first TITLE

statement, #BYVAL2 inserts the value of the second BY variable, Department, into
the title. In the second TITLE statement, #BYVAL(Region) inserts the value of
Region into the title. The first period after Region indicates that a suffix follows.
The second period is the suffix.

Fundamental Concepts for Using Base SAS Procedures � Creating Titles That Contain BY-Group Information 21

5 uses the SAS system option BYLINE to return to the creation of the default BY
line with BY-group processing.

data groc; u

input Region $9. Manager $ Department $ Sales;
datalines;

Southeast Hayes Paper 250
Southeast Hayes Produce 100
Southeast Hayes Canned 120
Southeast Hayes Meat 80
...more lines of data...
Northeast Fuller Paper 200
Northeast Fuller Produce 300
Northeast Fuller Canned 420
Northeast Fuller Meat 125
;

proc sort data=groc; v

by region department;
run;
options nobyline nodate pageno=1

linesize=64 pagesize=20; w

proc chart data=groc; x

by region department;
vbar manager / type=sum sumvar=sales;
title1 ’This chart shows #byval2 sales’;
title2 ’in the #byval(region)..’;

run;
options byline; y

This partial output shows two BY groups with customized BY lines:

This chart shows Canned sales 1
in the Northwest.

Sales Sum

400 + ***** *****
| ***** *****

300 + ***** *****
| ***** ***** *****

200 + ***** ***** *****
| ***** ***** *****

100 + ***** ***** *****
***** ***** *****

Aikmann Duncan Jeffreys

Manager

22 Creating Titles That Contain BY-Group Information � Chapter 2

This chart shows Meat sales 2
in the Northwest.

Sales Sum

75 + ***** *****
| ***** *****

60 + ***** *****
| ***** *****

45 + ***** *****
| ***** *****

30 + ***** ***** *****
| ***** ***** *****

15 + ***** ***** *****
***** ***** *****

Aikmann Duncan Jeffreys

Manager

Example: Inserting the Name of a BY Variable into a Title
This example inserts the name of a BY variable and the value of a BY variable into

the title. The program
1 uses the SAS system option NOBYLINE to suppress the BY line that normally

appears in output that is produced with BY-group processing.
2 uses PROC CHART to chart sales by Region. In the first TITLE statement,

#BYVAR(Region) inserts the name of the variable Region into the title. (If Region
had a label, #BYVAR would use the label instead of the name.) The suffix al is
appended to the label. In the second TITLE statement, #BYVAL1 inserts the value
of the first BY variable, Region, into the title.

3 uses the SAS system option BYLINE to return to the creation of the default BY
line with BY-group processing.

options nobyline nodate pageno=1
linesize=64 pagesize=20; u

proc chart data=groc; v

by region;
vbar manager / type=mean sumvar=sales;
title1 ’#byvar(region).al Analysis’;
title2 ’for the #byval1’;

run;
options byline; w

Fundamental Concepts for Using Base SAS Procedures � Creating Titles That Contain BY-Group Information 23

This partial output shows one BY group with a customized BY line:

Regional Analysis 1
for the Northwest

Sales Mean

300 + *****
| *****

200 + ***** *****
| ***** ***** *****

100 + ***** ***** *****
***** ***** *****

Aikmann Duncan Jeffreys

Manager

Example: Inserting the Complete BY Line into a Title
This example inserts the complete BY line into the title. The program
1 uses the SAS system option NOBYLINE to suppress the BY line that normally

appears in output that is produced with BY-group processing.
2 uses PROC CHART to chart sales by Region and Department. In the TITLE

statement, #BYLINE inserts the complete BY line into the title.
3 uses the SAS system option BYLINE to return to the creation of the default BY

line with BY-group processing.

options nobyline nodate pageno=1
linesize=64 pagesize=20; u

proc chart data=groc; v

by region department;
vbar manager / type=sum sumvar=sales;
title ’Information for #byline’;

run;
options byline; w

This partial output shows two BY groups with customized BY lines:

Information for Region=Northwest Department=Canned 1

Sales Sum

400 + ***** *****
| ***** *****

300 + ***** *****
| ***** ***** *****

200 + ***** ***** *****
| ***** ***** *****

100 + ***** ***** *****
***** ***** *****

Aikmann Duncan Jeffreys

Manager

24 Shortcuts for Specifying Lists of Variable Names � Chapter 2

Information for Region=Northwest Department=Meat 2

Sales Sum

75 + ***** *****
| ***** *****

60 + ***** *****
| ***** *****

45 + ***** *****
| ***** *****

30 + ***** ***** *****
| ***** ***** *****

15 + ***** ***** *****
***** ***** *****

Aikmann Duncan Jeffreys

Manager

Error Processing of BY-Group Specifications

SAS does not issue error or warning messages for incorrect #BYVAL, #BYVAR, or
#BYLINE specifications. Instead, the text of the item simply becomes part of the title.

Shortcuts for Specifying Lists of Variable Names

Several statements in procedures allow multiple variable names. You can use these
shortcut notations instead of specifying each variable name:

Notation Meaning

x1-xn specifies variables X1 through Xn. The numbers must be
consecutive.

x: specifies all variables that begin with the letter X.

x--a specifies all variables between X and A, inclusive. This
notation uses the position of the variables in the data set.

x-numeric-a specifies all numeric variables between X and A, inclusive.
This notation uses the position of the variables in the data set.

x-character-a specifies all character variables between X and A, inclusive.
This notation uses the position of the variables in the data set.

numeric specifies all numeric variables.

character specifies all character variables.

all specifies all variables.

Note: You cannot use shortcuts to list variable names in the INDEX CREATE
statement in PROC DATASETS. �

See SAS Language Reference: Concepts for complete documentation.

Fundamental Concepts for Using Base SAS Procedures � Formatted Values 25

Formatted Values
Typically, when you print or group variable values, base SAS procedures use the

formatted values. This section contains examples of how base procedures use formatted
values.

Example: Printing the Formatted Values for a Data Set

The following example prints the formatted values of the data set
PROCLIB.PAYROLL. (See “PROCLIB.PAYROLL” on page 1648 for the DATA step that
creates this data set.) In PROCLIB.PAYROLL, the variable Jobcode indicates the job
and level of the employee. For example, TA1 indicates that the employee is at the
beginning level for a ticket agent.

libname proclib ’SAS-data-library’;

options nodate pageno=1
linesize=64 pagesize=40;

proc print data=proclib.payroll(obs=10)
noobs;

title ’PROCLIB.PAYROLL’;
title2 ’First 10 Observations Only’;

run;

This is a partial printing of PROCLIB.PAYROLL:

PROCLIB.PAYROLL 1
First 10 Observations Only

Id
Number Gender Jobcode Salary Birth Hired

1919 M TA2 34376 12SEP60 04JUN87
1653 F ME2 35108 15OCT64 09AUG90
1400 M ME1 29769 05NOV67 16OCT90
1350 F FA3 32886 31AUG65 29JUL90
1401 M TA3 38822 13DEC50 17NOV85
1499 M ME3 43025 26APR54 07JUN80
1101 M SCP 18723 06JUN62 01OCT90
1333 M PT2 88606 30MAR61 10FEB81
1402 M TA2 32615 17JAN63 02DEC90
1479 F TA3 38785 22DEC68 05OCT89

The following PROC FORMAT step creates the format $JOBFMT., which assigns
descriptive names for each job:

proc format;
value $jobfmt

’FA1’=’Flight Attendant Trainee’
’FA2’=’Junior Flight Attendant’
’FA3’=’Senior Flight Attendant’
’ME1’=’Mechanic Trainee’
’ME2’=’Junior Mechanic’
’ME3’=’Senior Mechanic’

26 Formatted Values � Chapter 2

’PT1’=’Pilot Trainee’
’PT2’=’Junior Pilot’
’PT3’=’Senior Pilot’
’TA1’=’Ticket Agent Trainee’
’TA2’=’Junior Ticket Agent’
’TA3’=’Senior Ticket Agent’
’NA1’=’Junior Navigator’
’NA2’=’Senior Navigator’
’BCK’=’Baggage Checker’
’SCP’=’Skycap’;

run;

The FORMAT statement in this PROC MEANS step temporarily associates the
$JOBFMT. format with the variable Jobcode:

options nodate pageno=1
linesize=64 pagesize=60;

proc means data=proclib.payroll mean max;
class jobcode;
var salary;
format jobcode $jobfmt.;
title ’Summary Statistics for’;
title2 ’Each Job Code’;

run;

Fundamental Concepts for Using Base SAS Procedures � Formatted Values 27

PROC MEANS produces this output, which uses the $JOBFMT. format:

Summary Statistics for 1
Each Job Code

The MEANS Procedure

Analysis Variable : Salary

N
Jobcode Obs Mean Maximum

Baggage Checker 9 25794.22 26896.00

Flight Attendant Trainee 11 23039.36 23979.00

Junior Flight Attendant 16 27986.88 28978.00

Senior Flight Attendant 7 32933.86 33419.00

Mechanic Trainee 8 28500.25 29769.00

Junior Mechanic 14 35576.86 36925.00

Senior Mechanic 7 42410.71 43900.00

Junior Navigator 5 42032.20 43433.00

Senior Navigator 3 52383.00 53798.00

Pilot Trainee 8 67908.00 71349.00

Junior Pilot 10 87925.20 91908.00

Senior Pilot 2 10504.50 11379.00

Skycap 7 18308.86 18833.00

Ticket Agent Trainee 9 27721.33 28880.00

Junior Ticket Agent 20 33574.95 34803.00

Senior Ticket Agent 12 39679.58 40899.00

Note: Because formats are character strings, formats for numeric variables are
ignored when the values of the numeric variables are needed for mathematical
calculations. �

Example: Grouping or Classifying Formatted Data
If you use a formatted variable to group or classify data, then the procedure uses the

formatted values. The following example creates and assigns a format, $CODEFMT.,
that groups the levels of each job code into one category. PROC MEANS calculates
statistics based on the groupings of the $CODEFMT. format.

proc format;
value $codefmt

’FA1’,’FA2’,’FA3’=’Flight Attendant’
’ME1’,’ME2’,’ME3’=’Mechanic’
’PT1’,’PT2’,’PT3’=’Pilot’
’TA1’,’TA2’,’TA3’=’Ticket Agent’

’NA1’,’NA2’=’Navigator’
’BCK’=’Baggage Checker’

28 Formatted Values � Chapter 2

’SCP’=’Skycap’;
run;

options nodate pageno=1
linesize=64 pagesize=40;

proc means data=proclib.payroll mean max;
class jobcode;
var salary;
format jobcode $codefmt.;
title ’Summary Statistics for Job Codes’;
title2 ’(Using a Format that Groups the Job Codes)’;

run;

PROC MEANS produces this output:

Summary Statistics for Job Codes 1
(Using a Format that Groups the Job Codes)

The MEANS Procedure

Analysis Variable : Salary

N
Jobcode Obs Mean Maximum

Baggage Checker 9 25794.22 26896.00

Flight Attendant 34 27404.71 33419.00

Mechanic 29 35274.24 43900.00

Navigator 8 45913.75 53798.00

Pilot 20 72176.25 91908.00

Skycap 7 18308.86 18833.00

Ticket Agent 41 34076.73 40899.00

Example: Temporarily Associating a Format with a Variable
If you want to associate a format with a variable temporarily, then you can use the

FORMAT statement. For example, the following PROC PRINT step associates the
DOLLAR8. format with the variable Salary for the duration of this PROC PRINT step
only:

options nodate pageno=1
linesize=64 pagesize=40;

proc print data=proclib.payroll(obs=10)
noobs;

format salary dollar8.;
title ’Temporarily Associating a Format’;
title2 ’with the Variable Salary’;

run;

Fundamental Concepts for Using Base SAS Procedures � Formatted Values 29

PROC PRINT produces this output:

Temporarily Associating a Format 1
with the Variable Salary

Id
Number Gender Jobcode Salary Birth Hired

1919 M TA2 $34,376 12SEP60 04JUN87
1653 F ME2 $35,108 15OCT64 09AUG90
1400 M ME1 $29,769 05NOV67 16OCT90
1350 F FA3 $32,886 31AUG65 29JUL90
1401 M TA3 $38,822 13DEC50 17NOV85
1499 M ME3 $43,025 26APR54 07JUN80
1101 M SCP $18,723 06JUN62 01OCT90
1333 M PT2 $88,606 30MAR61 10FEB81
1402 M TA2 $32,615 17JAN63 02DEC90
1479 F TA3 $38,785 22DEC68 05OCT89

Example: Temporarily Dissociating a Format from a Variable
If a variable has a permanent format that you do not want a procedure to use, then

temporarily dissociate the format from the variable by using a FORMAT statement.
In this example, the FORMAT statement in the DATA step permanently associates

the $YRFMT. variable with the variable Year. Thus, when you use the variable in a
PROC step, the procedure uses the formatted values. The PROC MEANS step, however,
contains a FORMAT statement that dissociates the $YRFMT. format from Year for this
PROC MEANS step only. PROC MEANS uses the stored value for Year in the output.

proc format;
value $yrfmt ’1’=’Freshman’

’2’=’Sophomore’
’3’=’Junior’
’4’=’Senior’;

run;
data debate;

input Name $ Gender $ Year $ GPA @@;
format year $yrfmt.;
datalines;

Capiccio m 1 3.598 Tucker m 1 3.901
Bagwell f 2 3.722 Berry m 2 3.198
Metcalf m 2 3.342 Gold f 3 3.609
Gray f 3 3.177 Syme f 3 3.883
Baglione f 4 4.000 Carr m 4 3.750
Hall m 4 3.574 Lewis m 4 3.421
;

options nodate pageno=1
linesize=64 pagesize=40;

proc means data=debate mean maxdec=2;
class year;
format year;
title ’Average GPA’;

run;

30 Processing All the Data Sets in a Library � Chapter 2

PROC MEANS produces this output, which does not use the YRFMT. format:

Average GPA 1

The MEANS Procedure

Analysis Variable : GPA

N
Year Obs Mean

1 2 3.75

2 3 3.42

3 3 3.56

4 4 3.69

Formats and BY-Group Processing
When a procedure processes a data set, it checks to see if a format is assigned to the

BY variable. If it is, then the procedure adds observations to the current BY groups
until the formatted value changes. If nonconsecutive internal values of the BY
variable(s) have the same formatted value, then the values are grouped into different
BY groups. This results in two BY groups with the same formatted value. Further, if
different and consecutive internal values of the BY variable(s) have the same formatted
value, then they are included in the same BY group.

Formats and Error Checking
If SAS cannot find a format, then it stops processing and prints an error message in

the SAS log. You can suppress this behavior with the SAS system option NOFMTERR.
If you use NOFMTERR, and SAS cannot find the format, then SAS uses a default
format and continues processing. Typically, for the default, SAS uses the BESTw.
format for numeric variables and the $w. format for character variables.

Note: To ensure that SAS can find user-written formats, use the SAS system option
FMTSEARCH=. How to store formats is described in “Storing Informats and Formats”
on page 466. �

Processing All the Data Sets in a Library
You can use the SAS Macro Facility to run the same procedure on every data set in a

library. The macro facility is part of base SAS software.
Example 9 on page 875 shows how to print all the data sets in a library. You can use

the same macro definition to perform any procedure on all the data sets in a library.
Simply replace the PROC PRINT piece of the program with the appropriate procedure
code.

Operating Environment-Specific Procedures
Several base SAS procedures are specific to one operating environment or one

release. Appendix 2, “Operating Environment-Specific Procedures,” on page 1613
contains a table with additional information. These procedures are described in more
detail in the SAS documentation for operating environments.

Fundamental Concepts for Using Base SAS Procedures � Statistic Descriptions 31

Statistic Descriptions

Table 2.1 on page 31 identifies common descriptive statistics that are available in
several base procedures. See “Keywords and Formulas” on page 1578 for more detailed
information about available statistics and theoretical information.

Table 2.1 Common Descriptive Statistics That Base Procedures Calculate

Statistic Description Procedures

confidence intervals FREQ, MEANS/SUMMARY, TABULATE, UNIVARIATE

CSS corrected sum of
squares

CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

CV coefficient of variation MEANS/SUMMARY, REPORT, SQL, TABULATE,
UNIVARIATE

goodness-of-fit tests FREQ, UNIVARIATE

KURTOSIS kurtosis MEANS/SUMMARY, TABULATE, UNIVARIATE

MAX largest (maximum)
value

CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

MEAN mean CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

MEDIAN median (50th percentile) CORR (for nonparametric correlation measures),
MEANS/SUMMARY, TABULATE, UNIVARIATE

MIN smallest (minimum)
value

CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

MODE most frequent value (if
not unique, the
smallest mode is used)

UNIVARIATE

N number of observations
on which calculations
are based

CORR, FREQ, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

NMISS number of missing
values

FREQ, MEANS/SUMMARY, REPORT, SQL, TABULATE,
UNIVARIATE

NOBS number of observations MEANS/SUMMARY, UNIVARIATE

PCTN the percentage of a cell
or row frequency to a
total frequency

REPORT, TABULATE

PCTSUM the percentage of a cell
or row sum to a total
sum

REPORT, TABULATE

Pearson correlation CORR

percentiles FREQ, MEANS/SUMMARY, REPORT, TABULATE,
UNIVARIATE

RANGE range CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

32 Computational Requirements for Statistics � Chapter 2

Statistic Description Procedures

robust statistics trimmed means,
Winsorized means

UNIVARIATE

SKEWNESS skewness MEANS/SUMMARY, TABULATE, UNIVARIATE

Spearman correlation CORR

STD standard deviation CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

STDERR the standard error of
the mean

MEANS/SUMMARY, REPORT, SQL, TABULATE,
UNIVARIATE

SUM sum CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

SUMWGT sum of weights CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

tests of location UNIVARIATE

USS uncorrected sum of
squares

CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

VAR variance CORR, MEANS/SUMMARY, REPORT, SQL,
TABULATE, UNIVARIATE

Computational Requirements for Statistics
The following requirements are computational requirements for the statistics that

are listed in Table 2.1 on page 31. They do not describe recommended sample sizes.

� N and NMISS do not require any nonmissing observations.

� SUM, MEAN, MAX, MIN, RANGE, USS, and CSS require at least one nonmissing
observation.

� VAR, STD, STDERR, and CV require at least two observations.

� CV requires that MEAN is not equal to zero.

Statistics are reported as missing if they cannot be computed.

Output Delivery System

What Is the Output Delivery System?
Prior to Version 7, most SAS procedures generated output that was designed for a

traditional line-printer. This type of output has limitations that prevents you from
getting the most value from your results:

� Traditional SAS output is limited to monospace fonts. In a time of desktop
document editors and publishing systems, you want more versatility in printed
output.

� Some commonly used procedures do not produce output data sets. Prior to ODS, if
you wanted to use output from one of these procedures as input to another

Fundamental Concepts for Using Base SAS Procedures � Gallery of ODS Samples 33

procedure, then you relied on PROC PRINTTO and the DATA step to retrieve
results that otherwise could not be stored in an output data set.

ODS is designed to overcome these limitations and make it easier for you to format
your output. The SAS Output Delivery System (ODS) gives you greater flexibility in
generating, storing, and reproducing SAS procedure and DATA step output along with a
wide range of formatting options. ODS provides formatting functionality that is not
available from individual procedures or the DATA step alone.

Gallery of ODS Samples
Here is a sample of the different kinds of formatted output that you can produce with

ODS. The input file contains sales records for a company, TruBlend Coffee Makers, that
distributes coffee machines.

Traditional SAS Output
Traditional SAS output is Listing output. You do not need to change your SAS

programs to create listing output. By default, you continue to create this kind of output
even if you also want to create a type of output that contains more formatting.

34 Gallery of ODS Samples � Chapter 2

Output 2.1 Listing Output

Average Quarterly Sales Amount by Each Sales Representative 1

--------------------------------- Quarter=1 ----------------------------------

The MEANS Procedure

Analysis Variable : AmountSold

N
SalesRep Obs N Mean Std Dev Minimum Maximum
__
Garcia 8 8 14752.5 22806.1 495.0 63333.7

Hollingsworth 5 5 11926.9 12165.2 774.3 31899.1

Jensen 5 5 10015.7 8009.5 3406.7 20904.8
__

Average Quarterly Sales Amount by Each Sales Representative 2

--------------------------------- Quarter=2 ----------------------------------

The MEANS Procedure

Analysis Variable : AmountSold

N
SalesRep Obs N Mean Std Dev Minimum Maximum
__
Garcia 6 6 18143.3 20439.6 1238.8 53113.6

Hollingsworth 6 6 16026.8 14355.0 1237.5 34686.4

Jensen 6 6 12455.1 12713.7 1393.7 34376.7
__

Average Quarterly Sales Amount by Each Sales Representative 3

--------------------------------- Quarter=3 ----------------------------------

The MEANS Procedure

Analysis Variable : AmountSold

N
SalesRep Obs N Mean Std Dev Minimum Maximum
__
Garcia 21 21 10729.8 11457.0 2787.3 38712.5

Hollingsworth 15 15 7313.6 7280.4 1485.0 30970.0

Jensen 21 21 10585.3 7361.7 2227.5 27129.7
__

Average Quarterly Sales Amount by Each Sales Representative 4

--------------------------------- Quarter=4 ----------------------------------

The MEANS Procedure

Analysis Variable : AmountSold

N
SalesRep Obs N Mean Std Dev Minimum Maximum
__
Garcia 5 5 11973.0 10971.8 3716.4 30970.0

Hollingsworth 6 6 13624.4 12624.6 5419.8 38093.1

Jensen 6 6 19010.4 15441.0 1703.4 38836.4
__

Fundamental Concepts for Using Base SAS Procedures � Gallery of ODS Samples 35

Postscript Output
With ODS, you can produce output in PostScript format.

36 Gallery of ODS Samples � Chapter 2

HTML Output
With ODS, you can produce output in Hypertext Markup Language (HTML.) You can

browse these files with Internet Explorer, Netscape, or any other browser that fully
supports the HTML 3.2 tagset.

Note: To create HTML 4.0 tagsets, use the ODS HTML4 statement. In SAS 9, the
ODS HTML statement generates HTML3.2 tagsets. In future realeases of SAS, the
ODS HTML statement will support the most current HTML tagsets available. �

RTF Output
With ODS, you can produce output in rich text format (RTF) that can be used with

Microsoft Word.

Fundamental Concepts for Using Base SAS Procedures � Gallery of ODS Samples 37

PDF Output
With ODS, you can produce output in Portable Document Format (PDF), which can

be viewed with the Adobe Acrobat Reader.

38 Gallery of ODS Samples � Chapter 2

XML Output
With ODS, you can produce output that is tagged with Extensible Markup Language

(XML) tags.

Fundamental Concepts for Using Base SAS Procedures � Commonly-Used ODS Terminology 39

Commonly-Used ODS Terminology

data component
is a form similar to a SAS data set that contains the results (numbers and
characters) of a DATA step or PROC step that supports ODS.

table definition
is a set of instructions that describes how to format the data. This description
includes but is not limited to

� the order of the columns
� text and order of column headings
� formats for data
� font sizes and font faces.

output object

40 How Does ODS Work? � Chapter 2

is an object that contains both the results of DATA step or PROC step and
information about how to format the results. An output object has a name, label,
and path. For example, the Basic Statistical Measurement table generated from
the UNIVARIATE procedure is an output object. It contains the data component
and formatted presentation of the mean, median, mode, standard deviation,
variance, range, and interquartile range.

Note: Although many output objects include formatting instructions, not all of
them do. In some cases the output object consists of only the data component. �

ODS destinations
produce specific types of output. ODS supports a number of destinations, including
the following:

LISTING
produces traditional SAS output (monospace format).

Markup Languages
produce SAS output that is formatted using one of many different markup
languages such as Hypertext Markup Language (HTML), Extensible Markup
Language (XML), and Latex that you can access with a web browser. SAS
supplies many markup languages for you to use ranging from DOCBOOK to
TROFF. You can specify a markup language that SAS supplies or create one
of your own and store it as a user-defined markup language.

DOCUMENT
produces a hierarchy of output objects that enables you to render multiple
ODS output formats without rerunning a PROC or DATA step and gives you
more control over the structure of the output.

OUTPUT
produces a SAS data set.

Printer Family
produces output that is formatted for a high-resolution printer such as a
PostScript (PS), PDF, or PCL file.

RTF
produces output that is formatted for use with Microsoft Word.

ODS output
ODS output consists of formatted output from any of the ODS destinations. For
example, the OUTPUT destination produces SAS data sets; the LISTING
destination produces lisiting output; the HTML destination produces output that
is formatted in hyper-text markup language.

How Does ODS Work?

Components of SAS Output
The Output Delivery System removes responsibility for formatting output from

individual procedures and from the DATA step. The procedure or DATA step supplies
raw data and the name of the table definition that contains the formatting instructions,
and ODS formats the output.

The following figure illustrates how SAS produces ODS output.

Fundamental Concepts for Using Base SAS Procedures � How Does ODS Work? 41

ODS Processing: What Goes In and What Comes Out

Table
Definition

Data
Component

Output
Object

DOCUMENT LISTING OUTPUT HTML MARKUP PRINTER RTF

SAS Formatted Destinations Third-Party Formatted Destinations

Document
Output

Listing
Output

SAS
Data Set

HTML3.2
Output

SAS
TAGSETS*

User-defined
TAGSETS

RTF
Output

MS
Windows
Printers

PS PCL PDF

ODS
Destinations

ODS
Outputs

+

* List of Tagsets that SAS Supplies and Supports

CHTML HTML4 SASREPORT HTMLCSS

SASXMOG CSVALL IMODE SASXMOH

SASXMOIM WML DEFAULT SASXMOR

DOCBOOK SASXML EVENT_MAP SASIOXML

PHTML

COLORLATEX GRAPH PYX TEXT_MAP

CSV TPL_STYLE_LIST TPL_STYLE_MAP TROFF

CSVBYLINE LATEX LATEX2 WMLOLIST

42 What are ODS Destinations? � Chapter 2

NAMEDHTML SHORT_MAP ODSSTYLE STYLE_DISPLAY

GTABLEAPPLET STYLE_POPUP

Features of ODS
ODS is designed to overcome the limitations of traditional SAS output and to make it

easy to access and create new formatting options that are available to users. ODS is a
method of delivering output in a variey of formats and making the formatted output
easy to access.

Important features of ODS include the following:
� ODS combines raw data with one or more table definitions to produce one or more

output objects. These objects can be sent to any or all ODS destinations. You
control the specific type of output from the Output Delivery System by selecting an
ODS destination. The currently available ODS destinations can produce

� traditional monospace output
� an output data set
� a SAS document that contains a hierarchy file of the output objects
� output that is formatted for a high-resolution printer
� output that is formatted in various markup languages such as Hyper-Text

Markup Language (HTML)
� output that is formatted in rich text format for use with Microsoft Word.

� ODS provides table definitions that define the structure of the output from SAS
procedures and from the DATA step. You can customize the output by modifying
these definitions or by creating your own.

� ODS provides a way for you to choose individual output objects to send to ODS
destinations. For instance, PROC UNIVARIATE produces five output objects. You
can easily create HTML output, an output data set, traditional listing output, or
printer output from any or all of these output objects. You can send different
output objects to different destinations.

� In the SAS windowing environment, ODS stores a link to each output object in the
Results folder in the Results window.

� Because formatting is now centralized in ODS, the addition of a new ODS
destination does not affect any procedures or the DATA step. As future
destinations are added to ODS, they will automatically become available to the
DATA step and all procedures that support ODS.

� ODS provides a way for you to produce output for numerous destinations from a
single source without having to maintain separate sources for each destination.
This feature saves you time and system resources by enabling you to produce
multiple kinds of output with a single run of your procedure or data query.

What are ODS Destinations?

Definition of Destination-Independent Input
A fundamental idea of the destination-independent input is that one destination can

support a feature even though another destination does not support it. In this case, the

Fundamental Concepts for Using Base SAS Procedures � What are ODS Destinations? 43

request is quietly ignored by the destination that does not support it. Otherwise, ODS
would support features that are the least common denominator. You would be forced to
insert formats into your input making it difficult to move reports from one output
format to another output format. For example, it is easier to use a default style sheet
that SAS provides if you are producing only HTML than to use a stylesheet that is not
specifically designed for HTML output. However, when you try to print that output or
produce a Microsoft Word document from it, you will have to re-do all your work
because the stylesheet is spevific to HTML. ODS provides many output format options
making it possible to use the appropriate format for the output you want.

Each ODS destination is designed with a different purpose in mind. Although it is
possible to use a destination for some other purpose, it is best to use the appropriate
destination suited for your purpose. One of the major goals of ODS is to enable the user
to produce output for numerous destinations from a single source without having to
maintain separate sources for each destination. ODS encourages portable solutions.

The SAS Formatted Destinations
The SAS formatted destinations are designed to create SAS specific entities such as a

SAS data set, SAS output listing, or a SAS document. The statements in the ODS SAS
Formatted category create the SAS entities.

The three SAS formatted destinations are:

DOCUMENT Destination
The DOCUMENT destination enables you to re-structure, navigate, and replay
your data as much as you like to as many destinations as you like without having
to rerun your analysis or repeat your database query. The DOCUMENT
destination makes your entire output stream available in "raw" form and
accessible to you to customize. The output is kept in the original internal
representation as a data component plus a table definition. Once the output is in a
DOCUMENT form, it is possible to rearrange, restructure, retry, and rerender
formatting without rerunning your analysis. Unlike other ODS destinations, the
DOCUMENT destination has a GUI interface. However, everything that you can
do through the GUI, you can do with batch commands using the ODS
DOCUMENT statement and the DOCUMENT procedure.

In the past, each procedure or DATA step produced output that was sent to each
destination that you specified. While you could always send your output to as
many destinations as you wanted, you had to re-run your procedure or data query
if you decided to use another destination that you had not originally designated.
The DOCUMENT destination eliminates the need to re-run procedures or repeat
data queries by enabling you to store your output objects and simply replay them
to different destinations.

LISTING Destination
The LISTING destination produces output that looks the same as the legacy SAS
output. Thus ODS is always being used, even when you do not explicitily invoke
ODS. The LISTING destination is the default destination that opens when you
start your SAS session.

The purpose of the LISTING destination is to enable you to produce output as
you always have. You can feel secure knowing that your listing output maintains
the same look and presentation as it always has.

Because most procedures share some of the same table defitinions, the output is
more consistent. For example, if you have two different procedures producing an
ANOVA table, they will produce it in the same way because each procedure uses
the same template to describe the table. However, there are four procedures that
do not use a defult table definition to porduce their output: PRINT procedure,
REPORT procedure, TABULATE procedure, and FREQ procedure’s n-way tables.

44 What are ODS Destinations? � Chapter 2

These procedures use the structure that you specified in your program code to
define their tables.

OUTPUT Destination
The OUTPUT destination produces SAS output data sets. Because ODS already
knows the logical structure of the data and its native form, ODS can output a SAS
data set that represents exactly what the procedure worked with internally. The
data sets can be used for further analysis or particularly sophisticated reports
where you want to combine similar statistics across different data sets into a
single table. You can easily access and process your data using all the SAS data
set features. For instance, you can access your data using variable names and
perform where–processing just as you would all data from any other SAS data set.

The Third-Party Formatted Destinations
The third-party formatted destinations are where you can apply styles to the output

objects that are used by applications outside of SAS. For example, these destinations
support attributes such as "font" and "color."

Note: For a list of style elements and valid values, see the style elements appendix
in the SAS Output Delivery System User’s Guide. �

The four categories of third-party formatted destinations are:

� Hypertext Markup Language (HTML)

The HTML destination produces HTML3.2-compatible output. You can,
however, produce (HTML4 stylesheet) output using the HTML4 tagsets.

The HTML destination can create some or all of the following:
� an HTML file (called the body file) that contains the results from the

procedure

� a table of contents that links to the body file
� a table of pages that links to the body file

� a frame that displays the table of contents, the table of pages, and the body
file.

The body file is required with all ODS HTML output. If you do not want to link
to your output, then you do not have to create a table of contents, a table of pages,
or a frame file. However, if your output is very large, you may want to create a
table of contents and a table of pages for easier reading and transversing through
your file.

The HTML destination is intended only for on-line use, not for printing. To
print hardcopies of the output objects, use the PRINTER destination.

� Markup Languages (MARKUP) Family

The MARKUP destination uses the idea of "tagsets." Just as table definitions
describe how to lay out a table and style attributes describe the style of the
output, tagsets describe how to produce a markup language output. You can use a
tagset that SAS supplies or you can create your own using the TEMPLATE
procedure. Like a table definition and style attributes, tagsets enable you to
modify your markup language output. For example, each variety of XML can be
specified as a new tagset. SAS supplies you with a collection of XML tagsets and
enables you to produce a customized variety of XML. The important point is that
you can implement a tagset that SAS supplies or a cutomized tagset that you
created without having to wait for the next release of SAS. With the additon of
modifying and creating your own tagsets by using PROC TEMPLATE, now you
have greater flexibility in customizing your output.

Fundamental Concepts for Using Base SAS Procedures � What are ODS Destinations? 45

Because the MARKUP destination is so flexible, you can use either the SAS
tagsets or a tagset that you created. For a complete listing of the markup
language tagsets that SAS supplies, see the section on listing tagset names in the
SAS Output Delivery System User’s Guide. To learn how to define your own
tagsets, see the section on methods to create your own tagsets in the SAS Output
Delivery System User’s Guide.

The MARKUP destination cannot replace ODS PRINTER or ODS RTF because
it has one major limitation: it cannot do text measurement. Therefore, it cannot
produce output for a page description language or a hybrid language like RTF
which requires all of the text to be measured and placed at a specific position on
the page.

� PRINTER Family
The PRINTER destination produces output for
� printing to physical printers such as Windows printers under Windows, PCL,

and PostScript printers on other operating systems
� producing portable PostScript, PCL, and PDF files.

The PRINTER destinations produce ODS output that contain page description
languages: they describe precise positions where each line of text, each rule, and
each graphical element are to be placed on the page. In general, you cannot edit or
alter these formats. Therfore, the output from ODS PRINTER is intended to be
the final form of the report.

� Rich Text Format (RTF)
RTF produces output for Microsoft Word. While there are other applications

that can read RTF files, the RTF output may not work successfully with them.
The RTF destination enables you to edit the RTF output by viewing a file. For

this reason, ODS does not define the “vertical measurement," meaning that SAS
does not determine the optimal place to position each item on the page. For
instance, page breaks are not always fixed, so when you edit your text, you do not
want your RTF output tables to split at inapporpriate places. Your tables can
remain whole and in tact on one page or have logical breaks where you specified.

However, because Microsoft Word needs to know the widths of table columns
and it doesn’t know how to "panel" tables if they are too wide for the page, ODS
does measure the width of the text and tables (horizontal measurement).
Therefore, all the column widths can be set properly by SAS and the table can be
divided into panels if it is too wide to fit on a single page.

In short, when producing RTF output for input to Microsoft Word, SAS
determines the horizontal measurement and lets Microsoft Word handle the
vertical measurement. Because Microsoft Word knows how much room there is on
the page even when you edit the file, your tables will display consistently as you
specified.

What Controls the Formatting Features of Third-Party Formats?
All the formatting features that control the appearance of the third-party formatted

destinations beyond what the LISTING destination can do are controlled by two
mechanisms:

� ODS statement options
� ODS style attributes

The ODS statement options control three things:
1 Features that are extremely specific to a given destination, such as stylesheets for

HTML.

46 What Are Table Definitions, Table Elements, and Table Attributes? � Chapter 2

2 Features that are global to the document, such as AUTHOR and table of contents
generation.

3 Features that we expect users to change on virtually every document, such as the
output file name.

The ODS style features control the way that individual elements are rendered.
Attributes are aspects of a given style, such as type face, weight, font size, and color.
The values of the attributes collectively determine the appearance of each part of the
document to which the style is applied. The style attributes prevent the necessity to
insert destination-specific code (such as raw HTML) into the document by providing a
mechanism to describe what the document is intended to do. Each output destination
will interpret the attributes to render the best presentation of the document. Because
not all destinations are the same, not all attributes can be interpreted by all
destinations. The style is defined so that any aspects of the style that cannot be handled
by a given destination are ignored by it. For example, PostScript does not support
active links, so the URL= attribute is ignored when producing PostScript output.

ODS Destinations and System Resources

ODS destinations can be open or closed. You open and close a destination with the
appropriate ODS statement. When a destination is open, ODS sends the output objects
to it. An open destination uses system resources even if you use the selection and
exclusion features of ODS to select or exclude all objects from the destination.
Therefore, to conserve resources, close unnecessary destinations. For more information
about using each destination, see the chapter on ODS statements in the SAS Output
Delivery System User’s Guide.

By default, the LISTING destination is open and all other destinations are closed.
Consequently, if you do nothing, your SAS programs run and produce listing output
looking just as they did in previous releases of SAS before ODS was available.

What Are Table Definitions, Table Elements, and Table Attributes?

A table definition describes how to render the output for a tabular output object.
(Almost all ODS output is tabular.) A table definition determines the order of column
headers and the order of variables, as well the overall look of the output object that
uses it. For information about customizing the table definition, see the chapter on the
TEMPLATE procedure in the SAS Output Delivery System User’s Guide.

In addition to the parts of the table definition that order the headers and columns,
each table definition contains or references table elements. A table element is a
collection of table attributes that apply to a particular header, footer, or column.
Typically, a table attribute specifies something about the data rather than about its
presentation. For example, FORMAT specifies the SAS format to use in a column such
as the number of decimals to use. However, some table attributes describe presentation
aspects of the data such as how many blank characters to place between columns.

Note: The parts of table definitions that control the presentation of the data have no
effect on output objects that go to the LISTING or OUTPUT destination. However, the
parts that control the structure of the table and the data values do affect listing
output. �

For information on table attributes, see the section on table attributes in the SAS
Output Delivery System User’s Guide.

Fundamental Concepts for Using Base SAS Procedures � What Are Style Definitions, Style Elements, and Style Attributes? 47

What Are Style Definitions, Style Elements, and Style Attributes?
To customize the output at the level of your entire output stream in a SAS session,

you specify a style definition. A style definition describes how to render the presentation
aspects (color, font face, font size, and so forth) of the entire SAS output. A style
definition determines the overall look of the documents that use it.

Each style definition is composed of style elements. A style element is a collection of
style attributes that apply to a particular part of the output. For example, a style
element may contain instructions for the presentation of column headers or for the
presentation of the data inside cells. Style elements may also specify default colors and
fonts for output that uses the style definition.

Each style attribute specifies a value for one aspect of the presentation. For example,
the BACKGROUND= attribute specifies the color for the background of an HTML table
or for a colored table in printed output. The FONT_STYLE= attribute specifies whether
to use a Roman, a slant, or an italic font. For information on style attributes, see the
section on style attributes in the SAS Output Delivery System User’s Guide.

Note: Because style definitions control the presentation of the data, they have no
effect on output objects that go to the LISTING or OUTPUT destination. �

What Style Definitions Are Shipped with the Software?
Base SAS software is shipped with many style definitions. To see a list of these

styles, you can view them in the SAS Explorer Window, use the TEMPLATE procedure,
or use the SQL procedure.

� SAS Explorer Window:
To display a list of the available styles using the SAS Explorer Window, follow

these steps:
1 From any window in an interactive SAS session, select

View � Results

2 In the Results window, select

View � Templates

3 In the Templates window, select and open Sashelp.tmplmst.
4 Select and open the Styles folder, which contains a list of available style

definitions. If you want to view the underlying SAS code for a style
definition, then select the style and open it.

Operating Environment Information: For information on navigating in the
Explorer window without a mouse, see the section on “Window Controls and
General Navigation” in the SAS documentation for your operating
environment. �

� TEMPLATE Procedure:
You can also display a list of the available styles by submitting the following

PROC TEMPLATE statements:

proc template;
list styles;

run;

� SQL Procedure:

proc sql;
select * from styles.style--name;

48 Customized ODS Output � Chapter 2

The style–name is the name of any style from the template store (for example,
styles.default or styles.beige).

For more information on how ODS destinations use styles and how you can
customize styles, see the section on the DEFINE STYLE statement in the SAS Output
Delivery System User’s Guide.

How do I Use Style Definitions with Base Procedures?

� Most Base Procedures

Most Base SAS procedures that support ODS use one or more table definitions
to produce output objects. These table definitions include definitions for table
elements: columns, headers, and footers. Each table element can specify the use of
one or more style elements for various parts of the output. These style elements
cannot be specified within the syntax of the procedure, but you can use customized
styles for the ODS destinations that you use. For more information abotu
customizing tale and styles, see the TEMPLATE procedure in the SAS Output
Delivery System User’s Guide.

� The PRINT, REPORT and TABULATE Procedures

The PRINT, REPORT and TABULATE procedures provide a way for you to
access table elements from the procedure step itself. Accessing the table elements
enables you to do such things as specify background colors for specific cells, change
the font face for column headers, and more. The PRINT, REPORT, and
TABULATE procedures provide a way for you to customize the markup language
and printed output directly from the procedure statements that create the report.
For more information about customizing the styles for these procedures, see the
Base SAS Procedures Guide

Customized ODS Output

SAS Output

By default, ODS output is formatted according to instructions that a PROC step or
DATA step defines. However, ODS provides ways for you to customize the output. You
can customize the output for an entire SAS job, or you can customize the output for a
single output object.

Selection and Exclusion Lists

You can specify which output objects that you want to produce by selecting or
excluding them in a list. For each ODS destination, ODS maintains either a selection
list or an exclusion list. A selection list is a list of output objects that are sent to the
destination. An exclusion list is a list of output objects that are excluded from the
destination. ODS also maintains an overall selection list or an overall exclusion list. You
can use these lists to control which output objects go to the specified ODS destinations.

To see the contents of the lists use the ODS SHOW statement. The lists are written
to the SAS log. The following table shows the default lists:

Fundamental Concepts for Using Base SAS Procedures � Customized ODS Output 49

Table 2.2 Default List for Each ODS Destination

ODS Destination Default List

OUTPUT EXCLUDE ALL

All others SELECT ALL

How Does ODS Determine the Destinations for an Output Object?
To specify an output object, you need to know what output objects your SAS program

produces. The ODS TRACE statement writes a trace record to the SAS log which
includes the path, the label, and other information about each output object that is
produced. For more information, see the ODS TRACE statement in the SAS Output
Delivery System User’s Guide. You can specify an output object as

� a full path. For example,

Univariate.City_Pop_90.TestsForLocation

is the full path of the output object.

� a partial path. A partial path consists of any part of the full path that begins
immediately after a period (.) and continues to the end of the full path. For
example, if the full path is

Univariate.City_Pop_90.TestsForLocation

then the partial paths are:

City_Pop_90.TestsForLocation

TestsForLocation

� a label that is surrounded by quotation marks.

For example,

"The UNIVARIATE Procedure"

� a label path. For example, the label path for the output object is

"The UNIVARIATE Procedure"."CityPop_90"
."Tests For Location"

Note: The trace record shows the label path only if you specify the LABEL
option in the ODS TRACE statement. �

� a partial label path. A partial label path consists of any part of the label that
begins immediately after a period (.) and continues to the end of the label. For
example, if the label path is

"The UNIVARIATE Procedure"."CityPop_90"
."Tests For Location"

then the partial label paths are:

"CityPop_90"."Tests For Location"

"Tests For Location"

� a mixture of labels and paths.

50 Customized ODS Output � Chapter 2

� any of these specifications followed by a pound sign (#) and a number. For example,
TestsForLocation#3 refers to the third output object named TestsForLocation.

As each output object is produced, ODS uses the selection and exclusion lists to
determine which destination or destinations to send the output object. The following
figure illustrates this process:

Figure 2.1 Directing an Output Object to a Destination

For each destination, ODS first asks if the list for that destination includes the object. If it does
not, ODS does not send the output object to that destination. If the list for that destination does
include the object, ODS reads the overall list. If the overall list includes the object, ODS sends
it to the destination. If the overall list does not include the object, ODS does not send it to the
destination.

Does the destination list
include the output object

to the destination?

Does the overall list
include the object ?

ODS doesn't pass the
object to the destination

ODS passes the object
to the destination

yes

no

yes
no

Note: Although you can maintain a selection list for one destination and an
exclusion list for another, it is easier to understand the results if you maintain the same
types of lists for all the destinations where you route output. �

Customized Output for an Output Object
For a procedure, the name of the table definition that is used for an output object

comes from the procedure code. The DATA step uses a default table definition unless
you specify an alternative with the TEMPLATE= suboption in the ODS option in the
FILE statement. For more information, see the section on the suboption TEMPLATE=
in the SAS Output Delivery System User’s Guide.

To find out which table definitions a procedure or the DATA step uses for the output
objects, you must look at a trace record. To produce a trace record in your SAS log,
submit the following SAS statements:

ods trace on;
your-proc-or-DATA-step
ods trace off;

Remember that not all procedures use table definitions. If you produce a trace record
for one of these procedures, no definition appears in the trace record. Conversely, some
procedures use multiple table definitions to produce their output, such as the more

Fundamental Concepts for Using Base SAS Procedures � Conclusion 51

complex statistical procedures. If you produce a trace record for one of these
procedures, more than one definition appears in the trace record.

The trace record refers to the table definition as a template. For a detailed
explanation of the trace record, see the section on the ODS TRACE statement in the
SAS Output Delivery System User’s Guide.

You can use PROC TEMPLATE to modify an entire table definition. When a
procedure or DATA step uses a table definition, it uses the elements that are defined or
referenced in its table definition. In general, you cannot directly specify a table element
for your procedure or DATA step to use without modifying the definition itself.

Note: Three base procedures, PROC PRINT, PROC REPORT and PROC
TABULATE, do provide a way for you to access table elements from the procedure step
itself. Accessing the table elements enables you to customize your report . For more
information about these procedures, see the Base SAS Procedures Guide �

Conclusion
In the past, the term “output “ has generally referred to the outcome of a SAS

procedure and DATA step. With the advent of the Output Delivery System, “output”
takes on a much broader meaning. ODS is designed to optimize output from SAS
procedures and the DATA step. It provides a wide range of formatting options and
greater flexibility in generating, storing, and reproducing SAS output.

Important features of ODS include the following:
� ODS combines raw data with one or more table definitions to produce one or more

output objects. An output object tells ODS how to format the results of a procedure
or DATA step.

� ODS provides table definitions that define the structure of the output from SAS
procedures and from the DATA step. You can customize the output by modifying
these definitions or by creating your own.

� ODS provides a way for you to choose individual output objects to send to ODS
destinations.

� ODS stores a link to each output object in the Results folder in the Results
window for easy retrieval and access.

� As future destinations are added to ODS, they will automatically become available
to the DATA step and all procedures that support ODS.

One of the major goals of ODS is to enable you to produce output for numerous
destinations from a single source without having to maintain separate sources for each
destination. ODS supports many destinations:

DOCUMENT
enables you to capture output objects from single run of the analysis and produce
multiple reports in various formats whenever you want without re-running your
SAS programs.

LISTING
produces output that looks the same as the legacy SAS v6 output.

HTML
produces output meant for on-line viewing.

MARKUP
produces output meant for markup language tagsets.

OUTPUT

52 Conclusion � Chapter 2

produces SAS output data sets thereby eliminating the need to parse PROC
PRINTTO output.

PRINTER
produces presentation-ready printed reports.

RTF
produces output suitable for Microsoft Word reports.

By default, ODS output is formatted according to instructions that the procedure or
DATA step defines. However, ODS provides ways for you to customize the output. You
can customize the output for an entire SAS job, or you can customize the output for a
single output object.

53

C H A P T E R

3
Statements with the Same
Function in Multiple Procedures

Overview 53
Statements 54

BY 54

FREQ 56

QUIT 58

WEIGHT 59
WHERE 63

Overview
Several statements are available and have the same function in a number of base

SAS procedures. Some of the statements are fully documented in SAS Language
Reference: Dictionary, and others are documented in this section. The following list
shows you where to find more information about each statement:

ATTRIB
affects the procedure output and the output data set. The ATTRIB statement does
not permanently alter the variables in the input data set. The LENGTH= option
has no effect. See SAS Language Reference: Dictionary for complete
documentation.

BY
orders the output according to the BY groups. See “BY” on page 54.

FORMAT
affects the procedure output and the output data set. The FORMAT statement does
not permanently alter the variables in the input data set. The DEFAULT= option
is not valid. See SAS Language Reference: Dictionary for complete documentation.

FREQ
treats observations as if they appear multiple times in the input data set. See
“FREQ” on page 56.

LABEL
affects the procedure output and the output data set. The LABEL statement does
not permanently alter the variables in the input data set except when it is used
with the MODIFY statement in PROC DATASETS. See SAS Language Reference:
Dictionary for complete documentation.

QUIT
executes any statements that have not executed and ends the procedure. See
“QUIT” on page 58.

WEIGHT

54 Statements � Chapter 3

specifies weights for analysis variables in the statistical calculations. See
“WEIGHT” on page 59.

WHERE
subsets the input data set by specifying certain conditions that each observation
must meet before it is available for processing. See “WHERE” on page 63.

Statements

BY

Orders the output according to the BY groups.

See also: “Creating Titles That Contain BY-Group Information” on page 19

BY <DESCENDING> variable-1
<… <DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, then the observations in the data set must either be sorted by all the
variables that you specify, or they must be indexed appropriately. Variables in a BY
statement are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, then the procedure treats each contiguous set as a separate BY
group.

Note: You cannot use the NOTSORTED option in a PROC SORT step. �

Statements with the Same Function in Multiple Procedures � BY 55

Note: You cannot use the GROUPFORMAT option, which is available in the BY
statement in a DATA step, in a BY statement in any PROC step. �

BY-Group Processing
Procedures create output for each BY group. For example, the elementary statistics

procedures and the scoring procedures perform separate analyses for each BY group.
The reporting procedures produce a report for each BY group.

Note: All base procedures except PROC PRINT process BY groups completely
independently. PROC PRINT can report the number of observations in each BY group
as well as the number of observations in all BY groups. Similarly, PROC PRINT can
sum numeric variables in each BY group and across all BY groups. �

You can use only one BY statement in each PROC step. When you use a BY
statement, the procedure expects an input data set that is sorted by the order of the BY
variables or one that has an appropriate index. If your input data set does not meet
these criteria, then an error occurs. Either sort it with the SORT procedure or create an
appropriate index on the BY variables.

Depending on the order of your data, you may need to use the NOTSORTED or
DESCENDING option in the BY statement in the PROC step.

For more information on

� the BY statement, see SAS Language Reference: Dictionary.

� PROC SORT, see Chapter 39, “The SORT Procedure,” on page 1091.

� creating indexes, see “INDEX CREATE Statement” on page 363.

Procedures That Support the BY Statement

CALENDAR RANK

CHART REPORT (nonwindowing environment only)

COMPARE SORT (required)

CORR STANDARD

FORMS SUMMARY

FREQ TABULATE

MEANS TIMEPLOT

PLOT TRANSPOSE

PRINT UNIVARIATE

Note: In the SORT procedure, the BY statement specifies how to sort the data. With
the other procedures, the BY statement specifies how the data are currently sorted. �

Example
This example uses a BY statement in a PROC PRINT step. There is output for each

value of the BY variable, Year. The DEBATE data set is created in “Example:
Temporarily Dissociating a Format from a Variable” on page 29.

56 FREQ � Chapter 3

options nodate pageno=1 linesize=64
pagesize=40;

proc print data=debate noobs;
by year;
title ’Printing of Team Members’;
title2 ’by Year’;

run;

Printing of Team Members 1
by Year

------------------------ Year=Freshman -------------------------

Name Gender GPA

Capiccio m 3.598
Tucker m 3.901

------------------------ Year=Sophomore ------------------------

Name Gender GPA

Bagwell f 3.722
Berry m 3.198
Metcalf m 3.342

------------------------- Year=Junior --------------------------

Name Gender GPA

Gold f 3.609
Gray f 3.177
Syme f 3.883

------------------------- Year=Senior --------------------------

Name Gender GPA

Baglione f 4.000
Carr m 3.750
Hall m 3.574
Lewis m 3.421

FREQ

Treats observations as if they appear multiple times in the input data set.

Tip: You can use a WEIGHT statement and a FREQ statement in the same step of any
procedure that supports both statements.

FREQ variable;

Statements with the Same Function in Multiple Procedures � FREQ 57

Required Arguments

variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the FREQ statement, then the procedure assumes that each observation
represents n observations, where n is the value of variable. If variable is not an
integer, then SAS truncates it. If variable is less than 1 or is missing, then the
procedure does not use that observation to calculate statistics. If a FREQ statement
does not appear, then each observation has a default frequency of 1.

The sum of the frequency variable represents the total number of observations.

Procedures That Support the FREQ Statement

� CORR

� FORMS

� MEANS/SUMMARY

� REPORT

� STANDARD

� TABULATE

� UNIVARIATE

Note: PROC FORMS does not calculate statistics. In PROC FORMS, the value of
the frequency variable affects the number of form units that are printed for each
observation. �

Example
The data in this example represent a ship’s course and speed (in nautical miles per

hour), recorded every hour. The frequency variable, Hours, represents the number of
hours that the ship maintained the same course and speed. Each of the following PROC
MEANS steps calculates average course and speed. The different results demonstrate
the effect of using Hours as a frequency variable.

The following PROC MEANS step does not use a frequency variable:

options nodate pageno=1 linesize=64 pagesize=40;

data track;
input Course Speed Hours @@;
datalines;

30 4 8 50 7 20
75 10 30 30 8 10
80 9 22 20 8 25
83 11 6 20 6 20
;

proc means data=track maxdec=2 n mean;
var course speed;
title ’Average Course and Speed’;

run;

58 QUIT � Chapter 3

Without a frequency variable, each observation has a frequency of 1, and the total
number of observations is 8.

Average Course and Speed 1

The MEANS Procedure

Variable N Mean

Course 8 48.50
Speed 8 7.88

The second PROC MEANS step uses Hours as a frequency variable:

proc means data=track maxdec=2 n mean;
var course speed;
freq hours;
title ’Average Course and Speed’;

run;

When you use Hours as a frequency variable, the frequency of each observation is the
value of Hours, and the total number of observations is 141 (the sum of the values of
the frequency variable).

Average Course and Speed 1

The MEANS Procedure

Variable N Mean
--
Course 141 49.28
Speed 141 8.06
--

QUIT

Executes any statements that have not executed and ends the procedure.

QUIT;

Procedures That Support the QUIT Statement

� CATALOG

� DATASETS

� PLOT

� PMENU

� SQL

Statements with the Same Function in Multiple Procedures � WEIGHT 59

WEIGHT

Specifies weights for analysis variables in the statistical calculations.

Tip: You can use a WEIGHT statement and a FREQ statement in the same step of any
procedure that supports both statements.

WEIGHT variable;

Required Arguments

variable
specifies a numeric variable whose values weight the values of the analysis variables.
The values of the variable do not have to be integers. The behavior of the procedure
when it encounters a nonpositive weight variable value is as follows:

Weight value … The procedure …

0 counts the observation in the total number of observations

less than 0 converts the weight value to zero and counts the observation in
the total number of observations

missing excludes the observation from the analysis

Different behavior for nonpositive values is discussed in the WEIGHT statement
syntax under the individual procedure.

Prior to Version 7 of SAS, no base procedure excluded the observations with
missing weights from the analysis. Most SAS/STAT procedures, such as PROC GLM,
have always excluded not only missing weights but also negative and zero weights
from the analysis. You can achieve this same behavior in a base procedure that
supports the WEIGHT statement by using the EXCLNPWGT option in the PROC
statement.

The procedure substitutes the value of the WEIGHT variable for ��, which
appears in “Keywords and Formulas” on page 1578.

Procedures That Support the WEIGHT Statement

� CORR
� FREQ
� MEANS/SUMMARY
� REPORT
� STANDARD
� TABULATE
� UNIVARIATE

Note: In PROC FREQ, the value of the variable in the WEIGHT statement
represents the frequency of occurrence for each observation. See “WEIGHT Statement”
on page 540 for more information. �

60 WEIGHT � Chapter 3

Calculating Weighted Statistics

The procedures that support the WEIGHT statement also support the VARDEF=
option, which lets you specify a divisor to use in the calculation of the variance and
standard deviation.

By using a WEIGHT statement to compute moments, you assume that the ith
observation has a variance that is equal to �����. When you specify VARDEF=DF (the
default), the computed variance is a weighted least squares estimate of ��. Similarly,
the computed standard deviation is an estimate of �. Note that the computed variance
is not an estimate of the variance of the ith observation, because this variance involves
the observation’s weight which varies from observation to observation.

If the values of your variable are counts that represent the number of occurrences of
each observation, then use this variable in the FREQ statement rather than in the
WEIGHT statement. In this case, because the values are counts, they should be
integers. (The FREQ statement truncates any noninteger values.) The variance that is
computed with a FREQ variable is an estimate of the common variance, ��, of the
observations.

Note: If your data come from a stratified sample where the weights �� represent
the strata weights, then neither the WEIGHT statement nor the FREQ statement
provides appropriate stratified estimates of the mean, variance, or variance of the
mean. To perform the appropriate analysis, consider using PROC SURVEYMEANS,
which is a SAS/STAT procedure that is documented in the SAS/STAT User’s Guide. �

Weighted Statistics Example

As an example of the WEIGHT statement, suppose 20 people are asked to estimate
the size of an object 30 cm wide. Each person is placed at a different distance from the
object. As the distance from the object increases, the estimates should become less
precise.

The SAS data set SIZE contains the estimate (ObjectSize) in centimeters at each
distance (Distance) in meters and the precision (Precision) for each estimate. Notice
that the largest deviation (an overestimate by 20 cm) came at the greatest distance (7.5
meters from the object). As a measure of precision, 1/Distance, gives more weight to
estimates that were made closer to the object and less weight to estimates that were
made at greater distances.

The following statements create the data set SIZE:

options nodate pageno=1 linesize=64 pagesize=60;

data size;
input Distance ObjectSize @@;
Precision=1/distance;
datalines;

1.5 30 1.5 20 1.5 30 1.5 25
3 43 3 33 3 25 3 30
4.5 25 4.5 36 4.5 48 4.5 33
6 43 6 36 6 23 6 48
7.5 30 7.5 25 7.5 50 7.5 38
;

The following PROC MEANS step computes the average estimate of the object size
while ignoring the weights. Without a WEIGHT variable, PROC MEANS uses the
default weight of 1 for every observation. Thus, the estimates of object size at all
distances are given equal weight. The average estimate of the object size exceeds the
actual size by 3.55 cm.

Statements with the Same Function in Multiple Procedures � WEIGHT 61

proc means data=size maxdec=3 n mean var stddev;
var objectsize;
title1 ’Unweighted Analysis of the SIZE Data Set’;

run;

Unweighted Analysis of the SIZE Data Set 1

The MEANS Procedure

Analysis Variable : ObjectSize

N Mean Variance Std Dev
--
20 33.550 80.892 8.994
--

The next two PROC MEANS steps use the precision measure (Precision) in the
WEIGHT statement and show the effect of using different values of the VARDEF=
option. The first PROC step creates an output data set that contains the variance and
standard deviation. If you reduce the weighting of the estimates that are made at
greater distances, the weighted average estimate of the object size is closer to the actual
size.

proc means data=size maxdec=3 n mean var stddev;
weight precision;
var objectsize;
output out=wtstats var=Est_SigmaSq std=Est_Sigma;
title1 ’Weighted Analysis Using Default VARDEF=DF’;

run;

proc means data=size maxdec=3 n mean var std
vardef=weight;

weight precision;
var objectsize;
title1 ’Weighted Analysis Using VARDEF=WEIGHT’;

run;

In the first PROC MEANS step, the variance is an estimate of ��, where the
variance of the ith observation is assumed to be ��� ���� � ����� and �� is the weight
for the ith observation. In the second PROC MEANS step, the computed variance is an
estimate of �� � ���� ����, where � is the average weight. For large n, this is an
approximate estimate of the variance of an observation with average weight.

Weighted Analysis Using Default VARDEF=DF 1

The MEANS Procedure

Analysis Variable : ObjectSize

N Mean Variance Std Dev
--
20 31.088 20.678 4.547
--

62 WEIGHT � Chapter 3

Weighted Analysis Using VARDEF=WEIGHT 2

The MEANS Procedure

Analysis Variable : ObjectSize

N Mean Variance Std Dev
--
20 31.088 64.525 8.033
--

The following statements create and print a data set with the weighted variance and
weighted standard deviation of each observation. The DATA step combines the output
data set that contains the variance and the standard deviation from the weighted
analysis with the original data set. The variance of each observation is computed by
dividing Est_SigmaSq, the estimate of �� from the weighted analysis when
VARDEF=DF, by each observation’s weight (Precision). The standard deviation of each
observation is computed by dividing Est_Sigma, the estimate of � from the weighted
analysis when VARDEF=DF, by the square root of each observation’s weight (Precision).

data wtsize(drop=_freq_ _type_);
set size;
if _n_=1 then set wtstats;
Est_VarObs=est_sigmasq/precision;
Est_StdObs=est_sigma/sqrt(precision);

proc print data=wtsize noobs;
title ’Weighted Statistics’;
by distance;
format est_varobs est_stdobs

est_sigmasq est_sigma precision 6.3;

Statements with the Same Function in Multiple Procedures � WHERE 63

run;

Weighted Statistics 4

------------------------- Distance=1.5 -------------------------

Object Est_ Est_ Est_ Est_
Size Precision SigmaSq Sigma VarObs StdObs

30 0.667 20.678 4.547 31.017 5.569
20 0.667 20.678 4.547 31.017 5.569
30 0.667 20.678 4.547 31.017 5.569
25 0.667 20.678 4.547 31.017 5.569

-------------------------- Distance=3 --------------------------

Object Est_ Est_ Est_ Est_
Size Precision SigmaSq Sigma VarObs StdObs

43 0.333 20.678 4.547 62.035 7.876
33 0.333 20.678 4.547 62.035 7.876
25 0.333 20.678 4.547 62.035 7.876
30 0.333 20.678 4.547 62.035 7.876

------------------------- Distance=4.5 -------------------------

Object Est_ Est_ Est_ Est_
Size Precision SigmaSq Sigma VarObs StdObs

25 0.222 20.678 4.547 93.052 9.646
36 0.222 20.678 4.547 93.052 9.646
48 0.222 20.678 4.547 93.052 9.646
33 0.222 20.678 4.547 93.052 9.646

-------------------------- Distance=6 --------------------------

Object Est_ Est_ Est_ Est_
Size Precision SigmaSq Sigma VarObs StdObs

43 0.167 20.678 4.547 124.07 11.139
36 0.167 20.678 4.547 124.07 11.139
23 0.167 20.678 4.547 124.07 11.139
48 0.167 20.678 4.547 124.07 11.139

------------------------- Distance=7.5 -------------------------

Object Est_ Est_ Est_ Est_
Size Precision SigmaSq Sigma VarObs StdObs

30 0.133 20.678 4.547 155.09 12.453
25 0.133 20.678 4.547 155.09 12.453
50 0.133 20.678 4.547 155.09 12.453
38 0.133 20.678 4.547 155.09 12.453

WHERE
Subsets the input data set by specifying certain conditions that each observation must meet before
it is available for processing.

WHERE where-expression;

64 WHERE � Chapter 3

Required Arguments

where-expression
is a valid arithmetic or logical expression that generally consists of a sequence of
operands and operators. See SAS Language Reference: Dictionary for more
information on where processing.

Procedures That Support the WHERE Statement
You can use the WHERE statement with any of the following base SAS procedures

that read a SAS data set:

CALENDAR RANK

CHART REPORT

COMPARE SORT

CORR SQL

DATASETS (APPEND statement) STANDARD

FORMS TABULATE

FREQ TIMEPLOT

MEANS/SUMMARY TRANSPOSE

PLOT UNIVARIATE

PRINT

Details

� The CALENDAR and COMPARE procedures and the APPEND statement in
PROC DATASETS accept more than one input data set. See the documentation for
the specific procedure for more information.

� To subset the output data set, use the WHERE= data set option:

proc report data=debate nowd
out=onlyfr(where=(year=’1’));

run;

For more information on WHERE=, see SAS Language Reference: Dictionary.

Example
In this example, PROC PRINT prints only those observations that meet the condition

of the WHERE expression. The DEBATE data set is created in “Example: Temporarily
Dissociating a Format from a Variable” on page 29.

options nodate pageno=1 linesize=64
pagesize=40;

proc print data=debate noobs;
where gpa>3.5;
title ’Team Members with a GPA’;

Statements with the Same Function in Multiple Procedures � WHERE 65

title2 ’Greater than 3.5’;
run;

Team Members with a GPA 1
Greater than 3.5

Name Gender Year GPA

Capiccio m Freshman 3.598
Tucker m Freshman 3.901
Bagwell f Sophomore 3.722
Gold f Junior 3.609
Syme f Junior 3.883
Baglione f Senior 4.000
Carr m Senior 3.750
Hall m Senior 3.574

66

67

P A R T2

Procedures

Chapter 4.The APPEND Procedure 71

Chapter 5.The CALENDAR Procedure 73

Chapter 6.The CATALOG Procedure 143

Chapter 7.The CHART Procedure 165

Chapter 8.The CIMPORT Procedure 199

Chapter 9.The COMPARE Procedure 209

Chapter 10.The CONTENTS Procedure 257

Chapter 11.The COPY Procedure 259

Chapter 12.The CORR Procedure 263

Chapter 13.The CPORT Procedure 307

Chapter 14.The CV2VIEW Procedure 323

Chapter 15.The DATASETS Procedure 325

Chapter 16.The DBCSTAB Procedure 407

Chapter 17.The DISPLAY Procedure 413

Chapter 18.The DOCUMENT Procedure 417

Chapter 19.The EXPLODE Procedure 419

68

Chapter 20.The EXPORT Procedure 427

Chapter 21.The FORMAT Procedure 441

Chapter 22.The FORMS Procedure 495

Chapter 23.The FREQ Procedure 513

Chapter 24.The FSLIST Procedure 627

Chapter 25.The IMPORT Procedure 633

Chapter 26.The MEANS Procedure 649

Chapter 27.The OPTIONS Procedure 713

Chapter 28.The OPTLOAD Procedure 721

Chapter 29.The OPTSAVE Procedure 723

Chapter 30.The PLOT Procedure 725

Chapter 31.The PMENU Procedure 779

Chapter 32.The PRINT Procedure 817

Chapter 33.The PRINTTO Procedure 879

Chapter 34.The PRTDEF Procedure 893

Chapter 35.The PRTEXP Procedure 905

Chapter 36.The RANK Procedure 909

Chapter 37.The REGISTRY Procedure 925

Chapter 38.The REPORT Procedure 937

Chapter 39.The SORT Procedure 1091

Chapter 40.The SQL Procedure 1113

Chapter 41.The STANDARD Procedure 1243

Chapter 42.The SUMMARY Procedure 1257

Chapter 43.The TABULATE Procedure 1259

Chapter 44.The TEMPLATE Procedure 1363

69

P A R T2

Procedures

Chapter 45.The TIMEPLOT Procedure 1365

Chapter 46.The TRANSPOSE Procedure 1387

Chapter 47.The TRANTAB Procedure 1409

Chapter 48.The UNIVARIATE Procedure 1435

70

71

C H A P T E R

4
The APPEND Procedure

Overview: APPEND Procedure 71
Syntax: PROC APPEND 71

Overview: APPEND Procedure
The APPEND procedure adds the observations from one SAS data set to the end of

another SAS data set.
Generally, the APPEND procedure functions the same as the APPEND statement in

the DATASETS procedure. The only difference between the APPEND procedure and
the APPEND statement in PROC DATASETS is the default for libref in the BASE= and
DATA= arguments. For PROC APPEND, the default is either WORK or USER. For the
APPEND statement, the default is the libref of the procedure input library.

Syntax: PROC APPEND
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.
Reminder: You can use data set options with the BASE= and DATA= options. See “Data
Set Options” on page 17 for a list.
Reminder: Complete documentation for the APPEND statement and the APPEND
procedure is in “APPEND Statement” on page 335 .

PROC APPEND BASE=< libref.>SAS-data-set <DATA=< libref.>SAS-data-set>
<FORCE> <APPENDVER=V6>;

72

73

C H A P T E R

5
The CALENDAR Procedure

Overview: CALENDAR Procedure 74
Simple Schedule Calendar — 7-Day Default Calendar 75

Advanced Schedule Calendar 76

More Advanced Scheduling and Project Management Tasks 77

Simple Summary Calendar 78

Syntax: CALENDAR Procedure 79
PROC CALENDAR Statement 80

BY Statement 87

CALID Statement 88

DUR Statement 89

FIN Statement 90

HOLIDUR Statement 90
HOLIFIN Statement 91

HOLISTART Statement 92

HOLIVAR Statement 92

MEAN Statement 93

OUTDUR Statement 93
OUTFIN Statement 94

OUTSTART Statement 94

START Statement 95

SUM Statement 95

VAR Statement 96
Concepts: CALENDAR Procedure 97

Type of Calendars 97

Schedule Calendar 97

Definition 97

Required Statements 97

Examples 98
Summary Calendar 98

Definition 98

Required Statements 98

Multiple Events on a Single Day 98

Examples 98
The Default Calendars 98

Description 98

When You Unexpectedly Produce a Default Calendar 99

Examples 99

Calendars and Multiple Calendars 99
Definitions 99

Why Create Multiple Calendars 100

How to Identify Multiple Calendars 100

74 Overview: CALENDAR Procedure � Chapter 5

Using Holidays or Calendar Data Sets with Multiple Calendars 100
Types of Reports That Contain Multiple Calendars 101

How to Identify Calendars with the CALID Statement and the Special Variable _CAL_ 101

When You Use Holidays or Calendar Data Sets 101

Examples 102

Input Data Sets 102
Activities Data Set 102

Purpose 102

Requirements and Restrictions 102

Structure 102

Multiple Activities per Day in Summary Calendars 103

Examples 103
Holidays Data Set 103

Purpose 103

Structure 103

No Sorting Needed 104

Using SAS Date Versus SAS Datetime Values 104
Create a Generic Holidays Data Set 104

Examples 104

Calendar Data Set 104

Purpose 104

Structure 104
Using Default Workshifts Instead of a Workdays Data Set 105

Examples 105

Workdays Data Set 106

Purpose 106

Use Default Work Shifts or Create Your Own? 106

Structure 106
How Missing Values Are Treated 106

Examples 106

Missing Values in Input Data Sets 106

Results: CALENDAR Procedure 107

What Affects the Quantity of PROC CALENDAR Output 107
How Size Affects the Format of PROC CALENDAR Output 108

What Affects the Lines that Show Activity Duration 108

Customizing the Calendar Appearance 108

Examples: CALENDAR Procedure 108

Example 1: Schedule Calendar with Holidays – 5-Day Default 108
Example 2: Schedule Calendar Containing Multiple Calendars 112

Example 3: Multiple Schedule Calendars with Atypical Workshifts (Separated Output) 115

Example 4: Multiple Schedule Calendars with Atypical Workshifts (Combined and Mixed
Output) 120

Example 5: Schedule Calendar, Blank or with Holidays 125

Example 6: Calculating a Schedule Based on Completion of Predecessor Tasks 128
Example 7: Summary Calendar with MEAN Values By Observation 134

Example 8: Multiple Summary Calendars with Atypical Workshifts (Separated Output) 138

Overview: CALENDAR Procedure

The CALENDAR procedure displays data from a SAS data set in a monthly calendar
format. You can produce a schedule calendar, which schedules events around holidays
and nonwork periods. Or you can produce a summary calendar, which summarizes data

The CALENDAR Procedure � Simple Schedule Calendar — 7-Day Default Calendar 75

and displays only one-day events and holidays. When you use PROC CALENDAR you
can

� schedule work around holidays and other nonwork periods
� display holidays
� process data about multiple calendars in a single step and print them in a

separate, mixed, or combined format
� apply different holidays, weekly work schedules, and daily work shifts to multiple

calendars in a single PROC step
� produce a mean and a sum for variables based on either the number of days in a

month or the number of observations.

PROC CALENDAR also contains features specifically designed to work with PROC
CPM in SAS/OR software, a project management scheduling tool.

Simple Schedule Calendar — 7-Day Default Calendar
Output 5.1 on page 75 illustrates the simplest kind of schedule calendar that you can

produce. This calendar output displays activities planned by a banking executive. The
following statements produce Output 5.1 on page 75.

options nodate pageno=1 linesize=132 pagesize=60;

proc calendar data=allacty;
start date;
dur long;

run;

For the activities data set shown in this calendar, see Example 1 on page 108.

76 Advanced Schedule Calendar � Chapter 5

Output 5.1 Simple Schedule Calendar

This calendar uses one of the two default calendars, the 24-hour-day, 7-day-week calendar.

The SAS System 1

| |

| July 1996 |

| |

|---|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| | 1 | 2 | 3 | 4 | 5 | 6 |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | |+=Interview/JW==+| | | |

| |+Dist. Mtg./All=+|+====Mgrs. Meeting/District 6=====+| |+VIP Banquet/JW=+| |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 7 | 8 | 9 | 10 | 11 | 12 | 13 |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | |+Planning Counci+|+=Seminar/White=+| |

| |+==================Trade Show/Knox==================+|+====Mgrs. Meeting/District 7=====+| |

| |+================================Sales Drive/District 6=================================+| |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 14 | 15 | 16 | 17 | 18 | 19 | 20 |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | |+NewsLetter Dead+|+Co. Picnic/All=+| |

| | |+==Dentist/JW===+|+Bank Meeting/1s+|+Planning Counci+|+=Seminar/White=+| |

| |+================================Sales Drive/District 7=================================+| |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 21 | 22 | 23 | 24 | 25 | 26 | 27 |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | |+=Birthday/Mary=+|+======Close Sale/WYGIX Co.=======+| |

| |+===============Inventors Show/Melvin===============+|+Planning Counci+| | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 28 | 29 | 30 | 31 | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

Advanced Schedule Calendar
Output 5.2 on page 77 is an advanced schedule calendar produced by PROC

CALENDAR. The statements that create this calendar
� schedule activities around holidays
� identify separate calendars
� print multiple calendars in the same report
� apply different holidays to different calendars

The CALENDAR Procedure � More Advanced Scheduling and Project Management Tasks 77

� apply different work patterns to different calendars.

For an explanation of the program that produces this calendar, see Example 4 on
page 120.

Output 5.2 Advanced Schedule Calendar

Well Drilling Work Schedule: Combined Calendars 1

--

| |

| July 1996 |

| |

|--|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

----------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | | 1 | 2 | 3 | 4 | 5 | 6 |

|.........|................|................|................|................|................|................|................|

| CAL1 | | | | |**Independence**|+Assemble Tank/>| |

| | | | | | |+Lay Power Line>| |

| | |+==============Drill Well/$1,000.00==============>| |<Drill Well/$1,+| |

|.........|................|................|................|................|................|................|................|

| CAL2 | | | |+=======================Excavate/$3,500.00========================>|

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

|.........|................|................|................|................|................|................|................|

| CAL1 | |+===================Build Pump House/$2,000.00====================+| | |

| | |<=====================Assemble Tank/$1,000.00=====================+| | |

| | |<===Lay Power Line/$2,000.00====+| |+===Pour Foundation/$1,500.00===>| |

|.........|................|................|................|................|................|................|................|

| CAL2 | |<Excavate/$3,50>|****Vacation****|<Excavate/$3,50+| | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 14 | 15 | 16 | 17 | 18 | 19 | 20 |

|.........|................|................|................|................|................|................|................|

| CAL1 | |+===============================Install Pump/$500.00===============================+| |

| | |<===========Pour Foundation/$1,500.00============+| |+Install Pipe/$>| |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

|.........|................|................|................|................|................|................|................|

| CAL1 | |+==============================Erect Tower/$2,500.00===============================>| |

| | |<====Install Pipe/$1,000.00=====+| | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 28 | 29 | 30 | 31 | | | |

|.........|................|................|................|................|................|................|................|

| CAL1 | |<Erect Tower/$2+| | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

--

More Advanced Scheduling and Project Management Tasks
For more complex scheduling tasks, consider using the CPM procedure in SAS/OR

software. PROC CALENDAR requires that you specify the starting date of each
activity. When the beginning of one task depends on the completion of others and a
date slips in a schedule, recalculating the schedule can be time-consuming. Instead of
manually recalculating dates, you can use PROC CPM to calculate dates for project

78 Simple Summary Calendar � Chapter 5

activities based on an initial starting date, activity durations, and which tasks are
identified as successors to others. For an example, see Example 6 on page 128.

Simple Summary Calendar
Output 5.3 on page 78 shows a simple summary calendar that displays the number

of meals served daily in a hospital cafeteria:

options nodate pageno=1 linesize=132 pagesize=60;

proc calendar data=meals;
start date;
sum brkfst lunch dinner;
mean brkfst lunch dinner;

run;

In a summary calendar, each piece of information for a given day is the value of a
variable for that day. The variables can be either numeric or character, and you can
format them as necessary. You can use the SUM and MEAN options to calculate sums
and means for any numeric variables. These statistics appear in a box below the
calendar, as shown in Output 5.3 on page 78. The data set shown in this calendar is
created in Example 7 on page 134.

The CALENDAR Procedure � Syntax: CALENDAR Procedure 79

Output 5.3 Simple Summary Calendar

The SAS System 1

--

| |

| December 1996 |

| |

|--|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|--------------+--------------+--------------+--------------+--------------+--------------+--------------|

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |

| | | | | | | |

| | 123 | 188 | 123 | 200 | 176 | |

| | 234 | 188 | 183 | 267 | 165 | |

| | 238 | 198 | 176 | 243 | 177 | |

|--------------+--------------+--------------+--------------+--------------+--------------+--------------|

| 8 | 9 | 10 | 11 | 12 | 13 | 14 |

| | | | | | | |

| | 178 | 165 | 187 | 176 | 187 | |

| | 198 | 176 | 176 | 187 | 187 | |

| | 187 | 187 | 231 | 222 | 123 | |

|--------------+--------------+--------------+--------------+--------------+--------------+--------------|

| 15 | 16 | 17 | 18 | 19 | 20 | 21 |

| | | | | | | |

| | 176 | 156 | 198 | 178 | 165 | |

| | 165 | . | 143 | 198 | 176 | |

| | 177 | 167 | 167 | 187 | 187 | |

|--------------+--------------+--------------+--------------+--------------+--------------+--------------|

| 22 | 23 | 24 | 25 | 26 | 27 | 28 |

| | | | | | | |

| | 187 | | | | | |

| | 187 | | | | | |

| | 123 | | | | | |

|--------------+--------------+--------------+--------------+--------------+--------------+--------------|

| 29 | 30 | 31 | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

--

--

| | Sum | Mean |

| | | |

| Brkfst | 2763 | 172.688 |

| Lunch | 2830 | 188.667 |

| Dinner | 2990 | 186.875 |

--

Syntax: CALENDAR Procedure
Required: You must use a START statement.

Required: For schedule calendars, you must also use a DUR or a FIN statement.

Tip: If you use a DUR or FIN statement, PROC CALENDAR produces a schedule
calendar.

Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.

Reminder: You can use the FORMAT, LABEL, and WHERE statements as well as any
global statements.

80 PROC CALENDAR Statement � Chapter 5

PROC CALENDAR <option(s)>;

START variable;

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

CALID variable
</ OUTPUT=COMBINE|MIX|SEPARATE>;

DUR variable;

FIN variable;

HOLISTART variable;
HOLIDUR variable;
HOLIFIN variable;
HOLIVAR variable;

MEAN variable(s) </ FORMAT=format-name>;

OUTSTART day-of-week;
OUTDUR number-of-days;
OUTFIN day-of-week;

SUM variable(s) </ FORMAT=format-name>;

VAR variable(s);

The following table lists the statements and options available in the CALENDAR
procedure according to function.

To do this Use this statement

Create summary calendar MEAN
SUM

Create schedule calendar DUR or FIN

Create multiple calendars CALID

Specify holidays HOLISTART
HOLIDUR
HOLIFIN
HOLIVAR

Control display OUTSTART
OUTDUR
OUTFIN

Specify grouping BY
CALID

PROC CALENDAR Statement

PROC CALENDAR <option(s)>;

The CALENDAR Procedure � PROC CALENDAR Statement 81

To do this Use this option

Specify data sets containing

weekly work schedules CALEDATA=

activities DATA=

holidays HOLIDATA=

unique shift patterns WORKDATA=

Control printing

display all months, even if no activities exist FILL

define characters used for outlines, dividers, and so on FORMCHAR=

specify the type of heading for months HEADER=

display month and weekday names in local language
(experimental)

LOCALE

specify how to show missing values MISSING

suppress the display of Saturdays and Sundays WEEKDAYS

Specify time or duration

specify that START and FIN variables are in DATETIME format DATETIME

specify the number of hours in a standard work day DAYLENGTH=

specify the units of the DUR and HOLIDUR variables INTERVAL=

Control summary information

identify variables in the calendar LEGEND

specify the type of mean to calculate MEANTYPE=

Options

CALEDATA=SAS-data-set
specifies the calendar data set, a SAS data set that contains weekly work schedules
for multiple calendars.

Default: If you omit the CALEDATA= option, PROC CALENDAR uses a default
work schedule, as described in “The Default Calendars” on page 98.

Tip: A calendar data set is useful if you are using multiple calendars or a
nonstandard work schedule.

See also: “Calendar Data Set” on page 104

Featured in: Example 3 on page 115

DATA=SAS-data-set
specifies the activities data set, a SAS data set that contains starting dates for all
activities and variables to display for each activity. Activities must be sorted or
indexed by starting date.

Default: If you omit the DATA= option, the most recently created SAS data set is
used.

82 PROC CALENDAR Statement � Chapter 5

See also: “Activities Data Set” on page 102
Featured in: All examples. See “Examples: CALENDAR Procedure” on page 108

DATETIME
specifies that START and FIN variables contain values in DATETIME. format.
Default: If you omit the DATETIME option, PROC CALENDAR assumes that the

START and FIN values are in the DATE. format.
Featured in: Example 3 on page 115

DAYLENGTH=hours
gives the number of hours in a standard working day. The hour value must be a SAS
TIME value.
Default: 24 if INTERVAL=DAY (the default), 8 if INTERVAL=WORKDAY.
Restriction: DAYLENGTH= applies only to schedule calendars.
Interaction: If you specify the DAYLENGTH= option and the calendar data set

contains a D_LENGTH variable, PROC CALENDAR uses the DAYLENGTH=
value only when the D_LENGTH value is missing.

Interaction: When INTERVAL=DAY and you have no CALEDATA= data set,
specifying a DAYLENGTH= value has no effect.

Tip: The DAYLENGTH= option is useful when you use the DUR statement and
your work schedule contains days of varying lengths, for example, a 5 half-day
work week. In a work week with varying day lengths, you need to set a standard
day length to use in calculating duration times. For example, an activity with a
duration of 3.0 workdays lasts 24 hours if DAYLENGTH=8:00 or 30 hours if
DAYLENGTH=10:00.

Tip: Instead of specifying the DAYLENGTH= option, you can specify the length of
the working day by using a D_LENGTH variable in the CALEDATA= data set. If
you use this method, you can specify different standard day lengths for different
calendars.

See also: “Calendar Data Set” on page 104 for more information on setting the
length of the standard workday

FILL
displays all months between the first and last activity, start and finish dates
inclusive, including months that contain no activities.
Default: If you do not specify FILL, PROC CALENDAR prints only months that

contain activities. (Months that contain only holidays are not printed.)
Featured in: Example 5 on page 125

FORMCHAR <(position(s))>=’formatting-character(s)’
defines the characters to use for constructing the outlines and dividers for the cells in
the calendar as well as all identifying markers (such as asterisks and arrows) used to
indicate holidays or continuation of activities in PROC CALENDAR output.

position(s)
identifies the position of one or more characters in the SAS formatting-character
string. A space or a comma separates the positions.
Default: Omitting (position(s)) is the same as specifying all 20 possible system

formatting characters, in order.
Range: PROC CALENDAR uses 17 of the 20 formatting characters that SAS

provides. Table 5.1 on page 83 shows the formatting characters that PROC
CALENDAR uses. Figure 5.1 on page 84 illustrates their use in PROC
CALENDAR output.

formatting-character(s)

The CALENDAR Procedure � PROC CALENDAR Statement 83

lists the characters to use for the specified positions. PROC CALENDAR assigns
characters in formatting-character(s) to position(s), in the order that they are listed.
For instance, the following option assigns an asterisk (*) to the twelfth position,
assigns a single dash (-) to the thirteenth, and does not alter remaining characters:

formchar(12 13)=’*-’

These new settings change the activity line from this:

+=================ACTIVITY===============+

to this:

------------------ACTIVITY--------------

Interaction: The SAS system option FORMCHAR= specifies the default formatting
characters. The SAS system option defines the entire string of formatting
characters. The FORMCHAR= option in a procedure can redefine selected
characters.

Tip: You can use any character in formatting-characters, including hexadecimal
characters. If you use hexadecimal characters, you must put an x after the closing
quote. For instance, the following option assigns the hexadecimal character 2D to
the third formatting character, the hexadecimal character 7C to the seventh
character, and does not alter the remaining characters:

formchar(3,7)=’2D7C’x

See also: For information on which hexadecimal codes to use for which characters,
consult the documentation for your hardware.

Table 5.1 Formatting Characters Used by PROC CALENDAR

Position Default Used to draw

1 | vertical bar

2 - horizontal bar

3 - cell: upper left corner

4 - cell: upper middle intersection

5 - cell: upper right corner

6 | cell: middle left cell side

7 + cell: middle middle intersection

8 | cell: middle right cell side

9 - cell: lower left corner

10 - cell: lower middle intersection

11 - cell: lower right corner

12 + activity start and finish

13 = activity line

16 / activity separator

18 < activity continuation from

84 PROC CALENDAR Statement � Chapter 5

Position Default Used to draw

19 > activity continuation to

20 * holiday marker

Figure 5.1 Formatting Characters in PROC CALENDAR Output

| |
| July 1996 |
Monday
-------------------------+-------------------------+-------------------------+-------------------------+-------------------------
1
+====Dist. Mtg./All=====+
-------------------------+-------------------------+-------------------------+-------------------------+-------------------------
8
********Vacation*********
-------------------------+-------------------------+-------------------------+-------------------------+-------------------------
15
+==Sales Drive/District 7===+
<=============Sales Drive/District 6==============+
-------------------------+-------------------------+-------------------------+-------------------------+-------------------------
22
+===========================Inventors Show/Melvin===========================+
-------------------------+-------------------------+-------------------------+-------------------------+-------------------------
29

3

1

6

2

8

1

5

4

7

2012

13

16

9 11
10

19

101010

7 7 7

444

18

HEADER=SMALL | MEDIUM | LARGE
specifies the type of heading to use in printing the name of the month.

SMALL
prints the month and year on one line.

MEDIUM
prints the month and year in a box four lines high.

LARGE
prints the month seven lines high using asterisks (*). The year is included if space
is available.

Default: MEDIUM

HOLIDATA=SAS-data-set
specifies the holidays data set, a SAS data set containing the holidays you want to
display in the output. One variable must contain the holiday names and another
must contain the starting dates for each holiday. PROC CALENDAR marks holidays
in the calendar output with asterisks (*) when space permits.

The CALENDAR Procedure � PROC CALENDAR Statement 85

Interaction: Displaying holidays on a calendar requires a holidays data set and a
HOLISTART statement. A HOLIVAR statement is recommended for naming
holidays. HOLIDUR is required if any holiday lasts longer than one day.

Tip: The holidays data set does not require sorting.
See also: “Holidays Data Set” on page 103
Featured in: All examples. See “Examples: CALENDAR Procedure” on page 108

INTERVAL=DAY | WORKDAY
specifies the units of the DUR and HOLIDUR variables to one of two default
daylengths:

DAY
specifies the values of the DUR and HOLIDUR variables in units of 24-hour days
and specifies the default 7-day calendar. For instance, a DUR value of 3.0 is
treated as 72 hours. The default calendar work schedule consists of seven working
days, all starting at 00:00 with a length of 24:00.

WORKDAY
specifies the values of the DUR and HOLIDUR variables in units of 8-hour days
and specifies that the default calendar contains five days a week, Monday through
Friday, all starting at 09:00 with a length of 08:00. When WORKDAY is specified,
PROC CALENDAR treats the values of the DUR and HOLIDUR variables in units
of working days, as defined in the DAYLENGTH= option, the CALEDATA= data
set, or the default calendar. For example, if the working day is 8 hours long, a
DUR value of 3.0 is treated as 24 hours.

Default: DAY
Interaction: In the absence of a CALEDATA= data set, PROC CALENDAR uses

the work schedule defined in a default calendar.
Interaction: The WEEKDAYS option automatically sets the INTERVAL= value to

WORKDAY.
See also: “Calendars and Multiple Calendars” on page 99 and “Calendar Data Set”

on page 104 for more information on the INTERVAL= option and the specification
of working days; “The Default Calendars” on page 98

Featured in: Example 5 on page 125

LEGEND
prints the names of the variables whose values appear in the calendar. This
identifying text, or legend box, appears at the bottom of the page for each month if
space permits; otherwise, it is printed on the following page. PROC CALENDAR
identifies each variable by name or by label if one exists. The order of variables in
the legend matches their order in the calendar.
Restriction: LEGEND applies only to summary calendars.
Interaction: If you use the SUM and MEAN statements, the legend box also

contains SUM and MEAN values.
Featured in: Example 8 on page 138

LOCALE (Experimental)
prints the names of months and weekdays in the language that is indicated by the
value of the LOCALE= SAS system option. The LOCALE option in PROC
CALENDAR does not change the starting day of the week.
Default: If LOCALE is not specified, then names of months and weekdays are

printed in English.

CAUTION:
LOCALE is an experimental option that is available in Version 9. Do not use this option
in production jobs. �

86 PROC CALENDAR Statement � Chapter 5

MEANTYPE=NOBS | NDAYS
specifies the type of mean to calculate for each month.

NOBS
calculates the mean over the number of observations displayed in the month.

NDAYS
calculates the mean over the number of days displayed in the month.

Default: NOBS
Restriction: MEANTYPE= applies only to summary calendars.
Interaction: Normally, PROC CALENDAR displays all days for each month.

However, it may omit some days if you use the OUTSTART statement with the
OUTDUR or OUTFIN statement.

Featured in: Example 7 on page 134

MISSING
determines how missing values are treated, based on the type of calendar.

Summary Calendar
If there is a day without an activity scheduled, PROC CALENDAR prints the
values of variables for that day using the SAS or user-defined format specified for
missing values.
Default: If you omit MISSING, days without activities contain no values.

Schedule Calendar
variables with missing values appear in the label of an activity, using the format
specified for missing values.
Default: If you do not specify MISSING, PROC CALENDAR ignores missing

values in labeling activities.
See also: “Missing Values in Input Data Sets” on page 106 for more information on

missing values

WEEKDAYS
suppresses the display of Saturdays and Sundays in the output. It also specifies that
the value of the INTERVAL= option is WORKDAY.
Default: If you omit WEEKDAYS, the calendar displays all seven days.
Tip: The WEEKDAYS option is an alternative to using the combination of

INTERVAL=WORKDAY and the OUTSTART and OUTFIN statements, as shown
here:

Example Code 5.1 Illustration of Formatting Characters in PROC CALENDAR Output

proc calendar weekdays;
start date;

run;

proc calendar interval=workday;
start date;
outstart monday;
outfin friday;

run;

Featured in: Example 1 on page 108

WORKDATA=SAS-data-set

The CALENDAR Procedure � BY Statement 87

specifies the workdays data set, a SAS data set that defines the work pattern during
a standard working day. Each numeric variable in the workdays data set denotes a
unique workshift pattern during one working day.

Tip: The workdays data set is useful in conjunction with the calendar data set.

See also: “Workdays Data Set” on page 106 and “Calendar Data Set” on page 104

Featured in: Example 3 on page 115

BY Statement

Processes activities separately for each BY group, producing a separate calendar for each value of
the BY variable.

Calendar type: Summary and schedule

Main discussion: “BY” on page 54

See also: “CALID Statement” on page 88

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable, but the observations in the data set must be sorted by all the
variables that you specify or have an appropriate index. Variables in a BY statement
are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.

Showing Multiple Calendars in Related Groups
When you use the CALID statement, you can process activities that apply to

different calendars, indicated by the value of the CALID variable. Because you can
specify only one CALID variable, however, you can create only one level of grouping.
For example, if you want a calendar report to show the activities of several departments
within a company, you can identify each department with the value of the CALID
variable and produce calendar output that shows the calendars for all departments.

88 CALID Statement � Chapter 5

When you use a BY statement, however, you can further divide activities into related
groups. For example, you can print calendar output that groups departmental
calendars by division. The observations for activities must contain a variable that
identifies which department an activity belongs to and a variable that identifies the
division that a department resides in. Specify the variable that identifies the
department with the CALID statement. Specify the variable that identifies the division
with the BY statement.

CALID Statement

Processes activities in groups defined by the values of a calendar identifier variable.

Calendar type: Summary and schedule
Tip: Useful for producing multiple schedule calendars and for use with SAS/OR
software.
See also: “Calendar Data Set” on page 104
Featured in: Example 2 on page 112, Example 3 on page 115, and Example 6 on page 128

CALID variable
</ OUTPUT=COMBINE|MIX|SEPARATE>;

Required Arguments

variable
a character or numeric variable that identifies which calendar an observation
contains data for.
Requirement: If you specify the CALID variable, both the activities and holidays

datasets must contain this variable. If either of them does not contain it, a default
calendar is used.

Interaction: SAS/OR software uses this variable to identify which calendar an
observation contains data for.

Tip: You do not need to use a CALID statement to create this variable. You can
include the default variable _CALID_ in the input data sets.

See also: “Calendar Data Set” on page 104

Options

OUTPUT=COMBINE|MIX|SEPARATE
controls the amount of space required to display output for multiple calendars.

COMBINE
produces one page for each month that contains activities and subdivides each day
by the CALID value.
Restriction: The input data must be sorted by or indexed on the START variable.
Featured in: Example 2 on page 112 and Example 4 on page 120

MIX

The CALENDAR Procedure � DUR Statement 89

produces one page for each month that contains activities and does not identify
activities by the CALID value.
Restriction: The input data must be sorted by or indexed on the START variable.
Tip: MIX requires the least space for output.
Featured in: Example 4 on page 120

SEPARATE
produces a separate page for each value of the CALID variable.
Restriction: The input data must be sorted by the CALID variable and then by the

START variable or must contain an appropriate composite index.
Featured in: Example 3 on page 115 and Example 8 on page 138

Default: COMBINE

DUR Statement
Specifies the variable that contains the duration of each activity.

Alias: DURATION
Calendar type: Schedule
Interaction: If you use both a DUR and a FIN statement, DUR is ignored.
Tip: To produce a schedule calendar, you must use either a DUR or FIN statement.
Featured in: All schedule calendars (see “Examples: CALENDAR Procedure” on page 108)

DUR variable;

Required Arguments

variable
contains the duration of each activity in a schedule calendar.
Range: The duration may be a real or integral value.
Restriction: This variable must be in the activities data set.
See also: For more information on activity durations, see “Activities Data Set” on

page 102 and “Calendar Data Set” on page 104

Duration

� Duration is measured inclusively from the start of the activity (as given in the
START variable). In the output, any activity lasting part of a day is displayed as
lasting a full day.

� The INTERVAL= option in a PROC CALENDAR statement automatically sets the
unit of the duration variable, depending on its own value as follows:

If INTERVAL= . . . Then the default length of the duration unit is . . .

DAY (the default) 24 hours

WORKDAY 8 hours

90 FIN Statement � Chapter 5

� You can override the default length of a duration unit by using
� the DAYLENGTH= option
� a D_LENGTH variable in the CALEDATA= data set.

FIN Statement

Specifies the variable in the activities data set that contains the finishing date of each activity.

Alias: FINISH
Calendar type: Schedule
Interaction: If you use both a FIN and a DUR statement, FIN is used.
Tip: To produce a schedule calendar, you must use either a FIN or DUR statement.
Featured in: Example 6 on page 128

FIN variable;

Required Arguments

variable
contains the finishing date of each activity.
Restriction: The values of variable must be either SAS date or datetime values.
Restriction: If the FIN variable contains datetime values, you must specify the

DATETIME option in the PROC CALENDAR statement.
Restriction: Both the START and FIN variables must have matching formats. For

example, if one contains datetime values, so must the other.

HOLIDUR Statement

Specifies the variable in the holidays data set that contains the duration of each holiday for a
schedule calendar.

Alias: HOLIDURATION
Calendar type: Schedule
Default: If you do not use a HOLIDUR or HOLIFIN statement, all holidays last one day.
Restriction: Cannot use with a HOLIFIN statement.
Featured in: Example 1 on page 108 through Example 5 on page 125

HOLIDUR variable;

Required Arguments

variable

The CALENDAR Procedure � HOLIFIN Statement 91

contains the duration of each holiday.
Range: The duration may be a real or integral value.
Restriction: This variable must be in the holidays data set.
Featured in: Example 3 on page 115 and Example 8 on page 138

Holiday Duration

� If you use both the HOLIFIN and HOLIDUR statement, PROC CALENDAR uses
the HOLIFIN variable value to define each holiday’s duration.

� Set the unit of the holiday duration variable in the same way that you set the unit
of the duration variable; use either the INTERVAL= and DAYLENGTH= options
or the CALEDATA= data set.

� Duration is measured inclusively from the start of the holiday (as given in the
HOLISTART variable). In the output, any holiday lasting at least half a day
appears as lasting a full day.

HOLIFIN Statement

Specifies the variable in the holidays data set containing the finishing date of each holiday.

Alias: HOLIFINISH
Calendar type: Schedule
Default: If you do not use a HOLIFIN or HOLIDUR statement, all holidays last one day.

HOLIFIN variable;

Required Arguments

variable
contains the finishing date of each holiday.
Restriction: This variable must be in the holidays data set.
Restriction: Values of variable must be in either SAS date or datetime values.
Restriction: If the HOLIFIN variable contains datetime values, you must specify

the DATETIME option in the PROC CALENDAR statement.

Holiday Duration
If you use both the HOLIFIN and the HOLIDUR statement, PROC CALENDAR uses

only the HOLIFIN variable.

92 HOLISTART Statement � Chapter 5

HOLISTART Statement

Specifies a variable in the holidays data set that contains the starting date of each holiday.

Alias: HOLISTA, HOLIDAY
Calendar type: Summary and schedule
Requirement: When you use a holidays data set, HOLISTART is required.
Featured in: Example 1 on page 108 through Example 5 on page 125

HOLISTART variable;

Required Arguments

variable
contains the starting date of each holiday.
Restriction: Values of variable must be in either SAS date or datetime values.
Restriction: If the HOLISTART variable contains datetime values, specify the

DATETIME option in the PROC CALENDAR statement.

Details

� The holidays data set need not be sorted.
� All holidays last only one day, unless you use a HOLIFIN or HOLIDUR statement.
� If two or more holidays occur on the same day, PROC CALENDAR uses only the

first observation.

HOLIVAR Statement

Specifies a variable in the holidays data set whose values are used to label the holidays.

Alias: HOLIVARIABLE, HOLINAME
Calendar type: Summary and schedule
Default: If you do not use a HOLIVAR statement, PROC CALENDAR uses the word
DATE to identify holidays.
Featured in: Example 1 on page 108 through Example 5 on page 125

HOLIVAR variable;

Required Arguments

variable
a variable whose values are used to label the holidays. Typically, this variable
contains the names of the holidays.

The CALENDAR Procedure � OUTDUR Statement 93

Range: character or numeric.
Restriction: This variable must be in the holidays data set.
Tip: You can format the HOLIVAR variable as you like.

MEAN Statement

Specifies numeric variables in the activities data set for which mean values are to be calculated
for each month.

Calendar type: Summary
Tip: You can use multiple MEAN statements.
Featured in: Example 7 on page 134

MEAN variable(s) </ FORMAT=format-name>;

Required Arguments

variable(s)
numeric variable for which mean values are calculated for each month.
Restriction: This variable must be in the activities data set.

Options

FORMAT=format-name
names a SAS or user-defined format to be used in displaying the means requested.
Alias: F=
Default: BEST. format
Featured in: Example 7 on page 134

What Is Displayed and How

� The means appear at the bottom of the summary calendar page, if there is room;
otherwise they appear on the following page.

� The means appear in the LEGEND box if you specify the LEGEND option.
� PROC CALENDAR automatically displays variables named in a MEAN statement

in the calendar output, even if the variables are not named in the VAR statement.

OUTDUR Statement

Specifies in days the length of the week to be displayed.

Alias: OUTDURATION
Requirement: The OUTSTART statement is required.

94 OUTFIN Statement � Chapter 5

OUTDUR number-of-days;

Required Arguments

number-of-days
an integer expressing the length in days of the week to be displayed.

Length of Week
Use either the OUTDUR or OUTFIN statement to supply the procedure with

information about the length of the week to display. If you use both, PROC
CALENDAR ignores the OUTDUR statement.

OUTFIN Statement

Specifies the last day of the week to display in the calendar.

Alias: OUTFINISH
Requirement: The OUTSTART statement is required.
Featured in: Example 3 on page 115 and Example 8 on page 138

OUTFIN day-of-week;

Required Arguments

day-of-week
the name of the last day of the week to display. For example,

outfin friday;

Length of Week
Use either the OUTFIN or OUTDUR statement to supply the procedure with

information about the length of the week to display. If you use both, PROC
CALENDAR uses only the OUTFIN statement.

OUTSTART Statement

Specifies the starting day of the week to display in the calendar.

Alias: OUTSTA
Default: If you do not use OUTSTART, each calendar week begins with Sunday.
Featured in: Example 3 on page 115 and Example 8 on page 138

The CALENDAR Procedure � SUM Statement 95

OUTSTART day-of-week;

Required Arguments

day-of-week
the name of the starting day of the week for each week in the calendar. For example,

outstart monday;

Interaction with OUTDUR and OUTFIN
By default, a calendar displays all seven days in a week. Use OUTDUR or OUTFIN,

in conjunction with OUTSTART, to control how many days are displayed and which day
starts the week.

START Statement

Specifies the variable in the activities data set that contains the starting date of each activity.

Alias: STA, DATE, ID
Required: START is required for both summary and schedule calendars.
Featured in: All examples

START variable;

Required Arguments

variable
contains the starting date of each activity.
Restriction: This variable must be in the activities data set.
Restriction: Values of variable must be in either SAS date or datetime values.
Restriction: If you use datetime values, specify the DATETIME option in the

PROC CALENDAR statement.
Restriction: Both the START and FIN variables must have matching formats. For

example, if one contains datetime values, so must the other.

SUM Statement

Specifies numeric variables in the activities data set to total for each month.

Calendar type: Summary
Tip: To apply different formats to variables being summed, use multiple SUM
statements.
Featured in: Example 7 on page 134 and Example 8 on page 138

96 VAR Statement � Chapter 5

SUM variable(s) </ FORMAT=format-name>;

Required Arguments

variable(s)
specifies one or more numeric variables to total for each month.
Restriction: This variable must be in the activities data set.

Options

FORMAT=format-name
names a SAS or user-defined format to use in displaying the sums requested.
Alias: F=
Default: BEST. format
Featured in: Example 7 on page 134 and Example 8 on page 138

What Is Displayed and How

� The sum appears at the bottom of the calendar page, if there is room; otherwise, it
appears on the following page.

� The sum appears in the LEGEND box if you specify the LEGEND option.
� PROC CALENDAR automatically displays variables named in a SUM statement

in the calendar output, even if the variables are not named in the VAR statement.

VAR Statement

Specifies the variables that you want to display for each activity.

Alias: VARIABLE

VAR variable(s);

Required Arguments

variable(s)
specifies one or more variables that you want to display in the calendar.
Range: The values of variable can be either character or numeric.
Restriction: These variables must be in the activities data set.
Tip: You can apply a format to this variable.

Details

When VAR Is Not Used
If you do not use a VAR statement, the procedure displays all variables in the activities
data set in the order that they occur in the data set, except for the BY, CALID, START,

The CALENDAR Procedure � Schedule Calendar 97

DUR, and FIN variables. All variables are not displayed, however, if the LINESIZE=
and PAGESIZE= settings do not allow enough space in the calendar.

Display of Variables
� PROC CALENDAR displays variables in the order that they appear in the VAR

statement. All variables are not displayed, however, if the LINESIZE= and
PAGESIZE= settings do not allow enough space in the calendar.

� PROC CALENDAR also displays any variable named in a SUM or MEAN
statement for each activity in the calendar output, even if you do not name that
variable in a VAR statement.

Concepts: CALENDAR Procedure

Type of Calendars
PROC CALENDAR can produce two kinds of calendars: schedule and summary.

Use a ... if you want to ... and can accept this
restriction

schedule calendar schedule activities around holidays
and nonwork periods

cannot calculate sums and
means

schedule activities that last more
than one day

summary calendar calculate sums and means activities can last only one
day

Note: PROC CALENDAR produces a summary calendar if you do not use a DUR or
FIN statement in the PROC step. �

Schedule Calendar

Definition
A report in calendar format that shows when activities and holidays start and end.

Required Statements
You must supply a START statement and either a DUR or FIN statement.

98 Summary Calendar � Chapter 5

Use this statement . . . to specify a variable whose value indicates the . . .

START starting date of an activity

DUR* duration of an activity

FIN* ending date of an activity

* Choose one of these. If you do not use a DUR or FIN statement CALENDAR assumes you want
to create a summary calendar report.

Examples
See “Simple Schedule Calendar — 7-Day Default Calendar” on page 75, “Advanced

Schedule Calendar” on page 76, as well as Example 1 on page 108, Example 2 on page
112, Example 3 on page 115, Example 4 on page 120, Example 5 on page 125, and
Example 6 on page 128

Summary Calendar

Definition
A report in calendar format that displays activities and holidays that last only one

day and that can provide summary information in the form of sums and means.

Required Statements
You must supply a START statement. This statement identifies the variable in the

activities data set that contains an activity’s starting date.

Multiple Events on a Single Day
A summary calendar report can display only one activity on a given date. If more

than one activity has the same START value, therefore, only the last observation that
was read is used. In such situations, you may find PROC SUMMARY useful in
collapsing your data set to contain one activity per starting date.

Examples
See “Simple Summary Calendar” on page 78, Example 7 on page 134, and Example 8

on page 138

The Default Calendars

Description
PROC CALENDAR provides two default calendars for simple applications. You can

produce calendars without having to specify detailed workshifts and weekly work
patterns if your application can use one of two simple work patterns. Consider using a
default calendar if

� your application uses a 5-day work week with 8-hour days or a 7-day work week
with 24-hour days. See Table 5.2 on page 99.

The CALENDAR Procedure � Calendars and Multiple Calendars 99

� you want to print all activities on the same calendar.
� you do not need to identify separate calendars.

Table 5.2 Default Calendar Settings and Examples

If scheduled work days
are

Then set
INTERVAL=

By default
DAYLENGTH=

So work periods are Shown in
Example

7 (M-Sun) DAY 24 24-hour days 2

5 (M-F) WORKDAY 8 8-hour days 1

When You Unexpectedly Produce a Default Calendar
If you want to produce a specialized calendar, but do not provide all the necessary

information, PROC CALENDAR attempts to produce a default calendar. These errors
cause PROC CALENDAR to produce a calendar with default features:

� If the activities data set does not contain a CALID variable, then PROC
CALENDAR produces a default calendar.

� If both the holidays and calendar data sets do not contain a CALID variable, then
PROC CALENDAR produces a default calendar even if the activities data set
contains a CALID variable.

� If the activities and calendar data sets contain the CALID variable, but the
holidays data set does not, then the default holidays are used.

Examples
See the 7-day default calendar in Output 5.1 on page 75 and the 5-day default

calendar in Example 1 on page 108

Calendars and Multiple Calendars

Definitions

calendar
a logical entity that represents a weekly work pattern, which consists of weekly
work schedules and daily shifts. PROC CALENDAR contains two default work
patterns: 5-day week with an 8-hour day or a 7-day week with a 24-hour day. You
can also define your own work patterns using CALENDAR and WORKDAYS data
sets.

calendar report
a report in calendar format that displays activities, holidays, and nonwork periods.
A calendar report can contain multiple calendars in one of three formats

separate
Each identified calendar prints on separate output pages.

combined
All identified calendars print on the same output pages and each is identified.

mixed

100 Calendars and Multiple Calendars � Chapter 5

All identified calendars print on the same output pages but are not identified
as belonging to separate calendars.

multiple calendar
a logical entity that represents multiple weekly work patterns.

Why Create Multiple Calendars

Create a multiple calendar if you want to print a calendar report that shows
activities that follow different work schedules or different weekly work patterns. For
example, a construction project report might need to use different work schedules and
weekly work patterns for work crews on different parts of the project.

Another use for multiple calendars is to identify activities so that you can choose to
print them in the same calendar report. For example, if you identify activities as
belonging to separate departments within a division, you can choose to print a calendar
report that shows all departmental activities on the same calendar.

And finally, using multiple calendars, you can produce separate calendar reports for
each calendar in a single step. For example, if activities are identified by department,
you can produce a calendar report that prints the activities of each department on
separate pages.

How to Identify Multiple Calendars

Because PROC CALENDAR can process only one data set of each type (activities,
holidays, calendar, workdays) in a single PROC step, you must be able to identify for
PROC CALENDAR which calendar an activity, holiday, or weekly work pattern belongs
to. Use the CALID statement to specify the variable whose values identify the
appropriate calendar. This variable can be numeric or character.

You can use the special variable name _CAL_ or you can use another variable name.
PROC CALENDAR automatically looks for a variable named _CAL_ in the holiday and
calendar data sets, even when the activities data set uses a variable with another name
as the CALID variable. Therefore, if you use the name _CAL_, at least in your holiday
and calendar data sets, you can more easily reuse these data sets for different calendar
applications.

Using Holidays or Calendar Data Sets with Multiple Calendars

When using a holidays or calendar data set with multiple calendars, PROC
CALENDAR treats the variable values in the following way:

� Every value of the CALID variable that appears in either the holidays or calendar
data sets defines a calendar.

� If a CALID value appears in the HOLIDATA= data set but not in the
CALEDATA= data set, the work schedule of the default calendar is used.

� If a CALID value appears in the CALEDATA= data set but not in the
HOLIDATA= data set, the holidays of the default calendar are used.

� If a CALID value does not appear in either the HOLIDATA= or CALEDATA= data
set, the work schedule and holidays of the default calendar are used.

� If the CALID variable is not found in the holiday or calendar data sets, PROC
CALENDAR looks for the default variable _CAL_ instead. If neither the CALID
variable nor a _CAL_ variable appears in a data set, the observations in that data
set are applied to a default calendar.

The CALENDAR Procedure � Calendars and Multiple Calendars 101

Types of Reports That Contain Multiple Calendars
Because you can associate different observations with different calendars, you can

print a calendar report that shows activities that follow different work schedules or
different work shifts or that contain different holidays. You can

� print separate calendars on the same page and identify each one.

� print separate calendars on the same page without identifying them.
� print separate pages for each identified calendar.

As an example, consider a calendar that shows the activities of all departments
within a division. Each department can have its own calendar identification value and,
if necessary, can have individual weekly work patterns, daily work shifts, and holidays.

If you place activities associated with different calendars in the same activities data
sets, you use PROC CALENDAR to produce calendar reports that print

� the schedule and events for each department on a separate pages (separate output)

� the schedule and events for the entire division, each identified by department
(combined output)

� the schedule and events for the entire division, but not identified by department
(mixed output).

The multiple-calendar feature was added specifically to enable PROC CALENDAR to
process the output of PROC CPM in SAS/OR software, a project management tool. See
Example 6 on page 128.

How to Identify Calendars with the CALID Statement and the Special
Variable _CAL_

To identify multiple calendars, you must use the CALID statement to specify the
variable whose values identify which calendar an event belongs with. This variable can
be numeric or character.

You can use the special variable name _CAL_ or you can use another variable name.
PROC CALENDAR automatically looks for a variable named _CAL_ in the holiday and
calendar data sets, even when the activities data set uses a variable with another name
as the CALID variable. Therefore, if you use the name _CAL_, at least in your holiday
and calendar data sets, you can more easily reuse these data sets for different calendar
applications.

When You Use Holidays or Calendar Data Sets
When you use a holidays or calendar data set with multiple calendars, PROC

CALENDAR treats the variable values in the following way:

� Every value of the CALID variable that appears in either the holidays or calendar
data sets defines a calendar.

� If a CALID value appears in the HOLIDATA= data set but not in the
CALEDATA= data set, the work schedule of the default calendar is used.

� If a CALID value appears in the CALEDATA= data set but not in the
HOLIDATA= data set, the holidays of the default calendar are used.

� If a CALID value does not appear in either the HOLIDATA= or CALEDATA= data
set, the work schedule and holidays of the default calendar are used.

� If the CALID variable is not found in the holiday or calendar data sets, PROC
CALENDAR looks for the default variable _CAL_ instead. If neither the CALID
variable nor a _CAL_ variable appear in a data set, the observations in that data
set are applied to a default calendar.

102 Input Data Sets � Chapter 5

Examples
Example 2 on page 112, Example 3 on page 115, Example 4 on page 120, and

Example 8 on page 138

Input Data Sets
You may need several data sets to produce a calendar, depending on the complexity

of your application. PROC CALENDAR can process one of each of four data sets. See
Table 5.3 on page 102.

Table 5.3 Four Possible Input Data Sets for PROC CALENDAR

Data Set Description Specify with the . . .

activities Each observation contains information
about a single activity.

DATA= option

holidays Each observation contains information
about a holiday

HOLIDATA= option

calendar Each observation defines one weekly
work schedule.

CALEDATA= option

workdays Each variable represents one daily
schedule of alternating work and
nonwork periods.

WORKDATA= option

Activities Data Set

Purpose
The activities data set, specified with the DATA= option, contains information about

the activities to be scheduled by PROC CALENDAR. Each observation describes a
single activity.

Requirements and Restrictions

� An activities data set is required. (If you do not specify one with the DATA=
option, PROC CALENDAR uses the _LAST_ data set.)

� Only one activities data set is allowed.
� The activities data set must always be sorted or indexed by the START variable.
� If you use a CALID (calendar identifier) variable and want to produce output that

shows multiple calendars on separate pages, the activities data set must be sorted
by or indexed on the CALID variable and then by the START variable.

� If you use a BY statement, the activities data set must be sorted by or indexed on
the BY variables.

Structure
Each observation in the activities data set contains information about one activity.

One variable must contain the starting date. If you are producing a schedule calendar,

The CALENDAR Procedure � Holidays Data Set 103

another variable must contain either the activity duration or finishing date. Other
variables can contain additional information about an activity.

If a variable contains an activity’s
. . . Specify it with the . . .

For this type of
calendar. . .

starting date START statement Schedule
Summary

duration DUR statement Schedule

finishing date FIN statement Schedule

Multiple Activities per Day in Summary Calendars
A summary calendar can display only one activity on a given date. If more than one

activity has the same START value, therefore, only the last observation read is used. In
such situations, you may find PROC SUMMARY useful to collapse your data set to
contain one activity per starting date.

Examples
Every example in the Examples section uses an activities data set.

Holidays Data Set

Purpose
You can use a holidays data set, specified with the HOLIDATA= option, to
� identify holidays on your calendar output

� identify days that are not available for scheduling work. (In a schedule calendar,
PROC CALENDAR does not schedule activities on these days.)

Structure
Each observation in the holidays data set must contain at least the holiday starting

date. A holiday lasts only one day unless a duration or finishing date is specified.
Supplying a holiday name is recommended, though not required. If you do not specify
which variable contains the holiday name, PROC CALENDAR uses the word DATE to
identify each holiday.

If a variable contains a
holiday’s . . .

Then specify it with this statement . . .

starting date HOLISTART

name HOLIVAR

duration HOLIDUR

finishing date HOLIFIN

104 Calendar Data Set � Chapter 5

No Sorting Needed
You do not need to sort or index the holidays data set.

Using SAS Date Versus SAS Datetime Values
PROC CALENDAR calculates time using SAS datetime values. Even when your data

are in DATE. format, the procedure automatically calculates time in minutes and
seconds. If you specify only date values, therefore, PROC CALENDAR prints messages
similar to the following ones to the SAS log:

NOTE: All holidays are assumed to start at the
time/date specified for the holiday variable
and last one DTWRKDAY.

WARNING: The units of calculation are SAS datetime
values while all the holiday variables are
not. All holidays are converted to SAS
datetime values.

Create a Generic Holidays Data Set
If you have many applications that require PROC CALENDAR output, consider

creating a generic holidays data set that contains standard holidays. You can begin
with the generic holidays and add observations that contain holidays or nonwork events
specific to an application.

CAUTION:
Do not schedule holidays during nonwork periods. Holidays defined in the HOLIDATA=
data set cannot occur during nonwork periods defined in the work schedule. For
example, you cannot schedule Sunday as a vacation day if the work week is defined
as Monday through Friday. When such a conflict occurs, the holiday is rescheduled to
the next available working period following the nonwork day. �

Examples
Every example in the Examples section uses a holidays data set.

Calendar Data Set

Purpose
You can use a calendar data set, specified with the CALEDATA= option, to specify

work schedules for different calendars.

Structure
Each observation in the calendar data set defines one weekly work schedule. The

data set created in the DATA step shown below defines weekly work schedules for two
calendars, CALONE and CALTWO.

data cale;
input _sun_ $ _mon_ $ _tue_ $ _wed_ $ _thu_ $ /

fri $ _sat_ $ _cal_ $ d_length time6.;
datalines;

holiday workday workday workday workday

The CALENDAR Procedure � Calendar Data Set 105

workday holiday calone 8:00
holiday shift1 shift1 shift1 shift1
shift2 holiday caltwo 9:00
;

The variables in this calendar data set consist of

SUN through _SAT_
the name of each day of the week that appears in the calendar. The values of
these variables contain the name of workshifts. Valid values for workshifts are

� WORKDAY (the default workshift)

� HOLIDAY (a nonwork period)

� names of variables in the WORKDATA= data set (in this example, SHIFT1
and SHIFT2).

CAL
the CALID (calendar identifier) variable. The values of this variable identify
different calendars. If this variable is not present, the first observation in this
data set defines the work schedule that is applied to all calendars in the activities
data set.

If the CALID variable contains a missing value, the character or numeric value
for the default calendar (DEFAULT or 0) is used. See “The Default Calendars” on
page 98 for further details.

D_LENGTH
the daylength identifier variable. Values of D_LENGTH indicate the length of the
standard workday to be used in calendar calculations. You can set the workday
length either by placing this variable in your calendar data set or by using the
DAYLENGTH= option.

Missing values for this variable default to the number of hours specified in the
DAYLENGTH= option; if the DAYLENGTH= option is not used, the day length
defaults to 24 hours if INTERVAL=DAY, or 8 hours if INTERVAL=WORKDAY.

Using Default Workshifts Instead of a Workdays Data Set
You can use a calendar data set with or without a workdays data set. Without a

workdays data set, WORKDAY in the calendar data set is equal to one of two standard
workdays, depending on the setting of the INTERVAL= option:

If INTERVAL= Then the work-shift begins at . .
.

And the day length is . . .

DAY 00:00 24 hours

WORKDAY 9:00 8 hours

You can reset the length of the standard workday with the DAYLENGTH= option or
a D_LENGTH variable in the calendar data set. You can define other work shifts in a
workdays data set.

Examples
Example 3 on page 115, Example 4 on page 120, and Example 7 on page 134 feature

a calendar data set.

106 Workdays Data Set � Chapter 5

Workdays Data Set

Purpose
You can use a workdays data set, specified with the WORKDATA= option, to define

the daily workshifts named in a CALEDATA= data set.

Use Default Work Shifts or Create Your Own?
You do not need a workdays data set if your application can use one of two default

work shifts:

If INTERVAL= Then the work-shift begins at . .
.

And the day length is. . .

DAY 00:00 24 hours

WORKDAY 9:00 8 hours

See the INTERVAL= option on page 85.

Structure
Each variable in the workdays data set contains one daily schedule of alternating

work and nonwork periods. For example, this DATA step creates a data set that
contains specifications for two work shifts:

data work;
input shift1 time6. shift2 time6.;
datalines;

7:00 7:00
12:00 11:00
13:00 .
17:00 .
;

The variable SHIFT1 specifies a 10-hour workday, with one nonwork period (a lunch
hour); the variable SHIFT2 specifies a 4-hour workday with no nonwork periods.

How Missing Values Are Treated
The missing values default to 00:00 in the first observation and to 24:00 in all other

observations. Two consecutive values of 24:00 define a zero-length time period, which is
ignored.

Examples
See Example 3 on page 115

Missing Values in Input Data Sets
Table 5.4 on page 107 summarizes the treatment of missing values for variables in

the data sets used by PROC CALENDAR.

The CALENDAR Procedure � What Affects the Quantity of PROC CALENDAR Output 107

Table 5.4 Treatment of Missing Values in PROC CALENDAR

Data set Variable Treatment of missing values

Activities (DATA=) CALID default calendar value is used

START observation is not used

DUR 1.0 is used

FIN START value + daylength is used

VAR if a summary calendar or the MISSING
option is specified, the missing value is
used; otherwise, no value is used

SUM, MEAN 0

Calendar (CALEDATA=) CALID default calendar value is used

SUN through _SAT_ corresponding shift for default calendar
is used

D_LENGTH if available, DAYLENGTH= value is
used; otherwise, if INTERVAL=DAY,
24:00 is used; otherwise 8:00 is used

SUM, MEAN 0

Holiday (HOLIDATA=) CALID all holidays apply to all calendars

HOLISTART observation is not used

HOLIDUR if available, HOLIFIN value is used
instead of HOLIDUR value; otherwise
1.0 is used

HOLIFIN if available, HOLIDUR value is used
instead of HOLIFIN value; otherwise,
HOLISTART value + day length is used

HOLIVAR no value is used

Workdays (WORKDATA=) any for the first observation, 00:00 is used;
otherwise, 24:00 is used

Results: CALENDAR Procedure

What Affects the Quantity of PROC CALENDAR Output
The quantity of printed calendar output depends on
� the range of dates in the activities data set
� whether the FILL option is specified
� the BY statement
� the CALID statement.

108 How Size Affects the Format of PROC CALENDAR Output � Chapter 5

PROC CALENDAR always prints one calendar for every month that contains any
activities. If you specify the FILL option, the procedure prints every month between the
first and last activities, including months that contain no activities. Using the BY
statement prints one set of output for each BY value. Using the CALID statement with
OUTPUT=SEPARATE prints one set of output for each value of the CALID variable.

How Size Affects the Format of PROC CALENDAR Output
PROC CALENDAR always attempts to fit the calendar within a single page, as

defined by the SAS system options PAGESIZE= and LINESIZE=. If the PAGESIZE=
and LINESIZE= values do not allow sufficient room, PROC CALENDAR may print the
legend box on a separate page. If necessary, PROC CALENDAR truncates or omits
values to make the output fit the page and prints messages to that effect in the SAS log.

What Affects the Lines that Show Activity Duration
In a schedule calendar, the duration of an activity is shown by a continuous line

through each day of the activity. Values of variables for each activity are printed on the
same line, separated by slashes (/). Each activity begins and ends with a plus sign (+).
If an activity continues from one week to another, PROC CALENDAR displays arrows
(< >) at the points of continuation.

The length of the activity lines depends on the amount of horizontal space available.
You can increase this by specifying

� a larger linesize with the LINESIZE= option in the OPTIONS statement
� the WEEKDAYS option to suppress the printing of Saturday and Sunday, which

provides more space for Monday through Friday.

Customizing the Calendar Appearance
PROC CALENDAR uses 17 of the 20 SAS formatting characters to construct the

outline of the calendar and to print activity lines and to indicate holidays. You can use
the FORMCHAR= option to customize the appearance of your PROC CALENDAR
output by substituting your own characters for the default. See Table 5.1 on page 83
and Figure 5.1 on page 84.

If your printer supports an extended character set (one that includes graphics
characters in addition to the regular alphanumeric characters), you can greatly improve
the appearance of your output by using the FORMCHAR= option to redefine formatting
characters with hexadecimal characters. For information on which hexadecimal codes
to use for which characters, consult the documentation for your hardware. For an
example of assigning hex values, see FORMCHAR= on page 83.

Examples: CALENDAR Procedure

Example 1: Schedule Calendar with Holidays – 5-Day Default
Procedure features:

The CALENDAR Procedure � Program 109

PROC CALENDAR statement options:
DATA=
HOLIDATA=
WEEKDAYS

DUR statement
HOLISTART statement
HOLIVAR statement
HOLIDUR statement
START statement

Other features:
PROC SORT statement
BY statement
5-day default calendar

This example

� creates a schedule calendar
� uses one of the two default work patterns: 8-hour day, 5-day week

� schedules activities around holidays

� displays a 5-day week

Program

Create the activities data set. ALLACTY contains both personal and business activities
information for a bank president.

data allacty;
input date : date7. event $ 9-36 who $ 37-48 long;
datalines;

01JUL96 Dist. Mtg. All 1
17JUL96 Bank Meeting 1st Natl 1
02JUL96 Mgrs. Meeting District 6 2
11JUL96 Mgrs. Meeting District 7 2
03JUL96 Interview JW 1
08JUL96 Sales Drive District 6 5
15JUL96 Sales Drive District 7 5
08JUL96 Trade Show Knox 3
22JUL96 Inventors Show Melvin 3
11JUL96 Planning Council Group II 1
18JUL96 Planning Council Group III 1
25JUL96 Planning Council Group IV 1
12JUL96 Seminar White 1
19JUL96 Seminar White 1
18JUL96 NewsLetter Deadline All 1
05JUL96 VIP Banquet JW 1
19JUL96 Co. Picnic All 1
16JUL96 Dentist JW 1
24JUL96 Birthday Mary 1

110 Program � Chapter 5

25JUL96 Close Sale WYGIX Co. 2
;

Create the holidays data set.

data hol;
input date : date7. holiday $ 11-25 holilong @27;
datalines;

05jul96 Vacation 3
04jul96 Independence 1
;

Sort the activities data set by the variable containing the starting date. You are not
required to sort the holidays data set.

proc sort data=allacty;
by date;

run;

Set LINESIZE= appropriately. If the linesize is not long enough to print the variable values,
PROC CALENDAR either truncates the values or produces no calendar output.

options nodate pageno=1 linesize=132 pagesize=60;

Create the schedule calendar. DATA= identifies the activities data set; HOLIDATA= identifies
the holidays data set. WEEKDAYS specifies that a week consists of five eight-hour work days.

proc calendar data=allacty holidata=hol weekdays;

The START statement specifies the variable in the activities data set that contains the starting
date of the activities; DUR specifies the variable that contains the duration of each activity.
Creating a schedule calendar requires START and DUR.

start date;
dur long;

The HOLISTART, HOLIVAR, and HOLIDUR statements specify the variables in the holidays
data set that contain the start date, name, and duration of each holiday, respectively. When you
use a holidays data set, HOLISTART is required. Because at least one holiday lasts more than
one day, HOLIDUR is required.

holistart date;
holivar holiday;
holidur holilong;
title1 ’Summer Planning Calendar: Julia Cho’;
title2 ’President, Community Bank’;

run;

The CALENDAR Procedure � Output 111

Output

Output 5.4 Schedule Calendar: 5-Day Week with Holidays

Summer Planning Calendar: Julia Cho 1

President, Community Bank

| |

| July 1996 |

| |

|---|

| Monday | Tuesday | Wednesday | Thursday | Friday |

|-------------------------+-------------------------+-------------------------+-------------------------+-------------------------|

| 1 | 2 | 3 | 4 | 5 |

| | | |******Independence*******|********Vacation*********|

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | |+=====Interview/JW======+| | |

|+====Dist. Mtg./All=====+|+============Mgrs. Meeting/District 6=============+| | |

|-------------------------+-------------------------+-------------------------+-------------------------+-------------------------|

| 8 | 9 | 10 | 11 | 12 |

|********Vacation*********|********Vacation*********| | | |

| | | | | |

| | | | | |

| | | |+Planning Council/Group +|+=====Seminar/White=====+|

| | |+==============================Trade Show/Knox==============================+|

| | |+==========================Sales Drive/District 6===========================>|

| | |+====VIP Banquet/JW=====+|+============Mgrs. Meeting/District 7=============+|

|-------------------------+-------------------------+-------------------------+-------------------------+-------------------------|

| 15 | 16 | 17 | 18 | 19 |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| |+======Dentist/JW=======+| |+NewsLetter Deadline/All+|+====Co. Picnic/All=====+|

|+==Sales Drive/District 7===+|

|<=============Sales Drive/District 6==============+|+=Bank Meeting/1st Natl=+|+Planning Council/Group +|+=====Seminar/White=====+|

|-------------------------+-------------------------+-------------------------+-------------------------+-------------------------|

| 22 | 23 | 24 | 25 | 26 |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | |+=====Birthday/Mary=====+|+==============Close Sale/WYGIX Co.===============+|

|+===========================Inventors Show/Melvin===========================+|+Planning Council/Group +| |

|-------------------------+-------------------------+-------------------------+-------------------------+-------------------------|

| 29 | 30 | 31 | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

| | | | | |

112 Example 2: Schedule Calendar Containing Multiple Calendars � Chapter 5

Example 2: Schedule Calendar Containing Multiple Calendars
Procedure features:

CALID statement:
CAL variable
OUTPUT=COMBINE option

DUR statement
24-hour day, 7-day week

This example builds on Example 1 by identifying activities as belonging to one of two
calendars, business or personal. This example

� produces a schedule calendar report
� prints two calendars on the same output page
� schedules activities around holidays
� uses one of the two default work patterns: 24-hour day, 7-day week
� identifies activities and holidays by calendar name.

Program

Create the activities data set and identify separate calendars. ALLACTY2 contains both
personal and business activities for a bank president. The _CAL_ variable identifies which
calendar an event belongs to.

data allacty2;
input date:date7. happen $ 10-34 who $ 35-47 _CAL_ $ long;
datalines;

01JUL96 Dist. Mtg. All CAL1 1
02JUL96 Mgrs. Meeting District 6 CAL1 2
03JUL96 Interview JW CAL1 1
05JUL96 VIP Banquet JW CAL1 1
06JUL96 Beach trip family CAL2 2
08JUL96 Sales Drive District 6 CAL1 5
08JUL96 Trade Show Knox CAL1 3
09JUL96 Orthodontist Meagan CAL2 1
11JUL96 Mgrs. Meeting District 7 CAL1 2
11JUL96 Planning Council Group II CAL1 1
12JUL96 Seminar White CAL1 1
14JUL96 Co. Picnic All CAL1 1
14JUL96 Business trip Fred CAL2 2
15JUL96 Sales Drive District 7 CAL1 5
16JUL96 Dentist JW CAL1 1
17JUL96 Bank Meeting 1st Natl CAL1 1
17JUL96 Real estate agent Family CAL2 1
18JUL96 NewsLetter Deadline All CAL1 1
18JUL96 Planning Council Group III CAL1 1
19JUL96 Seminar White CAL1 1
22JUL96 Inventors Show Melvin CAL1 3
24JUL96 Birthday Mary CAL1 1

The CALENDAR Procedure � Program 113

25JUL96 Planning Council Group IV CAL1 1
25JUL96 Close Sale WYGIX Co. CAL1 2
27JUL96 Ballgame Family CAL2 1
;

Create the holidays data set and identify which calendar a holiday affects. The _CAL_
variable identifies which calendar a holiday belongs to.

data vac;
input hdate:date7. holiday $ 11-25 _CAL_ $;
datalines;

29JUL96 vacation CAL2
04JUL96 Independence CAL1
;

Sort the activities data set by the variable containing the starting date. When creating
a calendar with combined output, you sort only by the activity starting date, not by the CALID
variable. You are not required to sort the holidays data set.

proc sort data=allacty2;
by date;

run;

Set LINESIZE= appropriately. If the linesize is not long enough to print the variable values,
PROC CALENDAR either truncates the values or produces no calendar output.

options nodate pageno=1 pagesize=60 linesize=132;

Create the schedule calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set. By default, the output calendar displays a 7-day week.

proc calendar data=allacty2 holidata=vac;

The CALID statement specifies the variable that identifies which calendar an event belongs to.
OUTPUT=COMBINE places all events and holidays on the same calendar.

calid _CAL_ / output=combine;

Schedule an activity. The START statement specifies the variable in the activities data set
that contains the starting date of the activities; DUR specifies the variable that contains the
duration of each activity. Creating a schedule calendar requires START and DUR.

start date ;
dur long;

114 Output � Chapter 5

The HOLISTART and HOLIVAR statements specify the variables in the holidays data set that
contain the start date and name of each holiday, respectively. HOLISTART is required when you
use a holidays data set.

holistart hdate;
holivar holiday;
title1 ’Summer Planning Calendar: Julia Cho’;
title2 ’President, Community Bank’;
title3 ’Work and Home Schedule’;

run;

Output

The CALENDAR Procedure � Example 3: Multiple Schedule Calendars with Atypical Workshifts (Separated Output) 115

Output 5.5 Schedule Calendar Containing Multiple Calendars

Summer Planning Calendar: Julia Cho 1

President, Community Bank

Work and Home Schedule

--

| |

| July 1996 |

| |

|--|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

----------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | | 1 | 2 | 3 | 4 | 5 | 6 |

|.........|................|................|................|................|................|................|................|

| CAL2 | | | | | | |+Beach trip/fam>|

|.........|................|................|................|................|................|................|................|

| CAL1 | | | |+=Interview/JW=+|**Independence**| | |

| | |+Dist. Mtg./All+|+===Mgrs. Meeting/District 6====+| |+VIP Banquet/JW+| |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

|.........|................|................|................|................|................|................|................|

| CAL2 |<Beach trip/fam+| |+Orthodontist/M+| | | | |

|.........|................|................|................|................|................|................|................|

| CAL1 | | | | |+Planning Counc+|+Seminar/White=+| |

| | |+================Trade Show/Knox=================+|+===Mgrs. Meeting/District 7====+| |

| | |+==============================Sales Drive/District 6==============================+| |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 14 | 15 | 16 | 17 | 18 | 19 | 20 |

|.........|................|................|................|................|................|................|................|

| CAL2 |+======Business trip/Fred=======+| |+Real estate ag+| | | |

|.........|................|................|................|................|................|................|................|

| CAL1 | | | | |+Planning Counc+| | |

| | | |+==Dentist/JW==+|+Bank Meeting/1+|+NewsLetter Dea+|+Seminar/White=+| |

| |+Co. Picnic/All+|+==============================Sales Drive/District 7==============================+| |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

|.........|................|................|................|................|................|................|................|

| CAL2 | | | | | | |+Ballgame/Famil+|

|.........|................|................|................|................|................|................|................|

| CAL1 | | | |+Birthday/Mary=+|+=====Close Sale/WYGIX Co.======+| |

| | |+=============Inventors Show/Melvin==============+|+Planning Counc+| | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 28 | 29 | 30 | 31 | | | |

|.........|................|................|................|................|................|................|................|

| CAL2 | |****vacation****| | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

--

Example 3: Multiple Schedule Calendars with Atypical Workshifts
(Separated Output)

Procedure features:
PROC CALENDAR statement options:

CALEDATA=
DATETIME

116 Producing Different Output for Multiple Calendars � Chapter 5

WORKDATA=
CALID statement:

CAL variable
OUTPUT=SEPARATE option

DUR statement
OUTSTART statement
OUTFIN statement

This example
� produces separate output pages for each calendar in a single PROC step
� schedules activities around holidays
� displays an 8-hour day, 5 1/2-day week
� uses separate work patterns and holidays for each calendar.

Producing Different Output for Multiple Calendars
This example and Example 4 on page 120 use the same input data for multiple

calendars to produce different output. The only differences in these programs are how
the activities data set is sorted and how the OUTPUT= option is set.

To print . . . Sort the activities
data set by . . .

And set OUTPUT= to See Example

Separate pages for each
calendar

calendar id and
starting date

SEPARATE 3, 8

All activities on the same
page and identify each
calendar

starting date COMBINE 4, 2

All activities on the same
page and NOT identify
each calendar

starting date MIX 4

Program

Specify a library so that you can permanently store the activities data set.

libname well ’SAS-data-library’;

Create the activities data set and identify separate calendars. WELL.ACT is a
permanent SAS data set that contains activities for a well construction project. The _CAL_
variable identifies the calendar that an activity belongs to.

data well.act;
input task & $16. dur : 5. date : datetime16. _cal_ $ cost;
datalines;

The CALENDAR Procedure � Program 117

Drill Well 3.50 01JUL96:12:00:00 CAL1 1000
Lay Power Line 3.00 04JUL96:12:00:00 CAL1 2000
Assemble Tank 4.00 05JUL96:08:00:00 CAL1 1000
Build Pump House 3.00 08JUL96:12:00:00 CAL1 2000
Pour Foundation 4.00 11JUL96:08:00:00 CAL1 1500
Install Pump 4.00 15JUL96:14:00:00 CAL1 500
Install Pipe 2.00 19JUL96:08:00:00 CAL1 1000
Erect Tower 6.00 20JUL96:08:00:00 CAL1 2500
Deliver Material 2.00 01JUL96:12:00:00 CAL2 500
Excavate 4.75 03JUL96:08:00:00 CAL2 3500
;

Create the holidays data set. The _CAL_ variable identifies the calendar that a holiday
belongs to.

data well.hol;
input date date. holiday $ 11-25 _cal_ $;
datalines;

09JUL96 Vacation CAL2
04JUL96 Independence CAL1
;

Create the calendar data set. Each observation defines the workshifts for an entire week.
The _CAL_ variable identifies to which calendar the workshifts apply. CAL1 uses the default
8-hour workshifts for Monday through Friday. CAL2 uses a half day on Saturday and the
default 8-hour workshift for Monday through Friday.

data well.cal;
input _sun_ $ _sat_ $ _mon_ $ _tue_ $ _wed_ $ _thu_ $

fri $ _cal_ $;
datalines;

Holiday Holiday Workday Workday Workday Workday Workday CAL1
Holiday Halfday Workday Workday Workday Workday Workday CAL2
;

Create the workdays data set. This data set defines the daily workshifts that are named in
the calendar data set. Each variable – not observation – contains one daily schedule of
alternating work and nonwork periods. The HALFDAY workshift lasts 4 hours.

data well.wor;
input halfday time5.;
datalines;

08:00
12:00
;

Sort the activities data set by the variables containing the calendar identification and
the starting date, respectively. You are not required to sort the holidays data set.

118 Program � Chapter 5

proc sort data=well.act;
by _cal_ date;

run;

Set LINESIZE= appropriately. If the linesize is not long enough to print the variable values,
PROC CALENDAR either truncates the values or produces no calendar output.

options nodate pageno=1 linesize=132 pagesize=60;

Create the schedule calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set; CALEDATA= identifies the calendar data set; WORKDATA=
identifies the workdays data set. DATETIME specifies that the variable specified with the
START statement contains values in SAS datetime format.

proc calendar data=well.act
holidata=well.hol
caledata=well.cal
workdata=well.wor
datetime;

The CALID statement specifies that the _CAL_ variable identifies calendars.
OUTPUT=SEPARATE prints information for each calendar on separate pages.

calid _cal_ / output=separate;

The START statement specifies the variable in the activities data set that contains the activity
starting date; DUR specifies the variable that contains the activity duration. START and DUR
are required for a schedule calendar.

start date;
dur dur;

HOLISTART and HOLIVAR specify the variables in the holidays data set that contain the start
date and name of each holiday, respectively. HOLISTART is required when you use a holidays
data set.

holistart date;
holivar holiday;

OUTSTART and OUTFIN specify that the calendar display a 6-day week, Monday through
Saturday.

outstart Monday;
outfin Saturday;
title1 ’Well Drilling Work Schedule: Separate Calendars’;
format cost dollar9.2;

run;

The CALENDAR Procedure � Output 119

Output

Output 5.6 Separate Output for Multiple Schedule Calendars

Well Drilling Work Schedule: Separate Calendars 1

.. _cal_=CAL1 ..

| |

| July 1996 |

| |

|---|

| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 1 | 2 | 3 | 4 | 5 | 6 |

| | | |****Independence****| | |

| | | | | | |

| | | | | | |

| | | | |+Assemble Tank/$1,0>| |

| | | | |+Lay Power Line/$2,>| |

|+====================Drill Well/$1,000.00====================>| |<Drill Well/$1,000.+| |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 8 | 9 | 10 | 11 | 12 | 13 |

| | | | | | |

| | | | | | |

| | | | | | |

|+===========================Build Pump House/$2,000.00============================+| | |

|<=============================Assemble Tank/$1,000.00=============================+| | |

|<=======Lay Power Line/$2,000.00========+| |+=======Pour Foundation/$1,500.00=======>| |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 15 | 16 | 17 | 18 | 19 | 20 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|+===Install Pump/$500.00===+| |

|<=================Pour Foundation/$1,500.00==================+| |+Install Pipe/$1,00>| |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 22 | 23 | 24 | 25 | 26 | 27 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|+==Erect Tower/$2,500.00===>| |

|<========Install Pipe/$1,000.00=========+| | | | |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 29 | 30 | 31 | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|<Erect Tower/$2,500+| | | | | |

120 Example 4: Multiple Schedule Calendars with Atypical Workshifts (Combined and Mixed Output) � Chapter 5

Well Drilling Work Schedule: Separate Calendars 2

.. _cal_=CAL2 ..

| |

| July 1996 |

| |

|---|

| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 1 | 2 | 3 | 4 | 5 | 6 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | |+===============================Excavate/$3,500.00================================>|

|+==================Deliver Material/$500.00==================+| | | |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 8 | 9 | 10 | 11 | 12 | 13 |

| |******Vacation******| | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|<Excavate/$3,500.00>| |<Excavate/$3,500.00+| | | |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 15 | 16 | 17 | 18 | 19 | 20 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 22 | 23 | 24 | 25 | 26 | 27 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 29 | 30 | 31 | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

Example 4: Multiple Schedule Calendars with Atypical Workshifts
(Combined and Mixed Output)

Procedure features:
PROC CALENDAR statementoptions:

CALEDATA=
DATETIME
WORKDATA=

CALID statement:
CAL variable

The CALENDAR Procedure � Program for Combined Calendars 121

OUTPUT=COMBINE option
OUTPUT=MIXED option

DUR statement
OUTSTART statement
OUTFIN statement

Data sets:
There are input data sets on page 116.

This example
� produces a schedule calendar

� schedules activities around holidays
� uses separate work patterns and holidays for each calendar

� uses an 8-hour day, 5 1/2-day work week

� displays and identifies multiple calendars on each calendar page (combined output)
� displays but does not identify multiple calendars on each calendar page (mixed

output).

Two Programs and Two Pieces of Output
This example creates both combined and mixed output. Producing combined or

mixed calendar output requires only one change to a PROC CALENDAR step: the
setting of the OUTPUT= option in the CALID statement. Combined output is produced
first, then mixed output.

Producing Different Output for Multiple Calendars
This example and Example 3 on page 115 use the same input data for multiple

calendars to produce different output. The only differences in these programs are how
the activities data set is sorted and how the OUTPUT= option is set.

To print . . . Sort the activities
data set by . . .

And set OUTPUT= to See Example

Separate pages for each
calendar

calendar id and
starting date

SEPARATE 3, 8

All activities on the same
page and identify each
calendar

starting date COMBINE 4, 2

All activities on the same
page and NOT identify
each calendar

starting date MIX 4

Program for Combined Calendars

Specify the SAS data library where the activities data set is stored.

122 Program for Combined Calendars � Chapter 5

libname well ’SAS-data-library’;

Sort the activities data set by the variable containing the starting date. Do not sort by
the CALID variable when producing combined calendar output.

proc sort data=well.act;
by date;

run;

Set PAGESIZE= and LINESIZE= appropriately. When you combine calendars, check the
value of PAGESIZE= to ensure that there is enough room to print the activities from multiple
calendars. If LINESIZE= is too small for the variable values to print, PROC CALENDAR either
truncates the values or produces no calendar output.

options nodate pageno=1 linesize=132 pagesize=60;

Create the schedule calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set; CALEDATA= identifies the calendar data set; WORKDATA=
identifies the workdays data set. DATETIME specifies that the variable specified with the
START statement contains values in SAS datetime format.

proc calendar data=well.act
holidata=well.hol
caledata=well.cal
workdata=well.wor
datetime;

title1 ’Well Drilling Work Schedule: Combined Calendars’;
format cost dollar9.2;

The CALID statement specifies that the _CAL_ variable identifies the calendars.
OUTPUT=COMBINE prints multiple calendars on the same page and identifies each calendar.

calid _cal_ / output=combine;

The START statement specifies the variable in the activities data set that contains the starting
date of the activities; DUR specifies the variable that contains the duration of each activity.
START and DUR are required for a schedule calendar.

start date;
dur dur;

HOLISTART and HOLIVAR specify the variables in the holidays data set that contain the start
date and name of each holiday, respectively. HOLISTART is required when you use a holidays
data set.

holistart date;
holivar holiday;

The CALENDAR Procedure � Program for Mixed Calendars 123

run;

Output for Combined Calendars

Output 5.7 Multiple Schedule Calendars with Atypical Workshifts (Combined Output)

Well Drilling Work Schedule: Combined Calendars 1

--

| |

| July 1996 |

| |

|--|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

----------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | | 1 | 2 | 3 | 4 | 5 | 6 |

|.........|................|................|................|................|................|................|................|

| CAL1 | | | | |**Independence**|+Assemble Tank/>| |

| | | | | | |+Lay Power Line>| |

| | |+==============Drill Well/$1,000.00==============>| |<Drill Well/$1,+| |

|.........|................|................|................|................|................|................|................|

| CAL2 | | | |+=======================Excavate/$3,500.00========================>|

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

|.........|................|................|................|................|................|................|................|

| CAL1 | |+===================Build Pump House/$2,000.00====================+| | |

| | |<=====================Assemble Tank/$1,000.00=====================+| | |

| | |<===Lay Power Line/$2,000.00====+| |+===Pour Foundation/$1,500.00===>| |

|.........|................|................|................|................|................|................|................|

| CAL2 | |<Excavate/$3,50>|****Vacation****|<Excavate/$3,50+| | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 14 | 15 | 16 | 17 | 18 | 19 | 20 |

|.........|................|................|................|................|................|................|................|

| CAL1 | |+===============================Install Pump/$500.00===============================+| |

| | |<===========Pour Foundation/$1,500.00============+| |+Install Pipe/$>| |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

|.........|................|................|................|................|................|................|................|

| CAL1 | |+==============================Erect Tower/$2,500.00===============================>| |

| | |<====Install Pipe/$1,000.00=====+| | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 28 | 29 | 30 | 31 | | | |

|.........|................|................|................|................|................|................|................|

| CAL1 | |<Erect Tower/$2+| | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

--

Program for Mixed Calendars

To produce mixed output instead of combined, use the same program and change the
setting of the OUTPUT= option to OUTPUT=MIX:

124 Output for Mixed Calendars � Chapter 5

proc calendar data=well.act
holidata=well.hol
caledata=well.cal
workdata=well.wor
datetime;

calid _cal_ / output=mix;
start date;
dur dur;
holistart date;
holivar holiday;
outstart Monday;
outfin Saturday;
title1 ’Well Drilling Work Schedule: Mixed Calendars’;
format cost dollar9.2;

run;

Output for Mixed Calendars

The CALENDAR Procedure � Example 5: Schedule Calendar, Blank or with Holidays 125

Output 5.8 Multiple Schedule Calendar with Atypical Workshifts (Mixed Output)

Well Drilling Work Schedule: Mixed Calendars 1

| |

| July 1996 |

| |

|---|

| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 1 | 2 | 3 | 4 | 5 | 6 |

| | | | | | |

| | | | | | |

| | | | |+Assemble Tank/$1,0>| |

| | |+===============================Excavate/$3,500.00================================>|

|+==================Deliver Material/$500.00==================+|****Independence****|+Lay Power Line/$2,>| |

|+====================Drill Well/$1,000.00====================>|****Independence****|<Drill Well/$1,000.+| |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 8 | 9 | 10 | 11 | 12 | 13 |

| | | | | | |

| | | | | | |

|+===========================Build Pump House/$2,000.00============================+| | |

|<=============================Assemble Tank/$1,000.00=============================+| | |

|<=======Lay Power Line/$2,000.00========+| | | | |

|<Excavate/$3,500.00>|******Vacation******|<Excavate/$3,500.00+|+=======Pour Foundation/$1,500.00=======>| |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 15 | 16 | 17 | 18 | 19 | 20 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|+===Install Pump/$500.00===+| |

|<=================Pour Foundation/$1,500.00==================+| |+Install Pipe/$1,00>| |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 22 | 23 | 24 | 25 | 26 | 27 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|+==Erect Tower/$2,500.00===>| |

|<========Install Pipe/$1,000.00=========+| | | | |

|--------------------+--------------------+--------------------+--------------------+--------------------+--------------------|

| 29 | 30 | 31 | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|<Erect Tower/$2,500+| | | | | |

Example 5: Schedule Calendar, Blank or with Holidays

Procedure features:
PROC CALENDAR statement options:

FILL
HOLIDATA=
INTERVAL=WORKDAY

126 Program � Chapter 5

DUR statement
HOLIDUR statement
HOLISTART statement
HOLIVAR statement

This example produces a schedule calendar that displays only holidays. You can use
this same code to produce a set of blank calendars by removing the HOLIDATA= option
and the HOLISTART, HOLIVAR, and HOLIDUR statements from the PROC
CALENDAR step.

Program

Create the activities data set. Specify one activity in the first month and one in the last, each
with a duration of 0. PROC CALENDAR does not print activities with zero durations in the
output.

data acts;
input sta : date7. act $ 11-30 dur;
datalines;

01JAN97 Start 0
31DEC97 Finish 0
;

Create the holidays data set.

data holidays;
input sta : date7. act $ 11-30 dur;
datalines;

01JAN97 New Year’s 1
28MAR97 Good Friday 1
30MAY97 Memorial Day 1
04JUL97 Independence Day 1
01SEP97 Labor Day 1
27NOV97 Thanksgiving 2
25DEC97 Christmas Break 5
;

Set PAGESIZE= and LINESIZE= appropriately. To create larger boxes for each day in the
calendar output, increase the value of PAGESIZE=.

options nodate pageno=1 linesize=132 pagesize=30;

Create the calendar. DATA= identifies the activities data set; HOLIDATA= identifies the
holidays data set. FILL displays all months, even those with no activities. By default, only
months with activities appear in the report. INTERVAL=WORKDAY specifies that activities and
holidays are measured in 8-hour days and that PROC CALENDAR schedules activities only
Monday through Friday.

The CALENDAR Procedure � Output 127

proc calendar data=acts holidata=holidays fill interval=workday;

The START statement specifies the variable in the activities data set that contains the starting
date of the activities; DUR specifies the variable that contains the duration of each activity.
Creating a schedule calendar requires START and DUR.

start sta;
dur dur;

The HOLISTART, HOLIVAR, and HOLIDUR statements specify the variables in the holidays
data set that contain the start date, name, and duration of each holiday, respectively. When you
use a holidays data set, HOLISTART is required. Because at least one holiday lasts more than
one day, HOLIDUR (or HOLIFIN) is required.

holistart sta;
holivar act;
holidur dur;
title1 ’Calendar of Holidays Only’;

run;

Output

Output 5.9 Schedule Calendars with Holidays Only (Partial Output).

Without INTERVAL=WORKDAY, the 5-day Christmas break would be scheduled through the weekend.

Calendar of Holidays Only 1

| |

| January 1997 |

| |

|---|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| | | | 1 | 2 | 3 | 4 |

| | | |***New Year’s****| | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 5 | 6 | 7 | 8 | 9 | 10 | 11 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 12 | 13 | 14 | 15 | 16 | 17 | 18 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 19 | 20 | 21 | 22 | 23 | 24 | 25 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 26 | 27 | 28 | 29 | 30 | 31 | |

| | | | | | | |

128 Example 6: Calculating a Schedule Based on Completion of Predecessor Tasks � Chapter 5

Calendar of Holidays Only 2

| |

| February 1997 |

| |

|---|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| | | | | | | 1 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 2 | 3 | 4 | 5 | 6 | 7 | 8 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 9 | 10 | 11 | 12 | 13 | 14 | 15 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 16 | 17 | 18 | 19 | 20 | 21 | 22 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 23 | 24 | 25 | 26 | 27 | 28 | |

| | | | | | | |

Calendar of Holidays Only 12

| |

| December 1997 |

| |

|---|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| | 1 | 2 | 3 | 4 | 5 | 6 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 7 | 8 | 9 | 10 | 11 | 12 | 13 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 14 | 15 | 16 | 17 | 18 | 19 | 20 |

| | | | | | | |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 21 | 22 | 23 | 24 | 25 | 26 | 27 |

| | | | |*Christmas Break*|*Christmas Break*| |

|-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------|

| 28 | 29 | 30 | 31 | | | |

| |*Christmas Break*|*Christmas Break*|*Christmas Break*| | | |

Example 6: Calculating a Schedule Based on Completion of Predecessor
Tasks

Procedure features:
PROC CALENDAR statement
CALID statement
FIN statement
VAR statement

Other features:

The CALENDAR Procedure � Program 129

PROC CPM step
PROC SORT step

Automating Your Scheduling Task with SAS/OR Software
When changes occur to a schedule, you have to adjust the activity starting dates

manually if you use PROC CALENDAR to produce a schedule calendar. Alternatively,
you can use PROC CPM in SAS/OR software to reschedule work when dates change.
Even more important, you can provide only an initial starting date for a project and let
PROC CPM calculate starting dates for activities, based on identified successor tasks,
that is, tasks that cannot begin until their predecessors end.

In order to use PROC CPM, you must

1 create an activities data set that contains activities with durations. (You can
indicate nonwork days, weekly work schedules, and workshifts with holidays,
calendar, and workshift data sets.)

2 indicate which activities are successors to others (precedence relationships).

3 define resource limitations if you want them considered in the schedule.

4 provide an initial starting date.

PROC CPM can process your data to generate a data set that contains the start and
end dates for each activity. PROC CPM schedules the activities, based on the duration
information, weekly work patterns, workshifts, as well as holidays and nonwork days
that interrupt the schedule. You can generate several views of the schedule that is
computed by PROC CPM, from a simple listing of start and finish dates to a calendar, a
Gantt chart, or a network diagram.

Highlights of This Example
This example

� calculates a project schedule containing multiple calendars (PROC CPM)

� produces a listing of the PROC CPM output data set (PROC PRINT)

� displays the schedule in calendar format (PROC CALENDAR).

This example features PROC CPM’s ability to calculate a schedule that

� is based on an initial starting date

� applies different non-work periods to different calendars, such as personal
vacation days to each employee’s schedule

� includes milestones (activities with a duration of 0).

See Also
This example introduces users of PROC CALENDAR to more advanced SAS

scheduling tools. For an introduction to project management tasks and tools and
several examples, see Project Management Using the SAS System. For more examples,
see SAS/OR Software: Project Management Examples. For complete reference
documentation, see SAS/OR User’s Guide: Project Management, Version 6, First
Edition.

Program

130 Program � Chapter 5

Set appropriate options. If the linesize is not long enough to print the variable values, PROC
CALENDAR either truncates the values or produces no calendar output. A longer linesize also
makes it easier to view a listing of a PROC CPM output data set.

options nodate pageno=1 linesize=132 pagesize=60;

Create the activities data set and identify separate calendars. These data identify two
calendars: the professor’s (the value of _CAL_ is Prof.) and the student’s (the value of _CAL_ is
Student). The Succ1 variable identifies which activity cannot begin until the current one ends.
For example Analyze Exp 1 cannot begin until Run Exp 1 is completed. The DAYS value of 0
for JOBNUM 3, 6, and 8 indicates that these are milestones.

data grant;
input jobnum Task $ 4-22 Days Succ1 $ 27-45 aldate : date7. altype $

cal $;
format aldate date7.;
datalines;

1 Run Exp 1 11 Analyze Exp 1 . . Student
2 Analyze Exp 1 5 Send Report 1 . . Prof.
3 Send Report 1 0 Run Exp 2 . . Prof.
4 Run Exp 2 11 Analyze Exp 2 . . Student
5 Analyze Exp 2 4 Send Report 2 . . Prof.
6 Send Report 2 0 Write Final Report . . Prof.
7 Write Final Report 4 Send Final Report . . Prof.
8 Send Final Report 0 . . Student
9 Site Visit 1 18jul96 ms Prof.
;

Create the holidays data set and identify which calendar a nonwork day belongs to.
The two holidays are listed twice, once for the professor’s calendar and once for the student’s.
Because each person is associated with a separate calendar, PROC CPM can apply the personal
vacation days to the appropriate calendars.

data nowork;
format holista date7. holifin date7.;
input holista : date7. holifin : date7. name $ 17-32 _cal_ $;
datalines;

04jul96 04jul96 Independence Day Prof.
02sep96 02sep96 Labor Day Prof.
04jul96 04jul96 Independence Day Student
02sep96 02sep96 Labor Day Student
15jul96 16jul96 PROF Vacation Prof.
15aug96 16aug96 STUDENT Vacation Student
;

Calculate the schedule with PROC CPM. PROC CPM uses information supplied in the
activities and holidays data sets to calculate start and finish dates for each activity. The DATE=
option supplies the starting date of the project. The CALID statement is not required, even
though this example includes two calendars, because the calendar identification variable has the
special name _CAL_.

The CALENDAR Procedure � Program 131

proc cpm data=grant
date=’01jul96’d
interval=weekday
out=gcpm1
holidata=nowork;

activity task;
successor succ1;
duration days;
calid _cal_;
id task;
aligndate aldate;
aligntype altype;
holiday holista / holifin=holifin;

run;

Print the output data set created with PROC CPM. This step is not required. PROC PRINT
is a useful way to view the calculations produced by PROC CPM. See Output 5.10 on page 132.

proc print data=gcpm1;
title ’Data Set GCPM1, Created with PROC CPM’;

run;

Sort GCPM1 by the variable that contains the activity start dates before using it with
PROC CALENDAR.

proc sort data=gcpm1;
by e_start;

run;

Create the schedule calendar. GCPM1 is the activity data set. PROC CALENDAR uses the
S_START and S_FINISH dates, calculated by PROC CPM, to print the schedule. The VAR
statement selects only the variable TASK to display on the calendar output. See Output 5.11 on
page 132.

proc calendar data=gcpm1
holidata=nowork
interval=workday;

start e_start;
fin e_finish;
calid _cal_ / output=combine;
holistart holista;
holifin holifin;
holivar name;
var task;
title ’Schedule for Experiment X-15’;
title2 ’Professor and Student Schedule’;

run;

132 Output � Chapter 5

Output

Output 5.10 The Data Set GCPM1

PROC PRINT displays the observations in GCPM1, showing the scheduling calculations created by PROC CPM.

Data Set GCPM1, Created with PROC CPM 1

Obs Task Succ1 Days _cal_ E_START E_FINISH L_START L_FINISH T_FLOAT F_FLOAT

1 Run Exp 1 Analyze Exp 1 11 Student 01JUL96 16JUL96 01JUL96 16JUL96 0 0

2 Analyze Exp 1 Send Report 1 5 Prof. 17JUL96 23JUL96 17JUL96 23JUL96 0 0

3 Send Report 1 Run Exp 2 0 Prof. 24JUL96 24JUL96 24JUL96 24JUL96 0 0

4 Run Exp 2 Analyze Exp 2 11 Student 24JUL96 07AUG96 24JUL96 07AUG96 0 0

5 Analyze Exp 2 Send Report 2 4 Prof. 08AUG96 13AUG96 08AUG96 13AUG96 0 0

6 Send Report 2 Write Final Report 0 Prof. 14AUG96 14AUG96 14AUG96 14AUG96 0 0

7 Write Final Report Send Final Report 4 Prof. 14AUG96 19AUG96 14AUG96 19AUG96 0 0

8 Send Final Report 0 Student 20AUG96 20AUG96 20AUG96 20AUG96 0 0

9 Site Visit 1 Prof. 18JUL96 18JUL96 18JUL96 18JUL96 0 0

The CALENDAR Procedure � Output 133

Output 5.11 Schedule Calendar Based on Output from PROC CPM

PROC CALENDAR created this schedule calendar by using the S_START and S_FINISH dates that were
calculated by PROC CPM. The activities on July 24th and August 14th, because they are milestones, do not
delay the start of a successor activity. Note that Site Visit occurs on July 18, the same day that Analyze Exp 1
occurs. To prevent this overallocation of resources, you can use resource constrained scheduling, available
in SAS/OR software.

Schedule for Experiment X-15 2

Professor and Student Schedule

--

| |

| July 1996 |

| |

|--|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

----------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | | 1 | 2 | 3 | 4 | 5 | 6 |

|.........|................|................|................|................|................|................|................|

| PROF. | | | | |Independence Day| | |

|.........|................|................|................|................|................|................|................|

| STUDENT | |+===================Run Exp 1====================>|Independence Day|<==Run Exp 1===>| |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

|.........|................|................|................|................|................|................|................|

| STUDENT | |<====================================Run Exp 1=====================================>| |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 14 | 15 | 16 | 17 | 18 | 19 | 20 |

|.........|................|................|................|................|................|................|................|

| PROF. | |*PROF Vacation**|*PROF Vacation**| |+==Site Visit==+| | |

| | | | |+=================Analyze Exp 1==================>| |

|.........|................|................|................|................|................|................|................|

| STUDENT | |<===========Run Exp 1===========+| | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

|.........|................|................|................|................|................|................|................|

| PROF. | |<=========Analyze Exp 1=========+|+Send Report 1=+| | | |

|.........|................|................|................|................|................|................|................|

| STUDENT | | | |+===================Run Exp 2====================>| |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 28 | 29 | 30 | 31 | | | |

|.........|................|................|................|................|................|................|................|

| STUDENT | |<===================Run Exp 2====================>| | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

--

134 Example 7: Summary Calendar with MEAN Values By Observation � Chapter 5

Schedule for Experiment X-15 3

Professor and Student Schedule

--

| |

| August 1996 |

| |

|--|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

----------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | | | | | 1 | 2 | 3 |

|.........|................|................|................|................|................|................|................|

| STUDENT | | | | |<===========Run Exp 2===========>| |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

|.........|................|................|................|................|................|................|................|

| PROF. | | | | |+=========Analyze Exp 2=========>| |

|.........|................|................|................|................|................|................|................|

| STUDENT | |<===================Run Exp 2====================+| | | |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 11 | 12 | 13 | 14 | 15 | 16 | 17 |

|.........|................|................|................|................|................|................|................|

| PROF. | | | |+===============Write Final Report===============>| |

| | |<=========Analyze Exp 2=========+|+Send Report 2=+| | | |

|.........|................|................|................|................|................|................|................|

| STUDENT | | | | |STUDENT Vacation|STUDENT Vacation| |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

|.........|................|................|................|................|................|................|................|

| PROF. | |<Write Final Re+| | | | | |

|.........|................|................|................|................|................|................|................|

| STUDENT | | |+Send Final Rep+| | | | |

| | | | | | | | |

| | | | | | | | |

|---------+----------------+----------------+----------------+----------------+----------------+----------------+----------------|

| | 25 | 26 | 27 | 28 | 29 | 30 | 31 |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

--

Example 7: Summary Calendar with MEAN Values By Observation

Procedure features:
CALID statement:

CAL variable
OUTPUT=SEPARATE option

FORMAT statement
LABEL statement

The CALENDAR Procedure � Program 135

MEAN statement
SUM statement

Other features:
PROC FORMAT:

PICTURE statement

This example
� produces a summary calendar
� displays holidays
� produces sum and mean values by business day (observation) for three variables
� prints a legend and uses variable labels
� uses picture formats to display values.

MEAN Values by Number of Days
To produce MEAN values based on the number of days in the calendar month, use

MEANTYPE=NDAYS. By default, MEANTYPE=NOBS, which calculates the MEAN
values according to the number of days for which data exist.

Program

Create the activities data set. MEALS records how many meals were served for breakfast,
lunch, and dinner on the days that the cafeteria was open for business.

data meals;
input date : date7. Brkfst Lunch Dinner;
datalines;

02Dec96 123 234 238
03Dec96 188 188 198
04Dec96 123 183 176
05Dec96 200 267 243
06Dec96 176 165 177
09Dec96 178 198 187
10Dec96 165 176 187
11Dec96 187 176 231
12Dec96 176 187 222
13Dec96 187 187 123
16Dec96 176 165 177
17Dec96 156 . 167
18Dec96 198 143 167
19Dec96 178 198 187
20Dec96 165 176 187
23Dec96 187 187 123
;

Create the holidays data set.

data closed;
input date date. holiday $ 11-25;

136 Program � Chapter 5

datalines;
26DEC96 Repairs
27DEC96 Repairs
30DEC96 Repairs
31DEC96 Repairs
24DEC96 Christmas Eve
25DEC96 Christmas
;

Sort the activities data set by the activity starting date. You are not required to sort the
holidays data set.

proc sort data=meals;
by date;

run;

Create picture formats for the variables that indicate how many meals were served.

proc format;
picture bfmt other = ’000 Brkfst’;
picture lfmt other = ’000 Lunch ’;
picture dfmt other = ’000 Dinner’;

run;

Set PAGESIZE= and LINESIZE= appropriately. The legend box prints on the next page if
PAGESIZE= is not set large enough. LINESIZE= controls the width of the cells in the calendar.

options nodate pageno=1 linesize=132 pagesize=60;

Create the summary calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set. The START statement specifies the variable in the activities
data set that contains the activity starting date; START is required.

proc calendar data=meals holidata=closed;
start date;

The HOLISTART and HOLIVAR statements specify the variables in the holidays data set that
contain the start date and the name of each holiday, respectively. HOLISTART is required when
you use a holidays data set.

holistart date;
holiname holiday;

The SUM and MEAN statements calculate sum and mean values for three variables and print
them with the specified format. The LABEL statement prints a legend and uses labels instead
of variable names. The FORMAT statement associates picture formats with three variables.

The CALENDAR Procedure � Output 137

sum brkfst lunch dinner / format=4.0;
mean brkfst lunch dinner / format=6.2;
label brkfst = ’Breakfasts Served’

lunch = ’ Lunches Served’
dinner = ’ Dinners Served’;

format brkfst bfmt.
lunch lfmt.
dinner dfmt.;

title ’Meals Served in Company Cafeteria’;
title2 ’Mean Number by Business Day’;

run;

Output

138 Example 8: Multiple Summary Calendars with Atypical Workshifts (Separated Output) � Chapter 5

Output 5.12 Summary Calendar with MEAN Values by Observation

Meals Served in Company Cafeteria 1

Mean Number by Business Day

--

| |

| December 1996 |

| |

|--|

| Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|------------+------------+------------+------------+------------+------------+------------|

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |

| | | | | | | |

| | 123 Brkfst | 188 Brkfst | 123 Brkfst | 200 Brkfst | 176 Brkfst | |

| | 234 Lunch | 188 Lunch | 183 Lunch | 267 Lunch | 165 Lunch | |

| | 238 Dinner | 198 Dinner | 176 Dinner | 243 Dinner | 177 Dinner | |

|------------+------------+------------+------------+------------+------------+------------|

| 8 | 9 | 10 | 11 | 12 | 13 | 14 |

| | | | | | | |

| | 178 Brkfst | 165 Brkfst | 187 Brkfst | 176 Brkfst | 187 Brkfst | |

| | 198 Lunch | 176 Lunch | 176 Lunch | 187 Lunch | 187 Lunch | |

| | 187 Dinner | 187 Dinner | 231 Dinner | 222 Dinner | 123 Dinner | |

|------------+------------+------------+------------+------------+------------+------------|

| 15 | 16 | 17 | 18 | 19 | 20 | 21 |

| | | | | | | |

| | 176 Brkfst | 156 Brkfst | 198 Brkfst | 178 Brkfst | 165 Brkfst | |

| | 165 Lunch | . | 143 Lunch | 198 Lunch | 176 Lunch | |

| | 177 Dinner | 167 Dinner | 167 Dinner | 187 Dinner | 187 Dinner | |

|------------+------------+------------+------------+------------+------------+------------|

| 22 | 23 | 24 | 25 | 26 | 27 | 28 |

| | |Christmas Ev|*Christmas**|**Repairs***|**Repairs***| |

| | 187 Brkfst | | | | | |

| | 187 Lunch | | | | | |

| | 123 Dinner | | | | | |

|------------+------------+------------+------------+------------+------------+------------|

| 29 | 30 | 31 | | | | |

| |**Repairs***|**Repairs***| | | | |

| | | | | | | |

| | | | | | | |

| | | | | | | |

--

| | Sum | Mean |

| | | |

| Breakfasts Served | 2763 | 172.69 |

| Lunches Served | 2830 | 188.67 |

| Dinners Served | 2990 | 186.88 |

Example 8: Multiple Summary Calendars with Atypical Workshifts
(Separated Output)

Procedure features:
PROC CALENDAR statementoptions:

DATETIME
LEGEND

CALID statement:
CAL variable
OUTPUT=SEPARATE option

The CALENDAR Procedure � Program 139

OUTSTART statement
OUTFIN statement
SUM statement

Data sets:
WELL.ACT on page 116 and WELL.HOL on page 117.

This example
� produces a summary calendar for multiple calendars in a single PROC step
� prints the calendars on separate pages
� displays holidays
� uses separate work patterns, work shifts, and holidays for each calendar

Producing Different Output for Multiple Calendars
This example produces separate output for multiple calendars. To produce combined

or mixed output for these data, you need to change only two things:
� how the activities data set is sorted
� how the OUTPUT= option is set.

To print . . . Sort the activities
data set by . . .

And set OUTPUT= to See Example

Separate pages for each
calendar

calendar id and
starting date

SEPARATE 3, 8

All activities on the same
page and identify each
calendar

starting date COMBINE 4, 2

All activities on the same
page and NOT identify
each calendar

starting date MIX 4

Program

Specify the SAS data library where the activities data set is stored.

libname well ’SAS-data-library’;
run;

Sort the activities data set by the variables containing the calendar identification and
the starting date, respectively.

proc sort data=well.act;
by _cal_ date;

140 Program � Chapter 5

run;

Set PAGESIZE= and LINESIZE= appropriately. The legend box prints on the next page if
PAGESIZE= is not set large enough. LINESIZE= controls the width of the boxes.

options nodate pageno=1 linesize=132 pagesize=60;

Create the summary calendar. DATA= identifies the activities data set; HOLIDATA=
identifies the holidays data set; CALDATA= identifies the calendar data set; WORKDATA=
identifies the workdays data set. DATETIME specifies that the variable specified with the
START statement contains a SAS datetime value. LEGEND prints text that identifies the
variables.

proc calendar data=well.act
holidata=well.hol
datetime legend;

The CALID statement specifies that the _CAL_ variable identifies calendars.
OUTPUT=SEPARATE prints information for each calendar on separate pages.

calid _cal_ / output=separate;

The START statement specifies the variable in the activities data set that contains the activity
starting date. The HOLISTART and HOLIVAR statements specify the variables in the holidays
data set that contain the start date and name of each holiday, respectively. These statements
are required when you use a holidays data set.

start date;
holistart date;
holivar holiday;

The SUM statement totals the COST variable for all observations in each calendar.

sum cost / format=dollar10.2;

Display a 6-day week. OUTSTART and OUTFIN specify that the calendar display a 6-day
week, Monday through Saturday.

outstart Monday;
outfin Saturday;
title ’Well Drilling Cost Summary’;
title2 ’Separate Calendars’;
format cost dollar10.2;

run;

The CALENDAR Procedure � Output 141

Output

Output 5.13 Separated Output for Multiple Summary Calendars

Well Drilling Cost Summary 1

Separate Calendars

.. _cal_=CAL1 ..

| |

| July 1996 |

| |

|---|

| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 1 | 2 | 3 | 4 | 5 | 6 |

| | | |***Independence***| | |

| Drill Well | | | Lay Power Line | Assemble Tank | |

| 3.5 | | | 3 | 4 | |

| $1,000.00 | | | $2,000.00 | $1,000.00 | |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 8 | 9 | 10 | 11 | 12 | 13 |

| | | | | | |

| Build Pump House | | | Pour Foundation | | |

| 3 | | | 4 | | |

| $2,000.00 | | | $1,500.00 | | |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 15 | 16 | 17 | 18 | 19 | 20 |

| | | | | | |

| Install Pump | | | | Install Pipe | Erect Tower |

| 4 | | | | 2 | 6 |

| $500.00 | | | | $1,000.00 | $2,500.00 |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 22 | 23 | 24 | 25 | 26 | 27 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 29 | 30 | 31 | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| Legend | Sum |

| | |

| task | |

| dur | |

| cost | $11,500.00 |

142 Output � Chapter 5

Well Drilling Cost Summary 2

Separate Calendars

.. _cal_=CAL2 ..

| |

| July 1996 |

| |

|---|

| Monday | Tuesday | Wednesday | Thursday | Friday | Saturday |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 1 | 2 | 3 | 4 | 5 | 6 |

| | | | | | |

| Deliver Material | | Excavate | | | |

| 2 | | 4.75 | | | |

| $500.00 | | $3,500.00 | | | |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 8 | 9 | 10 | 11 | 12 | 13 |

| |*****Vacation*****| | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 15 | 16 | 17 | 18 | 19 | 20 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 22 | 23 | 24 | 25 | 26 | 27 |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

|------------------+------------------+------------------+------------------+------------------+------------------|

| 29 | 30 | 31 | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| | | | | | |

| Legend | Sum |

| | |

| task | |

| dur | |

| cost | $4,000.00 |

143

C H A P T E R

6
The CATALOG Procedure

Overview: CATALOG Procedure 143
Syntax: PROC CATALOG 144

PROC CATALOG Statement 145

CHANGE Statement 146

CONTENTS Statement 147

COPY Statement 148
DELETE Statement 150

EXCHANGE Statement 150

EXCLUDE Statement 151

MODIFY Statement 152

SAVE Statement 152

SELECT Statement 153
Concepts: CATALOG Procedure 154

Interactive Processing with RUN Groups 154

Definition 154

How to End a PROC CATALOG Step 154

Error Handling and RUN Groups 154
Specifying an Entry Type 155

Four Ways to Supply an Entry Type 155

Why Use the ENTRYTYPE= Option? 155

Avoid a Common Error 155

The ENTRYTYPE= Option 156
Catalog Concatenation 157

Restrictions 157

Examples: CATALOG Procedure 158

Example 1: Copying, Deleting, and Moving Catalog Entries from Multiple Catalogs 158

Example 2: Displaying Contents, Changing Names, and Changing a Description 162

Overview: CATALOG Procedure
The CATALOG procedure manages entries in SAS catalogs. PROC CATALOG is an

interactive, statement-driven procedure that enables you to
� create a listing of the contents of a catalog
� copy a catalog or selected entries within a catalog
� rename, exchange, or delete entries within a catalog
� change the name of a catalog entry
� modify, by changing or deleting, the description of a catalog entry.

For more information on SAS data libraries and catalogs, refer to SAS Language
Reference: Concepts.

144 Syntax: PROC CATALOG � Chapter 6

To learn how to use the SAS windowing environment to manage entries in a SAS
catalog, see the SAS online Help for the SAS Explorer window. You may prefer to use
the Explorer window instead of using PROC CATALOG. The window can do most of
what the procedure does.

Syntax: PROC CATALOG
Tip: Supports RUN-group processing.
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
Reminder: You can perform similar functions with the SAS Explorer window and with
dictionary tables in the SQL procedure. For information on the Explorer window, see
the online Help. For information on PROC SQL, see Chapter 40, “The SQL Procedure,”
on page 1113.

PROC CATALOG CATALOG=<libref.>catalog <ENTRYTYPE=etype> <FORCE>
<KILL>;

CONTENTS <OUT=SAS-data-set> <FILE=fileref>;
COPY OUT=<libref.>catalog <options>;

SELECT entry(s) </ ENTRYTYPE=etype>;
EXCLUDE entry(s) </ ENTRYTYPE=etype>;

CHANGE old-name-1=new-name-1
<…old-name-n=new-name-n>
</ ENTRYTYPE=etype>;

EXCHANGE name-1=other-name-1
<…name-n=other-name-n>
</ ENTRYTYPE=etype>;

DELETE entry(s) </ ENTRYTYPE=etype>;
MODIFY entry (DESCRIPTION=<<’>entry-description<’>>)</ ENTRYTYPE=etype>;
SAVE entry(s) </ ENTRYTYPE=etype>;

To do this Use this statement

Copy entries from one SAS catalog to another

Copy or move all entries COPY (with MOVE option)

Copy entries to a new catalog (overwriting the catalog
if it already exists)

COPY (with NEW option)

Copy only selected entries COPY, SELECT

Copy all except the entries specified COPY, EXCLUDE

Delete entries from a SAS catalog

Delete all entries PROC CATALOG (with KILL option)

Delete specified entries DELETE

Delete all except the entries specified SAVE

Alter names and descriptions

The CATALOG Procedure � PROC CATALOG Statement 145

To do this Use this statement

Change the names of catalog entries CHANGE

Switch the names of two catalog entries EXCHANGE

Change the description of a catalog entry MODIFY

Print

Print the contents of a catalog CONTENTS

PROC CATALOG Statement

PROC CATALOG CATALOG=<libref.>catalog <ENTRYTYPE=etype> <FORCE>
<KILL>;

To do this Use this option

Restrict processing to one entry type ENTRYTYPE=

Delete all catalog entries KILL

Force certain statements to execute on a catalog opened by
another process

FORCE

Required Arguments

CATALOG=<libref.>catalog
specifies the SAS catalog to process.
Alias: CAT=, C=
Default: If ENTRYTYPE= is not specified, PROC CATALOG processes all entries in

the catalog.

Options

ENTRYTYPE=etype
restricts processing of the current PROC CATALOG step to one entry type.
Alias: ET=
Default: If you omit ENTRYTYPE=, PROC CATALOG processes all entries in a

catalog.
Interaction: The specified entry type applies to any one-level entry names used in a

subordinate statement. You cannot override this specification in a subordinate
statement.

Interaction: ENTRYTYPE= does not restrict the effects of the KILL option.

146 CHANGE Statement � Chapter 6

Tip: In order to process multiple entry types in a single PROC CATALOG step, use
ENTRYTYPE= in a subordinate statement, not in the PROC CATALOG statement.

See also: “Specifying an Entry Type” on page 155.
Featured in: Example 1 on page 158 and Example 2 on page 162

FORCE
forces statements to execute on a catalog opened by another process.

Some CATALOG statements require exclusive access to the catalog they operate
on if the statement can radically change the contents of a catalog. If exclusive access
cannot be obtained, the action fails. The statements and the catalogs that are
affected are

KILL affects the specified catalog

COPY affects the OUT= catalog

COPY MOVE affects the IN= and the OUT= catalogs

SAVE affects the specified catalog.
Tip: Use FORCE to execute the statement, even if exclusive access cannot be

obtained.

KILL
deletes all entries in a SAS catalog.
Interaction: The KILL option deletes all catalog entries even when ENTRYTYPE=

is specified.
Interaction: The SAVE statement has no effect because the KILL option deletes all

entries in a SAS catalog before any other statements are processed.
Tip: KILL deletes all entries but does not remove an empty catalog from the SAS

data library. You must use another method, such as PROC DATASETS or the DIR
window to delete an empty SAS catalog.

CAUTION:
Do not attempt to limit the effects of the KILL option. This option deletes all entries in a
SAS catalog before any option or other statement takes effect. �

CHANGE Statement

Renames one or more catalog entries.

Tip: You can change multiple names in a single CHANGE statement or use multiple
CHANGE statements.
Featured in: Example 2 on page 162

CHANGE old-name-1=new-name-1
<…old-name-n=new-name-n>
</ ENTRYTYPE=etype>;

Required Arguments

old-name=new-name

The CATALOG Procedure � CONTENTS Statement 147

specifies the current name of a catalog entry and the new name you want to assign to
it. Specify any valid SAS name.

Restriction: You must designate the type of the entry, either with the name
(ename.etype) or with the ENTRYTYPE= option.

Options

ENTRYTYPE=etype
restricts processing to one entry type.

See: “The ENTRYTYPE= Option” on page 156

See also: “Specifying an Entry Type” on page 155

CONTENTS Statement

Lists the contents of a catalog in the procedure output or writes a list of the contents to a SAS
data set, an external file, or both.

Featured in: Example 2 on page 162

CONTENTS <OUT=SAS-data-set> <FILE=fileref>;

Without Options
The output is sent to the procedure output.

Options

Note: The ENTRYTYPE= (ET=) option is not available for the CONTENTS
statement. �

CATALOG=<libref.>catalog
specifies the SAS catalog to process.

Alias: CAT=, C=

Default: None

FILE=fileref
sends the contents to an external file, identified with a SAS fileref.

Interaction: If fileref has not been previously assigned to a file, then the file is
created and named according to operating environment-dependent rules for
external files.

OUT=SAS-data-set
sends the contents to a SAS data set. When the statement executes, a message on
the SAS log reports that a data set has been created. The data set contains six
variables in this order:

148 COPY Statement � Chapter 6

LIBNAME the libref

MEMNAME the catalog name

NAME the names of entries

TYPE the types of entries

DESC the descriptions of entries

DATE the dates entries were last modified.

COPY Statement

Copies some or all of the entries in one catalog to another catalog.

Restriction: A COPY statement’s effect ends at a RUN statement or at the beginning of a
statement other than the SELECT or EXCLUDE statement.

Tip: Use SELECT or EXCLUDE statements, but not both, after the COPY statement to
limit which entries are copied.
Tip: You can copy entries from multiple catalogs in a single PROC step, not just the one
specified in the PROC CATALOG statement.

Tip: The ENTRYTYPE= option does not require a forward slash (/) in this statement.

Featured in: Example 1 on page 158

COPY OUT=<libref.>catalog <options>;

To do this Use this option

Restrict processing to one type of entry ENTRYTYPE=

Copy from a different catalog in the same step IN=

Move (copy and then delete) a catalog entry MOVE

Copy entries to a new catalog (overwriting the catalog if it
already exists)

NEW

Protect several types of SAS/AF entries from being edited with
PROC BUILD

NOEDIT

Not copy source lines from a PROGRAM, FRAME, or SCL entry NOSOURCE

Required Arguments

OUT=<libref.>catalog
names the catalog to which entries are copied.

The CATALOG Procedure � COPY Statement 149

Options

ENTRYTYPE=etype
restricts processing to one entry type for the current COPY statement and any
subsequent SELECT or EXCLUDE statements.
See: “The ENTRYTYPE= Option” on page 156
See also: “Specifying an Entry Type” on page 155

IN=<libref.>catalog
specifies the catalog to copy.
Interaction: The IN= option overrides a CATALOG= argument that was specified

in the PROC CATALOG statement.
Featured in: Example 1 on page 158

MOVE
deletes the original catalog or entries after the new copy is made.
Interaction: When MOVE removes all entries from a catalog, the procedure deletes

the catalog from the library.

NEW
overwrites the destination (specified by OUT=) if it already exists. If you omit NEW,
PROC CATALOG updates the destination. For information about using the NEW
option with concatenated catalogs, see “Catalog Concatenation” on page 157.

NOEDIT
prevents the copied version of the following SAS/AF entry types from being edited by
the BUILD procedure:

CBT PROGRAM

FRAME SCL

HELP SYSTEM

MENU

Restriction: If you specify the NOEDIT option for an entry that is not one of these
types, it is ignored.

Tip: When creating SAS/AF applications for other users, use NOEDIT to protect the
application by preventing certain catalog entries from being altered.

Featured in: Example 1 on page 158

NOSOURCE
omits copying the source lines when you copy a SAS/AF PROGRAM, FRAME, or SCL
entry.
Alias: NOSRC
Restriction: If you specify this option for an entry other than a PROGRAM,

FRAME, or SCL entry, it is ignored.

150 DELETE Statement � Chapter 6

DELETE Statement

Deletes entries from a SAS catalog.

Tip: Use DELETE to delete only a few entries; use SAVE when it is more convenient to
specify which entries not to delete.
Tip: You can specify multiple entries. You can also use multiple DELETE statements.
See also: “SAVE Statement” on page 152
Featured in: Example 1 on page 158

DELETE entry(s) </ ENTRYTYPE=etype>;

Required Arguments

entry(s)
specifies the name of one or more SAS catalog entries.
Restriction: You must designate the type of the entry, either with the name

(ename.etype) or with the ENTRYTYPE= option.

Options

ENTRYTYPE=etype
restricts processing to one entry type.
See: “The ENTRYTYPE= Option” on page 156
See also: “Specifying an Entry Type” on page 155

EXCHANGE Statement

Switches the name of two catalog entries.

Restriction: The catalog entries must be of the same type.

EXCHANGE name-1=other-name-1
<…name-n=other-name-n>
</ ENTRYTYPE=etype>;

Required Arguments

name=other-name
specifies two catalog entry names that the procedure will switch.
Interaction: You can specify only the entry name without the entry type if you use

the ENTRYTYPE= option on either the PROC CATALOG statement or the
EXCHANGE statement.

The CATALOG Procedure � EXCLUDE Statement 151

See also: “Specifying an Entry Type” on page 155

Options

ENTRYTYPE=etype
restricts processing to one entry type.

See: “The ENTRYTYPE= Option” on page 156

See also: “Specifying an Entry Type” on page 155

EXCLUDE Statement

Specifies entries that the COPY statement does not copy.

Restriction: Requires the COPY statement.

Restriction: Do not use the EXCLUDE statement with the SELECT statement.

Tip: You can specify multiple entries in a single EXCLUDE statement.

Tip: You can use multiple EXCLUDE statements with a single COPY statement within
a RUN group.

See also: “COPY Statement” on page 148 and “SELECT Statement” on page 153

Featured in: Example 1 on page 158

EXCLUDE entry(s) </ ENTRYTYPE=etype>;

Required Arguments

entry(s)
specifies the name of one or more SAS catalog entries.

Restriction: You must designate the type of the entry, either when you specify the
name (ename.etype) or with the ENTRYTYPE= option.

See also: “Specifying an Entry Type” on page 155

Options

ENTRYTYPE=etype
restricts processing to one entry type.

See: “The ENTRYTYPE= Option” on page 156

See also: “Specifying an Entry Type” on page 155

152 MODIFY Statement � Chapter 6

MODIFY Statement

Changes the description of a catalog entry.

Featured in: Example 2 on page 162

MODIFY entry (DESCRIPTION=<<’>entry-description<’>>) </ ENTRYTYPE=etype>;

Required Arguments

entry
specifies the name of one SAS catalog entry. Optionally, you can specify the entry
type with the name.

Restriction: You must designate the type of the entry, either when you specify the
name (ename.etype) or with the ENTRYTYPE= option.

See also: “Specifying an Entry Type” on page 155

DESCRIPTION=<<’>entry-description<’>>
changes the description of a catalog entry by replacing it with a new description, up
to 256 characters long, or by removing it altogether. Optionally, you can enclose the
description in single or double quotes.

Alias: DESC

Tip: Use DESCRIPTION= with no text to remove the current description.

Options

ENTRYTYPE=etype
restricts processing to one entry type.

See: “The ENTRYTYPE= Option” on page 156

See also: “Specifying an Entry Type” on page 155

SAVE Statement

Specify entries not to delete from a SAS catalog.

Restriction: Cannot limit the effects of the KILL option.

Tip: Use SAVE to delete all but a few entries in a catalog. Use DELETE when it is
more convenient to specify which entries to delete.

Tip: You can specify multiple entries and use multiple SAVE statements.

See also: “DELETE Statement” on page 150

SAVE entry(s) </ ENTRYTYPE=etype>;

The CATALOG Procedure � SELECT Statement 153

Required Arguments

entry(s)
specifies the name of one or more SAS catalog entries.

Restriction: You must designate the type of the entry, either with the name
(ename.etype) or with the ENTRYTYPE= option.

Options

ENTRYTYPE=etype
restricts processing to one entry type.

See: “The ENTRYTYPE= Option” on page 156

See also: “Specifying an Entry Type” on page 155

SELECT Statement

Specifies entries that the COPY statement will copy.

Restriction: Requires the COPY statement.

Restriction: Cannot be used with an EXCLUDE statement.

Tip: You can specify multiple entries in a single SELECT statement.

Tip: You can use multiple SELECT statements with a single COPY statement within a
RUN group.

See also: “COPY Statement” on page 148 and “EXCLUDE Statement” on page 151

Featured in: Example 1 on page 158

SELECT entry(s) </ ENTRYTYPE=etype>;

Required Arguments

entry(s)
specifies the name of one or more SAS catalog entries.

Restriction: You must designate the type of the entry, either when you specify the
name (ename.etype) or with the ENTRYTYPE= option.

Options

ENTRYTYPE=etype
restricts processing to one entry type.

See: “The ENTRYTYPE= Option” on page 156.

See also: “Specifying an Entry Type” on page 155.

154 Concepts: CATALOG Procedure � Chapter 6

Concepts: CATALOG Procedure

Interactive Processing with RUN Groups

Definition
The CATALOG procedure is interactive. Once you submit a PROC CATALOG

statement, you can continue to submit and execute statements or groups of statements
without repeating the PROC CATALOG statement.

A set of procedure statements ending with a RUN statement is called a RUN group.
The changes specified in a given group of statements take effect when a RUN statement
is encountered.

How to End a PROC CATALOG Step
In the DATA step and most SAS procedures, a RUN statement is a step boundary

and ends the step. A simple RUN statement does not, however, end an interactive
procedure. To terminate a PROC CATALOG step, you can

� submit a QUIT statement
� submit a RUN statement with the CANCEL option
� submit another DATA or PROC statement
� end your SAS session.

Note: When you enter a QUIT, DATA, or PROC statement, any statements following
the last RUN group execute before the CATALOG procedure terminates. If you enter a
RUN statement with the CANCEL option, however, the remaining statements do not
execute before the procedure ends. �

See Example 2 on page 162.

Error Handling and RUN Groups
Error handling is based in part on the division of statements into RUN groups. If a

syntax error is encountered, none of the statements in the current RUN group execute,
and execution proceeds to the next RUN group.

For example, the following statements contain a misspelled DELETE statement:

proc catalog catalog=misc entrytype=help;
copy out=drink;

select coffee tea;
del juices; /* INCORRECT!!! */
exchange glass=plastic;

run;
change calstats=nutri;

run;

Because the DELETE statement is incorrectly specified as DEL, no statements in
that RUN group execute, except the PROC CATALOG statement itself. The CHANGE
statement does execute, however, because it is in a different RUN group.

The CATALOG Procedure � Specifying an Entry Type 155

CAUTION:
Be careful when setting up batch jobs in which one RUN group’s statements depend on the
effects of a previous RUN group, especially when deleting and renaming entries. �

Specifying an Entry Type

Four Ways to Supply an Entry Type
There is no default entry type, so if you do not supply one, PROC CATALOG

generates an error. You can supply an entry type in one of four ways. See Table 6.1 on
page 155.

Table 6.1 Supplying an Entry Type

You can supply an entry
type with... Example

the entry name delete
test1.program

test1.log test2.log;

ET= in parentheses delete
test1 (et=program);

ET= after a slash1 delete test1 (et=program)
test1 test2 / et=log;

ENTRYTYPE= without a
slash2

proc catalog catalog=mycat et=log;
delete test1 test2;

1 in a subordinate statement
2 in the PROC CATALOG or the COPY statement

Note: All statements, except the CONTENTS statement, accept the ENTRYTYPE=
(alias ET=) option. �

Why Use the ENTRYTYPE= Option?
ENTRYTYPE= can save keystrokes when you are processing multiple entries of the

same type.
To create a default for entry type for all statements in the current step, use

ENTRYTYPE= in the PROC CATALOG statement. To set the default for only the
current statement, use ENTRYTYPE= in a subordinate statement.

If many entries are of one type, but a few are of other types, you can use
ENTRYTYPE= to specify a default and then override that for individual entries with
(ENTRYTYPE=) in parentheses after those entries.

Avoid a Common Error
You cannot specify the ENTRYTYPE= option in both the PROC CATALOG statement

and a subordinate statement. For example, these statements generate an error and do
not delete any entries because the ENTRYTYPE= specifications contradict each other:

/* THIS IS INCORRECT CODE. */
proc catalog cat=sample et=help;

156 Specifying an Entry Type � Chapter 6

delete a b c / et=program;
run;

The ENTRYTYPE= Option
The ENTRYTYPE= option is available in every statement in the CATALOG

procedure except CONTENTS.

ENTRYTYPE=etype
not in parentheses, sets a default entry type for the entire PROC step when used
in the PROC CATALOG statement. In all other statements, this option sets a
default entry type for the current statement.
Alias: ET=
Default: If you omit ENTRYTYPE=, PROC CATALOG processes all entries in the

catalog.
Interaction: If you specify ENTRYTYPE= in the PROC CATALOG statement, do

not specify either ENTRYTYPE= or (ENTRYTYPE=) in a subordinate statement.
Interaction: (ENTRYTYPE=etype) in parentheses immediately following an entry

name overrides ENTRYTYPE= in that same statement.
Tip: On all statements except the PROC CATALOG and COPY statements, this

option follows a slash.
Tip: To process multiple entry types in a single PROC CATALOG step, use

ENTRYTYPE= in a subordinate statement, not in the PROC CATALOG
statement.

See also: “Specifying an Entry Type” on page 155.
Featured in: Example 1 on page 158

(ENTRYTYPE=etype)
in parentheses, identifies the type of the entry just preceding it.
Alias: (ET=)
Restriction: (ENTRYTYPE=etype) immediately following an entry name in a

subordinate statement cannot override an ENTRYTYPE= option in the PROC
CATALOG statement. It generates a syntax error.

Interaction: (ENTRYTYPE=etype) immediately following an entry name
overrides ENTRYTYPE= in that same statement.

Tip: This form is useful mainly for specifying exceptions to an ENTRYTYPE=
option used in a subordinate statement. The following statement deletes
A.HELP, B.FORMAT, and C.HELP:

delete a b (et=format) c / et=help;

Tip: For the CHANGE and EXCHANGE statements, specify (ENTRYTYPE=) in
parentheses only once for each pair of names following the second name in the
pair. For example,

change old1=new1 (et=log)
old1=new2 (et=help);

See also: “Specifying an Entry Type” on page 155
Featured in: Example 1 on page 158 and Example 2 on page 162

The CATALOG Procedure � Catalog Concatenation 157

Catalog Concatenation
The CATALOG procedure supports both implicit and explicit concatenation of

catalogs. All statements and options that can be used on single (unconcatenated)
catalogs can be used on catalog concatenations.

Restrictions
When you use the CATALOG procedure to copy concatenated catalogs and you use

the NEW option, the following rules apply:

1 If the input catalog is a concatenation and if the output catalog exists in any level
of the input concatenation, the copy is not allowed.

2 If the output catalog is a concatenation and if the input catalog exists in the first
level of the output concatenation, the copy is not allowed.

For example, the following code demonstrates these two rules, and the copy fails:

libname first ’path-name1’;
libname second ’path-name2’;
/* create contat.x */
libname concat (first second);

/* fails rule #1 */
proc catalog c=concat.x;

copy out=first.x new;
run;
quit;

/* fails rule #2 */
proc catalog c=first.x;

copy out=concat.x new;
run;
quit;

In summary, the following table shows when copies are allowed. In the table, A and
B are libraries, and each contains catalog X. Catalog C is an implicit concatenation of A
and B, and catalog D is an implicit concatenation of B and A.

Input catalog Output catalog Copy allowed?

C.X B.X No

C.X D.X No

D.X C.X No

A.X A.X No

A.X B.X Yes

B.X A.X Yes

C.X A.X No

B.X C.X Yes

A.X C.X No

158 Examples: CATALOG Procedure � Chapter 6

Examples: CATALOG Procedure

Example 1: Copying, Deleting, and Moving Catalog Entries from Multiple
Catalogs

Procedure features:
PROC CATALOG statement:

CATALOG= argument
COPY statement options:

IN=
MOVE
NOEDIT

DELETE statement options:
ENTRYTYPE= or ET=

EXCLUDE statement options:
ENTRYTYPE= or ET=
(ENTRYTYPE=) or (ET=)

QUIT statement
RUN statement
SELECT statement options:

ENTRYTYPE= or ET=

This example
� copies entries by excluding a few entries
� copies entries by specifying a few entries
� protects entries from being edited
� moves entries
� deletes entries
� processes entries from multiple catalogs
� processes entries in multiple run groups.

Input Catalogs
The SAS catalog PERM.SAMPLE contains the following entries:

DEFAULT FORM Default form for printing
FSLETTER FORM Standard form for letters (HP Laserjet)
LOAN FRAME Loan analysis application
LOAN HELP Information about the application
BUILD KEYS Function Key Definitions
LOAN KEYS Custom key definitions for application
CREDIT LOG credit application log
TEST1 LOG Inventory program

The CATALOG Procedure � Program 159

TEST2 LOG Inventory program
TEST3 LOG Inventory program
LOAN PMENU Custom menu definitions for applicaticm
CREDIT PROGRAM credit application pgm
TEST1 PROGRAM testing budget applic.
TEST2 PROGRAM testing budget applic.
TEST3 PROGRAM testing budget applic.
LOAN SCL SCL code for loan analysis application
PASSIST SLIST User profile
PRTINFO KPRINTER Printing Parameters

The SAS catalog PERM.FORMATS contains the following entries:

REVENUE FORMAT FORMAT:MAXLEN=16,16,12
DEPT FORMATC FORMAT:MAXLEN=1,1,14

Program

Set the SAS system options. Write the source code to the log by specifying the SOURCE SAS
system option.

options nodate pageno=1 linesize=80 pagesize=60 source;

Assign a library reference to a SAS data library. The LIBNAME statement assigns the
libref PERM to the SAS data library that contains a permanent SAS catalog.

libname perm ’SAS-data-library’;

Delete two entries from the PERM.SAMPLE catalog.

proc catalog cat=perm.sample;
delete credit.program credit.log;

run;

Copy all entries in the PERM.SAMPLE catalog to the WORK.TCATALL catalog.

copy out=tcatall;
run;

Copy everything except three LOG entries and PASSIST.SLIST from PERM.SAMPLE
to WORK.TESTCAT. The EXCLUDE statement specifies which entries not to copy. ET=
specifies a default type. (ET=) specifies an exception to the default type.

copy out=testcat;
exclude test1 test2 test3 passist (et=slist) / et=log;

run;

160 Program � Chapter 6

Move three LOG entries from PERM.SAMPLE to WORK.LOGCAT. The SELECT
statement specifies which entries to move. ET= restricts processing to LOG entries.

copy out=logcat move;
select test1 test2 test3 / et=log;

run;

Copy five SAS/AF software entries from PERM.SAMPLE to PERM.FINANCE. The
NOEDIT option protects these entries in PERM.FINANCE from further editing with PROC
BUILD.

copy out=perm.finance noedit;
select loan.frame loan.help loan.keys loan.pmenu;

run;

Copy two formats from PERM.FORMATS to PERM.FINANCE. The IN= option enables
you to copy from a different catalog than the one specified in the PROC CATALOG statement.
Note the entry types for numeric and character formats: REVENUE.FORMAT is a numeric
format and DEPT.FORMATC is a character format. The COPY and SELECT statements execute
before the QUIT statement ends the PROC CATALOG step.

copy in=perm.formats out=perm.finance;
select revenue.format dept.formatc;

quit;

The CATALOG Procedure � Log 161

Log

1 libname perm ’SAS-data-library’;
NOTE: Directory for library PERM contains files of mixed engine types.
NOTE: Libref PERM was successfully assigned as follows:

Engine: V9
Physical Name: ’SAS-data-library’

2 options nodate pageno=1 linesize=80 pagesize=60 source;
3 proc catalog cat=perm.sample;
4 delete credit.program credit.log;
5 run;
NOTE: Deleting entry CREDIT.PROGRAM in catalog PERM.SAMPLE.
NOTE: Deleting entry CREDIT.LOG in catalog PERM.SAMPLE.
6 copy out=tcatall;
7 run;
NOTE: Copying entry DEFAULT.FORM from catalog PERM.SAMPLE to catalog

WORK.TCATALL.
NOTE: Copying entry FSLETTER.FORM from catalog PERM.SAMPLE to catalog

WORK.TCATALL.
NOTE: Copying entry LOAN.FRAME from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry LOAN.HELP from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry BUILD.KEYS from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry LOAN.KEYS from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry TEST1.LOG from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry TEST2.LOG from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry TEST3.LOG from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry LOAN.PMENU from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry TEST1.PROGRAM from catalog PERM.SAMPLE to catalog

WORK.TCATALL.
NOTE: Copying entry TEST2.PROGRAM from catalog PERM.SAMPLE to catalog

WORK.TCATALL.
NOTE: Copying entry TEST3.PROGRAM from catalog PERM.SAMPLE to catalog

WORK.TCATALL.
NOTE: Copying entry LOAN.SCL from catalog PERM.SAMPLE to catalog WORK.TCATALL.
NOTE: Copying entry PASSIST.SLIST from catalog PERM.SAMPLE to catalog

WORK.TCATALL.
NOTE: Copying entry PRTINFO.XPRINTER from catalog PERM.SAMPLE to catalog

WORK.TCATALL.

162 Example 2: Displaying Contents, Changing Names, and Changing a Description � Chapter 6

8 copy out=testcat;
9 exclude test1 test2 test3 passist (et=slist) / et=log;
10 run;
NOTE: Copying entry DEFAULT.FORM from catalog PERM.SAMPLE to catalog

WORK.TESTCAT.
NOTE: Copying entry FSLETTER.FORM from catalog PERM.SAMPLE to catalog

WORK.TESTCAT.
NOTE: Copying entry LOAN.FRAME from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry LOAN.HELP from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry BUILD.KEYS from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry LOAN.KEYS from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry LOAN.PMENU from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry TEST1.PROGRAM from catalog PERM.SAMPLE to catalog

WORK.TESTCAT.
NOTE: Copying entry TEST2.PROGRAM from catalog PERM.SAMPLE to catalog

WORK.TESTCAT.
NOTE: Copying entry TEST3.PROGRAM from catalog PERM.SAMPLE to catalog

WORK.TESTCAT.
NOTE: Copying entry LOAN.SCL from catalog PERM.SAMPLE to catalog WORK.TESTCAT.
NOTE: Copying entry PRTINFO.XPRINTER from catalog PERM.SAMPLE to catalog

WORK.TESTCAT.
11 copy out=logcat move;
12 select test1 test2 test3 / et=log;
13 run;
NOTE: Moving entry TEST1.LOG from catalog PERM.SAMPLE to catalog WORK.LOGCAT.
NOTE: Moving entry TEST2.LOG from catalog PERM.SAMPLE to catalog WORK.LOGCAT.
NOTE: Moving entry TEST3.LOG from catalog PERM.SAMPLE to catalog WORK.LOGCAT.
14 copy out=perm.finance noedit;
15 select loan.frame loan.help loan.keys loan.pmenu;
16 run;
NOTE: Copying entry LOAN.FRAME from catalog PERM.SAMPLE to catalog PERM.FINANCE.
NOTE: Copying entry LOAN.HELP from catalog PERM.SAMPLE to catalog PERM.FINANCE.
NOTE: Copying entry LOAN.KEYS from catalog PERM.SAMPLE to catalog PERM.FINANCE.
NOTE: Copying entry LOAN.PMENU from catalog PERM.SAMPLE to catalog PERM.FINANCE.
17 copy in=perm.formats out=perm.finance;
18 select revenue.format dept.formatc;
19 quit;
NOTE: Copying entry REVENUE.FORMAT from catalog PERM.FORMATS to catalog

PERM.FINANCE.
NOTE: Copying entry DEPT.FORMATC from catalog PERM.FORMATS to catalog

PERM.FINANCE.

Example 2: Displaying Contents, Changing Names, and Changing a
Description

Procedure features:
PROC CATALOG statement
CHANGE statement options:

(ENTRYTYPE=) or (ET=)
CONTENTS statement options:

FILE=
MODIFY statement
RUN statement
QUIT statement

This example
� lists the entries in a catalog and routes the output to a file

The CATALOG Procedure � Program 163

� changes entry names
� changes entry descriptions
� processes entries in multiple run groups.

Program

Set the SAS system options. The system option SOURCE writes the source code to the log.

options nodate pageno=1 linesize=80 pagesize=60 source;

Assign a library reference. The LIBNAME statement assigns a libref to the SAS data library
that contains a permanent SAS catalog.

libname perm ’SAS-data-library’;

List the entries in a catalog and route the output to a file. The CONTENTS statement
creates a listing of the contents of the SAS catalog PERM.FINANCE and routes the output to a
file.

proc catalog catalog=perm.finance;
contents;

title1 ’Contents of PERM.FINANCE before changes are made’;
run;

Change entry names. The CHANGE statement changes the name of an entry that contains a
user-written character format. (ET=) specifies the entry type.

change dept=deptcode (et=formatc);
run;

Process entries in multiple run groups. The MODIFY statement changes the description of
an entry. The CONTENTS statement creates a listing of the contents of PERM.FINANCE after
all the changes have been applied. QUIT ends the procedure.

modify loan.frame (description=’Loan analysis app. - ver1’);
contents;

title1 ’Contents of PERM.FINANCE after changes are made’;
run;
quit;

164 Output � Chapter 6

Output

Output 6.1

Contents of PERM.FINANCE before changes are made 1

Contents of Catalog PERM.FINANCE

Name Type Create Date Modified Date Description
$$
1 REVENUE FORMAT 16OCT1996:13:48:11 16OCT1996:13:48:11 FORMAT:MAXLEN=16,16,12
2 DEPT FORMATC 30OCT1996:13:40:42 30OCT1996:13:40:42 FORMAT:MAXLEN=1,1,14
3 LOAN FRAME 30OCT1996:13:40:43 30OCT1996:13:40:43 Loan analysis

application
4 LOAN HELP 16OCT1996:13:48:10 16OCT1996:13:48:10 Information about

the application
5 LOAN KEYS 16OCT1996:13:48:10 16OCT1996:13:48:10 Custom key definitions

for application
6 LOAN PMENU 16OCT1996:13:48:10 16OCT1996:13:48:10 Custom menu

definitions for
application

7 LOAN SCL 16OCT1996:13:48:10 16OCT1996:13:48:10 SCL code for loan
analysis application

Contents of PERM.FINANCE after changes are made 2

Contents of Catalog PERM.FINANCE

Name Type Create Date Modified Date Description
$$
1 REVENUE FORMAT 16OCT1996:13:48:11 16OCT1996:13:48:11 FORMAT:MAXLEN=

16,16,12
2 DEPTCODE FORMATC 30OCT1996:13:40:42 30OCT1996:13:40:42 FORMAT:MAXLEN=1,1,14
3 LOAN FRAME 30OCT1996:13:40:43 11FEB2002:13:20:50 Loan analysis

app. - ver1
4 LOAN HELP 16OCT1996:13:48:10 16OCT1996:13:48:10 Information about

the application
5 LOAN KEYS 16OCT1996:13:48:10 16OCT1996:13:48:10 Custom key

definitions for
application

6 LOAN PMENU 16OCT1996:13:48:10 16OCT1996:13:48:10 Custom menu
definitions for
application

7 LOAN SCL 16OCT1996:13:48:10 16OCT1996:13:48:10 SCL code for loan
analysis application

165

C H A P T E R

7
The CHART Procedure

Overview: CHART Procedure 165
About Bar Charts 166

About Block Charts 167

About Pie Charts 168

About Star Charts 169

Syntax: CHART Procedure 170
PROC CHART Statement 171

BLOCK Statement 173

BY Statement 174

HBAR Statement 174

PIE Statement 175

STAR Statement 176
VBAR Statement 176

Customizing All Types of Charts 177

Concepts: CHART Procedure 183

Variable Characteristics 183

Results: CHART Procedure 183
Missing Values 183

Examples: CHART Procedure 184

Example 1: Producing a Simple Frequency Count 184

Example 2: Producing a Percentage Bar Chart 186

Example 3: Subdividing the Bars into Categories 187
Example 4: Producing Side-by-Side Bar Charts 190

Example 5: Producing a Horizontal Bar Chart for a Subset of the Data 192

Example 6: Producing Block Charts for BY Groups 194

References 197

Overview: CHART Procedure
The CHART procedure produces vertical and horizontal bar charts, block charts, pie

charts, and star charts. These types of charts graphically display values of a variable or
a statistic associated with those values. The charted variable can be numeric or
character.

PROC CHART is a useful tool to visualize data quickly, but if you need to produce
presentation-quality graphics that include color and various fonts, you can use
SAS/GRAPH software. The GCHART procedure in SAS/GRAPH software produces the
same types of charts as PROC CHART does. In addition, PROC GCHART can produce
donut charts.

166 About Bar Charts � Chapter 7

The following sections explain the different types of charts that PROC CHART can
produce. All of the charts illustrate the results from a multiple-choice survey of 568
people, with five possible responses that range from “always” to “never.”

About Bar Charts

Horizontal and vertical bar charts display the magnitude of data with bars, each of
which represents a category of data. The length or height of the bars represents the
value of the chart statistic for each category.

Output 7.1 on page 166 shows a vertical bar chart that displays the number of
responses for the five categories from the survey data. The following statements
produce the output:

options nodate pageno=1 linesize=80
pagesize=30;

proc chart data=survey;
vbar response / sumvar=count

midpoints=’Always’ ’Usually’
’Sometimes’ ’Rarely’ ’Never’;

run;

Output 7.1 Vertical Bar Chart

The SAS System 1

Count Sum

200 + *****
| *****
| *****
| *****
| *****

150 + *****
| *****
| *****
| ***** *****
| ***** ***** *****

100 + ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****
| ***** ***** ***** *****

50 + ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
| ***** ***** ***** ***** *****
***** ***** ***** ***** *****

Always Usually Sometimes Rarely Never

Response

Output 7.2 on page 167 shows the same data presented in a horizontal bar chart.
The two types of bar charts have essentially the same characteristics, except that
horizontal bar charts by default display a table of statistic values to the right of the
bars. The following statements produce the output:

The CHART Procedure � About Block Charts 167

options nodate pageno=1 linesize=80
pagesize=60;

proc chart data=survey;
hbar response / sumvar=count

midpoints=’Always’ ’Usually’
’Sometimes’ ’Rarely’ ’Never’;

run;

Output 7.2 Horizontal Bar Chart

The SAS System 1

Response Count
Sum

|
Always |********************* 106.0000

|
Usually |** 202.0000

|
Sometimes |************************ 119.0000

|
Rarely |******************* 97.0000

|
Never |********* 44.0000

|
----+---+---+---+---+---+---+---+---+---+

20 40 60 80 100 120 140 160 180 200

Count Sum

About Block Charts
Block charts display the relative magnitude of data by using blocks of varying height,

each set in a square that represents a category of data. Output 7.3 on page 167 shows
the number of each survey response in the form of a block chart.

options nodate pageno=1 linesize=80
pagesize=30;

proc chart data=survey;
block response / sumvar=count

midpoints=’Always’ ’Usually’
’Sometimes’ ’Rarely’ ’Never’;

run;

168 About Pie Charts � Chapter 7

Output 7.3 Block Chart

The SAS System 1

Sum of Count by Response

/_ /|

|**| |
|**| |
|**| | ___

___ |**| | /_ /| ___
/_ /| |**| | |**| | /_ /|

-|**| |--------|**| |--------|**| |--------|**| |---------------------
/ |**| | / |**| | / |**| | / |**| | / ___ /

/ |**| | / |**| | / |**| | / |**| | / /_ /| /
/ |**| | / |**| | / |**| | / |**| | / |**| | /

/ |**|/ / |**|/ / |**|/ / |**|/ / |**|/ /
/ / / / / /

/ 106 / 202 / 119 / 97 / 44 /
/-------------/-------------/-------------/-------------/-------------/

Always Usually Sometimes Rarely Never

Response

About Pie Charts
Pie charts represent the relative contribution of parts to the whole by displaying data

as wedge-shaped slices of a circle. Each slice represents a category of the data. Output
7.4 on page 168 shows the survey results divided by response into five pie slices. The
following statements produce the output:

options nodate pageno=1 linesize=80
pagesize=35;

proc chart data=survey;
pie response / sumvar=count;

run;

The CHART Procedure � About Star Charts 169

Output 7.4 Pie Chart

The SAS System 1

Sum of Count by Response

Never

Rarely **** . ****
** . . **

** . 44 . **
* .7.75%. * Always

** 97 . .. **
** 17.08% . . **
* 106 *

* 18.66% *
* *
* . . *
* +*
* 119 *
* 20.95% .. *

Sometimes * . *
* . *
** . 202 **

* .. 35.56% *
* . *

** . **
** **

**** ****
*********** Usually

About Star Charts
With PROC CHART, you can produce star charts that show group frequencies, totals,

or mean values. A star chart is similar to a vertical bar chart, but the bars on a star
chart radiate from a center point, like spokes in a wheel. Star charts are commonly
used for cyclical data, such as measures taken every month or day or hour, or for data
like these in which the categories have an inherent order ("always" meaning more
frequent than "usually" which means more frequent than "sometimes"). Output 7.5 on
page 169 shows the survey data displayed in a star chart. The following statements
produce the output:

options nodate pageno=1 linesize=80
pagesize=60;

proc chart data=survey;
star response / sumvar=count;

run;

170 Syntax: CHART Procedure � Chapter 7

Output 7.5 Star Chart

The SAS System 1

Center = 0 Sum of Count by Response Outside = 202

Never
************* 44

***** *****
*** ***

*** ***
** **

* *
Rarely ** **

97 * *
** **
* *

* *
** **
* *...... *

***. **
* *
* *
* *
* . .+..............* * Always
* * 106
* *
* *
** **

* *
** *. .. . **

* *
* *

* *
* *

Sometimes ** **
119 * *

** . . . **
*** ***

*** ***
***** *.***

************* Usually
202

Syntax: CHART Procedure
Requirement: You must use at least one of the chart-producing statements.
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.

Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.

PROC CHART <option(s)>;
BLOCK variable(s) </ option(s)>;

The CHART Procedure � PROC CHART Statement 171

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

HBAR variable(s) </ option(s)>;
PIE variable(s) </ option(s)>;
STAR variable(s) </ option(s)>;
VBAR variable(s) </ option(s)>;

PROC CHART Statement

PROC CHART <option(s)>;

Options

DATA=SAS-data-set
identifies the input SAS data set.
Main discussion: “Input Data Sets” on page 19
Restriction: You cannot use PROC CHART with an engine that supports

concurrent access if another user is updating the data set at the same time.

FORMCHAR <(position(s))>=’formatting-character(s)’
defines the characters to use for constructing the horizontal and vertical axes,
reference lines, and other stuctural parts of a chart. It also defines the symbols to
use to create the bars, blocks, or sections in the output.

position(s)
identifies the position of one or more characters in the SAS formatting-character
string. A space or a comma separates the positions.
Default: Omitting (position(s)), is the same as specifying all 20 possible SAS

formatting characters, in order.
Range: PROC CHART uses 6 of the 20 formatting characters that SAS provides.

Table 7.1 on page 172 shows the formatting characters that PROC CHART uses.
Figure 7.1 on page 172 illustrates the use of formatting characters commonly
used in PROC CHART.

formatting-character(s)
lists the characters to use for the specified positions. PROC CHART assigns
characters in formatting-character(s) to position(s), in the order that they are
listed. For instance, the following option assigns the asterisk (*) to the second
formatting character, the pound sign (#) to the seventh character, and does not
alter the remaining characters:

formchar(2,7)=’*#’

Interaction: The SAS system option FORMCHAR= specifies the default formatting
characters. The system option defines the entire string of formatting characters.
The FORMCHAR= option in a procedure can redefine selected characters.

Tip: You can use any character in formatting-characters, including hexadecimal
characters. If you use hexadecimal characters, you must put an x after the closing

172 PROC CHART Statement � Chapter 7

quote. For instance the following option assigns the hexadecimal character 2D to
the second formatting character, the hexadecimal character 7C to the seventh
character, and does not alter the remaining characters:

formchar(2,7)=’2D7C’x

See also: For information on which hexadecimal codes to use for which characters,
consult the documentation for your hardware.

Table 7.1 Formatting Characters Used by PROC CHART

Position ... Default Used to draw

1 | Vertical axes in bar charts, the sides of the blocks in block charts, and
reference lines in horizontal bar charts. In side-by-side bar charts, the first
and second formatting characters appear around each value of the group
variable (below the chart) to indicate the width of each group.

2 - Horizontal axes in bar charts, the horizontal lines that separate the blocks
in a block chart, and reference lines in vertical bar charts. In side-by-side
bar charts, the first and second formatting characters appear around each
value of the group variable (below the chart) to indicate the width of each
group.

7 + Tick marks in bar charts and the centers in pie and star charts.

9 - Intersection of axes in bar charts.

16 / Ends of blocks and the diagonal lines that separate blocks in a block chart.

20 * Circles in pie and star charts.

Figure 7.1 Formatting Characters Commonly Used in PROC CHART Output

 Mean Yearly Pie Sales Grouped by Flavor 1
 within Bakery Location

Pies_Sold Mean

400 +
 | *** ***
300 +--***-------***---------***-------***------------------------------------
 | *** *** *** *** ***
200 +--***--***--***---------***--***--***---------***-------***--------------
 | *** *** *** *** *** *** *** ***
100 +--***--***--***---------***--***--***---------***--***--***--------------
 | *** *** *** *** *** *** *** *** *** *** *** ***
 --

 a b c r a b c r a b c r Flavor

 p l h h p l h h p l h h

 p u e u p u e u p u e u

 l e r b l e r b l e r b

 e b r a e b r a e b r a

 e y r e y r e y r

 r b r b r b

 r r r

 |----- Clyde ----| |------ Oak -----| |---- Samford ---| Bakery

9

1 2

7

1 2

2

LPI=value
specifies the proportions of PIE and STAR charts. The value is determined by

The CHART Procedure � BLOCK Statement 173

������ ��� ���	 � �
����� ��� ���	
 � ��

For example, if you have a printer with 8 lines per inch and 12 columns per inch,
specify LPI=6.6667.
Default: 6

BLOCK Statement

Produces a block chart.

Featured in: Example 6 on page 194

BLOCK variable(s) </ option(s)>;

Required Arguments

variable(s)
specifies the variables for which PROC CHART produces a block chart, one chart for
each variable.

Options
The options available on the BLOCK, HBAR, PIE, STAR, and VBAR statements are

documented in “Customizing All Types of Charts” on page 177.

Statement Results
Because each block chart must fit on one output page, you may have to adjust the

SAS system options LINESIZE= and PAGESIZE= if you have a large number of charted
values for the BLOCK variable and for the variable specified in the GROUP= option.

Table 7.2 on page 173 shows the maximum number of charted values of BLOCK
variables for selected LINESIZE= (LS=) specifications that can fit on a 66-line page.

Table 7.2 Maximum Number of Bars of BLOCK Variables

GROUP= Value LS= 132 LS= 120 LS= 105 LS= 90 LS= 76 LS= 64

0,1 9 8 7 6 5 4

2 8 8 7 6 5 4

3 8 7 6 5 4 3

4 7 7 6 5 4 3

5,6 7 6 5 4 3 2

If the value of any GROUP= level is longer than three characters, the maximum
number of charted values for the BLOCK variable that can fit may be reduced by one.

174 BY Statement � Chapter 7

BLOCK level values truncate to 12 characters. If you exceed these limits, PROC
CHART produces a horizontal bar chart instead.

BY Statement
Produces a separate chart for each BY group.

Main discussion: “BY” on page 54
Featured in: Example 6 on page 194

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately. Variables in a BY statement
are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

HBAR Statement
Produces a horizontal bar chart.

Tip: HBAR charts can print either the name or the label of the chart variable.
Featured in: Example 5 on page 192

The CHART Procedure � PIE Statement 175

HBAR variable(s) </ option(s)>;

Required Argument

variable(s)
specifies the variables for which PROC CHART produces a horizontal bar chart, one
chart for each variable.

Options
The options available on the BLOCK, HBAR, PIE, STAR, and VBAR statements are

documented in “Customizing All Types of Charts” on page 177.

Statement Results
Each chart occupies one or more output pages, depending on the number of bars;

each bar occupies one line, by default.
By default, for horizontal bar charts of TYPE=FREQ, CFREQ, PCT, or CPCT, PROC

CHART prints the following statistics: frequency, cumulative frequency, percentage,
and cumulative percentage. If you use one or more of the statistics options, PROC
CHART prints only the statistics that you request, plus the frequency.

PIE Statement

Produces a pie chart.

PIE variable(s) </ option(s)>;

Required Argument

variable(s)
specifies the variables for which PROC CHART produces a pie chart, one chart for
each variable.

Options
The options available on the BLOCK, HBAR, PIE, STAR, and VBAR statements are

documented in “Customizing All Types of Charts” on page 177.

Statement Results
PROC CHART determines the number of slices for the pie in the same way that it

determines the number of bars for vertical bar charts. Any slices of the pie accounting
for less than three print positions are grouped together into an "OTHER" category.

The pie’s size is determined only by the SAS system options LINESIZE= and
PAGESIZE=. By default, the pie looks elliptical if your printer does not print 6 lines per

176 STAR Statement � Chapter 7

inch and 10 columns per inch. To make a circular pie chart on a printer that does not
print 6 lines and 10 columns per inch, use the LPI= option on the PROC CHART
statement. See the decription of LPI= on page 172 for the formula that gives you the
proper LPI= value for your printer.

If you try to create a PIE chart for a variable with more than 50 levels, PROC
CHART produces a horizontal bar chart instead.

STAR Statement

Produces a star chart.

STAR variable(s) </ option(s)>;

Required Argument

variable(s)
specifies the variables for which PROC CHART produces a star chart, one chart for
each variable.

Options
The options available on the BLOCK, HBAR, PIE, STAR, and VBAR statements are

documented in “Customizing All Types of Charts” on page 177.

Statement Results
The number of points in the star is determined in the same way as the number of

bars for vertical bar charts.
If all the data have positive values, the center of the star represents zero and the

outside circle represents the maximum value. If the data contain negative values, the
center represents the minimum. See the description of the AXIS= option on page 178
for more information about how to specify maximum and minimum values. For
information about how to specify the proportion of the chart, see the description of the
LPI= option on page 172.

If you try to create a star chart for a variable with more than 24 levels, PROC
CHART produces a horizontal bar chart instead.

VBAR Statement

Produces a vertical bar chart.

Featured in: Example 1 on page 184, Example 2 on page 186, Example 3 on page 187,
Example 4 on page 190

The CHART Procedure � Customizing All Types of Charts 177

VBAR variable(s) </ option(s)>;

Required Argument

variable(s)
specifies the variables for which PROC CHART produces a vertical bar chart, one
chart for each variable.

Options
The options available on the BLOCK, HBAR, PIE, STAR, and VBAR statements are

documented in “Customizing All Types of Charts” on page 177.

Statement Results
PROC CHART prints one page per chart. Along the vertical axis, PROC CHART

describes the chart frequency, the cumulative frequency, the chart percentage, the
cumulative percentage, the sum, or the mean. At the bottom of each bar, PROC CHART
prints a value according to the value of the TYPE= option, if specified. For character
variables or discrete numeric variables, this value is the actual value represented by
the bar. For continuous numeric variables, the value gives the midpoint of the interval
represented by the bar.

PROC CHART can automatically scale the vertical axis, determine the bar width,
and choose spacing between the bars. However, by using options, you can choose bar
intervals and the number of bars, include missing values in the chart, produce
side-by-side charts, and subdivide the bars. If the number of characters per line
(LINESIZE=) is not sufficient to display all vertical bars, PROC CHART produces a
horizontal bar chart instead.

Customizing All Types of Charts

Many options in PROC CHART are valid in more than one statement. This section
describes the options that you can use on the chart-producing statements.

To do this Use this option

Specify that numeric variables are discrete DISCRETE

Specify a frequency variable FREQ=

Specify that missing values are valid levels MISSING

Specify the variable for which values or means are displayed SUMVAR=

Specify the statistic represented in the chart TYPE=

Specify groupings

Group the bars in side-by-side charts GROUP=

Specify that group percentages sum to 100 G100

Group the bars in side-by-side charts GROUP=

Specify the number of bars for continuous variables LEVELS=

178 Customizing All Types of Charts � Chapter 7

To do this Use this option

Define ranges for continuous variables MIDPOINTS=

Divide the bars into categories SUBGROUP=

Compute statistics

Compute the cumulative frequency for each bar CFREQ

Compute the cumulative percentage for each bar CPERCENT

Compute the frequency for each bar FREQ

Compute the mean of the observations for each bar MEAN

Compute the percentage of total observations for each bar PERCENT

Compute the total number of observations for each bar SUM

Control output format

Print the bars in ascending order of size ASCENDING

Specify the values for the response axis AXIS=

Print the bars in descending order of size DESCENDING

Specify extra space between groups of bars GSPACE=

Suppress the default header line NOHEADER

Allow no space between vertical bars NOSPACE

Suppress the statistics NOSTATS

Suppress the subgroup legend or symbol table NOSYMBOL

Suppress the bars with zero frequency NOZEROS

Draw reference lines REF=

Specify the spaces between bars SPACE=

Specify the symbols within bars or blocks SYMBOL=

Specify the width of bars WIDTH=

Options

ASCENDING
prints the bars and any associated statistics in ascending order of size within groups.
Alias: ASC
Restriction: Available only on the HBAR and VBAR statements

AXIS=value-expression
specifies the values for the response axis, where value-expression is a list of
individual values, each separated by a space, or a range with a uniform interval for
the values. For example, the following range specifies tick marks on a bar chart from
0 to 100 at intervals of 10:

hbar x / axis=0 to 100 by 10;

Restriction: Not available on the PIE statement
Restriction: Values must be uniformly spaced, even if you specify them individually.

The CHART Procedure � Customizing All Types of Charts 179

Restriction: For frequency charts, values must be integers.
Interaction: For BLOCK charts, AXIS= sets the scale of the tallest block. To set

the scale, PROC CHART uses the maximum value from the AXIS= list. If no value
is greater than 0, PROC CHART ignores the AXIS= option.

Interaction: For HBAR and VBAR charts, AXIS= determines tick marks on the
response axis. If the AXIS= specification contains only one value, the value
determines the minimum tick mark if the value is less than 0, or determines the
maximum tick mark if the value is greater than 0.

Interaction: For STAR charts, a single AXIS= value sets the minimum (the center
of the chart) if the value is less than zero, or sets the maximum (the outside circle)
if the value is greater than zero. If the AXIS= specification contains more than one
value, PROC CHART uses the minimum and maximum values from the list.

Interaction: If you use AXIS= and the BY statement, PROC CHART produces
uniform axes over BY groups.

CAUTION:
Values in value-expression override the range of the data. For example, if the data
range is 1 to 10 and you specify a range of 3 to 5, only the data in the range 3 to 5
appear on the chart. Values out of range produce a warning message in the SAS
log. �

CFREQ
prints the cumulative frequency.
Restriction: Available only on the HBAR statement

CPERCENT
prints the cumulative percentages.
Restriction: Available only on the HBAR statement

DESCENDING
prints the bars and any associated statistics in descending order of size within groups.
Alias: DESC
Restriction: Available only on the HBAR and VBAR statements

DISCRETE
specifies that a numeric chart variable is discrete rather than continuous. Without
DISCRETE, PROC CHART assumes that all numeric variables are continuous and
automatically chooses intervals for them unless you use MIDPOINTS= or LEVELS=.

FREQ
prints the frequency of each bar to the side of the chart.
Restriction: Available only on the HBAR statement

FREQ=variable
specifies a data set variable that represents a frequency count for each observation.
Normally, each observation contributes a value of one to the frequency counts. With
FREQ=, each observation contributes its value of the FREQ= value.
Restriction: If the FREQ= values are not integers, PROC CHART truncates them.
Interaction: If you use SUMVAR=, PROC CHART multiplies the sums by the

FREQ= value.

GROUP=variable
produces side-by-side charts, with each chart representing the observations that have
a common value for the GROUP= variable. The GROUP= variable can be character
or numeric and is assumed to be discrete. For example, the following statement
produces a frequency bar chart for men and women in each department:

180 Customizing All Types of Charts � Chapter 7

vbar gender / group=dept;

Missing values for a GROUP= variable are treated as valid levels.
Restriction: Available only on the BLOCK, HBAR, and VBAR statements
Featured in: Example 4 on page 190, Example 5 on page 192, Example 6 on page

194

GSPACE=n
specifies the amount of extra space between groups of bars. Use GSPACE=0 to leave
no extra space between adjacent groups of bars.
Restriction: Available only on the HBAR and VBAR statements
Interaction: PROC CHART ignores GSPACE= if you omit GROUP=

G100
specifies that the sum of percentages for each group equals 100. By default, PROC
CHART uses 100 percent as the total sum. For example, if you produce a bar chart
that separates males and females into three age categories, the six bars, by default,
add to 100 percent; however, with G100, the three bars for females add to 100
percent, and the three bars for males add to 100 percent.
Restriction: Available only on the BLOCK, HBAR, and VBAR statements
Interaction: PROC CHART ignores G100 if you omit GROUP=.

LEVELS=number-of-midpoints
specifies the number of bars that represent each chart variable when the variables
are continuous.

MEAN
prints the mean of the observations represented by each bar.
Restriction: Available only on the HBAR statement and only when you use

SUMVAR= and TYPE=
Restriction: Not available when TYPE=CFREQ, CPERCENT, FREQ, or PERCENT

MIDPOINTS=midpoint-specification | OLD
defines the range of values that each bar, block, or section represents by specifying
the range midpoints.

The value for MIDPOINTS= is one of the following:

midpoint-specification
specifies midpoints, either individually, or across a range at a uniform interval.
For example, the following statement produces a chart with five bars; the first bar
represents the range of values of X with a midpoint of 10, the second bar
represents the range with a midpoint of 20, and so on:

vbar x / midpoints=10 20 30 40 50;

Here is an example of a midpoint specification for a character variable:

vbar x / midpoints=’JAN’ ’FEB’ ’MAR’;

Here is an example of specifying midpoints across a range at a uniform interval:

vbar x / midpoints=10 to 100 by 5;

OLD
specifies an algorithm that PROC CHART used in previous versions of SAS to
choose midpoints for continuous variables. The old algorithm was based on the
work of Nelder (1976). The current algorithm that PROC CHART uses if you omit
OLD is based on the work of Terrell and Scott (1985).

Default: Without MIDPOINTS=, PROC CHART displays the values in the SAS
System’s normal sorted order.

The CHART Procedure � Customizing All Types of Charts 181

Restriction: When the VBAR variables are numeric, the midpoints must be given
in ascending order.

MISSING
specifies that missing values are valid levels for the chart variable.

NOHEADER
suppresses the default header line printed at the top of a chart.
Alias: NOHEADING
Restriction: Available only on the BLOCK, PIE, and STAR statements
Featured in: Example 6 on page 194

NOSTATS
suppresses the statistics on a horizontal bar chart.
Alias: NOSTAT
Restriction: Available only on the HBAR statement

NOSYMBOL
suppresses printing of the subgroup symbol or legend table.
Alias: NOLEGEND
Restriction: Available only on the BLOCK, HBAR, and VBAR statements
Interaction: PROC CHART ignores NOSYMBOL if you omit SUBGROUP=.

NOZEROS
suppresses any bar with zero frequency.
Restriction: Available only on the HBAR and VBAR statements

PERCENT
prints the percentages of observations having a given value for the chart variable.
Restriction: Available only on the HBAR statement

REF=value(s)
draws reference lines on the response axis at the specified positions.
Restriction: Available only on the HBAR and VBAR statements
Tip: The REF= values should correspond to values of the TYPE= statistic.
Featured in: Example 4 on page 190

SPACE=n
specifies the amount of space between individual bars.
Restriction: Available only on the HBAR and VBAR statements
Tip: Use SPACE=0 to leave no space between adjacent bars.
Tip: Use the GSPACE= option to specify the amount of space between the bars

within each group.

SUBGROUP=variable
subdivides each bar or block into characters that show the contribution of the values
of variable to that bar or block. PROC CHART uses the first character of each value
to fill in the portion of the bar or block that corresponds to that value, unless more
than one value begins with the same first character. In that case, PROC CHART
uses the letters A, B, C, and so on to fill in the bars or blocks. If the variable is
formatted, PROC CHART uses the first character of the formatted value.

The characters used in the chart and the values that they represent are given in a
legend at the bottom of the chart. The subgroup symbols are ordered A through Z
and 0 through 9 with the characters in ascending order.

PROC CHART calculates the height of a bar or block for each subgroup
individually and then rounds the percentage of the total bar up or down. So the total

182 Customizing All Types of Charts � Chapter 7

height of the bar may be higher or lower than the same bar without the
SUBGROUP= option.
Restriction: Available only on the BLOCK, HBAR, and VBAR statements
Interaction: If you use both TYPE=MEAN and SUBGROUP=, PROC CHART first

calculates the mean for each variable listed in the SUMVAR= option, then
subdivides the bar into the percentages contributed by each subgroup.

Featured in: Example 3 on page 187

SUM
prints the total number of observations that each bar represents.
Restriction: Available only on the HBAR statement and only when you use both

SUMVAR= and TYPE=
Restriction: Not available when TYPE=CFREQ, CPERCENT, FREQ, or PERCENT

SUMVAR=variable
specifies the variable for which either values or means (depending on the value of
TYPE=) PROC CHART displays in the chart.
Interaction: If you use SUMVAR= and you use TYPE= with a value other than

MEAN or SUM, TYPE=SUM overrides the specified TYPE= value.
Tip: Both HBAR and VBAR charts can print labels for SUMVAR= variables if you

use a LABEL statement.
Featured in: Example 3 on page 187, Example 4 on page 190, Example 5 on page

192, Example 6 on page 194

SYMBOL=character(s)
specifies the character or characters that PROC CHART uses in the bars or blocks of
the chart when you do not use the SUBGROUP= option.
Default: asterisk (*)
Restriction: Available only on the BLOCK, HBAR, and VBAR statements
Interaction: If the SAS system option OVP is in effect and if your printing device

supports overprinting, you can specify up to three characters to produce
overprinted charts.

Featured in: Example 6 on page 194

TYPE=statistic
specifies what the bars or sections in the chart represent. The statistic is one of the
following:

CFREQ
specifies that each bar, block, or section represent the cumulative frequency.

CPERCENT
specifies that each bar, block, or section represent the cumulative percentage.
Alias: CPCT

FREQ
specifies that each bar, block, or section represent the frequency with which a
value or range occurs for the chart variable in the data.

MEAN
specifies that each bar, block, or section represent the mean of the SUMVAR=
variable across all observations belonging to that bar, block, or section.
Interaction: With TYPE=MEAN, you can only compute MEAN and FREQ statistics.
Featured in: Example 4 on page 190

PERCENT

The CHART Procedure � Missing Values 183

specifies that each bar, block, or section represent the percentage of observations
that have a given value or that fall into a given range of the chart variable.

Alias: PCT

Featured in: Example 2 on page 186

SUM
specifies that each bar, block, or section represent the sum of the SUMVAR=
variable for the observations corresponding to each bar, block, or section.

Default: FREQ (unless you use SUMVAR=, which causes a default of SUM)

Interaction: With TYPE=SUM, you can only compute SUM and FREQ statistics.

WIDTH=n
specifies the width of the bars on bar charts.

Restriction: Available only on the HBAR and VBAR statements

Concepts: CHART Procedure

Variable Characteristics

� Character variables and formats cannot exceed a length of 16.

� For continuous numeric variables, PROC CHART automatically selects display
intervals, although you can explicitly define interval midpoints.

� For character variables and discrete numeric variables, which contain several
distinct values rather than a continuous range, the data values themselves define
the intervals.

Results: CHART Procedure

Missing Values

� Missing values are not considered as valid levels for the chart variable when you
use the MISSING option.

� Missing values for a GROUP= or SUBGROUP= variable are treated as valid levels.

� PROC CHART ignores missing values for the FREQ= option and the SUMVAR=
option.

� If the value of the FREQ= variable is missing, zero, or negative, the observation is
excluded from the calculation of the chart statistic.

� If the value of the SUMVAR= variable is missing, the observation is excluded from
the calculation of the chart statistic.

184 Examples: CHART Procedure � Chapter 7

Examples: CHART Procedure
With PROC CHART, you can produce several types of charts within a single PROC

step, but in this chapter, each example shows only one chart.

Example 1: Producing a Simple Frequency Count
Procedure features:

VBAR statement

This example produces a vertical bar chart that shows a frequency count for the
values of the chart variable.

Program

options nodate pageno=1 linesize=80 pagesize=60;

Create the input data set SHIRTS. The data set SHIRTS contains the sizes of a particular
shirt that is sold during a week at a clothing store, with one observation for each shirt sold.

data shirts;
input Size $ @@;
datalines;

medium large
large large
large medium
medium small
small medium
medium large
small medium
large large
large small
medium medium
medium medium
medium large
small small
;

Create a vertical bar chart with frequency counts. The VBAR statement produces a
vertical bar chart for the frequency counts of the Size values.

proc chart data=shirts;
vbar size;
title ’Number of Each Shirt Size Sold’;

run;

The CHART Procedure � Output 185

Output

The frequency chart shows the store’s sales of the shirt for the week: 9
large shirts, 11 medium shirts, and 6 small shirts.

Number of Each Shirt Size Sold 1

Frequency

11 + *****
| *****
| *****
| *****

10 + *****
| *****
| *****
| *****

9 + ***** *****
| ***** *****
| ***** *****
| ***** *****

8 + ***** *****
| ***** *****
| ***** *****
| ***** *****

7 + ***** *****
| ***** *****
| ***** *****
| ***** *****

6 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

5 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

4 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

3 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

2 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

1 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
***** ***** *****

large medium small

Size

186 Example 2: Producing a Percentage Bar Chart � Chapter 7

Example 2: Producing a Percentage Bar Chart

Procedure features:
VBAR statement option:

TYPE=
Data set: SHIRTS on page 184

This example produces a vertical bar chart. The chart statistic is the percentage for
each category of the total number of shirts sold.

Program

options nodate pageno=1 linesize=80 pagesize=60;

Create a vertical bar chart with percentages. The VBAR statement produces a vertical bar
chart. TYPE= specifies percentage as the chart statistic for the variable Size.

proc chart data=shirts;
vbar size / type=percent;
title ’Percentage of Total Sales for Each Shirt Size’;

run;

Output

The CHART Procedure � Example 3: Subdividing the Bars into Categories 187

The chart shows the percentage of total sales for each shirt size. Of all
the shirts sold, about 42.3 percent were medium, 34.6 were large, and
23.1 were small.

Percentage of Total Sales for Each Shirt Size 1

Percentage

| *****
| *****

40 + *****
| *****
| *****
| *****
| *****

35 + ***** *****
| ***** *****
| ***** *****
| ***** *****
| ***** *****

30 + ***** *****
| ***** *****
| ***** *****
| ***** *****
| ***** *****

25 + ***** *****
| ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

20 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

15 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

10 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****

5 + ***** ***** *****
| ***** ***** *****
| ***** ***** *****
| ***** ***** *****
***** ***** *****

large medium small

Size

Example 3: Subdividing the Bars into Categories
Procedure features:

VBAR statement options:
SUBGROUP=
SUMVAR=

188 Program � Chapter 7

This example
� produces a vertical bar chart for categories of one variable with bar lengths that

represent the values of another variable.

� subdivides each bar into categories based on the values of a third variable.

Program

options nodate pageno=1 linesize=80 pagesize=60;

Create the input data set PIESALES. The PIESALES data set contains the number of each
flavor of pie sold for two years at three bakeries owned by the same company – one bakery on
Samford Avenue, one on Oak Street, and one on Clyde Drive.

data piesales;
input Bakery $ Flavor $ Year Pies_Sold;
datalines;

Samford apple 1995 234
Samford apple 1996 288
Samford blueberry 1995 103
Samford blueberry 1996 143
Samford cherry 1995 173
Samford cherry 1996 195
Samford rhubarb 1995 26
Samford rhubarb 1996 28
Oak apple 1995 319
Oak apple 1996 371
Oak blueberry 1995 174
Oak blueberry 1996 206
Oak cherry 1995 246
Oak cherry 1996 311
Oak rhubarb 1995 51
Oak rhubarb 1996 56
Clyde apple 1995 313
Clyde apple 1996 415
Clyde blueberry 1995 177
Clyde blueberry 1996 201
Clyde cherry 1995 250
Clyde cherry 1996 328
Clyde rhubarb 1995 60
Clyde rhubarb 1996 59
;

Create a vertical bar chart with the bars that are subdivided into categories. The
VBAR statement produces a vertical bar chart with one bar for each pie flavor. SUBGROUP=
divides each bar into sales for each bakery.

proc chart data=piesales;
vbar flavor / subgroup=bakery

The CHART Procedure � Output 189

Specify the bar length variable. SUMVAR= specifies Pies_Sold as the variable whose values
are represented by the lengths of the bars.

sumvar=pies_sold;
title ’Pie Sales by Flavor Subdivided by Bakery Location’;

run;

Output

190 Example 4: Producing Side-by-Side Bar Charts � Chapter 7

The bar that represents the sales of apple pies, for example, shows 1,940 total pies across both
years and all three bakeries. The symbol for the Samford Avenue bakery represents the 522
pies at the top, the symbol for the Oak Street bakery represents the 690 pies in the middle, and
the symbol for the Clyde Drive bakery represents the 728 pies at the bottom of the bar for apple
pies. By default, the labels along the horizontal axis are truncated to eight characters.

Pie Sales by Flavor Subdivided by Bakery Location 1

Pies_Sold Sum

| SSSSS
| SSSSS
| SSSSS

1800 + SSSSS
| SSSSS
| SSSSS
| SSSSS

1600 + SSSSS
| SSSSS
| SSSSS SSSSS
| OOOOO SSSSS

1400 + OOOOO SSSSS
| OOOOO SSSSS
| OOOOO SSSSS
| OOOOO SSSSS

1200 + OOOOO SSSSS
| OOOOO OOOOO
| OOOOO OOOOO
| OOOOO SSSSS OOOOO

1000 + OOOOO SSSSS OOOOO
| OOOOO SSSSS OOOOO
| OOOOO SSSSS OOOOO
| OOOOO SSSSS OOOOO

800 + OOOOO OOOOO OOOOO
| CCCCC OOOOO OOOOO
| CCCCC OOOOO OOOOO
| CCCCC OOOOO OOOOO

600 + CCCCC OOOOO CCCCC
| CCCCC OOOOO CCCCC
| CCCCC OOOOO CCCCC
| CCCCC OOOOO CCCCC

400 + CCCCC CCCCC CCCCC
| CCCCC CCCCC CCCCC
| CCCCC CCCCC CCCCC
| CCCCC CCCCC CCCCC SSSSS

200 + CCCCC CCCCC CCCCC OOOOO
| CCCCC CCCCC CCCCC OOOOO
| CCCCC CCCCC CCCCC CCCCC
CCCCC CCCCC CCCCC CCCCC

apple blueberr cherry rhubarb

Flavor

Symbol Bakery Symbol Bakery Symbol Bakery

C Clyde O Oak S Samford

Example 4: Producing Side-by-Side Bar Charts
Procedure features:

VBAR statement options:

The CHART Procedure � Output 191

GROUP=
REF=
SUMVAR=
TYPE=

Data set: PIESALES on page 188

This example

� charts the mean values of a variable for the categories of another variable

� creates side-by-side bar charts for the categories of a third variable

� draws reference lines across the charts.

Program

options nodate pageno=1 linesize=80 pagesize=60;

Create a side-by-side vertical bar chart. The VBAR statement produces a side-by-side
vertical bar chart to compare the sales across values of Bakery, specified by GROUP=. Each
Bakery group contains a bar for each Flavor value.

proc chart data=piesales;
vbar flavor / group=bakery

Create reference lines. REF= draws reference lines to mark pie sales at 100, 200, and 300.

ref=100 200 300

Specify the bar length variable. SUMVAR= specifies Pies_Sold as the variable that is
represented by the lengths of the bars.

sumvar=pies_sold

Specify the statistical variable. TYPE= averages the sales for 1995 and 1996 for each
combination of bakery and flavor.

type=mean;
title ’Mean Yearly Pie Sales Grouped by Flavor’;
title2 ’within Bakery Location’;

run;

Output

192 Example 5: Producing a Horizontal Bar Chart for a Subset of the Data � Chapter 7

The side-by-side bar charts compare the sales of apple pies, for example, across bakeries. The
mean for the Clyde Drive bakery is 364, the mean for the Oak Street bakery is 345, and the
mean for the Samford Avenue bakery is 261.

Mean Yearly Pie Sales Grouped by Flavor 1
within Bakery Location

Pies_Sold Mean

| ***
350 + *** ***

| *** ***
| *** ***
| *** ***
| *** ***

300 +--***-------------------***--
| *** *** ***
| *** *** *** ***
| *** *** *** ***
| *** *** *** *** ***

250 + *** *** *** *** ***
| *** *** *** *** ***
| *** *** *** *** ***
| *** *** *** *** ***
| *** *** *** *** ***

200 +--***-------***---------***-------***---------***------------------------
| *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** ***

150 + *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** *** ***

100 +--***--***--***---------***--***--***---------***--***--***--------------
| *** *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** *** *** ***

50 + *** *** *** *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** *** *** *** *** ***
| *** *** *** *** *** *** *** *** *** *** *** ***
*** *** *** *** *** *** *** *** *** *** *** ***

a b c r a b c r a b c r Flavor
p l h h p l h h p l h h
p u e u p u e u p u e u
l e r b l e r b l e r b
e b r a e b r a e b r a

e y r e y r e y r
r b r b r b
r r r

|----- Clyde ----| |------ Oak -----| |---- Samford ---| Bakery

Example 5: Producing a Horizontal Bar Chart for a Subset of the Data
Procedure features:

HBAR statement options:
GROUP=
SUMVAR=

The CHART Procedure � Program 193

Other features:
WHERE= data set option

Data set: PIESALES on page 188

This example
� produces horizontal bar charts only for observations with a common value
� charts the values of a variable for the categories of another variable
� creates side-by-side bar charts for the categories of a third variable.

Program

options nodate pageno=1 linesize=80 pagesize=60;

Specify the variable value limitation for the horizontal bar chart. WHERE= limits the
chart to only the 1995 sales totals.

proc chart data=piesales(where=(year=1995));

Create a side-by-side horizontal bar chart. The HBAR statement produces a side-by-side
horizontal bar chart to compare sales across values of Flavor, specified by GROUP=. Each
Flavor group contains a bar for each Bakery value.

hbar bakery / group=flavor

Specify the bar length variable. SUMVAR= specifies Pies_Sold as the variable whose values
are represented by the lengths of the bars.

sumvar=pies_sold;
title ’1995 Pie Sales for Each Bakery According to Flavor’;

run;

194 Output � Chapter 7

Output

1995 Pie Sales for Each Bakery According to Flavor 1

Flavor Bakery Pies_Sold
Sum

|
apple Clyde |** 313.0000

Oak |*** 319.0000
Samford |******************************* 234.0000

|
blueberr Clyde |************************ 177.0000

Oak |*********************** 174.0000
Samford |************** 103.0000

|
cherry Clyde |********************************* 250.0000

Oak |********************************* 246.0000
Samford |*********************** 173.0000

|
rhubarb Clyde |******** 60.0000

Oak |******* 51.0000
Samford |*** 26.0000

|
----+---+---+---+---+---+---+---+---+---+---

30 60 90 120 150 180 210 240 270 300

Pies_Sold Sum

Example 6: Producing Block Charts for BY Groups

Procedure features:
BLOCK statement options:

GROUP=
NOHEADER=
SUMVAR=
SYMBOL=

BY statement
Other features:

PROC SORT
SAS System options:

NOBYLINE
OVP

TITLE statement:
#BYVAL specification

Data set: PIESALES on page 188

This example
� sorts the data set
� produces a block chart for each BY group
� organizes the blocks into a three-dimensional chart

The CHART Procedure � Program 195

� prints BY group-specific titles.

Program

options nodate pageno=1 linesize=80 pagesize=60;

Sort the input data set PIESALES. PROC SORT sorts PIESALES by year. This is required
to produce a separate chart for each year.

proc sort data=piesales out=sorted_piesales;
by year;

run;

Suppress BY lines and allow overprinted characters in the block charts. NOBYLINE
suppresses the usual BY lines in the output. OVP allows overprinted characters in the charts.

options nobyline ovp;

Specify the BY group for multiple block charts. The BY statement produces one chart for
1995 sales and one for 1996 sales.

proc chart data=sorted_piesales;
by year;

Create a block chart. The BLOCK statement produces a block chart for each year. Each chart
contains a grid (Bakery values along the bottom, Flavor values along the side) of cells that
contain the blocks.

block bakery / group=flavor

Specify the bar length variable. SUMVAR= specifies Pies_Sold as the variable whose values
are represented by the lengths of the blocks.

sumvar=pies_sold

Suppress the default header line. NOHEADER suppresses the default header line.

noheader

Specify the block symbols and create the chart titles. SYMBOL= specifies the symbols in
the blocks.

196 Output � Chapter 7

symbol=’OX’;
title ’Pie Sales for Each Bakery and Flavor’;

Create the second line of the title with an input variable. The #BYVAL specification
inserts the year into the second line of the title.

title2 ’#byval(year)’;
run;

Reset the printing of the default BY line. The SAS system option BYLINE resets the
printing of the default BY line.

options byline;

Output

Flavor

Bakery

The CHART Procedure � References 197

Flavor

Bakery

References

Nelder, J.A. (1976), “A Simple Algorithm for Scaling Graphs,” Applied Statistics,
Volume 25, Number 1, London: The Royal Statistical Society.

Terrell, G.R. and Scott, D.W. (1985), “Oversmoothed Nonparametric Density
Estimates,” Journal of the American Statistical Association, 80, 389, 209–214.

198

199

C H A P T E R

8
The CIMPORT Procedure

Overview: CIMPORT Procedure 199
Syntax: PROC CIMPORT 200

PROC CIMPORT Statement 200

EXCLUDE Statement 203

SELECT Statement 204

Results: CIMPORT Procedure 205
Data Control Block Characteristics for Mainframe Environments 205

Examples: CIMPORT Procedure 205

Example 1: Importing an Entire Data Library 205

Example 2: Importing Individual Catalog Entries 206

Example 3: Importing a Single Indexed SAS Data Set 207

Overview: CIMPORT Procedure

The CIMPORT procedure imports a transport file that was created (exported) by the
CPORT procedure. PROC CIMPORT restores the transport file to its original form as a
SAS catalog, SAS data set, or SAS data library. Transport files are sequential files that
each contain a SAS data library, a SAS catalog, or a SAS data set in transport format.
The transport format that PROC CPORT writes is the same for all environments and
for many releases of SAS.

PROC CIMPORT can read only transport files that PROC CPORT creates. For
information on the transport files that the transport engine creates, see the section on
SAS files in SAS Language Reference: Concepts.

PROC CIMPORT also converts SAS files, which means that it changes the format of
a SAS file from the format appropriate for one version of SAS to the format appropriate
for another version. For example, you can use PROC CPORT and PROC CIMPORT to
move files from earlier releases of SAS to more recent releases. In such cases, PROC
CIMPORT automatically converts the contents of the transport file as it imports it.

PROC CIMPORT produces no output, but it does write notes to the SAS log.
To export and import files, follow these steps:

1 Use PROC CPORT to export the SAS files that you want to transport.

2 If you are changing operating environments, move the transport file to the new
machine by using either communications software or a magnetic medium.

Note: If you use communications software to move the transport file, be sure that
it treats the transport file as a binary file and that it modifies neither the
attributes nor the contents of the file. �

3 Use PROC CIMPORT to translate the transport file into the format appropriate
for the new operating environment or release.

200 Syntax: PROC CIMPORT � Chapter 8

Syntax: PROC CIMPORT

PROC CIMPORT destination=libref | <libref.>member-name <option(s)>;

EXCLUDE SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></
ENTRYTYPE=entry-type>;

SELECT SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></
ENTRYTYPE=entry-type>;

PROC CIMPORT Statement

PROC CIMPORT destination=libref | <libref.> member-name<option(s)>;

To do this Use this option

Identify the input transport file

Specify a previously defined fileref or the filename of the
transport file to read

INFILE=

Read the input transport file from a tape TAPE

Select files to import

Exclude specified entry types from the import process EET=

Specify entry types to import ET=

Control the contents of the transport file

Import a SAS file without changing the created and modified
date and time

DATECOPY

Specify whether to extend by 1 byte the length of short
numerics (less than 8 bytes) when you import them

EXTENDSN=

Specify that only data sets, only catalogs, or both, be moved
when a library is imported

MEMTYPE=

Enable access to a locked catalog FORCE

Create a new catalog for the imported transport file, and delete
any existing catalog with the same name

NEW

Import SAS/AF PROGRAM and SCL entries without edit
capability

NOEDIT

Suppress the importing of source code for SAS/AF entries that
contain compiled SCL code

NOSRC

The CIMPORT Procedure � PROC CIMPORT Statement 201

Required Arguments

destination=libref | < libref. >member-name
identifies the type of file to import and specifies the specific catalog, SAS data set, or
SAS data library to import.

destination
identifies the file or files in the transport file as a single catalog, as a single SAS
data set, or as the members of a SAS data library. The destination argument can
be one of the following:

CATALOG | CAT | C

DATA | DS | D
LIBRARY | LIB | L

libref | <libref. > member-name
specifies the specific catalog, SAS data set, or SAS data library as the destination
of the transport file. If the destination argument is CATALOG or DATA, you can
specify both a libref and a member name. If the libref is omitted, PROC CIMPORT
uses the default library as the libref, which is usually the WORK library. If the
destination argument is LIBRARY, specify only a libref.

Options

DATECOPY
copies the SAS internal date and time when the SAS file was created and the date
and time when it was last modified to the resulting destination file. Note that the
operating environment date and time are not preserved.
Restriction: DATECOPY can be used only when the destination file uses the V8 or

V9 engine.

Tip: You can alter the file creation date and time with the DTC= option on the
MODIFY statement“MODIFY Statement” on page 366 in a PROC DATASETS step.

EET=(etype(s))
excludes specified entry types from the import process. If the etype is a single entry
type, then you can omit the parentheses. Separate multiple values with spaces.
Interaction: You cannot specify both the EET= option and the ET= option in the

same PROC CIMPORT step.

ET=(etype(s))
specifies the entry types to import. If the etype is a single entry type, then you can
omit the parentheses. Separate multiple values with spaces.

Interaction: You cannot specify both the EET= option and the ET= option in the
same PROC CIMPORT step.

EXTENDSN=YES | NO
specifies whether to extend by 1 byte the length of short numerics (fewer than 8
bytes) when you import them. You can avoid a loss of precision when you transport a
short numeric in IBM format to IEEE format if you extend its length. You cannot
extend the length of an 8-byte short numeric.

Default: YES
Restriction: This option applies only to data sets.
Tip: Do not store fractions as short numerics.

202 PROC CIMPORT Statement � Chapter 8

FORCE
enables access to a locked catalog. By default, PROC CIMPORT locks the catalog
that it is updating to prevent other users from accessing the catalog while it is being
updated. The FORCE option overrides this lock, which allows other users to access
the catalog while it is being imported, or allows you to import a catalog that is
currently being accessed by other users.

CAUTION:
The FORCE option can lead to unpredictable results. The FORCE option allows
multiple users to access the same catalog entry simultaneously. �

INFILE=fileref | ’filename’
specifies a previously defined fileref or the filename of the transport file to read. If
you omit the INFILE= option, then PROC CIMPORT attempts to read from a
transport file with the fileref SASCAT. If a fileref SASCAT does not exist, then PROC
CIMPORT attempts to read from a file named SASCAT.DAT.
Alias: FILE=
Featured in: Example 1 on page 205.

MEMTYPE=mtype
specifies that only data sets, only catalogs, or both, be moved when a SAS library is
imported. Values for mtype can be

ALL
both catalogs and data sets

CATALOG | CAT
catalogs

DATA | DS
SAS data sets

NEW
creates a new catalog to contain the contents of the imported transport file when the
destination you specify has the same name as an existing catalog. NEW deletes any
existing catalog with the same name as the one you specify as a destination for the
import. If you do not specify NEW, and the destination you specify has the same
name as an existing catalog, PROC CIMPORT appends the imported transport file to
the existing catalog.

NOEDIT
imports SAS/AF PROGRAM and SCL entries without edit capability.

You obtain the same results if you create a new catalog to contain SCL code by
using the MERGE statement with the NOEDIT option in the BUILD procedure of
SAS/AF software.

Note: The NOEDIT option affects only SAS/AF PROGRAM and SCL entries. It
does not affect FSEDIT SCREEN and FSVIEW FORMULA entries. �
Alias: NEDIT

NOSRC
suppresses the importing of source code for SAS/AF entries that contain compiled
SCL code.

You obtain the same results if you create a new catalog to contain SCL code by
using the MERGE statement with the NOSOURCE option in the BUILD procedure
of SAS/AF software.
Alias: NSRC
Interaction: PROC CIMPORT ignores the NOSRC option if you use it with an

entry type other than FRAME, PROGRAM, or SCL.

The CIMPORT Procedure � EXCLUDE Statement 203

TAPE
reads the input transport file from a tape.

Default: PROC CIMPORT reads from disk.

EXCLUDE Statement

Excludes specified files or entries from the import process.

Tip: There is no limit to the number of EXCLUDE statements you can use in one
invocation of PROC CIMPORT.

Interaction: You can use either EXCLUDE statements or SELECT statements in a PROC
CIMPORT step, but not both.

EXCLUDE SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></ ENTRYTYPE=
entry-type>;

Required Arguments

SAS file(s) | catalog entry(s)
specifies either the name(s) of one or more SAS files or the name(s) of one or more
catalog entries to be excluded from the import process. Specify SAS filenames if you
import a data library; specify catalog entry names if you import an individual SAS
catalog. Separate multiple filenames or entry names with a space. You can use
shortcuts to list many like-named files in the EXCLUDE statement. For more
information, see “Shortcuts for Specifying Lists of Variable Names” on page 24.

Options

ENTRYTYPE=entry-type
specifies a single entry type for the catalog entry(s) listed in the EXCLUDE
statement. See SAS Language Reference: Concepts for a complete list of catalog entry
types.

Restriction: ENTRYTYPE= is valid only when you import an individual SAS
catalog.

Alias: ETYPE=, ET=

MEMTYPE=mtype
specifies a single member type for the SAS file(s) listed in the EXCLUDE statement.
Values for mtype can be

ALL
both catalogs and data sets

CATALOG
catalogs

DATA
SAS data sets.

204 SELECT Statement � Chapter 8

You can also specify the MEMTYPE= option, enclosed in parentheses, immediately
after the name of a file. In parentheses, MEMTYPE= identifies the type of the
filename that just precedes it. When you use this form of the option, it overrides the
MEMTYPE= option that follows the slash in the EXCLUDE statement, but it must
match the MEMTYPE= option in the PROC CIMPORT statement.
Restriction: MEMTYPE= is valid only when you import a SAS data library.
Alias: MTYPE=, MT=

Default: ALL

SELECT Statement

Specifies individual files or entries to import.

Tip: There is no limit to the number of SELECT statements you can use in one
invocation of PROC CIMPORT.
Interaction: You can use either EXCLUDE statements or SELECT statements in a PROC
CIMPORT step, but not both.
Featured in: Example 2 on page 206

SELECT SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></
ENTRYTYPE=entry-type>;

Required Arguments

SAS file(s) | catalog entry(s)
specifies either the name(s) of one or more SAS files or the name(s) of one or more
catalog entries to import. Specify SAS filenames if you import a data library; specify
catalog entry names if you import an individual SAS catalog. Separate multiple
filenames or entry names with a space. You can use shortcuts to list many
like-named files in the SELECT statement. For more information, see “Shortcuts for
Specifying Lists of Variable Names” on page 24.

Options

ENTRYTYPE=entry-type
specifies a single entry type for the catalog entry(s) listed in the SELECT statement.
See SAS Language Reference: Concepts for a complete list of catalog entry types.
Restriction: ENTRYTYPE= is valid only when you import an individual SAS

catalog.
Alias: ETYPE=, ET=

MEMTYPE=mtype
specifies a single member type for the SAS file(s) listed in the SELECT statement.
Valid values are CATALOG or CAT, DATA, or ALL.

You can also specify the MEMTYPE= option, enclosed in parentheses, immediately
after the name of a file. In parentheses, MEMTYPE= identifies the type of the

The CIMPORT Procedure � Example 1: Importing an Entire Data Library 205

filename that just precedes it. When you use this form of the option, it overrides the
MEMTYPE= option that follows the slash in the SELECT statement, but it must
match the MEMTYPE= option in the PROC CIMPORT statement.

Restriction: MEMTYPE= is valid only when you import a SAS data library.

Alias: MTYPE=, MT=

Default: ALL

Results: CIMPORT Procedure

Data Control Block Characteristics for Mainframe Environments
A common problem when you create or import a transport file under the OS/390

environment is a failure to specify the correct Data Control Block (DCB) characteristics.
When you reference a transport file you must specify the following DCB characteristics:

LRECL: 80
BLKSIZE: 8000

RECFM: FB

Note: A BLKSIZE value of less than 8000 may be more efficient for your storage
device in some cases. The BLKSIZE value must be an exact multiple of the LRECL
value. �

Another common problem can occur if you use communications software to move files
from another environment to OS/390. In some cases, the transport file does not have the
proper DCB characteristics when it arrives on OS/390. If the communications software
does not allow you to specify file characteristics, try the following approach for OS/390:

1 Create a file under OS/390 with the correct DCB characteristics and initialize the
file.

2 Move the transport file from the other environment to the newly created file under
OS/390 using binary transfer.

Examples: CIMPORT Procedure

Example 1: Importing an Entire Data Library

Procedure features:
PROC CIMPORT statement option:

INFILE=

This example shows how to use PROC CIMPORT to read from disk a transport file,
named TRANFILE, that PROC CPORT created from a SAS data library in another
operating environment. The transport file was moved to the new operating environment
by means of communications software or magnetic medium. PROC CIMPORT imports

206 Program � Chapter 8

the transport file to a SAS data library, called NEWLIB, in the new operating
environment.

Program

Specify the library name and filename. The LIBNAME statement specifies a libname for
the new SAS data library. The FILENAME statement specifies the filename of the transport file
that PROC CPORT created and enables you to specify any operating environment options for
file characteristics.

libname newlib ’SAS-data-library’;
filename tranfile ’transport-file’

host-option(s)-for-file-characteristics;

Import the SAS data library in the NEWLIB library. PROC CIMPORT imports the SAS
data library into the library named NEWLIB.

proc cimport library=newlib infile=tranfile;
run;

SAS Log

NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.FINANCE
NOTE: Entry LOAN.FRAME has been imported.
NOTE: Entry LOAN.HELP has been imported.
NOTE: Entry LOAN.KEYS has been imported.
NOTE: Entry LOAN.PMENU has been imported.
NOTE: Entry LOAN.SCL has been imported.
NOTE: Total number of entries processed in catalog NEWLIB.FINANCE: 5

NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.FORMATS
NOTE: Entry REVENUE.FORMAT has been imported.
NOTE: Entry DEPT.FORMATC has been imported.
NOTE: Total number of entries processed in catalog NEWLIB.FORMATS: 2

Example 2: Importing Individual Catalog Entries
Procedure features:

PROC CIMPORT statement options:
INFILE=

SELECT statement

This example shows how to use PROC CIMPORT to import the individual catalog
entries LOAN.PMENU and LOAN.SCL from the transport file TRANS2, which was
created from a single SAS catalog.

The CIMPORT Procedure � Program 207

Program

Specify the library name, filename, and operating environment options. The LIBNAME
statement specifies a libname for the new SAS data library. The FILENAME statement specifies
the filename of the transport file that PROC CPORT created and enables you to specify any
operating environment options for file characteristics.

libname newlib ’SAS-data-library’;
filename trans2 ’transport-file’

host-option(s)-for-file-characteristics;

Import the specified catalog entries to the new SAS catalog. PROC CIMPORT imports
the individual catalog entries from the TRANS2 transport file and stores them in a new SAS
catalog called NEWLIB.FINANCE. The SELECT statement selects only the two specified
entries from the transport file to be imported into the new catalog.

proc cimport catalog=newlib.finance infile=trans2;
select loan.pmenu loan.scl;

run;

SAS Log

NOTE: Proc CIMPORT begins to create/update catalog NEWLIB.FINANCE
NOTE: Entry LOAN.PMENU has been imported.
NOTE: Entry LOAN.SCL has been imported.
NOTE: Total number of entries processed in catalog NEWLIB.FINANCE: 2

Example 3: Importing a Single Indexed SAS Data Set
Procedure features:

PROC CIMPORT statement option:
INFILE=

This example shows how to use PROC CIMPORT to import an indexed SAS data set
from a transport file that was created by PROC CPORT from a single SAS data set.

Program

Specify the library name, filename, and operating environment options. The LIBNAME
statement specifies a libname for the new SAS data library. The FILENAME statement specifies
the filename of the transport file that PROC CPORT created and enables you to specify any
operating environment options for file characteristics.

208 SAS Log � Chapter 8

libname newdata ’SAS-data-library’;
filename trans3 ’transport-file’

host-option(s)-for-file-characteristics;

Import the SAS data set. PROC CIMPORT imports the single SAS data set that you identify
with the DATA= specification in the PROC CIMPORT statement. PROC CPORT exported the
data set NEWDATA.TIMES in the transport file TRANS3.

proc cimport data=newdata.times infile=trans3;
run;

SAS Log

NOTE: Proc CIMPORT begins to create/update data set NEWDATA.TIMES
NOTE: The data set index x is defined.
NOTE: Data set contains 2 variables and 2 observations.

Logical record length is 16

209

C H A P T E R

9
The COMPARE Procedure

Overview: COMPARE Procedure 209
Syntax: COMPARE Procedure 213

PROC COMPARE Statement 213

BY Statement 220

ID Statement 221

VAR Statement 223
WITH Statement 223

Concepts: COMPARE Procedure 224

A Comparison by Position of Observations 224

A Comparison with an ID Variable 225

The Equality Criterion 226

Definition of Difference and Percent Difference 227
How PROC COMPARE Handles Variable Formats 228

Results: COMPARE Procedure 228

SAS Log 228

Macro Return Codes (SYSINFO) 228

Procedure Output 230
Data Set Summary 230

Variables Summary 230

Observation Summary 231

Values Comparison Summary 232

Value Comparison Results 233
Table of Summary Statistics 233

Comparison Results for Observations (Using the TRANSPOSE Option) 235

Output Data Set (OUT=) 236

Output Statistics Data Set (OUTSTATS=) 237

Examples: COMPARE Procedure 239

Example 1: Producing a Complete Report of the Differences 239
Example 2: Comparing Variables in Different Data Sets 243

Example 3: Comparing a Variable Multiple Times 244

Example 4: Comparing Variables That Are in the Same Data Set 246

Example 5: Comparing Observations with an ID Variable 248

Example 6: Comparing Values of Observations Using an Output Data Set (OUT=) 251
Example 7: Creating an Output Data Set of Statistics (OUTSTATS=) 253

Overview: COMPARE Procedure

The COMPARE procedure compares the contents of two SAS data sets, selected
variables in different data sets, or variables within the same data set.

210 Overview: COMPARE Procedure � Chapter 9

PROC COMPARE compares two data sets: the base data set and the comparison
data set. The procedure determines matching variables and matching observations.
Matching variables are variables with the same name or variables that you explicitly
pair by using the VAR and WITH statements. Matching variables must be of the same
type. Matching observations are observations that have the same values for all ID
variables that you specify or, if you do not use the ID statement, that occur in the same
position in the data sets. If you match observations by ID variables, both data sets
must be sorted by all ID variables.

When you compare data sets using PROC COMPARE, you receive the following type
of information:

� whether matching variables have different values

� whether one data set has more observations than the other

� what variables the two data sets have in common

� how many variables are in one data set but not in the other

� whether matching variables have different formats, labels, or types.

� a comparison of the values of matching observations.

Further, PROC COMPARE creates two kinds of output data sets that give detailed
information about the differences between observations of variables it is comparing.

The following example compares the data sets PROCLIB.ONE and PROCLIB.TWO,
which contain similar data about students:

data proclib.one(label=’First Data Set’);
input student year $ state $ gr1 gr2;
label year=’Year of Birth’;
format gr1 4.1;
datalines;

1000 1970 NC 85 87
1042 1971 MD 92 92
1095 1969 PA 78 72
1187 1970 MA 87 94
;

data proclib.two(label=’Second Data Set’);
input student $ year $ state $ gr1

gr2 major $;
label state=’Home State’;
format gr1 5.2;
datalines;

1000 1970 NC 84 87 Math
1042 1971 MA 92 92 History
1095 1969 PA 79 73 Physics
1187 1970 MD 87 74 Dance
1204 1971 NC 82 96 French
;

PROC COMPARE produces lengthy output. You can use one or more options to
determine the kinds of comparisons to make and the degree of detail in the report. For
example, in the following PROC COMPARE step, the NOVALUES option suppresses
the part of the output that shows the differences in the values of matching variables:

proc compare base=proclib.one
compare=proclib.two novalues;

run;

The COMPARE Procedure � Overview: COMPARE Procedure 211

Output 9.1 Comparison of Two Data Sets

The SAS System 1

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Data Set Summary

Dataset Created Modified NVar NObs Label

PROCLIB.ONE 13MAY98:15:01:42 13MAY98:15:01:42 5 4 First Data Set
PROCLIB.TWO 13MAY98:15:01:44 13MAY98:15:01:44 6 5 Second Data Set

Variables Summary

Number of Variables in Common: 5.
Number of Variables in PROCLIB.TWO but not in PROCLIB.ONE: 1.
Number of Variables with Conflicting Types: 1.
Number of Variables with Differing Attributes: 3.

Listing of Common Variables with Conflicting Types

Variable Dataset Type Length

student PROCLIB.ONE Num 8
PROCLIB.TWO Char 8

Listing of Common Variables with Differing Attributes

Variable Dataset Type Length Format Label

year PROCLIB.ONE Char 8 Year of Birth
PROCLIB.TWO Char 8

state PROCLIB.ONE Char 8
PROCLIB.TWO Char 8 Home State

212 Overview: COMPARE Procedure � Chapter 9

The SAS System 2

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Listing of Common Variables with Differing Attributes

Variable Dataset Type Length Format Label

gr1 PROCLIB.ONE Num 8 4.1
PROCLIB.TWO Num 8 5.2

Observation Summary

Observation Base Compare

First Obs 1 1
First Unequal 1 1
Last Unequal 4 4
Last Match 4 4
Last Obs . 5

Number of Observations in Common: 4.
Number of Observations in PROCLIB.TWO but not in PROCLIB.ONE: 1.
Total Number of Observations Read from PROCLIB.ONE: 4.
Total Number of Observations Read from PROCLIB.TWO: 5.

Number of Observations with Some Compared Variables Unequal: 4.
Number of Observations with All Compared Variables Equal: 0.

The SAS System 3

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Values Comparison Summary

Number of Variables Compared with All Observations Equal: 1.
Number of Variables Compared with Some Observations Unequal: 3.
Total Number of Values which Compare Unequal: 6.
Maximum Difference: 20.

Variables with Unequal Values

Variable Type Len Compare Label Ndif MaxDif

state CHAR 8 Home State 2
gr1 NUM 8 2 1.000
gr2 NUM 8 2 20.000

“Procedure Output” on page 230 shows the default output for these two data sets.
Example 1 on page 239 shows the complete output for these two data sets.

The COMPARE Procedure � PROC COMPARE Statement 213

Syntax: COMPARE Procedure
Restriction: You must use the VAR statement when you use the WITH statement.
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
Reminder: You can use the LABEL, ATTRIB, FORMAT, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.

PROC COMPARE <option(s)>;
BY <DESCENDING> variable-1

<…<DESCENDING> variable-n>
<NOTSORTED>;

ID <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

VAR variable(s);
WITH variable(s);

To do this Use this statement

Produce a separate comparison for each BY group BY

Identify variables to use to match observations ID

Restrict the comparison to values of specific variables VAR

Compare variables of different names WITH and VAR

Compare two variables in the same data set WITH and VAR

PROC COMPARE Statement
Restriction: If you omit COMPARE=, you must use the WITH and VAR statements.
Restriction: PROC COMPARE reports errors differently if one or both of the compared
data sets are not RADIX addressable. Version 6 compressed files are not RADIX
addressable, while, beginning with Version 7, compressed files are RADIX addressable.
(The integrity of the data is not compromised; the procedure simply numbers the
observations differently.)
Reminder: You can use data set options with the BASE= and COMPARE= options.

PROC COMPARE <option(s)>;

214 PROC COMPARE Statement � Chapter 9

To do this Use this option

Specify the data sets to compare

Specify the base data set BASE=

Specify the comparison data set COMPARE=

Control the output data set

Create an output data set OUT=

Write an observation for each observation in the BASE=
and COMPARE= data sets

OUTALL

Write an observation for each observation in the BASE=
data set

OUTBASE

Write an observation for each observation in the
COMPARE= data set

OUTCOMP

Write an observation that contains the differences for
each pair of matching observations

OUTDIF

Suppress the writing of observations when all values
are equal

OUTNOEQUAL

Write an observation that contains the percent
differences for each pair of matching observations

OUTPERCENT

Create an output data set that contains summary statistics OUTSTATS=

Specify how the values are compared

Specify the criterion for judging the equality of numeric
values

CRITERION=

Specify the method for judging the equality of numeric
values

METHOD=

Judge missing values equal to any value NOMISSBASE and NOMISSCOMP

Control the details in the default report

Include the values for all matching observations ALLOBS

Print a table of summary statistics for all pairs of
matching variables

ALLSTATS and STATS

Include in the report the values and differences for all
matching variables

ALLVARS

Print only a short comparison summary BRIEFSUMMARY

Change the report for numbers between 0 and 1 FUZZ=

Restrict the number of differences to print MAXPRINT=

Suppress the print of creation and last-modified dates NODATE

Suppress all printed output NOPRINT

Suppress the summary reports NOSUMMARY

Suppress the value comparison results. NOVALUES

Produce a complete listing of values and differences PRINTALL

The COMPARE Procedure � PROC COMPARE Statement 215

To do this Use this option

Print the value differences by observation, not by
variable

TRANSPOSE

Control the listing of variables and observations

List all variables and observations found in only one
data set

LISTALL

List all variables and observations found only in the
base data set

LISTBASE

List all observations found only in the base data set LISTBASEOBS

List all variables found only in the base data set LISTBASEVAR

List all variables and observations found only in the
comparison data set

LISTCOMP

List all observations found only in the comparison data
set

LISTCOMPOBS

List all variables found only in the comparison data set LISTCOMPVAR

List variables whose values are judged equal LISTEQUALVAR

List all observations found in only one data set LISTOBS

List all variables found in only one data set LISTVAR

Options

ALLOBS
includes in the report of value comparison results the values and, for numeric
variables, the differences for all matching observations, even if they are judged equal.

Default: If you omit ALLOBS, PROC COMPARE prints values only for observations
that are judged unequal.

Interaction: When used with the TRANSPOSE option, ALLOBS invokes the
ALLVARS option and displays the values for all matching observations and
variables.

ALLSTATS
prints a table of summary statistics for all pairs of matching variables.

See also: “Table of Summary Statistics” on page 233 for information on the
statistics produced

ALLVARS
includes in the report of value comparison results the values and, for numeric
variables, the differences for all pairs of matching variables, even if they are judged
equal.

Default: If you omit ALLVARS, PROC COMPARE prints values only for variables
that are judged unequal.

Interaction: When used with the TRANSPOSE option, ALLVARS displays unequal
values in context with the values for other matching variables. If you omit the
TRANSPOSE option, ALLVARS invokes the ALLOBS option and displays the
values for all matching observations and variables.

216 PROC COMPARE Statement � Chapter 9

BASE=SAS-data-set
specifies the data set to use as the base data set.
Alias: DATA=
Default: the most recently created SAS data set
Tip: You can use the WHERE= data set option with the BASE= option to limit the

observations that are available for comparison.

BRIEFSUMMARY
produces a short comparison summary and suppresses the four default summary
reports (data set summary report, variables summary report, observation summary
report, and values comparison summary report).
Alias: BRIEF
Tip: By default, a listing of value differences accompanies the summary reports. To

suppress this listing, use the NOVALUES option.
Featured in: Example 4 on page 246

COMPARE=SAS-data-set
specifies the data set to use as the comparison data set.
Aliases: COMP=, C=

Default: If you omit COMPARE=, the comparison data set is the same as the base
data set, and PROC COMPARE compares variables within the data set.

Restriction: If you omit COMPARE=, you must use the WITH statement.
Tip: You can use the WHERE= data set option with COMPARE= to limit the

observations that are available for comparison.

CRITERION= �
specifies the criterion for judging the equality of numeric values. Normally, the value
of � (gamma) is positive, in which case the number itself becomes the equality
criterion. If you use a negative value for �, PROC COMPARE uses an equality
criterion proportional to the precision of the computer on which SAS is running.
Default: 0.00001
See also: “The Equality Criterion” on page 226 for more information

ERROR
displays an error message in the SAS log when differences are found.
Interaction: This option overrides the WARNING option.

FUZZ=number
alters the values comparison results for numbers less than number. PROC
COMPARE prints

� 0 for any variable value that is less than number

� a blank for difference or percent difference if it is less than number

� 0 for any summary statistic that is less than number.

Default 0
Range: 0 - 1
Tip: A report that contains many trivial differences is easier to read in this form.

LISTALL
lists all variables and observations that are found in only one data set.
Alias LIST

Interaction: using LISTALL is equivalent to using the following four options:
LISTBASEOBS, LISTCOMPOBS, LISTBASEVAR, and LISTCOMPVAR.

The COMPARE Procedure � PROC COMPARE Statement 217

LISTBASE
lists all observations and variables that are found in the base data set but not in the
comparison data set.
Interaction: Using LISTBASE is equivalent to using the LISTBASEOBS and

LISTBASEVAR options.

LISTBASEOBS
lists all observations that are found in the base data set but not in the comparison
data set.

LISTBASEVAR
lists all variables that are found in the base data set but not in the comparison data
set.

LISTCOMP
lists all observations and variables that are found in the comparison data set but not
in the base data set.
Interaction: Using LISTCOMP is equivalent to using the LISTCOMPOBS and

LISTCOMPVAR options.

LISTCOMPOBS
lists all observations that are found in the comparison data set but not in the base
data set.

LISTCOMPVAR
lists all variables that are found in the comparison data set but not in the base data
set.

LISTEQUALVAR
prints a list of variables whose values are judged equal at all observations in addition
to the default list of variables whose values are judged unequal.

LISTOBS
lists all observations that are found in only one data set.
Interaction: Using LISTOBS is equivalent to using the LISTBASEOBS and

LISTCOMPOBS options.

LISTVAR
lists all variables that are found in only one data set.
Interaction: Using LISTVAR is equivalent to using both the LISTBASEVAR and

LISTCOMPVAR options.

MAXPRINT=total | (per-variable, total)
specifies the maximum number of differences to print, where

total
is the maximum total number of differences to print. The default value is 500
unless you use the ALLOBS option (or both the ALLVAR and TRANSPOSE
options), in which case the default is 32000.

per-variable
is the maximum number of differences to print for each variable within a BY
group. The default value is 50 unless you use the ALLOBS option (or both the
ALLVAR and TRANSPOSE options), in which case the default is 1000.
The MAXPRINT= option prevents the output from becoming extremely large when

data sets differ greatly.

METHOD=ABSOLUTE | EXACT | PERCENT | RELATIVE<(�)>
specifies the method for judging the equality of numeric values. The constant �

(delta) is a number between 0 and 1 that specifies a value to add to the denominator
when calculating the equality measure. By default, � is 0.

218 PROC COMPARE Statement � Chapter 9

Unless you use the CRITERION= option, the default method is EXACT. If you use
CRITERION=, the default method is RELATIVE(�), where � (phi) is a small number
that depends on the numerical precision of the computer on which SAS is running
and on the value of CRITERION=.
See also: “The Equality Criterion” on page 226

NODATE
suppresses the display in the data set summary report of the creation dates and the
last modified dates of the base and comparison data sets.

NOMISSBASE
judges a missing value in the base data set equal to any value. (By default, a missing
value is equal only to a missing value of the same kind, that is .=., .^=.A, .A=.A,
.A^=.B, and so on.)

You can use this option to determine the changes that would be made to the
observations in the comparison data set if it were used as the master data set and
the base data set were used as the transaction data set in a DATA step UPDATE
statement. For information on the UPDATE statement, see the chapter on SAS
language statements in SAS Language Reference: Dictionary.

NOMISSCOMP
judges a missing value in the comparison data set equal to any value. (By default, a
missing value is equal only to a missing value of the same kind, that is .=., .^=.A,
.A=.A, .A^=.B, and so on.)

You can use this option to determine the changes that would be made to the
observations in the base data set if it were used as the master data set and the
comparison data set were used as the transaction data set in a DATA step UPDATE
statement. For information on the UPDATE statement, see the chapter on SAS
language statements in SAS Language Reference: Dictionary.

NOMISSING
judges missing values in both the base and comparison data sets equal to any value.
By default, a missing value is only equal to a missing value of the same kind, that is
.=., .^=.A, .A=.A, .A^=.B, and so on.
Alias: NOMISS
Interaction: Using NOMISSING is equivalent to using both NOMISSBASE and

NOMISSCOMP.

NOPRINT
suppresses all printed output.
Tip: You may want to use this option when you are creating one or more output

data sets.
Featured in: Example 6 on page 251

NOSUMMARY
suppresses the data set, variable, observation, and values comparison summary
reports.
Tips: NOSUMMARY produces no output if there are no differences in the matching

values.
Featured in: Example 2 on page 243

NOTE
displays notes in the SAS log describing the results of the comparison, whether or
not differences were found.

NOVALUES
suppresses the report of the value comparison results.

The COMPARE Procedure � PROC COMPARE Statement 219

Featured in: “Overview: COMPARE Procedure” on page 209

OUT=SAS-data-set
names the output data set. If SAS-data-set does not exist, PROC COMPARE creates
it. SAS-data-set contains the differences between matching variables.
See also: “Output Data Set (OUT=)” on page 236
Featured in: Example 6 on page 251

OUTALL
writes an observation to the output data set for each observation in the base data set
and for each observation in the comparison data set. The option also writes
observations to the output data set containing the differences and percent differences
between the values in matching observations.
Tip: Using OUTALL is equivalent to using the following four options: OUTBASE,

OUTCOMP, OUTDIF, and OUTPERCENT.
See also: “Output Data Set (OUT=)” on page 236

OUTBASE
writes an observation to the output data set for each observation in the base data set,
creating observations in which _TYPE_=BASE.
See also: “Output Data Set (OUT=)” on page 236
Featured in: Example 6 on page 251

OUTCOMP
writes an observation to the output data set for each observation in the comparison
data set, creating observations in which _TYPE_=COMP.
See also: “Output Data Set (OUT=)” on page 236
Featured in: Example 6 on page 251

OUTDIF
writes an observation to the output data set for each pair of matching observations.
The values in the observation include values for the differences between the values
in the pair of observations. The value of _TYPE_ in each observation is DIF.
Default: The OUTDIF option is the default unless you specify the OUTBASE,

OUTCOMP, or OUTPERCENT option. If you use any of these options, you must
explicitly specify the OUTDIF option to create _TYPE_=DIF observations in the
output data set.

See also: “Output Data Set (OUT=)” on page 236
Featured in: Example 6 on page 251

OUTNOEQUAL
suppresses the writing of an observation to the output data set when all values in
the observation are judged equal. In addition, in observations containing values for
some variables judged equal and others judged unequal, the OUTNOEQUAL option
uses the special missing value ".E" to represent differences and percent differences
for variables judged equal.
See also: “Output Data Set (OUT=)” on page 236
Featured in: Example 6 on page 251

OUTPERCENT
writes an observation to the output data set for each pair of matching observations.
The values in the observation include values for the percent differences between the
values in the pair of observations. The value of _TYPE_ in each observation is
PERCENT.
See also: “Output Data Set (OUT=)” on page 236

220 BY Statement � Chapter 9

OUTSTATS=SAS-data-set
writes summary statistics for all pairs of matching variables to the specified
SAS-data-set.
Tip: If you want to print a table of statistics in the procedure output, use the

STATS, ALLSTATS, or PRINTALL option.
See also: “Output Statistics Data Set (OUTSTATS=)” on page 237 and “Table of

Summary Statistics” on page 233.
Featured in: Example 7 on page 253

PRINTALL
invokes the following options: ALLVARS, ALLOBS, ALLSTATS, LISTALL, and
WARNING.
Featured in: Example 1 on page 239

STATS
prints a table of summary statistics for all pairs of matching numeric variables that
are judged unequal.
See also: “Table of Summary Statistics” on page 233 for information on the

statistics produced.

TRANSPOSE
prints the reports of value differences by observation instead of by variable.
Interaction: If you also use the NOVALUES option, the TRANSPOSE option lists

only the names of the variables whose values compare as unequal for each
observation, not the values and differences.

See also: “Comparison Results for Observations (Using the TRANSPOSE Option)”
on page 235.

WARNING
displays a warning message in the SAS log when differences are found.
Interaction: The ERROR option overrides the WARNING option.

BY Statement

Produces a separate comparison for each BY group.

Main discussion: “BY” on page 54

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must be sorted by all the variables that
you specify. Variables in a BY statement are called BY variables.

The COMPARE Procedure � ID Statement 221

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.
The requirement for ordering observations according to the values of BY variables is

suspended for BY-group processing when you use the NOTSORTED option. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

BY Processing with PROC COMPARE
To use a BY statement with PROC COMPARE, you must sort both the base and

comparison data sets by the BY variables. The nature of the comparison depends on
whether all BY variables are in the comparison data set and, if they are, whether their
attributes match those of the BY variables in the base data set. The following table
shows how PROC COMPARE behaves under different circumstances:

Condition Behavior of PROC COMPARE

All BY variables are in the comparison
data set and all attributes match exactly

Compares corresponding BY groups

None of the BY variables are in the
comparison data set

Compares each BY group in the base data set with
the entire comparison data set

Some BY variables are not in the
comparison data set

Writes an error message to the SAS log and
terminates

Some BY variables have different types in
the two data sets

Writes an error message to the SAS log and
terminates

ID Statement
Lists variables to use to match observations.

See also: “A Comparison with an ID Variable” on page 225
Featured in: Example 5 on page 248

ID <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

222 ID Statement � Chapter 9

variable
specifies the variable that the procedure uses to match observations. You can specify
more than one variable, but the data set must be sorted by the variable or variables
you specify. These variables are ID variables. ID variables also identify observations
on the printed reports and in the output data set.

Options

DESCENDING
specifies that the data set is sorted in descending order by the variable that
immediately follows the word DESCENDING in the ID statement.

If you use the DESCENDING option, you must sort the data sets. SAS does not
use an index to process an ID statement with the DESCENDING option. Further,
the use of DESCENDING for ID variables must correspond to the use of the
DESCENDING option in the BY statement in the PROC SORT step that was used to
sort the data sets.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data are grouped in another way, for example, chronological order.
See also: “Comparing Unsorted Data” on page 222

Requirements for ID Variables

� ID variables must be in the BASE= data set or PROC COMPARE stops processing.
� If an ID variable is not in the COMPARE= data set, PROC COMPARE prints a

warning to the SAS log and does not use that variable to match observations in
the comparison data set (but does write it to the OUT= data set).

� ID variables must be of the same type in both data sets.
� You should sort both data sets by the common ID variables (within the BY

variables, if any) unless you specify the NOTSORTED option.

Comparing Unsorted Data
If you do not want to sort the data set by the ID variables, you can use the

NOTSORTED option. When you specify the NOTSORTED option, or if the ID
statement is omitted, PROC COMPARE matches the observations one-to-one. That is,
PROC COMPARE matches the first observation in the base data set with the first
observation in the comparison data set, the second with the second, and so on. If you
use NOTSORTED, and the ID values of corresponding observations are not the same,
PROC COMPARE prints an error message and stops processing.

If the data sets are not sorted by the common ID variables and you do not specify the
NOTSORTED option, PROC COMPARE prints a warning message and continues to
process the data sets as if you had specified NOTSORTED.

Avoiding Duplicate ID Values
The observations in each data set should be uniquely labeled by the values of the ID

variables. If PROC COMPARE finds two successive observations with the same ID
values in a data set, it

� prints the warning Duplicate Observations for the first occurrence for that data
set

The COMPARE Procedure � WITH Statement 223

� prints the total number of duplicate observations found in the data set in the
observation summary report

� uses the first observation with the duplicate value for the comparison.

When the data sets are not sorted, PROC COMPARE detects only those duplicate
observations that occur in succession.

VAR Statement

Restricts the comparison of the values of variables to those named in the VAR statement.

Featured in: Example 2 on page 243, Example 3 on page 244, and Example 4 on page 246

VAR variable(s);

Required Arguments

variable(s)
one or more variables that appear in the BASE= and COMPARE= data sets or only
in the BASE= data set.

Details

� If you do not use the VAR statement, PROC COMPARE compares the values of all
matching variables except those appearing in BY and ID statements.

� If a variable in the VAR statement does not exist in the COMPARE= data set,
PROC COMPARE writes a warning to the SAS log and ignores the variable.

� If a variable in the VAR statement does not exist in the BASE= data set, PROC
COMPARE stops processing and gives an error message.

� The VAR statement restricts only the comparison of values of matching variables.
PROC COMPARE still reports on the total number of matching variables and
compares their attributes. However, it produces neither error nor warning
messages about these variables.

WITH Statement

Compares variables in the base data set with variables that have different names in the
comparison data set, and compares different variables that are in the same data set.

Restriction: You must use the VAR statement when you use the WITH statement.

Featured in: Example 2 on page 243, Example 3 on page 244, and Example 4 on page 246

WITH variable(s);

224 Concepts: COMPARE Procedure � Chapter 9

Required Arguments

variable(s)
one or more variables to compare with variables in the VAR statement.

Comparing Selected Variables
If you want to compare variables in the base data set with variables with different

names in the comparison data set, specify the names of the variables in the base data
set in the VAR statement and the names of the matching variables in the WITH
statement. The first variable that you list in the WITH statement corresponds to the
first variable that you list in the VAR statement, the second with the second, and so on.
If the WITH statement list is shorter than the VAR statement list, PROC COMPARE
assumes that the extra variables in the VAR statement have the same names in the
comparison data set as they do in the base data set. If the WITH statement list is
longer than the VAR statement list, PROC COMPARE ignores the extra variables.

A variable name can appear any number of times in the VAR statement or the WITH
statement. By selecting VAR and WITH statement lists, you can compare the variables
in any permutation.

If you omit the COMPARE= option in the PROC COMPARE statement, you must use
the WITH statement. In this case, PROC COMPARE compares the values of variables
with different names in the BASE= data set.

Concepts: COMPARE Procedure
PROC COMPARE first compares the following:
� data set attributes (set by the data set options TYPE= and LABEL=).
� variables. PROC COMPARE checks each variable in one data set to determine

whether it matches a variable in the other data set.
� attributes (type, length, labels, formats, and informats) of matching variables.
� observations. PROC COMPARE checks each observation in one data set to

determine whether it matches an observation in the other data set. PROC
COMPARE either matches observations by their position in the data sets or by the
values of the ID variable.

After making these comparisons, PROC COMPARE compares the values in the parts
of the data sets that match. PROC COMPARE either compares the data by the position
of observations or by the values of an ID variable.

A Comparison by Position of Observations
Figure 9.1 on page 225 shows two data sets. The data inside the shaded boxes show

the part of the data sets that the procedure compares. Assume that variables with the
same names have the same type.

The COMPARE Procedure � A Comparison with an ID Variable 225

Figure 9.1 Comparison by the Positions of Observations

Data Set ONE

IDNUM NAME GENDER GPA

2998 Bagwell f 3.722

9866 Metcalf m 3.342

2118 Gray f 3.177

3847 Baglione f 4.000

2342 Hall m 3.574

Data Set TWO

IDNUM NAME GENDER GPA YEAR

2998 Bagwell f 3.722 2

9866 Metcalf m 3.342 2

2118 Gray f 3.177 3

3847 Baglione f 4.000 4

2342 Hall m 3.574 4

7565 Gold f 3.609 2

1755 Syme f 3.883 3

When you use PROC COMPARE to compare data set TWO with data set ONE, the
procedure compares the first observation in data set ONE with the first observation in
data set TWO, and it compares the second observation in the first data set with the
second observation in the second data set, and so on. In each observation that it
compares, the procedure compares the values of the IDNUM, NAME, GENDER, and
GPA.

The procedure does not report on the values of the last two observations or the
variable YEAR in data set TWO because there is nothing to compare them with in data
set ONE.

A Comparison with an ID Variable
In a simple comparison, PROC COMPARE uses the observation number to determine

which observations to compare. When you use an ID variable, PROC COMPARE uses
the values of the ID variable to determine which observations to compare. ID variables
should have unique values and must have the same type.

For the two data sets shown in Figure 9.2 on page 226, assume that IDNUM is an ID
variable and that IDNUM has the same type in both data sets. The procedure compares
the observations that have the same value for IDNUM. The data inside the shaded
boxes show the part of the data sets that the procedure compares.

226 The Equality Criterion � Chapter 9

Figure 9.2 Comparison by the Value of the ID Variable

Data Set ONE

IDNUM NAME GENDER GPA

2998 Bagwell f 3.722

9866 Metcalf m 3.342

2118 Gray f 3.177

3847 Baglione f 4.000

2342 Hall m 3.574

Data Set TWO

IDNUM NAME GENDER GPA YEAR

2998 Bagwell f 3.722 2

9866 Metcalf m 3.342 2

2118 Gray f 3.177 3

3847 Baglione f 4.000 4

2342 Hall m 3.574 4

7565 Gold f 3.609 2

1755 Syme f 3.883 3

The data sets contain three matching variables: NAME, GENDER, and GPA. They
also contain five matching observations: the observations with values of 2998, 9866,
2118, 3847, and 2342 for IDNUM.

Data Set TWO contains two observations (IDNUM=7565 and IDNUM=1755) for
which data set ONE contains no matching observations. Similarly, no variable in data
set ONE matches the variable YEAR in data set TWO.

See Example 5 on page 248 for an example that uses an ID variable.

The Equality Criterion
The COMPARE procedure judges numeric values unequal if the magnitude of their

difference, as measured according to the METHOD= option, is greater than the value of
the CRITERION= option. PROC COMPARE provides four methods for applying
CRITERION=:

� The EXACT method tests for exact equality.

� The ABSOLUTE method compares the absolute difference to the value specified by
CRITERION=.

� The RELATIVE method compares the absolute relative difference to the value
specified by CRITERION=.

� The PERCENT method compares the absolute percent difference to the value
specified by CRITERION=.

For a numeric variable compared, let x be its value in the base data set and let y be
its value in the comparison data set. If both x and y are nonmissing, the values are
judged unequal according to the value of METHOD= and the value of CRITERION= (�)
as follows:

� If METHOD=EXACT, the values are unequal if y does not equal x.
� If METHOD=ABSOLUTE, the values are unequal if

The COMPARE Procedure � The Equality Criterion 227

��� �� � �� � �

� If METHOD=RELATIVE, the values are unequal if

��� �� � �� � �������� � ������� �� � �� � �

The values are equal if x=y=0.
� If METHOD=PERCENT, the values are unequal if

��� ���� �� � �� ���� ���� � � 	
� � �� �

or

� �� � 	
�
 � � �

If x or y is missing, then the comparison depends on the NOMISSING option. If
NOMISSING is in effect, a missing value will always compare equal to anything.
Otherwise, a missing value is judged equal only to a missing value of the same type,
(that is, .=., .^=.A, .A=.A, .A^=.B, and so on).

If the value specified for CRITERION= is negative, the actual criterion used is made
equal to the absolute value of � times a very small number � (epsilon) that depends on
the numerical precision of the computer. This number � is defined as the smallest
positive floating-point value such that, using machine arithmetic, 1−�<1<1+�. Round-off
or truncation error in floating-point computations is typically a few orders of magnitude
larger than �. This means that CRITERION=−1000 often provides a reasonable test of
the equality of computed results at the machine level of precision.

The value � added to the denominator in the RELATIVE method is specified in
parentheses after the method name: METHOD=RELATIVE(�). If not specified in
METHOD=, � defaults to 0. The value of � can be used to control the behavior of the
error measure when both x and y are very close to 0. If � is not given and x and y are
very close to 0, any error produces a large relative error (in the limit, 2).

Specifying a value for � avoids this extreme sensitivity of the RELATIVE method for
small values. If you specify METHOD=RELATIVE(�) CRITERION=� when both x and y
are much smaller than � in absolute value, the comparison is as if you had specified
METHOD=ABSOLUTE CRITERION=��. However, when either x or y is much larger
than � in absolute value, the comparison is like METHOD=RELATIVE CRITERION=�.
For moderate values of x and y, METHOD=RELATIVE(�) CRITERION=� is, in effect, a
compromise between METHOD=ABSOLUTE CRITERION=� � and
METHOD=RELATIVE CRITERION=�.

For character variables, if one value has a greater length than the other, the shorter
value is padded with blanks for the comparison. Nonblank character values are judged
equal only if they agree at each character. If NOMISSING is in effect, blank character
values compare equal to anything.

Definition of Difference and Percent Difference
In the reports of value comparisons and in the OUT= data set, PROC COMPARE

displays difference and percent difference values for the numbers compared. These
quantities are defined using the value from the base data set as the reference value.

228 How PROC COMPARE Handles Variable Formats � Chapter 9

For a numeric variable compared, let x be its value in the base data set and let y be its
value in the comparison data set. If x and y are both nonmissing, the difference and
percent difference are defined as follows:

Difference = � � �

Percent Difference = �� � �� �� � ��� ��� � �� �

Percent Difference = missing for � � � �

How PROC COMPARE Handles Variable Formats
PROC COMPARE compares unformatted values. If you have two matching variables

that are formatted differently, PROC COMPARE lists the formats of the variables.

Results: COMPARE Procedure

PROC COMPARE reports the results of its comparisons in the following ways:

� the SAS log

� return codes stored in the automatic macro SYSINFO

� procedure output

� output data sets.

SAS Log
When you use the WARNING, PRINTALL, or ERROR option, PROC COMPARE

writes a description of the differences to the SAS log.

Macro Return Codes (SYSINFO)
PROC COMPARE stores a return code in the automatic macro variable SYSINFO.

The value of the return code provides information about the result of the comparison.
By checking the value of SYSINFO after PROC COMPARE has run and before any
other step begins, SAS macros can use the results of a PROC COMPARE step to
determine what action to take or what parts of a SAS program to execute.

Table 9.1 on page 228 is a key for interpreting the SYSINFO return code from PROC
COMPARE. For each of the conditions listed, the associated value is added to the
return code if the condition is true. Thus, the SYSINFO return code is the sum of the
codes listed in Table 9.1 on page 228 for the applicable conditions:

Table 9.1 Macro Return Codes

Bit Condition Code Hex Description

1 DSLABEL 1 0001X Data set labels differ

2 DSTYPE 2 0002X Data set types differ

3 INFORMAT 4 0004X Variable has different informat

4 FORMAT 8 0008X Variable has different format

5 LENGTH 16 0010X Variable has different length

The COMPARE Procedure � Macro Return Codes (SYSINFO) 229

Bit Condition Code Hex Description

6 LABEL 32 0020X Variable has different label

7 BASEOBS 64 0040X Base data set has observation not in
comparison

8 COMPOBS 128 0080X Comparison data set has observation not
in base

9 BASEBY 256 0100X Base data set has BY group not in
comparison

10 COMPBY 512 0200X Comparison data set has BY group not in
base

11 BASEVAR 1024 0400X Base data set has variable not in
comparison

12 COMPVAR 2048 0800X Comparison data set has variable not in
base

13 VALUE 4096 1000X A value comparison was unequal

14 TYPE 8192 2000X Conflicting variable types

15 BYVAR 16384 4000X BY variables do not match

16 ERROR 32768 8000X Fatal error: comparison not done

These codes are ordered and scaled to allow a simple check of the degree to which the
data sets differ. For example, if you want to check that two data sets contain the same
variables, observations, and values, but you do not care about differences in labels,
formats, and so forth, use the following statements:

proc compare base=SAS-data-set
compare=SAS-data-set;

run;

%if &sysinfo >= 64 %then
%do;

handle error;
%end;

You can examine individual bits in the SYSINFO value by using DATA step
bit-testing features to check for specific conditions. For example, to check for the
presence of observations in the base data set that are not in the comparison data set,
use the following statements:

proc compare base=SAS-data-set
compare=SAS-data-set;

run;

%let rc=&sysinfo;
data _null_;

if &rc=’1......’b then
put ’Observations in Base but not

in Comparison Data Set’;
run;

230 Procedure Output � Chapter 9

PROC COMPARE must run before you check SYSINFO and you must obtain the
SYSINFO value before another SAS step starts because every SAS step resets
SYSINFO.

Procedure Output
The following sections show and describe the default output of the two data sets

shown in “Overview: COMPARE Procedure” on page 209. Because PROC COMPARE
produces lengthy output, the output is presented in seven pieces.

Data Set Summary
This report lists the attributes of the data sets being compared. These attributes

include the following:
� the data set names
� the data set types, if any
� the data set labels, if any
� the dates created and last modified
� the number of variables in each data set
� the number of observations in each data set.

Output 9.2 on page 230 shows the Data Set Summary.

Output 9.2 Partial Output

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Data Set Summary

Dataset Created Modified NVar NObs Label

PROCLIB.ONE 11SEP97:15:11:07 11SEP97:15:11:09 5 4 First Data Set
PROCLIB.TWO 11SEP97:15:11:10 11SEP97:15:11:10 6 5 Second Data Set

Variables Summary
This report compares the variables in the two data sets. The first part of the report

lists the following:
� the number of variables the data sets have in common
� the number of variables in the base data set that are not in the comparison data

set and vice versa
� the number of variables in both data sets that have different types
� the number of variables that differ on other attributes (length, label, format, or

informat)
� the number of BY, ID, VAR, and WITH variables specified for the comparison.

The second part of the report lists matching variables with different attributes and
shows how the attributes differ. (The COMPARE procedure omits variable labels if the
line size is too small for them.)

The COMPARE Procedure � Procedure Output 231

Output 9.3 on page 231 shows the Variables Summary.

Output 9.3 Partial Output

Variables Summary

Number of Variables in Common: 5.
Number of Variables in PROCLIB.TWO but not in PROCLIB.ONE: 1.
Number of Variables with Conflicting Types: 1.
Number of Variables with Differing Attributes: 3.

Listing of Common Variables with Conflicting Types

Variable Dataset Type Length

student PROCLIB.ONE Num 8
PROCLIB.TWO Char 8

Listing of Common Variables with Differing Attributes

Variable Dataset Type Length Format Label

year PROCLIB.ONE Char 8 Year of Birth
PROCLIB.TWO Char 8

state PROCLIB.ONE Char 8
PROCLIB.TWO Char 8 Home State

gr1 PROCLIB.ONE Num 8 4.1
PROCLIB.TWO Num 8 5.2

Observation Summary
This report provides information about observations in the base and comparison data

sets. First of all, the report identifies the first and last observation in each data set, the
first and last matching observations, and the first and last differing observations. Then,
the report lists the following:

� the number of observations that the data sets have in common
� the number of observations in the base data set that are not in the comparison

data set and vice versa
� the total number of observations in each data set
� the number of matching observations for which PROC COMPARE judged some

variables unequal
� the number of matching observations for which PROC COMPARE judged all

variables equal.

Output 9.4 on page 231 shows the Observation Summary.

232 Procedure Output � Chapter 9

Output 9.4 Partial Output

Observation Summary

Observation Base Compare

First Obs 1 1
First Unequal 1 1
Last Unequal 4 4
Last Match 4 4
Last Obs . 5

Number of Observations in Common: 4.
Number of Observations in PROCLIB.TWO but not in PROCLIB.ONE: 1.
Total Number of Observations Read from PROCLIB.ONE: 4.
Total Number of Observations Read from PROCLIB.TWO: 5.

Number of Observations with Some Compared Variables Unequal: 4.
Number of Observations with All Compared Variables Equal: 0.

Values Comparison Summary
This report first lists the following:
� the number of variables compared with all observations equal
� the number of variables compared with some observations unequal
� the number of variables with differences involving missing values, if any
� the total number of values judged unequal
� the maximum difference measure between unequal values for all pairs of matching

variables (for differences not involving missing values).

In addition, for the variables for which some matching observations have unequal
values, the report lists

� the name of the variable
� other variable attributes
� the number of times PROC COMPARE judged the variable unequal
� the maximum difference measure found between values (for differences not

involving missing values)
� the number of differences caused by comparison with missing values, if any.

Output 9.5 on page 232 shows the Values Comparison Summary.

Output 9.5 Partial Output

Values Comparison Summary

Number of Variables Compared with All Observations Equal: 1.
Number of Variables Compared with Some Observations Unequal: 3.
Total Number of Values which Compare Unequal: 6.
Maximum Difference: 20.

Variables with Unequal Values

Variable Type Len Compare Label Ndif MaxDif

state CHAR 8 Home State 2
gr1 NUM 8 2 1.000
gr2 NUM 8 2 20.000

The COMPARE Procedure � Procedure Output 233

Value Comparison Results
This report consists of a table for each pair of matching variables judged unequal at

one or more observations. When comparing character values, PROC COMPARE
displays only the first 20 characters. When you use the TRANSPOSE option, it displays
only the first 12 characters. Each table shows

� the number of the observation or, if you use the ID statement, the values of the ID
variables

� the value of the variable in the base data set

� the value of the variable in the comparison data set

� the difference between these two values (numeric variables only)

� the percent difference between these two values (numeric variables only).

Output 9.6 on page 233 shows the Value Comparison Results for Variables.

Output 9.6 Partial Output

Value Comparison Results for Variables

__
|| Home State
|| Base Value Compare Value

Obs || state state
________ || ________ ________

||
2 || MD MA
4 || MA MD

__

__
|| Base Compare

Obs || gr1 gr1 Diff. % Diff
________ || _________ _________ _________ _________

||
1 || 85.0 84.00 -1.0000 -1.1765
3 || 78.0 79.00 1.0000 1.2821

__

__
|| Base Compare

Obs || gr2 gr2 Diff. % Diff
________ || _________ _________ _________ _________

||
3 || 72.0000 73.0000 1.0000 1.3889
4 || 94.0000 74.0000 -20.0000 -21.2766

__

You can suppress the value comparison results with the NOVALUES option. If you
use both the NOVALUES and TRANSPOSE options, PROC COMPARE lists for each
observation the names of the variables with values judged unequal but does not display
the values and differences.

Table of Summary Statistics
If you use the STATS, ALLSTATS, or PRINTALL options, the Value Comparison

Results for Variables section contains summary statistics for the numeric variables
being compared. The STATS option generates these statistics for only the numeric

234 Procedure Output � Chapter 9

variables whose values are judged unequal. The ALLSTATS and PRINTALL options
generate these statistics for all numeric variables, even if all values are judged equal.

Note: In all cases PROC COMPARE calculates the summary statistics based on all
matching observations that do not contain missing values, not just on those containing
unequal values. �

Output 9.7 on page 234 shows the following summary statistics for base data set
values, comparison data set values, differences, and percent differences:

N
the number of nonmissing values

MEAN
the mean, or average, of the values

STD
the standard deviation

MAX
the maximum value

MIN
the minimum value

STDERR
the standard error of the mean

T
the T ratio (MEAN/STDERR)

PROB> | T |
the probability of a greater absolute T value if the true population mean is 0.

NDIF
the number of matching observations judged unequal, and the percent of the
matching observations that were judged unequal.

DIFMEANS
the difference between the mean of the base values and the mean of the
comparison values. This line contains three numbers. The first is the mean
expressed as a percentage of the base values mean. The second is the mean
expressed as a percentage of the comparison values mean. The third is the
difference in the two means (the comparison mean minus the base mean).

R
the correlation of the base and comparison values for matching observations that
are nonmissing in both data sets.

RSQ
the square of the correlation of the base and comparison values for matching
observations that are nonmissing in both data sets.

Output 9.7 on page 234 is from the ALLSTATS option using the two data sets shown
in “Overview”:

The COMPARE Procedure � Procedure Output 235

Output 9.7 Partial Output

Value Comparison Results for Variables

__
|| Base Compare

Obs || gr1 gr1 Diff. % Diff
________ || _________ _________ _________ _________

||
1 || 85.0 84.00 -1.0000 -1.1765
3 || 78.0 79.00 1.0000 1.2821

________ || _________ _________ _________ _________
||

N || 4 4 4 4
Mean || 85.5000 85.5000 0 0.0264
Std || 5.8023 5.4467 0.8165 1.0042
Max || 92.0000 92.0000 1.0000 1.2821
Min || 78.0000 79.0000 -1.0000 -1.1765

StdErr || 2.9011 2.7234 0.4082 0.5021
t || 29.4711 31.3951 0.0000 0.0526

Prob>|t| || <.0001 <.0001 1.0000 0.9614
||

Ndif || 2 50.000%
DifMeans || 0.000% 0.000% 0

r, rsq || 0.991 0.983
__

__
|| Base Compare

Obs || gr2 gr2 Diff. % Diff
________ || _________ _________ _________ _________

||
3 || 72.0000 73.0000 1.0000 1.3889
4 || 94.0000 74.0000 -20.0000 -21.2766

________ || _________ _________ _________ _________
||

N || 4 4 4 4
Mean || 86.2500 81.5000 -4.7500 -4.9719
Std || 9.9457 9.4692 10.1776 10.8895
Max || 94.0000 92.0000 1.0000 1.3889
Min || 72.0000 73.0000 -20.0000 -21.2766

StdErr || 4.9728 4.7346 5.0888 5.4447
t || 17.3442 17.2136 -0.9334 -0.9132

Prob>|t| || 0.0004 0.0004 0.4195 0.4285
||

Ndif || 2 50.000%
DifMeans || -5.507% -5.828% -4.7500

r, rsq || 0.451 0.204
__

Note: If you use a wide line size with PRINTALL, PROC COMPARE prints the
value comparison result for character variables next to the result for numeric variables.
In that case, PROC COMPARE calculates only NDIF for the character variables. �

Comparison Results for Observations (Using the TRANSPOSE Option)
The TRANSPOSE option prints the comparison results by observation instead of by

variable. The comparison results precede the observation summary report. By default,
the source of the values for each row of the table is indicated by the following label:

_OBS_1=number-1 _OBS_2=number-2

236 Output Data Set (OUT=) � Chapter 9

where number-1 is the number of the observation in the base data set for which the
value of the variable is shown, and number-2 is the number of the observation in the
comparison data set.

Output 9.8 on page 236 shows the differences in PROCLIB.ONE and PROCLIB.TWO
by observation instead of by variable.

Output 9.8 Partial Output

Comparison Results for Observations

_OBS_1=1 _OBS_2=1:
Variable Base Value Compare Diff. % Diff

gr1 85.0 84.00 -1.000000 -1.176471

_OBS_1=2 _OBS_2=2:
Variable Base Value Compare

state MD MA

_OBS_1=3 _OBS_2=3:
Variable Base Value Compare Diff. % Diff

gr1 78.0 79.00 1.000000 1.282051
gr2 72.000000 73.000000 1.000000 1.388889

_OBS_1=4 _OBS_2=4:
Variable Base Value Compare Diff. % Diff

gr2 94.000000 74.000000 -20.000000 -21.276596
state MA MD

If you use an ID statement, the identifying label has the following form:

ID-1=ID-value-1 ... ID-n=ID-value-n

where ID is the name of an ID variable and ID-value is the value of the ID variable.

Note: When you use the TRANSPOSE option, PROC COMPARE prints only the
first 12 characters of the value. �

Output Data Set (OUT=)
By default, the OUT= data set contains an observation for each pair of matching

observations. The OUT= data set contains the following variables from the data sets
you are comparing:

� all variables named in the BY statement

� all variables named in the ID statement

� all matching variables or, if you use the VAR statement, all variables listed in the
VAR statement.

In addition, the data set contains two variables created by PROC COMPARE to
identify the source of the values for the matching variables: _TYPE_ and _OBS_.

TYPE
is a character variable of length 8. Its value indicates the source of the values for
the matching (or VAR) variables in that observation. (For ID and BY variables,
which are not compared, the values are the values from the original data sets.)
TYPE has the label Type of Observation. The four possible values of this
variable are as follows:

BASE

The COMPARE Procedure � Output Statistics Data Set (OUTSTATS=) 237

The values in this observation are from an observation in the base data set.
PROC COMPARE writes this type of observation to the OUT= data set when
you specify the OUTBASE option.

COMPARE
The values in this observation are from an observation in the comparison
data set. PROC COMPARE writes this type of observation to the OUT= data
set when you specify the OUTCOMP option.

DIF
The values in this observation are the differences between the values in the
base and comparison data sets. For character variables, PROC COMPARE
uses a period (.) to represent equal characters and an X to represent unequal
characters. PROC COMPARE writes this type of observation to the OUT=
data set by default. However, if you request any other type of observation
with the OUTBASE, OUTCOMP, or OUTPERCENT option, you must specify
the OUTDIF option to generate observations of this type in the OUT= data
set.

PERCENT
The values in this observation are the percent differences between the values
in the base and comparison data sets. For character variables the values in
observations of type PERCENT are the same as the values in observations of
type DIF.

OBS
is a numeric variable containing a number further identifying the source of the
OUT= observations.

For observations with _TYPE_ equal to BASE, _OBS_ is the number of the
observation in the base data set from which the values of the VAR variables were
copied. Similarly, for observations with _TYPE_ equal to COMPARE, _OBS_ is the
number of the observation in the comparison data set from which the values of the
VAR variables were copied.

For observations with _TYPE_ equal to DIF or PERCENT, _OBS_ is a sequence
number that counts the matching observations in the BY group.

OBS has the label Observation Number.

The COMPARE procedure takes variable names and attributes for the OUT= data
set from the base data set except for the lengths of ID and VAR variables, for which it
uses the longer length regardless of which data set that length is from. This behavior
has two important repercussions:

� If you use the VAR and WITH statements, the names of the variables in the OUT=
data set come from the VAR statement. Thus, observations with _TYPE_ equal to
BASE contain the values of the VAR variables, while observations with _TYPE_
equal to COMPARE contain the values of the WITH variables.

� If you include a variable more than once in the VAR statement in order to compare
it with more than one variable, PROC COMPARE can include only the first
comparison in the OUT= data set because each variable must have a unique name.
Other comparisons produce warning messages.

For an example of the OUT= option, see Example 6 on page 251.

Output Statistics Data Set (OUTSTATS=)
When you use the OUTSTATS= option, PROC COMPARE calculates the same

summary statistics as the ALLSTATS option for each pair of numeric variables
compared (see “Table of Summary Statistics” on page 233). The OUTSTATS= data set

238 Output Statistics Data Set (OUTSTATS=) � Chapter 9

contains an observation for each summary statistic for each pair of variables. The data
set also contains the BY variables used in the comparison and several variables created
by PROC COMPARE:

VAR
is a character variable containing the name of the variable from the base data set
for which the statistic in the observation was calculated.

WITH
is a character variable containing the name of the variable from the comparison
data set for which the statistic in the observation was calculated. The _WITH_
variable is not included in the OUTSTATS= data set unless you use the WITH
statement.

TYPE
is a character variable containing the name of the statistic contained in the
observation. Values of the _TYPE_ variable are N, MEAN, STD, MIN, MAX, STDERR, T,
PROBT, NDIF, DIFMEANS, and R, RSQ.

BASE
is a numeric variable containing the value of the statistic calculated from the
values of the variable named by _VAR_ in the observations in the base data set
with matching observations in the comparison data set.

COMP
is a numeric variable containing the value of the statistic calculated from the
values of the variable named by the _VAR_ variable (or by the _WITH_ variable if
you use the WITH statement) in the observations in the comparison data set with
matching observations in the base data set.

DIF
is a numeric variable containing the value of the statistic calculated from the
differences of the values of the variable named by the _VAR_ variable in the base
data set and the matching variable (named by the _VAR_ or _WITH_ variable) in
the comparison data set.

PCTDIF
is a numeric variable containing the value of the statistic calculated from the
percent differences of the values of the variable named by the _VAR_ variable in
the base data set and the matching variable (named by the _VAR_ or _WITH_
variable) in the comparison data set.

Note: For both types of output data sets, PROC COMPARE assigns one of the
following data set labels:

Comparison of base-SAS-data-set
with comparison-SAS-data-set

Comparison of variables in base-SAS-data-set

�

Labels are limited to 40 characters.
See Example 7 on page 253 for an example of an OUTSTATS= data set.

The COMPARE Procedure � Output 239

Examples: COMPARE Procedure

Example 1: Producing a Complete Report of the Differences

Procedure features:
PROC COMPARE statement options

BASE=
PRINTALL
COMPARE=

Data sets:
PROCLIB.ONE, PROCLIB.TWO on page 210

This example shows the most complete report that PROC COMPARE produces as
procedure output.

Program

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=40;

Create a complete report of the differences between two data sets. BASE= and
COMPARE= specify the data sets to compare. PRINTALL prints a full report of the differences.

proc compare base=proclib.one compare=proclib.two printall;
title ’Comparing Two Data Sets: Full Report’;

run;

Output

240 Output � Chapter 9

A > in the output marks information that is in the full report but not in the default report. The
additional information includes a listing of variables found in one data set but not the other, a
listing of observations found in one data set but not the other, a listing of variables with all
equal values, and summary statistics. For an explanation of the statistics, see “Table of
Summary Statistics” on page 233.

Comparing Two Data Sets: Full Report 1

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Data Set Summary

Dataset Created Modified NVar NObs Label

PROCLIB.ONE 11SEP97:16:19:59 11SEP97:16:20:01 5 4 First Data Set
PROCLIB.TWO 11SEP97:16:20:01 11SEP97:16:20:01 6 5 Second Data Set

Variables Summary

Number of Variables in Common: 5.
Number of Variables in PROCLIB.TWO but not in PROCLIB.ONE: 1.
Number of Variables with Conflicting Types: 1.
Number of Variables with Differing Attributes: 3.

Listing of Variables in PROCLIB.TWO but not in PROCLIB.ONE

Variable Type Length

> major Char 8

Listing of Common Variables with Conflicting Types

Variable Dataset Type Length

student PROCLIB.ONE Num 8
PROCLIB.TWO Char 8

The COMPARE Procedure � Output 241

Comparing Two Data Sets: Full Report 2

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Listing of Common Variables with Differing Attributes

Variable Dataset Type Length Format Label

year PROCLIB.ONE Char 8 Year of Birth
PROCLIB.TWO Char 8

state PROCLIB.ONE Char 8
PROCLIB.TWO Char 8 Home State

gr1 PROCLIB.ONE Num 8 4.1
PROCLIB.TWO Num 8 5.2

Comparison Results for Observations

> Observation 5 in PROCLIB.TWO not found in PROCLIB.ONE.

Observation Summary

Observation Base Compare

First Obs 1 1
First Unequal 1 1
Last Unequal 4 4
Last Match 4 4
Last Obs . 5

Number of Observations in Common: 4.
Number of Observations in PROCLIB.TWO but not in PROCLIB.ONE: 1.
Total Number of Observations Read from PROCLIB.ONE: 4.
Total Number of Observations Read from PROCLIB.TWO: 5.

Number of Observations with Some Compared Variables Unequal: 4.
Number of Observations with All Compared Variables Equal: 0.

Comparing Two Data Sets: Full Report 3

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Values Comparison Summary

Number of Variables Compared with All Observations Equal: 1.
Number of Variables Compared with Some Observations Unequal: 3.
Total Number of Values which Compare Unequal: 6.
Maximum Difference: 20.

Variables with All Equal Values

> Variable Type Len Label

year CHAR 8 Year of Birth

Variables with Unequal Values

Variable Type Len Compare Label Ndif MaxDif

state CHAR 8 Home State 2
gr1 NUM 8 2 1.000
gr2 NUM 8 2 20.000

242 Output � Chapter 9

Comparing Two Data Sets: Full Report 4

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Value Comparison Results for Variables

__
|| Year of Birth
|| Base Value Compare Value

Obs || year year
________ || ________ ________

||
1 || 1970 1970
2 || 1971 1971
3 || 1969 1969
4 || 1970 1970

__

__
|| Home State
|| Base Value Compare Value

Obs || state state
________ || ________ ________

||
1 || NC NC
2 || MD MA
3 || PA PA
4 || MA MD

__

Comparing Two Data Sets: Full Report 5

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Value Comparison Results for Variables

__
|| Base Compare

Obs || gr1 gr1 Diff. % Diff
________ || _________ _________ _________ _________

||
1 || 85.0 84.00 -1.0000 -1.1765
2 || 92.0 92.00 0 0
3 || 78.0 79.00 1.0000 1.2821
4 || 87.0 87.00 0 0

________ || _________ _________ _________ _________
> ||

N || 4 4 4 4
Mean || 85.5000 85.5000 0 0.0264
Std || 5.8023 5.4467 0.8165 1.0042
Max || 92.0000 92.0000 1.0000 1.2821
Min || 78.0000 79.0000 -1.0000 -1.1765

StdErr || 2.9011 2.7234 0.4082 0.5021
t || 29.4711 31.3951 0.0000 0.0526

Prob>|t| || <.0001 <.0001 1.0000 0.9614
||

Ndif || 2 50.000%
DifMeans || 0.000% 0.000% 0

r, rsq || 0.991 0.983
__

The COMPARE Procedure � Program 243

Comparing Two Data Sets: Full Report 6

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

Value Comparison Results for Variables

__
|| Base Compare

Obs || gr2 gr2 Diff. % Diff
________ || _________ _________ _________ _________

||
1 || 87.0000 87.0000 0 0
2 || 92.0000 92.0000 0 0
3 || 72.0000 73.0000 1.0000 1.3889
4 || 94.0000 74.0000 -20.0000 -21.2766

________ || _________ _________ _________ _________
> ||

N || 4 4 4 4
Mean || 86.2500 81.5000 -4.7500 -4.9719
Std || 9.9457 9.4692 10.1776 10.8895
Max || 94.0000 92.0000 1.0000 1.3889
Min || 72.0000 73.0000 -20.0000 -21.2766

StdErr || 4.9728 4.7346 5.0888 5.4447
t || 17.3442 17.2136 -0.9334 -0.9132

Prob>|t| || 0.0004 0.0004 0.4195 0.4285
||

Ndif || 2 50.000%
DifMeans || -5.507% -5.828% -4.7500

r, rsq || 0.451 0.204
__

Example 2: Comparing Variables in Different Data Sets

Procedure features:
PROC COMPARE statement option

NOSUMMARY

VAR statement

WITH statement

Data sets:
PROCLIB.ONE, PROCLIB.TWO on page 210.

This example compares a variable from the base data set with a variable in the
comparison data set. All summary reports are suppressed.

Program

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=40;

244 Output � Chapter 9

Suppress all summary reports of the differences between two data sets. BASE=
specifies the base data set and COMPARE= specifies the comparison data set. NOSUMMARY
suppresses all summary reports.

proc compare base=proclib.one compare=proclib.two nosummary;

Specify one variable from the base data set to compare with one variable from the
comparison data set. The VAR and WITH statements specify the variables to compare. This
example compares GR1 from the base data set with GR2 from the comparison data set.

var gr1;
with gr2;
title ’Comparison of Variables in Different Data Sets’;

run;

Output

Comparison of Variables in Different Data Sets 1

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

NOTE: Data set PROCLIB.TWO contains 1 observations not in PROCLIB.ONE.
NOTE: Values of the following 1 variables compare unequal: gr1^=gr2

Value Comparison Results for Variables

__
|| Base Compare

Obs || gr1 gr2 Diff. % Diff
________ || _________ _________ _________ _________

||
1 || 85.0 87.0000 2.0000 2.3529
3 || 78.0 73.0000 -5.0000 -6.4103
4 || 87.0 74.0000 -13.0000 -14.9425

__

Example 3: Comparing a Variable Multiple Times

Procedure features:
VAR statement
WITH statement

Data sets:
PROCLIB.ONE, PROCLIB.TWO on page 210.

This example compares one variable from the base data set with two variables in the
comparison data set.

The COMPARE Procedure � Output 245

Program

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=40;

Suppress all summary reports of the differences between two data sets. BASE=
specifies the base data set and COMPARE= specifies the comparison data set. NOSUMMARY
suppresses all summary reports.

proc compare base=proclib.one compare=proclib.two nosummary;

Specify one variable from the base data set to compare with two variables from the
comparison data set. The VAR and WITH statements specify the variables to compare. This
example compares GR1 from the base data set with GR1 and GR2 from the comparison data set.

var gr1 gr1;
with gr1 gr2;
title ’Comparison of One Variable with Two Variables’;

run;

Output

246 Example 4: Comparing Variables That Are in the Same Data Set � Chapter 9

The Value Comparison Results section shows the result of the comparison.

Comparison of One Variable with Two Variables 1

COMPARE Procedure
Comparison of PROCLIB.ONE with PROCLIB.TWO

(Method=EXACT)

NOTE: Data set PROCLIB.TWO contains 1 observations not in PROCLIB.ONE.
NOTE: Values of the following 2 variables compare unequal: gr1^=gr1 gr1^=gr2

Value Comparison Results for Variables

__
|| Base Compare

Obs || gr1 gr1 Diff. % Diff
________ || _________ _________ _________ _________

||
1 || 85.0 84.00 -1.0000 -1.1765
3 || 78.0 79.00 1.0000 1.2821

__

__
|| Base Compare

Obs || gr1 gr2 Diff. % Diff
________ || _________ _________ _________ _________

||
1 || 85.0 87.0000 2.0000 2.3529
3 || 78.0 73.0000 -5.0000 -6.4103
4 || 87.0 74.0000 -13.0000 -14.9425

__

Example 4: Comparing Variables That Are in the Same Data Set

Procedure features:
PROC COMPARE statement options

ALLSTATS
BRIEFSUMMARY

VAR statement
WITH statement

Data set:
PROCLIB.ONE on page 210.

This example shows that PROC COMPARE can compare two variables that are in
the same data set.

Program

libname proclib ’SAS-data-library’;

The COMPARE Procedure � Output 247

options nodate pageno=1 linesize=80 pagesize=40;

Create a short summary report of the differences within one data set. ALLSTATS prints
summary statistics. BRIEFSUMMARY prints only a short comparison summary.

proc compare base=proclib.one allstats briefsummary;

Specify two variables from the base data set to compare. The VAR and WITH statements
specify the variables in the base data set to compare. This example compares GR1 with GR2.
Because there is no comparison data set, the variables GR1 and GR2 must be in the base data
set.

var gr1;
with gr2;
title ’Comparison of Variables in the Same Data Set’;

run;

Output

Comparison of Variables in the Same Data Set 1

COMPARE Procedure
Comparisons of variables in PROCLIB.ONE

(Method=EXACT)

NOTE: Values of the following 1 variables compare unequal: gr1^=gr2

Value Comparison Results for Variables

__
|| Base Compare

Obs || gr1 gr2 Diff. % Diff
________ || _________ _________ _________ _________

||
1 || 85.0 87.0000 2.0000 2.3529
3 || 78.0 72.0000 -6.0000 -7.6923
4 || 87.0 94.0000 7.0000 8.0460

________ || _________ _________ _________ _________
||

N || 4 4 4 4
Mean || 85.5000 86.2500 0.7500 0.6767
Std || 5.8023 9.9457 5.3774 6.5221
Max || 92.0000 94.0000 7.0000 8.0460
Min || 78.0000 72.0000 -6.0000 -7.6923

StdErr || 2.9011 4.9728 2.6887 3.2611
t || 29.4711 17.3442 0.2789 0.2075

Prob>|t| || <.0001 0.0004 0.7984 0.8489
||

Ndif || 3 75.000%
DifMeans || 0.877% 0.870% 0.7500

r, rsq || 0.898 0.807
__

248 Example 5: Comparing Observations with an ID Variable � Chapter 9

Example 5: Comparing Observations with an ID Variable
Procedure features:

ID statement

In this example, PROC COMPARE compares only the observations that have
matching values for the ID variable.

Program

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=40;

Create the PROCLIB.EMP95 and PROCLIB.EMP96 data sets. PROCLIB.EMP95 and
PROCLIB.EMP96 contain employee data. IDNUM works well as an ID variable because it has
unique values. A DATA step on page 1643 creates PROCLIB.EMP95. A DATA step on page 1644
creates PROCLIB.EMP96.

data proclib.emp95;
input #1 idnum $4. @6 name $15.

#2 address $42.
#3 salary 6.;

datalines;
2388 James Schmidt
100 Apt. C Blount St. SW Raleigh NC 27693
92100
2457 Fred Williams
99 West Lane Garner NC 27509
33190
... more data lines...
3888 Kim Siu
5662 Magnolia Blvd Southeast Cary NC 27513
77558
;

data proclib.emp96;
input #1 idnum $4. @6 name $15.

#2 address $42.
#3 salary 6.;

datalines;
2388 James Schmidt
100 Apt. C Blount St. SW Raleigh NC 27693
92100
2457 Fred Williams
99 West Lane Garner NC 27509
33190
...more data lines...

The COMPARE Procedure � Output 249

6544 Roger Monday
3004 Crepe Myrtle Court Raleigh NC 27604
47007
;

Sort the data sets by the ID variable. Both data sets must be sorted by the variable that will
be used as the ID variable in the PROC COMPARE step. OUT= specifies the location of the
sorted data.

proc sort data=proclib.emp95 out=emp95_byidnum;

by idnum;
run;

proc sort data=proclib.emp96 out=emp96_byidnum;
by idnum;

run;

Create a summary report that compares observations with matching values for the ID
variable. The ID statement specifies IDNUM as the ID variable.

proc compare base=emp95_byidnum compare=emp96_byidnum;
id idnum;
title ’Comparing Observations that Have Matching IDNUMs’;

run;

Output

250 Output � Chapter 9

PROC COMPARE identifies specific observations by the value of IDNUM. In the
Value Comparison Results for Variables section, PROC COMPARE prints the
nonmatching addresses and nonmatching salaries. For salaries, PROC COMPARE computes the
numerical difference and the percent difference. Because ADDRESS is a character variable,
PROC COMPARE displays only the first 20 characters. For addresses where the observation
has an IDNUM of 0987, 2776, or 3888, the differences occur after the 20th character and the
differences do not appear in the output. The plus sign in the output indicates that the full value
is not shown. To see the entire value, create an output data set. See Example 6 on page 251.

Comparing Observations that Have Matching IDNUMs 1

COMPARE Procedure
Comparison of WORK.EMP95_BYIDNUM with WORK.EMP96_BYIDNUM

(Method=EXACT)

Data Set Summary

Dataset Created Modified NVar NObs

WORK.EMP95_BYIDNUM 13MAY98:16:03:36 13MAY98:16:03:36 4 10
WORK.EMP96_BYIDNUM 13MAY98:16:03:36 13MAY98:16:03:36 4 12

Variables Summary

Number of Variables in Common: 4.
Number of ID Variables: 1.

Observation Summary

Observation Base Compare ID

First Obs 1 1 idnum=0987
First Unequal 1 1 idnum=0987
Last Unequal 10 12 idnum=9857
Last Obs 10 12 idnum=9857

Number of Observations in Common: 10.
Number of Observations in WORK.EMP96_BYIDNUM but not in WORK.EMP95_BYIDNUM: 2.
Total Number of Observations Read from WORK.EMP95_BYIDNUM: 10.
Total Number of Observations Read from WORK.EMP96_BYIDNUM: 12.

Number of Observations with Some Compared Variables Unequal: 5.
Number of Observations with All Compared Variables Equal: 5.

Comparing Observations that Have Matching IDNUMs 2

COMPARE Procedure
Comparison of WORK.EMP95_BYIDNUM with WORK.EMP96_BYIDNUM

(Method=EXACT)

Values Comparison Summary

Number of Variables Compared with All Observations Equal: 1.
Number of Variables Compared with Some Observations Unequal: 2.
Total Number of Values which Compare Unequal: 8.
Maximum Difference: 2400.

The COMPARE Procedure � Example 6: Comparing Values of Observations Using an Output Data Set (OUT=) 251

Variables with Unequal Values

Variable Type Len Ndif MaxDif

address CHAR 42 4
salary NUM 8 4 2400

Value Comparison Results for Variables

|| Base Value Compare Value

idnum || address address
_____ || ___________________+ ___________________+

||
0987 || 2344 Persimmons Bran 2344 Persimmons Bran
2776 || 12988 Wellington Far 12988 Wellington Far
3888 || 5662 Magnolia Blvd S 5662 Magnolia Blvd S
9857 || 1000 Taft Ave. Morri 100 Taft Ave. Morris

Comparing Observations that Have Matching IDNUMs 3

COMPARE Procedure
Comparison of WORK.EMP95_BYIDNUM with WORK.EMP96_BYIDNUM

(Method=EXACT)

Value Comparison Results for Variables

|| Base Compare

idnum || salary salary Diff. % Diff
_____ || _________ _________ _________ _________

||
0987 || 44010 45110 1100 2.4994
3286 || 87734 89834 2100 2.3936
3888 || 77558 79958 2400 3.0945
9857 || 38756 40456 1700 4.3864

Example 6: Comparing Values of Observations Using an Output Data Set
(OUT=)

Procedure features:
PROC COMPARE statement options:

NOPRINT
OUT=
OUTBASE
OUTBASE
OUTCOMP
OUTDIF
OUTNOEQUAL

Other features: PRINT procedure
Data sets: PROCLIB.EMP95 and PROCLIB.EMP96 on page 248

This example creates and prints an output data set that shows the differences
between matching observations.

252 Program � Chapter 9

In Example 5 on page 248, the output does not show the differences past the 20th
character. The output data set in this example shows the full values. Further, it shows
the observations that occur in only one of the data sets.

Program

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=120 pagesize=40;

Sort the data sets by the ID variable. Both data sets must be sorted by the variable that will
be used as the ID variable in the PROC COMPARE step. OUT= specifies the location of the
sorted data.

proc sort data=proclib.emp95 out=emp95_byidnum;

by idnum;
run;

proc sort data=proclib.emp96 out=emp96_byidnum;
by idnum;

run;

Specify the data sets to compare. BASE= and COMPARE= specify the data sets to compare.

proc compare base=emp95_byidnum compare=emp96_byidnum

Create the output data set RESULT and include all unequal observations and their
differences. OUT= names and creates the output data set. NOPRINT suppresses the printing
of the procedure output. OUTNOEQUAL includes only observations that are judged unequal.
OUTBASE writes an observation to the output data set for each observation in the base data
set. OUTCOMP writes an observation to the output data set for each observation in the
comparison data set. OUTDIF writes an observation to the output data set that contains the
differences between the two observations.

out=result outnoequal outbase outcomp outdif
noprint;

Specify the ID variable. The ID statement specifies IDNUM as the ID variable.

id idnum;
run;

Print the output data set RESULT and use the BY and ID statements with the ID
variable. PROC PRINT prints the output data set. Using the BY and ID statements with the
same variable makes the output easy to read. See Chapter 32, “The PRINT Procedure,” on page
817 for more information on this technique.

The COMPARE Procedure � Example 7: Creating an Output Data Set of Statistics (OUTSTATS=) 253

proc print data=result noobs;
by idnum;
id idnum;
title ’The Output Data Set RESULT’;

run;

Output

The differences for character variables are noted with an X or a period (.). An X shows that the characters do
not match. A period shows that the characters do match. For numeric variables, an E means that there is no
difference. Otherwise, the numeric difference is shown. By default, the output data set shows that two
observations in the comparison data set have no matching observation in the base data set. You do not have to
use an option to make those observations appear in the output data set.

The Output Data Set RESULT 1

idnum _TYPE_ _OBS_ name address salary

0987 BASE 1 Dolly Lunford 2344 Persimmons Branch Apex NC 27505 44010

COMPARE 1 Dolly Lunford 2344 Persimmons Branch Trail Apex NC 27505 45110

DIF 1XXXXX.XXXXXXXXXXXXX 1100

2776 BASE 5 Robert Jones 12988 Wellington Farms Ave. Cary NC 27512 29025

COMPARE 5 Robert Jones 12988 Wellington Farms Ave. Cary NC 27511 29025

DIF 5X. E

3278 COMPARE 6 Mary Cravens 211 N. Cypress St. Cary NC 27512 35362

3286 BASE 6 Hoa Nguyen 2818 Long St. Cary NC 27513 87734

COMPARE 7 Hoa Nguyen 2818 Long St. Cary NC 27513 89834

DIF 6 2100

3888 BASE 7 Kim Siu 5662 Magnolia Blvd Southeast Cary NC 27513 77558

COMPARE 8 Kim Siu 5662 Magnolia Blvd Southwest Cary NC 27513 79958

DIF 7XX................ 2400

6544 COMPARE 9 Roger Monday 3004 Crepe Myrtle Court Raleigh NC 27604 47007

9857 BASE 10 Kathy Krupski 1000 Taft Ave. Morrisville NC 27508 38756

COMPARE 12 Kathy Krupski 100 Taft Ave. Morrisville NC 27508 40456

DIF 10XXXXXXXXXXXXXX.XXXXX.XXXXXXXXXXX....... 1700

Example 7: Creating an Output Data Set of Statistics (OUTSTATS=)
Procedure features:

PROC COMPARE statement options:
NOPRINT
OUTSTATS=

Data sets: PROCLIB.EMP95, PROCLIB.EMP96 on page 248

This example creates an output data set that contains summary statistics for the
numeric variables that are compared.

254 Program � Chapter 9

Program

libname proclib ’SAS-data-library’;

options nodate pageno=1 linesize=80 pagesize=40;

Sort the data sets by the ID variable. Both data sets must be sorted by the variable that will
be used as the ID variable in the PROC COMPARE step. OUT= specifies the location of the
sorted data.

proc sort data=proclib.emp95 out=emp95_byidnum;
by idnum;

run;

proc sort data=proclib.emp96 out=emp96_byidnum;
by idnum;

run;

Create the output data set of statistics and compare observations that have matching
values for the ID variable. BASE= and COMPARE= specify the data sets to compare.
OUTSTATS= creates the output data set DIFFSTAT. NOPRINT suppresses the procedure
output. The ID statement specifies IDNUM as the ID variable. PROC COMPARE uses the
values of IDNUM to match observations.

proc compare base=emp95_byidnum compare=emp96_byidnum
outstats=diffstat noprint;

id idnum;
run;

Print the output data set DIFFSTAT. PROC PRINT prints the output data set DIFFSTAT.

proc print data=diffstat noobs;
title ’The DIFFSTAT Data Set’;

run;

Output

The COMPARE Procedure � Output 255

The variables are described in “Output Statistics Data Set (OUTSTATS=)” on page 237.

The DIFFSTAT Data Set 1

VAR _TYPE_ _BASE_ _COMP_ _DIF_ _PCTDIF_

salary N 10.00 10.00 10.00 10.0000
salary MEAN 52359.00 53089.00 730.00 1.2374
salary STD 24143.84 24631.01 996.72 1.6826
salary MAX 92100.00 92100.00 2400.00 4.3864
salary MIN 29025.00 29025.00 0.00 0.0000
salary STDERR 7634.95 7789.01 315.19 0.5321
salary T 6.86 6.82 2.32 2.3255
salary PROBT 0.00 0.00 0.05 0.0451
salary NDIF 4.00 40.00 . .
salary DIFMEANS 1.39 1.38 730.00 .
salary R,RSQ 1.00 1.00 . .

256

257

C H A P T E R

10
The CONTENTS Procedure

Overview: CONTENTS Procedure 257
Syntax: PROC CONTENTS 257

Overview: CONTENTS Procedure
The CONTENTS procedure shows the contents of a SAS data set and prints the

directory of the SAS data library.
Generally, the CONTENTS procedure functions the same as the CONTENTS

statement in the DATASETS procedure. The differences between the CONTENTS
procedure and the CONTENTS statement in PROC DATASETS are as follows:

� The default for libref in the DATA= option in PROC CONTENTS is either WORK
or USER. For the CONTENTS statement, the default is the libref of the procedure
input library.

� PROC CONTENTS can read sequential files. The CONTENTS statement cannot.

Syntax: PROC CONTENTS
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
Reminder: You can use the ATTRIB, FORMAT, and LABEL statements. See Chapter 3,
“Statements with the Same Function in Multiple Procedures,” on page 53 for details.
You can also use any global statements as well. See “Global Statements” on page 18 for
a list.
Reminder: You can use data set options with the DATA= and OUT= options. See “Data
Set Options” on page 17 for a list.
Reminder: Complete documentation for the CONTENTS statement and the CONTENTS
procedure is in “CONTENTS Statement” on page 344.

PROC CONTENTS <option(s)>;

258 Syntax: PROC CONTENTS � Chapter 10

To do this Use this option

Print centiles information for indexed variables CENTILES

Specify the input data set DATA=

Include information in the output about the
number of observations, number of variables, and
data set labels

DETAILS|NODETAILS

Print a list of the SAS files in the SAS data library DIRECTORY

Print the length of a variable’s informat or format FMTLEN

Restrict processing to one or more types of SAS file MEMTYPE=

Suppress the printing of individual files NODS

Suppress the printing of the output NOPRINT

Specify the output data set OUT=

Specify an output data set that contains
information about constraints

OUT2=

Print abbreviated output SHORT

Print a list of the variables by their logical position
in the data set

VARNUM

259

C H A P T E R

11
The COPY Procedure

Overview: COPY Procedure 259
Syntax: PROC COPY 259

Concepts: COPY Procedure 260

Transporting SAS Data Sets between Hosts 260

Example: COPY Procedure 260

Example 1: Copying SAS Data Sets between Hosts 260

Overview: COPY Procedure
The COPY procedure copies one or more SAS files from a SAS data library.
Generally, the COPY procedure functions the same as the COPY statement in the

DATASETS procedure. The two differences are as follows:
� The IN= argument is required with PROC COPY. In the COPY statement, IN= is

optional. If IN= is omitted, the default value is the libref of the procedure input
library.

� PROC DATASETS cannot work with libraries that allow only sequential data
access.

Syntax: PROC COPY
Reminder: See Chapter 3, “Statements with the Same Function in Multiple Procedures,”
on page 53 for details. You can also use any global statements as well. See “Global
Statements” on page 18 for a list.
Reminder: Complete documentation for the COPY statement and the COPY procedure is
in “COPY Statement” on page 347.
Restriction: PROC COPY ignors explicit concatenations with catalogs. Use PROC
CATALOG COPY to copy concatenated catalogs.

PROC COPY OUT=libref-1 IN=libref-2
<CLONE|NOCLONE>
<CONSTRAINT=YES|NO>
<DATECOPY>
<INDEX=YES|NO>
<MEMTYPE=(mtype(s))>
<MOVE <ALTER=alter-password>>;

EXCLUDE SAS-file(s) </ MEMTYPE=mtype>;
SELECT SAS-file(s) </ <MEMTYPE=mtype>

260 Concepts: COPY Procedure � Chapter 11

<ALTER=alter-password>>;

Concepts: COPY Procedure

Transporting SAS Data Sets between Hosts
The COPY procedure, along with the XPORT engine and the XML engine, can create

and read transport files that can be moved from one host to another. PROC COPY can
create transport files only with SAS data sets, not with catalogs or other types of SAS
files.

Transporting is a three-step process:
1 Use PROC COPY to copy one or more SAS data sets to a file that is created with

either the transport (XPORT) engine or the XML engine. This file is referred to as
a transport file and is always a sequential file.

2 After the file is created, you can move it to another operating environment via
communications software, such as FTP, or tape. If you use communications
software, be sure to move the file in binary format to avoid any type of conversion.
If you are moving the file to a mainframe, the file must have certain attributes.
Consult the SAS documentation for your operating environment and the SAS
Technical Support Web page for more information.

3 After you have successfully moved the file to the receiving host, use PROC COPY
to copy the data sets from the transport file to a SAS data library.

For an example, see Example 1 on page 260.
For details on transporting files, see Moving and Accessing SAS Files across

Operating Environments.
The CPORT and CIMPORT procedures also provide a way to transport SAS files. For

information, see Chapter 8, “The CIMPORT Procedure,” on page 199 and Chapter 13,
“The CPORT Procedure,” on page 307.

Example: COPY Procedure

Example 1: Copying SAS Data Sets between Hosts
Features:

PROC COPY statement options:
IN=
MEMTYPE=
OUT=

Other features: XPORT engine

This example illustrates how to create a transport file on a host and read it on
another host.

In order for this example to work correctly, the transport file must have certain
characteristics, as described in the SAS documentation for your operating environment.

The COPY Procedure � SAS Log 261

In addition, the transport file must be moved to the receiving operating system in
binary format.

Program

Assign library references. Assign a libref, such as SOURCE, to the SAS data library that
contains the SAS data set that you want to transport. Also, assign a libref to the transport file
and use the XPORT keyword to specify the XPORT engine.

libname source ’SAS-data-library-on-sending-host’;
libname xptout xport ’filename-on-sending-host’;

Copy the SAS data sets to the transport file. Use PROC COPY to copy the SAS data sets
from the IN= library to the transport file. MEMTYPE=DATA specifies that only SAS data sets
are copied. SELECT selects the data sets that you want to copy.

proc copy in=source out=xptout memtype=data;
select bonus budget salary;

run;

SAS Log

SAS Log on Sending Host

1 libname source ’SAS-data-library-on-sending-host ’;
NOTE: Libref SOURCE was successfully assigned as follows:

Engine: V9
Physical Name: SAS-data-library-on-sending-host

2 libname xptout xport ’filename-on-sending-host’;
NOTE: Libref XPTOUT was successfully assigned as follows:

Engine: XPORT
Physical Name: filename-on-sending-host

3 proc copy in=source out=xptout memtype=data;
4 select bonus budget salary;
5 run;

NOTE: Copying SOURCE.BONUS to XPTOUT.BONUS (memtype=DATA).
NOTE: The data set XPTOUT.BONUS has 1 observations and 3 variables.
NOTE: Copying SOURCE.BUDGET to XPTOUT.BUDGET (memtype=DATA).
NOTE: The data set XPTOUT.BUDGET has 1 observations and 3 variables.
NOTE: Copying SOURCE.SALARY to XPTOUT.SALARY (memtype=DATA).
NOTE: The data set XPTOUT.SALARY has 1 observations and 3 variables.

Enable the procedure to read data from the transport file. The XPORT engine in the
LIBNAME statement enables the procedure to read the data from the transport file.

libname insource xport ’filename-on-receiving-host’;

262 SAS Log � Chapter 11

Copy the SAS data sets to the receiving host. After you copy the files (for example, by using
FTP in binary mode to the Windows NT host), use PROC COPY to copy the SAS data sets to the
WORK data library on the receiving host.

proc copy in=insource out=work;
run;

SAS Log on Receiving Host

1 libname insource xport ’filename-on-receiving-host’;
NOTE: Libref INSOURCE was successfully assigned as follows:

Engine: XPORT
Physical Name: filename-on-receiving-host

2 proc copy in=insource out=work;
3 run;
NOTE: Input library INSOURCE is sequential.
NOTE: Copying INSOURCE.BUDGET to WORK.BUDGET (memtype=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.

System Option for BUFSIZE was used.
NOTE: The data set WORK.BUDGET has 1 observations and 3 variables.
NOTE: Copying INSOURCE.BONUS to WORK.BONUS (memtype=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.

System Option for BUFSIZE was used.
NOTE: The data set WORK.BONUS has 1 observations and 3 variables.
NOTE: Copying INSOURCE.SALARY to WORK.SALARY (memtype=DATA).
NOTE: BUFSIZE is not cloned when copying across different engines.

System Option for BUFSIZE was used.
NOTE: The data set WORK.SALARY has 1 observations and 3 variables.

263

C H A P T E R

12
The CORR Procedure

Overview: CORR Procedure 263
Syntax: CORR Procedure 267

PROC CORR Statement 268

BY Statement 273

FREQ Statement 273

PARTIAL Statement 274
VAR Statement 274

WEIGHT Statement 275

WITH Statement 276

Concepts: CORR Procedure 276

Interpreting Correlation Coefficients 276

Determining Computer Resources 277
Statistical Computations: CORR Procedure 279

Pearson Product-Moment Correlation 279

Spearman Rank-Order Correlation 280

Kendall’s tau-b 280

Hoeffding’s Measure of Dependence, D 281
Partial Correlation 282

Cronbach’s Coefficient Alpha 284

Probability Values 286

Results: CORR Procedure 287

Missing Values 287
ODS Table Names 287

Output 289

Output Data Sets 290

Examples: CORR Procedure 291

Example 1: Computing Pearson Correlations and Other Measures of Association 291

Example 2: Computing Rectangular Correlation Statistics with Missing Data 295
Example 3: Computing Cronbach’s Coefficient Alpha 299

Example 4: Storing Partial Correlations in an Output Data Set 302

References 306

Overview: CORR Procedure

The CORR procedure is a statistical procedure for numeric random variables that
computes Pearson correlation coefficients, three nonparametric measures of association,
and the probabilities associated with these statistics. The correlation statistics include

� Pearson product-moment and weighted product-moment correlation

� Spearman rank-order correlation

264 Overview: CORR Procedure � Chapter 12

� Kendall’s tau-b
� Hoeffding’s measure of dependence, D
� Pearson, Spearman, and Kendall partial correlation.

PROC CORR also computes Cronbach’s coefficient alpha for estimating reliability.
The default correlation analysis includes descriptive statistics, Pearson correlation

statistics, and probabilities for each analysis variable. You can save the correlation
statistics in a SAS data set for use with other statistical and reporting procedures.

Output 12.1 on page 264 is the simplest form of PROC CORR output. Pearson
correlation statistics are computed for all numeric variables from a study investigating
the effect of exercise on physical fitness. The statements that produce the output follow:

options pagesize=60;
proc corr data=fitness;
run;

Output 12.1 Simple Correlation Analysis for a Fitness Study Using PROC CORR

The SAS System 1

The CORR Procedure

4 Variables: Age Weight Runtime Oxygen

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

Age 30 47.56667 5.26330 1427 38.00000 57.00000
Weight 30 77.70500 8.34152 2331 59.08000 91.63000
Runtime 29 10.61448 1.41655 307.82000 8.17000 14.03000
Oxygen 29 47.06445 5.32129 1365 37.38800 60.05500

Pearson Correlation Coefficients
Prob > |r| under H0: Rho=0

Number of Observations

Age Weight Runtime Oxygen

Age 1.00000 -0.21777 0.19528 -0.32899
0.2477 0.3100 0.0814

30 30 29 29

Weight -0.21777 1.00000 0.15155 -0.19900
0.2477 0.4326 0.3007

30 30 29 29

Runtime 0.19528 0.15155 1.00000 -0.78346
0.3100 0.4326 <.0001

29 29 29 28

Oxygen -0.32899 -0.19900 -0.78346 1.00000
0.0814 0.3007 <.0001

29 29 28 29

Output 12.2 on page 265 and Output 12.3 on page 266 illustrate the use of PROC
CORR to calculate partial correlation statistics for the fitness study and to store the
results in an output data set. The statements that produce the analysis also

� suppress the descriptive statistics

The CORR Procedure � Overview: CORR Procedure 265

� select and label analysis variables
� exclude all observations with missing values
� calculate the partial covariance matrix
� calculate three types of partial correlation coefficients
� generate an output data set that contains Pearson correlation statistics and print

the output data set.

For an explanation of the program that produces the following output, see Example 4
on page 302.

266 Overview: CORR Procedure � Chapter 12

Output 12.2 Customized Correlation Analysis with Partial Covariances and Correlation Statistics

Partial Correlations for a Fitness and Exercise Study 1

The CORR Procedure

1 Partial Variables: Age

3 Variables: Weight Oxygen Runtime

Partial Covariance Matrix, DF = 26

Weight Oxygen Runtime

Weight Wt in kg 72.43742055 -12.75113194 2.06766763

Oxygen O2 use -12.75113194 27.01654904 -5.59370556

Runtime 1.5 mi in minutes 2.06766763 -5.59370556 1.94512451

Pearson Partial Correlation Coefficients, N = 28

Prob > |r| under H0: Partial Rho=0

Weight Oxygen Runtime

Weight 1.00000 -0.28824 0.17419

Wt in kg 0.1448 0.3849

Oxygen -0.28824 1.00000 -0.77163

O2 use 0.1448 <.0001

Runtime 0.17419 -0.77163 1.00000

1.5 mi in minutes 0.3849 <.0001

Spearman Partial Correlation Coefficients, N = 28

Prob > |r| under H0: Partial Rho=0

Weight Oxygen Runtime

Weight 1.00000 -0.16407 0.08708

Wt in kg 0.4135 0.6658

Oxygen -0.16407 1.00000 -0.67112

O2 use 0.4135 0.0001

Runtime 0.08708 -0.67112 1.00000

1.5 mi in minutes 0.6658 0.0001

Kendall Partial Tau b Correlation Coefficients, N = 28

Weight Oxygen Runtime

Weight 1.00000 -0.09021 0.02854

Wt in kg

Oxygen -0.09021 1.00000 -0.52158

O2 use

Runtime 0.02854 -0.52158 1.00000

1.5 mi in minutes

The CORR Procedure � Syntax: CORR Procedure 267

Output 12.3 Output Data Set with Pearson Partial Correlation Statistics

Pearson Correlation Statistics Using the PARTIAL Statement 2
Output Data Set from PROC CORR

TYPE _NAME_ Weight Oxygen Runtime

COV Weight 72.4374 -12.7511 2.0677
COV Oxygen -12.7511 27.0165 -5.5937
COV Runtime 2.0677 -5.5937 1.9451
MEAN 0.0000 0.0000 0.0000
STD 8.5110 5.1977 1.3947
N 28.0000 28.0000 28.0000
CORR Weight 1.0000 -0.2882 0.1742
CORR Oxygen -0.2882 1.0000 -0.7716
CORR Runtime 0.1742 -0.7716 1.0000

Syntax: CORR Procedure
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.

PROC CORR <option(s)>;
BY <DESCENDING> variable-1<…<DESCENDING> variable-n>

<NOTSORTED>;
FREQ frequency-variable;
PARTIAL variable(s);
VAR variable(s);
WEIGHT weight-variable;
WITH variable(s);

To do this Use this statement

Produce separate correlation analyses for each BY group BY

Identify a variable whose values represent the frequency of each
observation

FREQ

Identify controlling variables to compute Pearson, Spearman, or
Kendall partial correlation coefficients

PARTIAL

Identify variables to correlate and their order in the correlation
matrix

VAR

268 PROC CORR Statement � Chapter 12

To do this Use this statement

Identify a variable whose values weight each observation to compute
Pearson weight product-moment correlation

WEIGHT

Compute correlations for specific combinations of variables WITH

PROC CORR Statement

PROC CORR <option(s)>;

To do this Use this option

Specify the input data set DATA=

Create output data sets

Specify an output data set to contain Hoeffding’s D statistics OUTH=

Specify an output data set to contain Kendall correlations OUTK=

Specify an output data set to contain Pearson correlations OUTP=

Specify an output data set to contain Spearman correlations OUTS=

Control statistical analysis

Exclude observations with nonpositive weight values from the
analysis

EXCLNPWGT

Request Hoeffding’s measure of dependence, D HOEFFDING

Request Kendall’s tau-b KENDALL

Request Pearson product-moment correlation PEARSON

Request Spearman rank-order correlation SPEARMAN

Control Pearson correlation statistics

Compute Cronbach’s coefficient alpha ALPHA

Compute covariances COV

Compute corrected sums of squares and crossproducts CSSCP

Exclude missing values NOMISS

Specify singularity criterion SINGULAR=

Compute sums of squares and crossproducts SSCP

Specify the divisor for variance calculations VARDEF=

Control printed output

Specify the number and order of correlation coefficients BEST=

Suppress Pearson correlations NOCORR

Suppress all printed output NOPRINT

The CORR Procedure � PROC CORR Statement 269

To do this Use this option

Suppress significance probabilities NOPROB

Suppress descriptive statistics NOSIMPLE

Change the order of correlation coefficients RANK

Options

ALPHA
calculates and prints Cronbach’s coefficient alpha. PROC CORR computes separate
coefficients using raw and standardized values (scaling the variables to a unit
variance of 1). For each VAR statement variable, PROC CORR computes the
correlation between the variable and the total of the remaining variables. It also
computes Cronbach’s coefficient alpha using only the remaining variables.
Main discussion: “Cronbach’s Coefficient Alpha” on page 284
Restriction: If you use a WITH statement, ALPHA is invalid.
Interaction: ALPHA invokes PEARSON.
Interaction: If you specify OUTP=, the output data set also contains six

observations with Cronbach’s coefficient alpha.
Interaction: When you use the PARTIAL statement, PROC CORR calculates

Cronbach’s coefficient alpha for partialled variables.
See also: OUTP= option
Featured in: Example 3 on page 299

BEST=n
prints n correlation coefficients for each variable. Correlations are ordered from
highest to lowest in absolute value. Otherwise, PROC CORR prints correlations in a
rectangular table using the variable names as row and column labels.
Interaction: When you specify HOEFFDING, PROC CORR prints the D statistics

in order from highest to lowest.
Range: 1 to the maximum number of variables

COV
calculates and prints covariances.
Interaction: COV invokes PEARSON.
Interaction: If you specify OUTP=, the output data set contains the covariance

matrix and the _TYPE_ variable value is COV.
Interaction: When you use the PARTIAL statement, PROC CORR computes a

partial covariance matrix.
See also: OUTP= option
Featured in: Example 2 on page 295 and Example 4 on page 302

CSSCP
prints the corrected sums of squares and crossproducts.
Interaction: CSSCP invokes PEARSON.
Interaction: If you specify OUTP=, the output data set contains a CSSCP matrix

and the _TYPE_ variable value is CSSCP. If you use a PARTIAL statement, the
output data set contains a partial CSSCP matrix.

270 PROC CORR Statement � Chapter 12

Interaction: When you use a PARTIAL statement, PROC CORR prints both an
unpartial and a partial CSSCP matrix.

See also: OUTP= option

DATA=SAS-data-set
specifies the input SAS data set.
Main discussion: “Input Data Sets” on page 19

EXCLNPWGT
excludes observations with nonpositive weight values (zero or negative) from the
analysis. By default, PROC CORR treats observations with negative weights like
those with zero weights and counts them in the total number of observations.
Requirement: You must use a WEIGHT statement.
See also: “WEIGHT Statement” on page 275

HOEFFDING
calculates and prints Hoeffding’s D statistics. This D statistic is 30 times larger than
the usual definition and scales the range between -0.5 and 1 so that only large
positive values indicate dependence.
Main discussion: “Hoeffding’s Measure of Dependence, D” on page 281
Restriction: When you use a WEIGHT or PARTIAL statement, HOEFFDING is

invalid.
Featured in: Example 1 on page 291

KENDALL
calculates and prints Kendall tau-b coefficients based on the number of concordant
and discordant pairs of observations. Kendall’s tau-b ranges from -1 to 1.
Main discussion: “Kendall’s tau-b” on page 280
Restriction: When you use a WEIGHT statement, KENDALL is invalid.
Interactions: When you use a PARTIAL statement, probability values for Kendall’s

partial tau-b are not available.
Featured in: Example 4 on page 302

NOCORR
suppresses calculating and printing of Pearson correlations.
Interaction: If you specify OUTP=, the data set type remains CORR. To change the

data set type to COV, CSSCP, or SSCP, use the TYPE= data set option.
See also: “Output Data Sets” on page 290
Featured in: Example 3 on page 299

NOMISS
excludes observations with missing values from the analysis. Otherwise, PROC
CORR computes correlation statistics using all the nonmissing pairs of variables.
Main discussion: “Missing Values” on page 287
Tip: Using NOMISS is computationally more efficient.
Featured in: Example 3 on page 299

NOPRINT
suppresses all printed output.
Tip: Use NOPRINT when you want to create an output data set only.

NOPROB
suppresses printing the probabilities associated with each correlation coefficient.

NOSIMPLE

The CORR Procedure � PROC CORR Statement 271

suppresses printing simple descriptive statistics for each variable. However, if you
request an output data set, the output data set still contains simple descriptive
statistics for the variables.
Featured in: Example 2 on page 295

OUTH=output-data-set
creates an output data set containing Hoeffding’s D statistics. The contents of the
output data set are similar to the OUTP= data set.
Main discussion: “Output Data Sets” on page 290
Interaction: OUTH= invokes HOEFFDING.

OUTK=output-data-set
creates an output data set containing Kendall correlation statistics. The contents of
the output data set are similar to the OUTP= data set.
Main discussion: “Output Data Sets” on page 290
Interaction: OUTK= option invokes KENDALL.

OUTP=output-data-set
creates an output data set containing Pearson correlation statistics. This data set
also includes means, standard deviations, and the number of observations. The value
of the _TYPE_ variable is CORR.
Main discussion: “Output Data Sets” on page 290
Interaction: OUTP= invokes PEARSON.
Interaction: If you specify ALPHA, the output data set also contains six

observations with Cronbach’s coefficient alpha.
Featured in: Example 4 on page 302

OUTS=SAS-data-set
creates an output data set containing Spearman correlation statistics. The contents
of the output data set are similar to the OUTP= data set.
Main discussion: “Output Data Sets” on page 290
Interaction: OUTS= invokes SPEARMAN.

PEARSON
calculates and prints Pearson product-moment correlations when you use the
HOEFFDING, KENDALL, or SPEARMAN option. If you omit the correlation type,
PROC CORR automatically produces Pearson correlations. The correlations range
from -1 to 1.
Main discussion: “Pearson Product-Moment Correlation” on page 279
Featured in: Example 1 on page 291

RANK
prints the correlation coefficients for each variable. Correlations are ordered from
highest to lowest in absolute value. Otherwise, PROC CORR prints correlations in a
rectangular table using the variable names as row and column labels.
Interaction: If you use HOEFFDING, PROC CORR prints the D statistics in order

from highest to lowest.

SINGULAR=p
specifies the criterion for determining the singularity of a variable when you use a
PARTIAL statement. A variable is considered singular if its corresponding diagonal
element after Cholesky decomposition has a value less than p times the original
unpartialed corrected sum of squares of that variable.
Main discussion: “Partial Correlation” on page 282
Default: 1E-8

272 PROC CORR Statement � Chapter 12

Range: between 0 and 1

SPEARMAN
calculates and prints Spearman correlation coefficients based on the ranks of the
variables. The correlations range from -1 to 1.
Main discussion: “Spearman Rank-Order Correlation” on page 280
Restriction: When you specify a WEIGHT statement, SPEARMAN is invalid.
Featured in: Example 1 on page 291

SSCP
prints the sums of squares and crossproducts.
Interaction: SSCP invokes PEARSON.
Interaction: When you specify OUTP=, the output data set contains a SSCP matrix

and the _TYPE_ variable value is SSCP. If you use a PARTIAL statement, the
output data set does not contain an SSCP matrix.

Interaction: When you use a PARTIAL statement, PROC CORR prints the
unpartial SSCP matrix.

Featured in: Example 2 on page 295

VARDEF=divisor
specifies the divisor to use in the calculation of variances, standard deviations, and
covariances.

Table 12.1 on page 272 shows the possible values for divisor and associated
divisors where k is the number of PARTIAL statement variables.

Table 12.1 Possible Values for VARDEF=

Value Divisor Formula

DF degrees of freedom n - k - 1

N number of observations n

WDF sum of weights minus one (�i wi) - k - 1

WEIGHT|WGT sum of weights �i wi

The procedure computes the variance as �����������, where ��� is the corrected
sums of squares and equals

�
�	� � ��

�. When you weight the analysis variables,
��� equals

�
�� ��� � ���

�, where �� is the weighted mean.
Default: DF
Tip: When you use the WEIGHT statement and VARDEF=DF, the variance is an

estimate of ��, where the variance of the ith observation is ��� ���� � ����� and
�� is the weight for the ith observation. This yields an estimate of the variance of
an observation with unit weight.

Tip: When you use the WEIGHT statement and VARDEF=WGT, the computed
variance is asymptotically (for large n) an estimate of ����, where � is the
average weight. This yields an asymptotic estimate of the variance of an
observation with average weight.

Main discussion: Weighted statistics “Weighted Statistics Example” on page 60.

The CORR Procedure � FREQ Statement 273

BY Statement

Calculates separate correlation statistics for each BY group.

Main discussion: “BY” on page 54

BY <DESCENDING> variable-1 <…<DESCENDING> variable-n><NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately. Variables in a BY statement
are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, such as chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

FREQ Statement

Treats observations as if they appear multiple times in the input data set.

Tip: The effects of the FREQ and WEIGHT statements are similar except when
calculating degrees of freedom.
See also: For an example that uses the FREQ statement, see “FREQ” on page 56

FREQ variable;

Required Arguments

274 PARTIAL Statement � Chapter 12

variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the FREQ statement, the procedure assumes that each observation
represents n observations, where n is the value of variable. If n is not an integer,
SAS truncates it. If n is less than 1 or is missing, the procedure does not use that
observation to calculate statistics.

The sum of the frequency variable represents the total number of observations.

PARTIAL Statement
Computes Pearson partial correlation, Spearman partial rank-order correlation, or Kendall’s partial
tau-b.

Restriction: Not valid with the HOEFFDING option.
Interaction: Invokes the NOMISS option to exclude all observations with missing values.
Main discussion: “Partial Correlation” on page 282
Featured in: Example 4 on page 302

PARTIAL variable(s);

Required Arguments

variable(s)
identifies one or more variables to use in the calculation of partial correlation
statistics.

Using PROC CORR Statement Options with the PARTIAL Statement

� If you use the PEARSON option, PROC CORR also prints the partial variance and
standard deviation for each VAR or WITH statement variable.

� If you use the KENDALL option, PROC CORR cannot compute probability values
for Kendall’s partial tau-b.

VAR Statement
Specifies the variables to use to calculate correlation statistics.

Default: If you omit this statement, PROC CORR computes correlations for all numeric
variables not listed in the other statements.
Featured in: Example 1 on page 291 and Example 2 on page 295

VAR variable(s);

Required Arguments

The CORR Procedure � WEIGHT Statement 275

variable(s)
identifies one or more variables to use in the calculation of correlation coefficients.

WEIGHT Statement

Specifies weights for the analysis variables in the calculation of Pearson weighted
product-moment correlation.

Restriction: Not valid with the HOEFFDING, KENDALL, or SPEARMAN option.
See also: For information about calculating weighted correlations, see “Pearson
Product-Moment Correlation” on page 279.

WEIGHT variable;

Required Arguments

variable
specifies a numeric variable to use to compute weighted product-moment correlation
coefficients. The variable does not have to be an integer. If the value of the weight
variable is

Weight value… PROC CORR…

0 counts the observation in the total number of observations

less than 0 converts the value to zero and counts the observation in the total
number of observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,
exclude negative and zero weights by default.
Tip: When you use the WEIGHT statement, consider which value of the VARDEF=

option is appropriate. See the discussion of the VARDEF= option on page 272 for
more information.

Note: Prior to Version 8 of SAS, the procedure did not exclude the observations with
missing weights from the count of observations. �

276 WITH Statement � Chapter 12

WITH Statement

Determines the variables to use in conjunction with the VAR statement variables to calculate
limited combinations of correlation coefficients.

Restriction: Not valid with the ALPHA option.
Featured in: Example 2 on page 295

WITH variable(s);

Required Argument

variable(s)
lists one or more variables to obtain correlations for specific combinations of
variables. The WITH statement variables appear down the side of the correlation
matrix and the VAR statement variables appear across the top of the correlation
matrix. PROC CORR computes the following correlations for the VAR statement
variables A and B and the WITH statement variables X, Y, and Z:

X and A X and B

Y and A Y and B

Z and A Z and B

Concepts: CORR Procedure

Interpreting Correlation Coefficients
Correlation coefficients contain information on both the strength and direction of a

linear relationship between two numeric random variables. If one variable x is an exact
linear function of another variable y, a positive relationship exists when the correlation
is 1 and an inverse relationship exists when the correlation is -1. If there is no linear
predictability between the two variables, the correlation is 0. If the variables are normal
and correlation is 0, the two variables are independent. However, correlation does not
imply causality because, in some cases, an underlying causal relationship may exist.

The scatterplots in Figure 12.1 on page 277 depict the relationship between two
numeric random variables.

The CORR Procedure � Determining Computer Resources 277

Figure 12.1 Examining Correlations Using Scatterplots

Positive Correlation Negative Correlation

No Correlation

y y

xx

xx

y y

No Correlation,
 Dependence

When the relationship between two variables is nonlinear or when outliers are
present, the correlation coefficient incorrectly estimates the strength of the relationship.
Plotting the data before computing a correlation coefficient enables you to verify the
linear relationship and to identify the potential outliers.

Determining Computer Resources
The only factor limiting the number of variables that you can analyze is the amount

of available memory. The computer resources that PROC CORR requires depend on
which statements and options you specify. To determine the computer resources that
you need, use

N number of observations in the data set.

C number of correlation types (1 to 4).

V number of VAR statement variables.

W number of WITH statement variables.

P number of PARTIAL statement variables.

so that

T= V+W+P

K= V*W when W>0

V*(V+1)/2 when W=0

L= K when P=0

T*(T+1)/2 when P>0

278 Determining Computer Resources � Chapter 12

For small N and large K, the CPU time varies as K for all types of correlations. For
large N, the CPU time depends on the type of correlation. To calculate CPU time use

K*N with PEARSON (default)

T*N*log N with SPEARMAN

K*N*log N with HOEFFDING or KENDALL

You can reduce CPU time by specifying NOMISS. Without NOMISS, processing is much
faster when most observations do not contain missing values.

The options and statements you use in the procedure require different amounts of
storage to process the data. For Pearson correlations, the amount of temporary storage
in bytes (M) is

40T+16L with NOMISS and NOSIMPLE

40T+16L+56T with NOMISS

40T+16L+56K with NOSIMPLE

40T+16L+56K+56T with no options

Using a PARTIAL statement increases the amount of temporary storage by 12T bytes.
Using the ALPHA option increases the amount of temporary storage by 32V+16 bytes.

The following example uses a PARTIAL statement, which invokes NOMISS.

proc corr;
var x1 x2;
with y1 y2 y3;
partial z1;

Therefore, using 40T+16L+56T+12T, the minimum temporary storage equals 984 bytes
(T=2+3+1 and L=T(T+1)/2).

Using the SPEARMAN, KENDALL, or HOEFFDING option requires additional
temporary storage for each observation. For the most time-efficient processing, the
amount of temporary storage in bytes is

40T+8K+8L*C+12T*N+28N+QS+QP+QK

where

QS= 0 with NOSIMPLE

68T otherwise

QP= 56K with PEARSON and without NOMISS

0 otherwise

QK = 32N with KENDALL or HOEFFDING

0 otherwise.

The following example uses KENDALL:

The CORR Procedure � Pearson Product-Moment Correlation 279

proc corr kendall;
var x1 x2 x3;

Therefore, the minimum temporary storage in bytes is

40*3+8*6+8*6*1+12*3N+28N+3*68+32N = 420+96N

where N is the number of observations.
If M bytes are not available, PROC CORR must process the data multiple times to

compute all the statistics. This reduces the minimum temporary storage you need by
12(T−2)N bytes. When this occurs, PROC CORR prints a note suggesting a larger
memory region.

Statistical Computations: CORR Procedure

PROC CORR computes several parametric and nonparametric correlation statistics
as measures of association. The formulas for computing these measures and the
associated probabilities follow.

Pearson Product-Moment Correlation
The Pearson product-moment correlation is a parametric measure of association for

two continuous random variables. The formula for the true Pearson product-moment
correlation, denoted ���, is

��� �
��� ��� ���
��� ��� ��� ���

�
� ���� ��� �� � �����
� �� � ����� �� � ����

The sample correlation, such as a Pearson product-moment correlation or weighted
product-moment correlation, estimates the true correlation. The formula for the
Pearson product-moment correlation is

��� �

�
��� � 	�� ��� � 	����

��� � 	���
�

��� � 	���

where 	� is the sample mean of � and 	� is the sample mean of �.
The formula for a weighted Pearson product-moment correlation is

��� �

�
�� ��� � 	��� ��� � 	�����

�� ��� � 	���
�
�

�� ��� � 	���
�

where

280 Spearman Rank-Order Correlation � Chapter 12

��� �
�

�����
�

��

��� �
�

�����
�

��

Note that ��� is the weighted mean of �, ��� is the weighted mean of �, and �� is the
weight.

When one variable is dichotomous (0,1) and the other variable is continuous, a
Pearson correlation is equivalent to a point biserial correlation. When both variables
are dichotomous, a Pearson correlation coefficient is equivalent to the phi coefficient.

Spearman Rank-Order Correlation
Spearman rank-order correlation is a nonparametric measure of association based on

the rank of the data values. The formula is

� �

��
�� �

��
� �

�� � ��
�

���
�� �

��
����

�� � ��
��

where �� is the rank of the ��� � value, �� is the rank of the ��� � value, �� is the
mean of the �� values, and �� is the mean of the �� values.

PROC CORR computes the Spearman’s correlation by ranking the data and using
the ranks in the Pearson product-moment correlation formula. In case of ties, the
averaged ranks are used.

Kendall’s tau-b
Kendall’s tau-b is a nonparametric measure of association based on the number of

concordances and discordances in paired observations. Concordance occurs when paired
observations vary together, and discordance occurs when paired observations vary
differently. The formula for Kendall’s tau-b is

� �

�
�� �

��� 	�� � ��
 ��� 	�� � ��

�
	�� � ��
 	�� � ��

where

�� � � 	� � �
 �

�� �
�

�� 	�� � �
 �

�� �
�

�� 	�� � �
 �

and where �� is the number of tied � values in the ��� group of tied � values, �� is the
number of tied � values in the ��� group of tied � values, 	 is the number of
observations, and sgn(z) is defined as

The CORR Procedure � Hoeffding’s Measure of Dependence, D 281

��� ��� �

�
� �� � � 	
	 �� � � 	

�� �� � � 	

PROC CORR computes Kendall’s correlation by ranking the data and using a method
similar to Knight (1966). The data are double sorted by ranking observations according
to values of the first variable and reranking the observations according to values of the
second variable. PROC CORR computes Kendall’s tau-b from the number of
interchanges of the first variable and corrects for tied pairs (pairs of observations with
equal values of X or equal values of Y).

Hoeffding’s Measure of Dependence, D
Hoeffding’s measure of dependence, D, is a nonparametric measure of association

that detects more general departures from independence. The statistic approximates a
weighted sum over observations of chi-square statistics for two-by-two classification
tables (Hoeffding 1948). Each set of ��� �� values are cut points for the classification.
The formula for Hoeffding’s D is

 � �	
�� � �� ��� ��
�

� � � �� � ��
�

� �� � �� �� � �� �� � �� �� � ��

where

� �
�

�

��� � �� ��� � ��

� �
�

�

��� � �� ��� � �� ��� � �� ��� � ��

� �
�

�

��� � �� ��� � �� ��� � ��

�� is the rank of ��, �� is the rank of ��, and �� (also called the bivariate rank) is 1
plus the number of points with both � and � values less than the ��� point. A point
that is tied on only the � value or � value contributes 1/2 to �� if the other value is less
than the corresponding value for the ��� point. A point that is tied on both � and �
contributes 1/4 to �� .

PROC CORR obtains the �� values by first ranking the data. The data are then
double sorted by ranking observations according to values of the first variable and
reranking the observations according to values of the second variable. Hoeffding’s D
statistic is computed using the number of interchanges of the first variable.

When no ties occur among data set observations, the D statistic values are between
-0.5 and 1, with 1 indicating complete dependence. However, when ties occur, the D
statistic may result in a smaller value. That is, for a pair of variables with identical
values, the Hoeffding’s D statistic may be less than 1. With a large number of ties in a
small data set, the D statistic may be less than -0.5 . For more information about
Hoeffding’s D, see Hollander and Wolfe (1973, p. 228).

282 Partial Correlation � Chapter 12

Partial Correlation
A partial correlation measures the strength of a relationship between two variables,

while controlling the effect of one or more additional variables. The Pearson partial
correlation for a pair of variables may be defined as the correlation of errors after
regression on the controlling variables. Let �� ��� ��� � � � � � �� � be the set of variables
to correlate. Also let � and � be sets of regression parameters and � be the set of
controlling variables, where � ����� ��� � � � � ���, � is the slope, and
�� ��� � �� � � � � � ���. Suppose

� ��� � �� ��

is a regression model for � given �. The population Pearson partial correlation between
the ��� and the ��� variables of � given � is defined as the correlation between errors
��� � � ��� �� and ��� � � ��� ��.

If the exact values of � and � are unknown, you can use a sample Pearson partial
correlation to estimate the population Pearson partial correlation. For a given sample
of observations, you estimate the sets of unknown parameters � and � using the
least-squares estimators �� and ��. Then the fitted least-squares regression model is

�� � ��� ���
The partial corrected sums of squares and crossproducts (CSSCP) of � given � are

the corrected sums of squares and crossproducts of the residuals �� ��. Using these
partial corrected sums of squares and crossproducts, you can calculate the partial
variances, partial covariances, and partial correlations.

PROC CORR derives the partial corrected sums of squares and crossproducts matrix
by applying the Cholesky decomposition algorithm to the CSSCP matrix. For Pearson
partial correlations, let � be the partitioned CSSCP matrix between two sets of
variables, � and �:

� �

�
��� ���
��

��
���

�

PROC CORR calculates �����, the partial CSSCP matrix of � after controlling for �,
by applying the Cholesky decomposition algorithm sequentially on the rows associated
with �, the variables being partialed out.

After applying the Cholesky decomposition algorithm to each row associated with
variables �, PROC CORR checks all higher numbered diagonal elements associated
with � for singularity. After the Cholesky decomposition, a variable is considered
singular if the value of the corresponding diagonal element is less than � times the
original unpartialed corrected sum of squares of that variable. You can specify the
singularity criterion � using the SINGULAR= option. For Pearson partial correlations,
a controlling variable � is considered singular if the �� for predicting this variable from
the variables that are already partialed out exceeds �� �. When this happens, PROC
CORR excludes the variable from the analysis. Similarly, a variable is considered
singular if the �� for predicting this variable from the controlling variables exceeds
� � �. When this happens, its associated diagonal element and all higher numbered
elements in this row or column are set to zero.

The CORR Procedure � Partial Correlation 283

After the Cholesky decomposition algorithm is performed on all rows associated with
�, the resulting matrix has the form

�
��� ���

� �����

�

where ��� is an upper triangular matrix with

�
�

����� � ����

�
�

����� � ����

����� � ��� ��
�

������

If ��� is positive definite, then the partial CSSCP matrix ����� is identical to the
matrix derived from the formula

����� � ��� � �
�

�� �
��
�� ���

The partial variance-covariance matrix is calculated with the variance divisor
(VARDEF= option). PROC CORR can then use the standard Pearson correlation
formula on the partial variance-covariance matrix to calculate the Pearson partial
correlation matrix. Another way to calculate Pearson partial correlation is by applying
the Cholesky decomposition algorithm directly to the correlation matrix and by using
the correlation formula on the resulting matrix.

To derive the corresponding Spearman partial rank-order correlations and Kendall
partial tau-b correlations, PROC CORR applies the Cholesky decomposition algorithm
to the Spearman rank-order correlation matrix and Kendall tau-b correlation matrix
and uses the correlation formula. The singularity criterion for nonparametric partial
correlations is identical to Pearson partial correlation except that PROC CORR uses a
matrix of nonparametric correlations and sets a singular variable’s associated
correlations to missing. The partial tau-b correlations range from –1 to 1. However, the
sampling distribution of this partial tau-b is unknown; therefore, the probability values
are not available.

When a correlation matrix (Pearson, Spearman, or Kendall tau-b correlation matrix)
is positive definite, the resulting partial correlation between variables � and � after
adjusting for a single variable � is identical to that obtained from the first-order partial
correlation formula

����� �
��� � �������

�� � ��
��
�
�
�� ��

��

�

where ���, ���, and ��� are the appropriate correlations.
The formula for higher-order partial correlations is a straightforward extension of

the above first-order formula. For example, when the correlation matrix is positive
definite, the partial correlation between � and � controlling for both �� and �� is
identical to the second-order partial correlation formula

284 Cronbach’s Coefficient Alpha � Chapter 12

�������� �
������ � ����������������
� � ��������

� �
� � ��������

�

where ������ , ������� , and ������� are first-order partial correlations among variables �,
�, and �� given ��.

Cronbach’s Coefficient Alpha
Analyzing latent constructs such as job satisfaction, motor ability, sensory

recognition, or customer satisfaction requires instruments to accurately measure the
constructs. Interrelated items may be summed to obtain an overall score for each
participant. Cronbach’s coefficient alpha estimates the reliability of this type of scale by
determining the internal consistency of the test or the average correlation of items
within the test (Cronbach 1951).

When a value is recorded, the observed value contains some degree of measurement
error. Two sets of measurements on the same variable for the same individual may not
have identical values. However, repeated measurements for a series of individuals will
show some consistency. Reliability measures internal consistency from one set of
measurements to another. The observed value Y is divided into two components, a true
value T and a measurement error E. The measurement error is assumed to be
independent of the true value, that is,

� � �� � � ��� 	���
 � �

The reliability coefficient of a measurement test is defined as the squared correlation
between the observed value Y and the true value T, that is,

�� 	���
 �
��� 	���
�

��
 	�
 ��
 	�

�
��
 	�
�

��
 	�
 ��
 	�

�
��
 	�

��
 	�

which is the proportion of the observed variance due to true differences among
individuals in the sample. If Y is the sum of several observed variables measuring the
same feature, you can estimate var(T). Cronbach’s coefficient alpha, based on a lower
bound for var(T), is an estimate of the reliability coefficient.

Suppose � variables are used with �� � �� � �� for � � �� �� � � � � �, where �� is
the observed value, �� is the true value, and �� is the measurement error. The
measurement errors (��) are independent of the true values (��) and are also
independent of each other. Let �� �

�
�� be the total observed score and �� �

�
��

be the total true score. Because

	�� �

�

��
 	��
 �
�
� ���

��� 	�� ���
 �

The CORR Procedure � Cronbach’s Coefficient Alpha 285

a lower bound for ��� ���� is given by

�

�� �

�
� ���

��� ��� ��� �

With ��� �	� �	� �
 ��� ��� ��� � for � �
 �, a lower bound for the reliability
coefficient is then given by the Cronbach’s coefficient alpha:

�

�
�

� � �

� �
� ���

��� �	� �	� �

��� �	��

�
�

� � �

����� �
�
�

��� �	� �

��� �	��

�
�	

If the variances of the items vary widely, you can standardize the items to a standard
deviation of 1 before computing the coefficient alpha. If the variables are dichotomous
(0,1), the coefficient alpha is equivalent to the Kuder-Richardson 20 (KR-20) reliability
measure.

When the correlation between each pair of variables is 1, the coefficient alpha has a
maximum value of 1. With negative correlations between some variables, the coefficient
alpha can have a value less than zero. The larger the overall alpha coefficient, the more
likely that items contribute to a reliable scale. Nunnally (1978) suggests .70 as an
acceptable reliability coefficient; smaller reliability coefficients are seen as inadequate.
However, this varies by discipline.

To determine how each item reflects the reliability of the scale, you calculate a
coefficient alpha after deleting each variable independently from the scale. The
Cronbach’s coefficient alpha from all variables except the ��� variable is given by

��

�
� � �

� �

�
�
�������

�
� ���

��� �	��

���

�
� ���

	�

�
�
����	

If the reliability coefficient increases after deleting an item from the scale, you can
assume that the item is not correlated highly with other items in the scale. Conversely,
if the reliability coefficient decreases you can assume that the item is highly correlated
with other items in the scale. See SAS Communications, 4th Quarter 1994, for more
information on how to interpret Cronbach’s coefficient alpha.

Listwise deletion of observations with missing values is necessary to correctly
calculate Cronbach’s coefficient alpha. PROC CORR does not automatically use listwise
deletion when you specify ALPHA. Therefore, use the NOMISS option if the data set
contains missing values. Otherwise, PROC FREQ prints a warning message in the SAS
log indicating the need to use NOMISS with ALPHA.

286 Probability Values � Chapter 12

Probability Values
Probability values for the Pearson and Spearman correlations are computed by

treating

�� � ����� �

��� ���
���

as coming from a t distribution with � � � degrees of freedom, where � is the
appropriate correlation.

Probability values for the Pearson and Spearman partial correlations are computed
by treating

��� � � ����� �

��� ���
���

as coming from a t distribution with � � � � � degrees of freedom, where � is the
appropriate partial correlation and � is the number of variables being partialed out.

Probability values for Kendall correlations are computed by treating

��
��� ���

as coming from a normal distribution when

� �
�
���

�	
 ��� � �� � �	
 ��� � �� �

and where �� are the values of the first variable, �� are the values of the second
variable, and the function sgn(z) is defined as

�	
 ��� �

�
� �� � �

 �� � �

�� �� � �

The formula for the variance of �, var(�), is computed as

��� ��� �
�� � �� � ��

��
�

��
�� ��� ��

�
��

�� ��� �� ��� ��

where
�� � � ��� �� ���� ��

�� �
�

	� �	� � �� ��	� � ��

The CORR Procedure � ODS Table Names 287

�� �
�

�� ��� � �� ���� � ��

�� � �
�

�� ��� � ��� �
�

�� ��� � ���

�� � �
�

�� ��� � �� ��� � ��� �
�

�� ��� � �� ��� � ���

The sums are over tied groups of values where �� is the number of tied � values and
�� is the number of tied � values (Noether 1967). The sampling distribution of
Kendall’s partial tau-b is unknown; therefore, the probability values are not available.

The probability values for Hoeffding’s D statistic are computed using the asymptotic
distribution computed by Blum, Kiefer, and Rosenblatt (1961). The formula is

�� � ����

�	

 �

��

��

which comes from the asymptotic distribution. When the sample size is less than 10,
see the tables for the distribution of D in Hollander and Wolfe (1973).

Results: CORR Procedure

Missing Values
By default, PROC CORR uses pairwise deletion when observations contain missing

values. PROC CORR includes all nonmissing pairs of values for each pair of variables
in the statistical computations. Therefore, the correlations statistics may be based on
different numbers of observations.

If you specify the NOMISS option, PROC CORR uses listwise deletion when a value
of the BY, FREQ, VAR, WEIGHT, or WITH statement variable is missing. PROC CORR
excludes all observations with missing values from the analysis. Therefore, the number
of observations for each pair of variables is identical. The PARTIAL statement always
excludes the observations with missing values by automatically invoking NOMISS.
Listwise deletion is needed to correctly calculate Cronbach’s coefficient alpha when data
are missing. If a data set contains missing values, when you specify ALPHA use the
NOMISS option

There are two reasons to specify NOMISS and, thus, to avoid pairwise deletion.
First, NOMISS is computationally more efficient, so you use fewer computer resources.
Second, if you use the correlations as input to regression or other statistical procedures,
a pairwise-missing correlation matrix leads to several statistical difficulties. Pairwise
correlation matrices may not be nonnegative definite, and the pattern of missing values
may bias the results.

ODS Table Names
PROC CORR assigns a name to each table it creates. You can use these names to

reference the table when using the Output Delivery System (ODS) to select tables and
create output data sets. For more information, see SAS Output Delivery System User’s
Guide.

288 ODS Table Names � Chapter 12

Table 12.2 ODS Tables Produced with the PROC CORR Statement

ODS Name Description Option

Cov Covariances

Row/Column variable variance, DF (missing
values)

COV

CronbachAlpha Coefficient Alpha ALPHA

CronbachAlphaDel Coefficient Alpha with Deleted Variable ALPHA

Csscp Corrected sums of squares and crossproducts

Row/Column variable corrected sums of
squares (missing values)

CSSCP

HoeffdingCorr Hoeffding’s D statistics

p values (NOPROB is not specified)

number of observations (missing values)

HOEFFDING

KendallCorr Kendall tau-b coefficients

p values (NOPROB is not specified)

number of observations (missing values)

KENDALL

PearsonCorr Pearson correlations

p-value (NOPROB is not specified)

number of observations (missing values)

omit NOCORR or
PEARSON

SimpleStats Simple descriptive statistics omit NOSIMPLE

SpearmanCorr Spearman correlations

p values (NOPROB is not specified)

number of observations (missing values)

SPEARMAN

Sscp Sums of squares and crossproducts

Row/Column variable sums of squares
(missing values)

SSCP

VarInformation Variable Information default

Table 12.3 ODS Tables Produced with the PARTIAL Statement

ODS Name Description PROC CORR
statement Option

PartialCsscp Partial corrected sums of squares and
crossproduct

CSSCP

PartialCov Partial covariances COV

PartialKendallCorr Partial Kendall tau-b coefficients KENDALL

PartialPearsonCorr Partial Pearson correlations

p values (NOPROB is not specified)

default

PartialSpearmanCorr Partial Spearman correlations

p values (NOPROB is not specified)

SPEARMAN

The CORR Procedure � Output 289

Output
By default, PROC CORR prints a report that includes descriptive statistics and

correlation statistics for each variable. The descriptive statistics include the number of
observations with nonmissing values, the mean, the standard deviation, the minimum,
and the maximum. PROC CORR reports the following additional descriptive statistics
when you request various correlation statistics:

sum
for Pearson correlation only

median
for nonparametric measures of association

partial variance
for Pearson partial correlation

partial standard deviation
for Pearson partial correlation.

If variable labels are available, PROC CORR labels the variables.
When you specify the CSSCP, SSCP, or COV option, the appropriate sum-of-squares

and crossproducts and covariance matrix appears at the top of the correlation report. If
the data set contains missing values, PROC CORR prints additional statistics for each
pair of variables. These statistics, calculated from the observations with nonmissing
row and column variable values, may include

SSCP(W’,’V’)
uncorrected sum-of-squares and crossproducts

USS(W’)
uncorrected sum-of-squares for the row variable

USS(V’)
uncorrected sum-of-squares for the column variable

CSSCP(W’,’V’)
corrected sum-of-squares and crossproducts

CSS(W’)
corrected sum-of-squares for the row variable

CSS(V’)
corrected sum-of-squares for the column variable

COV (W’,’V’)
covariance

VAR (W’)
variance for the row variable

VAR (V’)
variance for the column variable

DF(W’,V’)
divisor for calculating covariance and variances.

For each pair of variables, PROC CORR always prints the correlation coefficients, the
number of observations used to calculate the coefficient, and the significance probability.
When you specify the ALPHA option, PROC CORR prints Cronbach’s coefficient alpha,
the correlation between the variable and the total of the remaining variables, and
Cronbach’s coefficient alpha using the remaining variables for the raw variables and
the standardized variables.

290 Output Data Sets � Chapter 12

Output Data Sets
When you specify the OUTP=, OUTS=, OUTK=, or OUTH= option, PROC CORR

creates an output data set containing statistics for Pearson correlation, Spearman
correlation, Kendall correlation, or Hoeffding’s D, respectively. By default, the output
data set is a special data set type (TYPE=CORR) that many SAS/STAT procedures
recognize, including PROC REG and PROC FACTOR. When you specify the NOCORR
option and the COV, CSSCP, or SSCP option, use the TYPE= data set option to change
the data set type to COV, CSSCP, or SSCP. For example, the following statement

proc corr nocorr cov outp=b(type=cov);

specifies the output data set type as COV.
PROC CORR does not print the output data set. Use PROC PRINT, PROC REPORT,

or another SAS reporting tool to print the output data set.
The output data set includes the following variables

BY variables
identifies the BY group when using a BY statement.

TYPE variable
identifies the type of observation.

NAME variable
identifies the variable that corresponds to a given row of the correlation matrix.

INTERCEP variable
identifies variable sums when specifying the SSCP option.

VAR variables
identifies the variables listed in the VAR statement.

You can use a combination of the _TYPE_ and _NAME_ variables to identify the
contents of an observation. The _NAME_ variable indicates which row of the correlation
matrix the observation corresponds to. The values of the _TYPE_ variable are

SSCP
uncorrected sums of squares and crossproducts

CSSCP
corrected sums of squares and crossproducts

COV
covariances

MEAN
mean of each variable

STD
standard deviation of each variable

N
number of nonmissing observations for each variable

SUMWGT
sum of the weights for each variable when using a WEIGHT statement

CORR
correlation statistics for each variable.

When you specify the SSCP option, the OUTP= data set includes an additional
observation that contains intercept values. When you specify the ALPHA option, the
OUTP= data set also includes observations with the following _TYPE_ values:

The CORR Procedure � Example 1: Computing Pearson Correlations and Other Measures of Association 291

RAWALPHA
Cronbach’s coefficient alpha for raw variables

STDALPHA
Cronbach’s coefficient alpha for standardized variables

RAWALDEL
Cronbach’s coefficient alpha for raw variables after deleting one variable

STDALDEL
Cronbach’s coefficient alpha for standardized variables after deleting one variable

RAWCTDEL
correlation between a raw variable and the total of the remaining raw variables

STDCTDEL
correlation between a standardized variable and the total of the remaining
standardized variables.

When you use a PARTIAL statement, the previous statistics are calculated after the
variables are partialed. If PROC CORR computes Pearson correlation statistics, MEAN
equals zero and STD equals the partial standard deviation associated with the partial
variance for the OUTP=, OUTK=, or OUTS= data set. Otherwise, PROC CORR assigns
missing values to MEAN and STD. Output 12.4 on page 291 lists the observations in an
OUTP= data set when the COV option and PARTIAL statement are used to compute
Pearson partial correlations. The _TYPE_ variable identifies COV, MEAN, STD, N, and
CORR as the statistical values for the variables Weight, Oxygen, and Runtime. MEAN
always equals 0, while STD is a partial standard deviation.

Output 12.4 OUTP= Data Set with Pearson Partial Correlations

Pearson Correlation Statistics Using the PARTIAL Statement 1
Output Data Set from PROC CORR

TYPE _NAME_ Weight Oxygen Runtime

COV Weight 72.4374 -12.7511 2.0677
COV Oxygen -12.7511 27.0165 -5.5937
COV Runtime 2.0677 -5.5937 1.9451
MEAN 0.0000 0.0000 0.0000
STD 8.5110 5.1977 1.3947
N 28.0000 28.0000 28.0000
CORR Weight 1.0000 -0.2882 0.1742
CORR Oxygen -0.2882 1.0000 -0.7716
CORR Runtime 0.1742 -0.7716 1.0000

Examples: CORR Procedure

Example 1: Computing Pearson Correlations and Other Measures of
Association

Procedure features:

292 Program � Chapter 12

PROC CORR statement options:
HOEFFDING
PEARSON
SPEARMAN

VAR statement

This example
� produces a correlation analysis with descriptive statistics, Pearson

product-moment correlation, Spearman rank-order correlation, and Hoeffding’s
measure of dependence, D

� selects the analysis variables.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the FITNESS data set. This data set contains measurements from a study of physical
fitness of 30 participants between the ages 38 and 57. Each observation represents one person.
Two observations contain missing values.

data fitness;
input Age Weight Runtime Oxygen @@;
datalines;

57 73.37 12.63 39.407 54 79.38 11.17 46.080
52 76.32 9.63 45.441 50 70.87 8.92 .
51 67.25 11.08 45.118 54 91.63 12.88 39.203
51 73.71 10.47 45.790 57 59.08 9.93 50.545
49 76.32 . 48.673 48 61.24 11.5 47.920
52 82.78 10.5 47.467 44 73.03 10.13 50.541
45 87.66 14.03 37.388 45 66.45 11.12 44.754
47 79.15 10.6 47.273 54 83.12 10.33 51.855
49 81.42 8.95 40.836 51 77.91 10.00 46.672
48 91.63 10.25 46.774 49 73.37 10.08 50.388
44 89.47 11.37 44.609 40 75.07 10.07 45.313
44 85.84 8.65 54.297 42 68.15 8.17 59.571
38 89.02 9.22 49.874 47 77.45 11.63 44.811
40 75.98 11.95 45.681 43 81.19 10.85 49.091
44 81.42 13.08 39.442 38 81.87 8.63 60.055
;

Generate the correlation statistics. PEARSON, SPEARMAN, and HOEFFDING compute
correlation statistics. When you request nonparametric correlations, specify PEARSON to
compute Pearson correlations.

The CORR Procedure � Output 293

proc corr data=fitness pearson spearman hoeffding;

Specify the analysis variables. The VAR statement specifies that Weight, Oxygen, and
Runtime are the analysis variables and specifies the order in which to print them.

var weight oxygen runtime;

Specify the title. The TITLE statement specifies a title for the report.

title ’Measures of Association for’;
title2 ’a Physical Fitness Study’;

run;

Output

294 Output � Chapter 12

The correlation report includes descriptive statistics, Pearson’s rho, Spearman’s rho, and
Hoeffding’s D. The report uses the median, instead of the sum, as a descriptive measure when
PROC CORR computes nonparametric measures of association.

Because missing data are excluded pairwise, the number of observations PROC CORR uses to
calculate the correlation coefficients varies.

Measures of Association for 1
a Physical Fitness Study

The CORR Procedure

3 Variables: Weight Oxygen Runtime

Simple Statistics

Variable N Mean Std Dev Median Minimum Maximum

Weight 30 77.70500 8.34152 77.68000 59.08000 91.63000
Oxygen 29 47.06445 5.32129 46.67200 37.38800 60.05500
Runtime 29 10.61448 1.41655 10.47000 8.17000 14.03000

Pearson Correlation Coefficients
Prob > |r| under H0: Rho=0

Number of Observations

Weight Oxygen Runtime

Weight 1.00000 -0.19900 0.15155
0.3007 0.4326

30 29 29

Oxygen -0.19900 1.00000 -0.78346
0.3007 <.0001

29 29 28

Runtime 0.15155 -0.78346 1.00000
0.4326 <.0001

29 28 29

Spearman Correlation Coefficients
Prob > |r| under H0: Rho=0

Number of Observations

Weight Oxygen Runtime

Weight 1.00000 -0.13110 0.10546
0.4979 0.5861

30 29 29

Oxygen -0.13110 1.00000 -0.68363
0.4979 <.0001

29 29 28

Runtime 0.10546 -0.68363 1.00000
0.5861 <.0001

29 28 29

The CORR Procedure � Program 295

Measures of Association for 2
a Physical Fitness Study

The CORR Procedure

Hoeffding Dependence Coefficients
Prob > D under H0: D=0
Number of Observations

Weight Oxygen Runtime

Weight 0.97559 -0.01789 -0.02418
<.0001 0.9775 1.0000

30 29 29

Oxygen -0.01789 1.00000 0.16554
0.9775 <.0001

29 29 28

Runtime -0.02418 0.16554 1.00000
1.0000 <.0001

29 28 29

Example 2: Computing Rectangular Correlation Statistics with Missing Data

Procedure features:
PROC CORR statement options:

COV
NOSIMPLE
SSCP

VAR statement
WITH statement

This example

� suppresses descriptive statistics

� prints uncorrected sum-of-squares and crossproducts

� calculates a rectangular covariance matrix
� calculates a rectangular correlation matrix

� excludes observations with missing values using pairwise deletion (default
method).

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

296 Program � Chapter 12

Create the SETOSA data set. This data set contains measurements for four iris parts: sepal
length, sepal width, petal length, and petal width based on Fisher’s iris data (1936). Fifty iris
specimens from the species Iris setosa are used. Each observation represents one specimen.
Three observations contain missing values. The LABEL statement associates a label with each
variable.

data setosa;
input SepalLength SepalWidth PetalLength PetalWidth @@;
label sepallength=’Sepal Length in mm.’

sepalwidth=’Sepal Width in mm.’
petallength=’Petal Length in mm.’
petalwidth=’Petal Width in mm.’;

datalines;
50 33 14 02 46 34 14 03 46 36 . 02
51 33 17 05 55 35 13 02 48 31 16 02
52 34 14 02 49 36 14 01 44 32 13 02
50 35 16 06 44 30 13 02 47 32 16 02
48 30 14 03 51 38 16 02 48 34 19 02
50 30 16 02 50 32 12 02 43 30 11 .
58 40 12 02 51 38 19 04 49 30 14 02
51 35 14 02 50 34 16 04 46 32 14 02
57 44 15 04 50 36 14 02 54 34 15 04
52 41 15 . 55 42 14 02 49 31 15 02
54 39 17 04 50 34 15 02 44 29 14 02
47 32 13 02 46 31 15 02 51 34 15 02
50 35 13 03 49 31 15 01 54 37 15 02
54 39 13 04 51 35 14 03 48 34 16 02
48 30 14 01 45 23 13 03 57 38 17 03
51 38 15 03 54 34 17 02 51 37 15 04
52 35 15 02 53 37 15 02
;

Generate the correlation statistics but suppress descriptive statistics. SSCP displays
the uncorrected sum-of-squares and crossproducts matrix and invokes PEARSON. COV
calculates the covariance matrix. NOSIMPLE suppresses descriptive statistics.

proc corr data=setosa sscp cov nosimple;

Generate a rectangular correlation matrix. The WITH statement together with the VAR
statement produces a rectangular correlation matrix. The matrix rows are PetalLength and
PetalWidth while the matrix columns are SepalLength and SepalWidth.

var sepallength sepalwidth;
with petallength petalwidth;

Specify the title. The TITLE statement specifies a title for the report.

title ’Fisher (1936) Iris Setosa Data’;
run;

The CORR Procedure � Output 297

Output

298 Output � Chapter 12

The correlation report includes rectangular sum-of-squares and crossproducts, covariances, and
the correlation matrix using the two WITH variables and two VAR variables. The descriptive
statistics do not appear. PROC CORR uses variable labels to label matrix rows (WITH
variables).

PROC CORR calculates sum-of-squares and crossproducts and covariances statistics for each
pair of variables by using observations with nonmissing row and column variable values.

Because missing data are excluded pairwise, the number of observations PROC CORR uses to
calculate the correlation coefficients changes.

Fisher (1936) Iris Setosa Data 1

The CORR Procedure

2 With Variables: PetalLength PetalWidth
2 Variables: SepalLength SepalWidth

Sums of Squares and Crossproducts
SSCP / Row Var SS / Col Var SS

SepalLength SepalWidth

PetalLength 36214.00000 24756.00000
Petal Length in mm. 10735.00000 10735.00000

123793.0000 58164.0000

PetalWidth 6113.00000 4191.00000
Petal Width in mm. 355.00000 355.00000

121356.0000 56879.0000

Variances and Covariances
Covariance / Row Var Variance / Col Var Variance / DF

SepalLength SepalWidth

PetalLength 1.270833333 1.363095238
Petal Length in mm. 2.625000000 2.625000000

12.33333333 14.60544218
48 48

PetalWidth 0.911347518 1.048315603
Petal Width in mm. 1.063386525 1.063386525

11.80141844 13.62721631
47 47

Pearson Correlation Coefficients
Prob > |r| under H0: Rho=0

Number of Observations

Sepal Sepal
Length Width

PetalLength 0.22335 0.22014
Petal Length in mm. 0.1229 0.1285

49 49

PetalWidth 0.25726 0.27539
Petal Width in mm. 0.0775 0.0582

48 48

The CORR Procedure � Program 299

Example 3: Computing Cronbach’s Coefficient Alpha

Procedure features:
PROC CORR statement options:

ALPHA
NOCORR
NOMISS

This example

� computes Cronbach’s coefficient alpha for a multiple-item mixed-rating scale

� suppresses Pearson correlation statistics
� excludes observations with missing values using listwise deletion.

This example does not examine the correlation matrix but assumes that all items are
positively correlated. Normally, you want to examine the correlation and covariance
matrices to make sure that all variables are positively correlated. Positive correlation is
needed because items measure a common entity. You exclude negatively correlated
items from the analysis because they do not measure the same construct.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the PYSCHDAT data set. This data set contains responses to a questionnaire
assessing the mental stability of 30 randomly selected female psychiatric patients.* Each
observation represents one patient. The scale includes seven items. The LABEL statement
provides a label for each item. Seven observations contain missing values.

data psychdat;
input Age Anxiety Depression Sleep Sex Life WeightChange @@;
label age = ’age in years’

anxiety = ’anxiety level’
depression = ’depression level’
sleep = ’normal sleep (1=y 2=n)’
sex = ’sexual (1=n 2=y)’
life = ’suicidal (1=n 2=y)’
weightchange = ’recent weight change’;

datalines;
39 2 2 2 2 2 4.9 41 2 2 2 2 2 2.2

* Data are from Assignments in Applied Statistics by Simon Conrad. Copyright © 1989 by John Wiley & Sons, Inc. Reprinted
with permission from the publisher.

300 Program � Chapter 12

42 3 3 . 2 2 4.0 30 2 2 2 2 2 -2.6
35 2 1 1 2 1 -0.3 44 . 1 2 1 1 0.9
31 2 2 . 2 2 -1.5 39 3 2 2 2 1 3.5
35 3 2 2 2 2 -1.2 33 2 2 2 2 2 0.8
38 2 1 1 1 1 -1.9 31 2 2 2 . 1 5.5
40 3 2 2 2 1 2.7 44 2 2 2 2 2 4.4
43 3 2 2 2 2 3.2 32 1 1 1 2 1 -1.5
32 1 2 2 . 1 -1.9 43 4 3 2 2 2 8.3
46 3 2 2 2 2 3.6 30 2 2 2 2 1 1.4
34 3 3 . 2 2 . 37 3 2 2 2 1 .
35 2 1 2 2 1 -1.0 45 2 2 2 2 2 6.5
35 2 2 2 2 1 -2.1 31 2 2 2 2 1 -0.4
32 2 2 2 2 1 -1.9 44 2 2 2 2 2 3.7
40 3 3 2 2 2 4.5 42 3 3 2 2 2 4.2
;

Generate Cronbach’s alpha for all the analysis variables. Suppress Pearson
correlation statistics. ALPHA computes Cronbach’s alpha and invokes PEARSON. NOCORR
suppresses Pearson correlation statistics. NOMISS excludes observations with missing values.
Omitting a VAR statement causes PROC CORR to use all numeric variables.

proc corr data=psychdat alpha nocorr nomiss;

Specify the title. The TITLE statement specifies a title for the report.

title1 ’Mental Stability Scale for Female Psychiatric Patients’;
run;

The CORR Procedure � Output 301

Output

The correlation report includes descriptive statistics and Cronbach’s coefficient alpha, the
correlation between the variable and the total of the remaining variables, and Cronbach’s
coefficient alpha using the remaining variables for both the raw variables and the standardized
variables. These calculations use the 23 observations without missing values.

Because the variances of some variables vary widely, you use the standardized scores to
estimate reliability. The overall standardized alpha of .85 is an acceptable reliability coefficient.
This is greater than Nunnally’s suggested value of .70.

The standardized alpha provides information on how each item reflects the reliability of the
scale. Notice that the standardized alpha decreases after removing Depression from the
construct. Therefore, this variable appears strongly correlated with other items in the scale.
The standardized alpha increases slightly after removing Sex from the construct. Thus,
removing this variable from the scale makes the construct more reliable.

Mental Stability Scale for Female Psychiatric Patients 1

The CORR Procedure

7 Variables: Age Anxiety Depression Sleep Sex
Life WeightChange

Simple Statistics

Variable N Mean Std Dev Sum

Age 23 37.91304 5.13378 872.00000
Anxiety 23 2.34783 0.64728 54.00000
Depression 23 1.95652 0.56232 45.00000
Sleep 23 1.86957 0.34435 43.00000
Sex 23 1.95652 0.20851 45.00000
Life 23 1.56522 0.50687 36.00000
WeightChange 23 1.78261 3.06381 41.00000

Simple Statistics

Variable Minimum Maximum Label

Age 30.00000 46.00000 age in years
Anxiety 1.00000 4.00000 anxiety level
Depression 1.00000 3.00000 depression level
Sleep 1.00000 2.00000 normal sleep (1=y 2=n)
Sex 1.00000 2.00000 sexual (1=n 2=y)
Life 1.00000 2.00000 suicidal (1=n 2=y)
WeightChange -2.60000 8.30000 recent weight change

Cronbach Coefficient Alpha

Variables Alpha

Raw 0.627754
Standardized 0.845339

302 Example 4: Storing Partial Correlations in an Output Data Set � Chapter 12

Cronbach Coefficient Alpha with Deleted Variable

Raw Variables Standardized Variables

Deleted Correlation Correlation
Variable with Total Alpha with Total Alpha
--
Age 0.742614 0.557515 0.546856 0.832207

Cronbach Coefficient Alpha with Deleted Variable

Deleted
Variable Label

Age age in years

Mental Stability Scale for Female Psychiatric Patients 2

The CORR Procedure

Cronbach Coefficient Alpha with Deleted Variable

Raw Variables Standardized Variables

Deleted Correlation Correlation
Variable with Total Alpha with Total Alpha
--
Anxiety 0.577129 0.600944 0.590851 0.825643
Depression 0.554983 0.608273 0.770956 0.797610
Sleep 0.378930 0.630242 0.618367 0.821482
Sex 0.155115 0.642017 0.333368 0.862537
Life 0.622207 0.607333 0.625338 0.820421
WeightChange 0.843939 0.341006 0.749261 0.801087

Cronbach Coefficient Alpha with Deleted Variable

Deleted
Variable Label

Anxiety anxiety level
Depression depression level
Sleep normal sleep (1=y 2=n)
Sex sexual (1=n 2=y)
Life suicidal (1=n 2=y)
WeightChange recent weight change

Example 4: Storing Partial Correlations in an Output Data Set
Procedure features:

PROC CORR statement options:
COV
KENDALL
NOSIMPLE
OUTP=
SPEARMAN

The CORR Procedure � Program 303

PARTIAL statement
VAR statement

Data set: FITNESS on page 292

This example
� suppresses descriptive statistics
� calculates three types of partial correlation coefficients
� calculates a partial covariance matrix
� excludes observations with missing values using listwise deletion
� selects the analysis variables
� creates an output data set with Pearson correlation statistics.

See “Output Data Sets” on page 290 for a listing of the output data set.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=120 pagesize=60;

Generate the correlation statistics and create the output data set FITCORR.
SPEARMAN and KENDALL request correlation statistics. COV calculates the covariance
matrix and invokes PEARSON. NOSIMPLE suppresses descriptive statistics. OUT= creates the
FITCORR data set that contains Pearson correlation statistics.

proc corr data=fitness spearman kendall cov nosimple
outp=fitcorr;

Specify the analysis variable. The VAR statement specifies that Weight, Oxygen, and
Runtime are the analysis variables and specifies the order in which to print them.

var weight oxygen runtime;

Generate the partial correlations. The PARTIAL statement calculates partial correlations
using Age as the controlling variable.

partial age;

Specify the labels for the report. The LABEL statement associates a label with each
variable for the duration of the PROC step.

304 Output � Chapter 12

label age = ’Age of subject’
weight = ’Wt in kg’
runtime = ’1.5 mi in minutes’
oxygen = ’O2 use’;

Specify the title. The TITLE statement specifies a title for the report.

title1 ’Partial Correlations for a Fitness and Exercise Study’;
run;

Output

The CORR Procedure � Output 305

The report includes a partial covariance matrix and partial correlations for Pearson’s rho, Spearman’s rho, and
Kendall’s tau-b. The p-values for Kendall’s tau-b are not available. Because observations with missing data are
excluded, PROC CORR uses 28 observations to calculate correlation coefficients.

Partial Correlations for a Fitness and Exercise Study 1

The CORR Procedure

1 Partial Variables: Age

3 Variables: Weight Oxygen Runtime

Partial Covariance Matrix, DF = 26

Weight Oxygen Runtime

Weight Wt in kg 72.43742055 -12.75113194 2.06766763

Oxygen O2 use -12.75113194 27.01654904 -5.59370556

Runtime 1.5 mi in minutes 2.06766763 -5.59370556 1.94512451

Pearson Partial Correlation Coefficients, N = 28

Prob > |r| under H0: Partial Rho=0

Weight Oxygen Runtime

Weight 1.00000 -0.28824 0.17419

Wt in kg 0.1448 0.3849

Oxygen -0.28824 1.00000 -0.77163

O2 use 0.1448 <.0001

Runtime 0.17419 -0.77163 1.00000

1.5 mi in minutes 0.3849 <.0001

Spearman Partial Correlation Coefficients, N = 28

Prob > |r| under H0: Partial Rho=0

Weight Oxygen Runtime

Weight 1.00000 -0.16407 0.08708

Wt in kg 0.4135 0.6658

Oxygen -0.16407 1.00000 -0.67112

O2 use 0.4135 0.0001

Runtime 0.08708 -0.67112 1.00000

1.5 mi in minutes 0.6658 0.0001

Kendall Partial Tau b Correlation Coefficients, N = 28

Weight Oxygen Runtime

Weight 1.00000 -0.09021 0.02854

Wt in kg

Oxygen -0.09021 1.00000 -0.52158

O2 use

Runtime 0.02854 -0.52158 1.00000

1.5 mi in minutes

306 References � Chapter 12

References

Blum, J.R., Kiefer, J., and Rosenblatt, M. (1961), "Distribution Free Tests of
Independence Based on the Sample Distribution Function," Annals of
Mathematical Statistics, 32, 485–498.

Conover, W.J. (1998), Practical Nonparametric Statistics, Third Edition, New York:
John Wiley & Sons, Inc.

Cronbach, L.J. (1951), "Coefficient Alpha and the Internal Structure of Tests,"
Psychometrika, 16, 297–334.

Fisher, R.A. (1936), "The Use of Multiple Measurements in Taxonomic Problems,"
Annals of Eugenics, 7, 179–188.

Hoeffding, W. (1948), "A Non-Parametric Test of Independence," Annals of
Mathematical Statistics, 19, 546–557.

Hollander, M. and Wolfe, D. (1999), Nonparametric Statistical Methods, Second
Edition, New York: John Wiley & Sons, Inc.

Knight, W.E. (1966), "A Computer Method for Calculating Kendall’s Tau with
Ungrouped Data," Journal of the American Statistical Association, 61, 436–439.

Moore, D.S. (2000), Statistics: Concepts and Controversies, 5th Edition, New York:
W.H. Freeman & Company.

Noether, G.E. (1967), Elements of Nonparametric Statistics, New York: John Wiley &
Sons, Inc.

Novick, M.R. (1967), "Coefficient Alpha and the Reliability of Composite
Measurements," Psychometrika, 32, 1–13.

Nunnally, J. C. and Bernstein, I.H. (1994), Psychometric theory, Third Edition, New
York: McGraw-Hill Companies.

Ott, R. L. and Longnecker, M.T. (2000), An Introduction to Statistical Methods and
Data Analysis, 5th Edition, Belmont: Wadsworth Publishing Company.

SAS Institute Inc., "Measuring the Internal Consistency of a Test, Using PROC CORR
to Compute Cronbach’s Coefficient Alpha," SAS Communications, 20:4, TT2–TT5.

Spector, P.E. (1992). Summated Rating Scale Construction: An Introduction,
Newbury Park: Sage.

307

C H A P T E R

13
The CPORT Procedure

Overview: CPORT Procedure 307
Syntax: PROC CPORT 308

PROC CPORT Statement 308

EXCLUDE Statement 313

SELECT Statement 314

TRANTAB Statement 315
Concepts: CPORT Procedure 316

Transporting Password-Protected Data Sets 316

Results: CPORT Procedure 317

Data Control Block Characteristics for Mainframe Environments 317

Examples: CPORT Procedure 317

Example 1: Exporting Multiple Catalogs 317
Example 2: Exporting Individual Catalog Entries 318

Example 3: Exporting a Single SAS Data Set 319

Example 4: Applying a Translation Table 320

Example 5: Exporting Entries Based on Modification Date 321

Overview: CPORT Procedure
The CPORT procedure writes SAS data sets, SAS catalogs, or SAS data libraries to

sequential file formats (transport files). Use PROC CPORT with the CIMPORT
procedure to move files from one environment to another. Transport files are sequential
files that each contain a SAS data library, a SAS catalog, or a SAS data set in transport
format. The transport format that PROC CPORT writes is the same for all
environments and for many releases of SAS. In PROC CPORT, export means to put a
SAS data library, a SAS catalog, or a SAS data set into transport format. PROC
CPORT exports catalogs and data sets, either singly or as a SAS data library. PROC
CIMPORT restores (imports) the transport file to its original form as a SAS catalog,
SAS data set, or SAS data library.

Only PROC CIMPORT can read the transport files that PROC CPORT creates. For
information on the transport files that the transport engine creates, see the section on
SAS files in SAS Language Reference: Concepts.

PROC CPORT also converts SAS files, which means that it changes the format of a
SAS file from the format appropriate for one version of SAS to the format appropriate
for another version. For example, you can use PROC CPORT and PROC CIMPORT to
move files from earlier releases of SAS to more recent releases. In such cases, PROC
CIMPORT automatically converts the contents of the transport file as it imports it.

PROC CPORT produces no output (other than the transport files), but it does write
notes to the SAS log.

To export and import files, follow these steps:

308 Syntax: PROC CPORT � Chapter 13

1 Use PROC CPORT to export the SAS files that you want to transport.
2 If you are changing operating environments, move the transport file to the new

machine by using either communications software or a magnetic medium.

Note: If you use communications software to move the transport file, be sure that
it treats the transport file as a binary file and that it modifies neither the
attributes nor the contents of the file. �

3 Use PROC CIMPORT to translate the transport file into the format appropriate
for the new operating environment or release.

Syntax: PROC CPORT
PROC CPORT source-type=libref | <libref.>member-name<option(s)>;

EXCLUDE SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></
ENTRYTYPE=entry-type>;

SELECT SAS file(s) | catalog entry(s) </ MEMTYPE=mtype></
ENTRYTYPE=entry-type>;

TRANTAB NAME=translation-table-name
<option(s)>;

PROC CPORT Statement

PROC CPORT source-type=libref | <libref.>member-name<option(s)>;

To do this Use this option

Identify the transport file

Specify the transport file to write to FILE=

Direct the output from PROC CPORT to a
tape

TAPE

Select files to export

Export copies of all data sets or catalog
entries that have a modification date equal to
or later than the date you specify

AFTER=

Exclude specified entry types from the
transport file

EET=

Include specified entry types in the transport
file

ET=

Specify whether to export all generations of a
data set

GENERATION=

The CPORT Procedure � PROC CPORT Statement 309

To do this Use this option

Specify that only data sets, only catalogs, or
both, be moved when a library is exported

MEMTYPE=

Control the contents of the transport file

Suppress the conversion of displayed
character data to transport format

ASIS

Control the exportation of integrity
constraints

CONSTRAINT

Copy the created and modified date and time
to the transport file

DATECOPY

Control the exportation of indexes with
indexed SAS data sets

INDEX

Suppress the compression of binary zeros and
blanks in the transport file

NOCOMPRESS

Write all alphabetic characters to the
transport file in uppercase

OUTTYPE=
UPCASE

Translate specified characters from one
ASCII or EBCDIC value to another

TRANSLATE

Export SAS/AF PROGRAM and SCL entries without
edit capability when you import them

NOEDIT

Specify that exported catalog entries contain compiled
SCL code, but not the source code

NOSRC

Specify a libref associated with a SAS data library OUTLIB=

Required Arguments

source-type=libref | < libref.>member-name
identifies the type of file to export and specifies the catalog, SAS data set, or SAS
data library to export.

source-type
identifies the file(s) to export as a single catalog, as a single SAS data set, or as
the members of a SAS data library. The source-type argument can be one of the
following:

CATALOG | CAT | C

DATA | DS | D

LIBRARY | LIB | L

libref | <libref.>member-name
specifies the specific catalog, SAS data set, or SAS data library to export. If
source-type is CATALOG or DATA, you can specify both a libref and a member
name. If the libref is omitted, PROC CPORT uses the default library as the libref,
which is usually the WORK library. If the source-type argument is LIBRARY,
specify only a libref. If you specify a library, PROC CPORT exports only data sets
and catalogs from that library. You cannot export other types of files.

310 PROC CPORT Statement � Chapter 13

Options

AFTER=date
exports copies of all data sets or catalog entries that have a modification date later
than or equal to the date you specify. The modification date is the most recent date
when the contents of the data set or catalog entry changed. Specify date as a SAS
date literal or as a numeric SAS date value.
Tip: You can determine the modification date of a catalog entry by using the

CATALOG procedure.
Featured in: Example 5 on page 321.

ASIS
suppresses the conversion of displayed character data to transport format. Use this
option when you move files that contain DBCS (double-byte character set) data from
one operating environment to another if both operating environments use the same
type of DBCS data.
Interaction: The ASIS option invokes the NOCOMPRESS option.
Interaction: You cannot use both the ASIS option and the OUTTYPE= options in

the same PROC CPORT step.

CONSTRAINT=YES | NO
controls the exportation of integrity constraints that have been defined on a data set.
When you specify CONSTRAINT=YES, all types of integrity constraints are exported
for a library; only general integrity constraints are exported for a single data set.
When you specify CONTRAINT=NO, indexes created without integrity constraints
are ported, but neither integrity constraints nor any indexes created with integrity
constraints are ported. For more information on integrity constraints, see the section
on SAS files in SAS Language Reference: Concepts.
Alias: CON=
Default: YES
Interaction: You cannot specify both CONSTRAINT= and INDEX= in the same

PROC CPORT step.
Interaction: If you specify INDEX=NO, no integrity constraints are exported.

DATECOPY
copies the SAS internal date and time when the SAS file was created and the date
and time when it was last modified to the resulting transport file. Note that the
operating environment date and time are not preserved.
Restriction: DATECOPY can be used only when the destination file uses the V8 or

V9 engine.
Tip: You can alter the file creation date and time with the DTC= option on the

MODIFY statement“MODIFY Statement” on page 366 in a PROC DATASETS step.

EET=(etype(s))
excludes specified entry types from the transport file. If etype is a single entry type,
then you can omit the parentheses. Separate multiple values with a space.
Interaction: You cannot use both the EET= option and the ET= option in the same

PROC CPORT step.

ET=(etype(s))
includes specified entry types in the transport file. If etype is a single entry type,
then you can omit the parentheses. Separate multiple values with a space.
Interaction: You cannot use both the EET= option and the ET= option in the same

PROC CPORT step.

The CPORT Procedure � PROC CPORT Statement 311

FILE=fileref | ’filename’
specifies a previously defined fileref or the filename of the transport file to write to. If
you omit the FILE= option, then PROC CPORT writes to the fileref SASCAT, if
defined. If the fileref SASCAT is not defined, PROC CPORT writes to SASCAT.DAT
in the current directory.

Note: The behavior of PROC CPORT when SASCAT is undefined varies from one
operating environment to another. For details, see the SAS documentation for your
operating environment. �
Featured in: All examples.

GENERATION=YES | NO
specifies whether to export all generations of a SAS data set. To export only the base
generation of a data set, specify GENERATION=NO in the PROC CPORT statement.
To export a specific generation number, use the GENNUM= data set option when you
specify a data set in the PROC CPORT statement. For more information on
generation data sets, see SAS Language Reference: Concepts.

Note: PROC CIMPORT imports all generations of a data set that are present in
the transport file. It deletes any previous generation set with the same name and
replaces it with the imported generation set, even if the number of generations does
not match. �
Alias: GEN=
Default: YES for libraries; NO for single data sets

INDEX=YES | NO
specifies whether to export indexes with indexed SAS data sets.
Default: YES
Interaction: You cannot specify both INDEX= and CONSTRAINT= in the same

PROC CPORT step.
Interaction: If you specify INDEX=NO, no integrity constraints are exported.

INTYPE=DBCS-type
specifies the type of DBCS data stored in the SAS files to be exported. Double-byte
character set (DBCS) data uses up to two bytes for each character in the set.
DBCS-type must be one of the following values:

IBM | HITAC |
FACOM

for OS/390

IBM for VSE

DEC | SJIS for OpenVMS

PCIBM | SJIS for OS/2
Restriction The INTYPE= option is allowed only if SAS is built with Double-Byte

Character Set (DBCS) extensions. Because these extensions require significant
computing resources, there is a special distribution for those sites that require it.
An error is reported if this option is used at a site for which DBCS extensions are
not enabled.

Default: If the INTYPE= option is not used, the DBCS type defaults to the value of
the SAS system option DBCSTYPE=.

Interaction: Use the INTYPE= option in conjunction with the OUTTYPE= option to
change from one type of DBCS data to another.

Interaction: The INTYPE= option invokes the NOCOMRPESS option.
Interaction: You cannot use the INTYPE= option and the ASIS option in the same

PROC CPORT step.

312 PROC CPORT Statement � Chapter 13

Tip: You can set the value of the SAS system option DBCSTYPE= in your
configuration file.

MEMTYPE=mtype
restricts the type of SAS file that PROC CPORT writes to the transport file.
MEMTYPE= restricts processing to one member type. Values for mtype can be

ALL
both catalogs and data sets

CATALOG | CAT
catalogs

DATA | DS
SAS data sets

Alias: MT=
Default: ALL
Featured in: Example 1 on page 317.

NOCOMPRESS
suppresses the compression of binary zeros and blanks in the transport file.
Alias: NOCOMP
Default: By default, PROC CPORT compresses binary zeros and blanks to conserve

space.
Interaction: The ASIS, INTYPE=, and OUTTYPE= options invoke the

NOCOMPRESS option.

Note: Compression of the transport file does not alter the flag in each catalog and
data set that indicates whether the original file was compressed. �

NOEDIT
exports SAS/AF PROGRAM and SCL entries without edit capability when you
import them.

The NOEDIT option produces the same results as when you create a new catalog
to contain SCL code by using the MERGE statement with the NOEDIT option in the
BUILD procedure of SAS/AF software.

Note: The NOEDIT option affects only SAS/AF PROGRAM and SCL entries. It
does not affect FSEDIT SCREEN or FSVIEW FORMULA entries. �
Alias: NEDIT

NOSRC
specifies that exported catalog entries contain compiled SCL code but not the source
code.

The NOSRC option produces the same results as when you create a new catalog to
contain SCL code by using the MERGE statement with the NOSOURCE option in
the BUILD procedure of SAS/AF software.
Alias: NSRC

OUTLIB=libref
specifies a libref associated with a SAS data library. If you specify the OUTLIB=
option, PROC CIMPORT is invoked automatically to re-create the input data library,
data set, or catalog in the specified library.
Alias: OUT=
Tip: Use the OUTLIB= option when you change SAS files from one DBCS type to

another within the same operating environment if you want to keep the original
data intact.

The CPORT Procedure � EXCLUDE Statement 313

OUTTYPE=UPCASE
writes all displayed characters to the transport file and to the OUTLIB= file in
uppercase.
Interaction: The OUTTYPE= option invokes the NOCOMPRESS option.

TAPE
directs the output from PROC CPORT to a tape.
Default: The output from PROC CPORT is sent to disk.

TRANSLATE=(translation-list)
translates specified characters from one ASCII or EBCDIC value to another. Each
element of translation-list has the form

ASCII-value-1 TO ASCII-value-2
EBCDIC-value-1 TO EBCDIC-value-2
You can use hexadecimal or decimal representation for ASCII values. If you use

the hexadecimal representation, values must begin with a digit and end with an x.
Use a leading zero if the hexadecimal value begins with an alphabetic character.

For example, to translate all left brackets to left braces, specify the TRANSLATE=
option as follows (for ASCII characters):

translate=(5bx to 7bx)

The following example translates all left brackets to left braces and all right
brackets to right braces:

translate=(5bx to 7bx 5dx to 7dx)

EXCLUDE Statement
Excludes specified files or entries from the transport file.

Tip: There is no limit to the number of EXCLUDE statements you can use in one
invocation of PROC CPORT.
Interaction: You can use either EXCLUDE statements or SELECT statements in a PROC
CPORT step, but not both.

EXCLUDE SAS file(s) | catalog entry(s)</ MEMTYPE=mtype></
ENTRYTYPE=entry-type>;

Required Arguments

SAS file(s) | catalog entry(s)
specifies either the name(s) of one or more SAS files or the names of one or more
catalog entries to be excluded from the transport file. Specify SAS filenames when
you export a SAS data library; specify catalog entry names when you export an
individual SAS catalog. Separate multiple filenames or entry names with a space.
You can use shortcuts to list many like-named files in the EXCLUDE statement. For
more information, see “Shortcuts for Specifying Lists of Variable Names” on page 24.

Options

314 SELECT Statement � Chapter 13

ENTRYTYPE=entry-type
specifies a single entry type for the catalog entries listed in the EXCLUDE statement.
See SAS Language Reference: Concepts for a complete list of catalog entry types.
Restriction: ENTRYTYPE= is valid only when you export an individual SAS

catalog.
Alias: ETYPE=, ET=

MEMTYPE=mtype
specifies a single member type for the SAS file(s) listed in the EXCLUDE statement.
Valid values are CATALOG or CAT, DATA, or ALL. If you do not specify the
MEMTYPE= option in the EXCLUDE statement, then processing is restricted to
those member types specified in the MEMTYPE= option in the PROC CPORT
statement.

You can also specify the MEMTYPE= option, enclosed in parentheses, immediately
after the name of a file. In parentheses, MEMTYPE= identifies the type of the file
name that just precedes it. When you use this form of the option, it overrides the
MEMTYPE= option that follows the slash in the EXCLUDE statement, but it must
match the MEMTYPE= option in the PROC CPORT statement:
Restriction: MEMTYPE= is valid only when you export a SAS data library.
Restriction: If you specify a member type for MEMTYPE= in the PROC CPORT

statement, it must agree with the member type that you specify for MEMTYPE=
in the EXCLUDE statement.

Alias: MTYPE=, MT=
Default: If you do not specify MEMTYPE= in the PROC CPORT statement or in

the EXCLUDE statement, the default is MEMTYPE=ALL.

SELECT Statement

Includes specified files or entries in the transport file.

Tip: There is no limit to the number of SELECT statements you can use in one
invocation of PROC CPORT.
Interaction: You can use either EXCLUDE statements or SELECT statements in a PROC
CPORT step, but not both.
Featured in: Example 2 on page 318

SELECT SAS file(s) | catalog entry(s)</ MEMTYPE=mtype> </
ENTRYTYPE=entry-type> ;

Required Arguments

SAS file(s) | catalog entry(s)
specifies either the name(s) of one or more SAS files or the names of one or more
catalog entries to be included in the transport file. Specify SAS filenames when you
export a SAS data library; specify catalog entry names when you export an
individual SAS catalog. Separate multiple filenames or entry names with a space.
You can use shortcuts to list many like-named files in the SELECT statement. For
more information, see “Shortcuts for Specifying Lists of Variable Names” on page 24.

The CPORT Procedure � TRANTAB Statement 315

Options

ENTRYTYPE=entry-type
specifies a single entry type for the catalog entries listed in the SELECT statement.
See SAS Language Reference: Concepts for a complete list of catalog entry types.

Restriction: ENTRYTYPE= is valid only when you export an individual SAS
catalog.

Alias: ETYPE=, ET=

MEMTYPE=mtype
specifies a single member type for the SAS file(s) listed in the SELECT statement.
Valid values are CATALOG or CAT, DATA, or ALL. If you do not specify the
MEMTYPE= option in the SELECT statement, then processing is restricted to those
member types specified in the MEMTYPE= option in the PROC CPORT statement.

You can also specify the MEMTYPE= option, enclosed in parentheses, immediately
after the name of a member. In parentheses, MEMTYPE= identifies the type of the
member name that just precedes it. When you use this form of the option, it
overrides the MEMTYPE= option that follows the slash in the SELECT statement,
but it must match the MEMTYPE= option in the PROC CPORT statement.

Restriction: MEMTYPE= is valid only when you export a SAS data library.

Restriction: If you specify a member type for MEMTYPE= in the PROC CPORT
statement, it must agree with the member type that you specify for MEMTYPE=
in the SELECT statement.

Alias: MTYPE=, MT=

Default: If you do not specify MEMTYPE= in the PROC CPORT statement or in
the SELECT statement, the default is MEMTYPE=ALL.

TRANTAB Statement

Specifies translation tables for characters in catalog entries you export.

Tip: You can specify only one table for each TRANTAB statement, but there is no limit
to the number of TRANTAB statements you can use in one invocation of PROC CPORT.

Featured in: Example 4 on page 320.

See also: Chapter 47, “The TRANTAB Procedure,” on page 1409

TRANTAB NAME=translation-table-name
<option(s)>;

Required Arguments

NAME=translation-table-name
specifies the name of the translation table to apply to the character data in the SAS
file you export. The translation-table-name is the name of a catalog entry in either
the SASUSER.PROFILE catalog or the SASHELP.HOST catalog. PROC CPORT
prints an error message in the SAS log if it cannot find the translation table.

316 Concepts: CPORT Procedure � Chapter 13

Note: The translation takes place before PROC CPORT writes to the transport file. �

Options

OPT=
specifies how to apply the translation table. Use one of the following values for the
OPT= option:

DISP
applies the translation table to all the DISPLAY window text.

SRC
applies the translation table to all the SCL text.

(DISP SRC)
applies the translation table to all the DISPLAY window text and SOURCE
window text.

Default: PROC CPORT applies all options to the specified translation table.

TYPE=(target-list)
applies the translation table only to the specified targets. If the target-list is a single
target, then you can omit the parentheses. The target-list can be one of the following
types:

etype-list
applies the translation table only to the entries with the catalog entry type you
specify.

CATDESC
applies the translation table to the description of each exported catalog entry.

DATASET
applies the translation table to the observations, the data set label, and the
variable labels in each exported data set.

Default: PROC CPORT applies the translation table to all entries and data sets in
the specified catalog.

Featured in: Example 4 on page 320.

Concepts: CPORT Procedure

Transporting Password-Protected Data Sets
For password-protected data sets, the password(s) are applied to the destination data

set when it is imported. If the data set is transported as part of a library, it is not
necessary to supply the password. If the data set is transported singly, you must supply
the read password. If you omit the password in the PROC CPORT step, SAS prompts
you for the password. If the target SAS engine does not support passwords, then the
import will fail. For example, the following SAS code transports a password-protected
data set called WORK.ONE:

proc cport data=one(read=hithere) file=’bin’;

The CPORT Procedure � Example 1: Exporting Multiple Catalogs 317

Results: CPORT Procedure

Data Control Block Characteristics for Mainframe Environments
A common problem when you create or import a transport file under the OS/390

environment is a failure to specify the correct Data Control Block (DCB) characteristics.
When you reference a transport file, you must specify the following DCB characteristics:

LRECL 80

BLKSIZE 8000

RECFM FB

Note: A BLKSIZE value of less than 8000 may be more efficient for your storage
device in some cases. The BLKSIZE value should be an exact multiple of the LRECL
value. �

Another common problem can occur if you use communications software to move files
from another environment to OS/390. In some cases, the transport file does not have the
proper DCB characteristics when it arrives on OS/390. If the communications software
does not allow you to specify file characteristics, try the following approach for OS/390:

1 Create a file under OS/390 with the correct DCB characteristics and initialize the
file.

2 Move the transport file from the other environment to the newly created file under
OS/390 using binary transfer.

Examples: CPORT Procedure

Example 1: Exporting Multiple Catalogs

Procedure features:
PROC CPORT statement options:

FILE=
MEMTYPE=

This example shows how to use PROC CPORT to export entries from all of the SAS
catalogs in the SAS data library you specify.

318 Program � Chapter 13

Program

Specify the library reference for the SAS data library that contains the source files to
be exported and the file reference to which the output transport file is written. The
LIBNAME statement assigns a libref for the SAS data library. The FILENAME statement
assigns a fileref and any operating environment options for file characteristics for the transport
file that PROC CPORT creates.

libname source ’SAS-data-library’;
filename tranfile ’transport-file’

host-option(s)-for-file-characteristics;

Create the transport file. The PROC CPORT step executes on the operating environment
where the source library is located. MEMTYPE=CATALOG writes all SAS catalogs in the source
library to the transport file.

proc cport library=source file=tranfile memtype=catalog;
run;

SAS Log

NOTE: Proc CPORT begins to transport catalog SOURCE.FINANCE
NOTE: The catalog has 5 entries and its maximum logical record length is 866.
NOTE: Entry LOAN.FRAME has been transported.
NOTE: Entry LOAN.HELP has been transported.
NOTE: Entry LOAN.KEYS has been transported.
NOTE: Entry LOAN.PMENU has been transported.
NOTE: Entry LOAN.SCL has been transported.

NOTE: Proc CPORT begins to transport catalog SOURCE.FORMATS
NOTE: The catalog has 2 entries and its maximum logical record length is 104.
NOTE: Entry REVENUE.FORMAT has been transported.
NOTE: Entry DEPT.FORMATC has been transported.

Example 2: Exporting Individual Catalog Entries
Procedure features:

PROC CPORT statement options:
FILE=

SELECT statement

This example shows how to use PROC CPORT to export individual catalog entries,
rather than all of the entries in a catalog.

Program

The CPORT Procedure � Program 319

Assign library references. The LIBNAME and FILENAME statements assign a libref for the
source library and a fileref for the transport file, respectively.

libname source ’SAS-data-library’;
filename tranfile ’transport-file’

host-option(s)-for-file-characteristics;

Write an entry to the transport file. SELECT writes only the LOAN.SCL entry to the
transport file for export.

proc cport catalog=source.finance file=tranfile;
select loan.scl;
run;

SAS Log

NOTE: Proc CPORT begins to transport catalog SOURCE.FINANCE
NOTE: The catalog has 5 entries and its maximum logical record length is 866.
NOTE: Entry LOAN.SCL has been transported.

Example 3: Exporting a Single SAS Data Set
Procedure features:

PROC CPORT statement option:
FILE=

This example shows how to use PROC CPORT to export a single SAS data set.

Program

Assign library references. The LIBNAME and FILENAME statements assign a libref for the
source library and a fileref for the transport file, respectively.

libname source ’SAS-data-library’;
filename tranfile ’transport-file’

host-option(s)-for-file-characteristics;

Specify the type of file that you are exporting. The DATA= specification in the PROC
CPORT statement tells the procedure that you are exporting a SAS data set rather than a
library or a catalog.

proc cport data=source.times file=tranfile;
run;

320 SAS Log � Chapter 13

SAS Log

NOTE: Proc CPORT begins to transport data set SOURCE.TIMES
NOTE: The data set contains 2 variables and 2 observations.

Logical record length is 16.
NOTE: Transporting data set index information.

Example 4: Applying a Translation Table
Procedure features:

PROC CPORT statement option:
FILE=

TRANTAB statement option:
TYPE=

This example shows how to apply a customized translation table to the transport file
before PROC CPORT exports it. For this example, assume that you have already
created a customized translation table called TTABLE1.

Program

Assign library references. The LIBNAME and FILENAME statements assign a libref for the
source library and a fileref for the transport file, respectively.

libname source ’SAS-data-library’;
filename tranfile ’transport-file’

host-option(s)-for-file-characteristics;

Apply the translation specifics. The TRANTAB statement applies the translation that you
specify with the customized translation table TTABLE1. TYPE= limits the translation to
FORMAT entries.

proc cport catalog=source.formats file=tranfile;
trantab name=ttable1 type=(format);

run;

SAS Log

NOTE: Proc CPORT begins to transport catalog SOURCE.FORMATS
NOTE: The catalog has 2 entries and its maximum logical record length is 104.
NOTE: Entry REVENUE.FORMAT has been transported.
NOTE: Entry DEPT.FORMATC has been transported.

The CPORT Procedure � SAS Log 321

Example 5: Exporting Entries Based on Modification Date

Procedure features:
PROC CPORT statement options:

AFTER=
FILE=

This example shows how to use PROC CPORT to transport only the catalog entries
with modification dates equal to or later than the date you specify in the AFTER=
option.

Program

Assign library references. The LIBNAME and FILENAME statements assign a libref for the
source library and a fileref for the transport file, respectively.

libname source ’SAS-data-library’;
filename tranfile ’transport-file’

host-option(s)-for-file-characteristics;

Specify the catalog entries to be written to the transport file. AFTER= specifies that only
catalog entries with modification dates on or after September 9, 1996, should be written to the
transport file.

proc cport catalog=source.finance file=tranfile
after=’09sep1996’d;

run;

SAS Log

PROC CPORT writes messages to the SAS log to inform you that it began the export process for
all the entries in the specified catalog. However, PROC CPORT wrote only the entries
LOAN.FRAME and LOAN.HELP in the FINANCE catalog to the transport file because only
those two entries had a modification date equal to or later than September 9, 1996. That is, of
all the entries in the specified catalog, only two met the requirement of the AFTER= option.

NOTE: Proc CPORT begins to transport catalog SOURCE.FINANCE
NOTE: The catalog has 5 entries and its maximum logical record length is 866.
NOTE: Entry LOAN.FRAME has been transported.
NOTE: Entry LOAN.HELP has been transported.

322

323

C H A P T E R

14
The CV2VIEW Procedure

Information about the CV2VIEW Procedure 323

Information about the CV2VIEW Procedure
See: For complete documentation of the CV2VIEW procedure, see SAS/ACCESS for
Relational Databases: Reference.

324

325

C H A P T E R

15
The DATASETS Procedure

Overview: DATASETS Procedure 326
Notes 328

Syntax: PROC DATASETS 329

PROC DATASETS Statement 330

AGE Statement 333

APPEND Statement 335
AUDIT Statement 340

CHANGE Statement 342

CONTENTS Statement 344

COPY Statement 347

DELETE Statement 353

EXCHANGE Statement 356
EXCLUDE Statement 357

FORMAT Statement 358

IC CREATE Statement 359

IC DELETE Statement 361

IC REACTIVATE Statement 362
INDEX CENTILES 362

INDEX CREATE Statement 363

INDEX DELETE Statement 364

INFORMAT Statement 365

LABEL Statement 366
MODIFY Statement 366

RENAME Statement 370

REPAIR Statement 371

SAVE Statement 373

SELECT Statement 374

Concepts: DATASETS Procedure 375
Procedure Execution 375

RUN-Group Processing 375

Error Handling 376

Password Errors 377

Forcing a RUN Group with Errors to Execute 377
Ending the Procedure 377

Using Passwords with the DATASETS Procedure 377

Restricting Member Types for Processing 378

In the PROC DATASETS Statement 378

In Subordinate Statements 378
Member Types 379

Restricting Processing for Generation Data Sets 380

Results: DATASETS Procedure 381

326 Overview: DATASETS Procedure � Chapter 15

Directory Listing to the SAS Log 381
Directory Listing as SAS Output 381

PROC DATASETS and the Output Delivery System (ODS) 382

Procedure Output 382

Data Set Attributes 382

Engine and Operating Environment-Dependent Information 384
Alphabetic List of Variables and Attributes 384

Alphabetic List of Indexes and Attributes 385

Sort Information 385

Output Data Sets 386

The OUT= Data Set 386

The OUT2= Data Set 391
Examples: DATASETS Procedure 392

Example 1: Manipulating SAS Files 392

Example 2: Saving SAS Files from Deletion 397

Example 3: Modifying SAS Data Sets 398

Example 4: Describing a SAS Data Set 400
Example 5: Concatenating Two SAS Data Sets 403

Example 6: Aging SAS Data Sets 405

Overview: DATASETS Procedure
The DATASETS procedure is a utility procedure that manages your SAS files. With

PROC DATASETS, you can
� copy SAS files from one SAS library to another
� rename SAS files
� repair SAS files
� delete SAS files
� list the SAS files that are contained in a SAS library
� list the attributes of a SAS data set, such as the date when the data was last

modified, whether the data is compressed, whether the data is indexed, and so on
� manipulate passwords on SAS files
� append SAS data sets
� modify attributes of SAS data sets and variables within the data sets

� create and delete indexes on SAS data sets
� create and manage audit files for SAS data sets
� create and delete integrity constraints on SAS data sets.

For example, the following DATASETS procedure
1 copies all data sets from the CONTROL library to the HEALTH library
2 lists the contents of the HEALTH library

3 deletes the SYNDROME data set from the HEALTH library
4 changes the name of the PRENAT data set to INFANT.

The SAS log is shown in Output 15.1 on page 327.

libname control ’SAS-data-library-1’;
libname health ’SAS-data-library-2’;

The DATASETS Procedure � Overview: DATASETS Procedure 327

proc datasets memtype=data;
copy in=control out=health;

run;

proc datasets library=health memtype=data details;
delete syndrome;
change prenat=infant;

run;
quit;

328 Notes � Chapter 15

Output 15.1 Log from PROC DATASETS

59 proc datasets library=health memtype=data details;

Directory

Libref HEALTH

Engine V9

Physical Name external-file

File Name external-file

Member Obs, Entries File

Name Type or Indexes Vars Label Size Last Modified

1 ALL DATA 23 17 13312 29JAN2002:08:06:46

2 BODYFAT DATA 1 2 5120 29JAN2002:08:06:46

3 CONFOUND DATA 8 4 5120 29JAN2002:08:06:46

4 CORONARY DATA 39 4 5120 29JAN2002:08:06:46

5 DRUG1 DATA 6 2 JAN95 Data 5120 29JAN2002:08:06:46

6 DRUG2 DATA 13 2 MAY95 Data 5120 29JAN2002:08:06:46

7 DRUG3 DATA 11 2 JUL95 Data 5120 29JAN2002:08:06:46

8 DRUG4 DATA 7 2 JAN92 Data 5120 29JAN2002:08:06:46

9 DRUG5 DATA 1 2 JUL92 Data 5120 29JAN2002:08:06:46

10 GROUP DATA 148 11 25600 29JAN2002:08:06:46

11 MLSCL DATA 32 4 Multiple Sclerosis Data 5120 29JAN2002:08:06:46

12 NAMES DATA 7 4 5120 29JAN2002:08:06:46

13 OXYGEN DATA 31 7 9216 29JAN2002:08:06:46

14 PERSONL DATA 148 11 25600 29JAN2002:08:06:46

15 PHARM DATA 6 3 Sugar Study 5120 29JAN2002:08:06:46

16 POINTS DATA 6 6 5120 29JAN2002:08:06:46

17 PRENAT DATA 149 6 17408 29JAN2002:08:06:46

18 RESULTS DATA 10 5 5120 29JAN2002:08:06:46

19 SLEEP DATA 108 6 9216 29JAN2002:08:06:46

20 SYNDROME DATA 46 8 9216 29JAN2002:08:06:46

21 TENSION DATA 4 3 5120 29JAN2002:08:06:46

22 TEST2 DATA 15 5 5120 29JAN2002:08:06:46

23 TRAIN DATA 7 2 5120 29JAN2002:08:06:47

24 VISION DATA 16 3 5120 29JAN2002:08:06:47

25 WEIGHT DATA 83 13 California Results 13312 29JAN2002:08:06:47

26 WGHT DATA 83 13 California Results 13312 29JAN2002:08:06:47

60 delete syndrome;

61 change prenat=infant;

62 run;

NOTE: Deleting HEALTH.SYNDROME (memtype=DATA).

NOTE: Changing the name HEALTH.PRENAT to HEALTH.INFANT (memtype=DATA).

63 quit;

Notes

� Although the DATASETS procedure can perform some operations on catalogs,
generally the CATALOG procedure is the best utility to use for managing catalogs.
For documentation of PROC CATALOG, see “Overview: CATALOG Procedure” on
page 143.

� The term member often appears as a synonym for SAS file. If you are unfamiliar
with SAS files and SAS libraries, see “SAS Files Concepts” in SAS Language
Reference: Concepts.

� PROC DATASETS cannot work with sequential data libraries.

The DATASETS Procedure � Syntax: PROC DATASETS 329

Syntax: PROC DATASETS
Tip: Supports RUN-group processing.
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
Reminder: See Chapter 3, “Statements with the Same Function in Multiple Procedures,”
on page 53 for details. You can also use any global statements as well. See “Global
Statements” on page 18 for a list.

PROC DATASETS <option(s)>;
AGE current-name related-SAS-file(s)

</ <ALTER=alter-password>
<MEMTYPE=mtype>>;

APPEND BASE=<libref.>SAS-data-set
<APPENDVER=V6>
<DATA=< libref.>SAS-data-set>
<FORCE>;

AUDIT SAS-file <(SAS-password)>;
INITIATE;

<LOG < BEFORE_IMAGE=YES|NO>
<DATA_IMAGE=YES|NO>
<ERROR_IMAGE=YES|NO>>;

<USER_VAR variable-1 <... variable-n>>;
AUDIT SAS-file <(<SAS-password> <GENNUM= integer>)>;

SUSPEND|RESUME|TERMINATE;
CHANGE old-name-1=new-name-1

<…old-name-n=new-name-n >
</ <ALTER=alter-password>
<GENNUM=ALL|integer>

<MEMTYPE=mtype>>;
CONTENTS<option(s)>;
COPY OUT=libref-1

<CLONE|NOCLONE>
<CONSTRAINT=YES|NO>
<DATECOPY>
<FORCE>
<IN=libref-2>
<INDEX=YES|NO>
<MEMTYPE=(mtype(s))>
<MOVE <ALTER=alter-password>>;

EXCLUDE SAS-file(s) < / MEMTYPE=mtype>;
SELECT SAS-file(s)

</ <ALTER=alter-password>
<MEMTYPE= mtype>>;

DELETE SAS-file(s)
</ <ALTER=alter-password>
<GENNUM=ALL|HIST|REVERT|integer>

<MEMTYPE=mtype>>;
EXCHANGE name-1=other-name-1

<…name-n=other-name-n>

330 PROC DATASETS Statement � Chapter 15

</ <ALTER=alter-password>
<MEMTYPE=mtype> >;

MODIFY SAS-file <(option(s))>
</ <DTC=SAS-date-time>
<GENNUM=integer>
<MEMTYPE=mtype>>;

FORMAT variable-list-1 <format-1>
<…variable-list-n <format-n>>;

IC CREATE <constraint-name=> constraint
<MESSAGE=’message-string’ <MSGTYPE=USER>>;

IC DELETE constraint-name(s)| _ALL_;
IC REACTIVATE foreign-key-name REFERENCES libref;
INDEX CENTILES index(s)

</ <REFRESH>
<UPDATECENTILES= ALWAYS|NEVER|integer>>;

INDEX CREATE index-specification(s)
</ <NOMISS>
<UNIQUE>
<UPDATECENTILES=ALWAYS|NEVER|integer>>;

INDEX DELETE index(s) | _ALL_;
INFORMAT variable-list-1 <informat-1>

<…variable-list-n <informat-n>>;
LABEL variable-1=<’label-1’|’ ’>

<…variable-n=< ’label-n’|’ ’ >>;
RENAME old-name-1=new-name-1

<…old-name-n=new-name-n>;
REPAIR SAS-file(s)

</ <ALTER=alter-password>
<GENNUM=integer>

<MEMTYPE=mtype>>;
SAVE SAS-file(s) </ MEMTYPE=mtype>;

PROC DATASETS Statement

PROC DATASETS <option(s)>;

To do this Use this option

Specify the procedure input library LIBRARY=

Provide alter access to any alter-protected SAS
file in the SAS data library

ALTER=

Include information in the log about the number
of observations, number of variables, number of
indexes, and data set labels

DETAILS|NODETAILS

Force a RUN group to execute even when there
are errors

FORCE

The DATASETS Procedure � PROC DATASETS Statement 331

To do this Use this option

Force an append operation FORCE

Restrict processing for generation data sets GENNUM=

Delete SAS files KILL

Restrict processing to a certain type of SAS file MEMTYPE=

Suppress the printing of the directory NOLIST

Suppress error processing NOWARN

Provide read, write, or alter access PW=

Provide read access READ=

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files in the SAS data library.
See also: “Using Passwords with the DATASETS Procedure” on page 377

DETAILS|NODETAILS
determines whether the following columns are written to the log:

Obs, Entries, or Indexes
gives the number of observations for SAS files of type AUDIT, DATA, and VIEW;
the number of entries for type CATALOG; and the number of files of type INDEX
that are associated with a data file, if any. If SAS cannot determine the number of
observations in a SAS data set, the value in this column is set to missing. For
example, in a very large data set, if the number of observations or deleted
observations exceeds the number that can be stored in a double-precision integer,
the count will show as missing. The value for type CATALOG is the total number
of entries. For other types, this column is blank.
Tip: The value for files of type INDEX includes both user-defined indexes and

indexes created by integrity constraints. To view index ownership and attribute
information, use PROC DATASETS with the CONTENTS statement and the
OUT2 option.

Vars
gives the number of variables for types AUDIT, DATA and VIEW. If SAS cannot
determine the number of variables in the SAS data set, the value in this column is
set to missing. For other types, this column is blank.

Label
contains the label associated with the SAS data set. This column prints a label
only for the type DATA.
The DETAILS option affects output only when a directory is specified and requires

read access to all read-protected SAS files in the SAS data library. If you do not
supply the read password, the directory listing contains missing values for the
columns produced by the DETAILS option.
Default: If neither DETAILS or NODETAILS is specified, the default is the system

option setting. The default system option setting is NODETAILS.
Tip: If you are using the SAS windowing environment and specify the DETAILS

option for a library that contains read-protected SAS files, a requestor window

332 PROC DATASETS Statement � Chapter 15

prompts you for each read password that you do not specify in the PROC
DATASETS statement. Therefore, you may want to assign the same read
password to all SAS files in the same SAS data library.

Featured in: Example 1 on page 392

FORCE
performs two separate actions:

� forces a RUN group to execute even if errors are present in one or more
statements in the RUN group. See “RUN-Group Processing” on page 375 for a
discussion of RUN-group processing and error handling.

� forces all APPEND statements to concatenate two data sets even when the
variables in the data sets are not exactly the same. The APPEND statement
drops the extra variables and issues a warning message. Without the FORCE
option, the procedure issues an error message and stops processing if you try to
perform an append operation with two SAS data sets whose variables are not
exactly the same. Refer to “APPEND Statement” on page 335 for more
information on the FORCE option.

GENNUM=ALL|HIST|REVERT|integer
restricts processing for generation data sets. Valid values are as follows:

ALL
for subordinate CHANGE and DELETE statements, refers to the base version and
all historical versions in a generation group.

HIST
for a subordinate DELETE statement, refers to all historical versions, but excludes
the base version in a generation group.

REVERT|0
for a subordinate DELETE statement, refers to the base version in a generation
group and changes the most current historical version, if it exists, to the base
version.

integer
for subordinate AUDIT, CHANGE, MODIFY, DELETE, and REPAIR statements,
refers to a specific version in a generation group. Specifying a positive number is
an absolute reference to a specific generation number that is appended to a data set
name; that is, gennum=2 specifies MYDATA#002. Specifying a negative number is
a relative reference to a historical version in relation to the base version, from the
youngest to the oldest; that is, gennum=-1 refers to the youngest historical version.

See also: “Restricting Processing for Generation Data Sets” on page 380
See also: “Understanding Generation Data Sets” in SAS Language Reference:

Concepts

KILL
deletes all SAS files in the SAS data library that are available for processing. The
MEMTYPE= option subsets the member types that the statement deletes.

CAUTION:
The KILL option deletes the SAS files immediately after you submit the statement. �

LIBRARY=libref
names the library that the procedure processes. This library is the procedure input
library.
Aliases: DDNAME=, DD=, LIB=
Default: WORK or USER. See “Temporary and Permanent SAS Data Sets” on page

16 for more information on the WORK and USER libraries.

The DATASETS Procedure � AGE Statement 333

Restriction: A SAS library that is accessed via a sequential engine (such as a tape
format engine) cannot be specified as the value of the LIBRARY= option.

Featured in: Example 1 on page 392

MEMTYPE=(mtype(s))
restricts processing to one or more member types and restricts the listing of the data
library directory to SAS files of the specified member types. For example, the
following PROC DATASETS statement limits processing to SAS data sets in the
default data library and limits the directory listing in the SAS log to SAS files of
member type DATA:

proc datasets memtype=data;

Aliases: MTYPE=, MT=
Default: ALL
See also: “Restricting Member Types for Processing” on page 378

NODETAILS
See the description of DETAILS on page 331.

NOLIST
suppresses the printing of the directory of the SAS files in the SAS log.
Featured in: Example 3 on page 398

Note: If you specify the ODS RTF destination, PROC DATASETS output will go
to both the SAS log and the ODS output area. The NOLIST option will suppress
output to both. To see the output only in the SAS log, use the ODS EXCLUDE
statement by specifying the member directory as the exclusion. �

NOWARN
suppresses the error processing that occurs when a SAS file that is specified in a
SAVE, CHANGE, EXCHANGE, REPAIR, DELETE, or COPY statement or listed as
the first SAS file in an AGE statement is not in the procedure input library. When an
error occurs and the NOWARN option is in effect, PROC DATASETS continues
processing that RUN group. If NOWARN is not in effect, PROC DATASETS stops
processing that RUN group and issues a warning for all operations except DELETE,
for which it does not stop processing.

PW= password
provides the password for any protected SAS files in the SAS data library. PW= can
act as an alias for READ=, WRITE=, or ALTER=.
See also: “Using Passwords with the DATASETS Procedure” on page 377

READ=read-password
provides the read-password for any read-protected SAS files in the SAS data library.
See also: “Using Passwords with the DATASETS Procedure” on page 377

AGE Statement

Renames a group of related SAS files in a library.

Featured in: Example 6 on page 405

AGE current-name related-SAS-file(s)

334 AGE Statement � Chapter 15

</ <ALTER=alter-password>
<MEMTYPE=mtype>>;

Required Arguments

current-name
is a SAS file that the procedure renames. current-name receives the name of the first
name in related-SAS-file(s).

related-SAS-file(s)
is one or more SAS files in the SAS data library.

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files named in the AGE
statement. Because an AGE statement renames and deletes SAS files, you need alter
access to use the AGE statement. You can use the option either in parentheses after
the name of each SAS file or after a forward slash.

See also: “Using Passwords with the DATASETS Procedure” on page 377

MEMTYPE=mtype
restricts processing to one member type. All of the SAS files that you name in the
AGE statement must be the same member type. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.

Aliases: MTYPE=, MT=

Default: If you do not specify MEMTYPE= in the PROC DATASETS statement, the
default is DATA.

See also: “Restricting Member Types for Processing” on page 378

Details

� The AGE statement renames current-name to the name of the first name in
related-SAS-file(s), renames the first name in related-SAS-file(s) to the second
name in related-SAS-file(s), and so on until it changes the name of the next-to-last
SAS file in related-SAS-file(s) to the last name in related-SAS-file(s). The AGE
statement then deletes the last file in related-SAS-file(s).

� If the first SAS file named in the AGE statement does not exist in the SAS data
library, PROC DATASETS stops processing the RUN group containing the AGE
statement and issues an error message. The AGE statement does not age any of
the related-SAS-file(s). To override this behavior, use the NOWARN option in the
PROC DATASETS statement.

If one of the related-SAS-file(s) does not exist, the procedure prints a warning
message to the SAS log but continues to age the SAS files that it can.

� If you age a data set that has an index, the index continues to correspond to the
data set.

� You can age only entire generation groups. For example, if data sets A and B have
generation groups, then the following statement deletes generation group B and
ages (renames) generation group A to the name B:

The DATASETS Procedure � APPEND Statement 335

age a b;

For example, suppose the generation group for data set A has 3 historical versions
and the generation group for data set B has 2 historical versions. Then aging A to
B has this effect:

Old Name Version New Name Version

A base B base

A 1 B 1

A 2 B 2

A 3 B 3

B base is deleted

B 1 is deleted

B 2 is deleted

APPEND Statement

Adds the observations from one SAS data set to the end of another SAS data set.

Reminder: You can use data set options with the BASE= and DATA= options. See “Data
Set Options” on page 17 for a list. You can also use any global statements as well. See
“Global Statements” on page 18.
Requirement: The BASE= data set must be a member of a SAS library that supports
update processing.

Default: If the BASE= data set is accessed through a SAS server and if no other user
has the data set open at the time the APPEND statement begins processing, the
BASE= data set defaults to CNTLLEV=MEMBER (member-level locking). When this
happens, no other user can update the file while the data set is processed.

Tip: If a failure occurs during processing, the data set is marked as damaged and is
reset to its pre-append condition at the next REPAIR statement. If the data set has an
index, the index is not updated with each observation but is updated once at the end.
(This is Version 7 and later behavior, as long as APPENDVER=V6 is not set.)

Featured in: Example 5 on page 403

APPEND BASE=< libref.>SAS-data-set
<APPENDVER=V6>
<DATA=< libref.>SAS-data-set>

<FORCE>;

Required Arguments

BASE=<libref.> SAS-data-set
names the data set to which you want to add observations.

libref

336 APPEND Statement � Chapter 15

specifies the library that contains the SAS data set. If you omit the libref, the
default is the libref for the procedure input library. If you are using PROC
APPEND, the default for libref is either WORK or USER.

SAS-data-set
names a SAS data set. If the APPEND statement cannot find an existing data set
with this name, it creates a new data set in the library. That is, you can use the
APPEND statement to create a data set by specifying a new data set name in the
BASE= argument.
The BASE= data set is the current SAS data set after all append operations

regardless of whether you are creating a new data set or appending to an existing
data set.
Alias: OUT=
Featured in: Example 5 on page 403

Options

APPENDVER=V6
uses the Version 6 behavior for appending observations to the BASE= data set, which
is to append one observation at a time. Beginning in Version 7, to improve
performance, the default behavior changed so that all observations are appended
after the data set is processed.

See also: “Appending to an Indexed Data Set” on page 338

DATA=<libref.> SAS-data-set
names the SAS data set containing observations that you want to append to the end
of the SAS data set specified in the BASE= argument.

libref
specifies the library that contains the SAS data set. If you omit libref, the default
is the libref for the procedure input library. The DATA= data set can be from any
SAS data library, but you must use the two-level name if the data set resides in a
library other than the procedure input library.

SAS-data-set
names a SAS data set. If the APPEND statement cannot find an existing data set
with this name, it stops processing.

Alias: NEW=

Default: the most recently created SAS data set, from any SAS data library
See also: “Appending with Generation Groups” on page 339
Featured in: Example 5 on page 403

FORCE
forces the APPEND statement to concatenate data sets when the DATA= data set
contains variables that either

� are not in the BASE= data set
� do not have the same type as the variables in the BASE= data set
� are longer than the variables in the BASE= data set.

See also: “Appending to Data Sets with Different Variables” on page 339
See also: “Appending to Data Sets That Contain Variables with Different

Attributes” on page 339
Featured in: Example 5 on page 403

The DATASETS Procedure � APPEND Statement 337

Tip: You can use the GENNUM= data set option to append to or from a specific
version in a generation group. Here are some examples:

/* appends historical version to base A */
proc datasets;

append base=a
data=a (gennum=2);

/* appends current version of A to historical version */
proc datasets;

append base=a (gennum=1)
data=a;

Restricting the Observations That Are Appended
You can use the WHERE= data set option with the DATA= data set in order to

restrict the observations that are appended. Likewise, you can use the WHERE
statement in order to restrict the observations from the DATA= data set. The WHERE
statement has no effect on the BASE= data set. If you use the WHERE= data set option
with the BASE= data set, WHERE= has no effect.

CAUTION:
For an existing BASE= data set: If there is a WHERE statement on the BASE= data
set, it will take effect only if the WHEREUP= option is set to YES. �

CAUTION:
For the non-existent BASE= data set: If there is a WHERE statement on the
non-existent BASE= data set, regardless of the WHEREUP option setting, you use
the WHERE statement. �

Note: You cannot append a data set to itself by using the WHERE= data set
option. �

Choosing between the SET Statement and the APPEND Statement
If you use the SET statement in a DATA step to concatenate two data sets, SAS must

process all the observations in both data sets to create a new one. The APPEND
statement bypasses the processing of data in the original data set and adds new
observations directly to the end of the original data set. Using the APPEND statement
can be more efficient than using a SET statement if

� the BASE= data set is large
� all variables in the BASE= data set have the same length and type as the

variables in the DATA= data set and if all variables exist in both data sets.

Note: You can use the CONTENTS statement to see the variable lengths and
types. �

The APPEND statement is especially useful if you frequently add observations to a
SAS data set (for example, in production programs that are constantly appending data
to a journal-type data set).

Appending Password-Protected SAS Data Sets
In order to use the APPEND statement, you need read access to the DATA= data set

and write access to the BASE= data set. To gain access, use the READ= and WRITE=
data set options in the APPEND statement the way you would use them in any other
SAS statement, which is in parentheses immediately after the data set name. When
you are appending password-protected data sets, use the following guidelines:

338 APPEND Statement � Chapter 15

� If you do not give the read password for the DATA= data set in the APPEND
statement, by default the procedure looks for the read password for the DATA=
data set in the PROC DATASETS statement. However, the procedure does not
look for the write password for the BASE= data set in the PROC DATASETS
statement. Therefore, you must specify the write password for the BASE= data set
in the APPEND statement.

� If the BASE= data set is read-protected only, you must specify its read password in
the APPEND statement.

Appending to a Compressed Data Set
You can concatenate compressed SAS data sets. Either or both of the BASE= and

DATA= data sets can be compressed. If the BASE= data set allows the reuse of space
from deleted observations, the APPEND statement may insert the observations into the
middle of the BASE= data set to make use of available space.

For information on the COMPRESS= and REUSE= data set and system options, see
SAS Language Reference: Dictionary.

Appending to an Indexed Data Set
Beginning with Version 7, the behavior of appending to an indexed data set changed

to improve performance.

� In Version 6, when you appended to an indexed data set, the index was updated
for each added observation. Index updates tend to be random; therefore, disk I/O
could have been high.

� Currently, SAS does not update the index until all observations are added to the
data set. After the append, SAS internally sorts the observations and inserts the
data into the index in sequential order, which reduces most of the disk I/O and
results in a faster append method.

The current method is used by default when the following requirements are met;
otherwise, the Version 6 method is used:

� The BASE= data set is open for member-level locking.

� The BASE= data set does not contain referential integrity constraints.

� The BASE= data set is not accessed using the Cross Environment Data Access
(CEDA) facility.

� The BASE= data set is not using a WHERE= data set option.

To display information in the SAS log about the append method that is being used,
you can specify the MSGLEVEL= system option as follows:

options msglevel=i;

Either a message displays if the fast-append method is in use or a message or messages
display as to why the fast-append method is not in use.

The current append method initially adds observations to the BASE= data set
regardless of the restrictions that are determined by the index. For example, a variable
that has an index that was created with the UNIQUE option does not have its values
validated for uniqueness until the index is updated. Then, if a nonunique value is
detected, the offending observation is deleted from the data set. This means that after
observations are appended, some of them may subsequently be deleted.

For a simple example, consider that the BASE= data set has ten observations
numbered from 1 to 10 with a UNIQUE index for the variable ID. You append a data
set that contains five observations numbered from 1 to 5, and observations 3 and 4 both
contain the same value for ID. The following occurs

The DATASETS Procedure � APPEND Statement 339

1 After the observations are appended, the BASE= data set contains 15 observations
numbered from 1 to 15.

2 SAS updates the index for ID, validates the values, and determines that
observations 13 and 14 contain the same value for ID.

3 SAS deletes one of the observations from the BASE= data set, resulting in 14
observations that are numbered from 1 to 15. For example, observation 13 is
deleted. Note that you cannot predict which observation will be deleted, because
the internal sort may place either observation first. (In Version 6, you could
predict that observation 13 would be added and observation 14 would be rejected.)

If you do not want the current behavior (which could result in deleted observations)
or if you want to be able to predict which observations are appended, request the
Version 6 append method by specifying the APPENDVER=V6 option:

proc datasets;
append base=a data=b appendver=v6;

run;

Note: In Version 6, deleting the index and then recreating it after the append could
improve performance. The current method may eliminate the need to do that. However,
the performance depends on the nature of your data. �

Appending to Data Sets with Different Variables
If the DATA= data set contains variables that are not in the BASE= data set, use the

FORCE option in the APPEND statement to force the concatenation of the two data
sets. The APPEND statement drops the extra variables and issues a warning message.

If the BASE= data set contains a variable that is not in the DATA= data set, the
APPEND statement concatenates the data sets, but the observations from the DATA=
data set have a missing value for the variable that was not present in the DATA= data
set. The FORCE option is not necessary in this case.

Appending to Data Sets That Contain Variables with Different Attributes
If a variable has different attributes in the BASE= data set than it does in the

DATA= data set, the attributes in the BASE= data set prevail.
If the length of a variable is longer in the DATA= data set than in the BASE= data

set, or if the same variable is a character variable in one data set and a numeric
variable in the other, use the FORCE option. Using FORCE has these consequences:

� The length of the variables in the BASE= data set takes precedence. SAS
truncates values from the DATA= data set to fit them into the length that is
specified in the BASE= data set.

� The type of the variables in the BASE= data set takes precedence. The APPEND
statement replaces values of the wrong type (all values for the variable in the
DATA= data set) with missing values.

Appending Data Sets That Contain Integrity Constraints
If the DATA= data set contains integrity constraints and the BASE= data set does

not exist, the APPEND statement copies the general constraints. Note that the
referential constraints are not copied. If the BASE= data set exists, the APPEND action
copies only observations.

Appending with Generation Groups
You can use the GENNUM= data set option to append to a specific version in a

generation group. Here are examples:

340 AUDIT Statement � Chapter 15

SAS Statements Result

proc datasets;
append base=a

data=b(gennum=2);

appends historical version B#002 to base A

proc datasets;
append base=a(gennum=2)

data=b(gennum=2);

appends historical version B#002 to
historical version A#002

Using the APPEND Procedure instead of the APPEND Statement
The only difference between the APPEND procedure and the APPEND statement in

PROC DATASETS, is the default for libref in the BASE= and DATA= arguments. For
PROC APPEND, the default is either WORK or USER. For the APPEND statement,
the default is the libref of the procedure input library.

System Failures
If a system failure or some other type of interruption occurs while the procedure is

executing, the append operation may not be successful; it is possible that not all,
perhaps none, of the observations will be added to the BASE= data set. In addition, the
BASE= data set may suffer damage. The APPEND operation performs an update in
place, which means that it does not make a copy of the original data set before it begins
to append observations. If you want to be able to restore the original observations, you
can initiate an audit trail for the base data file and select to store a before-update
image of the observations. Then you can write a DATA step to extract and reapply the
original observations to the data file. For information about initiating an audit trail,
see the PROC DATASETS “AUDIT Statement” on page 340.

AUDIT Statement

Initiates and controls event logging to an audit file as well as suspends, resumes, or terminates
event logging in an audit file.

See also: “Understanding an Audit Trail” in SAS Language Reference: Concepts

Tip: The AUDIT statement takes one of two forms, depending on whether you are
initiating the audit trail or suspending, resuming, or terminating event logging in an
audit file.

AUDIT SAS-file <(SAS-password)>;

INITIATE;
<LOG <BEFORE_IMAGE=YES|NO>

<DATA_IMAGE=YES|NO>
<ERROR_IMAGE=YES|NO>>;

<USER_VAR variable-1 <... variable-n>>;

AUDIT SAS-file <(<SAS-password> <GENNUM= integer>)>;

SUSPEND|RESUME|TERMINATE;

The DATASETS Procedure � AUDIT Statement 341

Required Arguments and Statements

SAS-file
specifies the SAS data file in the procedure input library that you want to audit.

INITIATE
creates an audit file that has the same name as the SAS data file and a data set type
of AUDIT. The audit file logs additions, deletions, and updates to the SAS data file.
You must initiate an audit trail before you can suspend, resume, or terminate it.

Options

SAS-password
specifies the password for the SAS data file, if one exists. The parentheses are
required.

GENNUM=integer
specifies that the SUSPEND, RESUME, or TERMINATE action be performed on the
audit trail of a generation file. You cannot initiate an audit trail on a generation file.
Valid values for GENNUM= are integer, which is a number that references a specific
version from a generation group. Specifying a positive number is an absolute
reference to a specific generation number that is appended to a data set’s name; that
is, gennum=2 specifies MYDATA#002. Specifying a negative number is a relative
reference to a historical version in relation to the base version, from the youngest to
the oldest; that is, gennum=-1 refers to the youngest historical version. Specifying 0,
which is the default, refers to the base version. The parentheses are required.

LOG
specifies the audit settings. The audit settings are

BEFORE_IMAGE=YES|NO
controls the storage of before-update record images.

DATA_IMAGE=YES|NO
controls the storage of after-update record images.

ERROR_IMAGE=YES|NO
controls the storage of unsuccessful after-update record images.
When the LOG statement is omitted, the default behavior is to log all images.

USER_VAR variable-1 < ... variable-n>
defines optional variables to be logged in the audit file with each update to an
observation. The syntax for defining variables is

USER_VAR variable-name-1 <$> <length> <LABEL=’variable-label’ >
<... variable-name-n <$> <length> <LABEL=’variable-label’> >

where

variable-name
is a name for the variable.

$
indicates that the variable is a character variable.

length
specifies the length of the variable. If a length is not specified, the default is 8.

LABEL=’variable-label’

342 CHANGE Statement � Chapter 15

specifies a label for the variable.
You can define attributes such as format and informat for the user variables in the

data file by using the PROC DATASETS MODIFY statement.

SUSPEND
suspends event logging to the audit file, but does not delete the audit file.

RESUME
resumes event logging to the audit file, if it was suspended.

TERMINATE
terminates event logging and deletes the audit file.

Creating an Audit File
The following example creates the audit file MYLIB.MYFILE.AUDIT to log updates

to the data file MYLIB.MYFILE.DATA, storing all available record images:

proc datasets library=MyLib;
audit MyFile (alter=MyPassword);
initiate;

run;

The following example creates the same audit file but stores only error record images:

proc datasets library=MyLib;
audit MyFile (alter=MyPassword);
initiate;
log data_image=NO before_image=NO;

run;

CHANGE Statement

Renames one or more SAS files in the same SAS data library.

Featured in: Example 1 on page 392

CHANGE old-name-1=new-name-1
<…old-name-n=new-name-n >
</ <ALTER=alter-password>
<GENNUM=ALL|integer>
<MEMTYPE=mtype>>;

Required Arguments

old-name=new-name
changes the name of a SAS file in the input data library. old-name must be the name
of an existing SAS file in the input data library.
Featured in: Example 1 on page 392

Options

The DATASETS Procedure � CHANGE Statement 343

ALTER=alter-password
provides the alter password for any alter-protected SAS files named in the CHANGE
statement. Because a CHANGE statement changes the names of SAS files, you need
alter access to use the CHANGE statement for new-name. You can use the option
either in parentheses after the name of each SAS file or after a forward slash.
See also: “Using Passwords with the DATASETS Procedure” on page 377

GENNUM=ALL|integer
restricts processing for generation data sets. You can use the option either in
parentheses after the name of each SAS file or after a forward slash. Valid values are

ALL | 0
refers to the base version and all historical versions of a generation group.

integer
refers to a specific version from a generation group. Specifying a positive number
is an absolute reference to a specific generation number that is appended to a data
set’s name; that is, gennum=2 specifies MYDATA#002. Specifying a negative
number is a relative reference to a historical version in relation to the base
version, from the youngest to the oldest; that is, gennum=-1 refers to the youngest
historical version.
For example, the following statements change the name of version A#003 to base B:

proc datasets;
change A=B / gennum=3;

proc datasets;
change A(gennum=3)=B;

The following CHANGE statement produces an error:

proc datasets;
change A(gennum=3)=B(gennum=3);

See also: “Restricting Processing for Generation Data Sets” on page 380
See also: “Understanding Generation Data Sets” in SAS Language Reference:

Concepts

MEMTYPE=mtype
restricts processing to one member type. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.
Aliases: MTYPE=, MT=
Default: If you do not specify MEMTYPE= in the PROC DATASETS statement, the

default is MEMTYPE=ALL.
See also: “Restricting Member Types for Processing” on page 378

Details

� The CHANGE statement changes names by the order that the old-names occur in
the directory listing, not in the order that you list the changes in the CHANGE
statement.

� If the old-name SAS file does not exist in the SAS data library, PROC DATASETS
stops processing the RUN group containing the CHANGE statement and issues an
error message. To override this behavior, use the NOWARN option in the PROC
DATASETS statement.

� If you change the name of a data set that has an index, the index continues to
correspond to the data set.

344 CONTENTS Statement � Chapter 15

CONTENTS Statement

Describes the contents of one or more SAS data sets and prints the directory of the SAS data
library.

Reminder: You can use data set options with the DATA=, OUT=, and OUT2= options.
See “Data Set Options” on page 17 for a list. You can use any global statements as well.
See “Global Statements” on page 18.

Featured in: Example 4 on page 400

CONTENTS <option(s)>;

To do this Use this option

Specify the input data set DATA=

Specify the name for an output data set OUT=

Specify the name of an output data set to contain
information about indexes and integrity constraints

OUT2=

Include information in the output about the number
of observations, number of variables, number of
indexes, and data set labels

DETAILS|NODETAILS

Print a list of the SAS files in the SAS data library DIRECTORY

Print the length of a variable’s informat or format FMTLEN

Restrict processing to one or more types of SAS files MEMTYPE=

Suppress the printing of individual files NODS

Suppress the printing of the output NOPRINT

Print a list of the variables by their position in the
data set

VARNUM

Print abbreviated output SHORT

Print centiles information for indexed variables CENTILES

Options

CENTILES
prints centiles information for indexed variables.

The following additional fields are printed in the default report of PROC
CONTENTS when the CENTILES option is selected and an index exists on the data
set. Note that the additional fields depend on whether the index is simple or complex.

number of the index on the data set.

Index name of the index.

The DATASETS Procedure � CONTENTS Statement 345

Update Centiles percent of the data values that must be changed before the
CENTILES for the indexed variables are automatically updated.

Current Update
Percent

percent of index updated since CENTILES were refreshed.

of Unique
Values

number of unique indexed values.

Variables names of the variables used to make up the index. Centile
information is listed below the variables.

DATA=SAS-file-specification
specifies an entire library or a specific SAS data set within a library.
SAS-file-specification can take one of the following forms:

<libref.>SAS-data-set
names one SAS data set to process. The default for libref is the libref of the
procedure input library. For example, to obtain the contents of the SAS data set
HTWT from the procedure input library, use the following CONTENTS statement:

contents data=HtWt;

To obtain the contents of a specific version from a generation group, use the
GENNUM= data set option as shown in the following CONTENTS statement:

contents data=HtWt(gennum=3);

<libref.>_ALL_
gives you information about all SAS data sets that have the type or types specified
by the MEMTYPE= option. libref refers to the SAS data library. The default for
libref is the libref of the procedure input library.

� If you are using the _ALL_ keyword, you need read access to all
read-protected SAS data sets in the SAS data library.

� DATA=_ALL_ automatically prints a listing of the SAS files that are
contained in the SAS library. Note that for SAS views, all librefs that are
associated with the views must be assigned in the current session in order for
them to be processed for the listing.

Default: most recently created data set in your job or session, from any SAS data
library.

Tip: If you specify a read-protected data set in the DATA= option but do not give
the read password, by default the procedure looks in the PROC DATASETS
statement for the read password. However, if you do not specify the DATA= option
and the default data set (last one created in the session) is read protected, the
procedure does not look in the PROC DATASETS statement for the read password.

Featured in: Example 4 on page 400

DETAILS|NODETAILS
DETAILS includes these additional columns of information in the output, but only if
DIRECTORY is also specified.
Default: If neither DETAILS or NODETAILS is specified, the defaults are as

follows: for the CONTENTS procedure, the default is the system option setting,
which is NODETAILS; for the CONTENTS statement, the default is whatever is
specified on the PROC DATASETS statement, which also defaults to the system
option setting.

See also: description of the additional columns in “Options” in “PROC DATASETS
Statement” on page 330

DIRECTORY

346 CONTENTS Statement � Chapter 15

prints a list of all SAS files in the specified SAS data library. If DETAILS is also
specified, using DIRECTORY causes the additional columns described in
DETAILS|NODETAILS on page 331 to be printed.

FMTLEN
prints the length of the informat or format. If you do not specify a length for the
informat or format when you associate it with a variable, the length does not appear
in the output of the CONTENTS statement unless you use the FMTLEN option. The
length also appears in the FORMATL or INFORML variable in the output data set.

MEMTYPE=(mtype(s))
restricts processing to one or more member types. The CONTENTS statement
produces output only for member types DATA, VIEW, and ALL, which includes DATA
and VIEW.

MEMTYPE= in the CONTENTS statement differs from MEMTYPE= in most of
the other statements in the DATASETS procedure in the following ways:

� A slash does not precede the option.
� You cannot enclose the MEMTYPE= option in parentheses to limit its effect to

only the SAS file immediately preceding it.

Specifying the MEMTYPE= option in the PROC DATASETS statement affects the
CONTENTS statement only if you specify the _ALL_ keyword in the DATA= option.
For example, the following statements produce the contents of only the SAS data sets
with member type DATA:

proc datasets memtype=data;
contents data=_all_;

run;

Aliases: MT=, MTYPE=
Default: DATA

NODS
suppresses printing the contents of individual files when you specify _ALL_ in the
DATA= option. The CONTENTS statement prints only the SAS data library
directory. You cannot use the NODS option when you specify only one SAS data set
in the DATA= option.

NODETAILS
See the description of DETAILS|NODETAILS.

NOPRINT
suppresses printing the output of the CONTENTS statement.

OUT=SAS-data-set
names an output SAS data set.
Tip: OUT= does not suppress the printed output from the statement. If you want to

suppress the printed output, you must use the NOPRINT option.
See also: “The OUT= Data Set” on page 386 for a description of the variables in the

OUT= data set.

OUT2=SAS-data-set
names the output data set to contain information about indexes and integrity
constraints.
Tip: OUT2= does not suppress the printed output from the statement. To suppress

the printed output, use the NOPRINT option.
See also: “The OUT2= Data Set” on page 391 for a description of the variables in

the OUT2= data set.

The DATASETS Procedure � COPY Statement 347

SHORT
prints only the list of variable names, the index information, and the sort
information for the SAS data set.

VARNUM
prints a list of the variable names in the order of their logical position in the data
set. By default, the CONTENTS statement lists the variables alphabetically. The
physical position of the variable in the data set is engine-dependent.

Using the CONTENTS Procedure instead of the CONTENTS Statement
The only difference between the CONTENTS procedure and the CONTENTS

statement in PROC DATASETS is the default for libref in the DATA= option. For
PROC CONTENTS, the default is either WORK or USER. For the CONTENTS
statement, the default is the libref of the procedure input library.

COPY Statement

Copies all or some of the SAS files in a SAS library.

Featured in: Example 1 on page 392

COPY OUT=libref-1
<CLONE|NOCLONE>
<CONSTRAINT=YES|NO>
<DATECOPY>
<FORCE>
<IN=libref-2>
<INDEX=YES|NO>
<MEMTYPE=(mtype(s))>
<MOVE <ALTER=alter-password>> ;

Required Arguments

OUT=libref-1
names the SAS library to copy SAS files to.
Aliases: OUTLIB= and OUTDD=
Featured in: Example 1 on page 392

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files that you are moving
from one data library to another. Because the MOVE option deletes the SAS file from
the original data library, you need alter access to move the SAS file.
See also: “Using Passwords with the DATASETS Procedure” on page 377

CLONE|NOCLONE

348 COPY Statement � Chapter 15

specifies whether to copy the following data set attributes:

� size of input/output buffers

� whether the data set is compressed

� whether free space is reused

� data representation of input data set, library, or operating environment.

You specify these attributes with either data set options, SAS system options, or
LIBNAME statement options:

� BUFSIZE= value for the size of the input/output buffers

� COMPRESS= value for whether the data set is compressed

� REUSE= value for whether free space is reused

� OUTREP= value for data representation.

For the BUFSIZE= attribute, the following table summarizes how the COPY
statement works:

Table 15.1 CLONE and the BUFSIZE= Attribute

If you use... the COPY statement...

CLONE uses the BUFSIZE= value from the input data set for the output data
set.

NOCLONE uses the current setting of the SAS system option BUFSIZE= for the
output data set.

neither determines the type of access method, sequential or random, used by
the engine for the input data set and the engine for the output data
set. If both engines use the same type of access, the COPY statement
uses the BUFSIZE= value from the input data set for the output data
set. If the engines do not use the same type of access, the COPY
statement uses the setting of SAS system option BUFSIZE= for the
output data set.

For the COMPRESS= and REUSE= attributes, the following table summarizes
how the COPY statement works:

Table 15.2 CLONE and the COMPRESS= and REUSE= Attributes

If you use... the COPY statement...

CLONE uses the values from the input data set for the output data set. If the
engine for the input data set does not support the COMPRESS= or
REUSE= attribute, the COPY statement uses the current setting of
the corresponding SAS system option.

NOCLONE uses the current setting of the SAS system options COMPRESS= or
REUSE= for the output data set.

neither defaults to CLONE.

For data representation:

CLONE results in a copy with the data representation of the input data
set.

The DATASETS Procedure � COPY Statement 349

NOCLONE results in a copy with the data representation of the data library
(if specified) or the native data representation of the operating
environment.

Data representation is the format in which data is represented on a computer
architecture or in an operating environment. For example, on an IBM PC, character
data is represented by its ASCII encoding and byte-swapped integers. Native data
representation refers to an environment for which the data representation compares
with the CPU that is accessing the file. For example, a file that is in Windows data
representation is native to the Windows operating environment.

CONSTRAINT=YES|NO
specifies whether to copy all integrity constraints when copying a data set.
Default: NO

DATECOPY
copies the SAS internal date and time when the SAS file was created and the date
and time when it was last modified to the resulting copy of the file. Note that the
operating environment date and time are not preserved.
Restriction: DATECOPY cannot be used with encrypted files or catalogs.
Restriction: DATECOPY can be used only when the resulting SAS file uses the V8

or V9 engine.
Tip: You can alter the file creation date and time with the DTC= option on the

MODIFY statement. See “MODIFY Statement” on page 366.
Tip: If the file that you are copying has attributes that require additional

processing, the last modified date is changed to the current date. For example,
when you copy a data set that has an index, the index must be rebuilt, and this
changes the last modified date to the current date. Other attributes that require
additional processing and that could affect the last modified date include integrity
constraints and a sort indicator.

FORCE
allows you to use the MOVE option for a SAS data set on which an audit trail exists.

Note: The AUDIT file is not moved with the audited data set. �

IN=libref-2
names the SAS library containing SAS files to copy.
Aliases: INLIB= and INDD=
Default: the libref of the procedure input library

To copy only selected members, use the SELECT or EXCLUDE statements.

INDEX=YES|NO
specifies whether to copy all indexes for a data set when copying the data set to
another SAS data library.
Default: YES

MEMTYPE=(mtype(s))
restricts processing to one or more member types.
Aliases: MT=, MTYPE=
Default: If you omit MEMTYPE= in the PROC DATASETS statement, the default

is MEMTYPE=ALL.
See also: “Specifying Member Types When Copying or Moving SAS Files” on page

350
See also: “Member Types” on page 379
Featured in: Example 1 on page 392

350 COPY Statement � Chapter 15

MOVE
moves SAS files from the input data library (named with the IN= option) to the
output data library (named with the OUT= option) and deletes the original files from
the input data library.
Restriction: The MOVE option can be used to delete a member of a SAS library

only if the IN= engine supports the deletion of tables. A tape format engine does
not support table deletion. If you use a tape format engine, SAS suppresses the
MOVE operation and prints a warning.

Featured in: Example 1 on page 392

NOCLONE
See the description of CLONE.

Copying an Entire Library
To copy an entire SAS data library, simply specify an input data library and an output

data library following the COPY statement. For example, the following statements copy
all the SAS files in the SOURCE data library into the DEST data library:

proc datasets library=source;
copy out=dest;

run;

Copying Selected SAS Files
To copy selected SAS files, use a SELECT or EXCLUDE statement. For more

discussion of using the COPY statement with a SELECT or an EXCLUDE statement,
see “Specifying Member Types When Copying or Moving SAS Files” on page 350and see
Example 1 on page 392 for an example. Also, see “EXCLUDE Statement” on page 357
and “SELECT Statement” on page 374.

You can also select or exclude an abbreviated list of members. For example, the
following statement selects members TABS, TEST1, TEST2, and TEST3:

select tabs test1-test3;

Also, you can select a group of members whose names begin with the same letter or
letters by entering the common letters followed by a colon (:). For example, you can
select the four members in the previous example and all other members having names
that begin with the letter T by specifying the following statement:

select t:;

You specify members to exclude in the same way that you specify those to select.
That is, you can list individual member names, use an abbreviated list, or specify a
common letter or letters followed by a colon (:). For example, the following statement
excludes the members STATS, TEAMS1, TEAMS2, TEAMS3, TEAMS4 and all the
members that begin with the letters RBI from the copy operation:

exclude stats teams1-teams4 rbi:;

Note that the MEMTYPE= option affects which types of members are available to be
selected or excluded.

Specifying Member Types When Copying or Moving SAS Files
The MEMTYPE= option in the COPY statement differs from the MEMTYPE= option

in other statements in the procedure in several ways:
� A slash does not precede the option.

The DATASETS Procedure � COPY Statement 351

� You cannot limit its effect to the member immediately preceding it by enclosing
the MEMTYPE= option in parentheses.

� The SELECT and EXCLUDE statements and the IN= option (in the COPY
statement) affect the behavior of the MEMTYPE= option in the COPY statement
according to the following rules:

1 MEMTYPE= in a SELECT or EXCLUDE statement takes precedence over
the MEMTYPE= option in the COPY statement. The following statements
copy only VISION.CATALOG and NUTR.DATA from the default data library
to the DEST data library; the MEMTYPE= value in the first SELECT
statement overrides the MEMTYPE= value in the COPY statement.

proc datasets;
copy out=dest memtype=data;

select vision(memtype=catalog) nutr;
run;

2 If you do not use the IN= option, or you use it to specify the library that
happens to be the procedure input library, the value of the MEMTYPE=
option in the PROC DATASETS statement limits the types of SAS files that
are available for processing. The procedure uses the order of precedence
described in rule 1 to further subset the types available for copying. The
following statements do not copy any members from the default data library
to the DEST data library; instead, the procedure issues an error message
because the MEMTYPE= value specified in the SELECT statement is not one
of the values of the MEMTYPE= option in the PROC DATASETS statement.

/* This step fails! */
proc datasets memtype=(data program);

copy out=dest;
select apples / memtype=catalog;

run;

3 If you specify an input data library in the IN= option other than the
procedure input library, the MEMTYPE= option in the PROC DATASETS
statement has no effect on the copy operation. Because no subsetting has yet
occurred, the procedure uses the order of precedence described in rule 1 to
subset the types available for copying. The following statements successfully
copy BODYFAT.DATA to the DEST data library because the SOURCE library
specified in the IN= option in the COPY statement is not effected by the
MEMTYPE= option in the PROC DATASETS statement.

proc datasets library=work memtype=catalog;
copy in=source out=dest;

select bodyfat / memtype=data;
run;

Copying Password-Protected SAS Files
You can copy a password-protected SAS file without specifying the password. In

addition, because the password continues to correspond to the SAS file, you must know
the password in order to access and manipulate the SAS file after you copy it.

Copying Data Sets with Long Variable Names
If the VALIDVARNAME=V6 system option is set and the data set has long variable

names, the long variable names are truncated, unique variables names are generated,
and the copy succeeds. The same is true for index names. If VALIDVARNAME=ANY or

352 COPY Statement � Chapter 15

MIXEDCASE, the copy fails with an error if the OUT= engine does not support long
variable names.

When a variable name is truncated, the variable name is shortened to eight bytes. If
this name has already been defined in the data set, the name is shortened and a digit is
added, starting with the number 2. The process of truncation and adding a digit
continues until the variable name is unique. For example, a variable named
LONGVARNAME becomes LONGVARN, provided that a variable with that name does
not already exist in the data set. In that case, the variable name becomes LONGVAR2.

CAUTION:
Truncated variable names can collide with names already defined in the input data set.
This is possible when the variable name that is already defined is exactly eight bytes
long and ends in a digit. In that case, the truncated name is defined in the output
data set and the name from the input data set is changed. For example,

options validvarname=mixedcase;
data test;

lonvar10=’aLongVariableName’;
retain longvar1-longvar5 0;

run;

options validvarname=v6;
proc copy in=work out=sasuser;

select test;
run;

In this example, LONGVAR10 is truncated to LONVAR1 and placed in the output
data set. Next, the original LONGVAR1 is copied. Its name is no longer unique and
so it is renamed LONGVAR2. The other variables in the input data set are also
renamed according to the renaming algorithm. �

Using the COPY Procedure instead of the COPY Statement
Generally, the COPY procedure functions the same as the COPY statement in the

DATASETS procedure. The differences are
� The IN= argument is required with PROC COPY. In the COPY statement, IN= is

optional. If omitted, the default value is the libref of the procedure input library.
� PROC DATASETS cannot work with libraries that allow only sequential data

access.
� The COPY statement honors the NOWARN option but PROC COPY does not.

Copying Generation Groups
You can use the COPY statement to copy an entire generation group. However, you

cannot copy a specific version in a generation group.

Transporting SAS Data Sets between Hosts
Typically, you use PROC COPY to transport SAS data sets between hosts. See

Chapter 11, “The COPY Procedure,” on page 259 for more information and an example.

The DATASETS Procedure � DELETE Statement 353

DELETE Statement

Deletes SAS files from a SAS data library.

Featured in: Example 1 on page 392

DELETE SAS-file(s)
</ <ALTER=alter-password>
<GENNUM=ALL|HIST|REVERT|integer>

<MEMTYPE=mtype>>;

Required Arguments

SAS-file(s)
specifies one or more SAS files that you want to delete.

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files that you want to delete.
You can use the option either in parentheses after the name of each SAS file or after
a forward slash.
See also: “Using Passwords with the DATASETS Procedure” on page 377

GENNUM=ALL|HIST|REVERT|integer
restricts processing for generation data sets. You can use the option either in
parentheses after the name of each SAS file or after a forward slash. Valid values are

ALL
refers to the base version and all historical versions in a generation group.

HIST
refers to all historical versions, but excludes the base version in a generation group.

REVERT|0
deletes the base version and changes the most current historical version, if it
exists, to the base version.

integer
is a number that references a specific version from a generation group. Specifying
a positive number is an absolute reference to a specific generation number that is
appended to a data set’s name; that is, gennum=2 specifies MYDATA#002.
Specifying a negative number is a relative reference to a historical version in
relation to the base version, from the youngest to the oldest; that is, gennum=-1
refers to the youngest historical version.

See also: “Restricting Processing for Generation Data Sets” on page 380
See also: “Understanding Generation Data Sets” in SAS Language Reference:

Concepts

MEMTYPE=mtype
restricts processing to one member type. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.

354 DELETE Statement � Chapter 15

Aliases: MT=, MTYPE=
Default: DATA
See also: “Restricting Member Types for Processing” on page 378
Featured in: Example 1 on page 392

Details

� SAS immediately deletes SAS files when the RUN group executes. You do not
have an opportunity to verify the delete operation before it begins.

� If you attempt to delete a SAS file that does not exist in the procedure input
library, PROC DATASETS issues a message and continues processing. If
NOWARN is used, no message is issued.

� When you use the DELETE statement to delete a data set that has indexes
associated with it, the statement also deletes the indexes.

� You cannot use the DELETE statement to delete a data file that has a foreign key
integrity constraint or a primary key with foreign key references. For data files
that have foreign keys, you must remove the foreign keys before you delete the
data file. For data files that have primary keys with foreign key references, you
must remove the foreign keys that reference the primary key before you delete the
data file.

Working with Generation Groups
When you are working with generation groups, you can use the DELETE statement to
� delete the base version and all historical versions
� delete the base version and rename the youngest historical version to the base

version
� delete an absolute version
� delete a relative version
� delete all historical versions and leave the base version.

Deleting the Base Version and All Historical Versions
The following statements delete the base version and all historical versions where the
data set name is A:

proc datasets;
delete A(gennum=all);

proc datasets;
delete A / gennum=all;

proc datasets gennum=all;
delete A;

The following statements delete the base version and all historical versions where
the data set name begins with the letter A:

proc datasets;
delete A:(gennum=all);

proc datasets;
delete A: / gennum=all;

proc datasets gennum=all;

The DATASETS Procedure � DELETE Statement 355

delete A:;

Deleting the Base Version and Renaming the Youngest Historical Version to the Base
Version
The following statements delete the base version and rename the youngest historical
version to the base version, where the data set name is A:

proc datasets;
delete A(gennum=revert);

proc datasets;
delete A / gennum=revert;

proc datasets gennum=revert;
delete A;

The following statements delete the base version and rename the youngest historical
version to the base version, where the data set name begins with the letter A:

proc datasets;
delete A:(gennum=revert);

proc datasets;
delete A: / gennum=revert;

proc datasets gennum=revert;
delete A:;

Deleting a Version with an Absolute Number
The following statements use an absolute number to delete the first historical version:

proc datasets;
delete A(gennum=1);

proc datasets;
delete A / gennum=1;

proc datasets gennum=1;
delete A;

The following statements delete a specific historical version, where the data set name
begins with the letter A:

proc datasets;
delete A:(gennum=1);

proc datasets;
delete A: / gennum=1;

proc datasets gennum=1;
delete A:;

Deleting a Version with a Relative Number
The following statements use a relative number to delete the youngest historical
version, where the data set name is A:

proc datasets;
delete A(gennum=-1);

356 EXCHANGE Statement � Chapter 15

proc datasets;
delete A / gennum=-1;

proc datasets gennum=-1;
delete A;

The following statements use a relative number to delete the youngest historical
version, where the data set name begins with the letter A:

proc datasets;
delete A:(gennum=-1);

proc datasets;
delete A: / gennum=-1;

proc datasets gennum=-1;
delete A:;

Deleting All Historical Versions and Leaving the Base Version
The following statements delete all historical versions and leave the base version,
where the data set name is A:

proc datasets;
delete A(gennum=hist);

proc datasets;
delete A / gennum=hist;

proc datasets gennum=hist;
delete A;

The following statements delete all historical versions and leave the base version,
where the data set name begins with the letter A:

proc datasets;
delete A:(gennum=hist);

proc datasets;
delete A: / gennum=hist;

proc datasets gennum=hist;
delete A:;

EXCHANGE Statement

Exchanges the names of two SAS files in a SAS library.

Featured in: Example 1 on page 392

EXCHANGE name-1=other-name-1
<…name-n=other-name-n>
</ <ALTER=alter-password>

The DATASETS Procedure � EXCLUDE Statement 357

<MEMTYPE=mtype>>;

Required Arguments

name=other-name
exchanges the names of SAS files in the procedure input library. Both name and
other-name must already exist in the procedure input library.

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files whose names you want
to exchange. You can use the option either in parentheses after the name of each
SAS file or after a forward slash.
See also: “Using Passwords with the DATASETS Procedure” on page 377

MEMTYPE=mtype
restricts processing to one member type. You can only exchange the names of SAS
files of the same type. You can use the option either in parentheses after the name of
each SAS file or after a forward slash.
Default: If you do not specify MEMTYPE= in the PROC DATASETS statement, the

default is ALL.
See also: “Restricting Member Types for Processing” on page 378

Details

� When you exchange more than one pair of names in one EXCHANGE statement,
PROC DATASETS performs the exchanges in the order that the names of the SAS
files occur in the directory listing, not in the order that you list the exchanges in
the EXCHANGE statement.

� If the name SAS file does not exist in the SAS data library, PROC DATASETS
stops processing the RUN group that contains the EXCHANGE statement and
issues an error message. To override this behavior, specify the NOWARN option in
the PROC DATASETS statement.

� The EXCHANGE statement also exchanges the associated indexes so that they
correspond with the new name.

� The EXCHANGE statement only allows two existing generation groups to
exchange names. You cannot exchange a specific generation number with either an
existing base version or another generation number.

EXCLUDE Statement

Excludes SAS files from copying.

Restriction: Must follow a COPY statement
Restriction: Cannot appear in the same COPY step with a SELECT statement
Featured in: Example 1 on page 392

358 FORMAT Statement � Chapter 15

EXCLUDE SAS-file(s) </ MEMTYPE=mtype>;

Required Arguments

SAS-file(s)
specifies one or more SAS files to exclude from the copy operation. All SAS files you
name in the EXCLUDE statement must be in the library that is specified in the IN=
option in the COPY statement. If the SAS files are generation groups, the EXCLUDE
statement allows only selection of the base versions.

Options

MEMTYPE=mtype
restricts processing to one member type. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.
Aliases: MTYPE=, MT=
Default: If you do not specify MEMTYPE= in the PROC DATASETS statement, the

COPY statement, or in the EXCLUDE statement, the default is MEMTYPE=ALL.
See also: “Restricting Member Types for Processing” on page 378
See also: “Specifying Member Types When Copying or Moving SAS Files” on page

350

Excluding Many Like-Named Files
You can use shortcuts for listing many SAS files in the EXCLUDE statement. For

more information, see “Shortcuts for Specifying Lists of Variable Names” on page 24.

FORMAT Statement

Permanently assigns, changes, and removes variable formats in the SAS data set specified in the
MODIFY statement.

Restriction: Must appear in a MODIFY RUN group
Featured in: Example 3 on page 398

FORMAT variable-list-1 <format-1>
<…variable-list-n <format-n>>;

Required Arguments

variable-list
specifies one or more variables whose format you want to assign, change, or remove.
If you want to disassociate a format with a variable, list the variable last in the list
with no format following. For example:

format x1-x3 4.1 time hhmm2.2 age;

The DATASETS Procedure � IC CREATE Statement 359

Options

format
specifies a format to apply to the variable or variables listed before it. If you do not
specify a format, the FORMAT statement removes any format associated with the
variables in variable-list.

Note: You can use shortcut methods for specifying variables, such as the keywords
_NUMERIC, _CHARACTER_, and _ALL_. See “Shortcuts for Specifying Lists of
Variable Names” on page 24 for more information. �

IC CREATE Statement

Creates an integrity constraint.

Restriction: Must be in a MODIFY RUN group

See also: “Understanding Integrity Constraints” in SAS Language Reference: Concepts

IC CREATE <constraint-name=> constraint <MESSAGE=’message-string’
<MSGTYPE=USER>>;

Required Arguments

constraint
is the type of constraint. Valid values are as follows:

NOT NULL (variable)
specifies that variable does not contain a SAS missing value, including special
missing values.

UNIQUE (variables)
specifies that the values of variables must be unique. This constraint is identical
to DISTINCT.

DISTINCT (variables)
specifies that the values of variables must be unique. This constraint is identical
to UNIQUE.

CHECK (WHERE-expression)
limits the data values of variables to a specific set, range, or list of values. This is
accomplished with a WHERE expression.

PRIMARY KEY (variables)
specifies a primary key, that is, a set of variables that do not contain missing
values and whose values are unique.

Note: A primary key affects the values of an individual data file until it has a
foreign key referencing it. �

FOREIGN KEY (variables) REFERENCES table-name
<ON DELETE referential-action> <ON UPDATE referential-action>

360 IC CREATE Statement � Chapter 15

specifies a foreign key, that is, a set of variables whose values are linked to the
values of the primary key variables in another data file. The referential actions
are enforced when updates are made to the values of a primary key variable that
is referenced by a foreign key.

There are three types of referential actions: RESTRICT, SET NULL, and
CASCADE. For a RESTRICT referential action,

a delete operation
deletes the primary key row, but only if no foreign key values match the deleted
value.

an update operation
updates the primary key value, but only if no foreign key values match the
current value to be updated.

For a SET NULL referential action,

a delete operation
deletes the primary key row and sets the corresponding foreign key values to
NULL.

an update operation
modifies the primary key value and sets all matching foreign key values to
NULL.

For a CASCADE referential action,

an update operation
modifies the primary key value, and additionally modifies any matching foreign
key values to the same value. CASCADE is not supported for delete operations.

Note: RESTRICT is the default action if no referential action is specified.
Before it will enforce a SET NULL or CASCADE referential action, SAS checks to
see if there are other foreign keys that reference the primary key and that specify
RESTRICT for the intended operation. If RESTRICT is specified, or if the
constraint reverts to the default values, then RESTRICT is enforced for all foreign
keys, unless no foreign key values match the values to updated or deleted. �

Options

<constraint-name=>
is an optional name for the constraint. The name must be a valid SAS name. When
you do not supply a constraint name, a default name is generated. This default
constraint name has the following form

Default name Constraint type

NMxxxx Not Null

UNxxxx Unique

CKxxxx Check

PKxxxx Primary key

FKxxxx Foreign key

where xxxx is a counter beginning at 0001.

The DATASETS Procedure � IC DELETE Statement 361

Note: The names PRIMARY, FOREIGN, MESSAGE, UNIQUE, DISTINCT,
CHECK, and NOT cannot be used as values for constraint-name. �

<MESSAGE=’message-string’ <MSGTYPE=USER>>
message-string is the text of an error message to be written to the log when the data
fails the constraint. For example,

ic create not null(socsec)
message=’Invalid Social Security number’;

Length: The maximum length of the message is 250 characters.

<MSGTYPE=USER> controls the format of the integrity constraint error message.
By default when the MESSAGE= option is specified, the message you define is
inserted into the SAS error message for the constraint, separated by a space.
MSGTYPE=USER suppresses the SAS portion of the message.

The following examples show how to create integrity constraints:

ic create a = not null(x);
ic create Unique_D = unique(d);
ic create Distinct_DE = distinct(d e);
ic create E_less_D = check(where=(e < d or d = 99));
ic create primkey = primary key(a b);
ic create forkey = foreign key (a b) references table-name

on update cascade on delete set null;
ic create not null (x);

Note that for a referential constraint to be established, the foreign key must specify the
same number of variables as the primary key, in the same order, and the variables
must be of the same type (character/numeric) and length.

IC DELETE Statement

Deletes an integrity constraint.

Restriction: Must be in a MODIFY RUN group

See also: “Understanding Integrity Constraints” in SAS Language Reference: Concepts

IC DELETE constraint-name(s) | _ALL_;

Arguments

constraint-name(s)
names one or more constraints to delete. For example, to delete the constraints
Unique_D and Unique_E, use this statement:

ic delete Unique_D Unique_E;

ALL
deletes all constraints for the SAS data file specified in the preceding MODIFY
statement.

362 IC REACTIVATE Statement � Chapter 15

IC REACTIVATE Statement

Reactivates a foreign key integrity constraint that is inactive.

Restriction: Must be in a MODIFY RUN group
See also: “Understanding Integrity Constraints” in SAS Language Reference: Concepts

IC REACTIVATE foreign-key-name REFERENCES libref;

Arguments

foreign-key-name
is the name of the foreign key to reactivate.

libref
refers to the SAS library containing the data set that contains the primary key that
is referenced by the foreign key.
For example, suppose that you have the foreign key FKEY defined in data set

MYLIB.MYOWN and that FKEY is linked to a primary key in data set
MAINLIB.MAIN. If the integrity constraint is inactivated by a copy or move operation,
you can reactivate the integrity constraint by using the following code:

proc datasets library=mylib;
modify myown;
ic reactivate fkey references mainlib;

run;

INDEX CENTILES

Updates centiles statistics for indexed variables.

Restriction: Must be in a MODIFY RUN group
See also: “Understanding SAS Indexes” in SAS Language Reference: Concepts

INDEX CENTILES index(s)
</ <REFRESH>
<UPDATECENTILES= ALWAYS|NEVER|integer>>;

Required Arguments

index(s)
names one or more indexes.

Options

The DATASETS Procedure � INDEX CREATE Statement 363

REFRESH
updates centiles immediately, regardless of the value of UPDATECENTILES.

UPDATECENTILES=ALWAYS|NEVER|integer
specifies when centiles are to be updated. It is not practical to update centiles after
every data set update. Therefore, you can specify as the value of
UPDATECENTILES the percent of the data values that can be changed before
centiles for the indexed variables are updated.

Valid values for UPDATECENTILES are

ALWAYS|0
updates centiles when the data set is closed if any changes have been made to the
data set index.

NEVER|101
does not update centiles.

integer
is the percent of values for the indexed variable that can be updated before
centiles are refreshed.
Alias: UPDCEN
Default 5 (percent)

INDEX CREATE Statement
Creates simple or composite indexes for the SAS data set specified in the MODIFY statement.

Restriction: Must be in a MODIFY RUN group
See also: "Understanding SAS Indexes" in SAS Language Reference: Concepts
Featured in: Example 3 on page 398

INDEX CREATE index-specification(s)
</ <NOMISS>
<UNIQUE>
<UPDATECENTILES= ALWAYS|NEVER|integer>>;

Required Arguments

index-specification(s)
can be one or both of the following forms:

variable
creates a simple index on the specified variable.

index=(variables)
creates a composite index. The name you specify for index is the name of the
composite index. It must be a valid SAS name and cannot be the same as any
variable name or any other composite index name. You must specify at least two
variables.

Options

364 INDEX DELETE Statement � Chapter 15

NOMISS
excludes from the index all observations with missing values for all index variables.

When you create an index with the NOMISS option, SAS uses the index only for
WHERE processing and only when missing values fail to satisfy the WHERE
expression. For example, if you use the following WHERE statement, SAS does not
use the index, because missing values satisfy the WHERE expression:

where dept ne ’01’;

Refer to SAS Language Reference: Concepts.

Note: BY-group processing ignores indexes that are created with the NOMISS
option. �

Featured in: Example 3 on page 398

UNIQUE
specifies that the combination of values of the index variables must be unique. If you
specify UNIQUE and multiple observations have the same values for the index
variables, the index is not created.

Featured in: Example 3 on page 398

UPDATECENTILES=ALWAYS|NEVER|integer
specifies when centiles are to be updated. It is not practical to update centiles after
every data set update. Therefore, you can specify the percent of the data values that
can be changed before centiles for the indexed variables are updated. Valid values for
UPDATECENTILES are as follows:

ALWAYS|0
updates centiles when the data set is closed if any changes have been made to the
data set index.

NEVER|101
does not update centiles.

integer
specifies the percent of values for the indexed variable that can be updated before
centiles are refreshed.

Alias: UPDCEN

Default: 5% (percent)

INDEX DELETE Statement

Deletes one or more indexes associated with the SAS data set specified in the MODIFY statement.

Restriction: Must appear in a MODIFY RUN group

INDEX DELETE index(s) | _ALL_;

Required Arguments

index(s)

The DATASETS Procedure � INFORMAT Statement 365

names one or more indexes to delete. The index(es) must be for variables in the SAS
data set that is named in the preceding MODIFY statement. You can delete both
simple and composite indexes.

ALL
deletes all indexes, except for indexes that are owned by an integrity constraint.
When an index is created, it is marked as owned by the user, by an integrity
constraint, or by both. If an index is owned by both a user and an integrity
constraint, the index is not deleted until both an IC DELETE statement and an
INDEX DELETE statement are processed.

Note: You can use the CONTENTS statement to produce a list of all indexes for a
data set. �

INFORMAT Statement

Permanently assigns, changes, and removes variable informats in the data set specified in the
MODIFY statement.

Restriction: Must appear in a MODIFY RUN group

Featured in: Example 3 on page 398

INFORMAT variable-list-1 <informat-1>
<…variable-list-n <informat-n>>;

Required Arguments

variable-list
specifies one or more variables whose informats you want to assign, change, or
remove. If you want to disassociate an informat with a variable, list the variable last
in the list with no informat following. For example:

informat a b 2. x1-x3 4.1 c;

Options

informat
specifies an informat for the variables immediately preceding it in the statement. If
you do not specify an informat, the INFORMAT statement removes any existing
informats for the variables in variable-list.

Note: You can use shortcut methods for specifying variables, such as the keywords
_NUMERIC, _CHARACTER_, and _ALL_. See “Shortcuts for Specifying Lists of
Variable Names” on page 24 for more information. �

366 LABEL Statement � Chapter 15

LABEL Statement

Assigns, changes, and removes variable labels for the SAS data set specified in the MODIFY
statement.

Restriction: Must appear in a MODIFY RUN group
Featured in: Example 3 on page 398

LABEL variable-1=<’label-1’|’ ’>
<…variable-n=< ’label-n’|’ ’ >>;

Required Arguments

variable=<’label’>
assigns a label to a variable. If a single quotation mark appears in the label, write it
as two single quotation marks in the LABEL statement. Specifying variable= or
variable=’ ’removes the current label.
Range: 1-256 characters

MODIFY Statement

Changes the attributes of a SAS file and, through the use of subordinate statements, the attributes
of variables in the SAS file.

Featured in: Example 3 on page 398

MODIFY SAS-file <(option(s))>
</ <DTC=SAS-date-time>
<GENNUM=integer>
<MEMTYPE=mtype>>;

To do this Use this option

Restrict processing to a certain type of SAS file MEMTYPE=

Specify attributes

Assign or change a data set label LABEL=

Assign or change a special data set type TYPE=

Specify how the data are currently sorted SORTEDBY=

Specify a creation date and time DTC=

Modify passwords

Modify an alter password ALTER=

The DATASETS Procedure � MODIFY Statement 367

To do this Use this option

Modify a read, write, or alter password PW=

Modify a read password READ=

Modify a write password WRITE=

Modify generation groups

Modify the maximum number of versions for a
generation group

GENMAX=

Modify a historical version GENNUM=

Required Arguments

SAS-file
specifies a SAS file that exists in the procedure input library.

Options

ALTER=password-modification
assigns, changes, or removes an alter password for the SAS file named in the
MODIFY statement. password-modification is one of the following:

� new-password

� old-password / new-password

� / new-password

� old-password /
� /

See also: “Manipulating Passwords” on page 369

DTC=SAS-date-time
specifies a date and time to substitute for the date and time stamp placed on a SAS
file at the time of creation. You cannot use this option in parentheses after the name
of each SAS file; you must specify DTC= after a forward slash. For example:

modify mydata / dtc=’03MAR00:12:01:00’dt;

Tip: Use DTC= to alter a SAS file’s creation date and time prior to using the
DATECOPY option in the CIMPORT procedure, COPY procedure, CPORT
procedure, SORT procedure, and the COPY statement in the DATASETS
procedure.

Restriction: A SAS file’s creation date and time cannot be set later than the date
and time the file was actually created.

Restriction: DTC= cannot be used with encrypted files or sequential files.
Restriction: DTC= can be used only when the resulting SAS file uses the V8 or V9

engine.

GENMAX=number-of-generations
specifies the maximum number of versions. You can use this option either in
parentheses after the name of each SAS file or after a forward slash.

368 MODIFY Statement � Chapter 15

Range: 0 to 1,000
Default: 0

GENNUM=integer
restricts processing for generation data sets. You can specify GENNUM= either in
parentheses after the name of each SAS file or after a forward slash. Valid value is
integer, which is a number that references a specific version from a generation group.
Specifying a positive number is an absolute reference to a specific generation number
that is appended to a data set’s name; that is, gennum=2 specifies MYDATA#002.
Specifying a negative number is a relative reference to a historical version in relation
to the base version, from the youngest to the oldest; that is, gennum=-1 refers to the
youngest historical version. Specifying 0, which is the default, refers to the base
version.
See also: “Understanding Generation Data Sets” in SAS Language Reference:

Concepts

LABEL=’data-set-label’ | ’’
assigns, changes, or removes a data set label for the SAS data set named in the
MODIFY statement. If a single quotation mark appears in the label, write it as two
single quotation marks. LABEL= or LABEL=’ ’removes the current label.
Range: 1-40 characters
Featured in: Example 3 on page 398

MEMTYPE=mtype
restricts processing to one member type. You cannot specify MEMTYPE= in
parentheses after the name of each SAS file; you must specify MEMTYPE= after a
forward slash.
Aliases: MTYPE= and MT=
Default: If you do not specify the MEMTYPE= option in the PROC DATASETS

statement or in the MODIFY statement, the default is MEMTYPE=DATA.

PW=password-modification
assigns, changes, or removes a read, write, or alter password for the SAS file named
in the MODIFY statement. password-modification is one of the following:

� new-password
� old-password / new-password
� / new-password
� old-password /
� /

See also: “Manipulating Passwords” on page 369

READ=password-modification
assigns, changes, or removes a read password for the SAS file named in the MODIFY
statement. password-modification is one of the following:

� new-password
� old-password / new-password
� / new-password
� old-password /
� /

See also: “Manipulating Passwords” on page 369
Featured in: Example 3 on page 398

SORTEDBY=sort-information

The DATASETS Procedure � MODIFY Statement 369

specifies how the data are currently sorted. SAS stores the sort information with the
file but does not verify that the data are sorted the way you indicate.
sort-information can be one of the following:

by-clause </ collate-name>
indicates how the data are currently sorted. Values for by-clause are the variables
and options you can use in a BY statement in a PROC SORT step. collate-name
names the collating sequence used for the sort. By default, the collating sequence
is that of your host operating environment.

NULL
removes any existing sort information.

Restriction: The data must be sorted in the order that you specify. If the data is
not in the specified order, SAS will not sort it for you.

Featured in: Example 3 on page 398

TYPE=special-type
assigns or changes the special data set type of a SAS data set. SAS does not verify

� the SAS data set type you specify in the TYPE= option (except to check if it has
a length of eight or fewer characters).

� that the SAS data set’s structure is appropriate for the type you have
designated.

Note: Do not confuse the TYPE= option with the MEMTYPE= option. The
TYPE= option specifies a type of special SAS data set. The MEMTYPE= option
specifies one or more types of SAS files in a SAS data library. �

Tip: Most SAS data sets have no special type. However, certain SAS procedures,
like the CORR procedure, can create a number of special SAS data sets. In
addition, SAS/STAT software and SAS/EIS software support special data set types.

WRITE=password-modification
assigns, changes, or removes a write password for the SAS file named in the
MODIFY statement. password-modification is one of the following:

� new-password

� old-password / new-password

� / new-password

� old-password /

� /

See also: “Manipulating Passwords” on page 369

Manipulating Passwords
In order to assign, change, or remove a password, you must specify the password for

the highest level of protection that currently exists on that file.

Assigning Passwords

/* assigns a password to an unprotected file */
modify colors (pw=green);

/* assigns an alter password to an already read-protected SAS data set */
modify colors (read=green alter=red);

370 RENAME Statement � Chapter 15

Changing Passwords

/* changes the write password from YELLOW to BROWN */
modify cars (write=yellow/brown);

/* uses alter access to change unknown read password to BLUE */
modify colors (read=/blue alter=red);

Removing Passwords

/* removes the alter password RED from STATES */
modify states (alter=red/);

/* uses alter access to remove the read password */
modify zoology (read=green/ alter=red);

/* uses PW= as an alias for either WRITE= or ALTER= to remove unknown
read password */

modify biology (read=/ pw=red);

Working with Generation Groups

Changing the Number of Generations

/* changes the number of generations on data set A to 99 */
modify A (genmax=99);

Removing Passwords

/* removes the alter password RED from STATES#002 */
modify states (alter=red/) / gennum=2;

RENAME Statement

Renames variables in the SAS data set specified in the MODIFY statement.

Restriction: Must appear in a MODIFY RUN group

Featured in: Example 3 on page 398

RENAME old-name-1=new-name-1
<…old-name-n=new-name-n>;

Required Arguments

The DATASETS Procedure � REPAIR Statement 371

old-name=new-name
changes the name of a variable in the data set specified in the MODIFY statement.
old-name must be a variable that already exists in the data set. new-name, which
must be a valid SAS name, cannot be the name of a variable that already exists in
the data set or the name of an index.

Details

� If old-name does not exist in the SAS data set or new-name already exists, PROC
DATASETS stops processing the RUN group containing the RENAME statement
and issues an error message.

� When you use the RENAME statement to change the name of a variable for which
there is a simple index, the statement also renames the index.

� If the variable that you are renaming is used in a composite index, the composite
index automatically references the new variable name. However, if you attempt to
rename a variable to a name that has already been used for a composite index, you
receive an error message.

REPAIR Statement

Attempts to restore damaged SAS data sets or catalogs to a usable condition.

REPAIR SAS-file(s)
</ <ALTER=alter-password>
<GENNUM=integer>

<MEMTYPE=mtype>>;

Required Arguments

SAS-file(s)
specifies one or more SAS data sets or catalogs in the procedure input library.

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files that are named in the
REPAIR statement. You can use the option either in parentheses after the name of
each SAS file or after a forward slash.

See also: “Using Passwords with the DATASETS Procedure” on page 377

GENNUM=integer
restricts processing for generation data sets. You can use the option either in
parentheses after the name of each SAS file or after a forward slash. Valid value is
integer, which is a number that references a specific version from a generation group.
Specifying a positive number is an absolute reference to a specific generation number
that is appended to a data set’s name; that is, gennum=2 specifies MYDATA#002.
Specifying a negative number is a relative reference to a historical version in relation
to the base version, from the youngest to the oldest; that is, gennum=-1 refers to the

372 REPAIR Statement � Chapter 15

youngest historical version. Specifying 0, which is the default, refers to the base
version.
See also: “Restricting Processing for Generation Data Sets” on page 380
See also: “Understanding Generation Data Sets” in SAS Language Reference:

Concepts

MEMTYPE=mtype
restricts processing to one member type.
Aliases: MT=, MTYPE=
Default: If you do not specify the MEMTYPE= option in the PROC DATASETS

statement or in the REPAIR statement, the default is MEMTYPE=ALL.
See also: “Restricting Member Types for Processing” on page 378

Details
The most common situations that require the REPAIR statement are as follows:
� A system failure occurs while you are updating a SAS data set or catalog.
� The device on which a SAS data set or an associated index resides is damaged. In

this case, you can restore the damaged data set or index from a backup device, but
the data set and index no longer match.

� The disk that stores the SAS data set or catalog becomes full before the file is
completely written to disk. You may need to free some disk space. PROC
DATASETS requires free space when repairing SAS data sets with indexes and
when repairing SAS catalogs.

� An I/O error occurs while you are writing a SAS data set or catalog entry.

When you use the REPAIR statement for SAS data sets, it recreates all indexes for
the data set. It also attempts to restore the data set to a usable condition, but the
restored data set may not include the last several updates that occurred before the
system failed. You cannot use the REPAIR statement to recreate indexes that were
destroyed by using the FORCE option in a PROC SORT step.

When you use the REPAIR statement for a catalog, you receive a message stating
whether the REPAIR statement restored the entry. If the entire catalog is potentially
damaged, the REPAIR statement attempts to restore all the entries in the catalog. If
only a single entry is potentially damaged, for example when a single entry is being
updated and a disk-full condition occurs, on most systems only the entry that is open
when the problem occurs is potentially damaged. In this case, the REPAIR statement
attempts to repair only that entry. Some entries within the restored catalog may not
include the last updates that occurred before a system crash or an I/O error. The
REPAIR statement issues warning messages for entries that may have truncated data.

To repair a damaged catalog, the version of SAS that you use must be able to update
the catalog. Whether a SAS version can update a catalog (or just read it) is determined
by the SAS version that created the catalog:

� A damaged Version 6 catalog can be repaired with Version 6 only.
� A damaged Version 8 catalog can be repaired with either Version 8 or Version 9,

but not with Version 6.
� A damaged Version 9 catalog can be repaired with Version 9 only.

If the REPAIR operation is not successful, try to restore the SAS data set or catalog
from your system’s backup files.

If you issue a REPAIR statement for a SAS file that does not exist in the specified
library, PROC DATASETS stops processing the run group that contains the REPAIR
statement, and issues an error message. To override this behavior and continue
processing, use the NOWARN option in the PROC DATASETS statement.

The DATASETS Procedure � SAVE Statement 373

If you are using Cross-Environment Data Access (CEDA) to process a damaged
foreign SAS data set, CEDA cannot repair it. CEDA does not support update processing,
which is required in order to repair a damaged data set. To repair the foreign file, you
must move it back to its native environment. Note that observations may be lost during
the repair process. For more information about CEDA, see “Processing Data Using
Cross-Environment Data Access” in SAS Language Reference: Concepts.

SAVE Statement

Deletes all the SAS files in a library except the ones listed in the SAVE statement.

Featured in: Example 2 on page 397

SAVE SAS-file(s) </ MEMTYPE=mtype>;

Required Arguments

SAS-file(s)
specifies one or more SAS files that you do not want to delete from the SAS data
library.

Options

MEMTYPE=mtype
restricts processing to one member type. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.
Aliases: MTYPE= and MT=
Default: If you do not specify the MEMTYPE= option in the PROC DATASETS

statement or in the SAVE statement, the default is MEMTYPE=ALL.
See also: “Restricting Member Types for Processing” on page 378
Featured in: Example 2 on page 397

Details

� If one of the SAS files in SAS-file does not exist in the procedure input library,
PROC DATASETS stops processing the RUN group containing the SAVE
statement and issues an error message. To override this behavior, specify the
NOWARN option in the PROC DATASETS statement.

� When the SAVE statement deletes SAS data sets, it also deletes any indexes
associated with those data sets.

CAUTION:
SAS immediately deletes libraries and library members when you submit a RUN
group. You are not asked to verify the delete operation before it begins. Because
the SAVE statement deletes many SAS files in one operation, be sure that you

374 SELECT Statement � Chapter 15

understand how the MEMTYPE= option affects which types of SAS files are
saved and which types are deleted. �

� When you use the SAVE statement with generation groups, the SAVE statement
treats the base version and all historical versions as a unit. You cannot save a
specific version.

SELECT Statement

Selects SAS files for copying.

Restriction: Must follow a COPY statement
Restriction: Cannot appear with an EXCLUDE statement in the same COPY step
Featured in: Example 1 on page 392

SELECT SAS-file(s)
</ <ALTER=alter-password>
<MEMTYPE= mtype>>;

Required Arguments

SAS-file(s)
specifies one or more SAS files that you want to copy. All of the SAS files that you
name must be in the data library that is referenced by the libref named in the IN=
option in the COPY statement. If the SAS files have generation groups, the SELECT
statement allows only selection of the base versions.

Options

ALTER=alter-password
provides the alter password for any alter-protected SAS files that you are moving
from one data library to another. Because you are moving and thus deleting a SAS
file from a SAS data library, you need alter access. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.
See also: “Using Passwords with the DATASETS Procedure” on page 377

MEMTYPE=mtype
restricts processing to one member type. You can use the option either in
parentheses after the name of each SAS file or after a forward slash.
Aliases: MTYPE= and MT=
Default: If you do not specify the MEMTYPE= option in the PROC DATASETS

statement, in the COPY statement, or in the SELECT statement, the default is
MEMTYPE=ALL.

See also: “Specifying Member Types When Copying or Moving SAS Files” on page
350

See also: “Restricting Member Types for Processing” on page 378
Featured in: Example 1 on page 392

The DATASETS Procedure � Procedure Execution 375

Selecting Many Like-Named Files
You can use shortcuts for listing many SAS files in the SELECT statement. For more

information, see “Shortcuts for Specifying Lists of Variable Names” on page 24.

Concepts: DATASETS Procedure

Procedure Execution
When you start the DATASETS procedure, you specify the procedure input library in

the PROC DATASETS statement. If you omit a procedure input library, the procedure
processes the current default SAS data library (usually the WORK data library). To
specify a new procedure input library, issue the DATASETS procedure again.

Statements execute in the order they are written. For example, if you want to see
the contents of a data set, copy a data set, and then visually compare the contents of
the second data set with the first, the statements that perform those tasks must appear
in that order (that is, CONTENTS, COPY, CONTENTS).

RUN-Group Processing
PROC DATASETS supports RUN-group processing. RUN-group processing enables

you to submit RUN groups without ending the procedure.
The DATASETS procedure supports four types of RUN groups. Each RUN group is

defined by the statements that compose it and by what causes it to execute.
Some statements in PROC DATASETS act as implied RUN statements because they

cause the RUN group preceding them to execute.
The following list discusses what statements compose a RUN group and what causes

each RUN group to execute:

� The PROC DATASETS statement always executes immediately. No other
statement is necessary to cause the PROC DATASETS statement to execute.
Therefore, the PROC DATASETS statement alone is a RUN group.

� The MODIFY statement, and any of its subordinate statements, form a RUN
group. These RUN groups always execute immediately. No other statement is
necessary to cause a MODIFY RUN group to execute.

� The APPEND, CONTENTS, and COPY statements (including EXCLUDE and
SELECT, if present), form their own separate RUN groups. Every APPEND
statement forms a single-statement RUN group; every CONTENTS statement
forms a single-statement RUN group; and every COPY step forms a RUN group.
Any other statement in the procedure, except those that are subordinate to either
the COPY or MODIFY statement, causes the RUN group to execute.

� One or more of the following statements form a RUN group:

� AGE

� CHANGE

� DELETE

� EXCHANGE

� REPAIR

� SAVE

376 Procedure Execution � Chapter 15

If any of these statements appear in sequence in the PROC step, the sequence
forms a RUN group. For example, if a REPAIR statement appears immediately
after a SAVE statement, the REPAIR statement does not force the SAVE
statement to execute; it becomes part of the same RUN group. To execute the
RUN group, submit one of the following statements:

� PROC DATASETS

� APPEND

� CONTENTS

� COPY

� MODIFY

� QUIT

� RUN

� another DATA or PROC step.

SAS reads the program statements that are associated with one task until it reaches
a RUN statement or an implied RUN statement. It executes all of the preceding
statements immediately, then continues reading until it reaches another RUN
statement or implied RUN statement. To execute the last task, you must use a RUN
statement or a statement that stops the procedure.

The following PROC DATASETS step contains five RUN groups:

libname dest ’SAS-data-library’;
/* RUN group */

proc datasets;
/* RUN group */

change nutr=fatg;
delete bldtest;
exchange xray=chest;

/* RUN group */
copy out=dest;

select report;
/* RUN group */

modify bp;
label dias=’Taken at Noon’;
rename weight=bodyfat;
/* RUN group */

append base=tissue data=newtiss;
quit;

Note: If you are running in interactive line mode, you can receive messages that
statements have already executed before you submit a RUN statement. Plan your tasks
carefully if you are using this environment for running PROC DATASETS. �

Error Handling
Generally, if an error occurs in a statement, the RUN group containing the error does

not execute. RUN groups preceding or following the one containing the error execute
normally. The MODIFY RUN group is an exception. If a syntax error occurs in a
statement subordinate to the MODIFY statement, only the statement containing the
error fails. The other statements in the RUN group execute.

The DATASETS Procedure � Using Passwords with the DATASETS Procedure 377

Note that if the first word of the statement (the statement name) is in error and the
procedure cannot recognize it, the procedure treats the statement as part of the
preceding RUN group.

Password Errors
If there is an error involving an incorrect or omitted password in a statement, the

error affects only the statement containing the error. The other statements in the RUN
group execute.

Forcing a RUN Group with Errors to Execute
The FORCE option in the PROC DATASETS statement forces execution of the RUN

group even if one or more of the statements contain errors. Only the statements that
are error-free execute.

Ending the Procedure
To stop the DATASETS procedure, you must issue a QUIT statement, a RUN

CANCEL statement, a new PROC statement, or a DATA statement. Submitting a
QUIT statement executes any statements that have not executed. Submitting a RUN
CANCEL statement cancels any statements that have not executed.

Using Passwords with the DATASETS Procedure
Several statements in the DATASETS procedure support options that manipulate

passwords on SAS files. These options, ALTER=, PW=, READ=, and WRITE=, are also
data set options.* If you do not know how passwords affect SAS files, refer to SAS
Language Reference: Concepts.

When you are working with password-protected SAS files in the AGE, CHANGE,
DELETE, EXCHANGE, REPAIR, or SELECT statement, you can specify password
options in the PROC DATASETS statement or in the subordinate statement.

Note: The ALTER= option works slightly different for the COPY (when moving a
file) and MODIFY statements. Refer to “COPY Statement” on page 347 and “MODIFY
Statement” on page 366. �

SAS searches for passwords in the following order:

1 in parentheses after the name of the SAS file in a subordinate statement. When
used in parentheses, the option only refers to the name immediately preceding the
option. If you are working with more than one SAS file in a data library and each
SAS file has a different password, you must specify password options in
parentheses after individual names.

In the following statement, the ALTER= option provides the password RED for
the SAS file BONES only:

delete xplant bones(alter=red);

2 after a forward slash (/) in a subordinate statement. When you use a password
option following a slash, the option refers to all SAS files named in the statement
unless the same option appears in parentheses after the name of a SAS file. This

* In the APPEND and CONTENTS statements, you use these options just as you use any SAS data set option, in parentheses
after the SAS data set name.

378 Restricting Member Types for Processing � Chapter 15

method is convenient when you are working with more than one SAS file and they
all have the same password.

In the following statement, the ALTER= option in parentheses provides the
password RED for the SAS file CHEST, and the ALTER= option after the slash
provides the password BLUE for the SAS file VIRUS:

delete chest(alter=red) virus / alter=blue;

3 in the PROC DATASETS statement. Specifying the password in the PROC
DATASETS statement can be useful if all the SAS files you are working with in
the library have the same password. Do not specify the option in parentheses.

In the following PROC DATASETS step, the PW= option provides the password
RED for the SAS files INSULIN and ABNEG:

proc datasets pw=red;
delete insulin;
contents data=abneg;

run;

Note: For the password for a SAS file in a SELECT statement, SAS looks in
the COPY statement before it looks in the PROC DATASETS statement. �

Restricting Member Types for Processing

In the PROC DATASETS Statement
If you name a member type or several member types in the PROC DATASETS

statement, in most subsequent statements (except the CONTENTS and COPY
statements), you can name only a subset of the list of member types included in the
PROC DATASETS statement. The directory listing that the PROC DATASETS
statement writes to the SAS log includes only those SAS files of the type specified in the
MEMTYPE= option.

In Subordinate Statements
Use the MEMTYPE= option in the following subordinate statements to limit the

member types that are available for processing:

AGE

CHANGE

DELETE

EXCHANGE

EXCLUDE

REPAIR

SAVE

SELECT

Note: The MEMTYPE= option works slightly differently for the CONTENTS, COPY,
and MODIFY statements. Refer to “CONTENTS Statement” on page 344, “COPY
Statement” on page 347, and “MODIFY Statement” on page 366 for more information. �

The DATASETS Procedure � Restricting Member Types for Processing 379

The procedure searches for MEMTYPE= in the following order:
1 in parentheses immediately after the name of a SAS file. When used in

parentheses, the MEMTYPE= option refers only to the SAS file immediately
preceding the option. For example, the following statement deletes HOUSE.DATA,
LOT.CATALOG, and SALES.DATA because the default member type for the
DELETE statement is DATA. (Refer to Table 15.3 on page 380 for the default
types for each statement.)

delete house lot(memtype=catalog) sales;

2 after a slash (/) at the end of the statement. When used following a slash, the
MEMTYPE= option refers to all SAS files named in the statement unless the option
appears in parentheses after the name of a SAS file. For example, the following
statement deletes LOTPIX.CATALOG, REGIONS.DATA, and APPL.CATALOG:

delete lotpix regions(memtype=data) appl / memtype=catalog;

3 in the PROC DATASETS statement. For example, this DATASETS procedure
deletes APPL.CATALOG:

proc datasets memtype=catalog;
delete appl;

run;

Note: When you use the EXCLUDE and SELECT statements, the procedure
looks in the COPY statement for the MEMTYPE= option before it looks in the
PROC DATASETS statement. For more information, see “Specifying Member
Types When Copying or Moving SAS Files” on page 350. �

4 for the default value. If you do not specify a MEMTYPE= option in the subordinate
statement or in the PROC DATASETS statement, the default value for the
subordinate statement determines the member type available for processing.

Member Types
The following list gives the possible values for the MEMTYPE= option:

ACCESS
access descriptor files (created by SAS/ACCESS software)

ALL
all member types

CATALOG
SAS catalogs

DATA
SAS data files

FDB
financial database

MDDB
multidimensional database

PROGRAM
stored compiled SAS programs

VIEW
SAS views

Table 15.3 on page 380 shows the member types that you can use in each statement:

380 Restricting Processing for Generation Data Sets � Chapter 15

Table 15.3 Subordinate Statements and Appropriate Member Types

Statement Appropriate member types Default
member type

AGE ACCESS, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

DATA

CHANGE ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

CONTENTS ALL, DATA, VIEW DATA1

COPY ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

DELETE ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

DATA

EXCHANGE ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

EXCLUDE ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

MODIFY ACCESS, DATA, VIEW DATA

REPAIR ALL, CATALOG, DATA ALL2

SAVE ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

SELECT ACCESS, ALL, CATALOG, DATA, FDB, MDDB,
PROGRAM, VIEW

ALL

1 When DATA=_ALL_ in the CONTENTS statement, the default is ALL. ALL includes only DATA and VIEW.
2 ALL includes only DATA and CATALOG.

Restricting Processing for Generation Data Sets
Several statements in the DATASETS procedure support the GENNUM= option to

restrict processing for generation data sets. GENNUM= is also a data set option.* If
you do not know how to request and use generation data sets, see “Generation Data
Sets” in SAS Language Reference: Concepts.

When you are working with a generation group for the AUDIT, CHANGE, DELETE,
MODIFY, and REPAIR statements, you can restrict processing in the PROC DATASETS
statement or in the subordinate statement to a specific version.

Note: The GENNUM= option works slightly different for the MODIFY statement.
See “MODIFY Statement” on page 366. �

Note: You cannot restrict processing to a specific version for the AGE, COPY,
EXCHANGE, and SAVE statements. These statements apply to the entire generation
group. �

SAS searches for a generation specification in the following order:
1 in parentheses after the name of the SAS data set in a subordinate statement.

When used in parentheses, the option only refers to the name immediately

* For the APPEND and CONTENTS statements, use GENNUM= just as you use any SAS data set option, in parentheses
after the SAS data set name.

The DATASETS Procedure � Directory Listing as SAS Output 381

preceding the option. If you are working with more than one SAS data set in a
data library and you want a different generation version for each SAS data set,
you must specify GENNUM= in parentheses after individual names.

In the following statement, the GENNUM= option specifies the version of a
generation group for the SAS data set BONES only:

delete xplant bones (gennum=2);

2 after a forward slash (/) in a subordinate statement. When you use the
GENNUM= option following a slash, the option refers to all SAS data sets named
in the statement unless the same option appears in parentheses after the name of
a SAS data set. This method is convenient when you are working with more than
one file and you want the same version for all files.

In the following statement, the GENNUM= option in parentheses specifies the
generation version for SAS data set CHEST, and the GENNUM= option after the
slash specifies the generation version for SAS data set VIRUS:

delete chest (gennum=2) virus / gennum=1;

3 in the PROC DATASETS statement. Specifying the generation version in the
PROC DATASETS statement can be useful if you want the same version for all of
the SAS data sets you are working with in the library. Do not specify the option in
parentheses.

In the following PROC DATASETS step, the GENNUM= option specifies the
generation version for the SAS files INSULIN and ABNEG:

proc datasets gennum=2;
delete insulin;
contents data=abneg;

run;

Note: For the generation version for a SAS file in a SELECT statement, SAS
looks in the COPY statement before it looks in the PROC DATASETS statement. �

Results: DATASETS Procedure

Directory Listing to the SAS Log
The PROC DATASETS statement lists the SAS files in the procedure input library

unless the NOLIST option is specified. The NOLIST option prevents the creation of the
procedure results that go to the log. If you specify the MEMTYPE= option, only
specified types are listed. If you specify the DETAILS option, PROC DATASETS prints
these additional columns of information: Obs, Entries or Indexes, Vars, and Label.

Directory Listing as SAS Output
The CONTENTS statement lists the directory of the procedure input library if you

use the DIRECTORY option or specify DATA=_ALL_.

382 PROC DATASETS and the Output Delivery System (ODS) � Chapter 15

If you want only a directory, use the NODS option and the _ALL_ keyword in the
DATA= option. The NODS option suppresses the description of the SAS data sets; only
the directory appears in the output.

Note: The CONTENTS statement does not put a directory in an output data set. If
you try to create an output data set using the NODS option, you receive an empty
output data set. Use the SQL procedure to create a SAS data set that contains
information about a SAS data library. �

Note: If you specify the ODS RTF destination, the PROC DATASETS output will go
to both the SAS log and the ODS output area. The NOLIST option will suppress output
to both. To see the output only in the SAS log, use the ODS EXCLUDE statement by
specifying the member directory as the exclusion. �

PROC DATASETS and the Output Delivery System (ODS)
Most SAS procedures send their messages to the SAS log and their procedure results

to the listing. PROC DATASETS is unique because it sends procedure results to both
the SAS log and the listing. When the interface to ODS was created, it was decided
that all procedure results (from both the log and the listing) should be available to the
new ODS destination. In order to implement this feature and maintain compatibility
with earlier releases, the interface to ODS had to be slightly different from the usual
interface.

By default, the PROC DATASETS statement itself produces two output objects:
Members and Directory. These objects are routed to the log. The CONTENTS
statement produces three output objects by default: Attributes, EngineHost, and
Variables. (The use of various options adds other output objects.) These objects are
routed to the listing. If you open one of the new ODS destinations (like HTML, RTF, or
PRINTER), all of these objects are, by default, routed to that destination.

You can use ODS SELECT and ODS EXCLUDE statements to control which objects
go to which destination, just as you can for any other procedure. However, because of
the unique interface between PROC DATASETS and ODS, when you use the keyword
LISTING in an ODS SELECT or ODS EXCLUDE statement, you affect both the log
and the listing.

Procedure Output
The only statement in PROC DATASETS that produces procedure output is the

CONTENTS statement. This section shows the output from the CONTENTS statement
for the GROUP data set, which is shown in Output 15.2 on page 383.

Only the items in the output that require explanation are discussed.

Data Set Attributes
Here are descriptions of selected fields shown in Output 15.2 on page 383:

Member Type
is the type of library member (DATA or VIEW).

Protection
indicates whether the SAS data set is READ, WRITE, or ALTER password
protected.

Data Set Type
names the special data set type (such as CORR, COV, SSPC, EST, or FACTOR), if
any.

The DATASETS Procedure � Procedure Output 383

Observations
is the total number of observations currently in the file. Note that for a very large
data set, if the number of observations exceeds the number that can be stored in a
double-precision integer, the count will show as missing.

Deleted Observations
is the number of observations marked for deletion. These observations are not
included in the total number of observations, shown in the Observations field.
Note that for a very large data set, if the number of deleted observations exceeds
the number that can be stored in a double-precision integer, the count will show as
missing.

Compressed
indicates whether the data set is compressed. If the data set is compressed, the
output includes an additional item, Reuse Space (with a value of YES or NO),
that indicates whether to reuse space that is made available when observations
are deleted.

Sorted
indicates whether the data set is sorted. If you sort the data set with PROC SORT,
PROC SQL, or specify sort information with the SORTEDBY= data set option, a
value of YES appears here, and there is an additional section to the output. See
“Sort Information” on page 385 for details.

Data Representation
is the format in which data is represented on a computer architecture or in an
operating environment. For example, on an IBM PC, character data is represented
by its ASCII encoding and byte-swapped integers. Native data representation
refers to an environment for which the data representation compares with the
CPU that is accessing the file. For example, a file that is in Windows data
representation is native to the Windows operating environment.

Encoding
is the encoding value. Encoding is a set of characters (letters, logograms, digits,
punctuation, symbols, control characters, and so on) that have been mapped to
numeric values (called code points) that can be used by computers. The code
points are assigned to the characters in the character set when you apply an
encoding method.

Output 15.2 Data Set Attributes for the GROUP Data Set

The SAS System 1

The DATASETS Procedure

Data Set Name HEALTH.GROUP Observations 148
Member Type DATA Variables 11
Engine V9 Indexes 1
Created 8:06 Tuesday, January 29, 2002 Observation Length 96
Last Modified 9:13 Tuesday, January 29, 2002 Deleted Observations 0
Protection READ Compressed NO
Data Set Type Sorted YES
Label Test Subjects
Data Representation WINDOWS
Encoding wlatin1 Western (Windows)

384 Procedure Output � Chapter 15

Engine and Operating Environment-Dependent Information
The CONTENTS statement produces operating environment-specific and

engine-specific information. This information differs depending on the operating
environment. The following output is from the Windows operating environment.

Output 15.3 Engine and Operating Environment Dependent Information Section of CONTENTS Output

Engine/Host Dependent Information

Data Set Page Size 8192
Number of Data Set Pages 4
First Data Page 1
Max Obs per Page 84
Obs in First Data Page 62
Index File Page Size 4096
Number of Index File Pages 2
Number of Data Set Repairs 0
File Name c:\Myfiles\health\group.sas7bdat
Release Created 9.0000A0
Host Created WIN_NT

Alphabetic List of Variables and Attributes
Here are descriptions of selected columns in Output 15.4 on page 384:

#
is the logical position of each variable in the observation. This is the number that
is assigned to the variable when it is defined.

Variable
is the name of each variable. By default, variables appear alphabetically.

Note: Variable names are sorted such that X1, X2, and X10 appear in that
order and not in the true collating sequence of X1, X10, and X2. Variable names
that contain an underscore and digits may appear in a nonstandard sort order.
For example, P25 and P75 appear before P2_5. �

Type
specifies the type of variable: character or numeric.

Note: If none of the variables in the SAS data set has a format, informat, or label
associated with it, the column for that attribute does not appear. �

Output 15.4 Variable Attributes Section

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

9 BIRTH Num 8 DATE7. DATE7.
4 CITY Char 15 $. $.
3 FNAME Char 15 $. $.

10 HIRED Num 8 DATE7. DATE7.
11 HPHONE Char 12 $. $.

1 IDNUM Char 4 $. $.
7 JOBCODE Char 3 $. $.
2 LNAME Char 15 $. $.
8 SALARY Num 8 COMMA8. current salary excluding bonus
6 SEX Char 1 $. $.
5 STATE Char 2 $. $.

The DATASETS Procedure � Procedure Output 385

Alphabetic List of Indexes and Attributes
The section shown in Output 15.5 on page 385 appears only if the data set has

indexes associated with it.

#
indicates the number of each index. The indexes are numbered sequentially as
they are defined.

Index
displays the name of each index. For simple indexes, the name of the index is the
same as a variable in the data set.

Unique Option
indicates whether the index must have unique values. If the column contains YES,
the combination of values of the index variables is unique for each observation.

Nomiss Option
indicates whether the index excludes missing values for all index variables. If the
column contains YES, the index does not contain observations with missing values
for all index variables.

of Unique Values
gives the number of unique values in the index.

Variables
names the variables in a composite index.

Output 15.5 Index Attributes Section

Alphabetic List of Indexes and Attributes

of
Unique NoMiss Unique

Index Option Option Values Variables

1 vital YES YES 148 BIRTH SALARY

Sort Information
The section shown in Output 15.6 on page 386 appears only if the Sorted field has a

value of YES.

Sortedby
indicates how the data are currently sorted. This field contains either the
variables and options you use in the BY statement in PROC SORT, the column
name in PROC SQL, or the values you specify in the SORTEDBY= option.

Validated
indicates whether PROC SORT or PROC SQL sorted the data. If PROC SORT or
PROC SQL sorted the data set, the value is YES. If you assigned the sort
information with the SORTEDBY= data set option, the value is NO.

Character Set
is the character set used to sort the data. The value for this field can be ASCII,
EBCDIC, or PASCII.

386 Output Data Sets � Chapter 15

Collating Sequence
is the collating sequence used to sort the data set. This field does not appear if you
do not specify a specific collating sequence that is different from the character set.
(not shown)

Sort Option
indicates whether PROC SORT used the NODUPKEY or NODUPREC option
when sorting the data set. This field does not appear if you did not use one of
these options in a PROC SORT statement. (not shown)

Output 15.6 Sort Information Section

The SAS System 2

The DATASETS Procedure

Sort Information

Sortedby LNAME
Validated NO
Character Set ANSI

Output Data Sets
The CONTENTS statement is the only statement in the DATASETS procedure that

generates output data sets.

The OUT= Data Set
The OUT= option in the CONTENTS statement creates an output data set. Each

variable in each DATA= data set has one observation in the OUT= data set. These are
the variables in the output data set:

CHARSET
the character set used to sort the data set. The value is ASCII, EBCDIC, or
PASCII. A blank appears if the data set does not have sort information stored with
it.

COLLATE
the collating sequence used to sort the data set. A blank appears if the sort
information for the input data set does not include a collating sequence.

COMPRESS
indicates whether the data set is compressed.

CRDATE
date the data set was created.

DELOBS
number of observations marked for deletion in the data set. (Observations can be
marked for deletion but not actually deleted when you use the FSEDIT procedure
of SAS/FSP software.)

ENCRYPT
indicates whether the data set is encrypted.

ENGINE
name of the method used to read from and write to the data set.

The DATASETS Procedure � Output Data Sets 387

FLAGS
indicates whether an SQL view is protected (P) or contributes (C) to a derived
variable.

P indicates the variable is protected. The value of the variable
can be displayed but not updated.

C indicates whether the variable contributes to a derived variable.
The value of FLAG is blank if P or C does not apply to an SQL view or if it is a

data set view.

FORMAT
variable format. The value of FORMAT is a blank if you do not associate a format
with the variable.

FORMATD
number of decimals you specify when you associate the format with the variable.
The value of FORMATD is 0 if you do not specify decimals in the format.

FORMATL
format length. If you specify a length for the format when you associate the format
with a variable, the length you specify is the value of FORMATL. If you do not
specify a length for the format when you associate the format with a variable, the
value of FORMATL is the default length of the format if you use the FMTLEN
option and 0 if you do not use the FMTLEN option.

GENMAX
maximum number of versions for the generation group.

GENNEXT
the next generation number for a generation group.

GENNUM
the version number.

IDXCOUNT
number of indexes for the data set.

IDXUSAGE
use of the variable in indexes. Possible values are

NONE
the variable is not part of an index.

SIMPLE
the variable has a simple index. No other variables are included in the index.

COMPOSITE
the variable is part of a composite index.

BOTH
the variable has a simple index and is part of a composite index.

INFORMAT
variable informat. The value is a blank if you do not associate an informat with
the variable.

INFORMD
number of decimals you specify when you associate the informat with the variable.
The value is 0 if you do not specify decimals when you associate the informat with
the variable.

INFORML

388 Output Data Sets � Chapter 15

informat length. If you specify a length for the informat when you associate the
informat with a variable, the length you specify is the value of INFORML. If you
do not specify a length for the informat when you associate the informat with a
variable, the value of INFORML is the default length of the informat if you use
the FMTLEN option and 0 if you do not use the FMTLEN option.

JUST
justification (0=left, 1=right).

LABEL
variable label (blank if none given).

LENGTH
variable length.

LIBNAME
libref used for the data library.

MEMLABEL
label for this SAS data set (blank if no label).

MEMNAME
SAS data set that contains the variable.

MEMTYPE
library member type (DATA or VIEW).

MODATE
date the data set was last modified.

NAME
variable name.

NOBS
number of observations in the data set.

NODUPKEY
indicates whether the NODUPKEY option was used in a PROC SORT statement
to sort the input data set.

NODUPREC
indicates whether the NODUPREC option was used in a PROC SORT statement
to sort the input data set.

NPOS
physical position of the first character of the variable in the data set.

POINTOBS
indicates if the data set can be addressed by observation.

PROTECT
the first letter of the level of protection. The value for PROTECT is one or more of
the following:

A indicates the data set is alter-protected.

R indicates the data set is read-protected.

W indicates the data set is write-protected.

REUSE
indicates whether the space made available when observations are deleted from a
compressed data set should be reused. If the data set is not compressed, the
REUSE variable has a value of NO.

The DATASETS Procedure � Output Data Sets 389

SORTED
the value depends on the sorting characteristics of the input data set. Possible
values are

. (period) for not sorted.

0 for sorted but not validated.

1 for sorted and validated.

SORTEDBY
the value depends on that variable’s role in the sort. Possible values are

. (period)
if the variable was not used to sort the input data set.

n
where n is an integer that denotes the position of that variable in the sort. A
negative value of n indicates that the data set is sorted by the descending
order of that variable.

TYPE
type of the variable (1=numeric, 2=character).

TYPEMEM
special data set type (blank if no TYPE= value is specified).

VARNUM
variable number in the data set. Variables are numbered in the order they appear.

The output data set is sorted by the variables LIBNAME and MEMNAME.

Note: The variable names are sorted so that the values X1, X2, and X10 are listed
in that order, not in the true collating sequence of X1, X10, X2. Therefore, if you want
to use a BY statement on MEMNAME in subsequent steps, run a PROC SORT step on
the output data set first or use the NOTSORTED option in the BY statement. �

Output 15.7 on page 389 is an example of an output data set created from the
GROUP data set, which is shown in Example 4 on page 400 and in “Procedure Output”
on page 382.

390 Output Data Sets � Chapter 15

Output 15.7 The Data Set HEALTH.GRPOUT

An Example of an Output Data Set 1

OBS LIBNAME MEMNAME MEMLABEL TYPEMEM NAME TYPE LENGTH VARNUM

1 HEALTH GROUP Test Subjects BIRTH 1 8 9
2 HEALTH GROUP Test Subjects CITY 2 15 4
3 HEALTH GROUP Test Subjects FNAME 2 15 3
4 HEALTH GROUP Test Subjects HIRED 1 8 10
5 HEALTH GROUP Test Subjects HPHONE 2 12 11
6 HEALTH GROUP Test Subjects IDNUM 2 4 1
7 HEALTH GROUP Test Subjects JOBCODE 2 3 7
8 HEALTH GROUP Test Subjects LNAME 2 15 2
9 HEALTH GROUP Test Subjects SALARY 1 8 8

10 HEALTH GROUP Test Subjects SEX 2 1 6
11 HEALTH GROUP Test Subjects STATE 2 2 5

OBS LABEL FORMAT FORMATL FORMATD INFORMAT INFORML

1 DATE 7 0 DATE 7
2 $ 0 0 $ 0
3 $ 0 0 $ 0
4 DATE 7 0 DATE 7
5 $ 0 0 $ 0
6 $ 0 0 $ 0
7 $ 0 0 $ 0
8 $ 0 0 $ 0
9 current salary excluding bonus COMMA 8 0 0

10 $ 0 0 $ 0
11 $ 0 0 $ 0

An Example of an Output Data Set 2

Obs INFORMD JUST NPOS NOBS ENGINE CRDATE MODATE DELOBS

1 0 1 8 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
2 0 0 58 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
3 0 0 43 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
4 0 1 16 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
5 0 0 79 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
6 0 0 24 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
7 0 0 76 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
8 0 0 28 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
9 0 1 0 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0

10 0 0 75 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0
11 0 0 73 148 V9 29JAN02:08:06:46 29JAN02:09:13:36 0

OBS IDXUSAGE MEMTYPE IDXCOUNT PROTECT FLAGS COMPRESS REUSE SORTED SORTEDBY

1 COMPOSITE DATA 1 R-- --- NO NO 0 .
2 NONE DATA 1 R-- --- NO NO 0 .
3 NONE DATA 1 R-- --- NO NO 0 .
4 NONE DATA 1 R-- --- NO NO 0 .
5 NONE DATA 1 R-- --- NO NO 0 .
6 NONE DATA 1 R-- --- NO NO 0 .
7 NONE DATA 1 R-- --- NO NO 0 .
8 NONE DATA 1 R-- --- NO NO 0 1
9 COMPOSITE DATA 1 R-- --- NO NO 0 .

10 NONE DATA 1 R-- --- NO NO 0 .
11 NONE DATA 1 R-- --- NO NO 0 .

The DATASETS Procedure � Output Data Sets 391

An Example of an Output Data Set 3

OBS CHARSET COLLATE NODUPKEY NODUPREC ENCRYPT POINTOBS GENMAX GENNUM GENNEXT

1 ASCII NO NO NO YES 0 . 0
2 ASCII NO NO NO YES 0 . 0
3 ASCII NO NO NO YES 0 . 0
4 ASCII NO NO NO YES 0 . 0
5 ASCII NO NO NO YES 0 . 0
6 ASCII NO NO NO YES 0 . 0
7 ASCII NO NO NO YES 0 . 0
8 ASCII NO NO NO YES 0 . 0
9 ASCII NO NO NO YES 0 . 0

10 ASCII NO NO NO YES 0 . 0
11 ASCII NO NO NO YES 0 . 0

The OUT2= Data Set
The OUT2= option in the CONTENTS statement creates an output data set that

contains information about indexes and integrity constraints. These are the variables in
the output data set:

IC_OWN
contains YES if the index is owned by the integrity constraint.

INACTIVE
contains YES if the integrity constraint is inactive.

LIBNAME
libref used for the data library.

MEMNAME
SAS data set that contains the variable.

MG
the value of MESSAGE=, if it is used, in the IC CREATE statement.

MSGTYPE
the value will be blank unless an integrity constraint is violated and you specified
a message.

NAME
the name of the index or integrity constraint.

NOMISS
contains YES if the NOMISS option is defined for the index.

NUMVALS
the number of distinct values in the index (displayed for centiles).

NUMVARS
the number of variables involved in the index or integrity constraint.

ONDELETE
for a foreign key integrity constraint, contains RESTRICT or SET NULL if
applicable (the ON DELETE option in the IC CREATE statement).

ONUPDATE
for a foreign key integrity constraint, contains RESTRICT or SET NULL if
applicable (the ON UPDATE option in the IC CREATE statement).

RECREATE
the SAS statement necessary to recreate the index or integrity constraint.

REFERENCE

392 Examples: DATASETS Procedure � Chapter 15

for a foreign key integrity constraint, contains the name of the referenced data set.

TYPE
the type. For an index, the value is “Index” while for an integrity constraint, the
value is the type of integrity constraint (Not Null, Check, Primary Key, etc.).

UNIQUE
contains YES if the UNIQUE option is defined for the index.

UPERC
the percentage of the index that has been updated since the last refresh (displayed
for centiles).

UPERCMX
the percentage of the index update that triggers a refresh (displayed for centiles).

WHERE
for a check integrity constraint, contains the WHERE statement.

Examples: DATASETS Procedure

Example 1: Manipulating SAS Files
Procedure features:

PROC DATASETS statement options:
DETAILS
LIBRARY=

CHANGE statement
COPY statement options:

MEMTYPE
MOVE
OUT=

DELETE statement option:
MEMTYPE=

EXCHANGE statement
EXCLUDE statement
SELECT statement option:

MEMTYPE=

This example
� changes the names of SAS files
� copies SAS files between SAS data libraries
� deletes SAS files
� selects SAS files to copy
� exchanges the names of SAS files
� excludes SAS files from a copy operation.

The DATASETS Procedure � Program 393

Program

Write the programming statements to the SAS log. The SOURCE system option
accomplishes this.

options pagesize=60 linesize=80 nodate pageno=1 source;

libname dest1 ’SAS-data-library-1’;
libname dest2 ’SAS-data-library-2’;
libname health ’SAS-data-library-3’;

Specify the procedure input library, and add more details to the directory. DETAILS
prints these additional columns in the directory: Obs, Entries or Indexes, Vars, and
Label. All member types are available for processing because the MEMTYPE= option does not
appear in the PROC DATASETS statement.

proc datasets library=health details;

Delete two files in the library, and modify the names of a SAS data set and a catalog.
The DELETE statement deletes the TENSION data set and the A2 catalog. MT=CATALOG
applies only to A2 and is necessary because the default member type for the DELETE statement
is DATA. The CHANGE statement changes the name of the A1 catalog to POSTDRUG. The
EXCHANGE statement exchanges the names of the WEIGHT and BODYFAT data sets.
MEMTYPE= is not necessary in the CHANGE or EXCHANGE statement because the default is
MEMTYPE=ALL for each statement.

delete tension a2(mt=catalog);
change a1=postdrug;
exchange weight=bodyfat;

Restrict processing to one member type and delete and move data views.
MEMTYPE=VIEW restricts processing to SAS data views. MOVE specifies that all SAS data
views named in the SELECT statements in this step be deleted from the HEALTH data library
and moved to the DEST1 data library.

copy out=dest1 move memtype=view;

Move the SAS data view SPDATA from the HEALTH data library to the DEST1 data
library.

select spdata;

Move the catalogs to another data library. The SELECT statement specifies that the
catalogs ETEST1 through ETEST5 be moved from the HEALTH data library to the DEST1 data
library. MEMTYPE=CATALOG overrides the MEMTYPE=VIEW option in the COPY statement.

394 Program � Chapter 15

select etest1-etest5 / memtype=catalog;

Exclude all files with a specified criteria from processing. The EXCLUDE statement
excludes from the COPY operation all SAS files that begin with the letter D and the other SAS
files listed. All remaining SAS files in the HEALTH data library are copied to the DEST2 data
library.

copy out=dest2;
exclude d: mlscl oxygen test2 vision weight;

quit;

The DATASETS Procedure � SAS Log 395

SAS Log

1 options pagesize=60 linesize=80 nodate pageno=1 source;
2 libname dest1 ’c:\Myfiles\dest1’;
NOTE: Libref DEST1 was successfully assigned as follows:

Engine: V9
Physical Name: c:\Myfiles\dest1

3 libname dest2 ’c:\Myfiles\dest2’;
NOTE: Libref DEST2 was successfully assigned as follows:

Engine: V9
Physical Name: c:\Myfiles\dest2

4 libname health ’c:\Myfiles\health’;
NOTE: Libref HEALTH was successfully assigned as follows:

Engine: V9
Physical Name: c:\Myfiles\health

5 proc datasets library=health details;
Directory

Libref HEALTH
Engine V9
Physical Name c:\Myfiles\health
File Name c:\Myfiles\health

Member Obs, Entries File
Name Type or Indexes Vars Label Size Last Modified

1 A1 CATALOG 23 62464 19FEB2002:14:41:15
2 A2 CATALOG 1 17408 19FEB2002:14:41:15
3 ALL DATA 23 17 13312 19FEB2002:14:41:19
4 BODYFAT DATA 1 2 5120 19FEB2002:14:41:19
5 CONFOUND DATA 8 4 5120 19FEB2002:14:41:19
6 CORONARY DATA 39 4 5120 19FEB2002:14:41:20
7 DRUG1 DATA 6 2 JAN95 5120 19FEB2002:14:41:20

Data
8 DRUG2 DATA 13 2 MAY95 5120 19FEB2002:14:41:20

Data
9 DRUG3 DATA 11 2 JUL95 5120 19FEB2002:14:41:20

Data
10 DRUG4 DATA 7 2 JAN92 5120 19FEB2002:14:41:20

Data
11 DRUG5 DATA 1 2 JUL92 5120 19FEB2002:14:41:20

Data
12 ETEST1 CATALOG 1 17408 19FEB2002:14:41:20
13 ETEST2 CATALOG 1 17408 19FEB2002:14:41:20
14 ETEST3 CATALOG 1 17408 19FEB2002:14:41:20
15 ETEST4 CATALOG 1 17408 19FEB2002:14:41:20
16 ETEST5 CATALOG 1 17408 19FEB2002:14:41:20
17 ETESTS CATALOG 1 17408 19FEB2002:14:41:21
18 FORMATS CATALOG 6 17408 19FEB2002:14:41:21
19 GROUP DATA 148 11 25600 19FEB2002:14:41:21
20 INFANT DATA 149 6 17408 05FEB2002:12:52:30
21 MLSCL DATA 32 4 Multiple 5120 19FEB2002:14:41:21

Sclerosi
s Data

22 NAMES DATA 7 4 5120 19FEB2002:14:41:21
23 OXYGEN DATA 31 7 9216 19FEB2002:14:41:21
24 PERSONL DATA 148 11 25600 19FEB2002:14:41:21
25 PHARM DATA 6 3 Sugar 5120 19FEB2002:14:41:21

Study
26 POINTS DATA 6 6 5120 19FEB2002:14:41:21
27 PRENAT DATA 149 6 17408 19FEB2002:14:41:22
28 RESULTS DATA 10 5 5120 19FEB2002:14:41:22
29 SLEEP DATA 108 6 9216 19FEB2002:14:41:22
30 SPDATA VIEW . 2 5120 19FEB2002:14:41:29
31 SYNDROME DATA 46 8 9216 19FEB2002:14:41:22
32 TENSION DATA 4 3 5120 19FEB2002:14:41:22
33 TEST2 DATA 15 5 5120 19FEB2002:14:41:22
34 TRAIN DATA 7 2 5120 19FEB2002:14:41:22
35 VISION DATA 16 3 5120 19FEB2002:14:41:22
36 WEIGHT DATA 83 13 Californ 13312 19FEB2002:14:41:22

ia
Results

37 WGHT DATA 83 13 Californ 13312 19FEB2002:14:41:23
ia
Results

396 SAS Log � Chapter 15

6 delete tension a2(mt=catalog);
7 change a1=postdrug;
8 exchange weight=bodyfat;
NOTE: Deleting HEALTH.TENSION (memtype=DATA).
NOTE: Deleting HEALTH.A2 (memtype=CATALOG).
NOTE: Changing the name HEALTH.A1 to HEALTH.POSTDRUG (memtype=CATALOG).
NOTE: Exchanging the names HEALTH.WEIGHT and HEALTH.BODYFAT (memtype=DATA).
9 copy out=dest1 move memtype=view;
10 select spdata;
11 select etest1-etest5 / memtype=catalog;
NOTE: Moving HEALTH.SPDATA to DEST1.SPDATA (memtype=VIEW).
NOTE: Moving HEALTH.ETEST1 to DEST1.ETEST1 (memtype=CATALOG).
NOTE: Moving HEALTH.ETEST2 to DEST1.ETEST2 (memtype=CATALOG).
NOTE: Moving HEALTH.ETEST3 to DEST1.ETEST3 (memtype=CATALOG).
NOTE: Moving HEALTH.ETEST4 to DEST1.ETEST4 (memtype=CATALOG).
NOTE: Moving HEALTH.ETEST5 to DEST1.ETEST5 (memtype=CATALOG).
12 copy out=dest2;
13 exclude d: mlscl oxygen test2 vision weight;
14 quit;

NOTE: Copying HEALTH.ALL to DEST2.ALL (memtype=DATA).
NOTE: There were 23 observations read from the data set HEALTH.ALL.
NOTE: The data set DEST2.ALL has 23 observations and 17 variables.
NOTE: Copying HEALTH.BODYFAT to DEST2.BODYFAT (memtype=DATA).
NOTE: There were 83 observations read from the data set HEALTH.BODYFAT.
NOTE: The data set DEST2.BODYFAT has 83 observations and 13 variables.
NOTE: Copying HEALTH.CONFOUND to DEST2.CONFOUND (memtype=DATA).
NOTE: There were 8 observations read from the data set HEALTH.CONFOUND.
NOTE: The data set DEST2.CONFOUND has 8 observations and 4 variables.
NOTE: Copying HEALTH.CORONARY to DEST2.CORONARY (memtype=DATA).
NOTE: There were 39 observations read from the data set HEALTH.CORONARY.
NOTE: The data set DEST2.CORONARY has 39 observations and 4 variables.
NOTE: Copying HEALTH.ETESTS to DEST2.ETESTS (memtype=CATALOG).
NOTE: Copying HEALTH.FORMATS to DEST2.FORMATS (memtype=CATALOG).
NOTE: Copying HEALTH.GROUP to DEST2.GROUP (memtype=DATA).
NOTE: There were 148 observations read from the data set HEALTH.GROUP.
NOTE: The data set DEST2.GROUP has 148 observations and 11 variables.
NOTE: Copying HEALTH.INFANT to DEST2.INFANT (memtype=DATA).
NOTE: There were 149 observations read from the data set HEALTH.INFANT.
NOTE: The data set DEST2.INFANT has 149 observations and 6 variables.
NOTE: Copying HEALTH.NAMES to DEST2.NAMES (memtype=DATA).
NOTE: There were 7 observations read from the data set HEALTH.NAMES.
NOTE: The data set DEST2.NAMES has 7 observations and 4 variables.
NOTE: Copying HEALTH.PERSONL to DEST2.PERSONL (memtype=DATA).
NOTE: There were 148 observations read from the data set HEALTH.PERSONL.
NOTE: The data set DEST2.PERSONL has 148 observations and 11 variables.
NOTE: Copying HEALTH.PHARM to DEST2.PHARM (memtype=DATA).
NOTE: There were 6 observations read from the data set HEALTH.PHARM.
NOTE: The data set DEST2.PHARM has 6 observations and 3 variables.
NOTE: Copying HEALTH.POINTS to DEST2.POINTS (memtype=DATA).
NOTE: There were 6 observations read from the data set HEALTH.POINTS.
NOTE: The data set DEST2.POINTS has 6 observations and 6 variables.
NOTE: Copying HEALTH.POSTDRUG to DEST2.POSTDRUG (memtype=CATALOG).
NOTE: Copying HEALTH.PRENAT to DEST2.PRENAT (memtype=DATA).
NOTE: There were 149 observations read from the data set HEALTH.PRENAT.
NOTE: The data set DEST2.PRENAT has 149 observations and 6 variables.
NOTE: Copying HEALTH.RESULTS to DEST2.RESULTS (memtype=DATA).
NOTE: There were 10 observations read from the data set HEALTH.RESULTS.
NOTE: The data set DEST2.RESULTS has 10 observations and 5 variables.
NOTE: Copying HEALTH.SLEEP to DEST2.SLEEP (memtype=DATA).
NOTE: There were 108 observations read from the data set HEALTH.SLEEP.
NOTE: The data set DEST2.SLEEP has 108 observations and 6 variables.
NOTE: Copying HEALTH.SYNDROME to DEST2.SYNDROME (memtype=DATA).
NOTE: There were 46 observations read from the data set HEALTH.SYNDROME.
NOTE: The data set DEST2.SYNDROME has 46 observations and 8 variables.
NOTE: Copying HEALTH.TRAIN to DEST2.TRAIN (memtype=DATA).
NOTE: There were 7 observations read from the data set HEALTH.TRAIN.
NOTE: The data set DEST2.TRAIN has 7 observations and 2 variables.
NOTE: Copying HEALTH.WGHT to DEST2.WGHT (memtype=DATA).
NOTE: There were 83 observations read from the data set HEALTH.WGHT.
NOTE: The data set DEST2.WGHT has 83 observations and 13 variables.

The DATASETS Procedure � Program 397

Example 2: Saving SAS Files from Deletion

Procedure features:
SAVE statement option:

MEMTYPE=

This example uses the SAVE statement to save some SAS files from deletion and to
delete other SAS files.

Program

Write the programming statements to the SAS log. The SAS system option SOURCE
writes all programming statements to the log.

options pagesize=40 linesize=80 nodate pageno=1 source;

libname elder ’SAS-data-library’;

Specify the procedure input library to process.

proc datasets lib=elder;

Save the data sets CHRONIC, AGING, and CLINICS, and delete all other SAS files (of
all types) in the ELDER library. MEMTYPE=DATA is necessary because the ELDER library
has a catalog named CLINICS and a data set named CLINICS.

save chronic aging clinics / memtype=data;
run;

398 SAS Log � Chapter 15

SAS Log

1 options pagesize=40 linesize=80 nodate pageno=1 source;
2 libname elder ’c:\Myfiles\elder’;
NOTE: Libref ELDER was successfully assigned as follows:

Engine: V9
Physical Name: c:\Myfiles\elder

3 proc datasets lib=elder;
Directory

Libref ELDER
Engine V9
Physical Name c:\Myfiles\elder
File Name c:\Myfiles\elder

Member File
Name Type Size Last Modified

1 AGING DATA 5120 04FEB2002:16:07:35
2 ALCOHOL DATA 5120 04FEB2002:16:07:35
3 BACKPAIN DATA 5120 04FEB2002:16:07:35
4 CHRONIC DATA 5120 04FEB2002:16:07:36
5 CLINICS CATALOG 17408 04FEB2002:16:07:36
6 CLINICS DATA 5120 04FEB2002:16:07:36
7 DISEASE DATA 5120 04FEB2002:16:07:36
8 GROWTH DATA 5120 04FEB2002:16:07:36
9 HOSPITAL CATALOG 17408 04FEB2002:16:07:36

4 save chronic aging clinics / memtype=data;
5 run;

NOTE: Saving ELDER.CHRONIC (memtype=DATA).
NOTE: Saving ELDER.AGING (memtype=DATA).
NOTE: Saving ELDER.CLINICS (memtype=DATA).
NOTE: Deleting ELDER.ALCOHOL (memtype=DATA).
NOTE: Deleting ELDER.BACKPAIN (memtype=DATA).
NOTE: Deleting ELDER.CLINICS (memtype=CATALOG).
NOTE: Deleting ELDER.DISEASE (memtype=DATA).
NOTE: Deleting ELDER.GROWTH (memtype=DATA).
NOTE: Deleting ELDER.HOSPITAL (memtype=CATALOG).

Example 3: Modifying SAS Data Sets
Procedure features:

PROC DATASETS statement option:
NOLIST

FORMAT statement
INDEX CREATE statement options:

NOMISS
UNIQUE

INFORMAT statement
LABEL statement
MODIFY statement options:

LABEL=
READ=
SORTEDBY=

RENAME statement

The DATASETS Procedure � Program 399

This example modifies two SAS data sets using the MODIFY statement and
statements subordinate to it. Example 4 on page 400 shows the modifications to the
GROUP data set.

Tasks include

� modifying SAS files

� labeling a SAS data set

� adding a READ password to a SAS data set

� indicating how a SAS data set is currently sorted

� creating an index for a SAS data set

� assigning informats and formats to variables in a SAS data set

� renaming variables in a SAS data set
� labeling variables in a SAS data set.

Program

Write the programming statements to the SAS log. The SAS system option SOURCE
writes the programming statements to the log.

options pagesize=40 linesize=80 nodate pageno=1 source;

libname health ’SAS-data-library’;

Specify HEALTH as the procedure input library to process. NOLIST suppresses the
directory listing for the HEALTH data library.

proc datasets library=health nolist;

Add a label to a data set, assign a READ password, and specify how to sort the data.
LABEL= adds a data set label to the data set GROUP. READ= assigns GREEN as the read
password. The password appears as Xs in the SAS log. SAS issues a warning message if you
specify a level of password protection on a SAS file that does not include alter protection.
SORTEDBY= specifies how the data is sorted.

modify group (label=’Test Subjects’ read=green sortedby=lname);

Create the composite index VITAL on the variables BIRTH and SALARY for the
GROUP data set. NOMISS excludes all observations that have missing values for BIRTH and
SALARY from the index. UNIQUE specifies that the index is created only if each observation
has a unique combination of values for BIRTH and SALARY.

index create vital=(birth salary) / nomiss unique;

400 SAS Log � Chapter 15

Assign an informat and format, respectively, to the BIRTH variable.

informat birth date7.;
format birth date7.;

Assign a label to the variable SALARY.

label salary=’current salary excluding bonus’;

Rename a variable, and assign a label. Modify the data set OXYGEN by renaming the
variable OXYGEN to INTAKE and assigning a label to the variable INTAKE.

modify oxygen;
rename oxygen=intake;
label intake=’Intake Measurement’;

quit;

SAS Log

6 options pagesize=40 linesize=80 nodate pageno=1 source;
7 libname health ’c:\Myfiles\health’;
NOTE: Libref HEALTH was successfully assigned as follows:

Engine: V9
Physical Name: c:\Myfiles\health

8 proc datasets library=health nolist;
9 modify group (label=’Test Subjects’ read=XXXXX sortedby=lname);
WARNING: The file HEALTH.GROUP.DATA is not ALTER protected. It could be

deleted or replaced without knowing the password.
10 index create vital=(birth salary) / nomiss unique;
NOTE: Composite index vital has been defined.
11 informat birth date7.;
12 format birth date7.;
13 label salary=’current salary excluding bonus’;
14 modify oxygen;
15 rename oxygen=intake;
NOTE: Renaming variable oxygen to intake.
16 label intake=’Intake Measurement’;
17 quit;

Example 4: Describing a SAS Data Set

Procedure features:
CONTENTS statement option:

DATA=
Other features:

SAS data set option:

The DATASETS Procedure � Program 401

READ=

This example shows the output from the CONTENTS statement for the GROUP data
set. The output shows the modifications made to the GROUP data set in Example 3 on
page 398.

Program

options pagesize=40 linesize=132 nodate pageno=1;

libname health ’SAS-data-library’;

Specify HEALTH as the procedure input library, and suppress the directory listing.

proc datasets library=health nolist;

Create the output data set GRPOUT from the data set GROUP. Specify GROUP as the
data set to describe, give read access to the GROUP data set, and create the output data set
GRPOUT, which appears in “The OUT= Data Set” on page 386.

contents data=group (read=green) out=grpout;
title ’The Contents of the GROUP Data Set’;

run;

402 Output � Chapter 15

Output

Output 15.8 The Contents of the GROUP Data Set

The Contents of the GROUP Data Set 1

The DATASETS Procedure

Data Set Name HEALTH.GROUP Observations 148

Member Type DATA Variables 11

Engine V9 Indexes 1

Created 8:06 Tuesday, January 29, 2002 Observation Length 96

Last Modified 9:13 Tuesday, January 29, 2002 Deleted Observations 0

Protection READ Compressed NO

Data Set Type Sorted YES

Label Test Subjects

Data Representation WINDOWS

Encoding wlatin1 Western (Windows)

Engine/Host Dependent Information

Data Set Page Size 8192

Number of Data Set Pages 4

First Data Page 1

Max Obs per Page 84

Obs in First Data Page 62

Index File Page Size 4096

Number of Index File Pages 2

Number of Data Set Repairs 0

File Name c:\Myfiles\health\group.sas7bdat

Release Created 9.0000A0

Host Created WIN_NT

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

9 BIRTH Num 8 DATE7. DATE7.

4 CITY Char 15 $. $.

3 FNAME Char 15 $. $.

10 HIRED Num 8 DATE7. DATE7.

11 HPHONE Char 12 $. $.

The DATASETS Procedure � Input Data Sets 403

The Contents of the GROUP Data Set 2

The DATASETS Procedure

Alphabetic List of Variables and Attributes

Variable Type Len Format Informat Label

1 IDNUM Char 4 $. $.

7 JOBCODE Char 3 $. $.

2 LNAME Char 15 $. $.

8 SALARY Num 8 COMMA8. current salary excluding bonus

6 SEX Char 1 $. $.

5 STATE Char 2 $. $.

Alphabetic List of Indexes and Attributes

of

Unique NoMiss Unique

Index Option Option Values Variables

1 vital YES YES 148 BIRTH SALARY

Sort Information

Sortedby LNAME

Validated NO

Character Set ANSI

Example 5: Concatenating Two SAS Data Sets

Procedure features:
APPEND statement options:

BASE=
DATA=
FORCE=

This example appends one data set to the end of another data set.

Input Data Sets

404 Program � Chapter 15

The BASE= data set, EXP.RESULTS.

The EXP.RESULTS Data Set 1

ID TREAT INITWT WT3MOS AGE

1 Other 166.28 146.98 35
2 Other 214.42 210.22 54
3 Other 172.46 159.42 33
5 Other 175.41 160.66 37
6 Other 173.13 169.40 20
7 Other 181.25 170.94 30

10 Other 239.83 214.48 48
11 Other 175.32 162.66 51
12 Other 227.01 211.06 29
13 Other 274.82 251.82 31

The data set EXP.SUR contains the variable WT6MOS, but the EXP.RESULTS data set does not.

The EXP.SUR Data Set 2

id treat initwt wt3mos wt6mos age

14 surgery 203.60 169.78 143.88 38
17 surgery 171.52 150.33 123.18 42
18 surgery 207.46 155.22 . 41

Program

options pagesize=40 linesize=64 nodate pageno=1;

libname exp ’SAS-data-library’;

Suppress the printing of the EXP library. LIBRARY= specifies EXP as the procedure input
library. NOLIST suppresses the directory listing for the EXP library.

proc datasets library=exp nolist;

Append the data set EXP.SUR to the EXP.RESULTS data set. The APPEND statement
appends the data set EXP.SUR to the data set EXP.RESULTS. FORCE causes the APPEND
statement to carry out the append operation even though EXP.SUR has a variable that
EXP.RESULTS does not. APPEND does not add the WT6MOS variable to EXP.RESULTS.

append base=exp.results data=exp.sur force;
run;

Print the data set.

The DATASETS Procedure � Program 405

proc print data=exp.results noobs;
title ’The EXP.RESULTS Data Set’;

run;

Output

Output 15.9

The EXP.RESULTS Data Set 1

ID TREAT INITWT WT3MOS AGE

1 Other 166.28 146.98 35
2 Other 214.42 210.22 54
3 Other 172.46 159.42 33
5 Other 175.41 160.66 37
6 Other 173.13 169.40 20
7 Other 181.25 170.94 30

10 Other 239.83 214.48 48
11 Other 175.32 162.66 51
12 Other 227.01 211.06 29
13 Other 274.82 251.82 31
14 surgery 203.60 169.78 38
17 surgery 171.52 150.33 42
18 surgery 207.46 155.22 41

Example 6: Aging SAS Data Sets
Procedure features:

AGE statement

This example shows how the AGE statement ages SAS files.

Program

Write the programming statements to the SAS log. The SAS system option SOURCE
writes the programming statements to the log.

options pagesize=40 linesize=80 nodate pageno=1 source;

libname daily ’SAS-data-library’;

Specify DAILY as the procedure input library and suppress the directory listing.

proc datasets library=daily nolist;

406 SAS Log � Chapter 15

Delete the last SAS file in the list, DAY7, and then age (or rename) DAY6 to DAY7,
DAY5 to DAY6, and so on, until it ages TODAY to DAY1.

age today day1-day7;
run;

SAS Log

6 options pagesize=40 linesize=80 nodate pageno=1 source;
7
8 proc datasets library=daily nolist;
9
10 age today day1-day7;
11 run;
NOTE: Deleting DAILY.DAY7 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY6 to DAILY.DAY7 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY5 to DAILY.DAY6 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY4 to DAILY.DAY5 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY3 to DAILY.DAY4 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY2 to DAILY.DAY3 (memtype=DATA).
NOTE: Ageing the name DAILY.DAY1 to DAILY.DAY2 (memtype=DATA).
NOTE: Ageing the name DAILY.TODAY to DAILY.DAY1 (memtype=DATA).

407

C H A P T E R

16
The DBCSTAB Procedure

Overview: DBCSTAB Procedure 407
Syntax: DBCSTAB Procedure 407

PROC DBCSTAB Statement 407

Details: When Do I Use the DBCSTAB Procedure? 408

Examples: DBCSTAB Procedure 409

Example 1: Creating a Conversion Table with the DBCSTAB Procedure 409
Example 2: Producing Japanese Conversion Tables with the DBCSTAB Procedure 410

See Also 413

Overview: DBCSTAB Procedure
The DBCSTAB procedure produces conversion tables for the double-byte character

sets that SAS supports.

Syntax: DBCSTAB Procedure
PROC DBCSTAB TABLE=table-name

<BASETYPE=base-type> <CATALOG=<libref.>catalog-name>
<DATA=< libref.>table-name > <DBCSLANG=language>
<DESC=’description’> <FORCE> <VERIFY>;

PROC DBCSTAB Statement
PROC DBCSTAB TABLE=table-name

<option(s)>;

Required Arguments

TABLE=table-name
specifies the name of the double-byte code table to produce. This table name becomes
an entry of type DBCSTAB in the catalog that is specified with the CATALOG=
option. By default, the catalog name is SASUSER.DBCS.

408 Details: When Do I Use the DBCSTAB Procedure? � Chapter 16

Alias: NAME=, N=

Options

BASETYPE=base-type
specifies a base type for the double-byte code table conversion. If you use this option,
you reduce the number of tables that are produced.

If you specify BASETYPE=, then all double-byte codes are first converted to the
base code, and then converted to the required code. If you have n codes, then there
are n(n-1) conversions that must be made.
Alias: BTYPE=

CATALOG=<libref.>catalog-name
specifies the name of the catalog in which the table is to be stored. If the catalog does
not exist, it is created.
Default: SASUSER.DBCS

DATA=<libref.>table-name
specifies the data for producing the double-byte code table. Several double-byte
character variables are required to produce the table. Use variable names that are
equivalent to the value of the DBCSTYPE system option and are recognized by the
KCVT function.

DBCSLANG=language
specifies the language that the double-byte code table uses. The value of this option
should match the value of the DBCSLANG system option.
Alias: DBLANG

DESC=’description’
specifies a text string to put in the DESCRIPTION field for the entry.

FORCE
produces the conversion tables even if errors are present.

VERIFY
checks the data range of the input table per code. This option is used to check for
invalid double-byte code.

Details: When Do I Use the DBCSTAB Procedure?
Use the DBCSTAB procedure to modify an existing DBCS table when
� the DBCS encoding system that you are using is not supported by SAS
� the DBCS encoding system that you are using has a nonstandard translation table.

A situation where you would be likely to use the DBCSTAB procedure is when a valid
DBCSTYPE= value is not available. These values are operating environment
dependent. In such cases, you can use the DBCSTAB procedure to modify a similar
translation table, then specify the use of the new table with the TRANTAB option.

The DBCSTAB Procedure � Example 1: Creating a Conversion Table with the DBCSTAB Procedure 409

Examples: DBCSTAB Procedure

Example 1: Creating a Conversion Table with the DBCSTAB Procedure

Procedure features:
PROC DBCSTAB statement options:

CATALOG=
DBLANG=
BASETYPE=
VERIFY

The following example creates a Japanese translation table called CUSTAB and
demonstrates how the TRANTAB option can be used to specify this new translation
table.

Note: The DBCS, DBCSLANG, and DBCSTYPE options are specified at startup. �

The TRANTAB data set is created as follows:

data trantab;
pcms=’8342’x; dec=’b9b3’x;

run;

proc dbcstab
/* name of the new translate table */

name=custtab
/* based on pcibm encoding */

basetype=pcms
/* data to create the new table */

data=trantab
/* japanese language */

dbcslang=japanese
/* catalog descriptor */

desc=’Modified Japanese Trantab’
/* where the table is stored */

catalog=sasuser.dbcs
/* checks for invalid DBCS in the new data */

verify;
run;

To specify the translate table, use the TRANTAB option:

options trantab=(,,,,,,,,,custtab);

Translate tables are generally used for DBCS conversion with SAS/CONNECT
software, PROC CPORT and PROC CIMPORT, and the DATA step function, KCVT.

The TRANTAB= option may be used to specify DBCS translate tables. The ninth
argument specifies the DBCS system table:

options trantab=(,,,,,,,,systab); /* ninth argument */

410 Example 2: Producing Japanese Conversion Tables with the DBCSTAB Procedure � Chapter 16

Japanese, Korean, Chinese, and Taiwanese are acceptable for the systab name.
The tenth argument specifies the DBCS user table:

options trantab=(,,,,,,,,,usrtab); /* tenth argument */

Example 2: Producing Japanese Conversion Tables with the DBCSTAB
Procedure

Procedure features:
PROC DBCSTAB statement options:

TABLE=
DATA=
DBLANG=
BASETYPE=
VERIFY

Program
data ja_jpn;

length ibm jis euc pcibm $2.;
ibm=’4040’x;
jis=’2121’x;
euc=’a1a1’x;
pcibm=’8140’x;

run;

proc dbcstab
table=japanese
data=ja_jpn
dblang=japanese
basetype=jis
verify;

run;

The DBCSTAB Procedure � See Also 411

Log

1 proc dbcstab
2 table=ja_jpn
3 data=work.ja_jpn
4 dblang=japanese
5 basetype=jis
6 verify;
7 run;

NOTE: Base table for JIS created.
NOTE: IBM table for JIS created.
NOTE: PCIBM table for JIS created.
NOTE: EUC table for JIS created.
NOTE: Base table for IBM created.
NOTE: JIS table for IBM created.
NOTE: Base table for PCIBM created.
NOTE: JIS table for PCIBM created.
NOTE: Base table for EUC created.
NOTE: JIS table for EUC created.
NOTE: 10 DBCS tables are generated. Each table has 1 DBCS characters.
NOTE: Each table is 2 bytes in size.
NOTE: Required table memory size is 612.
NOTE: There were 1 observations read from the dataset WORK.JA_JPN.

See Also
For an overview of local language support in SAS, see SAS Language Reference:

Concepts.
Information about the following SAS system options and functions can be found in

SAS Language Reference: Dictionary:
� KCVT function
� TRANTAB= option.

Also, see Chapter 47, “The TRANTAB Procedure,” on page 1409.
Also, see
� DBCS= system option (refer to the SAS Companion for your operating

environment).
� DBCSLANG= system option (refer to the SAS Companion for your operating

environment).
� DBCSTYPE= system option (refer to the SAS Companion for your operating

environment).

412

413

C H A P T E R

17
The DISPLAY Procedure

Overview: DISPLAY Procedure 413
Syntax: DISPLAY Procedure 413

PROC DISPLAY Statement 413

Example: DISPLAY Procedure 414

Example 1: Executing a SAS/AF Application 414

Overview: DISPLAY Procedure

The DISPLAY procedure executes SAS/AF applications. These applications are
composed of a variety of entries that are stored in a SAS catalog and that have been
built with the BUILD procedure in SAS/AF software. For complete documentation on
building SAS/AF applications, see SAS Guide to Applications Development.

You can use the DISPLAY procedure to execute an application that runs in NODMS
batch mode. Be aware that any SAS programming statements that you submit with the
DISPLAY procedure through the SUBMIT block in SCL are not submitted for
processing until PROC DISPLAY has executed.

If you use the SAS windowing environment, you can use the AF command to execute
an application. SUBMIT blocks execute immediately when you use the AF command.
You can use the AFA command to execute multiple applications concurrently.

Syntax: DISPLAY Procedure

PROC DISPLAY CATALOG=libref.catalog.entry.type <BATCH>;

PROC DISPLAY Statement
Featured in: Example 1 on page 414

PROC DISPLAY CATALOG=libref.catalog.entry.type <BATCH>;

414 Example: DISPLAY Procedure � Chapter 17

Required Argument

CATALOG=libref.catalog.entry.type
specifies a four-level name for the catalog entry.

libref
specifies the SAS data library where the catalog is stored.

catalog
specifies the name of the catalog.

entry
specifies the name of the entry.

type
specifies the entry’s type, which is one of the following. For details, see the
description of catalog entry types in the BUILD procedure in online help.

CBT
FRAME
HELP
MENU
PROGRAM
SCL

Options

BATCH
runs PROGRAM and SCL entries in batch mode. If a PROGRAM entry contains a
display, then it will not run, and you will receive the following error message:

ERROR: Cannot allocate window.

Restriction: PROC DISPLAY cannot pass arguments to a PROGRAM, a FRAME,
or an SCL entry.

Example: DISPLAY Procedure

Example 1: Executing a SAS/AF Application

Procedure features:
PROC DISPLAY statement:

CATALOG = argument

Suppose that your company has developed a SAS/AF application that compiles
statistics from an invoice database. Further, suppose that this application is stored in

The DISPLAY Procedure � Program 415

the SASUSER data library, as a FRAME entry in a catalog named
INVOICES.WIDGETS. You can execute this application using the following SAS code:

Program

proc display catalog=sasuser.invoices.widgets.frame;
run;

416

417

C H A P T E R

18
The DOCUMENT Procedure

Information about the DOCUMENT Procedure 417

Information about the DOCUMENT Procedure
See: For complete documentation of the DOCUMENT procedure, go to http://
www.sas.com/service/library/onlinedoc. Select Base SAS from the
Product-Specific Documentation list.

418

419

C H A P T E R

19
The EXPLODE Procedure

Overview: EXPLODE Procedure 419
Syntax: EXPLODE Procedure 420

PROC EXPLODE Statement 420

PARMCARDS or PARMCARDS4 Statement 420

Message Lines 420

Null Statement 422
Examples: EXPLODE Procedure 423

Example 1: Controlling Spacing 423

Example 2: Darkening and Underlining Text 424

Overview: EXPLODE Procedure

The EXPLODE procedure produces printed output with oversized text by expanding
each letter into a matrix of characters. You can use the EXPLODE procedure to
generate posters, flip charts, and header pages for computer output.

Note: PROC EXPLODE with a PARMCARDS statement cannot be included in a
macro. �

Output 19.1 on page 419 shows the results of the most basic form of a PROC
EXPLODE step with only one line of text. The following statements produce the output:

options nodate pageno=1 linesize=80
pagesize=60;

proc explode;
parmcards;

TOP SECRET
;

Output 19.1 A Line of Expanded Text

The SAS System 1
***** *** **** *** ***** *** **** ***** *****

* * * * * * * * * * * * * *
* * * * * * * * * * * *
* * * **** * **** * **** **** *
* * * * * * * * * * *
* * * * * * * * * * * * *
* *** * *** ***** *** * * ***** *

420 Syntax: EXPLODE Procedure � Chapter 19

Through options you can control spacing, the density of the text, and underlining.

Syntax: EXPLODE Procedure
Requirements: PARMCARDS or PARMCARDS4

Message line(s)
Null statement

Reminder: You can use global statements with PROC EXPLODE. See Chapter 2,
“Fundamental Concepts for Using Base SAS Procedures,” for a list.

PROC EXPLODE;
PARMCARDS|PARMCARDS4;

message-line(s)
;|;;;;

PROC EXPLODE Statement
PROC EXPLODE;

PARMCARDS or PARMCARDS4 Statement
Signals the beginning of the message lines.

Requirement: If any part of the message contains a semicolon, you must use
PARMCARDS4.
See also: “Null Statement” on page 422
Featured in: Example 1 on page 423 and Example 2 on page 424

PARMCARDS|PARMCARDS4;

Message Lines
Specifies the block of text (one or more lines) and any special characters that control the
appearance of the text.

Featured in: Example 1 on page 423 and Example 2 on page 424

The EXPLODE Procedure � Message Lines 421

Message line(s)

<D | L>

<Sn | P>

<spacing-control>

text

<U character-1 <...character-n>>

. . . more blocks of option specifications and text lines . . .

<D | L>

<Sn | P>

<spacing-control>

<U character-1 <...character-n>>

Required Argument

text
specifies the line of printed text. It can contain only the following characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890
. − + , = * $ / _ ()> < | & ’? ! ; # " % @ blank

The not symbol () can also appear as either a hat ()ˆ or a tilde (~) depending on
your keyboard. PROC EXPLODE ignores lowercase characters.

The EXPLODE procedure reproduces horizontal spacing as it appears in the
program, except for column 1, which is reserved for the spacing-control option.
Restriction: text can begin in any column except the first.

Options

To do this Use this option

Control vertical spacing Sn or spacing-control

Control the text density

Specify dark characters D

Specify light characters L

Underline text U

Begin a new page P

D | L
controls the density of printed characters. Specify D to produce dark characters that
are formed by overprinting the characters H, T, and Q. Specify L to produce light
characters that are formed of asterisks.
Default: L initially, then for each line of text the value is carried over from the

previous line if you do not specify a value.

422 Null Statement � Chapter 19

Requirement: Must appear in column 1, and must be the only character on that
line.

Requirement: To produce overprinting, the SAS system option OVP must be in
effect, and your printer must support overprinting.

Featured in: Example 2 on page 424

L
See D | L.

P
See Sn | P.

Sn | P
controls the amount of space before the next line of text.

Sn
skips n lines before the next line of text.
Range: 1–9
See also: spacing-control
Featured in: Example 1 on page 423

P
begins a new page before the next line of text.
Featured in: Example 2 on page 424

Default: 0
Requirement: Must begin in column 1 and must be the only characters(s) on that

line.

spacing-control
specifies the number of lines to skip before the next line of text.
Default: 0
Range: 1–9
Requirement: Must appear in column 1.
Restriction: Spacing control does not work at the top of the page.
See also: Sn option

<U character-1 <...character-n>>
underlines the text on the previous line with asterisks. The character values can be
anything. The nonblank characters determine where the underline appears. PROC
EXPLODE skips two lines before printing the underline.
Featured in: Example 2 on page 424

Null Statement

Ends the PROC EXPLODE step.

Requirement: The Null statement must begin in the first column. If any part of the
message contains a semicolon, use four semicolons instead of one.
See also: “PARMCARDS or PARMCARDS4 Statement” on page 420

;|;;;;

The EXPLODE Procedure � Program 423

Examples: EXPLODE Procedure

Example 1: Controlling Spacing

Procedure features: PARMSCARDS statement

Message lines options: S
spacing-control

This example

� controls horizontal spacing in the output by shifting the starting point of the text
lines in the program

� controls vertical spacing with an initial gap of two lines and another gap of two
lines before the second line of text.

Program

options nodate pageno=1 linesize=88 pagesize=60;

Specify the file to which the text is written. PARMCARDS= specifies the file reference,
EXTFILE, of the file, PARMFILE, to which PROC EXPLODE writes the text in the message
lines.

options parmcards=extfile;
filename extfile ’parmfile’;

proc explode;
title ’Cover Page’;

Specify the spacing control. The numeral 6 before WORDS specifies the spacing control. S2
skips two lines before the next line of text.

parmcards;
THESE

6 WORDS
S2

ARE BIG
;

424 Output � Chapter 19

Output

Cover Page 1

***** * * ***** *** *****
* * * * * * *
* * * * * *
* ***** **** * ****
* * * * * *
* * * * * * *
* * * ***** *** *****

* * *** **** **** ***
* * * * * * * * * *
* * * * * * * * *
* * * * **** * * *
* * * * * * * * * *
** ** * * * * * * * *
* * *** * * **** ***

* **** ***** **** ***** ***
* * * * * * * * * *

* * * * * * * * *
***** **** **** *** * * ***
* * * * * * * * * *
* * * * * * * * * *
* * * * ***** **** ***** ***

Example 2: Darkening and Underlining Text
Procedure features: PARMSCARDS4 statement
Message lines options: D

L
P
U

SAS system option: OVP

This example
� prints dark text and then returns to light text
� specifies a page break
� underlines text.

The EXPLODE Procedure � Program 425

Program

Put overprinted characters in the text. OVP allows overprinted characters in the text.

options nodate pageno=1 linesize=88 pagesize=60 ovp;

Specify the file that will contain the procedure output. PARMCARDS= specifies the file
reference, EXTFILE, of the file, PARMFILE, to which PROC EXPLODE writes the text in the
message lines.

options parmcards=extfile;
filename extfile ’parmfile’;

proc explode;
title ’Important Message’;

Customize the text in the output. D overprints the line of text to make it darker, P begins a
new page, and L returns to regular printing. U with the line of asterisks creates the underline.

parmcards4;
SOME WORDS

ARE
D

DARK;
P
L

SOME ARE
ALSO

The Null statement uses four semicolons because the message contains a semicolon.

D
UNDERLINED

U **********
;;;;

426 Output � Chapter 19

Output

 Important Message 1

 *** *** * * ***** * * *** **** **** ***
 * * * * ** ** * * * * * * * * * * *
 * * * * * * * * * * * * * * * *
 * * * * * **** * * * * **** * * *
 * * * * * * * * * * * * * * * *
 * * * * * * * ** ** * * * * * * * *
 *** *** * * ***** * * *** * * **** ***

 * **** *****
 * * * * *
 * * * * *
 ***** **** ****
 * * * * *
 * * * * *
 * * * * *****

 HTQHTQHTQHTQ HTQ HTQHTQHTQHTQ HTQ HTQ HTQHTQ
 HTQ HTQ HTQ HTQ HTQ HTQ HTQ HTQ HTQHTQ
 HTQ HTQ HTQ HTQ HTQ HTQ HTQ HTQ
 HTQ HTQ HTQHTQHTQHTQHTQ HTQHTQHTQHTQ HTQHTQ HTQHTQ
 HTQ HTQ HTQ HTQ HTQ HTQ HTQ HTQ HTQHTQ
 HTQ HTQ HTQ HTQ HTQ HTQ HTQ HTQ HTQ
 HTQHTQHTQHTQ HTQ HTQ HTQ HTQ HTQ HTQ HTQ

427

C H A P T E R

20
The EXPORT Procedure

Overview: EXPORT Procedure 427
Syntax: PROC EXPORT 428

PROC EXPORT Statement 428

Data Source Statements 432

Examples: PROC EXPORT 434

Example 1: Exporting a Delimited External File 434
Example 2: Exporting a Subset of Observations to an Excel Spreadsheet 437

Example 3: Exporting to a Specific Spreadsheet in an Excel Workbook 438

Example 4: Exporting a Microsoft Access Table 438

Overview: EXPORT Procedure
The EXPORT procedure reads data from a SAS data set and writes it to an external

data source. External data sources can include Microsoft Access Database, Excel files,
Lotus spreadsheets, and delimited external files (in which columns of data values are
separated by a delimiter such as a blank, comma, or tab).

When you execute PROC EXPORT, the procedure reads the input data set and writes
the data to the external data source. PROC EXPORT exports the data by one of the
following methods:

� generated DATA step code
� generated SAS/ACCESS code
� translation engines.

You control the results with options and statements that are specific to the output data
source. PROC EXPORT produces the specified output file and writes information about
the export to the SAS log. In the log, you see the DATA step or the SAS/ACCESS code
that is generated by PROC EXPORT. If a translation engine is used, then no code is
submitted.

Note: To export data, you can also use the Export Wizard, which is a windowing tool
that guides you through the steps to export a SAS data set. You can request the Export
Wizard to generate EXPORT procedure statements, which you can save to a file for
subsequent use. To invoke the Export Wizard, from the SAS windowing environment
select

File � Export Data

�

428 Syntax: PROC EXPORT � Chapter 20

Syntax: PROC EXPORT
Restriction: PROC EXPORT is available for the following operating environments:

� OpenVMS Alpha
� UNIX

� Microsoft Windows.

PROC EXPORT DATA=<libref.>SAS-data-set <(SAS-data-set-options)>
OUTFILE="filename" | OUTTABLE="tablename"
<DBMS=identifier> <REPLACE>;

<data-source-statement(s);>

PROC EXPORT Statement
Featured in: All examples

PROC EXPORT DATA=<libref.>SAS-data-set <(SAS-data-set-options)>
OUTFILE="filename" | OUTTABLE="tablename"
<DBMS=identifier> <REPLACE>;

Required Arguments

DATA=<libref.>SAS-data-set
identifies the input SAS data set with either a one- or two-level SAS name (library
and member name). If you specify a one-level name, by default, PROC EXPORT uses
either the USER library (if assigned) or the WORK library (if USER not assigned).

Default: If you do not specify a SAS data set, PROC EXPORT uses the most
recently created SAS data set, which SAS keeps track of with the system variable
LAST. However, in order to be certain that PROC EXPORT uses the correct
data set, you should identify the SAS data set.

Restriction: PROC EXPORT can export data only if the format of the data is
supported by the data source or the amount of data is within the limitations of the
data source. For example, some data sources have a maximum number of rows or
columns, and some data sources cannot support SAS user-defined formats and
informats. If the data that you want to export exceeds the limits of the data
source, PROC EXPORT may not be able to export it correctly. When incompatible
formats are encountered, the procedure formats the data to the best of its ability.

Restriction: PROC EXPORT does not support writing labels as column names.
However, SAS does support column names up to 32 characters.

Featured in: All examples

(SAS-data-set-options)

The EXPORT Procedure � PROC EXPORT Statement 429

specifies SAS data set options. For example, if the data set that you are exporting
has an assigned password, you can use the ALTER=, PW=, READ=, or WRITE= data
set option, or to export only data that meets a specified condition, you can use the
WHERE= data set option. For information about SAS data set options, see “Data Set
Options” in SAS Language Reference: Dictionary.
Restriction: You cannot specify data set options when exporting delimited,

comma-separated, or tab-delimited external files.
Featured in: Example 2 on page 437

OUTFILE="filename"
specifies the complete path and filename or a fileref for the output PC file,
spreadsheet, or delimited external file. If you specify a fileref or if the complete path
and filename does not include special characters (such as the backslash in a path),
lowercase characters, or spaces, you can omit the quotation marks. A fileref is a SAS
name that is associated with the physical location of the output file. To assign a
fileref, use the FILENAME statement. For more information about PC file formats,
see SAS/ACCESS for PC Files: Reference.
Featured in Example 1 on page 434, Example 2 on page 437, and Example 3 on

page 438
Restriction: PROC EXPORT does not support device types or access methods for

the FILENAME statement except for DISK. For example, PROC EXPORT does
not support the TEMP device type, which creates a temporary external file.

OUTTABLE="tablename"
specifies the table name of the output DBMS table. If the name does not include
special characters (such as question marks), lowercase characters, or spaces, you can
omit the quotation marks. Note that the DBMS table name may be case sensitive.
Requirement: When you export a DBMS table, you must specify the DBMS= option.
Featured in: Example 4 on page 438

Options

DBMS=identifier
specifies the type of data to export. To export a DBMS table, you must specify
DBMS= by using a valid database identifier. For example, DBMS=ACCESS specifies
to export a table into a Microsoft Access 2000 or 2002 database. To export PC files,
spreadsheets, and delimited external files, you do not have to specify DBMS= if the
filename that is specified in OUTFILE= contains a valid extension so that PROC
EXPORT can recognize the type of data. For example, PROC EXPORT recognizes the
filename ACCOUNTS.WK1 as a Lotus 1-2-3 Release 2 spreadsheet and the filename
MYDATA.CSV as an external file that contains comma-separated data values;
therefore, a DBMS= specification is not necessary.

The following values are valid for the DBMS= option:

Identifier Output Data Source Extension Host
Availability

Version
of File
Created

ACCESS Microsoft Access 2000 or 2002 table .mdb Microsoft
Windows *

2000

ACCESS97 Microsoft Access 97 table .mdb Microsoft
Windows *

97

ACCESS2000 Microsoft Access 2000 table .mdb Microsoft
Windows *

2000

430 PROC EXPORT Statement � Chapter 20

Identifier Output Data Source Extension Host
Availability

Version
of File
Created

ACCESS2002 Microsoft Access 2002 table .mdb Microsoft
Windows *

2000

CSV delimited file (comma-separated values) .csv OpenVMS
Alpha,
UNIX,
Microsoft
Windows

DBF dBASE 5.0, IV, III+, and III files .dbf UNIX,
Microsoft
Windows

5.0

DLM delimited file (default delimiter is a
blank)

.* OpenVMS
Alpha,
UNIX,
Microsoft
Windows

EXCEL Excel 97 or 2000 or 2002 spreadsheet .xls Microsoft
Windows *

97

EXCEL4 Excel 4.0 spreadsheet .xls Microsoft
Windows

4.0

EXCEL5 Excel 5.0 or 7.0 (95) spreadsheet .xls Microsoft
Windows

5.0

EXCEL97 Excel 97 spreadsheet .xls Microsoft
Windows *

97

EXCEL2000 Excel 2000 spreadsheet .xls Microsoft
Windows *

97

EXCEL2002 Excel 2002 spreadsheet .xls Microsoft
Windows *

97

TAB delimited file (tab-delimited values) .txt OpenVMS
Alpha,
UNIX,
Microsoft
Windows

WK1 Lotus 1-2-3 Release 2 spreadsheet .wk1 Microsoft
Windows

WK3 Lotus 1-2-3 Release 3 spreadsheet .wk3 Microsoft
Windows

WK4 Lotus 1-2-3 Release 4 and 5 spreadsheet .wk4 Microsoft
Windows

* Not available for Microsoft Windows 64-Bit Edition.
Restriction: The availability of an output data source depends on

� the operating environment, and in some cases the platform, as specified in
the previous table.

The EXPORT Procedure � PROC EXPORT Statement 431

� whether your site has a license to the SAS/ACCESS software for PC file
formats. If you do not have a license, only delimited files are available.

Featured in: Example 1 on page 434 and Example 4 on page 438
When you specify a value for DBMS=, consider the following for specific data

sources:
� To export to an existing Microsoft Access database, PROC EXPORT can write to

Access 97, Access 2000, or Access 2002 regardless of your specification. For
example, if you specify DBMS=ACCESS2000 and the database is in Access 97
format, PROC EXPORT exports the table, and the database remains in Access
97 format. However, if you specify OUTFILE= for an Access database that does
not exist, a new database is created using the format specified in DBMS=. For
example to create a new Access database, specifying DBMS=ACCESS (which
defaults to Access 2000 or 2002 format) creates an MDB file that can be read by
Access 2000 or Access 2002, not by Access 97.

The following table lists the DBMS= specifications and indicates which
version of Microsoft Access can open the resulting database:

Specification Access 2002 Access 2000 Access 97

ACCESS yes yes no

ACCESS2002 yes yes no

ACCESS2000 yes yes no

ACCESS97 yes yes yes

� To export a Microsoft Excel spreadsheet, PROC EXPORT creates an XLS file for
the version specified. The following table lists the DBMS= specifications and
indicates which version of Microsoft Excel can open the resulting spreadsheet:

Specification Excel 2002 Excel 2000 Excel 97 Excel 5.0 Excel 4.0

EXCEL yes yes yes no no

EXCEL2002 yes yes yes no no

EXCEL2000 yes yes yes no no

EXCEL97 yes yes yes no no

EXCEL5 yes yes yes yes no

EXCEL4 yes yes yes yes yes

Note: Later versions of Excel can open and update files in earlier formats. �
� When exporting a SAS data set to a dBASE file (DBF), if the data set contains

missing values (for either character or numeric values), the missing values are
translated to blanks.

� When exporting a SAS data set to a dBASE file (DBF), values for a character
variable that are longer than 255 characters are truncated in the resulting
dBASE file because of dBASE limitations.

REPLACE

432 Data Source Statements � Chapter 20

overwrites an existing file. Note that for a Microsoft Access database or an Excel
workbook, REPLACE overwrites the target table or spreadsheet. If you do not
specify REPLACE, PROC EXPORT does not overwrite an existing file.
Featured in: Example 2 on page 437 and Example 4 on page 438

Data Source Statements

PROC EXPORT provides a variety of statements that are specific to the output data
source.

Statements for PC Files, Spreadsheets, or Delimited Files
The following statement is available when you export delimited external files:

DELIMITER=’char’ | ’nn’x;
specifies the delimiter to separate columns of data in the output file. You can
specify the delimiter as a single character or as a hexadecimal value. For example,
if you want columns of data to be separated by an ampersand, specify
DELIMITER=’&’. If you do not specify DELIMITER=, PROC EXPORT assumes
that the delimiter is a blank. You can replace the equal sign with a blank.
Interaction: You do not have to specify DELIMITER= if you specify DBMS=CSV,

DBMS=TAB, or if the output filename has an extension of .CSV or .TXT.
Featured in: Example 1 on page 434

SHEET=spreadsheet-name;
identifies a particular spreadsheet name to load into a workbook. You use this
statement for Microsoft Excel 97, 2000, or 2002 only. If the SHEET= statement is
not specified, PROC EXPORT uses the SAS data set name as the spreadsheet
name to load the data.

For Excel data access, a spreadsheet name is treated as a special case of a range
name with a dollar sign ($) appended. For example, if you export a table and
specify sheet=Invoice, you will see a range (table) name INVOICE and another
range (table) name ’INVOICES$’ created. Excel appends a dollar sign ($) to a
spreadsheet name in order to distinguish it from the corresponding range name.

Note: You should not append the dollar sign ($) when you specify the
spreadsheet name. For example, SHEET= ’Invoice$’ is not allowed. �

You should avoid using special characters for spreadsheet names when
exporting a table to an Excel file. Special characters such as a space or a hyphen
are replaced with an underscore. For example, if you export a table and specify
sheet=’Sheet Number 1’, PROC EXPORT creates the range names
Sheet_Number_1 and Sheet_Number_1$.
Featured in: Example 3 on page 438

Statements for DBMS Tables
The following statements are available to establish a connection to the DBMS when

you are exporting to a DBMS table:

The EXPORT Procedure � Data Source Statements 433

DATABASE="database";
specifies the complete path and filename of the database to contain the specified
DBMS table. If the database name does not contain lowercase characters, special
characters, or national characters ($, #, or @), you can omit the quotation marks.
You can replace the equal sign with a blank.

Note: A default may be configured in the DBMS client software; SAS does not
generate a default value. �

Featured in: Example 4 on page 438

DBPWD="database-password";
specifies a password that allows access to a database. You can replace the equal
sign with a blank.

PWD="password";
specifies the user password used by the DBMS to validate a specific userid. If the
password does not contain lowercase characters, special characters, or national
characters, you can omit the quotation marks. You can replace the equal sign with
a blank.

Note: The DBMS client software may default to the userid and password that
was used to log in to the operating environment; SAS does not generate a default
value. �

UID="userid";
identifies the user to the DBMS. If the userid does not contain lowercase
characters, special characters, or national characters, you can omit the quotation
marks. You can replace the equal sign with a blank.

Note: The DBMS client software may default to the userid and password that
were used to log in to the operating environment; SAS does not generate a default
value. �

WGDB="workgroup-database-name";
specifies the workgroup (security) database name that contains the USERID and
PWD data for the DBMS. If the workgroup database name does not contain
lowercase characters, special characters, or national characters, you can omit the
quotation marks. You can replace the equal sign with a blank.

Note: A default workgroup database may be used by the DBMS; SAS does not
generate a default value. �

Security Levels for Microsoft Access Tables
Microsoft Access tables have the following levels of security, for which specific
combinations of security statements must be used:

None
Do not specify DBPWD=, PWD=, UID=, or WGDB=.

Password
Specify only DBPWD=.

User-level
Specify only PWD=, UID=, and WGDB=.

Full
Specify DBPWD=, PWD=, UID=, and WGDB=.

Each statement has a default value; however, you may find it necessary to provide a
value for each statement explicitly.

434 Examples: PROC EXPORT � Chapter 20

Examples: PROC EXPORT

Example 1: Exporting a Delimited External File
Procedure features:

PROC EXPORT statement arguments:
DATA=
DBMS=
OUTFILE=

Data source statement:
DELIMITER=

This example exports the following SAS data set named SASHELP.CLASS and
creates a delimited external file:

Output 20.1 PROC PRINT of SASHELP.CLASS

The SAS System 1

Obs Name Sex Age Height Weight

1 Alfred M 14 69 112.5
2 Alice F 13 56.5 84
3 Barbara F 13 65.3 98
4 Carol F 14 62.8 102.5
5 Henry M 14 63.5 102.5
6 James M 12 57.3 83
7 Jane F 12 59.8 84.5
8 Janet F 15 62.5 112.5
9 Jeffrey M 13 62.5 84

10 John M 12 59 99.5
11 Joyce F 11 51.3 50.5
12 Judy F 14 64.3 90
13 Louise F 12 56.3 77
14 Mary F 15 66.5 112
15 Philip M 16 72 150
16 Robert M 12 64.8 128
17 Ronald M 15 67 133
18 Thomas M 11 57.5 85
19 William M 15 66.5 112

Program

Identify the input SAS data set, specify the output filename, and specify the type of
file. Note that the filename does not contain an extension. DBMS=DLM specifies that the
output file is a delimited external file.

proc export data=sashelp.class
outfile=’c:\myfiles\class’

The EXPORT Procedure � SAS Log 435

dbms=dlm;

Specify the delimiter. The DELIMITER= option specifies that an & (ampersand) will delimit
data fields in the output file. The delimiter separates the columns of data in the output file.

delimiter=’&’;
run;

SAS Log
The SAS log displays the following information about the successful export. Notice

the generated SAS DATA step.

436 SAS Log � Chapter 20

47 /**
48 * PRODUCT: SAS
49 * VERSION: 9.00
50 * CREATOR: External File Interface
51 * DATE: 07FEB02
52 * DESC: Generated SAS Datastep Code
53 * TEMPLATE SOURCE: (None Specified.)
54 ***/
55 data _null_;
56 set SASHELP.CLASS end=EFIEOD;
57 %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
58 %let _EFIREC_ = 0; /* clear export record count macro variable */
59 file ’c:\myfiles\class’ delimiter=’&’ DSD DROPOVER
59 ! lrecl=32767;
60 format Name $8. ;
61 format Sex $1. ;
62 format Age best12. ;
63 format Height best12. ;
64 format Weight best12. ;
65 if _n_ = 1 then /* write column names */
66 do;
67 put
68 ’Name’
69 ’&’
70 ’Sex’
71 ’&’
72 ’Age’
73 ’&’
74 ’Height’
75 ’&’
76 ’Weight’
77 ;
78 end;
79 do;
80 EFIOUT + 1;
81 put Name $ @;
82 put Sex $ @;
83 put Age @;
84 put Height @;
85 put Weight ;
86 ;
87 end;
88 if _ERROR_ then call symput(’_EFIERR_’,1); /* set ERROR detection
88 ! macro variable */
89 If EFIEOD then
90 call symput(’_EFIREC_’,EFIOUT);
91 run;

NOTE: Numeric values have been converted to character
values at the places given by: (Line):(Column).
88:44 90:31

NOTE: The file ’c:\myfiles\class’ is:
File Name=c:\myfiles\class,
RECFM=V,LRECL=32767

NOTE: 20 records were written to the file ’c:\myfiles\class’.
The minimum record length was 17.
The maximum record length was 26.

NOTE: There were 19 observations read from the data set SASHELP.CLASS.
NOTE: DATA statement used (Total process time):

real time 0.13 seconds
cpu time 0.05 seconds

19 records created in c:\myfiles\class from SASHELP.CLASS
.

NOTE: c:\myfiles\class was successfully created.

The EXPORT Procedure � Program 437

Output
The external file produced by PROC EXPORT follows.

Name&Sex&Age&Height&Weight
Alfred&M&14&69&112.5
Alice&F&13&56.5&84
Barbara&F&13&65.3&98
Carol&F&14&62.8&102.5
Henry&M&14&63.5&102.5
James&M&12&57.3&83
Jane&F&12&59.8&84.5
Janet&F&15&62.5&112.5
Jeffrey&M&13&62.5&84
John&M&12&59&99.5
Joyce&F&11&51.3&50.5
Judy&F&14&64.3&90
Louise&F&12&56.3&77
Mary&F&15&66.5&112
Philip&M&16&72&150
Robert&M&12&64.8&128
Ronald&M&15&67&133
Thomas&M&11&57.5&85
William&M&15&66.5&112

Example 2: Exporting a Subset of Observations to an Excel Spreadsheet

Procedure features:
PROC EXPORT statement arguments:

DATA=
DBMS=
OUTFILE=
REPLACE

This example exports the SAS data set SASHELP.CLASS, shown in Output 20.1 on
page 434. PROC EXPORT creates an Excel file named Femalelist.xsl, and by default,
creates a spreadsheet named Class. Since the SHEET= data source statement is not
specified, PROC EXPORT uses the name of the SAS data set as the spreadsheet name.
The WHERE= SAS data set option is specified in order to export a subset of the
observations, which results in the spreadsheet containing only the female students.

Program

Identify the input SAS data set, request a subset of the observations, specify the
output data source, specify the output file, and overwrite the target spreadsheet if it
exists. The output file is an Excel 2000 spreadsheet.

proc export data=sashelp.class (where=(sex=’F’))
outfile=’c:\myfiles\Femalelist.xls’

438 Example 3: Exporting to a Specific Spreadsheet in an Excel Workbook � Chapter 20

dbms=excel
replace;

run;

Example 3: Exporting to a Specific Spreadsheet in an Excel Workbook
Procedure features:

PROC EXPORT statement arguments:
DATA=
DBMS=
OUTFILE=

Data Source Statement:
SHEET=

This example exports a SAS data set named MYFILES.GRADES1 and creates an
Excel 2000 workbook named Grades.xsl. MYFILES.GRADES1 becomes one spreadsheet
in the workbook named Grades1.

Program

Identify the input SAS data set, specify the output data source, and specify the output
file.

proc export data=myfiles.grades1
dbms=excel2000
outfile=’c:\Myfiles\Grades.xls’;

Identify a particular spreadsheet to write to in a workbook.

sheet=Grades1;
run;

Example 4: Exporting a Microsoft Access Table
Procedure features:

PROC EXPORT statement arguments:
DATA=
DBMS=
OUTTABLE=
REPLACE

Data Source Statement:
DATABASE=

This example exports a SAS data set named SASUSER.CUST, the first five
observations of which follow, and creates a Microsoft Access 97 table. The security level

The EXPORT Procedure � Program 439

for this Access table is none, so it is not necessary to specify any of the database
security statements.

Obs Name Street Zipcode

1 David Taylor 124 Oxbow Street 72511
2 Theo Barnes 2412 McAllen Avenue 72513
3 Lydia Stirog 12550 Overton Place 72516
4 Anton Niroles 486 Gypsum Street 72511
5 Cheryl Gaspar 36 E. Broadway 72515

Program

Identify the input SAS data set, specify the output DBMS table name and the output
data source, and overwrite the output file if it exists. The output file is a Microsoft Access
97 table. The option REPLACE overwrites an existing file. If you do not specify REPLACE,
PROC EXPORT does not overwrite an existing file.

proc export data=sasuser.cust
outtable="customers"
dbms=access97
replace;

Specify the path and filename of the database to contain the table.

database="c:\myfiles\mydatabase.mdb";
run;

440

441

C H A P T E R

21
The FORMAT Procedure

Overview: FORMAT Procedure 441
Syntax: FORMAT Procedure 443

PROC FORMAT Statement 443

EXCLUDE Statement 446

INVALUE Statement 447

PICTURE Statement 449
SELECT Statement 458

VALUE Statement 459

Informat and Format Options 462

Specifying Values or Ranges 464

Concepts: FORMAT Procedure 465

Associating Informats and Formats with Variables 465
Tips 466

See Also 466

Storing Informats and Formats 466

Format Catalogs 467

Temporary Informats and Formats 467
Permanent Informats and Formats 467

Accessing Permanent Informats and Formats 467

Missing Formats and Informats 468

Results: FORMAT Procedure 468

Output Control Data Set 468
Input Control Data Set 471

Procedure Output 472

Examples: FORMAT Procedure 474

Example 1: Creating a Picture Format 474

Example 2: Creating a Format for Character Values 476

Example 3: Writing a Format for Dates Using a Standard SAS Format 478
Example 4: Converting Raw Character Data to Numeric Values 480

Example 5: Creating a Format from a Data Set 482

Example 6: Printing the Description of Informats and Formats 486

Example 7: Retrieving a Permanent Format 488

Example 8: Writing Ranges for Character Strings 490
Example 9: Filling a Picture Format 492

See Also 495

Overview: FORMAT Procedure

442 Overview: FORMAT Procedure � Chapter 21

The FORMAT procedure enables you to define your own informats and formats for
variables. In addition, you can print the parts of a catalog that contain informats or
formats, store descriptions of informats or formats in a SAS data set, and use a SAS
data set to create informats or formats.

Informats determine how raw data values are read and stored. Formats determine
how variable values are printed. For simplicity, this section uses the terminology the
informat converts and the format prints.

Informats and formats tell the SAS System the data’s type (character or numeric)
and form (such as how many bytes it occupies; decimal placement for numbers; how to
handle leading, trailing, or embedded blanks and zeros; and so forth). The SAS System
provides informats and formats for reading and writing variables. For a thorough
description of informats and formats that SAS provides, see the sections on formats and
informats in SAS Language Reference: Dictionary.

With informats, you can

� convert a number to a character string (for example, convert 1 to YES)

� convert a character string to a different character string (for example, convert
’YES’ to ’OUI’)

� convert a character string to a number (for example, convert YES to 1)

� convert a number to another number (for example, convert 0 through 9 to 1, 10
through 100 to 2, and so forth.

With formats, you can

� print numeric values as character values (for example, print 1 as MALE and 2 as
FEMALE)

� print one character string as a different character string (for example, print YES as
OUI)

� print numeric values using a template (for example, print 9458763450 as
945-876-3450).

The following figure summarizes what occurs when you associate an informat and
format with a variable. The COMMAw.d informat and the DOLLARw.d format are
provided by SAS.

Display 21.1 Associating an informat and a format with a variable

raw data value $1,544.32

converted value 1544.32

printed value $1,544.32

read with
COMMA9.2
informat

printed using
DOLLAR9.2
format

The FORMAT Procedure � PROC FORMAT Statement 443

In the figure, SAS reads the raw data value that contains the dollar sign and comma.
The COMMA9.2 informat ignores the dollar sign and comma and converts the value to
1544.32. The DOLLAR9.2 format prints the value, adding the dollar sign and comma.
For more information about associating informats and formats with variables, see
“Associating Informats and Formats with Variables” on page 465.

Syntax: FORMAT Procedure
Restriction: You cannot use a SELECT statement and an EXCLUDE statement within
the same PROC FORMAT step.

Reminder: You can also use appropriate global statements with this procedure. See
Chapter 2, "Fundamental Concepts for Using Base SAS Procedures," for a list.

PROC FORMAT <option(s)>;

EXCLUDE entry(s);

INVALUE <$>name <(informat-option(s))>
value-range-set(s);

PICTURE name <(format-option(s))>
value-range-set-1 <(picture-1-option(s))>
<…value-range-set-n <(picture-n-option(s))>>;

SELECT entry(s);

VALUE <$>name <(format-option(s))>
value-range-set(s);

To do this Use this statement

Exclude catalog entries from processing by the FMTLIB and
CNTLOUT= options

EXCLUDE

Create an informat for reading and converting raw data values INVALUE

Create a template for printing numbers PICTURE

Select catalog entries from processing by the FMTLIB and
CNTLOUT= options

SELECT

Create a format that specifies character strings to use to print
variable values

VALUE

PROC FORMAT Statement
Reminder: You can use data set options with the CNTLIN= and CNTLOUT= data set
options. See Chapter 2, "Fundamental Concepts for Using Base SAS Procedures," for a
list.

444 PROC FORMAT Statement � Chapter 21

PROC FORMAT <option(s)>;

To do this Use this option

Specify a SAS data set from which PROC FORMAT builds
informats or formats

CNTLIN=

Create a SAS data set that stores information about informats or
formats

CNTLOUT=

Print information about informats or formats FMTLIB

Specify a SAS library or catalog that will contain the informats or
formats that you are creating in the PROC FORMAT step

LIBRARY=

Specify the number of characters of the informatted or formatted
value that appear in PROC FORMAT output

MAXLABLEN=

Specify the number of characters of the start and end values that
appear in the PROC FORMAT output

MAXSELEN=

Prevent a new informat or format from replacing an existing one
of the same name

NOREPLACE

Print information about each format and informat on a separate
page1

PAGE

1 Used in conjunction with FMTLIB. If PAGE is specified, FMTLIB is invoked (or assumed).

Options

CNTLIN=input-control-SAS-data-set
specifies a SAS data set from which PROC FORMAT builds informats and formats.
CNTLIN= builds formats and informats without using a VALUE, PICTURE, or
INVALUE statement. If you specify a one-level name, then the procedure searches
only the default data library (either the WORK data library or USER data library)
for the data set, regardless of whether you specify the LIBRARY= option.

Note: LIBRARY= can point to either a data library or a catalog. If only a libref is
specified, a catalog name of FORMATS is assumed. �
Tip: A common source for an input control data set is the output from the

CNTLOUT= option of another PROC FORMAT step.
See also: “Input Control Data Set” on page 471
Featured in: Example 5 on page 482

CNTLOUT=output-control-SAS-data-set
creates a SAS data set that stores information about informats and formats that are
contained in the catalog specified in the LIBRARY= option.

Note: LIBRARY= can point to either a data library or a catalog. If only a libref is
specified, then a catalog name of FORMATS is assumed. �

If you are creating an informat or format in the same step that the CNTLOUT=
option appears, then the informat or format that you are creating is included in the
CNTLOUT= data set.

If you specify a one-level name, then the procedure stores the data set in the
default data library (either the WORK data library or the USER data library),
regardless of whether you specify the LIBRARY= option.

The FORMAT Procedure � PROC FORMAT Statement 445

Tip: You can use an output control data set as an input control data set in
subsequent PROC FORMAT steps.

See also: “Output Control Data Set” on page 468

FMTLIB
prints information about all the informats and formats in the catalog that is specified
in the LIBRARY= option. To get information only about specific informats or formats,
subset the catalog using the SELECT or EXCLUDE statement.
Interaction: The PAGE option invokes FMTLIB.
Tip: If your output from FMTLIB is not formatted correctly, then try increasing the

value of the LINESIZE= system option.
Tip: If you use the SELECT or EXCLUDE statement and omit the FMTLIB and

CNTLOUT= options, then the procedure invokes the FMTLIB option and you
receive FMTLIB option output.

Featured in: Example 6 on page 486

LIBRARY=libref<.catalog>
specifies a catalog to contain informats or formats that you are creating in the current
PROC FORMAT step. The procedure stores these informats and formats in the
catalog that you specify so that you can use them in subsequent SAS sessions or jobs.

Note: LIBRARY= can point to either a data library or a catalog. If only a libref is
specified, then a catalog name of FORMATS is assumed. �
Alias: LIB=
Default: If you omit the LIBRARY= option, then formats and informats are stored

in the WORK.FORMATS catalog. If you specify the LIBRARY= option but do not
specify a name for catalog, then formats and informats are stored in the
libref.FORMATS catalog.

Tip: SAS automatically searches LIBRARY.FORMATS. You might want to use the
LIBRARY libref for your format catalog. You can control the order in which SAS
searches for format catalogs with the FMTSEARCH= system option. For further
information about FMTSEARCH=, see the section on SAS system options in SAS
Language Reference: Dictionary.

See also: “Storing Informats and Formats” on page 466
Featured in: Example 1 on page 474

MAXLABLEN=number-of-characters
specifies the number of characters in the informatted or formatted value that you
want to appear in the CNTLOUT= data set or in the output of the FMTLIB option.
The FMTLIB option prints a maximum of 40 characters for the informatted or
formatted value.

MAXSELEN=number-of-characters
specifies the number of characters in the start and end values that you want to
appear in the CNTLOUT= data set or in the output of the FMTLIB option. The
FMTLIB option prints a maximum of 16 characters for start and end values.

NOREPLACE
prevents a new informat or format that you are creating from replacing an existing
informat or format of the same name. If you omit NOREPLACE, then the procedure
warns you that the informat or format already exists and replaces it.

Note: You can have a format and an informat of the same name. �

PAGE
prints information about each format and informat (that is, each entry) in the catalog
on a separate page.

446 EXCLUDE Statement � Chapter 21

Tip: The PAGE option activates the FMTLIB option.

EXCLUDE Statement

Excludes entries from processing by the FMTLIB and CNTLOUT= options.

Restriction: Only one EXCLUDE statement can appear in a PROC FORMAT step.
Restriction: You cannot use a SELECT statement and an EXCLUDE statement within
the same PROC FORMAT step.

EXCLUDE entry(s);

Required Arguments

entry(s)
specifies one or more catalog entries to exclude from processing. Catalog entry names
are the same as the name of the informat or format that they store. Because
informats and formats can have the same name, and because character and numeric
informats or formats can have the same name, you must use certain prefixes when
specifying informats and formats in the EXCLUDE statement. Follow these rules
when specifying entries in the EXCLUDE statement:

� Precede names of entries that contain character formats with a dollar sign ($).
� Precede names of entries that contain character informats with an at sign and a

dollar sign (for example, @$entry-name).
� Precede names of entries that contain numeric informats with an at sign (@).
� Specify names of entries that contain numeric formats without a prefix.

Shortcuts to Specifying Names
You can use the colon (:) and hyphen (-) wildcard characters to exclude entries. For

example, the following EXCLUDE statement excludes all formats or informats that
begin with the letter a.

exclude a:;

In addition, the following EXCLUDE statement excludes all formats or informats
that occur alphabetically between apple and pear, inclusive:

exclude apple-pear;

FMTLIB Output
If you use the EXCLUDE statement without either FMTLIB or CNTLOUT= in the

PROC FORMAT statement, then the procedure invokes FMTLIB.

The FORMAT Procedure � INVALUE Statement 447

INVALUE Statement

Creates an informat for reading and converting raw data values.

Featured in: Example 4 on page 480.
See also: The section on informats in SAS Language Reference: Dictionary for
documentation on informats supplied by SAS.

INVALUE <$>name <(informat-option(s))>
<value-range-set(s)>;

To do this Use this option

Specify the default length of the informat DEFAULT=

Specify a fuzz factor for matching values to a range FUZZ=

Specify a maximum length for the informat MAX=

Specify a minimum length for the informat MIN=

Store values or ranges in the order that you define them NOTSORTED

Left-justify all input strings before they are compared to ranges JUST

Uppercase all input strings before they are compared to ranges UPCASE

Required Arguments

name
names the informat that you are creating.
Requirement: The name must be a valid SAS name. A numeric informat name can

be up to 31 characters in length; a character informat name can be up to 30
characters in length and cannot end in a number. If you are creating a character
informat, then use a dollar sign ($) as the first character; this is why a character
informat is limited to 30 characters.

Restriction: A user-defined informat name cannot be the same as an informat
name that is supplied by SAS.

Interaction: The maximum length of an informat name is controlled by the
VALIDFMTNAME= SAS system option. See SAS Language Reference: Dictionary
for details on VALIDFMTNAME=.

Tip: Refer to the informat later by using the name followed by a period. However,
do not use a period after the informat name in the INVALUE statement.

Tip: When SAS prints messages that refer to a user-written informat, the name is
prefixed by an at sign (@). When the informat is stored, the at sign is prefixed to
the name that you specify for the informat; this is why the name is limited to 31
or 30 characters. You need to use the at sign only when you are using the name in
an EXCLUDE or SELECT statement; do not prefix the name with an at sign when
you are associating the informat with a variable.

448 INVALUE Statement � Chapter 21

Options
The following options are common to the INVALUE, PICTURE, and VALUE

statements and are described in “Informat and Format Options” on page 462:
DEFAULT=length

FUZZ= fuzz-factor

MAX=length

MIN=length

NOTSORTED

In addition, you can use the following options:

JUST
left-justifies all input strings before they are compared to the ranges.

UPCASE
converts all raw data values to uppercase before they are compared to the possible
ranges. If you use UPCASE, then make sure the values or ranges you specify are in
uppercase.

value-range-set(s)
specifies raw data and values that the raw data will become. The value-range-set(s)
can be one or more of the following:

value-or-range-1 <…, value-or-range-n>=informatted-value|[existing-informat]
The informat converts the raw data to the values of informatted-value on the right

side of the equal sign.

informatted-value
is the value you want the raw data in value-or-range to become. Use one of the
following forms for informatted-value:

’character-string’
is a character string up to 32,767 characters long. Typically, character-string
becomes the value of a character variable when you use the informat to convert
raw data. Use character-string for informatted-value only when you are creating
a character informat. If you omit the single or double quotation marks around
character-string, then the INVALUE statement assumes that the quotation
marks are there.

For hexadecimal literals, you can use up to 32,767 typed characters, or up to
16,382 represented characters at 2 hexadecimal characters per represented
character.

number
is a number that becomes the informatted value. Typically, number becomes the
value of a numeric variable when you use the informat to convert raw data. Use
number for informatted-value when you are creating a numeric informat. The
maximum for number depends on the host operating environment.

ERROR
treats data values in the designated range as invalid data. SAS assigns a
missing value to the variable, prints the data line in the SAS log, and issues a
warning message.

SAME
prevents the informat from converting the raw data as any other value. For
example, the following GROUP. informat converts values 01 through 20 and
assigns the numbers 1 through 20 as the result. All other values are assigned a
missing value.

The FORMAT Procedure � PICTURE Statement 449

invalue group 01-20= _same_
other= .;

existing-informat
is an informat that is supplied by SAS or a user-defined informat. The informat
you are creating uses the existing informat to convert the raw data that match
value-or-range on the left side of the equals sign. If you use an existing informat,
then enclose the informat name in square brackets (for example, [date9.]) or with
parentheses and vertical bars, for example, (|date9.|). Do not enclose the name of
the existing informat in single quotation marks.

value-or-range
See “Specifying Values or Ranges” on page 464.
Consider the following examples:

� The $GENDER. character informat converts the raw data values F and M to
character values ’1’ and ’2’:

invalue $gender ’F’=’1’
’M’=’2’;

The dollar sign prefix indicates that the informat converts character data.

� When you are creating numeric informats, you can specify character strings or
numbers for value-or-range. For example, the TRIAL. informat converts any
character string that sorts between A and M to the number 1 and any character
string that sorts between N and Z to the number 2. The informat treats the
unquoted range 1–3000 as a numeric range, which includes all numeric values
between 1 and 3000:

invalue trial ’A’-’M’=1
’N’-’Z’=2

1-3000=3;

If you use a numeric informat to convert character strings that do not
correspond to any values or ranges, then you receive an error message.

� The CHECK. informat uses _ERROR_ and _SAME_ to convert values of 1
through 4 and 99. All other values are invalid:

invalue check 1-4=_same_
99=.

other=_error_;

PICTURE Statement

Creates a template for printing numbers.

Featured in: Example 1 on page 474 and Example 9 on page 492

See also: The section on formats in SAS Language Reference: Dictionary for
documentation on formats supplied by SAS.

PICTURE name <(format-option(s))>
<value-range-set-1 <(picture-1-option(s))>
<…value-range-set-n <(picture-n-option(s))>>>;

450 PICTURE Statement � Chapter 21

To do this Use this option

Control the attributes of the format

Specify the default length of the format DEFAULT=

Specify a fuzz factor for matching values to a range FUZZ=

Specify a maximum length for the format MAX=

Specify a minimum length for the format MIN=

Specify multiple pictures for a given value or range and for
overlapping ranges

MULTILABEL

Store values or ranges in the order that you define them NOTSORTED

Round the value to the nearest integer before formatting ROUND

Control the attributes of each picture in the format

Specify a character that completes the formatted value FILL=

Specify a number to multiply the variable’s value by before it
is formatted

MULTIPLIER=

Specify that numbers are message characters rather than digit
selectors

NOEDIT

Specify a character prefix for the formatted value PREFIX=

Required Arguments

name
names the format you are creating.
Requirement: The name must be a valid SAS name. A numeric format name can

be up to 32 characters in length; a character format name can be up to 31
characters in length, not ending in a number. If you are creating a character
format, then use a dollar sign ($) as the first character, which is why a character
informat is limited to 30 characters.

Restriction: A user-defined format cannot be the name of a format supplied by SAS.
Interaction: The maximum length of a format name is controlled by the

VALIDFMTNAME= SAS system option. See SAS Language Reference: Dictionary
for details on VALIDFMTNAME=.

Tip: Refer to the format later by using the name followed by a period. However, do
not put a period after the format name in the VALUE statement.

Options
The following options are common to the INVALUE, PICTURE, and VALUE

statements and are described in “Informat and Format Options” on page 462:
DEFAULT= length
FUZZ= fuzz-factor

MAX=length

MIN=length
NOTSORTED

The FORMAT Procedure � PICTURE Statement 451

In addition, you can use the following arguments:

DATATYPE=DATE | TIME | DATETIME
specifies that you can use directives in the picture as a template to format date, time,
or datetime values. See the definition of directives on page 453 for a list.

DECSEP=’character’
specifies the separator character for the fractional part of a number.
Default: . (a decimal point)

DIG3SEP=’character’
specifies the three-digit separator character for a number.
Default: , (a comma)

FILL=’character’
specifies a character that completes the formatted value. If the number of significant
digits is less than the length of the format, then the format must complete, or fill, the
formatted value:

� The format uses character to fill the formatted value if you specify zeros as digit
selectors.

� The format uses zeros to fill the formatted value if you specify nonzero digit
selectors. The FILL= option has no effect.

If the picture includes other characters, such as a comma, which appear to the left
of the digit selector that maps to the last significant digit placed, then the characters
are replaced by the fill character or leading zeros.
Default: ’ ’(a blank)
Interaction: If you use the FILL= and PREFIX= options in the same picture, then

the format places the prefix and then the fill characters.
Featured in: Example 9 on page 492

MULTILABEL
allows the assignment of multiple labels or external values to internal values. The
following PICTURE statements show the two uses of the MULTILABEL option. In
each case, number formats are assigned as labels. The first PICTURE statement
assigns multiple labels to a single internal value. Multiple labels may also be
assigned to a single range of internal values. The second PICTURE statement
assigns labels to overlapping ranges of internal values. The MULTILABEL option
allows the assignment of multiple labels to the overlapped internal values.

picture abc (multilabel)
1000=’9,999’
1000=’9999’;

picture overlap (multilabel)
/* without decimals */
0-999=’999’
1000-9999=’9,999’

/* with decimals */
0-9=’9.999’
10-99=’99.99’
100-999=’999.9’;

Only multilabel-enabled procedures such as PROC MEANS, PROC SUMMARY, and
PROC TABULATE can use multiple labels. All other procedures and the DATA step
recognize only the primary label. The primary label for a given entry is the external

452 PICTURE Statement � Chapter 21

value that is assigned to the first internal value or range of internal values that
matches or contains the entry when all internal values are ordered sequentially. For
example, in the first PICTURE statement, the primary label for 1000 is 1,000
because the format 9,999 is the first external value that is assigned to 1000. The
secondary label for 1000 is 1000, based on the 9999 format.

In the second PICTURE statement, the primary label for 5 is 5.000 based on the
9.999 format that is assigned to the range 0–9 because 0–9 is sequentially the first
range of internal values containing 5. The secondary label for 5 is 005 because the
range 0–999 occurs in sequence after the range 0–9. Consider carefully when you
assign multiple labels to an internal value. Unless you use the NOTSORTED option
when you assign variables, the SAS System stores the variables in sorted order. This
may produce unexpected results when variables with the MULTILABEL format are
processed. For example, in the second PICTURE statement, the primary label for 15
is 015, and the secondary label for 15 is 15.00 because the range 0–999 occurs in
sequence before the range 10–99. If you want the primary label for 15 to use the
99.99 format, then you might want to change the range 10–99 to 0–99 in the
PICTURE statement. The range 0–99 occurs in sequence before the range 0–999 and
will produce the desired result.

MULTIPLIER=n
specifies a number that the variable’s value is to be multiplied by before it is
formatted. For example, the following PICTURE statement creates the MILLION.
format, which formats the variable value 1600000 as $1.6M:

picture million low-high=’00.0M’
(prefix=’$’ mult=.00001);

Alias: MULT=

Default: 10n , where n is the number of digits after the first decimal point in the
picture. For example, suppose your data contains a value 123.456 and you want to
print it using a picture of ’999.999’. The format multiplies 123.456 by 103 to obtain
a value of 123456, which results in a formatted value of 123.456.

Example: Example 1 on page 474

NOEDIT
specifies that numbers are message characters rather than digit selectors; that is, the
format prints the numbers as they appear in the picture. For example, the following
PICTURE statement creates the MILES. format, which formats any variable value
greater than 1000 as >1000 miles:

picture miles 1-1000=’0000’
1000<-high=’>1000 miles’(noedit);

PREFIX=’prefix’
specifies a character prefix to place in front of the value’s first significant digit. You
must use zero digit selectors or the prefix will not be used.

The picture must be wide enough to contain both the value and the prefix. If the
picture is not wide enough to contain both the value and the prefix, then the format
truncates or omits the prefix. Typical uses for PREFIX= are printing leading
currency symbols and minus signs. For example, the PAY. format prints the variable
value 25500 as $25,500.00:

picture pay low-high=’000,009.99’
(prefix=’$’);

Default: no prefix

Interaction: If you use the FILL= and PREFIX= options in the same picture, then
the format places the prefix and then the fill characters.

The FORMAT Procedure � PICTURE Statement 453

Featured in: Example 1 on page 474 and Example 9 on page 492

ROUND
rounds the value to the nearest integer before formatting. Without the ROUND
option, the format multiplies the variable value by the multiplier, truncates the
decimal portion (if any), and prints the result according to the template that you
define. With the ROUND option, the format multiplies the variable value by the
multiplier, rounds that result to the nearest integer, and then formats the value
according to the template. Note that if the FUZZ= option is also specified, the
rounding takes place after SAS has used the fuzz factor to determine which range
the value belongs to.

Tip: Note that the ROUND option rounds a value of .5 to the next highest integer.

value-range-set
specifies one or more variable values and a template for printing those values. The
value-range-set is the following:

value-or-range-1 <…, value-or-range-n>=’picture’

picture
specifies a template for formatting values of numeric variables. The picture is a
sequence of characters in single quotation marks. The maximum length for a
picture is 40 characters. Pictures are specified with three types of characters: digit
selectors, message characters, and directives. You can have a maximum of 16 digit
selectors in a picture.

Digit selectors are numeric characters (0 through 9) that define positions for
numeric values. A picture format with nonzero digit selectors prints any leading
zeros in variable values; picture digit selectors of 0 do not print leading zeros in
variable values. If the picture format contains digit selectors, then a digit selector
must be the first character in the picture.

Note: This chapter uses 9’s as nonzero digit selectors. �
Message characters are nonnumeric characters that print as specified in the

picture. The following PICTURE statement contains both digit selectors (99) and
message characters (illegal day value). Because the DAYS. format has nonzero
digit selectors, values are printed with leading zeros. The special range OTHER
prints the message characters for any values that do not fall into the specified
range (1 through 31).

picture days 01-31=’99’
other=’99-illegal day value’;

For example, the values 02 and 67 print as

02
67-illegal day value

Directives are special characters that you can use in the picture to format date,
time, or datetime values.

Restriction: You can only use directives when you specify the DATATYPE= option
in the PICTURE statement.

The permitted directives are

%a Locale’s abbreviated weekday name

%A Locale’s full weekday name

%b Locale’s abbreviated month name

%B Locale’s full month name

454 PICTURE Statement � Chapter 21

%d Day of the month as a decimal number (1–31), with no leading
zero

%H Hour (24-hour clock) as a decimal number (0–23), with no
leading zero

%I Hour (12-hour clock) as a decimal number (1–12), with no
leading zero

%j Day of the year as a decimal number (1–366), with no leading
zero

%m Month as a decimal number (1–12), with no leading zero

%M Minute as a decimal number (0–59), with no leading zero

%p Locale’s equivalent of either AM or PM

%S Second as a decimal number (0–59), with no leading zero

%U Week number of the year (Sunday as the first day of the week)
as a decimal number (0,53), with no leading zero

%w Weekday as a decimal number (1= Sunday, 7=Saturday)

%y Year without century as a decimal number (0–99), with no
leading zero

%Y Year with century as a decimal number

%% %
Any directive that generates numbers can produce a leading zero, if desired, by

adding a 0 before the directive. This applies to %d, %H, %I, %j, %m, %M, %S, %U,
and %y. For example, if you specify %y in the picture, then 2001 would be
formatted as ’1’, but if you specify %0y, then 2001 would be formatted as ’01’.

value-or-range
See “Specifying Values or Ranges” on page 464.

Building a Picture Format: Step by Step
This section shows how to write a picture format for formatting numbers with

leading zeros. In the SAMPLE data set, the default printing of the variable Amount
has leading zeros on numbers between 1 and −1:

options nodate pageno=1 linesize=64
pagesize=60;

data sample;
input Amount;
datalines;

-2.05
-.05
-.01

0
.09
.54
.55

6.6
14.63
;

The FORMAT Procedure � PICTURE Statement 455

Default Printing of the Variable Amount 1

Obs Amount

1 -2.05
2 -0.05
3 -0.01
4 0.00
5 0.09
6 0.54
7 0.55
8 6.60
9 14.63

The following PROC FORMAT step creates the NOZEROS. format, which eliminates
leading zeros in the formatted values:

libname library ’SAS-data-library’;

proc format library=library;
picture nozeros

low - -1 = ’00.00’
(prefix=’-’)

-1 <-< 0 = ’99’
(prefix=’-.’ mult=100)

0 -< 1 = ’99’
(prefix=’.’ mult=100)

1 - high = ’00.00’;
run;

The following table explains how one value from each range is formatted. Figure 21.1
on page 457 provides an illustration of each step. The circled numbers in the figure
correspond to the step numbers in the table.

Table 21.1 Building a Picture Format

Step Rule In this example

1 Determine into which range the value falls and
use that picture.

In the second range, the exclusion operator <
appears on both sides of the hyphen and excludes −1
and 0 from the range.

2 Take the absolute value of the numeric value. Because the absolute value is used, you need a
separate range and picture for the negative
numbers in order to prefix the minus sign.

456 PICTURE Statement � Chapter 21

Step Rule In this example

3 Multiply the number by the MULT= value. If
you do not specify the MULT= option, then the
PICTURE statement uses the default. The
default is 10

n
, where n is the number of digit

selectors to the right of the decimal1 in the
picture. (Step 6 discusses digit selectors further.)

Specifying a MULT= value is necessary for numbers
between 0 and 1 and numbers between 0 and −1
because no decimal appears in the pictures for those
ranges. Because MULT= defaults to 1, truncation of
the significant digits results without a MULT=
value specified. (Truncation is explained in the next
step.) For the two ranges that do not have MULT=
values specified, the MULT= value defaults to 100
because the corresponding picture has two digit
selectors to the right of the decimal. After the
MULT= value is applied, all significant digits are
moved to the left of the decimal.

4 Truncate the number after the decimal. If the
ROUND option is in effect, then the format
rounds the number after the decimal to the next
highest integer if the number after the decimal
is greater than or equal to .5.

Because the example uses MULT= values that
ensured that all of the significant digits were moved
to the left of the decimal, no significant digits are
lost. The zeros are truncated.

5 Turn the number into a character string. If the
number is shorter than the picture, then the
length of the character string is equal to the
number of digit selectors in the picture. Pad the
character string with leading zeros. (The results
are equivalent to using the Zw. format. Zw. is
explained in the section on SAS formats in SAS
Language Reference: Dictionary.

The numbers 205, 5, and 660 become the character
strings 0205, 05, and 0660, respectively. Because
each picture is longer than the numbers, the format
adds a leading zero to each value. The format does
not add leading zeros to the number 55 because the
corresponding picture only has two digit selectors.

The FORMAT Procedure � PICTURE Statement 457

Step Rule In this example

6 Apply the character string to the picture. The
format only maps the rightmost n characters in
the character string, where n is the number of
digit selectors in the picture. Thus, it is
important to make sure that the picture has
enough digit selectors to accommodate the
characters in the string. After the format takes
the rightmost n characters, it then maps those
characters to the picture from left to right.
Choosing a zero or nonzero digit selector is
important if the character string contains
leading zeros. If one of the leading zeros in the
character string maps to a nonzero digit
selector, then it and all subsequent leading zeros
become part of the formatted value. If all of the
leading zeros map to zero digit selectors, then
none of the leading zeros become part of the
formatted value; the format replaces the leading
zeros in the character string with blanks.2

The leading zero is dropped from each of the
character strings 0205 and 0660 because the
leading zero maps to a zero digit selector in the
picture.

7 Prefix any characters that are specified in the
PREFIX= option. You need the PREFIX= option
because when a picture contains any digit
selectors, the picture must begin with a digit
selector. Thus, you cannot begin your picture
with a decimal point, minus sign, or any other
character that is not a digit selector.

The PREFIX= option reclaims the decimal point and
the negative sign, as shown with the formatted
values -.05 and .55.

1 A decimal in a PREFIX= option is not part of the picture.
2 You can use the FILL= option to specify a character other than a blank to become part of the formatted value.

Figure 21.1 Formatting One Value in Each Range

range

picture

absolute value

MULT=

truncation

character string

template

prefix

formatted result

-2.05

low - -1

00.00

2.05

2.05 X 102=
205.000

205

0205

prefix = '-'

-2.05

2 0 5.

-.05

-1 <-< 0

99

.05

.05 X 100=
5.000

5

05

prefix = '-.'

-.05

0 5

.55

0 -< 1

99

.55

.55 X 100=
55.000

55

55

prefix = '.'

.55

5 5

6.6

1 - high

00.00

6.6

6.6 X 102=
660.000

660

0660

none

6.60

6 6 0.

➊

➊

➋

➌

➍

➎

➏

➐

458 SELECT Statement � Chapter 21

The following PROC PRINT step associates the NOZEROS. format with the
AMOUNT variable in SAMPLE:

proc print data=sample noobs;
format amount nozeros.;
title ’Formatting the Variable Amount’;
title2 ’with the NOZEROS. Format’;

run;

Formatting the Variable Amount 1
with the NOZEROS. Format

Amount

-2.05
-.05
-.01

.00

.09

.54

.55
6.60

14.63

CAUTION:
The picture must be wide enough for the prefix and the numbers. In this example, if the
value −45.00 were formatted with NOZEROS. then the result would be 45.00 because
it falls into the first range, low - −1, and the picture for that range is not wide
enough to accommodate the prefixed minus sign and the number. �

Specifying No Picture

This PICTURE statement creates a picture-name format that has no picture:

picture picture-name;

Using this format has the effect of applying the default SAS format to the values.

SELECT Statement

Selects entries from processing by the FMTLIB and CNTLOUT= options.

Restriction: Only one SELECT statement can appear in a PROC FORMAT step.

Restriction: You cannot use a SELECT statement and an EXCLUDE statement within
the same PROC FORMAT step.

Featured in: Example 6 on page 486.

SELECT entry(s);

The FORMAT Procedure � VALUE Statement 459

Required Arguments

entry(s)
specifies one or more catalog entries for processing. Catalog entry names are the
same as the name of the informat or format that they store. Because informats and
formats can have the same name, and because character and numeric informats or
formats can have the same name, you must use certain prefixes when specifying
informats and formats in the SELECT statement. Follow these rules when specifying
entries in the SELECT statement:

� Precede names of entries that contain character formats with a dollar sign ($).
� Precede names of entries that contain character informats with an at sign and a

dollar sign, for example, @$entry-name.
� Precede names of entries that contain numeric informats with an at sign (@).
� Specify names of entries that contain numeric formats without a prefix.

Shortcuts to Specifying Names
You can use the colon (:) and hyphen (-) wildcard characters to select entries. For

example, the following SELECT statement selects all formats or informats that begin
with the letter a.

select a:;

In addition, the following SELECT statement selects all formats or informats that
occur alphabetically between apple and pear, inclusive:

select apple-pear;

FMTLIB Output
If you use the SELECT statement without either FMTLIB or CNTLOUT= in the

PROC FORMAT statement, then the procedure invokes FMTLIB.

VALUE Statement

Creates a format that specifies character strings to use to print variable values.

Featured in: Example 2 on page 476.
See also: The chapter on formats in SAS Language Reference: Dictionary for
documentation on formats supplied by SAS.

VALUE <$>name <(format-option(s))>
<value-range-set(s)>;

To do this Use this option

Specify the default length of the format DEFAULT=

Specify a fuzz factor for matching values to a range FUZZ=

Specify a maximum length for the format MAX=

460 VALUE Statement � Chapter 21

To do this Use this option

Specify a minimum length for the format MIN=

Specify multiple values for a given range, or for overlapping ranges MULTILABEL

Store values or ranges in the order that you define them. NOTSORTED

Required Arguments

name
names the format that you are creating.
Requirement: The name must be a valid SAS name. A numeric format name can

be up to 32 characters in length; a character format name can be up to 31
characters in length and cannot end in a number. If you are creating a character
format, then use a dollar sign ($) as the first character; this is why a character
informat is limited to 30 characters.

Restriction: The name of a user-defined format cannot be the same as the name of
a format that is supplied by SAS.

Interaction: The maximum length of a format name is controlled by the
VALIDFMTNAME= SAS system option. See SAS Language Reference: Dictionary
for details on VALIDFMTNAME=.

Tip: Refer to the format later by using the name followed by a period. However, do
not use a period after the format name in the VALUE statement.

Options
The following options are common to the INVALUE, PICTURE, and VALUE

statements and are described in “Informat and Format Options” on page 462:
DEFAULT=length
FUZZ= fuzz-factor
MAX=length
MIN=length
NOTSORTED

In addition, you can use the following options:

MULTILABEL
allows the assignment of multiple labels or external values to internal values. The
following VALUE statements show the two uses of the MULTILABEL option. The
first VALUE statement assigns multiple labels to a single internal value. Multiple
labels may also be assigned to a single range of internal values. The second VALUE
statement assigns labels to overlapping ranges of internal values. The MULTILABEL
option allows the assignment of multiple labels to the overlapped internal values.

value one (multilabel)
1=’ONE’
1=’UNO’
1=’UN’

value agefmt (multilabel)
15-29=’below 30 years’

The FORMAT Procedure � VALUE Statement 461

30-50=’between 30 and 50’
51-high=’over 50 years’
15-19=’15 to 19’
20-25=’20 to 25’
25-39=’25 to 39’
40-55=’40 to 55’
56-high=’56 and above’;

Only multilabel-enabled procedures such as PROC MEANS, PROC SUMMARY, and
PROC TABULATE can use multiple labels. All other procedures and the data step
recognize only the primary label. The primary label for a given entry is the external
value that is assigned to the first internal value or range of internal values that
matches or contains the entry when all internal values are ordered sequentially. For
example, in the first VALUE statement, the primary label for 1 is ONE because ONE
is the first external value that is assigned to 1. The secondary labels for 1 are UNO
and UN. In the second VALUE statement, the primary label for 33 is 25 to 39
because the range 25–39 is sequentially the first range of internal values that
contains 33. The secondary label for 33 is between 30 and 50 because the range
30–50 occurs in sequence after the range 25–39.

value-range-set(s)
specifies one or more variable values and a character string or an existing format.
The value-range-set(s) can be one or more of the following:

value-or-range-1 <…, value-or-range-n>=’formatted-value’|[existing-format]
The variable values on the left side of the equals sign print as the character string

on the right side of the equals sign.

formatted-value
specifies a character string that becomes the printed value of the variable value
that appears on the left side of the equals sign. Formatted values are always
character strings, regardless of whether you are creating a character or numeric
format.

Formatted values can be up to 32,767 characters. For hex literals, you can use
up to 32,767 typed characters, or up to 16,382 represented characters at 2 hex
characters per represented character. Some procedures, however, use only the first
8 or 16 characters of a formatted value.

If you omit the single quotation marks around formatted-value, then the VALUE
statement assumes them to be there.

If a formatted value contains a single quotation mark, then enclose the value in
double quotation marks:

value sect 1="Smith’s class"
2="Leung’s class";

Tip: Formatting numeric variables does not preclude the use of those variables in
arithmetic operations. SAS uses stored values for arithmetic operations.

existing-format
specifies a format supplied by SAS or an existing user-defined format. The format
you are creating uses the existing format to convert the raw data that match
value-or-range on the left side of the equals sign.

If you use an existing format, then enclose the format name in square brackets
(for example, [date9.]) or with parentheses and vertical bars, for example,
(|date9.|). Do not enclose the name of the existing format in single quotation
marks.

Using an existing format can be thought of as nesting formats. A nested level of
one means that if you are creating the format A with the format B as a formatted
value, then the procedure has to use only one existing format to create A.

462 Informat and Format Options � Chapter 21

Tip: Avoid nesting formats more than one level. The resource requirements can
increase dramatically with each additional level.

value-or-range
For details on how to specify value-or-range, see “Specifying Values or Ranges” on
page 464.
Consider the following examples:

� The $STATE. character format prints the postal code for selected states:

value $state ’Delaware’=’DE’
’Florida’=’FL’

’Ohio’=’OH’;

The variable value Delaware prints as DE, the variable value Florida prints
as FL, and the variable value Ohio prints as OH. Note that the $STATE. format
begins with a dollar sign.

Note: Range specifications are case sensitive. In the $STATE. format above,
the value OHIO would not match any of the specified ranges. If you are not
certain what case the data values are in, then one solution is to use the
UPCASE function on the data values and specify all uppercase characters for
the ranges. �

� The numeric format ANSWER.writes the values 1 and 2 as yes and no:

value answer 1=’yes’
2=’no’;

Specifying No Ranges
This VALUE statement creates a format-name format that has no ranges:

value format-name;

Using this format has the effect of applying the default SAS format to the values.

Informat and Format Options

This section discusses options that are valid in the INVALUE, PICTURE, and
VALUE statements. These options appear in parentheses after the informat or format
name. They affect the entire informat or format that you are creating.

DEFAULT=length
specifies the default length of the informat or format. The value for DEFAULT=
becomes the length of the informat or format if you do not give a specific length
when you associate the informat or format with a variable.

The default length of a format is the length of the longest formatted value.
The default length of an informat depends on whether the informat is character

or numeric. The default length of character informats is the length of the longest
informatted value. The default of a numeric informat is 12 if you have numeric
data to the left of the equals sign. If you have a quoted string to the left of the
equals sign, then the default length is the length of the longest string.

FUZZ=fuzz-factor
specifies a fuzz factor for matching values to a range. If a number does not match
or fall in a range exactly but comes within fuzz-factor, then the format considers it
a match. For example, the following VALUE statement creates the LEVELS.
format, which uses a fuzz factor of .2:

The FORMAT Procedure � Informat and Format Options 463

value levels (fuzz=.2) 1=’A’
2=’B’
3=’C’;

FUZZ=.2 means that if a variable value falls within .2 of a value on either end
of the range, then the format uses the corresponding formatted value to print the
variable value. So the LEVELS. format formats the value 2.1 as B.

If a variable value matches one value or range without the fuzz factor, and also
matches another value or range with the fuzz factor, then the format assigns the
variable value to the value or range that it matched without the fuzz factor.
Default: 1E−12 for numeric formats and 0 for character formats.
Tip: Specify FUZZ=0 to save storage space when you use the VALUE statement

to create numeric formats.
Tip: A value that is excluded from a range using the < operator does not receive

the formatted value, even if it falls into the range when you use the fuzz factor.

MAX=length
specifies a maximum length for the informat or format. When you associate the
format with a variable, you cannot specify a width greater than the MAX= value.
Default: 40
Range: 1–40

MIN=length
specifies a minimum length for the informat or format.
Default: 1
Range: 1–40

NOTSORTED
stores values or ranges for informats or formats in the order in which you define
them. If you do not specify NOTSORTED, then values or ranges are stored in
sorted order by default, and SAS uses a binary searching algorithm to locate the
range that a particular value falls into. If you specify NOTSORTED, then SAS
searches each range in the order in which you define them until a match is found.

Use NOTSORTED if
� you know the likelihood of certain ranges occurring, and you want your

informat or format to search those ranges first to save processing time.
� you want to preserve the order that you define ranges when you print a

description of the informat or format using the FMTLIB option.
� you want to preserve the order that you define ranges when you use the

ORDER=DATA option and the PRELOADFMT option to analyze class
variables in PROC MEANS, PROC SUMMARY, or PROC TABULATE.

Do not use NOTSORTED if the distribution of values is uniform or unknown, or
if the number of values is relatively small. The binary searching algorithm that
SAS uses when NOTSORTED is not specified optimizes the performance of the
search under these conditions.

Note: SAS automatically sets the NOTSORTED option when you use the
CPORT and the CIMPORT procedures to transport informats or formats between
operating environments with different standard collating sequences. This
automatic setting of NOTSORTED can occur when you transport informats or
formats between ASCII and EBCDIC operating environments. If this situation is
undesirable, then do the following:

1 Use the CNTLOUT= option in the PROC FORMAT statement to create an
output control data set.

464 Specifying Values or Ranges � Chapter 21

2 Use the CPORT procedure to create a transport file for the control data set.
3 Use the CIMPORT procedure in the target operating environment to import

the transport file.
4 In the target operating environment, use PROC FORMAT with the CNTLIN=

option to build the formats and informats from the imported control data set.

�

Specifying Values or Ranges
As the syntax of the INVALUE, PICTURE, and VALUE statements indicates, you

must specify values as value-range-sets. On the left side of the equals sign you specify
the values that you want to convert to other values. On the right side of the equals
sign, you specify the values that you want the values on the left side to become. This
section discusses the different forms that you can use for value-or-range, which
represents the values on the left side of the equals sign. For details on how to specify
values for the right side of the equals sign, see the “Required Arguments” section for
the appropriate statement.

The INVALUE, PICTURE, and VALUE statements accept numeric values on the left
side of the equals sign. INVALUE and VALUE also accept character strings on the left
side of the equals sign.

As the syntax shows, you can have multiple occurrences of value-or-range in each
value-range-set, with commas separating the occurrences. Each occurrence of
value-or-range is either one of the following:

value
a single value, such as 12 or ’CA’. For character formats and informats, enclose
the character values in single quotation marks. If you omit the quotation marks
around value, then PROC FORMAT assumes the quotation marks to be there.

You can use the keyword OTHER as a single value. OTHER matches all values
that do not match any other value or range.

range
a list of values, for example, 12–68 or ’A’-’Z’. For ranges with character strings,
be sure to enclose each string in single quotation marks. For example, if you want
a range that includes character strings from A to Z, then specify the range as
’A’-’Z’, with single quotation marks around the A and around the Z.

If you specify ’A-Z’, then the procedure interprets it as a three-character string
with A as the first character, a hyphen (-) as the second character, and a Z as the
third character.

If you omit the quotation marks, then the procedure assumes quotation marks
around each string. For example, if you specify the range abc-zzz, then the
procedure interprets it as ’abc’-’zzz’.

You can use LOW or HIGH as one value in a range, and you can use the range
LOW-HIGH to encompass all values. For example, these are valid ranges:

low-’ZZ’
35-high
low-high

You can use the less than (<) symbol to exclude values from ranges. If you are
excluding the first value in a range, then put the < after the value. If you are
excluding the last value in a range, then put the < before the value. For example,
the following range does not include 0:

0<-100

The FORMAT Procedure � Associating Informats and Formats with Variables 465

Likewise, the following range does not include 100:

0-<100

If a value at the high end of one range also appears at the low end of another
range, and you do not use the < noninclusion notation, then PROC FORMAT
assigns the value to the first range. For example, in the following ranges, the
value AJ is part of the first range:

’AA’-’AJ’=1 ’AJ’-’AZ’=2

In this example, to include the value AJ in the second range, use the noninclusive
notation on the first range:

’AA’-<’AJ’=1 ’AJ’-’AZ’=2

If you overlap values in ranges, then PROC FORMAT returns an error message
unless, for the VALUE statement, the MULTILABEL option is specified. For
example, the following ranges will cause an error:

’AA’-’AK’=1 ’AJ’-’AZ=2

Each value-or-range can be up to 32,767 characters. If value-or-range has more than
32,767 characters, then the procedure truncates the value after it processes the first
32,767 characters.

Note: You do not have to account for every value on the left side of the equals sign.
Those values are converted using the default informat or format. For example, the
following VALUE statement creates the TEMP. format, which prints all occurrences of
98.6 as NORMAL:

value temp 98.6=’NORMAL’;

If the value were 96.9, then the printed result would be 96.9. �

Concepts: FORMAT Procedure

Associating Informats and Formats with Variables
Table 21.2 on page 466 summarizes the different methods for associating informats

and formats with variables.

466 Storing Informats and Formats � Chapter 21

Table 21.2 Associating Informats and Formats with Variables

Step Informats Formats

In a DATA step Use the ATTRIB or INFORMAT statement
to permanently associate an informat with
a variable. Use the INPUT function or
INPUT statement to associate the informat
with the variable only for the duration of
the DATA step.

Use the ATTRIB or FORMAT statement to
permanently associate a format with a
variable. Use the PUT function or PUT
statement to associate the format with the
variable only for the duration of the DATA
step.

In a PROC step The ATTRIB and INFORMAT statements
are valid in base SAS procedures. However,
in base SAS software, typically you do not
assign informats in PROC steps because the
data has already been read into SAS
variables.

Use the ATTRIB statement or the FORMAT
statement to associate formats with
variables. If you use either statement in a
procedure that produces an output data set,
then the format is permanently associated
with the variable in the output data set. If
you use either statement in a procedure that
does not produce an output data set or
modify an existing data set, the statement
associates the format with the variable only
for the duration of the PROC step.

Tips

� Do not confuse the FORMAT statement with the FORMAT procedure. The
FORMAT and INFORMAT statements associate an existing format or informat
(either standard SAS or user-defined) with one or more variables. PROC FORMAT
creates user-defined formats or informats. Assigning your own format or informat
to a variable is a two-step process: creating the format or informat with the
FORMAT procedure, and then assigning the format or informat with the
FORMAT, INFORMAT, or ATTRIB statement.

� It is often useful to assign informats in the FSEDIT procedure in SAS/FSP
software and in the BUILD procedure in SAS/AF software.

See Also

� For complete documentation on the ATTRIB, INFORMAT, and FORMAT
statements, see the section on statements in SAS Language Reference: Dictionary.

� For complete documentation on the INPUT and PUT functions, see the section on
functions in SAS Language Reference: Dictionary.

� See “Formatted Values” on page 25 for more information and examples of using
formats in base SAS procedures.

Storing Informats and Formats

The FORMAT Procedure � Storing Informats and Formats 467

Format Catalogs
PROC FORMAT stores user-defined informats and formats as entries in SAS

catalogs.* You use the LIBRARY= option in the PROC FORMAT statement to specify
the catalog. If you omit the LIBRARY= option, then formats and informats are stored
in the WORK.FORMATS catalog. If you specify LIBRARY=libref but do not specify a
catalog name, then formats and informats are stored in the libref.FORMATS catalog.
Note that this use of a one-level name differs from the use of a one-level name
elsewhere in SAS. With the LIBRARY= option, a one-level name indicates a library;
elsewhere in SAS, a one-level name indicates a file in the WORK library.

The name of the catalog entry is the name of the format or informat. The entry types
are

� FORMAT for numeric formats

� FORMATC for character formats

� INFMT for numeric informats

� INFMTC for character informats.

Temporary Informats and Formats
Informats and formats are temporary when they are stored in a catalog in the

WORK library. If you omit the LIBRARY= option, then PROC FORMAT stores the
informats and formats in the temporary catalog WORK.FORMATS. You can retrieve
temporary informats and formats only in the same SAS session or job in which they are
created. To retrieve a temporary format or informat, simply include the name of the
format or informat in the appropriate SAS statement. SAS automatically looks for the
format or informat in the WORK.FORMATS catalog.

Permanent Informats and Formats
If you want to use a format or informat that is created in one SAS job or session in a

subsequent job or session, then you must permanently store the format or informat in a
SAS catalog.

You permanently store informats and formats by using the LIBRARY= option in the
PROC FORMAT statement. See the discussion of the LIBRARY= option in “PROC
FORMAT Statement” on page 443.

Accessing Permanent Informats and Formats
After you have permanently stored an informat or format, you can use it in later SAS

sessions or jobs. If you associate permanent informats or formats with variables in a
later SAS session or job, then SAS must be able to access the informats and formats.
Thus, you must use a LIBNAME statement to assign a libref to the library that stores
the catalog that stores the informats or formats.

SAS uses one of two methods when searching for user-defined formats and informats:

� By default, SAS always searches a library that is referenced by the LIBRARY
libref for a FORMATS catalog. If you have only one format catalog, then you
should do the following:

1 Assign the LIBRARY libref to a SAS data library in the SAS session in which
you are running the PROC FORMAT step.

* Catalogs are a type of SAS file and reside in a SAS data library. If you are unfamiliar with the types of SAS files or the SAS
data library structure, then see the section on SAS files in SAS Language Reference: Concepts.

468 Results: FORMAT Procedure � Chapter 21

2 Specify LIBRARY=LIBRARY in the PROC FORMAT statement. PROC
FORMAT will store the informats and formats that are defined in that step
in the LIBRARY.FORMATS catalog.

3 In the SAS program that uses your user-defined formats and informats,
include a LIBNAME statement to assign the LIBRARY libref to the library
that contains the permanent format catalog.

� If you have more than one format catalog, or if the format catalog is named
something other than FORMATS, then you should do the following:

1 Assign a libref to a SAS data library in the SAS session in which you are
running the PROC FORMAT step.

2 Specify LIBRARY=libref or LIBRARY=libref.catalog in the PROC FORMAT
step, where libref is the libref that you assigned in step 1.

3 In the SAS program that uses your user-defined formats and informats, use
the FMTSEARCH= option in an OPTIONS statement, and include libref or
libref.catalog in the list of format catalogs.

The syntax for specifying a list of format catalogs to search is

OPTIONS FMTSEARCH=(catalog-specification-1<… catalog-specification-n>);

where each catalog-specification can be libref or libref.catalog. If only libref is specified,
then SAS assumes that the catalog name is FORMATS.

When searching for a format or informat, SAS always searches in WORK.FORMATS
first, and then LIBRARY.FORMATS, unless one of them appears in the FMTSEARCH=
list. SAS searches the catalogs in the FMTSEARCH= list in the order that they are
listed until the format or informat is found.

For further information on FMTSEARCH=, see the section on SAS system options in
SAS Language Reference: Dictionary. For an example that uses the LIBRARY= and
FMTSEARCH= options together, see Example 8 on page 490.

Missing Formats and Informats
If you reference an informat or format that SAS cannot find, then you receive an

error message and processing stops unless the SAS system option NOFMTERR is in
effect. When NOFMTERR is in effect, SAS uses the w. or $w. default format to print
values for variables with formats that it cannot find. For example, to use NOFMTERR,
use this OPTIONS statement:

options nofmterr;

Refer to the section on SAS system options in SAS Language Reference: Dictionary
for more information on NOFMTERR.

Results: FORMAT Procedure

Output Control Data Set
The output control data set contains information that describes informats or formats.

Output control data sets have a number of uses. For example, an output control data
set can be edited with a DATA step to programmatically change value ranges or can be

The FORMAT Procedure � Output Control Data Set 469

subset with a DATA step to create new formats and informats. Additionally, you can
move formats and informats from one operating environment to another by creating an
output control data set, using the CPORT procedure to create a transfer file of the data
set, and then using the CIMPORT and FORMAT procedures in the target operating
environment to create the formats and informats there.

You create an output control data set with the CNTLOUT= option in the PROC
FORMAT statement. You use output control data sets, or a set of observations from an
output control data set, as an input control data set in a subsequent PROC FORMAT
step with the CNTLIN= option.

Output control data sets contain an observation for every value or range in each of
the informats or formats in the LIBRARY= catalog. The data set consists of variables
that give either global information about each format and informat created in the
PROC FORMAT step or specific information about each range and value.

The variables in the output control data set are

DEFAULT
a numeric variable that indicates the default length for format or informat

END
a character variable that gives the range’s ending value

EEXCL
a character variable that indicates whether the range’s ending value is excluded.
Values are

Y the range’s ending value is excluded

N the range’s ending value is not excluded

FILL
for picture formats, a numeric variable whose value is the value of the FILL=
option

FMTNAME
a character variable whose value is the format or informat name

FUZZ
a numeric variable whose value is the value of the FUZZ= option

HLO
a character variable that contains range information about the format or informat
in the form of eight different letters that can appear in any combination. Values
are

F standard SAS format or informat used for formatted value or
informatted value

H range’s ending value is HIGH

I numeric informat range (informat defined with unquoted
numeric range)

L range’s starting value is LOW

N format or informat has no ranges, including no OTHER= range

O range is OTHER

M MULTILABEL option is in effect

R ROUND option is in effect

S NOTSORTED option is in effect

LABEL

470 Output Control Data Set � Chapter 21

a character variable whose value is the informatted or formatted value or the
name of an existing informat or format

LENGTH
a numeric variable whose value is the value of the LENGTH= option

MAX
a numeric variable whose value is the value of the MAX= option

MIN
a numeric variable whose value is the value of the MIN= option

MULT
a numeric variable whose value is the value of the MULT= option

NOEDIT
for picture formats, a numeric variable whose value indicates whether the
NOEDIT option is in effect. Values are

1 NOEDIT option is in effect

0 NOEDIT option is not in effect

PREFIX
for picture formats, a character variable whose value is the value of the PREFIX=
option

SEXCL
a character variable that indicates whether the range’s starting value is excluded.
Values are

Y the range’s starting value is excluded

N the range’s starting value is not excluded

START
a character variable that gives the range’s starting value

TYPE
a character variable that indicates the type of format. Possible values are

C character format

I numeric informat

J character informat

N numeric format (excluding pictures)

P picture format

Output 21.1 on page 470 shows an output control data set that contains information
on all the informats and formats created in “Examples: FORMAT Procedure” on page
474.

The FORMAT Procedure � Input Control Data Set 471

Output 21.1 Output Control Data Set for PROC FORMAT Examples

An Output Control Data Set 1

D L

F D D A A

M E L P N D I T N

T S L F E R O S E E G A G

N T A A N F E M F E T E E C 3 T U

O A A E B M M U G U F U I D Y X X H S S Y A

b M R N E I A L T Z I L L I P C C L E E P G

s E T D L N X T H Z X T L T E L L O P P E E

1 BENEFIT LOW 7304 WORDDATE20. 1 40 20 20 1E-12 0.00 0 N N N LF

2 BENEFIT 7305 HIGH ** Not Eligible ** 1 40 20 20 1E-12 0.00 0 N N N H

3 NOZEROS LOW -1 00.00 1 40 5 5 1E-12 - 100.00 0 P N N L . ,

4 NOZEROS -1 0 99 1 40 5 5 1E-12 -. 100.00 0 P Y Y . ,

5 NOZEROS 0 1 99 1 40 5 5 1E-12 . 100.00 0 P N Y . ,

6 NOZEROS 1 HIGH 00.00 1 40 5 5 1E-12 100.00 0 P N N H . ,

7 PTSFRMT 0 3 0% 1 40 3 3 1E-12 0.00 0 N N N

8 PTSFRMT 4 6 3% 1 40 3 3 1E-12 0.00 0 N N N

9 PTSFRMT 7 8 6% 1 40 3 3 1E-12 0.00 0 N N N

10 PTSFRMT 9 10 8% 1 40 3 3 1E-12 0.00 0 N N N

11 PTSFRMT 11 HIGH 10% 1 40 3 3 1E-12 0.00 0 N N N H

12 USCURR LOW HIGH 000,000 1 40 7 7 1E-12 $ 1.61 0 P N N LH . ,

13 CITY BR1 BR1 Birmingham UK 1 40 14 14 0 0.00 0 C N N

14 CITY BR2 BR2 Plymouth UK 1 40 14 14 0 0.00 0 C N N

15 CITY BR3 BR3 York UK 1 40 14 14 0 0.00 0 C N N

16 CITY US1 US1 Denver USA 1 40 14 14 0 0.00 0 C N N

17 CITY US2 US2 Miami USA 1 40 14 14 0 0.00 0 C N N

18 CITY **OTHER** **OTHER** INCORRECT CODE 1 40 14 14 0 0.00 0 C N N O

19 EVAL C C 1 1 40 1 1 0 0.00 0 I N N

20 EVAL E E 2 1 40 1 1 0 0.00 0 I N N

21 EVAL N N 0 1 40 1 1 0 0.00 0 I N N

22 EVAL O O 4 1 40 1 1 0 0.00 0 I N N

23 EVAL S S 3 1 40 1 1 0 0.00 0 I N N

You can use the SELECT or EXCLUDE statement to control which formats and
informats are represented in the output control data set. For details, see “SELECT
Statement” on page 458 and “EXCLUDE Statement” on page 446.

Input Control Data Set
You specify an input control data set with the CNTLIN= option in the PROC

FORMAT statement. The FORMAT procedure uses the data in the input control data
set to construct informats and formats. Thus, you can create informats and formats
without writing INVALUE, PICTURE, or VALUE statements.

The input control data set must have these characteristics:
� For both numeric and character formats, the data set must contain the variables

FMTNAME, START, and LABEL, which are described in “Output Control Data
Set” on page 468. The remaining variables are not always required.

� If you are creating a character format or informat, then you must either begin the
format or informat name with a dollar sign ($) or specify a TYPE variable with the
value C.

� If you are creating a PICTURE statement format, then you must specify a TYPE
variable with the value P.

� If you are creating a format with ranges of input values, then you must specify the
END variable. If range values are to be noninclusive, then the variables SEXCL
and EEXCL must each have a value of Y. Inclusion is the default.

472 Procedure Output � Chapter 21

You can create more than one format from an input control data set if the
observations for each format are grouped together.

You can use a VALUE, INVALUE, or PICTURE statement in the same PROC
FORMAT step with the CNTLIN= option. If the VALUE, INVALUE, or PICTURE
statement is creating the same informat or format that the CNTLIN= option is
creating, then the VALUE, INVALUE, or PICTURE statement creates the informat or
format and the CNTLIN= data set is not used. You can, however, create an informat or
format with VALUE, INVALUE, or PICTURE and create a different informat or format
with CNTLIN= in the same PROC FORMAT step.

For an example featuring an input control data set, see Example 5 on page 482.

Procedure Output
The FORMAT procedure prints output only when you specify the FMTLIB option or

the PAGE option in the PROC FORMAT statement. The printed output is a table for
each format or informat entry in the catalog that is specified in the LIBRARY= option.
The output also contains global information and the specifics of each value or range
that is defined for the format or informat. You can use the SELECT or EXCLUDE
statement to control which formats and informats are represented in the FMTLIB
output. For details, see “SELECT Statement” on page 458 and “EXCLUDE Statement”
on page 446. For an example, see Example 6 on page 486.

The FMTLIB output shown in Output 21.2 on page 472 contains a description of the
NOZEROS. format, which is created in “Building a Picture Format: Step by Step” on
page 454, and the EVAL. informat, which is created in Example 4 on page 480.

Output 21.2 Output from PROC FORMAT with the FMTLIB Option

FMTLIB Output for the NOZEROS. Format and the 1
EVAL. Informat

--
| FORMAT NAME: NOZEROS LENGTH: 5 NUMBER OF VALUES: 4 |
MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 5 FUZZ: STD
START
----------------+----------------+--
LOW
-1< 0<99 P-. F M100
0
1
--

--
| INFORMAT NAME: @EVAL LENGTH: 1 NUMBER OF VALUES: 5 |
MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 1 FUZZ: 0
START
----------------+----------------+--
C
E
N
O
S
--

The fields are described below in the order they appear in the output, from left to right:

INFORMAT NAME

The FORMAT Procedure � Procedure Output 473

FORMAT NAME
the name of the informat or format. Informat names begin with an at-sign (@).

LENGTH
the length of the informat or format. PROC FORMAT determines the length in the
following ways:

� For character informats, the value for LENGTH is the length of the longest
raw data value on the left side of the equals sign.

� For numeric informats

� LENGTH is 12 if all values on the left side of the equals sign are
numeric.

� LENGTH is the same as the longest raw data value on the left side of
the equal sign.

� For formats, the value for LENGTH is the length of the longest value on the
right side of the equal sign.

In the output for @EVAL., the length is 1 because 1 is the length of the longest
raw data value on the left side of the equals sign.

In the output for NOZEROS., the LENGTH is 5 because the longest picture is 5
characters.

NUMBER OF VALUES
the number of values or ranges associated with the informat or format.
NOZEROS. has 4 ranges, EVAL. has 5.

MIN LENGTH
the minimum length of the informat or format. The value for MIN LENGTH is 1
unless you specify a different minimum length with the MIN= option.

MAX LENGTH
the maximum length of the informat or format. The value for MAX LENGTH is 40
unless you specify a different maximum length with the MAX= option.

DEFAULT LENGTH
the length of the longest value in the INVALUE or LABEL field, or the value of
the DEFAULT= option.

FUZZ
the fuzz factor. For informats, FUZZ always is 0. For formats, the value for this
field is STD if you do not use the FUZZ= option. STD signifies the default fuzz
value.

START
the beginning value of a range. FMTLIB prints only the first 16 characters of a
value in the START and END columns.

END
the ending value of a range. The exclusion sign (<) appears after the values in
START and END, if the value is excluded from the range.

INVALUE
LABEL

INVALUE appears only for informats and contains the informatted values.
LABEL appears only for formats and contains either the formatted value or
picture. The SAS release number and the date on which the format or informat
was created are in parentheses after INVALUE or LABEL.

For picture formats, such as NOZEROS., the LABEL section contains the
PREFIX=, FILL=, and MULT= values. To note these values, FMTLIB prints the

474 Examples: FORMAT Procedure � Chapter 21

letters P, F, and M to represent each option, followed by the value. For example, in
the LABEL section, P-. indicates that the prefix value is a dash followed by a
period.

FMTLIB prints only 40 characters in the LABEL column.

Examples: FORMAT Procedure
Several examples in this section use the PROCLIB.STAFF data set. In addition,

many of the informats and formats that are created in these examples are stored in
LIBRARY.FORMATS. The output data set shown in “Output Control Data Set” on page
468 contains a description of these informats and the formats.

libname proclib ’SAS-data-library’;

Create the data set PROCLIB.STAFF. The INPUT statement assigns the names Name,
IdNumber, Salary, Site, and HireDate to the variables that appear after the DATALINES
statement. The FORMAT statement assigns the standard SAS format DATE7. to the variable
HireDate.

data proclib.staff;
input Name & $16. IdNumber $ Salary

Site $ HireDate date7.;
format hiredate date7.;
datalines;

Capalleti, Jimmy 2355 21163 BR1 30JAN79
Chen, Len 5889 20976 BR1 18JUN76
Davis, Brad 3878 19571 BR2 20MAR84
Leung, Brenda 4409 34321 BR2 18SEP74
Martinez, Maria 3985 49056 US2 10JAN93
Orfali, Philip 0740 50092 US2 16FEB83
Patel, Mary 2398 35182 BR3 02FEB90
Smith, Robert 5162 40100 BR5 15APR86
Sorrell, Joseph 4421 38760 US1 19JUN93
Zook, Carla 7385 22988 BR3 18DEC91
;

The variables are about a small subset of employees who work for a corporation that
has sites in the U.S. and Britain. The data contain the name, identification number,
salary (in British pounds), location, and date of hire for each employee.

Example 1: Creating a Picture Format

Procedure features:
PROC FORMAT statement options:

LIBRARY=
PICTURE statement options:

MULT=

The FORMAT Procedure � Program 475

PREFIX=
LIBRARY libref
LOW and HIGH keywords

Data set:
PROCLIB.STAFF on page 474.

This example uses a PICTURE statement to create a format that prints the values
for the variable Salary in the data set PROCLIB.STAFF in U.S. dollars.

Program

Assign two SAS library references (PROCLIB and LIBRARY). Assigning a library
reference LIBRARY is useful in this case because if you use PROC FORMAT, then SAS
automatically searches for informats and formats in any library that is referenced with the
LIBRARY libref.

libname proclib ’SAS-data-library-1 ’;
libname library ’SAS-data-library-2’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Specify that user-defined formats will be stored in the catalog LIBRARY.FORMATS.
The LIBRARY= option specifies a SAS catalog that will contain the formats or informats that
you create with PROC FORMAT. When you create the library named LIBRARY, SAS
automatically creates a catalog named FORMATS inside LIBRARY.

proc format library=library;

Define the USCurrency. picture format. The PICTURE statement creates a template for
printing numbers. LOW-HIGH ensures that all values are included in the range. The MULT=
statement option specifies that each value is multiplied by 1.61. The PREFIX= statement adds a
US dollar sign to any number that you format. The picture contains six digit selectors, five for
the salary and one for the dollar sign prefix.

picture uscurrency low-high=’000,000’ (mult=1.61 prefix=’$’);
run;

Print the PROCLIB.STAFF data set. The NOOBS option suppresses the printing of
observation numbers. The LABEL option uses variable labels instead of variable names for
column headings.

proc print data=proclib.staff noobs label;

476 Output � Chapter 21

Specify a label and format for the Salary variable. The LABEL statement substitutes the
specific label for the variable in the report. In this case, “Salary in US Dollars” is substituted for
the variable Salary for this print job only. The FORMAT statement associates the USCurrency.
format with the variable name Salary for the duration of this procedure step.

label salary=’Salary in U.S. Dollars’;
format salary uscurrency.;

Specify the title.

title ’PROCLIB.STAFF with a Format for the Variable Salary’;
run;

Output

PROCLIB.STAFF with a Format for the Variable Salary 1

Salary in
Id U.S. Hire

Name Number Dollars Site Date

Capalleti, Jimmy 2355 $34,072 BR1 30JAN79
Chen, Len 5889 $33,771 BR1 18JUN76
Davis, Brad 3878 $31,509 BR2 20MAR84
Leung, Brenda 4409 $55,256 BR2 18SEP74
Martinez, Maria 3985 $78,980 US2 10JAN93
Orfali, Philip 0740 $80,648 US2 16FEB83
Patel, Mary 2398 $56,643 BR3 02FEB90
Smith, Robert 5162 $64,561 BR5 15APR86
Sorrell, Joseph 4421 $62,403 US1 19JUN93
Zook, Carla 7385 $37,010 BR3 18DEC91

Example 2: Creating a Format for Character Values
Procedure features:

VALUE statement
OTHER keyword

Data set:
PROCLIB.STAFF on page 474.

Format: USCurrency on page 475.

This example uses a VALUE statement to create a character format that prints a
value of a character variable as a different character string.

Program

The FORMAT Procedure � Program 477

Assign two SAS library references (PROCLIB and LIBRARY). Assigning a library
reference LIBRARY is useful in this case because if you use PROC FORMAT, then SAS
automatically searches for informats and formats in any library that is referenced with the
LIBRARY libref.

libname proclib ’SAS-data-library-1’;
libname library ’SAS-data-library-2’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Create the catalog named LIBRARY.FORMATS, where the user-defined formats will be
stored. The LIBRARY= option specifies a permanent storage location for the formats that you
create. It also creates a catalog named FORMAT in the specified library. If you do not use
LIBRARY=, then SAS temporarily stores formats and informats that you create in a catalog
named WORK.FORMATS.

proc format library=library;

Define the $CITY. format. The special codes BR1, BR2, and so on, are converted to the names
of the corresponding cities. The keyword OTHER specifies that values in the data set that do
not match any of the listed city code values are converted to the value INCORRECT CODE.

value $city ’BR1’=’Birmingham UK’
’BR2’=’Plymouth UK’
’BR3’=’York UK’
’US1’=’Denver USA’
’US2’=’Miami USA’
other=’INCORRECT CODE’;

run;

Print the PROCLIB.STAFF data set. The NOOBS option suppresses the printing of
observation numbers. The LABEL option uses variable labels instead of variable names for
column headings.

proc print data=proclib.staff noobs label;

Specify a label for the Salary variable. The LABEL statement substitutes the label “Salary
in U.S. Dollars” for the name SALARY.

label salary=’Salary in U.S. Dollars’;

Specify formats for Salary and Site. The FORMAT statement temporarily associates the
USCurrency. format (created in Example 1 on page 474) with the variable SALARY and also
temporarily associates the format $CITY. with the variable SITE.

478 Output � Chapter 21

format salary uscurrency. site $city.;

Specify the titles.

title ’PROCLIB.STAFF with a Format for the Variables’;
title2 ’Salary and Site’;

run;

Output

PROCLIB.STAFF with a Format for the Variables 1
Salary and Site

Salary in
Id U.S. Hire

Name Number Dollars Site Date

Capalleti, Jimmy 2355 $34,072 Birmingham UK 30JAN79
Chen, Len 5889 $33,771 Birmingham UK 18JUN76
Davis, Brad 3878 $31,509 Plymouth UK 20MAR84
Leung, Brenda 4409 $55,256 Plymouth UK 18SEP74
Martinez, Maria 3985 $78,980 Miami USA 10JAN93
Orfali, Philip 0740 $80,648 Miami USA 16FEB83
Patel, Mary 2398 $56,643 York UK 02FEB90
Smith, Robert 5162 $64,561 INCORRECT CODE 15APR86
Sorrell, Joseph 4421 $62,403 Denver USA 19JUN93
Zook, Carla 7385 $37,010 York UK 18DEC91

Example 3: Writing a Format for Dates Using a Standard SAS Format
Procedure features:

VALUE statement:
HIGH keyword

Data set:
PROCLIB.STAFF on page 474.

Formats:
USCurrency. on page 475 and $CITY. on page 477.

This example uses an existing format that is supplied by SAS as a formatted value.
Tasks include
� creating a numeric format
� nesting formats
� writing a format using a standard SAS format
� formatting dates.

Program
This program defines a format called BENEFIT, which differentiates between

employees hired on or before 31DEC1979. The purpose of this program is to indicate

The FORMAT Procedure � Program 479

any employees who are eligible to receive a benefit, based on a hire date on or prior to
December 31, 1979. All other employees with a later hire date are listed as ineligible
for the benefit.

Assign two SAS library references (PROCLIB and LIBRARY). Assigning a library
reference LIBRARY is useful in this case because if you use PROC FORMAT, then SAS
automatically searches for informats and formats in any library that is referenced with the
LIBRARY libref.

libname proclib ’SAS-data-library-1’;
libname library ’SAS-data-library-2’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Store the BENEFIT. format in the catalog LIBRARY.FORMATS. The LIBRARY= option
specifies the permanent storage location LIBRARY for the formats that you create. If you do not
use LIBRARY=, then SAS temporarily stores formats and informats that you create in a catalog
named WORK.FORMATS.

proc format library=library;

Define the first range in the BENEFIT. format. This first range differentiates between the
employees who were hired on or before 31DEC1979 and those who were hired after that date.
The keyword LOW and the SAS date constant ’31DEC1979’D create the first range, which
includes all date values that occur on or before December 31, 1979. For values that fall into this
range, SAS applies the WORDDATEw. format.*

value benefit low-’31DEC1979’d=[worddate20.]

Define the second range in the BENEFIT. format. The second range consists of all dates on
or after January 1, 1980. The SAS date constant ’01JAN1980’D and the keyword HIGH specify
the range. Values that fall into this range receive ** Not Eligible ** as a formatted value.

’01JAN1980’d-high=’ ** Not Eligible **’;
run;

Print the data set PROCLIB.STAFF. The NOOBS option suppresses the printing of
observation numbers. The LABEL option uses variable labels instead of variable names for
column headings.

proc print data=proclib.staff noobs label;

* For more information about SAS date constants, see the section on dates, times, and intervals in SAS Language Reference:
Concepts. For complete documentation on WORDDATEw., see the section on formats in SAS Language Reference: Dictionary.

480 Output � Chapter 21

Specify a label for the Salary variable. The LABEL statement substitutes the label “Salary
in U.S. Dollars” for the name SALARY.

label salary=’Salary in U.S. Dollars’;

Specify formats for Salary, Site, and Hiredate. The FORMAT statement associates the
USCurrency. format (created in Example 1 on page 474) with SALARY, the $CITY. format
(created in Example 2 on page 476) with SITE, and the BENEFIT. format with HIREDATE.

format salary uscurrency. site $city. hiredate benefit.;

Specify the titles.

title ’PROCLIB.STAFF with a Format for the Variables’;
title2 ’Salary, Site, and HireDate’;

run;

Output

PROCLIB.STAFF with a Format for the Variables 1
Salary, Site, and HireDate

Salary in
Id U.S.

Name Number Dollars Site HireDate

Capalleti, Jimmy 2355 $34,072 Birmingham UK January 30, 1979
Chen, Len 5889 $33,771 Birmingham UK June 18, 1976
Davis, Brad 3878 $31,509 Plymouth UK ** Not Eligible **
Leung, Brenda 4409 $55,256 Plymouth UK September 18, 1974
Martinez, Maria 3985 $78,980 Miami USA ** Not Eligible **
Orfali, Philip 0740 $80,648 Miami USA ** Not Eligible **
Patel, Mary 2398 $56,643 York UK ** Not Eligible **
Smith, Robert 5162 $64,561 INCORRECT CODE ** Not Eligible **
Sorrell, Joseph 4421 $62,403 Denver USA ** Not Eligible **
Zook, Carla 7385 $37,010 York UK ** Not Eligible **

Example 4: Converting Raw Character Data to Numeric Values

Procedure feature:
INVALUE statement

This example uses an INVALUE statement to create a numeric informat that
converts numeric and character raw data to numeric data.

The FORMAT Procedure � Program 481

Program
This program converts quarterly employee evaluation grades, which are alphabetic,

into numeric values so that reports can be generated that sum the grades up as points.

Set up two SAS library references, one named PROCLIB and the other named
LIBRARY.

libname proclib ’SAS-data-library-1’;
libname library ’SAS-data-library-2’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=64 pagesize=40;

Store the Evaluation. informat in the catalog LIBRARY.FORMATS.

proc format library=library;

Create the numeric informat Evaluation. The INVALUE statement converts the specified
values. The letters O (Outstanding), S (Superior), E (Excellent), C (Commendable), and N (None)
correspond to the numbers 4, 3, 2, 1, and 0, respectively.

invalue evaluation ’O’=4
’S’=3
’E’=2
’C’=1
’N’=0;

run;

Create the PROCLIB.POINTS data set. The instream data, which immediately follows the
DATALINES statement, contains a unique identification number (EmployeeId) and bonus
evaluations for each employee for each quarter of the year (Q1–Q4). Some of the bonus
evaluation values that are listed in the data lines are numbers; others are character values.
Where character values are listed in the data lines, the Evaluation. informat converts the value
O to 4, the value S to 3, and so on. The raw data values 0 through 4 are read as themselves
because they are not referenced in the definition of the informat. Converting the letter values to
numbers makes it possible to calculate the total number of bonus points for each employee for
the year. TotalPoints is the total number of bonus points.

data proclib.points;
input EmployeeId $ (Q1-Q4) (evaluation.,+1);
TotalPoints=sum(of q1-q4);
datalines;

2355 S O O S
5889 2 2 2 2
3878 C E E E

482 Output � Chapter 21

4409 0 1 1 1
3985 3 3 3 2
0740 S E E S
2398 E E C C
5162 C C C E
4421 3 2 2 2
7385 C C C N
;

Print the PROCLIB.POINTS data set. The NOOBS option suppresses the printing of
observation numbers.

proc print data=proclib.points noobs;

Specify the title.

title ’The PROCLIB.POINTS Data Set’;
run;

Output

The PROCLIB.POINTS Data Set 1

Employee Total
Id Q1 Q2 Q3 Q4 Points

2355 3 4 4 3 14
5889 2 2 2 2 8
3878 1 2 2 2 7
4409 0 1 1 1 3
3985 3 3 3 2 11
0740 3 2 2 3 10
2398 2 2 1 1 6
5162 1 1 1 2 5
4421 3 2 2 2 9
7385 1 1 1 0 3

Example 5: Creating a Format from a Data Set

Procedure features:
PROC FORMAT statement option:

CNTLIN=
Input control data set

Data set:
WORK.POINTS, created from data lines in the sample code.

The FORMAT Procedure � Program 483

This example shows how to create a format from a SAS data set.
Tasks include
� creating a format from an input control data set
� creating an input control data set from an existing SAS data set.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create a temporary data set named scale. The first two variables in the data lines, called
BEGIN and END, will be used to specify a range in the format. The third variable in the data
lines, called AMOUNT, contains a percentage that will be used as the formatted value in the
format. Note that all three variables are character variables as required for PROC FORMAT
input control data sets.

data scale;
input begin $ 1-2 end $ 5-8 amount $ 10-12;
datalines;

0 3 0%
4 6 3%
7 8 6%
9 10 8%
11 16 10%
;

Create the input control data set CTRL and set the length of the LABEL variable. The
LENGTH statement ensures that the LABEL variable is long enough to accommodate the label
ERROR.

data ctrl;
length label $ 11;

Rename variables and create an end-of-file flag. The data set CTRL is derived from
WORK.SCALE. RENAME= renames BEGIN and AMOUNT as START and LABEL,
respectively. The END= option creates the variable LAST, whose value is set to 1 when the last
observation is processed.

set scale(rename=(begin=start amount=label)) end=last;

484 Program � Chapter 21

Create the variables FMTNAME and TYPE with fixed values. The RETAIN statement is
more efficient than an assignment statement in this case. RETAIN retains the value of
FMTNAME and TYPE in the program data vector and eliminates the need for the value to be
written on every iteration of the DATA step. FMTNAME specifies the name PercentageFormat,
which is the format that the input control data set creates. The TYPE variable specifies that the
input control data set will create a numeric format.

retain fmtname ’PercentageFormat’ type ’n’;

Write the observation to the output data set.

output;

Create an “other” category. Because the only valid values for this application are 0–16, any
other value (such as missing) should be indicated as an error to the user. The IF statement
executes only after the DATA step has processed the last observation from the input data set.
When IF executes, HLO receives a value of O to indicate that the range is OTHER, and LABEL
receives a value of ***ERROR***. The OUTPUT statement writes these values as the last
observation in the data set. HLO has missing values for all other observations.

if last then do;
hlo=’O’;
label=’***ERROR***’;
output;

end;
run;

Print the control data set, CTRL. The NOOBS option suppresses the printing of observation
numbers.

proc print data=ctrl noobs;

Specify the title.

title ’The CTRL Data Set’;
run;

The FORMAT Procedure � Program 485

Output 21.3

Note that although the last observation contains values for START and END, these values are ignored because
of the O value in the HLO variable.

The CTRL Data Set 1

label start end fmtname type hlo

0% 0 3 PercentageFormat n

3% 4 6 PercentageFormat n

6% 7 8 PercentageFormat n

8% 9 10 PercentageFormat n

10% 11 16 PercentageFormat n

ERROR 11 16 PercentageFormat n O

Store the created format in the catalog WORK.FORMATS and specify the source for
the format. The CNTLIN= option specifies that the data set CTRL is the source for the format
PTSFRMT.

proc format library=work cntlin=ctrl;
run;

Create the numeric informat Evaluation. The INVALUE statement converts the specified
values. The letters O (Outstanding), S (Superior), E (Excellent), C (Commendable), and N (None)
correspond to the numbers 4, 3, 2, 1, and 0, respectively.

proc format;
invalue evaluation ’O’=4

’S’=3
’E’=2
’C’=1
’N’=0;

run;

Create the WORK.POINTS data set. The instream data, which immediately follows the
DATALINES statement, contains a unique identification number (EmployeeId) and bonus
evaluations for each employee for each quarter of the year (Q1–Q4). Some of the bonus
evaluation values that are listed in the data lines are numbers; others are character values.
Where character values are listed in the data lines, the Evaluation. informat converts the value
O to 4, the value S to 3, and so on. The raw data values 0 through 4 are read as themselves
because they are not referenced in the definition of the informat. Converting the letter values to
numbers makes it possible to calculate the total number of bonus points for each employee for
the year. TotalPoints is the total number of bonus points. The addition operator is used instead
of the SUM function so that any missing value will result in a missing value for TotalPoints.

data points;
input EmployeeId $ (Q1-Q4) (evaluation.,+1);
TotalPoints=q1+q2+q3+q4;

486 Output � Chapter 21

datalines;
2355 S O O S
5889 2 . 2 2
3878 C E E E
4409 0 1 1 1
3985 3 3 3 2
0740 S E E S
2398 E E C
5162 C C C E
4421 3 2 2 2
7385 C C C N
;

Generate a report for WORK.POINTS and associate the PTSFRMT. format with the
TotalPoints variable. The DEFINE statement performs the association. The column that
contains the formatted values of TotalPoints is using the alias Pctage. Using an alias enables
you to print a variable twice, once with a format and once with the default format. See Chapter
38, “The REPORT Procedure,” on page 937 for more information about PROC REPORT.

proc report data=work.points nowd headskip split=’#’;
column employeeid totalpoints totalpoints=Pctage;
define employeeid / right;
define totalpoints / ’Total#Points’ right;
define pctage / format=PercentageFormat12. ’Percentage’ left;
title ’The Percentage of Salary for Calculating Bonus’;

run;

Output

Output 21.4

The Percentage of Salary for Calculating Bonus 1

Employee Total

Id Points Percentage

2355 14 10%

5889 . ***ERROR***

3878 7 6%

4409 3 0%

3985 11 10%

0740 10 8%

2398 . ***ERROR***

5162 5 3%

4421 9 8%

7385 3 0%

Example 6: Printing the Description of Informats and Formats
Procedure features:

The FORMAT Procedure � Output 487

PROC FORMAT statement option:
FMTLIB

SELECT statement
Format:

NOZEROS on page 455.
Informat:

Evaluation. on page 481.

This example illustrates how to print a description of an informat and a format. The
description shows the values that are input and output.

Program

Set up a SAS library reference named LIBRARY.

libname library ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Print a description of Evaluation. and NOZEROS. The FMTLIB option prints information
about the formats and informats in the catalog that the LIBRARY= option specifies.
LIBRARY=LIBRARY points to the LIBRARY.FORMATS catalog.

proc format library=library fmtlib;

Select an informat and a format. The SELECT statement selects EVAL and NOZEROS,
which were created in previous examples. The at sign (@) in front of EVAL indicates that EVAL.
is an informat.

select @evaluation nozeros;

Specify the titles.

title ’FMTLIB Output for the NOZEROS. Format and the’;
title2 ’Evaluation. Informat’;

run;

Output

488 Example 7: Retrieving a Permanent Format � Chapter 21

The output is described in “Procedure Output” on page 472.

FMTLIB Output for the NOZEROS. Format and the 1
Evaluation. Informat

--
| FORMAT NAME: NOZEROS LENGTH: 5 NUMBER OF VALUES: 4 |
MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 5 FUZZ: STD
START
----------------+----------------+--
LOW
-1< 0<99 P-. F M100
0
1
--

--
| INFORMAT NAME: @EVALUATION LENGTH: 1 |
MIN LENGTH: 1 MAX LENGTH: 40 DEFAULT LENGTH 1 FUZZ: 0
START
----------------+----------------+--
C
E
N
O
S
--

Example 7: Retrieving a Permanent Format

Procedure features:
PROC FORMAT statement options:

LIBRARY=

Other features:
FMTSEARCH= system option

Data sets:
SAMPLE on page 454.

This example uses the LIBRARY= option and the FMTSEARCH= system option to
store and retrieve a format stored in a catalog other than WORK.FORMATS or
LIBRARY.FORMATS.

Program

Set up a SAS library reference named PROCLIB.

libname proclib ’SAS-data-library’;

The FORMAT Procedure � Program 489

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=64 pagesize=60;

Store the NOZEROS. format in the PROCLIB.FORMATS catalog.

proc format library=proclib;

Create the NOZEROS. format. The PICTURE statement defines the picture format
NOZEROS. See “Building a Picture Format: Step by Step” on page 454.

picture nozeros
low - -1 = ’00.00’ (prefix=’-’)

-1 <-< 0 = ’99’ (prefix=’-.’ mult=100)
0 -< 1 = ’99’ (prefix=’.’ mult=100)
1 - high = ’00.00’;

run;

Add the PROCLIB.FORMATS catalog to the search path that SAS uses to find
user-defined formats. The FMTSEARCH= system option defines the search path. The
FMTSEARCH= system option requires only a libref. FMTSEARCH= assumes that the catalog
name is FORMATS if no catalog name appears. Without the FMTSEARCH= option, SAS would
not find the NOZEROS. format.*

options fmtsearch=(proclib);

Print the SAMPLE data set. The FORMAT statement associates the NOZEROS. format with
the Amount variable.

proc print data=sample;
format amount nozeros.;

Specify the titles.

title1 ’Retrieving the NOZEROS. Format from PROCLIB.FORMATS’;
title2 ’The SAMPLE Data Set’;

run;

* For complete documentation on the FMTSEARCH= system option, see the section on SAS system options in SAS Language
Reference: Dictionary.

490 Output � Chapter 21

Output

Retrieving the NOZEROS. Format from PROCLIB.FORMATS 1
The SAMPLE Data Set

Obs Amount

1 -2.05
2 -.05
3 -.01
4 .00
5 .09
6 .54
7 .55
8 6.60
9 14.63

Example 8: Writing Ranges for Character Strings

Data sets:
PROCLIB.STAFF on page 474.

This example creates a format and shows how to use ranges with character strings.

Program

libname proclib ’SAS-data-library’;

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=40;

Create the TRAIN data set from the PROCLIB.STAFF data set. PROCLIB.STAFF was
created in “Examples: FORMAT Procedure” on page 474.

data train;
set proclib.staff(keep=name idnumber);

run;

Print the data set TRAIN without a format. The NOOBS option suppresses the printing of
observation numbers.

proc print data=train noobs;

The FORMAT Procedure � Program 491

Specify the title.

title ’The TRAIN Data Set without a Format’;
run;

The TRAIN Data Set without a Format 1

Id
Name Number

Capalleti, Jimmy 2355
Chen, Len 5889
Davis, Brad 3878
Leung, Brenda 4409
Martinez, Maria 3985
Orfali, Philip 0740
Patel, Mary 2398
Smith, Robert 5162
Sorrell, Joseph 4421
Zook, Carla 7385

Store the format in WORK.FORMATS. Because the LIBRARY= option does not appear, the
format is stored in WORK.FORMATS and is available only for the current SAS session.

proc format;

Create the $SkillTest. format. The $SKILL. format prints each employee’s identification
number and the skills test that they have been assigned. Employees must take either TEST A,
TEST B, or TEST C, depending on their last name. The exclusion operator (<) excludes the last
value in the range. Thus, the first range includes employees whose last name begins with any
letter from A through D, and the second range includes employees whose last name begins with
any letter from E through M. The tilde (~) in the last range is necessary to include an entire
string that begins with the letter Z.

value $skilltest ’a’-<’e’,’A’-<’E’=’Test A’
’e’-<’m’,’E’-<’M’=’Test B’
’m’-’z~’,’M’-’Z~’=’Test C’;

run;

Generate a report of the TRAIN data set. The FORMAT= option in the DEFINE statement
associates $SkillTest. with the NAME variable. The column that contains the formatted values
of NAME is using the alias Test. Using an alias enables you to print a variable twice, once with
a format and once with the default format. See Chapter 38, “The REPORT Procedure,” on page
937for more information about PROC REPORT.

proc report data=train nowd headskip;
column name name=test idnumber;
define test / display format=$skilltest. ’Test’;
define idnumber / center;
title ’Test Assignment for Each Employee’;

492 Output � Chapter 21

run;

Output

Test Assignment for Each Employee 1

Name Test IdNumber

Capalleti, Jimmy Test A 2355
Chen, Len Test A 5889
Davis, Brad Test A 3878
Leung, Brenda Test B 4409
Martinez, Maria Test C 3985
Orfali, Philip Test C 0740
Patel, Mary Test C 2398
Smith, Robert Test C 5162
Sorrell, Joseph Test C 4421
Zook, Carla Test C 7385

Example 9: Filling a Picture Format

Procedure features:
PICTURE statement options:

FILL=
PREFIX=

This example
� prefixes the formatted value with a specified character
� fills the leading blanks with a specified character
� shows the interaction between the FILL= and PREFIX= options.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=64 pagesize=40;

Create the PAY data set. The PAY data set contains the monthly salary for each employee.

data pay;
input Name $ MonthlySalary;

The FORMAT Procedure � See Also 493

datalines;
Liu 1259.45
Lars 1289.33
Kim 1439.02
Wendy 1675.21
Alex 1623.73
;

Define the SALARY. picture format and specify how the picture will be filled. When
FILL= and PREFIX= PICTURE statement options appear in the same picture, the format
places the prefix and then the fill characters. The SALARY. format fills the picture with the fill
character because the picture has zeros as digit selectors. The leftmost comma in the picture is
replaced by the fill character.

proc format;
picture salary low-high=’00,000,000.00’ (fill=’*’ prefix=’$’);

run;

Print the PAY data set. The NOOBS option suppresses the printing of observation numbers.
The FORMAT statement temporarily associates the SALARY. format with the variable
MonthlySalary.

proc print data=pay noobs;
format monthlysalary salary.;

Specify the title.

title ’Printing Salaries for a Check’;
run;

Output

Printing Salaries for a Check 1

Name MonthlySalary

Liu ****$1,259.45
Lars ****$1,289.33
Kim ****$1,439.02
Wendy ****$1,675.21
Alex ****$1,623.73

See Also
FMTSEARCH= System option
VALIDFMTNAME= System option
FORMAT Statement

494

495

C H A P T E R

22
The FORMS Procedure

Overview: FORMS Procedure 495
Syntax: FORMS Procedure 497

PROC FORMS Statement 497

BY Statement 501

FREQ Statement 501

LINE Statement 502
Concepts: FORMS Procedure 503

Form Layout 503

Modes of Operation 504

In Continuous Mode, PROC FORMS Always Writes to an External File 504

In Page Mode, PROC FORMS Can Write Either to an External File or to the Procedure
Output File 504

Examples: FORMS Procedure 505

Example 1: Printing a Single Form Unit for Each Observation 505

Example 2: Printing Two Sets of Mailing Labels 508

Example 3: Writing Multiple Copies of a Label within a Single Set of Labels 510

Overview: FORMS Procedure

The FORMS procedure produces labels for envelopes, mailing labels, external tape
labels, file cards, and any other printer forms that have a regular pattern.

For each observation in the input SAS data set, PROC FORMS prints data in a
rectangular block called a form unit. For example, a mailing label is a form unit.

Output 22.1 on page 495 illustrates a simple mailing list produced with PROC
FORMS. The statements that produce the output follow. The OBS= data set option
limits to six the number of observations that PROC FORMS processes.

options pagesize=60 linesize=64 nodate
pageno=1;

filename labels ’external-file’;

proc forms data=list(obs=6) file=labels
align=0;

line 1 name;
line 2 street;
line 3 city state zip;

run;

496 Overview: FORMS Procedure � Chapter 22

Output 22.1 Simple Mailing List Produced with PROC FORMS

Gabrielli, Theresa
24 Ridgetop Rd.
Westboro MA 01581

Clayton, Aria
314 Bridge St.
Hanover NH 03755

Dix, Martin L.
4 Shepherd St.
Norwich VT 05055

Slater, Emily C.
2009 Cherry St.
York PA 17407

Ericson, Jane
211 Clancey Court
Chapel Hill NC 27514

An, Ing
95 Willow Dr.
Charlotte NC 28211

Output 22.2 on page 496 is a customized version of the same mailing list. The
statements that create this list

� invert the name so the first name appears first
� eliminate extra spaces between the city and state
� place three form units in each row
� make three copies of each form
� use only observations from the states in New England.

For an explanation of the program that produces these labels, see Example 3 on page
510.

Output 22.2 Customized Mailing List Produced with PROC FORMS

Theresa Gabrielli Theresa Gabrielli Theresa Gabrielli
24 Ridgetop Rd. 24 Ridgetop Rd. 24 Ridgetop Rd.
Westboro MA 01581 Westboro MA 01581 Westboro MA 01581

Aria Clayton Aria Clayton Aria Clayton
314 Bridge St. 314 Bridge St. 314 Bridge St.
Hanover NH 03755 Hanover NH 03755 Hanover NH 03755

Martin L. Dix Martin L. Dix Martin L. Dix
4 Shepherd St. 4 Shepherd St. 4 Shepherd St.
Norwich VT 05055 Norwich VT 05055 Norwich VT 05055

The FORMS Procedure � PROC FORMS Statement 497

Syntax: FORMS Procedure
Requirements: At least one LINE statement

Reminder: You can use the ATTRIB, FORMAT, and WHERE statements. See Chapter 3,
“Statements with the Same Function in Multiple Procedures,” on page 53 for details.
You can also use any global statements as well. See “Global Statements” on page 18 for
a list.

PROC FORMS <option(s)>;

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

FREQ variable;

LINE line-number variable(s) </ option(s)>;

To do this Use this statement

Produce a separate set of forms for each BY group BY

Treat observations as if they appear multiple times in the input
data set

FREQ

Specify the information to print on a line of the form unit LINE

PROC FORMS Statement

PROC FORMS <option(s)>;

To do this Use this option

Specify the input data set DATA=

Identify an external file for PROC FORMS to write to FILE=

Control the dimensions of a form

Specify the number of lines in a form unit LINES=

Specify the number of columns across the form unit WIDTH=

Control the placement of the forms

Specify the number of form units to print across the page ACROSS=

Specify the number of spaces to print between form units BETWEEN=

498 PROC FORMS Statement � Chapter 22

To do this Use this option

Specify the number of lines to skip on a page before
printing the first form unit

DOWN=

Specify the number of spaces to indent before printing the
first form unit in each row

INDENT=

Specify the number of form units to print down the page NDOWN=

Specify the number of lines on a page of forms PAGESIZE=

Specify the number of lines to skip between form units SKIP=

Control the number of each form unit that PROC FORMS prints

Specify the number of form units to produce for each
observation in each set of form units

COPIES=

Specify the number of sets of form units to produce SETS=

Control the placement of page eject characters CC

Specify the number of lines of dummy form units to print ALIGN=

Options

ACROSS=form-units-per-line
specifies the number of form units to print across the page. (See Figure 22.1 on page
504.)
Alias: A=
Default: 1
Range: 1-200
Featured in: Example 1 on page 505

ALIGN=number
controls the number of alignment form units that print before the actual data values.
Use the alignment form units, which consist solely of Xs, to check printer alignment.
Default: 8 with FILE=; 0 without FILE=
Interaction: If you use ACROSS=, the number of dummy form units that print is

the product of the values of ACROSS= and ALIGN=.
Featured in: Example 1 on page 505

BETWEEN=spaces-between-form-units
specifies the number of spaces to print between form units. (See Figure 22.1 on page
504.)
Alias: B=
Default: 1
Range: 1-200
Featured in: Example 1 on page 505

CC
in continuous mode, writes a page-eject character at the top of the first page. In page
mode, if you also specify FILE=, CC writes a page-eject character at the top of each
page. (CC has no effect if you omit FILE=.) For a discussion of page mode and
continuous mode, see “Modes of Operation” on page 504.

The FORMS Procedure � PROC FORMS Statement 499

Tip: If you omit CC, PROC FORMS issues blank lines to go to the next page. We
recommend that you always use CC with page-mode operation.

Featured in: Example 2 on page 508

COPIES=number
specifies the number of form units to produce for each observation in each set of form
units. All copies of an observation appear together.
Alias: C=
Default: 1
Featured in: Example 3 on page 510

DATA=SAS-data-set
identifies the input SAS data set.

DOWN=top-margin
specifies the number of lines to skip on a page before printing the first form unit.
(See Figure 22.1 on page 504.)
Alias: D=
Default: 1
Range: 1-200
Featured in: Example 1 on page 505

Note: When PROC FORMS writes to the procedure output file, it uses one line
for each TITLE statement and leaves a blank line beneath the last title. Counting for
the top margin begins at the next line. Thus, if you have two TITLE statements and
specify DOWN=5, PROC FORMS begins printing the first form unit on each page on
line 9. �

FILE=fileref
identifies an external file for PROC FORMS to write to. Use the FILENAME
statement to associate an external file with a fileref (see SAS Language Reference:
Concepts).
Alias: DDNAME=, D=
Default: If you omit FILE=, PROC FORMS writes to the procedure output file and

selects page mode.
Interaction: If you use FILE= and do not specify the ALIGN= option, PROC

FORMS uses ALIGN=8.
Interaction: When you use FILE=, PROC FORMS honors DOWN= only on the first

page of form units.
Interaction: If you use FILE= with NDOWN= or PAGESIZE= or both, you select

page mode. Otherwise, you select continuous mode.
Featured in: Example 1 on page 505

INDENT=left-margin
specifies the number of spaces to indent before printing the first form unit in each
row. (See Figure 22.1 on page 504.)
Alias: I=
Default: 0
Range: 0-200

LINES=form-unit-length
specifies the number of lines in a form unit. (See Figure 22.1 on page 504.)
Alias: L=
Default: the largest number used with the LINE statement

500 PROC FORMS Statement � Chapter 22

Range: 1-200

NDOWN=form-units-per-page
specifies the number of form units to print down the page and selects page-mode
operation. (See Figure 22.1 on page 504.)
Alias: ND=
Default: FLOOR((PAGESIZE−DOWN+SKIP)/(LINES+SKIP)) where FLOOR is a

SAS function that returns the largest integer less than or equal to the value of the
argument.

Interaction: If NDOWN= specifies a number of form units that is less than
PAGESIZE= allows, PROC FORMS honors NDOWN=. If NDOWN= specifies a
number of form units that is greater than PAGESIZE= allows, PROC FORMS
adjusts the value of NDOWN= downwards to accommodate the page size.

Featured in: Example 2 on page 508

PAGESIZE=lines-per-page
specifies the number of lines on a page of forms after allowing for TITLE statements
and a blank line following the titles. (See Figure 22.1 on page 504.) It also selects
page-mode operation.
Alias: PS=
Default: the system page size (with FILE=); inferred from the characteristics of the

procedure output file and from title information (without FILE=)
Range: the value of DOWN= plus the value of LINES=, up to 10,000
Interaction: When you write to the procedure output, if the page size that you

specify is greater than the page size specified by the SAS system option
PAGESIZE=, PROC FORMS adjusts the PROC FORMS page size to accommodate
the system page size.

Interaction: If the page size allows for more form units than NDOWN= specifies,
PROC FORMS honors the NDOWN= option. If the page size does not allow for as
many form units as NDOWN= specifies, PROC FORMS adjusts the value of
NDOWN= to accommodate the page size.

SETS=number
specifies the number of sets of form units to produce. In page-mode operation, PROC
FORMS starts each set on a new page.
Default: 1
Featured in: Example 2 on page 508

SKIP=lines-between-form-units
specifies the number of lines to skip between form units. (See Figure 22.1 on page
504.)
Alias: S=
Default: 1
Range: 1-200
Featured in: Example 1 on page 505

WIDTH=form-unit-width
specifies the number of columns across the form unit. PROC FORMS truncates
values that do not fit in the specified width. (See Figure 22.1 on page 504.)
Alias: W=
Default: width of the widest line
Range: 1-255
Featured in: Example 1 on page 505

The FORMS Procedure � FREQ Statement 501

BY Statement

Produces a separate set of forms for each BY group.

Main discussion: “BY” on page 54

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately. Variables in a BY statement
are called BY variables.

Options

DESCENDING
specifies that the data set is sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

How PROC FORMS Separates BY Groups
In page mode, the forms for each BY group begin on a new page. In continuous

mode, BY groups are not separated.

FREQ Statement

Treats observations as if they appear multiple times in the input data set.

FREQ variable;

502 LINE Statement � Chapter 22

Required Arguments

variable
specifies a numeric variable whose value represents the frequency of each
observation. If you use the FREQ statement, the procedure assumes that each
observation in the input data set represents n observations, where n is the value of
variable. If n is not an integer, the SAS System truncates it. If n is less than 1
(which includes missing), the procedure does not use that observation.

The sum of the frequency variable represents the total number of observations.

LINE Statement

Specifies the information to print on one line of the form unit. Use one LINE statement for each
line of the form unit.

LINE line-number variable(s) </ option(s)>;

To do this Use this option

Specify the number of spaces to indent the line within the form unit INDENT=

Rotate the words in a character variable that contains a comma around
the comma and remove the comma

LASTNAME

Remove extra blanks from the line so that one blank separates variables PACK

Remove periods that represent missing values from a line that contains
no other values.

REMOVE

Required Arguments

line-number
identifies the number of the line. You can specify lines in any order. You do not need
a LINE statement for a blank line.

Range: An integer between 1 and the value of LINES= in the PROC FORMS
statement

variable(s)
specifies one or more variables to print on this line of the form unit. The FORMS
procedure inserts one space between each value. By default, the width of a variable’s
field in the form unit is the formatted length of that variable. Default formats are
the length of the variable for character variables and BEST12. for numeric variables.

Interaction: If the length of all values in a line is longer than the value of WIDTH=
specified in the PROC FORMS statement, PROC FORMS truncates the values

The FORMS Procedure � Form Layout 503

(starting with the rightmost value in the line) to fit the WIDTH= value. For
information on squeezing variables onto a line, see PACK on page 503.

Options

INDENT=margin-within-form-unit
specifies the number of spaces to indent the line within the form unit. Contrast this
option to INDENT= in the PROC FORMS statement, which specifies the size of the
left margin preceding the first form unit in each row.
Alias: I=
Featured in: Example 1 on page 505

LASTNAME
rotates the words in a character variable that contains a comma around the comma
and removes the comma.
Alias: L
Featured in: Example 1 on page 505

PACK
removes extra blanks from the line so that one blank separates variables.
Alias: P
Tip: PACK can squeeze fields onto a form unit, but if the values for all the variables

are long, you may lose an entire field. To avoid this problem, use a FORMAT
statement to limit the space for each variable. For example, the following
statement sets the field widths of the variables CITY and STATE to 20 and 2
columns, respectively:

format city $20. state $2.;

Featured in: Example 1 on page 505

REMOVE
removes periods that represent missing values from a line that contains no other
values.
Alias: R

Concepts: FORMS Procedure

Form Layout
The size and spacing of form units are controlled by options in the PROC FORMS

statement, as illustrated in Figure 22.1 on page 504. (See also the discussion of these
options on page 498.)

504 Modes of Operation � Chapter 22

Figure 22.1 Sample Placement for Forms

PAGESIZE=

form unit

NODOWN=, number
of units

down the page

form unit

form unit

ACROSS=, number
of units

across the page

WIDTH=
LINES=

BETWEEN=INDENT=

DOWN=

SKIP=

The values of the variables specified in LINE statements are formatted into a form
unit that is WIDTH= columns wide and LINES= lines long. Values that do not fit into
WIDTH= columns are truncated. ACROSS= form units are printed across the page,
with BETWEEN= spaces between adjacent form units. The forms are indented
INDENT= spaces from the left margin. SKIP= blank lines are printed between form
units down the page.

Modes of Operation
PROC FORMS operates in two modes: continuous mode and page mode. Continuous

mode is for forms that feed continuously through a printer, without the printer’s
needing to perform page ejects. Page mode is for forms that use separate pieces of
paper for each form unit or for multiple form units (such as sheets of labels that come
with 30 labels per sheet of paper).

By default, PROC FORMS uses page mode. To select continuous mode, you must
specify FILE= and must not specify NDOWN= or PAGESIZE=.

In Continuous Mode, PROC FORMS Always Writes to an External File
When it writes in continuous mode, PROC FORMS
1 skips the number of lines specified by DOWN=

2 prints one form unit

3 skips the number of lines specified by SKIP=
4 repeats steps 2 and 3 until it uses all the data.

By default, in continuous mode the first eight form units are dummy form units that
consist solely of Xs. These forms give the printer operator a chance to align the printer
before real form units begin to print. Use ALIGN= to alter the number of dummy form
units. Once the dummy form units are aligned to the physical forms, the file prints
correctly. Carriage control characters are unnecessary.

In Page Mode, PROC FORMS Can Write Either to an External File or to the
Procedure Output File

In page mode, PROC FORMS

1 goes to the top of a new page
2 skips the number of lines specified by DOWN=

The FORMS Procedure � Example 1: Printing a Single Form Unit for Each Observation 505

3 prints the number of form units specified by NDOWN= down the page, or if you
omit NDOWN=, prints the maximum number of form units allowed by the page
size

4 repeats steps 1 to 3 until it uses all the data.

When PROC FORMS has written as many form units as you specified, either it
writes a blank line for each line remaining on the page (as determined by the
PAGESIZE= option) or it writes a page-eject character. If you are writing to the
procedure output file, PROC FORMS always writes the page-eject characters. If you
have specified FILE=, PROC FORMS by default writes blank lines, but if you specify
the CC option, it writes page eject characters instead.

In page mode, the easiest way to ensure proper alignment is to specify the number of
form units to print down the page with the NDOWN= option and to use CC to write a
page-eject character at the beginning of each page. If you omit CC, be sure that the
page size is set correctly. If it isn’t, the number of blank lines that PROC FORMS
writes will not take you to the top of the next page.

Note: We recommend that you always use CC when you use page mode with the
FILE= option. �

CAUTION:
The procedure output file contains some things that you may not want on your forms. If
you omit the FILE= option, the output from PROC FORMS goes to the procedure
output file. If the DATE and NUMBER options are in effect, the output will contain
dates and page numbers. If any titles or footnotes are defined, they will appear in
the output as well. �

Examples: FORMS Procedure
The examples in this chapter assume alignment for the forms that they use. You

must experiment to determine how to align your form units with your forms.

Example 1: Printing a Single Form Unit for Each Observation

Procedure features:
PROC FORMS statement options:

ACROSS=
ALIGN=
BETWEEN=
DOWN=
FILE=
SKIP=
WIDTH=

LINE statement options:
INDENT=
LASTNAME
PACK

Other features:

506 Program � Chapter 22

SORT procedure

This example uses PROC FORMS to print one set of mailing labels consisting of one
copy of the form unit for each observation.

Program

Create the LIST data set and sort by zip code. The data set LIST contains names and
mailing addresses. PROC SORT sorts the data by zip code.

options nodate pageno=1 linesize=80 pagesize=60;
data list;

input Name $ 1-19 Street $ 20-39 City $ 40-54
State $ 55-56 Zip $ 59-63;

datalines;
Ericson, Jane 211 Clancey Court Chapel Hill NC 27514
Dix, Martin L. 4 Shepherd St. Norwich VT 05055
Gabrielli, Theresa 24 Ridgetop Rd. Westboro MA 01581
Clayton, Aria 314 Bridge St. Hanover NH 03755
Archuleta, Ruby Box 108 Milagro NM 87429
Misiewicz, Jeremy 43-C Lakeview Apts. Madison WI 53704
Ahmadi, Hafez 5203 Marston Way Boulder CO 80302
Jacobson, Becky 7 Lincoln St. Tallahassee FL 32312
An, Ing 95 Willow Dr. Charlotte NC 28211
Slater, Emily C. 2009 Cherry St. York PA 17407
;

proc sort data=list;
by zip;

run;

Specify a name for the external file. The FILENAME statement associates the name
LABELS with the external file that will receive the output from PROC FORMS.

filename labels ’external-file’;

Send a single form unit for each observation to the LABELS external file. FILE= sends
the output to the file associated with the fileref LABELS. Because neither NDOWN= nor
PAGESIZE= is specified, PROC FORMS uses continuous mode. WIDTH= sets the width of the
form units to 24 to provide enough room for all the variables on each line. ACROSS= writes
three form units across each page. BETWEEN= puts four blank characters between adjacent
form units. DOWN= skips two lines at the top of the file so that the form units and the forms
align correctly. SKIP= skips two lines between form units to maintain the proper alignment.
ALIGN= prints two lines of dummy form units.

proc forms data=list file=labels
width=24
across=3
between=4

The FORMS Procedure � Output 507

down=2
skip=2
align=2;

Specify the variables to place on each line. The LINE statements specify the variables to
place on each line. LASTNAME removes the comma from Name and writes the first name
before the last name. PACK removes extra blank characters between City and State. INDENT=
indents Zip 15 spaces.

line 1 name / lastname;
line 2 street;
line 3 city state / pack;
line 4 zip / indent=15;

run;

Output

XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX

Theresa Gabrielli Aria Clayton Martin L. Dix
24 Ridgetop Rd. 314 Bridge St. 4 Shepherd St.
Westboro MA Hanover NH Norwich VT

01581 03755 05055

Emily C. Slater Jane Ericson Ing An
2009 Cherry St. 211 Clancey Court 95 Willow Dr.
York PA Chapel Hill NC Charlotte NC

17407 27514 28211

Becky Jacobson Jeremy Misiewicz Hafez Ahmadi
7 Lincoln St. 43-C Lakeview Apts. 5203 Marston Way
Tallahassee FL Madison WI Boulder CO

32312 53704 80302

Ruby Archuleta
Box 108
Milagro NM

87429

508 Example 2: Printing Two Sets of Mailing Labels � Chapter 22

Example 2: Printing Two Sets of Mailing Labels
Procedure features:

PROC FORMS statement options:
ALIGN=
CC
FILE=
NDOWN=
SETS=

Data set:
LIST on page 506

This example uses page mode and SETS= to produce two sets of mailing labels. Each
sheet of labels holds four rows of two labels.

Program

Specify a name for the external file. The FILENAME statement associates the name
LABELS with the external file that will receive the output from PROC FORMS.

filename labels ’external-file’;

options nodate pageno=1 linesize=80 pagesize=60 ;

Send two sets of form units to the LABELS external file. FILE= sends the output to the
file associated with the fileref LABELS. NDOWN= prints four rows of form units on each page.
CC writes carriage control characters to the file specified by FILE=. WIDTH= sets the width of
the form units to 24 to provide enough room for the variables on each line. ACROSS= writes two
form units across each page. BETWEEN= puts 20 blank characters between adjacent form
units. DOWN= skips two lines at the top of each page so that the form units and the forms align
correctly. SKIP= skips three lines between form units to maintain the proper alignment.
ALIGN= suppresses the printing of dummy form units. SETS= writes two sets of form units.
Each set begins on a new page.

proc forms data=list file=labels
ndown=4
cc
width=24
across=2
between=20
down=2
skip=3
align=0
sets=2;

Specify the variables to place on each line. The LINE statements specify the variables to
place on each line. PACK removes extra blank characters between City and State.

The FORMS Procedure � Output 509

line 1 name;
line 2 street;
line 3 city state zip / pack;

run;

Output

Gabrielli, Theresa Clayton, Aria
24 Ridgetop Rd. 314 Bridge St.
Westboro MA 01581 Hanover NH 03755

Dix, Martin L. Slater, Emily C.
4 Shepherd St. 2009 Cherry St.
Norwich VT 05055 York PA 17407

Ericson, Jane An, Ing
211 Clancey Court 95 Willow Dr.
Chapel Hill NC 27514 Charlotte NC 28211

Jacobson, Becky Misiewicz, Jeremy
7 Lincoln St. 43-C Lakeview Apts.
Tallahassee FL 32312 Madison WI 53704

Ahmadi, Hafez Archuleta, Ruby
5203 Marston Way Box 108
Boulder CO 80302 Milagro NM 87429

Gabrielli, Theresa Clayton, Aria
24 Ridgetop Rd. 314 Bridge St.
Westboro MA 01581 Hanover NH 03755

Dix, Martin L. Slater, Emily C.
4 Shepherd St. 2009 Cherry St.
Norwich VT 05055 York PA 17407

Ericson, Jane An, Ing
211 Clancey Court 95 Willow Dr.
Chapel Hill NC 27514 Charlotte NC 28211

Jacobson, Becky Misiewicz, Jeremy
7 Lincoln St. 43-C Lakeview Apts.
Tallahassee FL 32312 Madison WI 53704

510 Example 3: Writing Multiple Copies of a Label within a Single Set of Labels � Chapter 22

Ahmadi, Hafez Archuleta, Ruby
5203 Marston Way Box 108
Boulder CO 80302 Milagro NM 87429

Example 3: Writing Multiple Copies of a Label within a Single Set of Labels

Procedure features:
PROC FORMS statement options:

COPIES=
LINE statement options:

LASTNAME
PACK

Data set: LIST on page 506

This example writes one set of mailing labels that consists of three copies of each form
unit. It selects only those observations with addresses in one of the New England states.

Program

Specify a name for the external file. The FILENAME statement associates the name
LABELS with the external file that will receive the output from PROC FORMS.

filename labels ’external-file’;

options pagesize=60 pageno=1 nodate linesize=80;

Send three copies of each form unit to the LABELS external file. FILE= sends the output
to the file associated with the fileref LABELS. NDOWN= prints five rows of form units on each
page. CC writes carriage control characters to the file specified by FILE=. ALIGN= suppresses
the printing of dummy form units. WIDTH= sets the width of the form units to 24 to provide
enough room for the variables on each line. ACROSS= writes three form units across each page.
DOWN= skips two lines at the top of each page so that the form units and the forms align
correctly. SKIP= skips two lines between form units to maintain the proper alignment.
COPIES= writes three copies of each form unit.

proc forms data=list file=labels
ndown=5
cc
align=0
width=24
across=3
down=2
skip=2

The FORMS Procedure � Output 511

copies=3;

Specify the variables to place on each line. The LINE statements specify the variables to
place on each line. LASTNAME removes the comma from Name and writes the first name
before the last name. PACK removes extra blank characters between City and State.

line 1 name / lastname;
line 2 street;
line 3 city state zip / pack;

Specify the observations for the external file. The WHERE statement selects observations
where State is one of the New England states.

where state in(’ME’, ’NH’, ’VT’, ’MA’, ’CT’, ’RI’);
run;

Output

Theresa Gabrielli Theresa Gabrielli Theresa Gabrielli
24 Ridgetop Rd. 24 Ridgetop Rd. 24 Ridgetop Rd.
Westboro MA 01581 Westboro MA 01581 Westboro MA 01581

Aria Clayton Aria Clayton Aria Clayton
314 Bridge St. 314 Bridge St. 314 Bridge St.
Hanover NH 03755 Hanover NH 03755 Hanover NH 03755

Martin L. Dix Martin L. Dix Martin L. Dix
4 Shepherd St. 4 Shepherd St. 4 Shepherd St.
Norwich VT 05055 Norwich VT 05055 Norwich VT 05055

512

513

C H A P T E R

23
The FREQ Procedure

Overview: FREQ Procedure 515
Syntax: FREQ Procedure 518

PROC FREQ Statement 518

BY Statement 521

EXACT Statement 521

OUTPUT Statement 524
TABLES Statement 528

TEST Statement 539

WEIGHT Statement 540

Concepts: FREQ Procedure 541

Inputting Frequency Counts 541

Grouping with Formats 542
Computational Resources 543

Statistical Computations: FREQ Procedure 544

Definitions and Notation 544

Scores 545

Chi-Square Tests and Statistics 546
Chi-Square Test for One-Way Tables 546

Chi-Square Test for Two-Way Tables 547

Likelihood-Ratio Chi-Square Test 547

Continuity-Adjusted Chi-Square Test 548

Mantel-Haenszel Chi-Square Test 548
Fisher’s Exact Test 548

Phi Coefficient 549

Contingency Coefficient 550

Cramer’s V 550

Measures of Association 550

Confidence Limits 551
Asymptotic Tests 551

Exact Tests 552

Gamma 552

Kendall’s Tau-b 552

Stuart’s Tau-c 553
Somers’ D 554

Pearson Correlation Coefficient 555

Spearman Rank Correlation Coefficient 556

Polychoric Correlation 558

Lambda Asymmetric 558
Lambda Symmetric 559

Uncertainty Coefficient Asymmetric 559

Uncertainty Coefficient Symmetric 560

514 Contents � Chapter 23

Binomial Proportion 560
Risks and Risk Differences 562

Odds Ratio and Relative Risks for 2�2 Tables 564

Odds Ratio (Case-Control Studies) 564

Relative Risks (Cohort Studies) 565

Cochran-Armitage Test for Trend 566
Jonckheere-Terpstra Test 567

Tests and Measures of Agreement 569

McNemar’s Test 569

Bowker’s Test of Symmetry 569

Simple Kappa Coefficient 570

Weighted Kappa Coefficient 571
Overall Kappa Coefficient 573

Tests for Equal Kappa Coefficients 573

Cochran’s Q Test 574

Tables with Zero Rows or Columns 574

Cochran-Mantel-Haenszel Statistics 574
Correlation Statistic 576

ANOVA (Row Mean Scores) Statistic 576

General Association Statistic 577

Adjusted Odds Ratio and Relative Risk Estimates 577

Odds Ratio (Case-Control Studies): Mantel-Haenszel Adjusted 578
Odds Ratio (Case-Control Studies): Adjusted Logit 579

Relative Risks (Cohort Studies) 579

Breslow-Day Test for Homogeneity of the Odds Ratios 580

Exact Statistics 581

Computational Algorithms 581

Definition of p-Values 582
Computational Resources 583

Monte Carlo Estimation 584

Results: FREQ Procedure 585

Missing Values 585

ODS Table Names 586
Procedure Output 589

Suppressing the Displayed Output 590

Output Data Sets 590

Contents of the TABLES Statement Output Data Set 590

Contents of the OUTPUT Statement Output Data Set 591
Examples: FREQ Procedure 592

Example 1: Creating an Output Data Set with Table Cell Frequencies 592

Example 2: Computing Chi-Square Tests for One-Way Frequency Tables 596

Example 3: Computing Binomial Proportions for One-Way Frequency Tables 599

Example 4: Analyzing a 2�2 Contingency Table 601

Example 5: Creating an Output Data Set Containing Chi-Square Statistics 605
Example 6: Computing Cochran-Mantel-Haenszel Statistics for a Stratified Table 609

Example 7: Computing the Cochran-Armitage Trend Test 611

Example 8: Computing Friedman’s Chi-Square Statistic 615

Example 9: Testing Marginal Homogeneity with Cochran’s Q 618

References 623

The FREQ Procedure � Overview: FREQ Procedure 515

Overview: FREQ Procedure
The FREQ procedure is a descriptive as well as a statistical procedure that produces

one-way to n-way frequency and crosstabulation tables. Frequency tables concisely
describe your data by reporting the distribution of variable values. Crosstabulation
tables, also known as contingency tables, summarize data for two or more classification
variables by showing the number of observations for each combination of variable
values.

For one-way frequency tables, PROC FREQ can compute statistics to test for equal
proportions, specified proportions, or the binomial proportion. For contingency tables,
PROC FREQ can compute various statistics to examine the relationships between two
classification variables adjusting for any stratification variables. PROC FREQ
automatically displays the output in a report and can also save the output in a SAS
data set.

For some pairs of variables, you may want to examine the existence or the strength
of any association between the variables. To determine the existence of an association,
PROC FREQ computes statistics that test the null hypothesis of no association. To
determine the strength of an association, PROC FREQ computes measures of
association that tend to be close to zero when there is no association and close to their
maximums (or minimums) when there is perfect association. The statistics for
contingency tables include

� chi-square tests and measures
� measures of association and tests of these measures
� risks (or binomial proportions) and risk differences for 2�2 tables
� odds ratios and relative risks for 2�2 tables
� tests for trend
� tests and measures of agreement
� Cochran-Mantel-Haenszel statistics.

PROC FREQ computes asymptotic standard errors, confidence limits, and tests for
measures of association and measures of agreement. Exact p-values and confidence
limits are available for various test statistics and measures. PROC FREQ also performs
stratified analyses that compute statistics within, as well as across, strata for n-way
tables. The statistics include Cochran-Mantel-Haenszel statistics and measures of
agreement.

Output 23.1 on page 515 is the simplest form of PROC FREQ output. The one-way
frequency tables of hair and eye color show the distributions of these variables. PROC
FREQ lists each variable value along with the frequencies and percentages. The
statements that produce the output follow:

proc freq data=color;
run;

516 Overview: FREQ Procedure � Chapter 23

Output 23.1 One-Way Frequency Tables Produced with PROC FREQ

The SAS System 1

The FREQ Procedure

Eye Color

Cumulative Cumulative
Eyes Frequency Percent Frequency Percent
--
blue 222 29.13 222 29.13
brown 341 44.75 563 73.88
green 199 26.12 762 100.00

Hair Color

Cumulative Cumulative
Hair Frequency Percent Frequency Percent

black 22 2.89 22 2.89
dark 182 23.88 204 26.77
fair 228 29.92 432 56.69
medium 217 28.48 649 85.17
red 113 14.83 762 100.00

In addition to listing the frequency distribution separately for each variable, you can
create a crosstabulation table to show the joint frequency distribution for the two
variables. Output 23.2 on page 516 shows a two-way crosstabulation table and
chi-square statistics that test the association between eye and hair color of children
from two regions of Europe. The statements that produce this 3�5 table also

� order the variable values according to their appearance in the data set
� exclude the row and column percentages for each cell
� include the expected frequency for each cell
� include each cell’s contribution to the total Pearson chi-square statistic.

In addition to displaying the statistics, the program creates an output data set that
contains selected chi-square statistics. For an explanation of the program that produces
this output, see Example 5 on page 605.

The FREQ Procedure � Overview: FREQ Procedure 517

Output 23.2 Chi-Square Statistics Produced with PROC FREQ

Chi-Square Tests for 3 by 5 Table of Eye and Hair Color 1

The FREQ Procedure

Table of Eyes by Hair

Eyes(Eye Color) Hair(Hair Color)

Frequency |

Expected |

Cell Chi-Square|

Percent |fair |red |medium |dark |black | Total

---------------+--------+--------+--------+--------+--------+

blue | 69 | 28 | 68 | 51 | 6 | 222

| 66.425 | 32.921 | 63.22 | 53.024 | 6.4094 |

| 0.0998 | 0.7357 | 0.3613 | 0.0772 | 0.0262 |

| 9.06 | 3.67 | 8.92 | 6.69 | 0.79 | 29.13

---------------+--------+--------+--------+--------+--------+

green | 69 | 38 | 55 | 37 | 0 | 199

| 59.543 | 29.51 | 56.671 | 47.53 | 5.7454 |

| 1.5019 | 2.4422 | 0.0492 | 2.3329 | 5.7454 |

| 9.06 | 4.99 | 7.22 | 4.86 | 0.00 | 26.12

---------------+--------+--------+--------+--------+--------+

brown | 90 | 47 | 94 | 94 | 16 | 341

| 102.03 | 50.568 | 97.109 | 81.446 | 9.8451 |

| 1.4187 | 0.2518 | 0.0995 | 1.935 | 3.8478 |

| 11.81 | 6.17 | 12.34 | 12.34 | 2.10 | 44.75

---------------+--------+--------+--------+--------+--------+

Total 228 113 217 182 22 762

29.92 14.83 28.48 23.88 2.89 100.00

Statistics for Table of Eyes by Hair

Statistic DF Value Prob

--

Chi-Square 8 20.9248 0.0073

Likelihood Ratio Chi-Square 8 25.9733 0.0011

Mantel-Haenszel Chi-Square 1 3.7838 0.0518

Phi Coefficient 0.1657

Contingency Coefficient 0.1635

Cramer’s V 0.1172

Sample Size = 762

Output 23.3 An Output Data Set That Contains Chi-Square Statistics

Chi-Square Statistics for Eye and Hair Color 2
Output Data Set from the FREQ Procedure

N NMISS _PCHI_ DF_PCHI P_PCHI _LRCHI_ DF_LRCHI P_LRCHI

762 0 20.9248 8 .007349898 25.9733 8 .001061424

Several SAS procedures produce frequency counts; only PROC FREQ computes
chi-square tests, measures of association, and measures of agreement for contingency
tables. Other procedures to consider for counting are PROC TABULATE for more
general table layouts; PROC REPORT for tables and customized summaries, PROC
CHART for bar charts and other graphical representations; and PROC UNIVARIATE
with the FREQ option for one-way frequency tables. When you want to fit models to

518 Syntax: FREQ Procedure � Chapter 23

categorical data, use a SAS/STAT procedure such as CATMOD, GENMOD, LOGISTIC,
PHREG, or PROBIT. For more information on selecting the appropriate statistical
analyses, refer to An Introduction to Categorical Data Analysis (Agresti, 1996) or
Categorical Data Analysis Using the SAS System (Stokes, et al. 2000).

Syntax: FREQ Procedure
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
Reminder: You can use the FORMAT, LABEL, and WHERE statements. See Chapter 3,
“Statements with the Same Function in Multiple Procedures,” on page 53 for details.
You can also use any global statements as well. See “Global Statements” on page 18 for
a list.

PROC FREQ <option(s)>;
BY <DESCENDING> variable-1 <…<DESCENDING> variable-n> <NOTSORTED>;
EXACT statistic-keyword(s) </ option(s)>;
OUTPUT statistic-keyword(s) <OUT=SAS-data-set>;
TABLES request(s) </ option(s)>;
TEST statistic-keyword(s);
WEIGHT variable</ option>;

To do this Use this statement

Calculate separate frequency or crosstabulation tables for each
BY group

BY

Request exact tests for specified statistics EXACT

Create an output data set that contains specified statistics OUTPUT

Specify frequency or crosstabulation tables and request tests
and measures of association

TABLES

Request asymptotic tests for measures of association and
agreement

TEST

Identify a variable whose values weight each observation WEIGHT

PROC FREQ Statement

PROC FREQ <option(s)>;

The FREQ Procedure � PROC FREQ Statement 519

To do this Use this option

Specify the input data set DATA=

Control printed output

Begin the next one-way table on the current page even if the
entire table does not fit on that page

COMPRESS

Specify the outline and cell divider characters for the cells of
the crosstabulation tables

FORMCHAR=

Suppress all displayed output NOPRINT

Specify the order to list the variable values ORDER=

Display one table per page PAGE

Options

COMPRESS
begins to display the next one-way frequency table on the same page as the preceding
one-way table when there is enough space to begin the table. By default, the next
one-way table begins on the current page only if the entire table fits on that page.

Restriction: not valid with PAGE

Tip: COMPRESS saves paper and screen space.

DATA=SAS-data-set
specifies the input SAS data set.

Main discussion: “Procedure Concepts” on page 19

FORMCHAR <(position(s))>=’formatting-character(s)’
defines the characters to use for constructing the outlines and dividers for the cells of
crosstabulation tables.

position(s)
identifies the position of one or more characters in the SAS formatting-character
string. A space or a comma separates the positions.

Default: Omitting (position(s)), is the same as specifying all 20 possible SAS
formatting characters, in order.

Range: PROC FREQ uses formatting characters 1, 2, and 7. Table 23.1 on page
520 shows the formatting characters that PROC FREQ uses.

formatting-character(s)
lists the characters to use for the specified positions. PROC FREQ assigns
characters in formatting-character(s) to position(s), in the order that they are
listed. For instance, the following option assigns the asterisk (*) to the second
formatting character, the pound sign (#) to the seventh character, and does not
alter the remaining characters:

formchar(2,7)=’*#’

Interaction: The SAS system option FORMCHAR= specifies the default formatting
characters. The system option defines the entire string of formatting characters.
Specifying the FORMCHAR= option in a procedure can redefine selected
characters.

520 PROC FREQ Statement � Chapter 23

Tip: You can use any character in formatting-characters, including hexadecimal
characters. If you use hexadecimal characters, you must put an x after the closing
quote. For example the following option assigns the hexadecimal character 2D to
the second formatting character, the hexadecimal character 7C to the seventh
character, and does not alter the remaining characters:

formchar(2,7)=’2D7C’x

Tip: Assigning a blank space to each formatting-character produces tables without
any outlines or dividers:

formchar (1,2,7)=’ ’
(3 spaces)

See also: For information on which hexadecimal codes to use for which characters,
consult the documentation for your hardware.

Table 23.1 Formatting Characters Used by PROC FREQ

Position Default Used to draw

1 | Vertical separators

2 - Horizontal separators

7 + Intersections of vertical and horizontal separators

NOPRINT
suppresses all displayed output from PROC FREQ.
Interaction: NOPRINT in the PROC statement disables the Output Delivery

System for the entire PROC step.
Tip: Use NOPRINT when you want to create only an output data set with the

OUTPUT statement or with the OUT= option in the TABLES statement.

Note: NOPRINT is also available in the TABLES statement where it suppresses
the tables, but displays the requested statistics. �

ORDER=DATA | FORMATTED | FREQ | INTERNAL
orders the values of the frequency and crosstabulation table variables according to
the specified order, where

DATA
orders values according to their order in the input data set.

FORMATTED
orders values by their formatted values. This order is operating
environment-dependent. By default, the order is ascending.

FREQ
orders values by descending frequency count.

INTERNAL
orders values by their unformatted values, which yields the same order as PROC
SORT. This order is operating environment-dependent.

Default: INTERNAL
Restriction: ORDER= does not apply to missing values, which always appear first.

Featured in: Example 2 on page 596 and Example 3 on page 599

PAGE

The FREQ Procedure � EXACT Statement 521

displays only one table per page.
Default: displays multiple tables per page as space permits
Restriction: not valid with COMPRESS

BY Statement
Calculates separate analysis for each BY group.

Main discussion: “Statements” on page 54
Featured in: Example 2 on page 596

BY <DESCENDING> variable-1 <…<DESCENDING> variable-n> <NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

EXACT Statement
Requests exact tests or confidence limits for the specified statistics. Optionally requests Monte
Carlo estimates of the exact p-values.

Requirements: TABLES statement
Main discussion: “Exact Statistics” on page 581
Featured in: Example 4 on page 601

522 EXACT Statement � Chapter 23

EXACT statistic-keyword(s) </ option(s)>;

Required Arguments

statistic-keyword(s)
specifies the statistics for which to provide exact tests or confidence limits. PROC
FREQ can compute exact p-values for the following hypothesis tests: chi-square
goodness-of-fit for one-way tables; Pearson chi-square, likelihood-ratio chi-square,
Mantel-Haenszel chi-square, Fisher’s exact test, Jonckheere-Terpstra test,
Cochran-Armitage test for trend, and McNemar’s test for two-way tables. PROC
FREQ can also compute exact p-values for tests of hypotheses that the following
statistics are equal to zero: Pearson correlation coefficient, Spearman correlation
coefficient, simple kappa coefficient, and weighted kappa coefficient. PROC FREQ
can compute exact p-values for the binomial proportion test, as well as exact
confidence limits for the binomial proportion. Additionally, PROC FREQ can compute
exact confidence limits for odds ratios for 2�2 tables.

The statistic keywords are identical to options in the TABLES statement and
keywords in the OUTPUT statement. You can request exact computations for groups
of statistics by using keywords that are identical to the following TABLES statement
options: CHISQ, MEASURES, and AGREE. For example, when you specify CHISQ
in the EXACT statement, PROC FREQ computes exact p-values for the available
CHISQ statistics (Pearson chi-square, likelihood-ratio chi-square, and
Mantel-Haenszel chi-square). You request exact p-values for an individual statistic
by specifying a keyword shown in Table 23.2 on page 522.

Note: PROC FREQ computes exact tests by using fast and efficient algorithms
that are superior to direct enumeration. This technique is appropriate when a data
set is small, sparse, skewed, or heavily tied. For some large problems, exact
computations may require a large amount of time or memory. Consider using the
asymptotic tests for such problems. Alternatively, when asymptotic methods may not
be sufficient for such large problems, consider using Monte Carlo estimation of exact
p-values. See “Exact Statistics” on page 581 for more information. �

Table 23.2 EXACT Statement Statistic-Keywords and Required TABLES Statement
Options

Keyword Exact statistics computed Required TABLES
statement option

AGREE McNemar’s test for 2�2 tables and tests for the simple
kappa coefficient and the weighted kappa coefficient

AGREE

BINOMIAL binomial proportion test for one-way tables BINOMIAL

CHISQ chi-square goodness-of-fit test for one-way tables;
Pearson chi-square, likelihood-ratio chi-square, and
Mantel-Haenszel chi-square tests for two-way tables

ALL, CHISQ

FISHER Fisher’s exact test ALL*, CHISQ*

JT Jonckheere-Terpstra test JT

KAPPA test for the simple kappa coefficient AGREE

LRCHI likelihood-ratio chi-square test ALL, CHISQ

MCNEM McNemar’s test for 2�2 tables AGREE

The FREQ Procedure � EXACT Statement 523

Keyword Exact statistics computed Required TABLES
statement option

MEASURES tests for the Pearson correlation coefficient and the
Spearman correlation and the odds ratio confidence
limits for 2�2 tables

ALL, MEASURES

MHCHI Mantel-Haenszel chi-square test ALL, CHISQ

OR odds ratio confidence limits for 2�2 tables ALL, MEASURES,
RELRISK

PCHI chi-square goodness-of-fit test for one-way tables,
Pearson chi-square test for 2�2 tables

ALL, CHISQ

PCORR test for the Pearson correlation coefficient ALL, MEASURES

SCORR test for the Spearman correlation coefficient ALL, MEASURES

TREND Cochran-Armitage test for trend TREND

WTKAP test for the weighted kappa coefficient AGREE

* ALL and CHISQ compute Fisher’s exact test only for 2�2 tables.

Options

ALPHA=p
specifies the confidence level for the confidence limits for the Monte Carlo p-value
estimates. A confidence level of p results in (1–p)�100 percent confidence limits.
Using ALPHA=.01 results in 99 percent confidence limits. If p is between 0 and 1 but
is outside the range, PROC FREQ uses the closest range endpoint. For example, if
p= 0.000001, PROC FREQ uses 0.0001 to determine confidence limits.
Default: 0.01
Range: 0.000<=p<=0.0001
Interaction: ALPHA= invokes the MC option.

MAXTIME=value
specifies the maximum clock time (in seconds) that PROC FREQ uses to compute an
exact p-value directly or with Monte Carlo estimation. If the procedure does not
complete the computation within the specified time, the computation terminates.
Range: a positive number
See also: “Computational Resources” on page 583
Featured in: Example 7 on page 611

MC
requests Monte Carlo estimation of exact p-values, instead of direct exact p-value
computation. Monte Carlo estimation can be useful for large problems that require a
large amount of time and memory for exact computations, but for which asymptotic
approximations may not be sufficient.
Restriction: The MC option is not available with the POINT option.
Restriction: The MC option is available for all statistic keywords except

BINOMIAL, MCNEM, and OR. PROC FREQ computes only exact tests or
confidence limits for those statistics.

Interaction: ALPHA=, N=, and SEED= automatically invoke the MC option.
Tip: Use MAXTIME= to specify the maximum clock time that PROC FREQ can use

for the Monte Carlo estimation.

524 OUTPUT Statement � Chapter 23

Main Discussion: “Monte Carlo Estimation” on page 584

N=n
specifies the number of samples for Monte Carlo estimation.
Default: 10000
Range: a positive integer
Interaction: N= invokes the MC option.
Tip: Larger values of N= produce more precise estimates of exact p-values. Because

larger values of N= generate more samples, the computation time increases. If you
need more computation time, use MAXTIME= to increase the clock time.

POINT
requests exact point probabilities for the test statistics.
Restriction: The POINT option is available for all statistical keywords except OR,

which provides exact confidence limits as opposed to an exact test.
Restriction: The POINT option is not available with the MC option.
Main Discussion: “Exact Statistics” on page 581

SEED=n
specifies the initial seed for random number generation for Monte Carlo estimation.
Default: the time of day from the computer’s clock
Range: a positive integer
Interaction: SEED= invokes the MC option.

Using TABLES Statement Options with the EXACT Statement
Table 23.2 on page 522 lists the available statistic keywords and the exact statistics

that are computed. If you use only one TABLES statement, you do not need to specify
options in the TABLES statement to compute the statistics that the EXACT statement
requests. PROC FREQ automatically invokes the corresponding TABLES statement
option when you request exact computations. However, when you use multiple TABLES
statements, and you want exact computations, you must specify options in the TABLES
statement to compute the desired statistics. Then PROC FREQ performs exact
computations for all statistics that are also specified in the EXACT statement.

OUTPUT Statement

Creates a SAS data set with the statistics that PROC FREQ computes for the last TABLES statement
request. The variables contain statistics for each two-way table or stratum, as well as summary
statistics across all strata.

Requirements: TABLES statement
Restriction: Only one OUTPUT statement is allowed.
Tip: Use the Output Delivery System to create a SAS data set from any piece of PROC
FREQ output.
Main discussion: “Output Data Sets” on page 590
Featured in: Example 5 on page 605

OUTPUT statistic-keyword(s) <OUT=SAS-data-set>;

The FREQ Procedure � OUTPUT Statement 525

Options

OUT=SAS-data-set
names the output data set that contains statistics for the last TABLES statement
request. If you omit OUT=, the data set is named DATAn, where n is the smallest
integer that makes the name unique.
Default: DATAn

statistic-keyword(s)
specifies the statistics that you want in the new data set. Available statistics are
those produced by PROC FREQ for each one-way or two-way table, as well as
summary statistics across all strata. When you request a statistic, the OUTPUT data
set contains that estimate or test statistic, as well as any associated standard error,
degrees of freedom, confidence limits, and p-values.

You can save statistics by using keywords that are identical to group options in the
TABLES statement: AGREE, ALL, CHISQ, CMH, and MEASURES. Alternatively,
you can request an individual statistic by specifying a keyword shown in Table 23.3
on page 525.

Using the TABLES Statement with the OUTPUT Statement
In order to specify that the OUTPUT data set contain a particular statistic, you must

have PROC FREQ compute the statistic by using the corresponding option in the
TABLES statement or the EXACT statement. For example with a 2�2 table, you
cannot specify the keyword OR (odds ratio) in the OUTPUT statement without also
specifying ALL, MEASURES, or RELRISK in the TABLES statement.

If you use multiple TABLES statements, the contents of the OUTPUT data set
correspond to the last TABLES statement. If you use multiple table requests in a
TABLES statement, the contents of the OUTPUT data set correspond to the last table
request.

Table 23.3 OUTPUT Statement Statistic-Keywords and Required TABLES Statement Options

Keyword Output data set statistics Required TABLES
statement option

AGREE McNemar’s test for 2�2 tables, simple kappa coefficient, and
weighted kappa coefficient. For square tables with more than
two response categories, Bowker’s test of symmetry. For multiple
strata, overall simple and weighted kappa statistics, and tests for
equal kappas among strata. For multiple strata with two
response categories, Cochran’s Q test.

AGREE

AJCHI continuity-adjusted chi-square for 2�2 tables ALL, CHISQ

ALL all statistics under CHISQ, MEASURES, CMH, and the number
of nonmissing subjects

ALL

BDCHI Breslow-Day test ALL, CMH, CMH1, CMH2

BINOMIAL binomial proportion statistics for one-way tables BINOMIAL, BINOMIALC

CHISQ chi-square goodness-of-fit test for one-way tables; for two-way
tables, Pearson chi-square, likelihood ratio chi-square,
continuity-adjusted chi-square for 2�2 tables, Mantel-Haenszel
chi-square, Fisher’s exact test for 2�2 tables, phi coefficient,
contingency coefficient, and Cramer’s V

ALL, CHISQ

526 OUTPUT Statement � Chapter 23

Keyword Output data set statistics Required TABLES
statement option

CMH Cochran-Mantel-Haenszel correlation, row mean scores (ANOVA),
and general association statistics; for 2�2 tables, logit and
Mantel-Haenszel adjusted odds ratios, relative risks, and
Breslow-Day test

ALL, CMH

CMH1 same as CMH, but excludes general association and row mean
scores (ANOVA) statistics

ALL, CMH, CMH1, CMH2

CMH2 same as CMH, but excludes the general association statistic ALL, CMH, CMH2

CMHCOR Cochran-Mantel-Haenszel correlation statistic ALL, CMH, CMH1, CMH2

CMHGA Cochran-Mantel-Haenszel general association statistic ALL, CMH

CMHRMS Cochran-Mantel-Haenszel row mean scores (ANOVA) statistic ALL, CMH, CMH2

COCHQ Cochran’s Q AGREE

CONTGY contingency coefficient ALL, CHISQ

CRAMV Cramer’s V ALL, CHISQ

EQKAP test for equal simple kappas AGREE

EQWKP test for equal weighted kappas AGREE

FISHER|
EXACT

Fisher’s exact test ALL*, CHISQ*, FISHER,
EXACT

GAMMA gamma ALL, MEASURES

JT Jonckheere-Terpstra test JT

KAPPA simple kappa coefficient AGREE

KENTB Kendall’s tau-b ALL, MEASURES

LAMCR lambda asymmetric (C|R) ALL, MEASURES

LAMDAS lambda symmetric ALL, MEASURES

LAMRC lambda asymmetric (R|C) ALL, MEASURES

LGOR adjusted logit odds ratio ALL, CMH, CMH1, CMH2

LGRRC1 adjusted logit column 1 relative risk ALL, CMH, CMH1, CMH2

LGRRC2 adjusted logit column 2 relative risk ALL, CMH, CMH1, CMH2

LRCHI likelihood ratio chi-square ALL, CHISQ

MCNEM McNemar’s test AGREE

MEASURES gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’ D (C|R), Somers’
D (R|C), Pearson correlation coefficient, Spearman correlation
coefficient, lambda asymmetric (C|R), lambda asymmetric (R|C),
lambda symmetric, uncertainty coefficient (C|R), uncertainty
coefficient (R|C), and symmetric uncertainty coefficient; for 2�2
tables, odds ratio and relative risks

ALL, MEASURES

MHCHI Mantel-Haenszel chi-square ALL, CHISQ

MHOR adjusted Mantel-Haenszel odds ratio ALL, CMH, CMH1, CMH2

MHRRC1 adjusted Mantel-Haenszel column 1 relative risk ALL, CMH, CMH1, CMH2

MHRRC2 adjusted Mantel-Haenszel column 2 relative risk ALL, CMH, CMH1, CMH2

The FREQ Procedure � OUTPUT Statement 527

Keyword Output data set statistics Required TABLES
statement option

N number of nonmissing subjects for the stratum

NMISS number of missing subjects for the stratum

OR odds ratio ALL, MEASURE, RELRISK

PCHI chi-square goodness-of-fit test for one-way tables; for 2-way
tables, Pearson chi-square

ALL, CHISQ

PCORR Pearson correlation coefficient ALL, MEASURES

PHI phi coefficient ALL, CHISQ

PLCORR polychoric correlation coefficient PLCORR

RDIF1 column 1 risk difference (row 1 − row 2) RISKDIFF, RISKDIFFC

RDIF2 column 2 risk difference (row 1 − row 2) RISKDIFF, RISKDIFFC

RELRISK odds ratio and relative risks for 2�2 tables ALL, MEASURE, RELRISK

RISKDIFF risks and risk differences RISKDIFF, RISKDIFFC

RISKDIFF1 column 1 risks and risk difference RISKDIFF, RISKDIFFC

RISKDIFF2 column 2 risks and risk difference RISKDIFF, RISKDIFFC

RRC1 column 1 relative risk ALL, MEASURE, RELRISK

RRC2 column 2 relative risk ALL, MEASURE, RELRISK

RSK1 column 1 risk (overall) RISKDIFF, RISKDIFFC

RSK11 column 1 risk, for row 1 RISKDIFF, RISKDIFFC

RSK12 column 2 risk, for row 1 RISKDIFF, RISKDIFFC

RSK2 column 2 risk (overall) RISKDIFF, RISKDIFFC

RSK21 column 1 risk, for row 2 RISKDIFF, RISKDIFFC

RSK22 column 2 risk, for row 2 RISKDIFF, RISKDIFFC

SCORR Spearman correlation coefficient ALL, MEASURES

SMDCR Somers’ D (C|R) ALL, MEASURES

SMDRC Somers’ D (R|C) ALL, MEASURES

STUTC Stuart’s tau-c ALL, MEASURES

TREND Cochran-Armitage test for trend TREND

TSYMM Bowker’s test of symmetry AGREE

U symmetric uncertainty coefficient ALL, MEASURES

UCR uncertainty coefficient (C|R) ALL, MEASURES

URC uncertainty coefficient (R|C) ALL, MEASURES

WTKAP weighted kappa coefficient AGREE

* ALL and CHISQ compute Fisher’s exact test only for 2�2 tables. Use the FISHER option to compute Fisher’s
exact test for general r�c tables.

528 TABLES Statement � Chapter 23

TABLES Statement

Requests one-way to n-way frequency and crosstabulation tables and computes the statistics for
these tables.

Default: If you omit the TABLES statement, PROC FREQ generates one-way frequency
tables for all data set variables that are not listed in the other statements.
Featured in: Example 1 on page 592

TABLES request(s) </ option(s)>;

Required Arguments

request(s)
specifies the frequency and crosstabulation tables to produce. A request is composed
of one variable name or several variable names that are separated by asterisks. To
request a one-way frequency table, use a single variable. To request a two-way
crosstabulation table, use an asterisk between two variables. To request a multiway
table (an n-way table, where n>2), separate the desired variables with asterisks. The
unique values of these variables form rows, columns, and strata of the table.

For two-way to multiway tables, the values of the last variable form the
crosstabulation table columns while the values of the next-to-last variable form the
rows. Each level (or combination of levels) of the other variables forms one stratum.
PROC FREQ produces a separate crosstabulation table for each stratum. For
example, the TABLES statement request A*B*C*D produces k tables, where k is the
number of different combinations of values for A and B. Each table lists the values
for C down the side and the values for D across the top.

You can use multiple TABLES statements in the PROC FREQ step. PROC FREQ
builds all the table requests in one pass of the data so that there is essentially no loss
of efficiency. You can also specify any number of table requests in a single TABLES
statement. To specify multiple table requests quickly, use a grouping syntax by
placing parentheses around several variables and joining other variables or variable
combinations. For example, the following statements illustrate grouping syntax:

Request Equivalent to

tables a*(b c); tables a*b a*c;

tables (a b)*(c d); tables a*c b*c a*d b*d;

tables (a b c)*d; tables a*d b*d c*d;

tables a--c; tables a b c;

tables (a--c)*d; tables a*d b*d c*d;

Without Options
If you request a one-way frequency table for a variable without specifying options,

PROC FREQ produces frequencies, cumulative frequencies, percentages of the total

The FREQ Procedure � TABLES Statement 529

frequency, and cumulative percentages for each value of the variable. If you request a
two-way or n-way crosstabulation table without specifying options, PROC FREQ
produces crosstabulation tables that include cell frequencies, cell percentages of the
total frequency, cell percentages of row frequencies, and cell percentages of column
frequencies. The procedure excludes observations with missing values from the table,
but displays the total frequency of missing observations below each table.

Options

To do this Use this option

Control statistical analysis

Request tests and measures of classification agreement AGREE

Request tests and measures of association produced by CHISQ,
MEASURES, and CMH

ALL

Set the confidence level for confidence limits ALPHA=

Request Tarone’s adjustment in the Breslow-Day test for
homogeneity of odds ratios

BDT

Request binomial proportion, confidence limits, and test for
one-way tables

BINOMIAL

Request binomial proportion, confidence limits, and test, and
include a continuity correction

BINOMIALC

Request BINOMIAL statistics, and include a continuity
correction in the asymptotic confidence limits and test

CHISQ

Request confidence limits for the MEASURES statistics CL

Request all Cochran-Mantel-Haenszel statistics, adjusted
relative risks, and odds ratios

CMH

Request adjusted relative risks and odds ratios and CMH
correlation statistic

CMH1

Request adjusted relative risks and odds ratios, CMH
correlation, and row mean scores (ANOVA) statistic

CMH2

Specify convergence criterion to compute polychoric correlation CONVERGE=

Request Fisher’s exact test for tables larger than 2�2 FISHER

Request Jonckheere-Terpstra test JT

Specify maximum number of iterations to compute polychoric
correlation

MAXITER=

Request measures of association and their asymptotic standard
errors

MEASURES

Treat missing values as nonmissing MISSING

Request polychoric correlation PLCORR

Request relative risk measures for 2�2 tables RELRISK

Request risks and risk differences for 2�2 tables RISKDIFF

Request risks and risk differences and include a continuity
correction

RISKDIFFC

530 TABLES Statement � Chapter 23

To do this Use this option

Specify the type of row and column scores SCORES=

Specify expected frequencies for a one-way table chi-square test TESTF=

Specify expected proportions for a one-way table chi-square test TESTP=

Request Cochran-Armitage test for trend TREND

Control additional table information

Report each cell’s contribution to the total Pearson chi-square
statistic

CELLCHI2

Display the cumulative column percentage in each cell CUMCOL

Display the deviation of the cell frequency from the expected
value for each cell

DEVIATION

Display the expected cell frequency for each cell EXPECTED

Display missing value frequencies MISSPRINT

List all possible combinations of variable levels even when a
combination does not occur

SPARSE

Display percentage of total frequency on n-way tables when n>2 TOTPCT

Control displayed output

Specify the HTML contents link for crosstabulation tables CONTENTS=

Format the frequencies in crosstabulation tables FORMAT=

Display two-way to n-way tables in list format LIST

Suppress the column percentage for each cell NOCOL

Suppress the cumulative frequencies and the cumulative
percentages in one-way frequency tables and in list format

NOCUM

Suppress the frequency count for each cell NOFREQ

Suppress the percentage, row total percentage, and column total
percentage in crosstabulation tables, or percentages and
cumulative percentages in one-way frequency tables and in list
format

NOPERCENT

Suppress the display of tables but report the statistics NOPRINT

Suppress the row percentage for each cell NOROW

Suppress a log warning message for the asymptotic chi-square
test

NOWARN

Display the kappa coefficient weights PRINTKWT

Display the row and the column scores SCOROUT

Use a field 8 positions wide to display the cell frequencies
between 1.E7 and 1.E8

V5FMT

Create an output data set

Specify an output data set to contain variable values and
frequency counts

OUT=

Include the cumulative frequency and cumulative percent for
one-way tables in the output data set

OUTCUM

The FREQ Procedure � TABLES Statement 531

To do this Use this option

Include the expected frequency of each cell in the output data set OUTEXPECT

Include the percentage of column frequency, row frequency, and
two-way table frequency in the output data set

OUTPCT

AGREE <(WT=type)>
requests tests and measures of classification agreement for square tables. The
AGREE option provides McNemar’s test for 2�2 tables and Bowker’s test of
symmetry for tables with more than two response categories. The AGREE option
also produces the simple kappa statistic, the weighted kappa statistic, their
asymptotic standard errors, and the corresponding confidence limits. When there are
multiple strata, PROC FREQ computes overall simple and weighted kappa statistics,
as well as tests for equal kappas among strata. When there are multiple strata and
two response categories, PROC FREQ computes Cochran’s Q test.

(WT=type)
specifies the type of weights that PROC FREQ uses to compute the weighted
kappa coefficient, where type is the following:

CA Cicchetti-Allison weights

FC Fleiss-Cohen weights

Default: CA
Main discussion: “Weighted Kappa Coefficient” on page 571

Restriction: The table must be square.

Tip: If the table is not square due to observations with zero weights, you can use
the ZEROS option in the WEIGHT statement to include these observations. For
more details, see “Tables with Zero Rows or Columns” on page 574.

Tip: You can specify PRINTKWT to display the kappa coefficient weights.

Main discussion: “Tests and Measures of Agreement” on page 569

Featured in: Example 9 on page 618

ALL
requests all tests and measures that are computed by the CHISQ, MEASURES, and
CMH options.

Interaction: CMH1 and CMH2 control which CMH statistics PROC FREQ
computes.

ALPHA=p
sets the confidence level for confidence limits. The percentage for the confidence
limits is (1−p)�100. Using ALPHA=.05 results in 95 percent confidence limits. If p is
between 0 and 1 but is outside the range, PROC FREQ uses the closest range
endpoint. For example, if p=0.000001, PROC FREQ uses 0.0001 to determine
confidence limits.

Default: 0.05

Range: 0.0001<=p<=0.9999

BDT
requests Tarone’s adjustment in the Breslow-Day test for homogeneity of odds ratios.

Requirement: You must specify CMH to compute the Breslow-Day test for
stratified 2�2 tables.

532 TABLES Statement � Chapter 23

Main discussion: “Breslow-Day Test for Homogeneity of the Odds Ratios” on page
580

BINOMIAL <(P=value)|(LEVEL=level-number | level-value)>
computes the binomial proportion for one-way tables. BINOMIAL also computes the
asymptotic standard error, asymptotic and exact confidence limits, and the
asymptotic test for the binomial proportion. To specify the null hypothesis proportion
for the test, use P=. By default BINOMIAL computes the proportion of observations
for the first variable level that appears in the output. To specify a different level, use
LEVEL= level-number or LEVEL=level-value, where level-number is the variable
level’s number or order in the output, and level-value is the formatted value of the
variable level.
Default: P=0.5, LEVEL=1
Restriction: for one-way tables
Interaction: To request an exact test for the binomial proportion, specify

BINOMIAL in the EXACT statement.
Tip: To include a continuity correction in the binomial asymptotic confidence limits

and test, use BINOMIALC instead of BINOMIAL.
Main Discussion: “Binomial Proportion” on page 560
Featured in: Example 3 on page 599

BINOMIALC <(P=value)|(LEVEL=level-number | level-value)>
computes the BINOMIAL option statistics for one-way tables, but includes a
continuity correction in the asymptotic confidence limits and asymptotic test. The
BINOMIAL option statistics include the binomial proportion, its asymptotic and
exact confidence limits, and the asymptotic test for the binomial proportion. To
specify the null hypothesis proportion for the test, use P=. By default BINOMIALC
computes the proportion of observations for the first variable level that appears in
the output. To specify a different level, use LEVEL=level-number or
LEVEL=level-value, where level-number is the variable level’s number or order in the
output, and level-value is the formatted value of the variable level.
Alias: BINC
Default: P=0.5, LEVEL=1
Restriction: for one-way tables
Interaction: To request an exact test for the binomial proportion, specify

BINOMIAL in the EXACT statement.
Tip: To request binomial statistics without the continuity correction, use

BINOMIAL instead of BINOMIALC.
Main Discussion “Binomial Proportion” on page 560

CELLCHI2
displays each cell’s contribution to the total Pearson chi-square statistic, which is
computed as (frequency − expected)2/expected.
Interaction: CELLCHI2 is valid for contingency tables but has no effect on tables

that are produced with LIST.

CHISQ
computes chi-square tests of homogeneity or independence for two-way tables, and
computes measures of association based on chi-square for two-way tables. The tests
include Pearson chi-square, likelihood-ratio chi-square, and Mantel-Haenszel
chi-square. The measures include the phi coefficient, the contingency coefficient, and
Cramer’s V. For 2�2 tables, CHISQ includes Fisher’s exact test and the
continuity-adjusted chi-square. For one-way tables, CHISQ computes a chi-square
goodness-of-fit test for equal proportions. If you specify the null hypothesis

The FREQ Procedure � TABLES Statement 533

proportions with the TESTP= option, then CHISQ computes a chi-square
goodness-of-fit test for the specified proportions. If you specify null hypothesis
frequencies with the TESTF= option, CHISQ computes a chi-square goodness-of-fit
test for the specified frequencies.
Main discussion: “Chi-Square Tests and Statistics” on page 546
Featured in: Example 4 on page 601 and Example 5 on page 605

CL
requests confidence limits for the MEASURES statistics.
Interaction: If you omit MEASURES, CL invokes MEASURES.
Interaction: PROC FREQ determines the confidence coefficient using ALPHA= ,

which by default equals 0.05 and produces 95 percent confidence limits.
Main discussion: “Measures of Association” on page 550
Featured in: Example 7 on page 611

CMH
computes Cochran-Mantel-Haenszel statistics, which test for association between the
row and column variables after adjusting for the remaining variables in a multiway
table. In addition, for 2�2 tables, PROC FREQ computes adjusted Mantel-Haenszel
and logit estimates of the odds ratio and relative risks as well as the corresponding
confidence limits. For the stratified 2�2 case, PROC FREQ computes the
Breslow-Day test for homogeneity of odds ratios.
Interaction: CMH1 and CMH2 control the number of CMH statistics that PROC

FREQ computes.
Tip: Use BDT to request Tarone’s adjustment in the Breslow-Day test.
Main discussion: “Cochran-Mantel-Haenszel Statistics” on page 574
Featured in: Example 6 on page 609

CMH1
requests the Cochran-Mantel-Haenszel correlation statistic and, for 2�2 tables,
adjusted Mantel-Haenszel and logit estimates of the odds ratio and relative risks as
well as the corresponding confidence limits. For the stratified 2�2 case, PROC FREQ
computes the Breslow-Day test for homogeneity of odds ratios. Except for 2�2 tables,
CMH1 requires less memory than CMH, which can require an enormous amount for
large tables.

CMH2
requests the Cochran-Mantel-Haenszel correlation statistic, row mean scores
(ANOVA) statistic and, for 2�2 tables, adjusted Mantel-Haenszel and logit estimates
of the odds ratio and relative risks as well as the corresponding confidence limits.
For the stratified 2�2 case, PROC FREQ computes the Breslow-Day test for
homogeneity of odds ratios. Except for tables with two columns, CMH2 requires less
memory than CMH, which can require an enormous amount for large tables.
Featured in: Example 8 on page 615

CONTENTS=
specifies the text for the HTML contents file links to crosstabulation tables. For
information on HTML output, see SAS Output Delivery System User’s Guide. The
CONTENTS= option affects only the HTML contents file, and not the HTML body file.

Note: Links to all crosstabulation tables produced by a single TABLES statement
use the same text. To specify different text for different crosstabulation table links,
request the tables in separate TABLES statements and use the CONTENTS= option
in each TABLES statement. �

Default: Cross-Tabular Freq Table

534 TABLES Statement � Chapter 23

Tip: The CONTENTS= option affects only links to crosstabulation tables. It does
not affect links to other PROC FREQ tables. To specify link text for any other
PROC FREQ table, you can use PROC TEMPLATE to create a customized table
definition. The CONTENTS_LABEL attribute in the DEFINE TABLE statement
of PROC TEMPLATE specifies the contents file link for the table. For detailed
information, see the discussion of the TEMPLATE procedure in SAS Output
Delivery System User’s Guide .

CONVERGE=c
specifies the convergence criterion for computing the polychoric correlation using the
PLCORR option. Iterative computation of the polychoric correlation stops when the
convergence measure falls below the value of CONVERGE=, or when the number of
iterations that is specified by the MAXITER= option is exceeded, whichever happens
first.

Alias: CONV=

Default: 0.0001

Range: a positive number

Main discussion: “Polychoric Correlation” on page 558

CUMCOL
displays the cumulative column percentages in cells of the crosstabulation table.

DEVIATION
displays the deviation of the cell frequency from the expected frequency for each cell
of the crosstabulation table.

Interaction: DEVIATION is valid for crosstabulation tables but has no effect on
tables produced with LIST.

Featured in: Example 5 on page 605

EXPECTED
displays the expected cell frequencies under the hypothesis of independence (or
homogeneity).

Interaction: EXPECTED is valid for contingency tables but has no effect on tables
produced with LIST.

Featured in: Example 5 on page 605

FISHER
computes Fisher’s exact test even when tables are larger than 2�2. You can also
request Fisher’s exact test by specifying FISHER in the EXACT statement.

Alias: EXACT

Interaction: If you omit CHISQ, FISHER invokes CHISQ.

Interaction: ALL does not invoke this option.

Main discussion: “Fisher’s Exact Test” on page 548

CAUTION:
For large tables, PROC FREQ may require a large amount of time or memory to compute
exact p-values. See “Computational Resources” on page 583 for more information. �

FORMAT=format-name
specifies a format for the following crosstabulation table cell values: frequency,
expected frequency, and deviation. PROC FREQ also uses this format to display the
total row and column frequencies for crosstabulation tables. You can specify any
standard SAS numeric format or a numeric format defined with the FORMAT
procedure.

The FREQ Procedure � TABLES Statement 535

Note: To change formats for all other FREQ tables, use PROC TEMPLATE. For
detailed information, see the discussion of the TEMPLATE procedure in SAS Output
Delivery System User’s Guide. �
Default: If you omit FORMAT=, PROC FREQ uses the BEST6. format to display

frequencies less than 1E6, and the BEST7. format otherwise.
Restriction: You can not specify both FORMAT= and the V5FMT option.
Restriction: The format length must not exceed 24.
See also: For more information on using formats, see SAS Language Reference:

Dictionary

JT
performs the Jonckheere-Terpstra test.
Main discussion: “Jonckheere-Terpstra Test” on page 567

LIST
displays two-way to n-way tables in a list format rather than as crosstabulation
tables.
Restriction: PROC FREQ ignores LIST when you request statistical tests or

measures of association.

MAXITER=n
specifies the maximum number of iterations for computing the polychoric correlation
using the PLCORR option. Iterative computation of the polychoric correlation stops
when the number of iterations that is specified by MAXITER= is exceeded, or when
the convergence measure falls below the value of the CONVERGE= option,
whichever happens first.
Default: 20
Range: an integer between 0 and 32767
Main discussion: “Polychoric Correlation” on page 558

MEASURES
requests several measures of association and their asymptotic standard errors (ASE).
The measures include gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’ D, Pearson and
Spearman correlation coefficients, lambda (asymmetric and symmetric), uncertainty
coefficients (asymmetric and symmetric) and, for 2�2 tables, the odds ratio, column 1
relative risk, column 2 relative risk, and the corresponding confidence limits.
Interaction: CL requests confidence limits.
Main discussion: “Measures of Association” on page 550
Featured in: Example 7 on page 611

MISSING
treats missing values as nonmissing and includes them in calculations of percentages
and other statistics.
Main discussion: “Missing Values” on page 585

MISSPRINT
displays missing value frequencies for all tables, even though PROC FREQ does not
use the frequencies in the calculation of statistics.
Main discussion: “Missing Values” on page 585

NOCOL
suppresses the column percentages in cells of the crosstabulation table.
Featured in: Example 5 on page 605

NOCUM

536 TABLES Statement � Chapter 23

suppresses the cumulative frequencies and cumulative percentages for one-way
frequency tables and for frequencies in list format.
Featured in: Example 2 on page 596

NOFREQ
suppresses the cell frequencies for a crosstabulation table. This also suppresses
frequencies for row totals.

NOPERCENT
suppresses the cell percentages, the row total percentages, and the column total
percentages for a crosstabulation table. For one-way frequency tables and frequencies
in list format, suppresses the percentages and the cumulative percentages.

NOPRINT
suppresses the frequency and crosstabulation tables, but displays all requested tests
and statistics.
Featured in: Example 6 on page 609

NOROW
suppresses the row percentages in cells of the crosstabulation table.
Featured in: Example 5 on page 605

NOWARN
suppresses the log warning message that the asymptotic chi-square test may not be
valid when more than 20 percent of the table cells have expected frequencies less
than five.

OUT=SAS-data-set
names the output data set that contains variable values and frequency counts. The
variable COUNT contains the frequencies and the variable PERCENT contains the
percentages. If more than one table request appears in the TABLES statement, the
contents of the data set correspond to the last table request in the TABLES
statement.
Main discussion: “Output Data Sets” on page 590
See also: OUTEXPECT and OUTPCT
Featured in: Example 1 on page 592

OUTCUM
includes the cumulative frequency and the cumulative percent for one-way tables in
the output data set when you specify the OUT= option. The variable CUM_FREQ
contains the cumulative frequency for each level of the analysis variable, and the
variable CUM_PCT contains the cumulative percent for each level.
Requirement: This option is available when you specify the OUT= option.
Interaction: The OUTCUM option has no effect on two-way or multi-way tables.

OUTEXPECT
includes the expected frequency in the output data set when you specify the OUT=
option. The variable EXPECTED contains the expected frequency for each table cell.
Requirement: This option is available when you specify the OUT= option.
Main discussion: “Output Data Sets” on page 590
Featured in: Example 1 on page 592

OUTPCT
includes the following additional variables in the output data set when you specify
the OUT= option:

PCT_COL

The FREQ Procedure � TABLES Statement 537

the percentage of column frequency

PCT_ROW
the percentage of row frequency

PCT_TABL
the percentage of stratum frequency, for n-way tables where n > 2.

Requirement: This option is available when you specify the OUT= option.
Main discussion: “Output Data Sets” on page 590

PLCORR
computes the polychoric correlation coefficient. For 2�2 tables, this statistic is more
commonly known as the tetrachoric correlation coefficient, and is labeled as such in
the displayed output.
Interaction: If you omit MEASURES, PLCORR invokes MEASURES.
Main discussion: “Polychoric Correlation” on page 558
See also: CONVERGE= and MAXITER=

PRINTKWT
requests that PROC FREQ display the kappa coefficient weights.
Interaction: You must specify AGREE to compute the kappa coefficients. The WT=

option controls how PROC FREQ computes the kappa coefficient weights.
Main discussion: “Weighted Kappa Coefficient” on page 571

RELRISK
requests relative risk measures for 2�2 tables. These measures include the odds
ratio, column 1 relative risk, and column 2 relative risk.
Main discussion: “Odds Ratio and Relative Risks for 2�2 Tables” on page 564
Featured in: Example 4 on page 601

RISKDIFF
requests column 1 and 2 risks (or binomial proportions), risk differences, and their
confidence limits for 2�2 tables.
Alias: PDIFF, RDIFF
Main discussion: “Risks and Risk Differences” on page 562

RISKDIFFC
requests the RISKDIFF statistics for 2�2 tables, but includes a continuity correction
in the asymptotic confidence limits. The RISKDIFF option statistics include the
column 1 and column 2 risks (or binomial proportions), risk differences, and their
confidence limits.
Main Discussion “Risks and Risk Differences” on page 562

SCORES=type
specifies the type of row and column scores that PROC FREQ uses with the
Mantel-Haenszel chi-square, Pearson correlation, Cochran-Armitage test for trend,
weighted kappa coefficient, and Cochran-Mantel-Haenszel statistics where type is

MODRIDIT
RANK
RIDIT
TABLE

By default, the row or column scores are the integers 1,2,… for character variables
and the actual variable values for numeric variables. Using other types of scores
yields nonparametric analyses.
Default: TABLE

538 TABLES Statement � Chapter 23

Main discussion: “Scores” on page 545
Featured in: Example 8 on page 615

SCOROUT
displays the row and the column scores. You specify the score type with the
SCORES= option. PROC FREQ uses the scores when it calculates the
Mantel-Haenszel chi-square, Pearson correlation, Cochran-Armitage test for trend,
weighted kappa coefficient, or Cochran-Mantel-Haenszel statistics.
Restriction: SCOROUT displays the row and column scores only when statistics

are computed for two-way tables.
Tip: To store the scores in an output data set, use the Output Delivery System.
Main discussion: “Scores” on page 545
See also: SCORES= on page 537

SPARSE
lists all possible combinations of the variable values for an n-way table when n>1
even if a combination does not occur in the data. SPARSE has no effect unless you
use the LIST or OUT= option. When you use SPARSE and LIST, PROC FREQ lists
any combination of values with a frequency count of zero. When you use SPARSE
and OUT= , PROC FREQ includes empty crosstabulation table cells in the output
data set.
See also: “Missing Values” on page 585
Featured in: Example 1 on page 592

TESTF=(values)
specifies the null hypothesis frequencies for a one-way chi-square test for specified
frequencies. You can separate values with blanks or commas.
Range: The sum of the frequency values must equal the total frequency for the

one-way table.
Restriction: The number of TESTF= values must equal the number of variable

levels in the one-way table. List these values in the order that the corresponding
variable levels appear in the output.

Interaction: If you omit CHISQ, TESTF= invokes CHISQ.
Main discussion: “Chi-Square Test for One-Way Tables” on page 546

TESTP=(values)
specifies the null hypothesis proportions for a one-way chi-square test for specified
proportions. You can separate values with blanks or commas.
Range: Specify values in probability form as numbers between 0 and 1, where the

proportions sum to 1. Or, specify values in percentage form as numbers between 0
and 100, where the percentages sum to 100.

Restriction: The number of TESTP= values must equal the number of variable
levels in the one-way table. List these values in the order that the corresponding
variable levels appear in the output.

Interaction: If you omit CHISQ, TESTP= invokes CHISQ.
Main discussion: “Chi-Square Test for One-Way Tables” on page 546
Featured in: Example 2 on page 596

TOTPCT
displays the percentage of total frequency on crosstabulation tables, for n-way tables
where n > 2. This percentage is also available with the LIST option or as the
PERCENT variable in the OUT= output data set.

TREND

The FREQ Procedure � TEST Statement 539

performs the Cochran-Armitage test for trend.
Restriction: The table must be 2�c or r�2.
Main discussion: “Cochran-Armitage Test for Trend” on page 566
Featured in: Example 7 on page 611

V5FMT
uses a field that is 8 positions wide to display the cell frequencies between 1.E7 and
1.E8 so that PROC FREQ does not use scientific notation to display frequencies in
this range. By default, PROC FREQ uses a maximum of 7 positions to display cell
frequencies. In Version 5 of the SAS System, PROC FREQ used a maximum of 8
positions.
Restriction: You can not specify both V5FMT and the FORMAT= option.
Tip: You can use the FORMAT= option to specify other formats for the

crosstabulation cell frequencies.

TEST Statement

Computes asymptotic tests for the specified measures of association and measures of agreement.

Requirement: TABLES statement
Main discussion: “Asymptotic Tests” on page 551
Featured in: Example 7 on page 611

TEST statistic-keyword(s);

Required Arguments

statistic-keyword(s)
specifies the statistics for which to provide asymptotic tests. The available statistics
are the measures of association and agreement listed in Table 23.4 on page 540. You
can use an individual keyword to request a test, or you can use a group keyword
(MEASURES or AGREE) to request all available tests in that group.

For each measure of association or agreement that you specify, the TEST
statement provides an asymptotic test that the measure equal zero. When you
request an asymptotic test, PROC FREQ gives the asymptotic standard error under
the null hypothesis, the test statistic, and the p-values. Additionally, PROC FREQ
reports the confidence limits for that measure. The ALPHA= option in the TABLES
statement determines the confidence level, which by default equals .05 and provides
95 percent confidence limits. In addition to these asymptotic tests, exact tests for
selected measures of association and agreement are available with the EXACT
statement. See “EXACT Statement” on page 521 for more information.

540 WEIGHT Statement � Chapter 23

Table 23.4 TEST Statement Statistic-keywords and Required TABLES Statement
Options

Keyword Asymptotic tests computed Required TABLES statement
option

AGREE simple kappa coefficient and weighted
kappa coefficient

AGREE

GAMMA gamma ALL, MEASURES

KAPPA simple kappa coefficient AGREE

KENTB Kendall’s tau-b ALL, MEASURES

MEASURES gamma, Kendall’s tau-b, Stuart’s tau-c,
Somers’ D (C|R), Somers’ D (R|C),
Pearson correlation coefficient, and
Spearman correlation coefficient

ALL, MEASURES

PCORR Pearson correlation coefficient ALL, MEASURES

SCORR Spearman correlation coefficient ALL, MEASURES

SMDCR Somers’ D (C|R) ALL, MEASURES

SMDRC Somers’ D (R|C) ALL, MEASURES

STUTC Stuart’s tau-c ALL, MEASURES

WTKAP weighted kappa coefficient AGREE

WEIGHT Statement

Treats observations as if they appear multiple times in the input data set.

Tip: Use to input the cell counts of an existing table.
Featured in: Example 1 on page 592

WEIGHT variable</ option>;

Required Arguments

variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the WEIGHT statement, PROC FREQ assumes that an observation
represents n observations, where n is the value of variable. The value of the weight
variable need not be integer. When a weight value is missing, PROC FREQ ignores
the corresponding observation. When a weight value is zero, PROC FREQ ignores
the corresponding observation unless you specify the ZEROS option, which includes
observations with zero weights. If a WEIGHT statement does not appear, each
observation has a default weight of 1. The sum of the weight variable values
represents the total number of observations.

The FREQ Procedure � Inputting Frequency Counts 541

Option

ZEROS
includes observations with zero weight values.

Default: PROC FREQ ignores observations with zero weights.

Main discussion: “Using Zero Weights” on page 541 and “Tables with Zero Rows or
Columns” on page 574

Using Zero Weights
If you specify the ZEROS option, frequency and crosstabulation tables display any

levels corresponding to observations with zero weights. (By default PROC FREQ does
not process observations with zero weights, and so does not display levels that contain
only observations with zero weights.)

With the ZEROS option, PROC FREQ includes levels with zero weights in the
chi-square goodness-of-fit test for one-way tables. Also, PROC FREQ includes any levels
with zero weights in binomial computations for one-way tables. This enables
computation of binomial estimates and tests when there are no observations with
positive weight in the specified level.

For two-way tables, the ZEROS option enables computation of kappa statistics when
there are levels containing no observations with positive weight. See “Tables with Zero
Rows or Columns” on page 574 for more details.

Note: Even with the ZEROS option, PROC FREQ does not compute the CHISQ or
MEASURES statistics for two-way tables when the table has a zero row or zero column,
because most of these statistics are undefined in this case. �

Using Negative Weights
If any value of the weight variable is negative, PROC FREQ displays the frequencies

(as measured by the weighted values), but does not compute and display percentages
and other statistics. If you create an output data set using OUT= in the TABLES
statement, PROC FREQ creates the PERCENT variable and assigns a missing value
for each observation. PROC FREQ also assigns missing values to the variables that the
OUTEXPECT and OUTPCT options create. You cannot create an output data set using
the OUTPUT statement since statistics are not computed.

Concepts: FREQ Procedure

Inputting Frequency Counts
PROC FREQ can use either raw data or cell count data to produce frequency and

crosstabulation tables. Raw data, also known as case-record data, report the data as
one record for each subject or sample member. Cell count data report the data in
tabular form. A table lists all possible combinations of the data values along with the
frequency counts. This way of presenting data often appears in published results.

The following DATA step statements store raw data in a SAS data set:

542 Grouping with Formats � Chapter 23

data raw;
input subject $ R C @@;
datalines;

01 1 1 02 1 1 03 1 1 04 1 1 05 1 1
06 1 2 07 1 2 08 1 2 09 2 1 10 2 1
11 2 1 12 2 1 13 2 2 14 2 2 15 2 2
;

You can store the same data as cell counts using the following DATA step statements:

data counts;
input R C CellCount @@;
datalines;

1 1 5 1 2 3
2 1 4 2 2 3
;

The variable R contains the values for the rows and the variable C contains the values
for the columns. The variable CellCount contains the cell count for each row and
column combination.

Both the RAW data set and COUNTS data set produce identical frequency counts,
two-way tables, and statistics. With the COUNTS data set, you must use a WEIGHT
statement to specify that CellCount contains cell counts. For example, to create a
two-way crosstabulation table submit the following statements:

proc freq data=counts;
weight CellCount;
tables R*C;

run;

Grouping with Formats

PROC FREQ groups a variable’s values according to its formatted values. If you
assign a format to a variable with a FORMAT statement, PROC FREQ formats the
variable values before dividing observations into the levels of a frequency or
crosstabulation table.

For example, suppose that a variable X has the values 1.1, 1.4, 1.7, 2.1, and 2.3.
Each of these values appears as a level on a frequency table. If you decide to round
each value to a single digit, include the statement

format x 1.;

in the PROC FREQ step. Now the table lists the frequency count for formatted level 1
as two and formatted level 2 as three.

PROC FREQ treats formatted character variables in the same way. The formatted
values are used to group the observations into the levels of a frequency table or
crosstabulation table. PROC FREQ uses the entire value of a character format to
classify an observation.

You can also use the FORMAT statement to assign formats that were created with
PROC FORMAT to the variables. User-written formats determine the number of levels
for a variable and provide labels for a table. If you use the same data with different
formats, then you can produce frequency counts and statistics for different
classifications of the variable values.

When you use PROC FORMAT to create a user-written format that combines
missing and nonmissing values into one category, PROC FREQ treats the entire
category of formatted values as missing. For example, a questionnaire codes answers as

The FREQ Procedure � Computational Resources 543

follows: 1 as yes, 2 as no, and 8 as no answer. The following PROC FORMAT step
creates a user-written format:

proc format;
value questfmt 1=’Yes’

2=’No’
.,8=’Missing’;

run;

When you use a FORMAT statement to assign QUESTFMT. to a variable, the
variable’s frequency table no longer includes a frequency count for the response of 8.
You must use MISSING or MISSPRINT in the TABLES statement to list the frequency
for no answer. The frequency count for this level will include observations with either a
value of 8 or a missing value (.).

The frequency or crosstabulation table lists the values of both character and numeric
variables in ascending order based on internal (unformatted) variable values unless you
change the order with the ORDER= option. To list the values in ascending order by
formatted values, use ORDER=FORMATTED in the PROC FREQ statement.

For more information on the FORMAT statement, see SAS Language Reference:
Dictionary.

Computational Resources
For each variable in a table request, PROC FREQ stores all of the levels in memory.

If all variables are numeric and not formatted, this requires about 84 bytes for each
variable level. When there are character variables or formatted numeric variables, the
memory that is required depends on the formatted variable lengths, with longer
formatted lengths requiring more memory. The number of levels for each variable is
limited only by the largest integer that your operating environment can store.

For any single crosstabulation table requested, PROC FREQ builds the entire table
in memory, regardless of whether the table has zero cell counts. Thus, if the numeric
variables A, B, and C each have 10 levels, PROC FREQ requires 2520 bytes to store the
variable levels for the table request A*B*C, as follows:

3 variables*10 levels/variable*84 bytes/level

In addition , PROC FREQ requires 8000 bytes to store the table cell frequencies

1000 cells * 8 bytes/cell

even though there may be only 10 observations.
When the variables have many levels or when there are many multiway tables, your

computer may not have enough memory to construct the tables. If PROC FREQ runs
out of memory while constructing tables, it stops collecting levels for the variable with
the most levels and returns the memory that is used by that variable. The procedure
then builds the tables that do not contain the disabled variables.

If there is not enough memory for your table request and if increasing the available
memory is impractical, you can reduce the number of multiway tables or variable
levels. If you are not using CMH or AGREE in the TABLES statement to compute
statistics across strata, reduce the number of multiway tables by using PROC SORT to
sort the data set by one or more of the variables or use the DATA step to create an
index for the variables. Then remove the sorted or indexed variables from the TABLES
statement and include a BY statement that uses these variables. You can also reduce
memory requirements by using a FORMAT statement in the PROC FREQ step to
reduce the number of levels. Additionally, reducing the formatted variable lengths
reduces the amount of memory that is needed to store the variable levels. For more
information on using formats, see “Grouping with Formats” on page 542.

544 Statistical Computations: FREQ Procedure � Chapter 23

Statistical Computations: FREQ Procedure

This section gives the formulas PROC FREQ uses to compute the following:

� chi-square tests and statistics (CHISQ option)

� measures of association (MEASURES option)

� binomial proportion (BINOMIAL option)

� risks (or binomial proportions) and risk differences for 2�2 tables (RISKDIFF
option)

� odds ratios and relative risks for 2�2 tables (MEASURES or RELRISK option)

� Jonckheere-Terpstra test (JT option)

� Cochran-Armitage test for trend (TREND option)

� tests and measures of agreement (AGREE option)

� Cochran-Mantel-Haenszel statistics (CMH option)

Furthermore, this section describes the computation of exact p-values.
When selecting statistics to analyze your data, consider the study design (which

indicates whether the row and column variables are dependent or independent), the
measurement scale of the variables (nominal, ordinal, or interval), the type of
association that the statistics detect, and the assumptions for valid interpretation of the
statistics. For example, the Mantel-Haenszel chi-square statistic requires an ordinal
scale for both variables and detects a linear association. On the other hand, the
Pearson chi-square is appropriate for all variables and can detect any kind of
association, but is less powerful for detecting a linear association. Select tests and
measures carefully, choosing those that are appropriate for your data. For more
information on when to use a statistic and how to interpret the results, refer to Agresti
(1996) and Stokes et al. (1995).

Definitions and Notation
In this chapter, a two-way table represents the crosstabulation of two variables X

and Y. Let the rows of the table be labeled by the values ��� � � �� �� � � � � �, and the
columns by ��� � � �� �� � � � � � . Let ��� denote the cell frequency in the �th row and
the �th column and define the following:

��� �
�

�

��� (row totals)

�
�� �
�

�

��� (column totals)

� �
�

�

�

�

��� (overall total)

��� � ���	� (cell percentages)

��� � ���	� (row percentages)

�
�� � �

��	� (column percentages)

�� � score for row �

�� � score for column �

� �
�

�

�����	�
(average row score)

The FREQ Procedure � Definitions and Notation 545

��� �
�

���

�

���

��� �
�

���

�

���

���

� �
�

�

�
������

(average column score)

��� �
�

���

�

���

��� �
�

���

�

���

���

��� �
�

���

�

���

��� �
�

���

�

���

���

� �
�

�

�

�

������ (twice the number of concordances)

� �
�

�

�

�

������ (twice the number of discordances)

Scores

PROC FREQ uses row and column scores when computing the Mantel-Haenszel
chi-square, Pearson correlation, Cochran-Armitage test for trend, weighted kappa
coefficient, and Cochran-Mantel-Haenszel statistics. The SCORES= option in the
TABLES statement specifies the score type that PROC FREQ uses. The available score
types are TABLE, RANK, RIDIT, and MODRIDIT scores. The default score type is
TABLE.

For numeric variables, TABLE scores are the values of the row and column levels. If
the row or column variables are formatted, then the TABLE score is the internal
numeric value corresponding to that level. If two or more numeric values are classified
into the same formatted level, then the internal numeric value for that level is the
smallest of these values. For character variables, TABLE scores are defined as the row
numbers and column numbers (that is, 1 for the first row, 2 for the second row, and so
on).

RANK scores, which you can use to obtain nonparametric analyses, are defined by

��� ������ 	

�
� �
�

���

��� � ���� �
� �
 � �
	
	 � � � 	 �

������ ������ 	

�
� �
�

���

�
�� � ��

�� �
� �

 �
	
	 � � � 	 �

Note that RANK scores yield midranks for tied values.
RIDIT scores (Bross 1958; Mack and Skillings 1980) also yield nonparametric

analyses, but they are standardized by the sample size. RIDIT scores are derived from
RANK scores as

546 Chi-Square Tests and Statistics � Chapter 23

��� � �����

��� � �����

Modified ridit (MODRIDIT) scores (van Elteren 1960 and Lehmann 1975), which also
yield nonparametric analyses, represent the expected values of the order statistics for
the uniform distribution on (0,1). Modified ridit scores are derived from RANK scores as

��� � ���� ��� ��

��� � ���� �� � ��

Chi-Square Tests and Statistics
When you specify the CHISQ option in the TABLES statement, PROC FREQ

performs the following chi-square tests for each two-way table: Pearson chi-square,
continuity-adjusted chi-square for 2�2 tables, likelihood-ratio chi-square,
Mantel-Haenszel chi-square, and Fisher’s exact test for 2�2 tables. Also, PROC FREQ
computes the following statistics derived from the Pearson chi-square: the phi
coefficient, the contingency coefficient, and Cramer’s V. PROC FREQ computes Fisher’s
exact test for general ��� tables when you specify the FISHER (or EXACT) option in
the TABLES statement, or, equivalently, when you specify the FISHER option in the
EXACT statement.

For one-way frequency tables, PROC FREQ performs a chi-square goodness-of-fit test
when you specify the CHISQ option. See “Chi-Square Test for One-Way Tables” on page
546 for information. The other chi-square tests and statistics described in this section
are defined only for two-way tables, and so are not computed for one-way frequency
tables.

All the two-way test statistics described in this section test the null hypothesis of no
association between the row variable and the column variable. When the sample size �
is large, these test statistics are distributed approximately as chi-square when the null
hypothesis is true. When the sample size is not large, exact tests may be useful. PROC
FREQ computes exact tests for the following chi-square statistics when you specify the
corresponding option in the EXACT statement: Pearson chi-square, likelihood-ratio
chi-square, and Mantel-Haenszel chi-square. See “Exact Statistics” on page 581 for
more information.

Note that the Mantel-Haenszel chi-square statistic is appropriate only when both
variables lie on an ordinal scale. The other chi-square tests and statistics in this section
are appropriate for either nominal or ordinal variables. The following sections give the
formulas that PROC FREQ uses to compute the chi-square tests and statistics. For
further information on the formulas and on the applicability of each statistic, refer to
Agresti (1996), Stokes et al. (1995), and the other references cited for each statistic.

Chi-Square Test for One-Way Tables
For one-way frequency tables, the CHISQ option in the TABLES statement computes

a chi-square goodness-of-fit test. Let � denote the number of classes, or levels, in the
one-way table. Let �� denote the frequency of class � (or the number of observations in
class �), for � � �� �� � � � � � . Then PROC FREQ computes the chi-square statistic as

�� �

��

���

��� � ���
�

��

The FREQ Procedure � Chi-Square Tests and Statistics 547

where �� is the expected frequency for class � under the null hypothesis.
In the test for equal proportions, which is the default for the CHISQ option, the null

hypothesis specifies equal proportions of the total sample size for each class. Under this
null hypothesis, the expected frequency for each class equals the total sample size
divided by the number of classes,

�� � ��� ��� � � ���� � � � � �

In the test for specified frequencies, which PROC FREQ computes when you input null
hypothesis frequencies using the TESTF= option, the expected frequencies are those
TESTF= values. In the test for specified proportions, which PROC FREQ computes
when you input null hypothesis proportions using the TESTP= option, the expected
frequencies are determined from the TESTP= proportions ��, as

�� � �� � � ��� � � �� �� � � � � �

Under the null hypothesis (of equal proportions, specified frequencies, or specified
proportions), this test statistic has an asymptotic chi-square distribution, with � � �
degrees of freedom. In addition to the asymptotic test, PROC FREQ computes the exact
one-way chi-square test when you specify the CHISQ option in the EXACT statement.

Chi-Square Test for Two-Way Tables
The Pearson chi-square statistic for two-way tables involves the differences between

the observed and expected frequencies, where the expected frequencies are computed
under the null hypothesis of independence. The chi-square statistic is computed as

�� �
�

�

�

�

���� � ����
�

���

where

��� �
������
�

When the row and column variables are independent, �� has an asymptotic
chi-square distribution with ����� �� � �� degrees of freedom. For large values of
�� , this test rejects the null hypothesis in favor of the alternative hypothesis of
general association. In addition to the asymptotic test, PROC FREQ computes the exact
chi-square test when you specify the PCHI option or CHISQ option in the EXACT
statement.

For a 2�2 table, the Pearson chi-square is also appropriate for testing the equality of
two binomial proportions or, for � � � and �� � tables, the homogeneity of
proportions. Refer to Fienberg (1980).

Likelihood-Ratio Chi-Square Test
The likelihood-ratio chi-square statistic involves the ratios between the observed and

expected frequencies. The statistic is computed as

548 Chi-Square Tests and Statistics � Chapter 23

�� � �
�

�

�

�

��� ��

�
���

���

�

When the row and column variables are independent, �� has an asymptotic
chi-square distribution with ��� �� �� � �� degrees of freedom. In addition to the
asymptotic test, PROC FREQ computes the exact test when you specify the LRCHI
option or the CHISQ option in the EXACT statement.

Continuity-Adjusted Chi-Square Test
The continuity-adjusted chi-square statistic for 2�2 tables is similar to the Pearson

chi-square, except that it is adjusted for the continuity of the chi-square distribution.
The continuity-adjusted chi-square is most useful for small sample sizes. The use of the
continuity adjustment is controversial; this chi-square test is more conservative, and
more like Fisher’s exact test, when your sample size is small. As the sample size
increases, the statistic becomes more and more like the Pearson chi-square. The
statistic is computed as

�� �
�
�

�
�

��	
 ��� ���� � ���� � ����
�

���

Under the null hypothesis of independence, �� has an asymptotic chi-square
distribution with �� � �� �� � �� degrees of freedom.

Mantel-Haenszel Chi-Square Test
The Mantel-Haenszel chi-square statistic tests the alternative hypothesis that there

is a linear association between the row variable and the column variable. Both
variables must lie on an ordinal scale. The statistic is computed as

��� � ��� �� ��

where �� is the Pearson correlation between the row variable and the column variable.
For a description of the Pearson correlation, see “Pearson Correlation Coefficient” on
page 555. The Pearson correlation, and thus the Mantel-Haenszel chi-square statistic,
use the scores you specify in the SCORES= option in the TABLES statement.

Under the null hypothesis of no association, ��� has an asymptotic chi-square
distribution with 1 degree of freedom. In addition to the asymptotic test, PROC FREQ
computes the exact test when you specify the MHCHI option or the CHISQ option in
the EXACT statement.

Refer to Mantel and Haenszel (1959) and Landis et al. (1978).

Fisher’s Exact Test
Fisher’s exact test is another test of association between the row and column

variables. This test assumes that the row and column totals are fixed, and then uses the
hypergeometric distribution to compute probabilities of possible tables with those row
and column totals. Fisher’s exact test does not depend on any large-sample distribution
assumptions, and so it is appropriate even for small sample sizes and for sparse tables.

The FREQ Procedure � Chi-Square Tests and Statistics 549

PROC FREQ gives the following information for Fisher’s exact test for 2�2 tables:
table probability, two-sided p-value, left-sided p-value, and right-sided p-value. Where p
is the hypergeometric probability of a specific table with the observed row and column
totals, p-values are computed by summing these probabilities p over defined sets of
tables,

���� �
�

�

�

The table probability is the hypergeometric probability of the observed table. The
two-sided p-value is the sum of all possible table probabilities (for tables having the
observed row and column totals) that are less than or equal to the observed table
probability. So, for the two-sided p-value, the set A includes all possible tables with
hypergeometric probabilities less than or equal to the probability of the observed table.
A small two-sided p-value supports the alternative hypothesis of association between
the row and column variables.

One-sided tests are defined in terms of the frequency of the cell in the first row and
first column of the table, the (1,1) cell. Denoting the observed (1,1) cell frequency by F,
the left-sided p-value for Fisher’s exact test is the probability that the (1,1) cell
frequency is less than or equal to F. So, for the left-sided p-value, the set A includes
those tables with a (1,1) cell frequency less than or equal to F. A small left-sided
p-value supports the alternative hypothesis that the probability of an observation being
in the first cell is less than expected under the null hypothesis of independent row and
column variables.

Similarly, for a right-sided alternative hypothesis, A is the set of tables where the
frequency of the (1,1) cell is greater than or equal to that in the observed table. A small
right-sided p-value supports the alternative that the probability of the first cell is
greater than that expected under the null hypothesis.

Because the (1,1) cell frequency completely determines the 2�2 table when the
marginal row and column sums are fixed, these one-sided alternatives can be
equivalently stated in terms of other cell probabilities or ratios of cell probabilities. The
left-sided alternative is equivalent to an odds ratio greater than 1, where the odds ratio
equals ���������������. Additionally, the left-sided alternative is equivalent to the
column 1 risk for row 1 being less than the column 1 risk for row 2, ���� � ����.
Similarly, the right-sided alternative is equivalent to the column 1 risk for row 1 being
greater than the column 1 risk for row 2, ���� � ����. Refer to Agresti (1996).

Fisher’s exact test was extended to general � �	 tables by Freeman and Halton
(1951), and this test is also known as the Freeman-Halton test. For �� 	 tables, the
two-sided p-value is defined the same as it is for 2�2 tables. A is the set of all tables
with p less than or equal to the probability of the observed table. A small p-value
supports the alternative hypothesis of association between the row and column
variables. For ��	 tables, Fisher’s exact test is inherently two-sided. The alternative
hypothesis is defined only in terms of general, and not linear, association. Therefore,
PROC FREQ does not compute right-sided or left-sided p-values for general �� 	
tables.

For �� 	 tables, PROC FREQ computes Fisher’s exact test using the network
algorithm of Mehta and Patel (1983), which provides a faster and more efficient solution
than direct enumeration. See “Exact Statistics” on page 581 for more information.

Phi Coefficient
The phi coefficient is a measure of association derived from the Pearson chi-square

statistic. It has the range �� �
 � � for 2�2 tables. Otherwise, the range is
� �
 � ���

��
� � ��

�
	 � �

�
(Liebetrau, 1983). The phi coefficient is computed as

550 Measures of Association � Chapter 23

� �
������ � �������
������������

��� ��� ����	

� �
�
���� ���	��

	.

Refer to Fleiss (1981, pp 59-60).

Contingency Coefficient
The contingency coefficient is a measure of association derived from the Pearson

chi-square. It has the range � � � �
�

��� �� ��, where � � �
� �����
(Liebetrau, 1983). The contingency coefficient is computed as

� �

�
��

�� � �

Refer to Kendall and Stuart (1979, pp 587-588).

Cramer’s V
Cramer’s V is a measure of association derived from the Pearson chi-square. It is

designed so that the attainable upper limit is always 1. It has the range �� � 	 � �
for 2�2 tables; otherwise, the range is � � 	 � �. Cramer’s V is computed as

	 � � ��� ��� ����	

	 �

�
����

�
� �� � �� � � ��
���	��

	.

Refer to Kendall and Stuart (1979, p. 588).

Measures of Association
When you specify the MEASURES option in the TABLES statement, PROC FREQ

computes several statistics that describe the association between the two variables of
the contingency table. The following are measures of ordinal association that consider
whether the variable Y tends to increase as X increases: gamma, Kendall’s tau-b,
Stuart’s tau-c, and Somers’ D. These measures are appropriate for ordinal variables, and
classify pairs of observations as concordant or discordant. A pair is concordant if the
observation with the larger value of X also has the larger value of Y. A pair is discordant
if the observation with the larger value of X has the smaller value of Y. Refer to Agresti
(1996) and the other references cited in the discussion of each measure of association.

The Pearson correlation coefficient and the Spearman rank correlation coefficient are
also appropriate for ordinal variables. The Pearson correlation describes the strength of
the linear association between the row and column variables, and is computed using the
row and column scores specified by the SCORES= option in the TABLES statement.
The Spearman correlation is computed with rank scores. The polychoric correlation

The FREQ Procedure � Measures of Association 551

(requested by the PLCORR option) also requires ordinal variables, and assumes that
the variables have an underlying bivariate normal distribution. The following measures
of association do not require ordinal variables, but are appropriate for nominal
variables: lambda asymmetric and symmetric, and the uncertainty coefficients.

PROC FREQ computes estimates of the measures according to the formulas given in
the discussion of each measure of association. For each measure, PROC FREQ
computes an asymptotic standard error, which is the square root of the asymptotic
variance denoted by var in the following sections.

Confidence Limits
If you specify the CL option in the TABLES statement, PROC FREQ computes

asymptotic confidence limits for all MEASURES statistics. The confidence coefficient is
determined according to the value of the ALPHA= option, which by default equals 0.05
and produces 95 percent confidence limits. The confidence limits are computed as

��� � ���� � ���

where ��� is the estimate of the measure, ���� is the ��� �� � ���� percentile of the
standard normal distribution, and ASE is the asymptotic standard error of the estimate.

Asymptotic Tests
For each measure that you specify in the TEST statement, PROC FREQ computes an

asymptotic test of the null hypothesis that the measure equals zero. Asymptotic tests
are available for the following measures of association: gamma, Kendall’s tau-b,
Stuart’s tau-c, Somers’ D(�
), Somers’ D(
 �), the Pearson correlation coefficient,
and the Spearman rank correlation coefficient. To compute an asymptotic test, PROC
FREQ uses a standardized test statistic z, which has an asymptotic standard normal
distribution under the null hypothesis. The standardized test statistic is computed as

� �
���

�
��
� �����

where ��� is the estimate of the measure, and ��
� ����� is the variance of the estimate
under the null hypothesis. Formulas for ��
� ����� are given in the discussion of each
measure of association.

Note that the ratio of ��� to
�
��
� ����� is the same for the following measures:

gamma, Kendall’s tau-b, Stuart’s tau-c, Somers’ D(�
), and Somers’ D(
�).
Therefore, the tests for these measures are identical. For example, the p-values for the
test of ��: gamma=0 equal the p-values for the test of ��: tau-b= 0.

PROC FREQ computes one-sided and two-sided p-values for each of these tests.
When the test statistic z is greater than its null hypothesis expected value of zero,
PROC FREQ computes the right-sided p-value, which is the probability of a larger
value of the statistic occurring under the null hypothesis. A small right-sided p-value
supports the alternative hypothesis that the true value of the measure is greater than
zero. When the test statistic is less than or equal to zero, PROC FREQ computes the
left-sided p-value, which is the probability of a smaller value of the statistic occurring
under the null hypothesis. A small left-sided p-value supports the alternative
hypothesis that the true value of the measure is less than zero. The one-sided p-value
�� can be expressed as

552 Measures of Association � Chapter 23

�� � ���� �� � �� �� � � 	

�� � ���� �� � �� �� � � 	

where � has a standard normal distribution. The two-sided p-value �� is computed as

�� � �������� � ����

Exact Tests
Exact tests are available for two measures of association, the Pearson correlation

coefficient and the Spearman rank correlation coefficient. If you specify the PCORR
option in the EXACT statement, PROC FREQ computes the exact test of the hypothesis
that the Pearson correlation equals zero. If you specify the SCORR option in the
EXACT statement, PROC FREQ computes the exact test of the hypothesis that the
Spearman correlation equals zero. See “Exact Statistics” on page 581 for information on
exact tests.

Gamma
The estimator of gamma is based only on the number of concordant and discordant

pairs of observations. It ignores tied pairs (that is, pairs of observations that have equal
values of X or equal values of Y). Gamma is appropriate only when both variables lie on
an ordinal scale. It has the range �
 � � �
. If the two variables are independent,
then the estimator of gamma tends to be close to zero. Gamma is estimated by

� �
�� ���

�� ���

with

��	 �

�� ����

�

�

�

�

�� ����� � �����
�

The variance of the estimator under the null hypothesis that gamma equals zero is
computed as

��	� ����
�

������

�
��

�

�
�

�� ���������
�� ������

�
�

For 2�2 tables, gamma is equivalent to Yule’s Q. Refer to Goodman and Kruskal
(1963; 1972), Brown and Benedetti (1977), and Agresti (1990).

Kendall’s Tau-b
Kendall’s tau-b is similar to gamma except that tau-b uses a correction for ties.

Tau-b is appropriate only when both variables lie on an ordinal scale. Tau-b has the
range �
 � �� �
. It is estimated by

The FREQ Procedure � Measures of Association 553

�� �
�� ����
����

with

��� �
�

��

�
��

�

�
�

��� ������ � ������
�� ����� ��� � ���

�

�
�

where

� �
�
����

�� � �� �
�
�

����

�� � �� �
�
�

����

��� � 	�� �
��

��� � ����� � �����

The variance of the estimator under the null hypothesis that tau-b equals zero is
computed as

���� �����
�

����

�
��

�

�
�

��� �	���
���
�������� ��

�
�

Refer to Kendall (1955) and Brown and Benedetti (1977).

Stuart’s Tau-c
Stuart’s tau-c makes an adjustment for table size in addition to a correction for ties.

Tau-c is appropriate only when both variables lie on an ordinal scale. Tau-c has the
range �� � �� � �. It is estimated by

�� �

 �� ���

�� �
� ��

with

��� �
�
�

�
� ��� ��

�
��

�

�
�

����
�

�� � �� ���
�
��

�
�

where

554 Measures of Association � Chapter 23

� � ��� �����

��� � ��� ����

The variance of the estimator under the null hypothesis that tau-c equals zero is the
same as ��	 in the above equation.

��	� �
�� � ��	

Refer to Brown and Benedetti (1977).

Somers’ D
Somers’ � ����� and Somers’ � ����� are asymmetric modifications of tau-b. ���

denotes that the row variable X is regarded as an independent variable, while the
column variable Y is regarded as dependent. Similarly, ��� denotes that the column
variable Y is regarded as an independent variable, while the row variable X is regarded
as dependent. Somers’ � differs from tau-b in that it uses a correction only for pairs
that are tied on the independent variable. Somers’ � is appropriate only when both
variables lie on an ordinal scale. It has the range �� � � � �. Formulas for Somers’
� ����� are obtained by interchanging the indices:

� ����� �
�� ���

�

with

��	 �
�

��
�

�

�

�

�

��� �
���� � �� ��� ��� �����
�

where

� � �� �
�

�

����

��� � ��� ����

The variance of the estimator under the null hypothesis that tau-c equals zero is
computed as

��	� �� ������ �
�

�
�

�
��

�

�
�

��� ���� �����
�
� �� ���

�
��

�
�

Refer to Somers (1962) and Goodman and Kruskal (1972).

The FREQ Procedure � Measures of Association 555

Pearson Correlation Coefficient
PROC FREQ computes the Pearson correlation coefficient using the scores specified

in the SCORES= option. The Pearson correlation is appropriate only when both
variables lie on an ordinal scale. It has the range �� � � � �. The Pearson correlation
coefficient is computed as

� �
�

�
�

�����
������

with

��� �
�

��

�

�

�

�

���

�
�
�
�� ��

� �
�� � �

�� 	���

��

��

The row scores �� and the column scores �� are determined by the SCORES= option in
the TABLES statement. Then

��� �
�
�

�
�

���

�
�� ��

��

��� �
�
�

�
�

���

�
�� � �

��

���� �
�
�

�
�

���

�
�� ��

� �
�� � �

�

	�� �
�
�� ��

��
��� �

�
�� � �

��
���

� � ����

� �
�
������

where � and � are the average row and columns scores as defined in “Definitions and
Notation” on page 544. Refer to Snedecor and Cochran (1989) and Brown and Benedetti
(1977).

To compute an asymptotic test for the Pearson correlation, PROC FREQ uses a
standardized test statistic ��, which has an asymptotic standard normal distribution
under the null hypothesis. The standardized test statistic is computed as

�� �
��

���� ���

where ���� ��� is the variance of the correlation under the null hypothesis.

���� ����

�
�

�
�

���

�
�� ��

���
�� � �

�� � �����
�

������

556 Measures of Association � Chapter 23

This asymptotic variance is derived for multinomial sampling in a contingency table
framework, and it differs from the form obtained under the assumption that both
variables are continuous and normally distributed. Refer to Brown and Benedetti
(1977).

PROC FREQ also computes the exact test for the hypothesis that the Pearson
correlation equals zero when you specify the PCORR option in the EXACT statement.
See “Exact Statistics” on page 581 for more information on exact tests.

Spearman Rank Correlation Coefficient
The Spearman correlation coefficient is computed using rank scores ��� and ��� ,

defined in “Scores” on page 545. It is appropriate only when both variables lie on an
ordinal scale. It has the range �� � �� � �. The Spearman correlation coefficient is
computed as

�� �
�

�

with

��� �
�

����

�

�

�

�

��� ���� � ��
�

where

The FREQ Procedure � Measures of Association 557

� �
�

�

�

�

���� ���� ���

� �
�

��

�
��

� � �� �
�

�

����

� � �� �
�

�

����

� ��� � ��� �
�

�

� ��� � ��� �
�

�

	 �
�

�

�

�

�

�

���	��

	�� � ���� � ����

��� � ��� ���� ��� �
�

�

�

�

���� �
� �
�

�

�

�

���� ���

�
�

�

�

���

���� �
� �
�

�

�

���

���� ����

��� �
��
���

�
����� ������

�

Refer to Snedecor and Cochran (1989) and Brown and Benedetti (1977).
To compute an asymptotic test for the Spearman correlation, PROC FREQ uses a

standardized test statistic ��� , which has an asymptotic standard normal distribution
under the null hypothesis. The standardized test statistic is computed as

��� �
���

�
�� ����

where �
�� ���� is the variance of the correlation under the null hypothesis.

�
�� ���� �
�

����

�

�

�

�

��� ���� � ���

where

� �
�

�

�

�

��������

558 Measures of Association � Chapter 23

This asymptotic variance is derived for multinomial sampling in a contingency table
framework, and it differs from the form obtained under the assumption that both
variables are continuous. Refer to Brown and Benedetti (1977).

PROC FREQ also computes the exact test for the hypothesis that the Spearman rank
correlation equals zero when you specify the SCORR option in the EXACT statement.
See “Exact Statistics” on page 581 for more information.

Polychoric Correlation
When you specify the PLCORR option in the TABLES statement, PROC FREQ

computes the polychoric correlation. This measure of association is based on the
assumption that the ordered, categorical variables of the frequency table have an
underlying bivariate normal distribution. For 2�2 tables, the polychoric correlation is
also known as the tetrachoric correlation. Refer to Drasgow (1986) for an overview of
polychoric correlation. The polychoric correlation coefficient is the maximum likelihood
estimate of the product-moment correlation between the normal variables, estimating
thresholds from the observed table frequencies. Olsson (1979) gives the likelihood
equations and an asymptotic covariance matrix for the estimates.

To estimate the polychoric correlation, PROC FREQ iteratively solves the likelihood
equations by a Newton-Raphson algorithm. Iteration stops when the convergence
measure falls below the convergence criterion, or when the maximum number of
iterations is reached, whichever occurs first. The CONVERGE= option sets the
convergence criterion, and the default is 0.0001. The MAXITER= option sets the
maximum number of iterations, and the default is 20.

Lambda Asymmetric
Asymmetric lambda, � �����, is interpreted as the probable improvement in

predicting the column variable Y given knowledge of the row variable X. Asymmetric
lambda has the range � � � ����� � �. It is computed as

� ����� �

�

�

�� � �

�� �

with

��� �

�� �
�

�

���

��� ��
�

��
�

�� � � � �
�

�

������ � ��

�

where

�� � ��	
�

�����

� � ��	
�

�����

Also, let �� be the unique value of � such that �� � ��� , and let � be the unique value of
� such that �� � ��� .

Because of the uniqueness assumptions, ties in the frequencies or inthe marginal
totals must be broken in an arbitrary but consistent manner. In case of ties, � is defined

The FREQ Procedure � Measures of Association 559

here as the smallest value of � such that � � �
�� . For a given �, if there is at least one

value � such that ��� � �� � �� then �� is defined here to be the smallest such value of
�. Otherwise, if ��� � ��, then �� is defined to be equal to �. If neither condition is true,
then �� is taken to be the smallest value of � such that ��� � ��. The formulas for
lambda asymmetric ��� can be obtained by interchanging the indices.

Refer to Goodman and Kruskal (1963).

Lambda Symmetric
The nondirectional lambda is the average of the two asymmetric lambdas. Lambda

symmetric has the range � � � � �. Lambda symmetric is defined as

� �

��
�

���
�
�

�� �� ��

�

���� ����
�
�	�
�

	

with

�� �
�

	�

�
�	
� � �	�

�
���

�
�

�
�

������ � ��
 � � ���

�
	� �
� ��� ����

�

where

�� � ��	
�

�����

� � ��	
�

�����

	 � ��� � � �

 � ���
�
�

�� �
�
�

��

� �
�
�

������ � �� �
�
�

������ � �� � �� � ��

� �
�� 	 �
 � ��

Refer to Goodman and Kruskal (1963).

Uncertainty Coefficient Asymmetric
The uncertainty coefficient, � �����, is the proportion of uncertainty (entropy) in

the column variable Y that is explained by the row variable X. It has the range
� � � ���� � � �. The formulas for � ����� are obtained by interchanging the
indices.

� ����� �
� ��� �� �� ��� ��� �

� �� �
�

	

560 Binomial Proportion � Chapter 23

with

��� �
�

����

�

�

�

�

���

�
� �� � ��

�
���

���

�
� �� ����� ��� �� ��

�
���

�

���

where

� � � ��� �� �� ��� ��� �

� � � �� �

� ��� � �
�
�

�
���

�

�
��
�
���

�

�

� �� � � �
�
�

�
���

�

�
��
�
���

�

�

� ��� � � �
�
�

�
�

�
���

�

�
��
�
���

�

�

Refer to Theil (1972, pp 115-120) and Goodman and Kruskal (1972).

Uncertainty Coefficient Symmetric
The uncertainty coefficient, U, is the symmetric version of the two asymmetric

coefficients. It has the range 	 � � � �. It is defined as

� �

 �� ��� �� �� ��� ��� ��

� ��� �� �� �

with

���� �
�
�

�
�

���

�
� ��� � ��

�������
��

�
� ��������� �� ��

�
���

�

��
�

�� �� ����� �� ���

Refer to Goodman and Kruskal (1972).

Binomial Proportion
When you specify the BINOMIAL option in the TABLES statement, PROC FREQ

computes a binomial proportion for one-way tables. By default, this is the proportion of
observations for the first variable level, or class, that appears in the output. (To specify
a different level, use the LEVEL= option.)

�� � ����

The FREQ Procedure � Binomial Proportion 561

where �� is the frequency for the specified level, and � is the total frequency for the
one-way table. The standard error for the binomial proportion is computed as

�� ���� �
�

�� ��� ��� ��

Using the normal approximation to the binomial distribution, PROC FREQ constructs
asymptotic confidence limits for � according to

�� � ���� � �� ����

where ���� is the ��� ��� ���� percentile of the standard normal distribution. The
confidence level � is determined by the ALPHA= option, which by default equals .05
and produces 95 percent confidence limits.

If you specify the BINOMIALC option, PROC FREQ includes a continuity correction
of ���� in the asymptotic confidence limits for �. The purpose of this correction is to
adjust for the difference between the normal approximation and the binomial
distribution, which is a discrete distribution. Refer to Fleiss (1981). With the continuity
correction, the asymptotic confidence limits for � are

�� �
�
���� � �� ���� � ������

�

Additionally, PROC FREQ computes exact confidence limits for the binomial
proportion using the F distribution method given in Collett (1991) and also described by
Leemis and Trivedi (1996).

PROC FREQ computes an asymptotic test of the hypothesis that the binomial
proportion equals ��, where the value of �� is specified by the P= option in the TABLES
statement. If you do not specify a value for P=, PROC FREQ uses �� � ��� by default.
The asymptotic test statistic is

� �
��� ���

�� ��� ��� ��

If you specify the BINOMIALC option, PROC FREQ includes a continuity correction
in the asymptotic test statistic, towards adjusting for the difference between the normal
approximation and the discrete binomial distribution. Refer to Fleiss (1981). The
continuity correction of �� ���� is subtracted from ���� ��� in the numerator of the test
statistic if ��� � ��� is positive; otherwise, the continuity correction is added to the
numerator.

PROC FREQ computes one-sided and two-sided p-values for this test. When the test
statistic z is greater than its null hypothesis expected value of zero, PROC FREQ
computes the right-sided p-value, which is the probability of a larger value of the
statistic occurring under the null hypothesis. A small right-sided p-value supports the
alternative hypothesis that the true value of the proportion is greater than ��. When the
test statistic is less than or equal to zero, PROC FREQ computes the left-sided p-value,
which is the probability of a smaller value of the statistic occurring under the null
hypothesis. A small left-sided p-value supports the alternative hypothesis that the true
value of the proportion is less than ��. The one-sided p-value �� can be expressed as

562 Risks and Risk Differences � Chapter 23

�� � ���� �� � �� �� � � 	

�� � ���� �� � �� �� � � 	

where � has a standard normal distribution. The two-sided p-value �� is computed as

�� � ���� ���� � ����

When you specify the BINOMIAL option in the EXACT statement, PROC FREQ also
computes an exact test of the null hypothesis ��
 � � ��. To compute this exact test,
PROC FREQ uses the binomial probability function

���� ���������

�
	

�

�
��� ������

�����
��	
�
�

	

where the variable X has a binomial distribution with parameters 	 and ��. To
compute ���� �� � 	��, PROC FREQ sums these binomial probabilities over � from
zero to 	�. To compute ���� �� � 	�� , PROC FREQ sums these binomial
probabilities over � from 	� to 	. Then the exact one-sided p-value is

�� � ��� ����� �� � 	�����
���� �� � 	������

and the exact two-sided p-value is

�� � � � ��

Risks and Risk Differences
The RISKDIFF option in the TABLES statement provides estimates of risks (or

binomial proportions) and risk differences for 2�2 tables. This analysis may be
appropriate when you are comparing the proportion of some characteristic for two
groups, where row 1 and row 2 correspond to the two groups, and the columns
correspond to two possible characteristics or outcomes. For example, the row variable
might be a treatment or dose, and the column variable might be the response. Refer to
Collett (1991), Fleiss (1981), and Stokes et al. (1995).

Let the frequencies of the 2�2 table be represented as follows:

n11

n21

n12

n22

Column 1 Column 2

Row 1

Row 2

Total n•1 n•2

n1•

n2•

n

Total

The FREQ Procedure � Risks and Risk Differences 563

The column 1 risk for row 1 is the proportion of row 1 observations classified in column 1

���� � �������

This estimates the conditional probability of the column 1 response, given the first level
of the row variable.

The column 1 risk for row 2 is the proportion of row 2 observations classified in
column 1,

���� � �������

and the overall column 1 risk is the proportion of all observations classified in column 1,

�
�� � �

����

The column 1 risk difference compares the risks for the two rows, and it is computed
as the column 1 risk for row 1 minus the column 1 risk for row 2,

�������
�
� ���� � ����

The risks and risk difference are defined similarly for column 2.
The standard error of the column 1 risk estimate for row i is computed as

��
�
����

�
�
�

����

�
� � ����

�
����

The standard error of the overall column 1 risk estimate is computed as

�� ����� �
�

��� �� � ���� ��

If the two rows represent independent binomial samples, the standard error for the
column 1 risk difference is computed as

�� ��������
�
� �

�
�	

�
����

�
� �	

�
����

�

The standard errors are computed similarly for the column 2 risks and risk difference.
Using the normal approximation to the binomial distribution, PROC FREQ

constructs asymptotic confidence limits for the risks and risk differences according to

��� �
�
���� � �� �����

�

where ��� is the estimate, ���� is the �� �
��� percentile of the standard normal
distribution, and �� ����� is the standard error of the estimate. The confidence level

564 Odds Ratio and Relative Risks for 2�2 Tables � Chapter 23

is determined from the value of the ALPHA= option, which, by default, equals 0.05 and
produces 95 percent confidence limits.

If you specify the RISKDIFFC option, PROC FREQ includes continuity corrections in
the asymptotic confidence limits for the risks and risk differences. Continuity
corrections adjust for the difference between the normal approximation and the discrete
binomial distribution. Refer to Fleiss (1981). Including a continuity correction, the
asymptotic confidence limits become

��� �
�
���� � �� �����

�
� ��

where �� is the continuity correction. For the column 1 risk for row 1, �� � ��������;
for the column 1 risk for row 2, �� � ��������; for the overall column 1 risk,
�� � ������; and for the column 1 risk difference, �� � ������� � ������ ���.
Continuity corrections are computed similarly for thecolumn 2 risks and risk difference.

PROC FREQ computes exact confidence limits for the column 1, column 2, and
overall risks using the F distribution method given in Collett (1991), and also described
by Leemis and Trivedi (1996). PROC FREQ does not provide exact confidence limits for
the risk differences. Refer to Agresti (1992) for a discussion of issues involved in
constructing exact confidence limits for differences of proportions.

Odds Ratio and Relative Risks for 2�2 Tables

Odds Ratio (Case-Control Studies)
The odds ratio is a useful measure of association for a variety of study designs. For a

retrospective design called a case-control study, the odds ratio can be used to estimate
the relative risk when the probability of positive response is small (Agresti, 1990). In a
case-control study, two independent samples are identified based on a binary (yes-no)
response variable, and the conditional distribution of a binary explanatory variable is
examined within fixed levels of the response variable. Refer to Stokes et al. (1995) and
Agresti (1996).

The odds of a positive response (column 1) in row 1 is �������. Similarly, the odds of
positive response in row 2 is �������. The odds ratio is formed as the ratio of the row 1
odds to the row 2 odds. The odds ratio for 2�2 tables is defined as

�� �
�������
�������

�
������
������

The odds ratio can be any nonnegative number. When the row and column variables
are independent, the true value of the odds ratio equals 1. An odds ratio greater than 1
indicates that the odds of a positive response are higher in row 1 than in row 2. Values
less than 1 indicate the odds of positive response are higher in row 2. The strength of
association increases with the deviation from 1.

The transformation � � ���� �� � ��� � �� transforms the odds ratio to the
range ���� �� such that � � � when �� � �, � � �� when �� � �, and � is close
to 1 for very large values of ��. � is the gamma statistic, which PROC FREQ
computes when you specify the MEASURES option.

The asymptotic ��� ��� 	� percent confidence limits for the odd ratio are

�
��� 	
�

�
��
�

�
� ��� 	
�

�
�
�

��

The FREQ Procedure � Odds Ratio and Relative Risks for 2�2 Tables 565

where

� � ��� ��� ��� �
�

���

�
�

���
�

�

���
�

�

���

and � is the �		 ��� ��
� percentile of the standard normal distribution. If any of the
four cell frequencies are zero, the estimates are not computed.

When you specify the OR option in the EXACT statement PROC FREQ computes
exact confidence limits for the odds ratio using an iterative algorithm based on that
presented by Thomas (1971). Because this is a discrete problem, the confidence
coefficient for these exact confidence limits is not exactly �� �, but is at least � � �.
Thus, these confidence limits are conservative. Refer to Agresti (1992).

Relative Risks (Cohort Studies)
These measures of relative risk are useful in cohort (prospective) study designs,

where two samples are identified based on the presence or absence of an explanatory
factor. The two samples are observed in future time for the binary (yes-no) response
variable under study. Relative risk measures are also useful in cross-sectional studies,
where two variables are observed simultaneously. Refer to Stokes et al. (1995) and
Agresti (1996).

The column 1 relative risk is the ratio of the column 1 risks for row 1 to row 2. The
column 1 risk for row 1 is the proportion of the row 1 observations classified in column 1,

���� � �������

Similarly, the column 1 risk for row 2 is

���� � �������

The column 1 relative risk is then computed as

��� �
����

����

A relative risk greater than 1 indicates that the probability of positive response is
greater in row 1 than in row 2. Similarly, a relative risk that is less than 1 indicates
that the probability of positive response is less in row 1 than in row 2. The strength of
association increases with the deviation from 1.

The asymptotic �		 ��� �� percent confidence limits for the column 1 relative risk
are

�
���� ��

�
��
�
�
�
� ���� ��

�
�
�
�
��

where

� � ��� ��� ���� �
� � ����

���
�

� � ����

���

566 Cochran-Armitage Test for Trend � Chapter 23

and � is the ��� ��� ���� percentile of the standard normal distribution. If either ���
or ��� is zero, PROC FREQ does not compute the relative risks.

The column 2 relative risks are computed similarly.

Cochran-Armitage Test for Trend
The TREND option in the TABLES statement requests the Cochran-Armitage test

for trend, which tests for trend in binomial proportions across levels of a single factor or
covariate. This test is appropriate for a contingency table where one variable has two
levels and the other variable is ordinal. The two-level variable represents the response,
and the other variable represents an explanatory variable with ordered levels. When
the contingency table has two columns and R rows, PROC FREQ tests for trend across
the R levels of the row variable. When the table has two rows and C columns, PROC
FREQ tests for trend across the C levels of the column variable.

The trend test is based upon the regression coefficient for the weighted linear
regression of the binomial proportions on the scores of the levels of the explanatory
variable. Refer to Margolin (1988) and Agresti (1990). If the contingency table has two
columns and R rows, the trend test statistic is computed as

� �

��

���

���
�
�� ��

�

�
�
�� ��� �

��� ��

where

�� �
��

���

���
�
�� ��

��

The row scores �� are determined by the value of the SCORES= option in the
TABLES statement. By default, PROC FREQ uses TABLE scores. For character
variables, the TABLE scores for the row variable are the row numbers (for example, 1
for the first row, 2 for the second row, and so on). For numeric variables, the TABLE
score for each row is the numeric value of the row level. When you perform the trend
test, the explanatory variable may be numeric (for example, dose of a test substance),
and these variable values may be appropriate scores. If the explanatory variable has
ordinal levels that are not numeric, you can assign meaningful scores to the variable
levels. Sometimes equidistant scores, such as the TABLE scores for a character
variable, may be appropriate. For more information on choosing scores for the trend
test, refer to Margolin (1988).

The null hypothesis for the Cochran-Armitage test is no trend, which means the
binomial proportion ��� � ������� is the same for all levels of the explanatory
variable.Under this null hypothesis, the trend test statistic is asymptotically distributed
as a standard normal random variable. In addition to this asymptotic test, PROC
FREQ can compute the exact test for trend, which you request by specifying the
TREND option in the EXACT statement. See the “EXACT Statement” on page 521 for
information on exact tests.

PROC FREQ computes one-sided and two-sided p-values for the trend test. When the
test statistic is greater than its expected value of zero, PROC FREQ computes the
right-sided p-value, which is the probability of a larger value of the statistic occurring

The FREQ Procedure � Jonckheere-Terpstra Test 567

under the null hypothesis. A small right-sided p-value supports the alternative
hypothesis of increasing trend in column 1 probability from row 1 to row R. When the
test statistic is less than or equal to zero, PROC FREQ computes the left-sided p-value.
A small left-sided p-value supports the alternative of decreasing trend. The one-sided
p-value �� can be expressed as

�� � ���� �����	
���
��
� � � �
� � � �

�� � ���� �����	
���
��
� � � �
� � � �

The two-sided p-value �� is computed as

�� � ���� ������	
���
��
�� � �� ��

Jonckheere-Terpstra Test
The JT option in the TABLES statement requests the Jonckheere-Terpstra test,

which is a nonparametric test for ordered differences among classes. It tests the null
hypothesis that the distribution of the response variable does not differ among classes.
It is designed to detect alternatives of ordered class differences, which can be expressed
as �� � �� � � � � � �� (or �� � �� � � � � � ��) with at least one of the inequalities
being strict, where �� denotes the effect of class �. For such ordered alternatives, the
Jonckheere-Terpstra test can be preferable to tests of more general class difference
alternatives, such as the Kruskal-Wallis test (requested by the WILCOXON option in
the NPAR1WAY procedure). Refer to Pirie (1983) and Hollander and Wolfe (1973) for
more information about the Jonckheere-Terpstra test.

The Jonckheere-Terpstra test is appropriate for a contingency table where an ordinal
column variable represents the response. The row variable, which can be nominal or
ordinal, represents the classification variable. The levels of the row variable should be
ordered according to the ordering you want the test to detect. The order of variable
levels is determined by the ORDER= option in the PROC FREQ statement. The default
is ORDER=INTERNAL, which orders by unformatted value. If you specify
ORDER=DATA, PROC FREQ orders values according to their order in the input data
set. For more information on how to order variable levels, see the ORDER= option on
page 520.

The Jonckheere-Terpstra test statistic is computed by first forming � �� � �� ��
Mann-Whitney counts ����� , where � � ��, for pairs of rows in the contingency table,

����� �
�
������ �� �
��� 	��� � 	�����
 � � �
 � � �
 ���� �

�� �
 � � �
 ����
�
�

�

�

�
������ �� �
��� 	��� � 	�����
 � � �
 � � �
 ���� �

�� �
 � � �
 ����
�

where 	��� is response � in row �. Then the Jonckheere-Terpstra test statistic is
computed as

 �
�

����

�

����

�����

568 Jonckheere-Terpstra Test � Chapter 23

This test rejects the null hypothesis of no difference among classes for large values of � .
Asymptotic p-values for the Jonkheere-Terpstra test are obtained by using the normal
approximation for the distribution of the standardized test statistic. The standardized
test statistic is computed as

�� �
� � �� ����
���� ���

where �� and ���� ��� are the expected value and variance of the test statistic under
the null hypothesis.

�� ��� �

�
�� �

�
�

����

�
��

���� ��� � ���� ��� ��	� ���
� ��� ��� � 	� ��� ���
��

where

� � � ���
� ����
��
�

�

��� ���� �
� ����� �
�

�
�
�

��� ���� �
� ����� �
�

� �

��
�

��� �����
� �������

����
�

��� �����
� �������

�
�

	 �

��
�

��� ���� �
�

��
��

�

��� ���� �
�

�
�

In addition to this asymptotic test, PROC FREQ can compute the exact
Jonckheere-Terpstra test, which you request by specifying the JT option in the EXACT
statement. See the “EXACT Statement” on page 521 for information on exact tests.

PROC FREQ computes one-sided and two-sided p-values for the Jonckheere-Terpstra
test. When the standardized test statistic is greater than its expected value of 0, PROC
FREQ computes the right-sided p-value, which is the probability of a larger value of the
statistic occurring under the null hypothesis. A small right-sided p-value supports the
alternative hypothesis of increasing order from row 1 to row R. When the standardized
test statistic is less than or equal to 0, PROC FREQ computes the left-sided p-value. A
small left-sided p-value supports the alternative of decreasing order from row 1 to row
R. The one-sided p-value,
�, can be expressed as

� � ���� ���� �� ��������� � ��� �� �� � �

� � ���� ���� �� ��������� � ��� �� ��

� �

The two-sided p-value,
�, is computed as

The FREQ Procedure � Tests and Measures of Agreement 569

�� � ���� ����� 	
 �����
���� � �����

Tests and Measures of Agreement
When you specify the AGREE option in the TABLES statement, PROC FREQ

computes tests and measures of agreement for square tables (that is, for tables where
the number of rows equals the number of columns). For two-way tables, these tests and
measures include McNemar’s test for 2�2 tables, Bowker’s test of symmetry, the simple
kappa coefficient, and the weighted kappa coefficient. For multiple strata (n-way tables,
where � � �), PROC FREQ computes the overall simple kappa coefficient and the
overall weighted kappa coefficient, as well as tests for equal kappas (simple and
weighted) among strata. For multiple strata of 2�2 tables, PROC FREQ computes
Cochran’s Q.

PROC FREQ computes the kappa coefficients (simple and weighted), their
asymptotic standard errors, and their confidence limits when you specify the AGREE
option in the TABLES statement. If you also specify the KAPPA option in the TEST
statement, then PROC FREQ computes the asymptotic test of the hypothesis that
simple kappa equals zero. Similarly, if you specify WTKAP in the TEST statement,
PROC FREQ computes the asymptotic test for weighted kappa.

In addition to the asymptotic tests that are described in this section, PROC FREQ
also computes the exact p-value for McNemar’s test when you specify the keyword
MCNEM in the EXACT statement. For the kappa statistic, PROC FREQ computes an
exact test of the hypothesis that kappa (or weighted kappa) equals zero when you
specify KAPPA (or WTKAP) in the EXACT statement. See “Exact Statistics” on page
581 for more information about these tests.

The discussion of each test and measure of agreement provides the formulas that
PROC FREQ uses to compute the AGREE statistics. For information about the use and
interpretation of these statistics, refer to Agresti (1990), Agresti (1996), Fleiss (1981),
and the references that follow.

McNemar’s Test
PROC FREQ computes McNemar’s test for 2�2 tables when you specify the AGREE

option. McNemar’s test is appropriate when you are analyzing data from matched pairs
of subjects with a dichotomous (yes-no) response. It tests for marginal homogeneity, or
a null hypothesis of ��� � ���. McNemar’s test is computed as

�� �
���� � ����

�

��� � ���

Under the null hypothesis, �� has an asymptotic chi-square distribution with one
degree of freedom. Refer to McNemar (1947), as well as the references cited on page
569 in the preceding section. PROC FREQ also computes an exact p-value for
McNemar’s test when you specify MCNEM in the EXACT statement.

Bowker’s Test of Symmetry
PROC FREQ computes Bowker’s test of symmetry for square two-way tables that are

larger than 2�2. (For 2�2 tables, Bowker’s test is identical to McNemar’s test.) For
Bowker’s test of symmetry, the null hypothesis is that the probabilities in the square

570 Tests and Measures of Agreement � Chapter 23

table satisfy symmetry, or that ��� � ��� for all pairs of table cells. When there are
more than two categories for each variable, Bowker’s test of symmetry is calculated as

�� �

��

� � �

���� � ����
�

��� � ���

For large samples, �� has an asymptotic chi-square distribution with � �� � �� ��
degrees of freedom under the null hypothesis of symmetryof the expected counts. Refer
to Bowker (1948). For two categories, this test of symmetry is identical to McNemar’s
test.

Simple Kappa Coefficient
The simple kappa coefficient, introduced by Cohen (1960), is a measure of interrater

agreement:

�� �
�� � ��

�� ��

where �����	�� and �����	��	��. Viewing the two response variables as two
independentratings of the � subjects, the kappa coefficient equals +1 when there is
complete agreement of the raters. When the observed agreement exceeds chance
agreement, the kappa coefficient is positive, with its magnitude reflecting the strength
of agreement. Although unusual in practice, kappa is negative when the observed
agreement is less than chance agreement. The minimum value of kappa is between −1
and 0, depending on the marginal proportions.

The asymptotic variance of the simple kappa coefficient is estimated by the following,
according to Fleiss et al. (1969):

�� �

�� � �

��� ���
� �

where

 �
�
�

	�� �� � �	�� � 	
��� �� � �����

� � ��� ���� �
� ��

�
�

	�� �	�� � 	���
�

and

� � ���� �� �� � �����

PROC FREQ computes confidence limits for the simple kappa coefficient according to

The FREQ Procedure � Tests and Measures of Agreement 571

��� ���� �
�
���

where ���� is the ��� ��� ���� percentile of the standard normal distribution. The
value of � is determined by the value of the ALPHA= option, which by default equals
0.05 and produces 95 percent confidence limits.

To compute an asymptotic test for the kappa coefficient, PROC FREQ uses a
standardized test statistic ���, which has an asymptotic standard normal distribution
under the null hypothesis that kappa equals zero. The standardized test statistic is
computed as

��� � ���
���� ����

where ���� ���� is the variance of the kappa coefficient under the nullhypothesis.

���� ���� �
�� � � �

� �
�
�
������ ���� � ����

��� ���
� 	

Refer to Fleiss (1981).
In addition to the asymptotic test for kappa, PROC FREQ computes an exact test

when you specify the KAPPA option or the AGREE option in the EXACT statement.
See “Exact Statistics” on page 581 for more information on exact tests.

Weighted Kappa Coefficient
The weighted kappa coefficient is a generalization of the simple kappa coefficient,

using weights to quantify the relative difference between categories. PROC FREQ
computes the weights from the column scores, using either the Cicchetti-Allison weight
type or the Fleiss-Cohen weight type, which are described below. The weights
�� are
constructed so that � �
�� � � for all � ��
�
�� � � for all �, and
�� �
��. The
weighted kappa coefficient is defined as

��� �
����� � �����

�� �����

where

����� �
�
�

�
�

�����

and

����� �
�
�

�
�

��������

572 Tests and Measures of Agreement � Chapter 23

For 2�2 tables, the weighted kappa coefficient is identical to the simple kappa
coefficient. Therefore, PROC FREQ displays only the simple kappa coefficient for 2�2
tables. The asymptotic variance of the weighted kappa coefficient is estimated by the
following, according to Fleiss et al. (1969):

��� �

�

�

�

�
��� ���� � ���� � ���� �� � ������ � ���� � ����� ��� ������

�
� � �����

��
�

where

��� �
�
�

������

and

��� �
�
�

������

PROC FREQ computes confidence limits for the weighted kappa coefficient according
to

��� � ���� �
�
���

where ���� is the ��� �� � 	
�� percentile of the standard normal distribution. The
value of 	 is determined by the value of the ALPHA= option, which by default equals
0.05 and produces 95 percent confidence limits.

To compute an asymptotic test for the weighted kappa coefficient, PROC FREQ uses
a standardized test statistic ����, which has an asymptotic standard normal distribution
underthe null hypothesis. The standardized test statistic is computed as

���� �
����

���� �����
where ���� ����� is the variance of the kappa coefficient under the null hypothesis.

���� ����� �
�
�

�
�
������ ���� � ���� � ������ � � �

����

�
�� �����

��
�

Refer to Fleiss (1981).
In addition to the asymptotic test for weighted kappa, PROC FREQ computes the

exact test when you specify the WTKAP option or the AGREE option in the EXACT
statement. See “Exact Statistics” on page 581 for more information on exact tests.

The FREQ Procedure � Tests and Measures of Agreement 573

PROC FREQ computes kappa coefficient weights using the column scores and one of
two available weight types. The column scores are determined by the SCORES= option
in the TABLES statement. The two available weight types are Cicchetti-Allison and
Fleiss-Cohen. By default, PROC FREQ uses the Cicchetti-Allison type. If you specify
WT=FC in the AGREE option, then PROC FREQ uses the Fleiss-Cohen weight type to
construct kappa weights. To display the kappa weights, specify the PRINTKWT option
in the TABLES statement.

PROC FREQ computes Cicchetti-Allison kappa coefficient weights using a form
similar to that given by Cicchetti and Allison (1971).

��� � ��
��� � ���

�� ���

where �� is the score for column �, and C is the number of categories. You can specify
the type of score using the SCORES= option in the TABLES statement. If you do not
specify the SCORES= option, PROC FREQ uses TABLE scores. For numeric variables,
TABLE scores are the numeric values of the variable levels. You can assign numeric
values to the categories in a way that reflects their level of similarity. For example,
suppose you have four categories and order them according to similarity. If you assign
them values of 0, 2, 4, and 10, the following weights are used for computing the weighted
kappa coefficient: ��� � ��� ��� � ��� ��� � �� ��� � ��� ��� � ��� and ��� � ��.

If you specify (WT=FC) with the AGREE option in the TABLES statement, PROC
FREQ computes Fleiss-Cohen kappa coefficient weights using a form similar to that
given by Fleiss and Cohen (1973).

��� � ��
��� � ���

�

��� � ���
�

Overall Kappa Coefficient
When there are multiple strata, PROC FREQ combines the stratum-level estimates

of kappa into an overall estimate of the supposed common value of kappa. Assume
there are � strata, indexed by � � �� �� 	 	 	 � �, and let ��	 ��
�� denote the variance of�
�. Then the estimate of the overall kappa, according to Fleiss (1981), is computed as
follows:

�
�����		 �

�

���

�
�
��	 ��
���

�
���

�

��	 ��
��

An estimate of the overall weighted kappa is computed similarly.

Tests for Equal Kappa Coefficients
The following chi-square statistic, with � � � degrees of freedom, is used to test

whether the values of the kappa are equal among the � strata:

�� �

�
���

��
� � �
�����		��
��	 ��
��

574 Cochran-Mantel-Haenszel Statistics � Chapter 23

A similar test is done for weighted kappa coefficients.

Cochran’s Q Test
When there are multiple strata and two response categories, Cochran’s Q statistic is

used to test the homogeneity of the one-dimensional margins. Let � denote the number
of variables and � denote the total number of subjects. Then Cochran’s Q statistic is
computed as follows:

�� � ��� ��

�
��

���

� �� � � �

�� �
��

���

��
�

where �� is the number of positive responses for variable �, � is the total number of
positive responses over all variables, and �� is the number of positive responses for
subject �. Under the null hypothesis, Cochran’s Q is an approximate chi-square
statistic with �� � degrees of freedom. Refer to Cochran (1950). When there are two
variables (� � �), Cochran’s Q simplifies to McNemar’s statistic. When there are more
than two response categories, you can test for marginal homogeneity using the repeated
measures capabilities of the CATMOD procedure.

Tables with Zero Rows or Columns
The AGREE statistics are defined only for square tables, where the number of rows

equals the number of columns. If the table is not square, PROC FREQ does not
compute AGREE statistics. In the kappa statistic framework, where two independent
raters are assigning ratings to each of the n subjects, suppose one of the raters does not
use all possible r rating levels. If the corresponding table has r rows but only � � �
columns, then the table is not square, and PROC FREQ does not compute the AGREE
statistics. To create a square table in this situation, use the ZEROS option in the
WEIGHT statement, which requests that PROC FREQ include observations with zero
weights in the analysis. And input zero-weight observations to represent any rating
levels that are not used by a rater, so that the input data set has at least one
observation for each possible rater and rating combination. This includes all rating
levels in the analysis, whether or not all levels are actually assigned by both raters. The
resulting table is a square table, � � �, and so all AGREE statistics can be computed.

For more information on the ZEROS option, see “Using Zero Weights” on page 541.
By default, PROC FREQ does not process observations that have zero weights, because
these observations do not contribute to the total frequency count, and because any
resulting zero-weight row or column causes many of the tests and measures of
association to be undefined. However, kappa statistics are defined for tables with a
zero-weight row or column, and the ZEROS option allows input of zero-weight
observations so you can construct the tables needed to compute kappas.

Cochran-Mantel-Haenszel Statistics
For n-way crosstabulation tables, consider the following example:

proc freq;
tables a*b*c*d / cmh;

run;

The FREQ Procedure � Cochran-Mantel-Haenszel Statistics 575

The CMH option in the TABLES statement gives a stratified statistical analysis of the
relationship between C and D, controlling for A and B. The stratified analysis provides
a way to adjust for the possible confounding effects of A and B without being forced to
estimate parameters for them. The analysis produces Cochran-Mantel-Haenszel
statistics, and for 2�2 tables, it includes estimation of the common odds ratio, common
relative risks, and the Breslow-Day test for homogeneity of the odds ratios.

Let the number of strata be denoted by �, indexing the strata by � � �� �� � � � � �.
Each stratum contains a contingency table with X representing the row variable and Y
representing the column variable. For table �, denote the cell frequency in row � and
column � by ���� , with corresponding row and column marginal totals denoted by ����
and ���� and the overall stratum total by �� .

Because the formulas for the Cochran-Mantel-Haenszel statistics are more easily
defined in terms of matrices, the following notation is used. Vectors are presumed to be
column vectors unless they are transposed (′).

�
�

�� � ������ ����� � � � � ����� �����

�
�

� �
�
�
�

����
�

��� � � � ��
�

��

�
������

���� �
����

��

�����

���� �
����
��

�����

�
�

��� � ������ ����� � � � � ����� �����

�
�

��� � ������ ����� � � � � ����� �����

Assume that the strata are independent and that the marginal totals of each stratum
are fixed. The null hypothesis, �� , is that there is no association between X and Y in
any of the strata. The corresponding model is the multiple hypergeometric, which
implies that under ��, the expected value and covariance matrix of the frequencies are,
respectively,

�� � � ������� � �� ����� ������

and

��� ������� � 	
��
����� ������

�

���
�
�

�
����� ������

�

���

��

where

	 �
���

�� � �

and where � denotes Kronecker product multiplication and �� is a diagonal matrix
with elements of � on the main diagonal.

The generalized CMH statistic (Landis, Heyman, and Koch 1978) is defined as

��� ��
�
	

��

�
�

576 Cochran-Mantel-Haenszel Statistics � Chapter 23

where

� �
�

�

�� ��� ����

�� �
�

�

�� ���� ���������
�

�

and where

�� � �� ���

is a matrix of fixed constants based on column scores �� and row scores ��. When the
null hypothesis is true, the CMH statistic has an asymptotic chi-square distribution
with degrees of freedom equal to the rank of ��. If �� is found to be singular, PROC
FREQ displays a message and sets the value of the CMH statistic to missing.

PROC FREQ computes three CMH statistics using this formula for the generalized
CMH statistic, with different row and column score definitions for each statistic. The
CMH statistics that PROC FREQ computes are the correlation statistic, the ANOVA
(row mean scores) statistic, and the general association statistic. These statistics test
the null hypothesis of no association against different alternative hypotheses. The
following sections describe the computation of these CMH statistics.

CAUTION:
CMH statistics have low power for detecting an association when the patterns of
association for some of the strata are in the opposite direction of the patterns displayed by
other strata. Thus, a nonsignificant CMH statistic suggests either that there is no
association or that no pattern of association has enough strength or consistency to
dominate any other pattern. �

Correlation Statistic
The correlation statistic, with one degree of freedom, was popularized by Mantel and

Haenszel (1959) and Mantel (1963) and is therefore known as the Mantel-Haenszel
statistic.

The alternative hypothesis is that there is a linear association between X and Y in at
least one stratum. If either X or Y does not lie on an ordinal (or interval) scale, then
this statistic is meaningless.

To compute the correlation statistic, PROC FREQ uses the formula for the
generalized CMH statistic with the row and column scores determined by the
SCORES= option in the TABLES statement. See “Scores” on page 545 for more
information on the available score types. The matrix of row scores �� has dimension
� ��, and the matrix of column scores �� has dimension � � � .

When there is only one stratum, this CMH statistic reduces to ��� �� ��, where � is
the Pearson correlation coefficient between X and Y. When you specify nonparametric
(RANK, RIDIT, or MODRIDIT) scores, the statistic reduces to ��� �� ��� , where �� is
the Spearman rank correlation coefficient between X and Y. When there is more than
one stratum, then the CMH statistic becomes a stratum-adjusted correlation statistic.

ANOVA (Row Mean Scores) Statistic
The ANOVA statistic can be used only when the column variable Y lies on an ordinal

(or interval) scale so that the mean score of Y is meaningful. For the ANOVA statistic,

The FREQ Procedure � Cochran-Mantel-Haenszel Statistics 577

the mean score is computed for each row of the table, and the alternative hypothesis is
that, for at least one stratum, the mean scores of the � rows are unequal. In other
words, the statistic is sensitive to location differences among the � distributions of Y.

The matrix of column scores �� has dimension � � � , and the scores, one for each
column, are specified in the SCORES= option. The matrix �� has dimension
�� � ���� which PROC FREQ creates internally as

�� � ������������

where ���� is an identity matrix of rank � � �, and ���� is an �� � ��� � vector of
ones. This matrix has the effect of forming � � � independent contrasts of the � mean
scores.

When there is only one stratum, this CMH statistic is essentially an
analysis-of-variance (ANOVA) statistic in the sense that it is a function of the variance
ratio F statistic that would be obtained from a one-way ANOVA on the dependent
variable Y. If nonparametric scores are specified in this case, then the ANOVA statistic
is a Kruskal-Wallis test.

If there is more than one stratum, then this CMH statistic corresponds to a
stratum-adjusted ANOVA or Kruskal-Wallis test. In the special case where there is one
subject per row and one subject per column in the contingency table of each stratum,
then this CMH statistic is identical to Friedman’s chi-square. See Example 8 on page
615 for an illustration.

General Association Statistic
The alternative hypothesis for the general association statistic is that, for at least

one stratum, there is some kind of association between X and Y. This statistic is always
interpretable because it does not require an ordinal scale for either X or Y.

For the general association statistic, the matrix �� is the same as the one used for
the ANOVA statistic. The matrix �� is defined similarly as

�� � ������������

PROC FREQ generates both score matrices internally. When there is only one stratum,
then the general association CMH statistic reduces to �� �� � �� ��, where �� is the
Pearson chi-square statistic. When there is more than one stratum, then the CMH
statistic becomes a stratum-adjusted Pearson chi-square statistic. Note that a similar
adjustment is made by summing the Pearson chi-squares across the strata. However,
the latter statistic requires a large sample size in each stratum to support the resulting
chi-square distribution with � �� � �� �� � �� degrees of freedom. The CMH statistic
requires only a large overall sample size because it has only �� � �� �� � �� degrees
of freedom.

Refer to Cochran (1954); Mantel and Haenszel (1959); Mantel (1963); Birch (1965);
and Landis et al. (1978).

Adjusted Odds Ratio and Relative Risk Estimates
The CMH option provides adjusted odds ratio and relative risk estimates for

stratified 2�2 tables. For each of these measures, PROC FREQ computes the
Mantel-Haenszel estimate and the logit estimate. These estimates apply to n-way table
requests in the TABLES statement, when the row and column variables both have only
two levels. For example,

578 Cochran-Mantel-Haenszel Statistics � Chapter 23

proc freq;
tables a*b*c*d / cmh;

run;

In this example, if the row and column variables C and D both have two levels, PROC
FREQ provides odds ratio and relative risk estimates, adjusting for the confounding
variables A and B.

The choice of an appropriate measure depends on the study design. For case-control
(retrospective) studies, the odds ratio is appropriate. For cohort (prospective) or
cross-sectional studies, the relative risk is appropriate. See “Odds Ratio and Relative
Risks for 2�2 Tables” on page 564 for more information on these measures.

Throughout this section, � is the ��� ��� ���� percentile of the standard normal
distribution.

Odds Ratio (Case-Control Studies): Mantel-Haenszel Adjusted
The Mantel-Haenszel adjusted odds ratio estimator is given by

���� �

�

�

�����������
�

�

�����������

It is always computed unless the denominator is zero. Refer to Mantel and Haenszel
(1959) and Agresti (1990).

Using the estimated variance for �	
 ������ given by Robins et al. (1986), PROC
FREQ computes the corresponding ��� �� � �� percent confidence limits for the odds
ratio as

����� � ��
 ������ ����� � ��
 ������

where

��� � ��� �����
��
�

�

�

�

����� � ����� ���������� ��
�

�

��
�

�

�������������

�

�

�

������ � ����� ���������� � ����� � ����� ����������� ��
�

�

��
�

�

�������������
�

�

������������

�

�

�

����� � ����� ���������� ��
�

�

��
�

�

�������������

Note that the Mantel-Haenszel odds ratio estimator is less sensitive to small �� than
the logit estimator.

The FREQ Procedure � Cochran-Mantel-Haenszel Statistics 579

Odds Ratio (Case-Control Studies): Adjusted Logit
The adjusted logit odds ratio estimator (Woolf 1955) is given by

��� � ���

�
�
�
�

�� �� ����
�

��

�
�

and the corresponding �		
� � �� percent confidence limits are

�
��� � ���

�
���
��

�

��

�
���

� � ���

�
��
��

�

��

��

where ��� is the odds ratio for stratum h, and

�� �
�

���
������

Refer to Woolf (1955)
If any cell frequency in a stratum � is zero, then PROC FREQ adds 0.5 to each cell of

the stratum before computing ��� and �� (Haldane 1955), and displays a warning.

Relative Risks (Cohort Studies)
The Mantel-Haenszel estimate of the common relative risk for column 1 is computed

as

���� �

�
�

	���	���

�	��
�

	���	���

�	�

It is always computed unless the denominator is zero. Refer to Mantel and Haenszel
(1959) and Agresti(1990).

Using the estimated variance for ��

��
��
� given by Greenland and Robins (1985),

PROC FREQ computes the corresponding confidence �		
�� �� percent limits for the
relative risk as

���� � ���
���
 �� ���� � ���
��
 ��

where

�
� � ����� �����
��
�

�

�
�

	���

	���

	��� � 	���	���	�� �	
�

���
�

	���	���

�	�

���
�

	���	���

�	�

�

580 Cochran-Mantel-Haenszel Statistics � Chapter 23

The adjusted logit estimate of the common relative risk for column 1 is computed as

��
�
� ���

�
�
�
�

�� �� ����
��

�
�

and the corresponding ��� 	� � �
 percent confidence limits are

�
��

�
� ���

�
���
��

�

��

�
� ��

�
� ���

�
��
��

�

��

��

where ��� is the column 1 relative risk estimator for stratum h, and

�� �
�

��� 	�����

If ���� or ���� is zero, then PROC FREQ adds 0.5 to each cell of the stratum before
computing ��� and ��, and displays a warning.

Refer to Kleinbaum, Kupper, and Morgenstern (1982, Sections 17.4, 17.5) and
Breslow and Day (1994).

Breslow-Day Test for Homogeneity of the Odds Ratios
When you specify the CMH option, PROC FREQ computes the Breslow-Day test for

the stratified analysis of 2�2 tables. It tests the null hypothesis that the odds ratios
from the 	 strata are all equal. When the null hypothesis is true, the statistic has
approximately a chi-square distribution with 	 � � degrees of freedom.

The Breslow-Day statistic is computed as

��

�
�
�

	���� � � 	���������

�

��� 	���������

where E and var denote expected value and variance, respectively. The summation does
not include any tables with a zero row or column. If ���� equals zero or if it is
undefined, then PROC FREQ does not compute the statistic, and displays a warning
message.

For the Breslow-Day test to be valid, the sample size should be relatively large in
each stratum, and at least 80% of the expected cell counts should be greater than 5.
Note that this is a stricter sample size requirement than the one for the
Cochran-Mantel-Haenszel test for � �
 �
 tables, in that each stratum sample size
(not just the overall sample size) must be relatively large. Even when the Breslow-Day
test is valid, it may not be very powerful against certain alternatives, as discussed in
Breslow and Day (1980).

If you specify the BDT option, PROC FREQ computes the Breslow-Day test with
Tarone’s adjustment, which subtracts an adjustment factor from
�� to make the
resulting statistic asymptotically chi-square.

The FREQ Procedure � Exact Statistics 581

���� � �
��
�

��
�

����� � � ������������

��

�
�

��� �����������

Refer to Tarone (1985), Jones et al. (1989), and Breslow (1996).

Exact Statistics
Exact statistics can be useful in situations where the asymptotic assumptions are not

met, and so the asymptotic p-values are not close approximations for the true p-values.
Standard asymptotic methods involve the assumption that the test statistic follows a
particular distribution when the sample size is sufficiently large. When the sample size
is not large, asymptotic results may not be valid, with the asymptotic p-values differing
perhaps substantially from the exact p-values. Asymptotic results may also be
unreliable when the distribution of the data is sparse, skewed, or heavily tied. Refer to
Agresti (1996) and Bishop et al. (1975). Exact computations are based on the statistical
theory of exact conditional inference for contingency tables, reviewed by Agresti (1992).

In addition to computation of exact p-values, PROC FREQ provides the option of
estimating exact p-values by Monte Carlo simulation. This can be useful for problems
that are so large that exact computations require a great amount of time and memory,
but for which asymptotic approximations may not be sufficient.

PROC FREQ provides exact p-values for the following tests for two-way tables:
Pearson chi-square, likelihood-ratio chi-square, Mantel-Haenszel chi-square, Fisher’s
exact test, Jonckheere-Terpstra test, Cochran-Armitage test for trend, and McNemar’s
test. PROC FREQ can also compute exact p-values for tests of hypotheses that the
following statistics are equal to zero: Pearson correlation coefficient, Spearman
correlation coefficient, simple kappa coefficient, and weighted kappa coefficient.
Additionally, PROC FREQ can compute exact confidence limits for the odds ratio for
2�2 tables. For one-way frequency tables, PROC FREQ provides the exact chi-square
goodness-of-fit test (for equal proportions, or for proportions or frequencies that you
specify). Also for one-way tables, PROC FREQ provides exact confidence limits for the
binomial proportion, and an exact test for the binomial proportion value.

If the procedure does not complete the computation within the specified time, use
MAXTIME= to increase the amount of clock time that PROC FREQ can use to compute
the exact p-values directly or with Monte Carlo estimation.

The following sections summarize the computational algorithms, define the p-values
that PROC FREQ computes, and discuss the computational resource requirements.

Computational Algorithms
PROC FREQ computes exact p-values for general R�C tables using the network

algorithm developed by Mehta and Patel (1983). This algorithm provides a substantial
advantage over direct enumeration, which can be very time-consuming and feasible
only for small problems. Refer to Agresti (1992) for a review of algorithms for
computation of exact p-values, and refer to Mehta et al. (1984, 1991) for information on
the performance of the network algorithm.

The reference set for a given contingency table is the set of all contingency tables
with the observed marginal row and column sums. Corresponding to this reference set,
the network algorithm forms a directed acyclic network consisting of nodes in a number
of stages. A path through the network corresponds to a distinct table in the reference
set. The distances between nodes are defined so that the total distance of a path

582 Exact Statistics � Chapter 23

through the network is the corresponding value of the test statistic. At each node, the
algorithm computes the shortest and longest path distances for all the paths that pass
through that node. For statistics that can be expressed as a linear combination of cell
frequencies multiplied by increasing row and column scores, PROC FREQ computes
shortest and longest path distances using the algorithm given in Agresti et al. (1990).
For statistics of other forms, PROC FREQ computes an upper limit for the longest path
and a lower limit for the shortest path following the approach of Valz and Thompson
(1994).

The longest and shortest path distances or limits for a node are compared to the
value of the test statistic to determine whether all paths through the node contribute to
the p-value, none of the paths through the node contribute to the p-value, or neither of
these situations occur. If all paths through the node contribute, the p-value is
incremented accordingly, and these paths are eliminated from further analysis. If no
paths contribute, these paths are eliminated from the analysis. Otherwise, the
algorithm continues, still processing this node and the associated paths. The algorithm
finishes when all nodes have been accounted for, incrementing the p-value accordingly,
or eliminated.

In applying the network algorithm, PROC FREQ uses full precision to represent all
statistics, row and column scores, and other quantities involved in the computations.
Although it is possible to use rounding to improve the speed and memory requirements
of the algorithm, PROC FREQ does not do this because it can result in reduced
accuracy of the p-values.

PROC FREQ computes exact confidence limits for the odds ratio according to an
iterative algorithm based on that presented by Thomas (1971). Refer also to Gart
(1971). Because this is a discrete problem, the confidence coefficient is not exactly
� � �, but is at least � � �. Thus, these confidence limits are conservative.

For one-way tables, PROC FREQ computes the exact chi-square goodness-of-fit test
by the method of Radlow and Alf (1975). PROC FREQ generates all possible one-way
tables with the observed total sample size and number of categories. For each possible
table, PROC FREQ compares its chi-square value with the value for the observed table.
If the table’s chi-square value is greater than or equal to the observed chi-square,
PROC FREQ increments the exact p-value by the probability of that table, which is
calculated under the null hypothesis using the multinomial frequency distribution. By
default, the null hypothesis states that all categories have equal proportions. If you
specify null hypothesis proportions or frequencies using the TESTP= or TESTF= option
in the TABLES statement, then PROC FREQ calculates the exact chi-square test based
on that null hypothesis.

For binomial proportions in one-way tables, PROC FREQ computes exact confidence
limits using the F distribution method given in Collett (1991) and also described by
Leemis and Trivedi (1996). PROC FREQ computes the exact test for a binomial
proportion �� � �� �� by summing binomial probabilities over all alternatives. See
“Binomial Proportion” on page 560 for details. By default PROC FREQ uses �� � ���
as the null hypothesis proportion. Alternatively, you can specify the null hypothesis
proportion with the P= option in the TABLES statement.

Definition of p-Values

For several tests in PROC FREQ, the test statistic is nonnegative, and large values
of the test statistic indicate a departure from the null hypothesis. Such tests include
the Pearson chi-square, the likelihood-ratio chi-square, the Mantel-Haenszel chi-square,
Fisher’s exact test for tables larger than 2�2 tables, McNemar’s test, and the one-way
goodness-of-fit test. The exact p-value for these nondirectional tests is the sum of
probabilities for those tables having a test statistic greater than or equal to the value of
the observed test statistic.

The FREQ Procedure � Exact Statistics 583

There are other tests where it may be appropriate to test against either a one-sided
or a two-sided alternative hypothesis. For example, when you test the null hypothesis
that the true parameter value equals zero �� � ��, the alternative of interest may be
one-sided �� � �� �� � � �� or two-sided �� �� ��. Such tests include the Pearson
correlation coefficient, Spearman correlation coefficient, Jonckheere-Terpstra test,
Cochran-Armitage test for trend, simple kappa coefficient, and weighted kappa
coefficient. For these tests, PROC FREQ computes the right-sided p-value when the
observed value of the test statistic is greater than its expected value. The right-sided
p-value is the sum of probabilities for those tables having a test statistic greater than or
equal to the observed test statistic. Otherwise, when the test statistic is less than or
equal to its expected value, PROC FREQ computes the left-sided p-value. The left-sided
p-value is the sum of probabilities for those tables having a test statistic less than or
equal to the one observed. The one-sided p-value �� can be expressed as

�� � ���� ��	
� ��
��
��� � �� �� � � �� �� �

�� � ���� ��	
� ��
��
��� � �� �� � � �� �� �

where t is the observed value of the test statistic, and �� �� � is the expected value of
the test statistic under the null hypothesis. PROC FREQ computes the two-sided
p-value as the sum of the one-sided p-value and the corresponding area in the opposite
tail of the distribution of the statistic, equidistant from the expected value. The
two-sided p-value �� can be expressed as

�� � ���� ���	
� ��
��
���� �� �� �� � ��� �� �� ���

If you specify the POINT option in the EXACT statement, PROC FREQ also displays
exact point probabilities for the test statistics. The exact point probability is the exact
probability that the test statistic equals the observed value.

Computational Resources
PROC FREQ uses relatively fast and efficient algorithms for exact computations.

These recently developed algorithms, together with improvements in computer power,
make it feasible now to perform exact computations for data sets where previously only
asymptotic methods could be applied. Nevertheless, there are still large problems that
may require a prohibitive amount of time and memory for exact computations,
depending on the speed and memory available on your computer. For large problems,
consider whether exact methods are really needed or whether asymptotic methods
might give results quite close to the exact results, while requiring much less computer
time and memory. When asymptotic methods may not be sufficient for such large
problems, consider using Monte Carlo estimation of exact p-values, as described in
“Monte Carlo Estimation” on page 584.

A formula does not exist that can determine in advance how much time or memory
that PROC FREQ needs to compute an exact p-value for a certain problem. The time
and memory requirements depend on several factors which include the test that is
performed, the total sample size, the number of rows and columns, and the specific
arrangement of the observations into table cells. Generally, larger problems (in terms of
total sample size, number of rows, and number of columns) tend to require more time
and memory. Additionally, for a fixed total sample size, time and memory requirements
tend to increase as the number of rows and columns increases, because this corresponds
to an increase in the number of tables in the reference set. Also for a fixed sample size,

584 Exact Statistics � Chapter 23

time and memory requirements increase as the marginal row and column totals become
more homogeneous. Refer to Agresti et al. (1992) and Gail and Mantel (1977).

At any time while PROC FREQ computes exact p-values, you can terminate the
computations by pressing the system interrupt key sequence (refer to the SAS
Companion for your operating environment) and choosing to stop computations. After
you terminate exact computations, PROC FREQ completes all other remaining tasks
that the procedure specifies. The procedure produces the requested output, reporting
missing values for any exact p-values that were not computed by the time of
termination.

You can also use the MAXTIME= option in the EXACT statement to limit the amount
of clock time PROC FREQ uses for exact computations. You specify a MAXTIME= value
that is the maximum amount of time (in seconds) that PROC FREQ can use to compute
an exact p-value. If PROC FREQ does not finish computing an exact p-value within
that time, it terminates the computation and completes all other remaining tasks.

Monte Carlo Estimation
If you specify the option MC in the EXACT statement, PROC FREQ computes Monte

Carlo estimates of the exact p-values, instead of directly computing the exact p-values.
Monte Carlo estimation can be useful for large problems that require a great amount of
time and memory for exact computations, but for which asymptotic approximations may
not be sufficient. To describe the precision of each Monte Carlo estimate, PROC FREQ
provides the asymptotic standard error and ��� ��� ��� percent confidence limits.
The confidence level � is determined by the ALPHA= option in the EXACT statement,
which by default equals .01 and produces 99 percent confidence limits. The N= option
in the EXACT statement specifies the number of samples that PROC FREQ uses for
Monte Carlo estimation, and the default is 10000 samples. You can specify a larger
value for N= to improve the precision of the Monte Carlo estimates. Because larger
values of N= generate more samples, the computation time increases. Alternatively, you
can specify a smaller value of N= to reduce the computation time.

To compute a Monte Carlo estimate of an exact p-value, PROC FREQ generates a
random sample of tables with the same total sample size, row totals, and column totals
as the observed table. PROC FREQ uses the algorithm of Agresti et al. (1979), which
generates tables in proportion to their hypergeometric probabilities, conditional on the
marginal frequencies. For each sample table, PROC FREQ computes the value of the
test statistic and compares it to the value for the observed table. When estimating a
right-sided p-value, PROC FREQ counts all sample tables for which the test statistic is
greater than or equal to the observed test statistic. Then the p-value estimate equals
the number of these tables divided by the total number of tables sampled.

���� � ���

� � ���	
� �
 �����
� ���� ��
�� ��������� � ��
� � ���	
� �
 �����
�
� � �	�
��
� �
�� ���������

PROC FREQ computes left-sided and two-sided p-value estimates similarly. For
left-sided p-values, PROC FREQ evaluates whether the test statistic for each sampled
table is less than or equal to the observed test statistic. For two-sided p-values, PROC
FREQ examines the sample test statistics according to the expression for �� given in
“Definition of p-Values” on page 582. The variable � above is a binomially distributed
variable with � trials and success probability �. It follows that the asymptotic
standard error of the Monte Carlo estimate is

The FREQ Procedure � Missing Values 585

��
�
����

�
�

�
����

�
� � ����

�
� �� � ��

PROC FREQ constructs asymptotic confidence limits for the p-values according to

���� � ���� � ��
�
����

�

where ���� is the ��� ��� ���� percentile of the standard normal distribution, and
the confidence level � is determined by the ALPHA= option in the EXACT statement.

When the Monte Carlo estimate ���� equals 0, then PROC FREQ computes the
confidence limits for the p-value as

�
�� �� ������

�

When the Monte Carlo estimate ���� equals 1, then PROC FREQ computes the
confidence limits as

�
������� �

�

Results: FREQ Procedure

Missing Values
By default, PROC FREQ excludes missing values before it constructs the frequency

and crosstabulation tables. PROC FREQ also excludes missing values before computing
statistics. However, PROC FREQ displays the total frequency of observations with
missing values below each table. The following options in the TABLES statement
change how PROC FREQ handles missing values:

MISSPRINT
includes missing value frequencies in frequency or crosstabulation tables.

MISSING
includes missing values in percentage and statistical calculations.

The OUT= option in the TABLES statement includes an observation in the output
data set that contains the frequency of missing values. The NMISS keyword in the
OUTPUT statement creates a variable in the output data set that contains the number
of missing values.

Output 23.4 on page 585 shows three ways that PROC FREQ handles missing
values. The first table uses the default method; the second table uses MISSPRINT; and
the third table uses MISSING.

586 ODS Table Names � Chapter 23

Output 23.4 Missing Values in Frequency Tables

*** Default ***

The FREQ Procedure

Cumulative Cumulative
A Frequency Percent Frequency Percent
--
1 2 50.00 2 50.00
2 2 50.00 4 100.00

Frequency Missing = 2

*** MISSPRINT Option ***

The FREQ Procedure

Cumulative Cumulative
A Frequency Percent Frequency Percent
--
. 2 . . .
1 2 50.00 2 50.00
2 2 50.00 4 100.00

Frequency Missing = 2

*** MISSING Option ***

The FREQ Procedure

Cumulative Cumulative
A Frequency Percent Frequency Percent
--
. 2 33.33 2 33.33
1 2 33.33 4 66.67
2 2 33.33 6 100.00

When a combination of variable values for a crosstabulation is missing, PROC FREQ
assigns zero to the frequency count for the table cell. By default, PROC FREQ omits
missing combinations in list format and in the output data set that is created with a
TABLES statement. To include the missing combinations, use SPARSE with LIST or
OUT= in the TABLES statement.

PROC FREQ treats missing BY variable values like any other BY variable value.
The missing values form a separate BY group. When the value of a WEIGHT variable
is missing, PROC FREQ excludes the observation from the analysis.

ODS Table Names
PROC FREQ assigns a name to each table it creates. You can use these names to

reference the table when using the Output Delivery System (ODS) to select tables and
create output data sets. For more information, see SAS Output Delivery System User’s
Guide.

The FREQ Procedure � ODS Table Names 587

Table 23.5 ODS Tables Produced with the TABLES Statement

ODS Table Name Description Option

BinomialProp Binomial proportion BINOMIAL (one-way
tables)

BinomialPropTest Binomial proportion test BINOMIAL (one-way
tables)

BreslowDayTest Breslow-Day test CMH (hx2x2tables)

CMH Cochran-Mantel-Haenszel statistics CMH

ChiSq Chi-square tests and measures CHISQ

CochransQ Cochran’s Q AGREE (hx2x2 tables)

ColScores Column scores SCOROUT

CommonRelRisks Common relative risks CMH (hx2x2 tables)

CrossTabFreqs Crosstabulation table (n-way table request,

n > 1)

EqualKappaTest Test for equal simple kappas AGREE (hx2x2 tables)

EqualKappaTests Tests for equal kappas AGREE (hxrx r tables,
r>2)

FishersExact Fisher’s exact test FISHER or EXACT

CHISQ (2x2 tables)

JTTest Jonckheere-Terpstra test JT

KappaStatistics Kappa statistics AGREE (rxr tables,

r > 2, and no TEST or
EXACT requests for
kappas)

KappaWeights Kappa weights AGREE and
PRINTKWT

List List frequencies LIST

McNemarsTest McNemar’s test AGREE (2x2 tables)

Measures Measures of association MEASURES

OneWayChiSq One-way chi-square goodness-of-fit test CHISQ (one-way
tables)

OneWayFreqs One-way frequencies (one-way table request)

OverallKappa Overall simple kappa coefficient AGREE (hx2x2 tables)

OverallKappas Overall kappa coefficients AGREE (hxrxr tables,
r>2)

RelativeRisks Relative risk estimates RELRISK or
MEASURES (2x2
tables)

RiskDiffCol1 Column 1 risk estimates RISKDIFF (2x2 tables)

RiskDiffCol2 Column 2 risk estimates RISKDIFF (2x2 tables)

RowScores Row scores SCOROUT

588 ODS Table Names � Chapter 23

SimpleKappaTest Simple kappa test AGREE (2x2 tables),

AGREE rxr tables,
r>2)

SymmetryTest Test of symmetry AGREE

TrendTest Cochran-Armitage test for trend TREND

WeightedKappa Weighted kappa

coefficient

AGREE (rxr tables,
r>2)

Table 23.6 ODS Tables Produced with the EXACT Statement

ODS Table Name Description Option

FishersExact Fisher’s exact test FISHER

FishersExactMC Monte Carlo estimates for Fisher’s exact test FISHER / MC

JTTestMC Monte Carlo estimates for the JT exact test JT / MC

LRChiSq Likelihood-ratio chi-square exact test LRCHI

LRChiSqMC Monte Carlo estimate for the likelihood-ratio
chi-square exact test

LRCHI / MC

MHChiSq Mantel-Haenszel chi-square exact test MHCHI

MHChiSqMC Monte Carlo estimate for the
Mantel-Haenszel chi-square exact test

MHCHI / MC

OddsRatioCL Exact confidence limits for the odds ratio OR

OneWayChiSqMC Monte Carlo estimates for the one-way
chi-square exact test

CHISQ / MC (one-way
tables)

PearsonChiSq Pearson chi-square exact test PCHI

PearsonChiSqMC Monte Carlo estimate for the Pearson
chi-square exact test

PCHI / MC

PearsonCorr Pearson correlation coefficient PCORR

PearsonCorrMC Monte Carlo estimates for the Pearson
correlation exact test

PCORR / MC

PearsonCorrTest Pearson correlation test PCORR

SimpleKappa Simple kappa coefficient KAPPA

SimpleKappaMC Monte Carlo estimates for the simple kappa
exact test

KAPPA/ MC

SimpleKappaTest Simple kappa test KAPPA or WTKAP

SpearmanCorr Spearman correlation coefficient SCORR

SpearmanCorrMC Monte Carlo estimates for the Spearman
correlation exact test

SCORR / MC

SpearmanCorrTest Spearman correlation test SCORR

TrendTestMC Monte Carlo estimates for the trend exact test TREND / MC

WeightedKappa Weighted kappa

coefficient

WTKAP

KAPPA

The FREQ Procedure � Procedure Output 589

WeightedKappaMC Monte Carlo estimates for the weighted
kappa exact test

WTKAP / MC

WeightedKappaTest Weighted kappa test WTKAP

Table 23.7 ODS Tables Produced with the TEST Statement

ODS Table Name Description Option

Gamma Gamma GAMMA

GammaTest Gamma test GAMMA

PearsonCorr Pearson correlation coefficient PCORR

PearsonCorrTest Pearson correlation test PCORR

SimpleKappa Simple kappa coefficient KAPPA

SimpleKappaTest Simple kappa test KAPPA or WTKAP

SomersDCR Somers’ D(C|R) SMDCR

SomersDCRTest Somers’ D(C|R) test SMDCR

SomersDRC Somers’ D(R|C) SMDRC

SomersDRCTest Somers’ D(R|C) test SMDRC

SpearmanCorr Spearman correlation coefficient SCORR

SpearmanCorrTest Spearman correlation test SCORR

TauB Kendall’s tau-b KENTB

TauBTest Kendall’s tau-b test KENTB

TauC Stuart’s tau-c STUTC

TauCTest Stuart’s tau-c test STUTC

WeightedKappa Weighted kappa

coefficient

WTKAP

KAPPA

WeightedKappaTest Weighted kappa test WTKAP

Procedure Output
By default, a one-way table lists the variable name, variable values, frequency

counts, percentages, cumulative frequency counts, cumulative percentages, and the
number of missing values. Unless you use LIST in the TABLES statement, a two-way
table appears as a crosstabulation table. An n-way table appears as multiple
crosstabulation tables with one table for each combination of values for the stratification
variables. By default, each cell of a crosstabulation table lists the frequency count,
percentage of the total frequency count, row percentage, and column percentage.

Use the following TABLES statement options to report additional information for
each table cell:

CELLCHI2
includes the cell’s contribution to the total chi-square statistic

CUMCOL
includes the cumulative column percentage of the cell

DEVIATION

590 Output Data Sets � Chapter 23

includes the deviation of the cell frequency from the expected value

EXPECTED
includes the expected cell frequency under the hypothesis of independence.

You can also use the SCOROUT option to display the type of score, row score, and
column score for two-way tables.

By default, PROC FREQ displays the next one-way frequency table on the current
page when there is enough space to display the entire table. If you use COMPRESS in
the PROC FREQ statement, the next one-way table starts to display on the current
page even when the entire table will not fit. If you use PAGE in the PROC FREQ
statement, each frequency or crosstabulation table always displays on a separate page.

Suppressing the Displayed Output
The NOPRINT option in the PROC FREQ statement and NOPRINT, NOCOL,

NOCUM, NOFREQ, NOPERCENT, and NOROW in the TABLES statement suppress
displayed output. Use NOPRINT in the PROC FREQ statement to suppress all
displayed output as well as the Output Delivery System. Use NOPRINT in the
TABLES statement to suppress frequency and crosstabulation tables but still display
the requested statistics. Use NOCOL, NOCUM, NOFREQ, NOPERCENT, and NOROW
to suppress various frequencies and percentages in the frequency and crosstabulation
tables.

CAUTION:
Multiway tables can generate a great deal of displayed output. For example, if the
variables A, B, C, D, and E each have ten levels, the table request A*B*C*D*E may
generate 1000 or more pages of output. If you are primarily interested in the tests
and measures of association, use NOPRINT in the TABLES statement to suppress
the tables but display the statistics. Or use NOPRINT in the PROC FREQ statement
to suppress all displayed output, and use the OUTPUT statement to store the
statistics in an output data set. If you are interested in frequency counts and
percentages use LIST in the TABLES statement. �

Output Data Sets
PROC FREQ produces two types of output data sets that you can use with other

statistical and reporting procedures. These data sets are produced as follows:

TABLES statement, OUT= option
creates an output data set that contains frequency or crosstabulation table counts
and percentages.

OUTPUT statement
creates an output data set that contains statistics.

PROC FREQ does not display the output data set. Use PROC PRINT, PROC
REPORT, or any other SAS reporting tool to display the output data set.

Contents of the TABLES Statement Output Data Set
The OUT= option in the TABLES statement creates an output data set that contains

one observation for each combination of the variable values in the last table request. By
default, each observation contains the frequency and percentage for each combination of
variable values. When the input data set contains missing values, the output data set
contains an observation with the frequency of missing values. The output data set
includes the following variables:

The FREQ Procedure � Output Data Sets 591

� BY variables
� table request variables, such as A, B, C, and D in the table request A*B*C*D
� COUNT variable containing the cell frequency
� PERCENT variable containing the cell percentage.

If you use OUTEXPECT and OUTPCT, the output data set also contains expected
frequencies and row, column, and table percentages, respectively. The additional
variables are

� EXPECTED variable containing the expected frequency
� PCT_TABL variable containing the percentage of two-way table frequency, for

n-way tables where n > 2
� PCT_ROW variable containing the percentage of row frequency
� PCT_COL variable containing the percentage of column frequency.

If you use OUTCUM, the output data set also contains the cumulative frequency and
the cumulative percent for one-way tables in the output data set . The additional
variables are

� CUM_FREQ variable containing the cumulative frequency for each level of the
analysis variable

� CUM_PCT variable containing the cumulative percent for each level.

When you submit the following statements

proc freq;
tables a a*b / out=d;

run;

the output data set D contains frequencies and percentages for the last table request,
A*B. If A has two levels (1 and 2), B has three levels (1, 2, and 3), and no table cell
count is zero or missing, the output data set D includes six observations, one for each
combination of A and B. The first observation corresponds to A=1 and B=1; the second
observation corresponds to A=1 and B=2; and so on. The data set also includes the
variables COUNT and PERCENT. The value of COUNT is the number of observations
that have the given combination of A and B values. The value of PERCENT is the
percent of the total number of observations having that A and B combination.

When PROC FREQ combines different variable values into the same formatted level,
the output data set contains the smallest internal value for the formatted level. For
example, suppose a variable X has the values 1.1, 1.4, 1.7, 2.1, and 2.3. When you
submit the statement

format x 1.;

in a PROC FREQ step, the formatted levels listed in the frequency table for X are 1 and
2. If you create an output data set with the frequency counts, the internal values of X
are 1.1 and 1.7. To report the internal values of X when you display the output data
set, use a format of 3.1 with X.

Contents of the OUTPUT Statement Output Data Set
The OUTPUT statement creates a SAS data set that contains the statistics that

PROC FREQ computes for the last table request. You specify which statistics to store in
the output data set. There is an observation with the specified statistics for each
stratum or two-way table. If PROC FREQ computes summary statistics for a stratified
table, the output data set also contains a summary observation for these statistics.
Additionally, you can output statistics for one-way tables, such as chi-square or
binomial proportion statistics. If you use a BY statement, the output data set contains
observations for each BY group.

592 Examples: FREQ Procedure � Chapter 23

The output data set can include the following variables:
� BY variables
� variables that identify the stratum such as A and B in the table request A*B*C*D
� variables that contain the specified statistics.

The output data set also includes variables with the p-value and degrees of freedom,
asymptotic standard error (ASE), or confidence limits when PROC FREQ computes
these values for a specified statistic.

The variable names for the specified statistics in the output data set are the names
of the keywords that are enclosed in underscores. PROC FREQ forms variable names
for the corresponding p-values, degrees of freedom, or confidence limits by combining
the name of the keyword with one of the following prefixes

DF_ degrees of freedom

E_ asymptotic standard error (ASE)

E0_ asymptotic standard error under the null hypothesis

L_ lower confidence limit

P_ p-value

P2_ two-sided p-value

PL_ left-sided p-value

PR_ right-sided p-value

U_ upper confidence limit

XP_ exact p-value

XP2_ exact two-sided p-value

XPR_ exact right-sided p-value

XPL_ exact left-sided p-value

XPT_ exact point probability

XL_ exact lower confidence limit

XU_ exact upper confidence limit

Z_ standardized value

If the length of the prefix plus the statistic keyword exceeds eight characters, PROC
FREQ truncates the keyword so that the name of the new variable is eight characters
long.

Examples: FREQ Procedure

Example 1: Creating an Output Data Set with Table Cell Frequencies

Procedure features:

The FREQ Procedure � Program 593

TABLES statement,
multiple requests

TABLES statement options:
OUT=
OUTEXPECT
SPARSE

WEIGHT statement
Other features:

PRINT procedure

This example
� creates two frequency tables and a crosstabulation table using existing cell counts
� creates an output data set for the last table request with frequencies, percentages,

and expected cell frequencies
� includes zero cell counts in the output data set
� displays the output data set.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the COLOR data set. This data set contains information on eye and hair color of
children from two regions of Europe. The data are recorded as cell counts instead of as one
observation per child. Count contains the frequencies of the 15 eye and hair color combinations
for each region. Missing eye and hair color combinations are excluded from the data set.

data color;
input Region Eyes $ Hair $ Count @@;
label eyes=’Eye Color’

hair=’Hair Color’
region=’Geographic Region’;

datalines;
1 blue fair 23 1 blue red 7 1 blue medium 24
1 blue dark 11 1 green fair 19 1 green red 7
1 green medium 18 1 green dark 14 1 brown fair 34
1 brown red 5 1 brown medium 41 1 brown dark 40
1 brown black 3 2 blue fair 46 2 blue red 21
2 blue medium 44 2 blue dark 40 2 blue black 6
2 green fair 50 2 green red 31 2 green medium 37
2 green dark 23 2 brown fair 56 2 brown red 42
2 brown medium 53 2 brown dark 54 2 brown black 13
;

594 Output � Chapter 23

Generate the frequency tables and a crosstabulation table from existing cell counts.
The WEIGHT statement uses Count to weight the observations in the Color data set.

proc freq data=color;
weight count;

Specify the variables to use to create the tables. Create the output data set FREQCNT
that will contain the table frequencies and expected cell frequencies for the last table
request. The TABLES statement requests three tables: Eyes and Hair frequencies and an Eyes
by Hair crosstabulation. OUT= creates the FREQCNT data set that contains crosstabulation
table frequencies. OUTEXPECT stores expected cell frequencies and SPARSE stores zero cell
counts in FREQCNT.

tables eyes hair eyes*hair/out=freqcnt outexpect
sparse;

Specify the title.

title ’Eye and Hair Color of European Children’;
run;

Print the data set. PROC PRINT displays the FREQCNT data set. The TITLE statement
specifies a title.

proc print data=freqcnt noobs;
title2 ’Output Data Set from PROC FREQ’;

run;

Output

The FREQ Procedure � Output 595

By default, PROC FREQ lists the variable values in alphabetical order. Because Eyes*Hair
requests a crosstabulation table, the table rows are eye color and the table columns are hair
color. A zero cell count for green eyes and black hair indicates that this eyes and hair
combination does not occur in the data.

Eye and Hair Color of European Children 1

The FREQ Procedure

Eye Color

Cumulative Cumulative
Eyes Frequency Percent Frequency Percent
--
blue 222 29.13 222 29.13
brown 341 44.75 563 73.88
green 199 26.12 762 100.00

Hair Color

Cumulative Cumulative
Hair Frequency Percent Frequency Percent

black 22 2.89 22 2.89
dark 182 23.88 204 26.77
fair 228 29.92 432 56.69
medium 217 28.48 649 85.17
red 113 14.83 762 100.00

Table of Eyes by Hair

Eyes(Eye Color) Hair(Hair Color)

Frequency|
Percent |
Row Pct |
Col Pct |black |dark |fair |medium |red | Total
---------+--------+--------+--------+--------+--------+
blue | 6 | 51 | 69 | 68 | 28 | 222

| 0.79 | 6.69 | 9.06 | 8.92 | 3.67 | 29.13
| 2.70 | 22.97 | 31.08 | 30.63 | 12.61 |
| 27.27 | 28.02 | 30.26 | 31.34 | 24.78 |

---------+--------+--------+--------+--------+--------+
brown | 16 | 94 | 90 | 94 | 47 | 341

| 2.10 | 12.34 | 11.81 | 12.34 | 6.17 | 44.75
| 4.69 | 27.57 | 26.39 | 27.57 | 13.78 |
| 72.73 | 51.65 | 39.47 | 43.32 | 41.59 |

---------+--------+--------+--------+--------+--------+
green | 0 | 37 | 69 | 55 | 38 | 199

| 0.00 | 4.86 | 9.06 | 7.22 | 4.99 | 26.12
| 0.00 | 18.59 | 34.67 | 27.64 | 19.10 |
| 0.00 | 20.33 | 30.26 | 25.35 | 33.63 |

---------+--------+--------+--------+--------+--------+
Total 22 182 228 217 113 762

2.89 23.88 29.92 28.48 14.83 100.00

596 Example 2: Computing Chi-Square Tests for One-Way Frequency Tables � Chapter 23

The output data set contains frequency counts and percentages for the last table. The data set
also includes an observation for the zero cell count and a variable with the expected cell
frequency for each table cell.

Eye and Hair Color of European Children 2
Output Data Set from PROC FREQ

Eyes Hair COUNT EXPECTED PERCENT

blue black 6 6.409 0.7874
blue dark 51 53.024 6.6929
blue fair 69 66.425 9.0551
blue medium 68 63.220 8.9239
blue red 28 32.921 3.6745
brown black 16 9.845 2.0997
brown dark 94 81.446 12.3360
brown fair 90 102.031 11.8110
brown medium 94 97.109 12.3360
brown red 47 50.568 6.1680
green black 0 5.745 0.0000
green dark 37 47.530 4.8556
green fair 69 59.543 9.0551
green medium 55 56.671 7.2178
green red 38 29.510 4.9869

Example 2: Computing Chi-Square Tests for One-Way Frequency Tables

Procedure features:
PROC FREQ statement option:

ORDER=
BY statement
TABLES statement options:

NOCUM
TESTP=

WEIGHT statement
Other features:

SORT procedure
Data set: COLOR on page 593

This example
� sorts a data set by geographic region
� creates a one-way frequency table for each BY group
� orders the values of the frequency table by their appearance in the input data set
� suppresses the cumulative frequencies and percentages
� computes a chi-square goodness-of-fit test for specified proportions.

The chi-square goodness-of-fit test examines whether the children’s hair color has a
specified multinomial distribution for two regions. The hypothesized distribution for
hair color is 30 percent fair, 12 percent red, 30 percent medium, 25 percent dark, and 3
percent black.

The FREQ Procedure � Output 597

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Sort the Color data set. PROC SORT sorts the observations by the variable Region.

proc sort data=color;
by region;

run;

Generate the frequency table in a specified order from existing cell counts.
ORDER=DATA orders the frequency table values (hair color) by their order in the data set. The
WEIGHT statement uses Count to weight the observations.

proc freq data=color order=data;
weight count;

Specify the variable to use to create the frequency tables. Compute a chi-square
goodness-of-fit test for specified proportions. The TABLES statement requests a frequency
table for hair color. NOCUM suppresses the cumulative frequencies and percentages. TESTP=
specifies hypothesized percentages for the chi-square test. The number of percentages equals the
number of table levels and the percentages sum to 100.

tables hair/nocum testp=(30 12 30 25 3);

Create the frequency tables separately for each BY group.The BY statement produces a
separate table for each BY group and displays a heading above each one.

by region;

Specify a title for the report. The TITLE statement specifies a title.

title ’Hair Color of European Children’;
run;

Output

598 Output � Chapter 23

The frequency table lists the variable values (hair color) in the order that they appear in the
data set. The last column lists the hypothesized percentages for the chi-square test. Always
check that you have ordered the TESTP= percentages to correctly match the order of the
variable levels.

PROC FREQ computes a chi-square statistic for each region. The chi-square statistic is
significant at the .05 level for region 2 (p≤.05) but not for region 1, indicating a significant
departure from the hypothesized percentages in region 2.

Hair Color of European Children 1

----------------------------- Geographic Region=1 ------------------------------

The FREQ Procedure

Hair Color

Test
Hair Frequency Percent Percent

fair 76 30.89 30.00
red 19 7.72 12.00
medium 83 33.74 30.00
dark 65 26.42 25.00
black 3 1.22 3.00

Chi-Square Test
for Specified Proportions

Chi-Square 7.7602
DF 4
Pr > ChiSq 0.1008

Sample Size = 246

Hair Color of European Children 2

----------------------------- Geographic Region=2 ------------------------------

The FREQ Procedure

Hair Color

Test
Hair Frequency Percent Percent

fair 152 29.46 30.00
red 94 18.22 12.00
medium 134 25.97 30.00
dark 117 22.67 25.00
black 19 3.68 3.00

Chi-Square Test
for Specified Proportions

Chi-Square 21.3824
DF 4
Pr > ChiSq 0.0003

Sample Size = 516

The FREQ Procedure � Program 599

Example 3: Computing Binomial Proportions for One-Way Frequency Tables
Procedure features:

PROC FREQ statement option:
ORDER=

TABLES statement options:
ALPHA=
BINOMIAL

WEIGHT statement
Data set: COLOR on page 593

This example
� creates a one-way frequency table using existing cell counts
� orders the values of the frequency table by their frequency in the input data set
� computes the binomial proportion and the corresponding test statistic
� specifies the null hypothesis proportion for the asymptotic test of the binomial

proportion
� specifies the confidence level for the confidence limits.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=40;

Generate the frequency table in a specified order from existing cell counts.
ORDER=FREQ orders the frequency table values by their frequency in the data set. The
WEIGHT statement uses Count to weight the observations.

proc freq data=color order=freq;
weight count;

Specify the variable to use to create the frequency table. Compute the binomial
proportion and the corresponding test statistics. Specify the confidence level for
confidence limits. The TABLES statement requests a frequency table for eye color. BINOMIAL
computes the binomial proportion and confidence limits, and also tests the hypothesis that the
proportion for the first eye color level equals 0.5. ALPHA= specifies 90 percent confidence limits.

tables eyes/binomial alpha=.1;

600 Output � Chapter 23

Specify the variable to use to create the frequency table. Compute the binomial
proportion and the corresponding test statistics. Specify the null hypothesis
proportion value for the test. The TABLES statement requests a frequency table for hair
color. BINOMIAL computes the binomial proportion and confidence limits, and also tests the
hypothesis that the proportion for the first hair color level equals 0.28.

tables hair/binomial(p=.28);

Specify a title for the report. The TITLE statement specifies a title.

title ’Hair and Eye Color of European Children’;
run;

Output

The frequency table lists the variable values in the order of the descending frequency count.
PROC FREQ computes the binomial proportion for the first variable level. The report includes
the asymptotic standard error (ASE), and asymptotic and exact confidence limits for the
binomial proportion. The specified confidence level of .1 results in 90 percent confidence limits.

Because the value of Z is less than zero for eye color, PROC FREQ computes a left-sided
p-value. The small p-value supports the alternative hypothesis that the true value of the
proportion of children with brown eyes is less than 50 percent.

Hair and Eye Color of European Children 1

The FREQ Procedure

Eye Color

Cumulative Cumulative
Eyes Frequency Percent Frequency Percent
--
brown 341 44.75 341 44.75
blue 222 29.13 563 73.88
green 199 26.12 762 100.00

Binomial Proportion
for Eyes = brown

Proportion 0.4475
ASE 0.0180
90% Lower Conf Limit 0.4179
90% Upper Conf Limit 0.4771

Exact Conf Limits
90% Lower Conf Limit 0.4174
90% Upper Conf Limit 0.4779

Test of H0: Proportion = 0.5

ASE under H0 0.0181
Z -2.8981
One-sided Pr < Z 0.0019
Two-sided Pr > |Z| 0.0038

The FREQ Procedure � Example 4: Analyzing a 2�2 Contingency Table 601

Because the value of Z is greater than zero for hair color, PROC FREQ computes a right-sided
p-value. The large p-value provides insufficient evidence to reject the null hypothesis that the
proportion of children with fair hair equals 28 percent.

Hair and Eye Color of European Children 2

The FREQ Procedure

Hair Color

Cumulative Cumulative
Hair Frequency Percent Frequency Percent

fair 228 29.92 228 29.92
medium 217 28.48 445 58.40
dark 182 23.88 627 82.28
red 113 14.83 740 97.11
black 22 2.89 762 100.00

Binomial Proportion
for Hair = fair

Proportion 0.2992
ASE 0.0166
95% Lower Conf Limit 0.2667
95% Upper Conf Limit 0.3317

Exact Conf Limits
95% Lower Conf Limit 0.2669
95% Upper Conf Limit 0.3331

Test of H0: Proportion = 0.28

ASE under H0 0.0163
Z 1.1812
One-sided Pr > Z 0.1188
Two-sided Pr > |Z| 0.2375

Example 4: Analyzing a 2�2 Contingency Table

Procedure features:
PROC FREQ statement option:

ORDER=
EXACT statement
TABLES statement options:

CHISQ
RELRISK

WEIGHT statement

Other features:
FORMAT procedure
SORT procedure

This example

602 Program � Chapter 23

� creates a two-way contingency table using existing cell counts
� sorts the data in descending order so that the first table cell contains the

frequency of positive exposure and positive response
� computes chi-square tests, exact Pearson chi-square test, and Fisher’s exact test to

compare the probability of coronary heart disease for two types of diet
� computes estimates of the relative risk and 95 percent exact confidence limits for

the odds ratio.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=84 pagesize=64;

Assign a character string format to a numeric value. PROC FORMAT creates user-written
formats to identify the type of exposure and response with character values.

proc format;
value expfmt 1=’High Cholesterol Diet’

0=’Low Cholesterol Diet’;
value rspfmt 1=’Yes’

0=’No’;
run;

Create the FATCOMP data set. This data set contains hypothetical data for a case-control
study of a high-fat diet and the risk of coronary heart disease. The data are recorded as cell
counts instead of as one observation per subject. The variable Count contains the frequencies for
each exposure and response combination.

data fatcomp;
input Exposure Response Count;
label response=’Heart Disease’;
datalines;

0 0 6
0 1 2
1 0 4
1 1 11
;

Sort the FATCOMP data set. PROC SORT sorts the observations in descending order by the
variables Exposure and Response.

proc sort data=fatcomp;
by descending exposure descending response;

run;

The FREQ Procedure � Output 603

Generate the cross-tabulation table in a specified order from existing cell counts.
ORDER=DATA orders the contingency table values by their order in the data set. The WEIGHT
statement uses Count to weight the observations.

proc freq data=fatcomp order=data;
weight count;

Specify the variables to use to create the contingency tables. Compute chi-square
tests, the measures of association based on chi-square, and the measures of relative
risk. The TABLES statement requests a two-way table. CHISQ requests chi-square tests.
RELRISK requests relative risk measures.

tables exposure*response / chisq relrisk;

Request exact tests or confidence limits for the specified statistics. The EXACT
statement requests the exact Pearson chi-square test and exact confidence limits for the odds
ratio.

exact pchi or;

Assign the formats to the variables and specify a title for the report. The FORMAT
statement assigns formats to the variables Exposure and Response. The TITLE statement
specifies a title.

format exposure expfmt. response rspfmt.;
title ’Case-Control Study of High Fat/Cholesterol Diet’;

run;

Output

604 Output � Chapter 23

The contingency table lists the variable values so that the first table cell contains the frequency
of positive exposure and response. PROC FREQ does not truncate the formatted variable values
that are more than 16 characters but uses multiple lines to show Exposure levels.

PROC FREQ displays a warning message that sample size requirements may not be met for the
asymptotic chi-square tests. The exact tests are appropriate when sample size is small.

Because the alternative hypothesis for this analysis states that coronary heart disease was more
likely to be associated with a high-fat diet, a one-sided test is needed. Fisher’s exact test
(right-sided) tests that the probability of heart disease in the high-fat group exceeds the
probability of heart disease in the low-fat group.

The odds ratio, which provides an estimate of the relative risk when an event is rare, indicates
that the odds of heart disease are 8.25 times higher in the high-fat-diet group. However, the
wide confidence limits indicate that this estimate has low precision.

Case-Control Study of High Fat/Cholesterol Diet 1

The FREQ Procedure

Table of Exposure by Response

Exposure Response(Heart Disease)

Frequency |
Percent |
Row Pct |
Col Pct |Yes |No | Total
-----------------+--------+--------+
High Cholesterol | 11 | 4 | 15

Diet | 47.83 | 17.39 | 65.22
| 73.33 | 26.67 |
| 84.62 | 40.00 |

-----------------+--------+--------+
Low Cholesterol | 2 | 6 | 8

Diet | 8.70 | 26.09 | 34.78
| 25.00 | 75.00 |
| 15.38 | 60.00 |

-----------------+--------+--------+
Total 13 10 23

56.52 43.48 100.00

Statistics for Table of Exposure by Response

Statistic DF Value Prob
--
Chi-Square 1 4.9597 0.0259
Likelihood Ratio Chi-Square 1 5.0975 0.0240
Continuity Adj. Chi-Square 1 3.1879 0.0742
Mantel-Haenszel Chi-Square 1 4.7441 0.0294
Phi Coefficient 0.4644
Contingency Coefficient 0.4212
Cramer’s V 0.4644

WARNING: 50% of the cells have expected counts less than 5.
(Asymptotic) Chi-Square may not be a valid test.

The FREQ Procedure � Example 5: Creating an Output Data Set Containing Chi-Square Statistics 605

Pearson Chi-Square Test

Chi-Square 4.9597
DF 1
Asymptotic Pr > ChiSq 0.0259
Exact Pr >= ChiSq 0.0393

Fisher’s Exact Test

Cell (1,1) Frequency (F) 11
Left-sided Pr <= F 0.9967
Right-sided Pr >= F 0.0367

Table Probability (P) 0.0334
Two-sided Pr <= P 0.0393

Case-Control Study of High Fat/Cholesterol Diet 2

The FREQ Procedure

Statistics for Table of Exposure by Response

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits

Case-Control (Odds Ratio) 8.2500 1.1535 59.0029
Cohort (Col1 Risk) 2.9333 0.8502 10.1204
Cohort (Col2 Risk) 0.3556 0.1403 0.9009

Odds Ratio (Case-Control Study)

Odds Ratio 8.2500

Asymptotic Conf Limits
95% Lower Conf Limit 1.1535
95% Upper Conf Limit 59.0029

Exact Conf Limits
95% Lower Conf Limit 0.8677
95% Upper Conf Limit 105.5488

Sample Size = 23

Example 5: Creating an Output Data Set Containing Chi-Square Statistics

Procedure features:
PROC FREQ statement option:

ORDER=
OUTPUT statement options:

OUT=
statistic-keywords

606 Program � Chapter 23

TABLES statement options:
CHISQ
DEVIATION
EXPECTED
NOCOL
NOROW

WEIGHT statement
Other features:

PRINT procedure
Data set: COLOR on page 593

This example
� creates a 3�5 contingency table showing the joint frequency distribution for two

variables
� suppresses the row and column percentages for each cell
� displays the expected frequency for each cell
� displays each cell’s contribution to the total Pearson chi-square statistic
� creates an output data set with Pearson chi-square and likelihood-ratio chi-square

statistics
� displays the output data set.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 pagesize=60;

Generate the crosstabulation table in a specified order from existing cell counts.
ORDER=DATA orders the table values (eye and hair color) by their order in the data set. The
WEIGHT statement uses Count to weight the observations.

proc freq data=color order=data;
weight count;

Specify the variables to use to create the contingency tables. Compute chi-square
tests and measures of association based on chi-square. Display the expected
frequency and the contribution to the total Pearson chi-square statistic for each cell.
The TABLES statement requests a two-way table. CHISQ requests chi-square tests.
EXPECTED displays the expected cell frequency, and CELLCHI2 displays the cell contribution
to chi-square. NOROW and NOCOL suppress the row and column percents for each cell.

tables eyes*hair /chisq expected cellchi2
norow nocol;

The FREQ Procedure � Output 607

Create the output data set CHISQDAT. The OUTPUT statement creates the CHISQDAT
data set with eight variables. N stores the number of nonmissing observations, NMISS stores
the number of missing observations, PCHI stores Pearson chi-square statistics, and LRCHI
stores likelihood-ratio chi-square statistics. The TITLE statement specifies a title.

output out=chisqdat pchi lrchi n nmiss;

Specify the title.

title ’Chi-Square Tests for 3 by 5 Table of Eye and Hair Color’;
run;

Print the data set. PROC PRINT displays the CHISQDAT data set. The TITLE statement
specifies a title.

proc print data=chisqdat noobs;
title ’Chi-Square Statistics for Eye and Hair Color’;
title2 ’Output Data Set from the FREQ Procedure’;

run;

Output

608 Output � Chapter 23

The contingency table lists eye and hair color in the order that they appear in the data set. The first column
label explains the contents of each table cell. The Pearson chi-square provides evidence of an association
between eye and hair color (p=.007). The cell chi-square values show that most of the association is due to more
green-eyed children with fair or red hair and fewer with dark or black hair. Exactly the opposite occurs with the
brown-eyed children.

Chi-Square Tests for 3 by 5 Table of Eye and Hair Color 1

The FREQ Procedure

Table of Eyes by Hair

Eyes(Eye Color) Hair(Hair Color)

Frequency |

Expected |

Cell Chi-Square|

Percent |fair |red |medium |dark |black | Total

---------------+--------+--------+--------+--------+--------+

blue | 69 | 28 | 68 | 51 | 6 | 222

| 66.425 | 32.921 | 63.22 | 53.024 | 6.4094 |

| 0.0998 | 0.7357 | 0.3613 | 0.0772 | 0.0262 |

| 9.06 | 3.67 | 8.92 | 6.69 | 0.79 | 29.13

---------------+--------+--------+--------+--------+--------+

green | 69 | 38 | 55 | 37 | 0 | 199

| 59.543 | 29.51 | 56.671 | 47.53 | 5.7454 |

| 1.5019 | 2.4422 | 0.0492 | 2.3329 | 5.7454 |

| 9.06 | 4.99 | 7.22 | 4.86 | 0.00 | 26.12

---------------+--------+--------+--------+--------+--------+

brown | 90 | 47 | 94 | 94 | 16 | 341

| 102.03 | 50.568 | 97.109 | 81.446 | 9.8451 |

| 1.4187 | 0.2518 | 0.0995 | 1.935 | 3.8478 |

| 11.81 | 6.17 | 12.34 | 12.34 | 2.10 | 44.75

---------------+--------+--------+--------+--------+--------+

Total 228 113 217 182 22 762

29.92 14.83 28.48 23.88 2.89 100.00

Statistics for Table of Eyes by Hair

Statistic DF Value Prob

--

Chi-Square 8 20.9248 0.0073

Likelihood Ratio Chi-Square 8 25.9733 0.0011

Mantel-Haenszel Chi-Square 1 3.7838 0.0518

Phi Coefficient 0.1657

Contingency Coefficient 0.1635

Cramer’s V 0.1172

Sample Size = 762

The FREQ Procedure � Program 609

The output data set has one observation that contains the sample size, number of missing
observations, and chi-square statistics with the corresponding degrees of freedom and
probability values.

Chi-Square Statistics for Eye and Hair Color 2
Output Data Set from the FREQ Procedure

N NMISS _PCHI_ DF_PCHI P_PCHI _LRCHI_ DF_LRCHI P_LRCHI

762 0 20.9248 8 .007349898 25.9733 8 .001061424

Example 6: Computing Cochran-Mantel-Haenszel Statistics for a Stratified
Table

Procedure features:
TABLES statement options:

CMH
NOPRINT

WEIGHT statement

This example
� creates stratified two-way contingency tables using existing cell counts
� suppresses the display of the contingency tables
� computes Cochran-Mantel-Haenszel statistics adjusting for the effects of a

stratification variable.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=60;

Create the MIGRAINE data set. This data set contains hypothetical data for a clinical trial of
migraine treatment. Subjects of both genders receive either new drug therapy or a placebo.
Their response to treatment is coded as better or the same. The data are recorded as cell counts
instead of as one observation per subject. The variable Frequency contains the frequencies for
each treatment and response combination.

data migraine;
input Gender $ Treatment $ Improve $ Frequency @@;
datalines;

610 Output � Chapter 23

female Active Better 16 female Active Same 11
female Placebo Better 5 female Placebo Same 20
male Active Better 12 male Active Same 16
male Placebo Better 7 male Placebo Same 19
;

Generate the crosstabulation tables from existing cell counts. The WEIGHT statement
uses Frequency to weight the observations.

proc freq data=migraine;
weight frequency;

Specify the variables to use to create the three-way table. Compute
Cochran-Mantel-Haenszel statistics, adjusted relative risks, and odds ratios. Suppress
the printing of the tables. The TABLES statement requests a three-way table stratified by
Gender where Treatment forms the rows and Improve forms the columns. CMH requests the
Cochran-Mantel-Haenszel statistics. NOPRINT suppresses the display of contingency tables.

tables gender*treatment*improve/cmh noprint;

Specify the title.

title1 ’Clinical Trial for Treatment of Migraine Headaches’;
run;

Output

The FREQ Procedure � Example 7: Computing the Cochran-Armitage Trend Test 611

PROC FREQ computes Cochran-Mantel-Haenszel statistics, controlling for Gender. For
stratified 2�2 contingency tables, these statistics include estimates of the common relative risk
and the Breslow-Day test for homogeneity of the odds ratios. For a stratified 2�2 table, the
three CMH statistics test the same hypothesis. The significant p-value (.004) indicates that the
association between treatment and response remains strong after adjusting for gender.

The large p-value for the Breslow-Day test (.222) indicates no significant gender difference in
the odds ratios. Because this is a prospective study, the relative risk estimate assesses the
effectiveness of the new drug. The probability of migraine improvement with the new drug is
just over two times the probability of improvement with the placebo.

Clinical Trial for Treatment of Migraine Headaches 1

The FREQ Procedure

Summary Statistics for Treatment by Improve
Controlling for Gender

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 8.3052 0.0040
2 Row Mean Scores Differ 1 8.3052 0.0040
3 General Association 1 8.3052 0.0040

Estimates of the Common Relative Risk (Row1/Row2)

Type of Study Method Value 95% Confidence Limits

Case-Control Mantel-Haenszel 3.3132 1.4456 7.5934

(Odds Ratio) Logit 3.2941 1.4182 7.6515

Cohort Mantel-Haenszel 2.1636 1.2336 3.7948
(Col1 Risk) Logit 2.1059 1.1951 3.7108

Cohort Mantel-Haenszel 0.6420 0.4705 0.8761
(Col2 Risk) Logit 0.6613 0.4852 0.9013

Breslow-Day Test for
Homogeneity of the Odds Ratios

Chi-Square 1.4929
DF 1
Pr > ChiSq 0.2218

Total Sample Size = 106

Example 7: Computing the Cochran-Armitage Trend Test
Procedure features:

EXACT statement options:
statistic-keywords
MAXTIME=

612 Program � Chapter 23

TABLES statement options:

CL
MEASURES
TREND

TEST statement
WEIGHT statement

This example

� creates a two-way table using existing cell counts

� computes measures of association and asymptotic 95% confidence limits

� computes asymptotic and exact p-values for the Cochran-Armitage trend test

� specifies the maximum time to compute an exact p-value

� computes asymptotic tests for Somers’ D(C|R).

The Cochran-Armitage test checks for trend in binomial proportions across levels of a
single factor. Use this test for a contingency table with a two-level response variable
and an explanatory variable with any number of ordered levels. The binomial
proportion is defined as the proportion in the first level of the response variable. PROC
FREQ uses explanatory variable scores to compute the Cochran-Armitage test, which
you can set to meaningful values that reflect the degree of difference among the levels.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80 pagesize=72;

Create the PAIN data set. This data set contains hypothetical data for a clinical trial of a
drug therapy to control pain. The clinical trial investigates whether adverse responses increase
with larger drug doses. Subjects receive either a placebo or one of four drug doses. An adverse
response is coded No or Yes. The data are recorded as cell counts instead of as one observation
per subject. The variable Count contains the frequencies for each drug dose and response
combination.

data pain;
input Dose Adverse $ Count @@;
cards;

0 No 26 0 Yes 6
1 No 26 1 Yes 7
2 No 23 2 Yes 9
3 No 18 3 Yes 14
4 No 9 4 Yes 23
;

The FREQ Procedure � Output 613

Generate the cross-tabulation tables from existing cell counts. The WEIGHT statement
uses Count to weight the observations.

proc freq data=pain;
weight count;

Specify the variables to use to create the two-way table. Compute measures of
association, their confidence limits, and the Cochran-Armitage test for trend. The
TABLES statement requests a two-way table. TREND requests the Cochran-Armitage trend
test. MEASURES requests measures of associations and CL computes confidence limits.

tables dose*adverse /trend measures cl;

Computes asymptotic tests for the specified measures of association. The TEST
statement computes an asymptotic test for Somers’ D(C|R).

test smdcr;

Compute exact tests for the specified statistics. The EXACT statement requests exact
trend test. MAXTIME= specifies that PROC FREQ terminate the computations after 60 seconds
(1 minute).

exact trend /maxtime=60;

Specify the title.

title1 ’Clinical Trial for Treatment of Pain’;
run;

Output

614 Output � Chapter 23

The Row Pct values show the expected increasing trend in the proportion of adverse effects
(from 18.75% to 71.88%).

Clinical Trial for Treatment of Pain 1

The FREQ Procedure

Table of Dose by Adverse

Dose Adverse

Frequency|
Percent |
Row Pct |
Col Pct |No |Yes | Total
---------+--------+--------+

0 | 26 | 6 | 32
| 16.15 | 3.73 | 19.88
| 81.25 | 18.75 |
| 25.49 | 10.17 |

---------+--------+--------+
1 | 26 | 7 | 33

| 16.15 | 4.35 | 20.50
| 78.79 | 21.21 |
| 25.49 | 11.86 |

---------+--------+--------+
2 | 23 | 9 | 32

| 14.29 | 5.59 | 19.88
| 71.88 | 28.13 |
| 22.55 | 15.25 |

---------+--------+--------+
3 | 18 | 14 | 32

| 11.18 | 8.70 | 19.88
| 56.25 | 43.75 |
| 17.65 | 23.73 |

---------+--------+--------+
4 | 9 | 23 | 32

| 5.59 | 14.29 | 19.88
| 28.13 | 71.88 |
| 8.82 | 38.98 |

---------+--------+--------+
Total 102 59 161

63.35 36.65 100.00

Statistics for Table of Dose by Adverse

95%
Statistic Value ASE Confidence Limits
--
Gamma 0.5313 0.0935 0.3480 0.7146
Kendall’s Tau-b 0.3373 0.0642 0.2114 0.4631
Stuart’s Tau-c 0.4111 0.0798 0.2547 0.5675

Somers’ D C|R 0.2569 0.0499 0.1592 0.3547
Somers’ D R|C 0.4427 0.0837 0.2786 0.6068

Pearson Correlation 0.3776 0.0714 0.2378 0.5175
Spearman Correlation 0.3771 0.0718 0.2363 0.5178

Lambda Asymmetric C|R 0.2373 0.0837 0.0732 0.4014
Lambda Asymmetric R|C 0.1250 0.0662 0.0000 0.2547
Lambda Symmetric 0.1604 0.0621 0.0388 0.2821

Uncertainty Coefficient C|R 0.1261 0.0467 0.0346 0.2175
Uncertainty Coefficient R|C 0.0515 0.0191 0.0140 0.0890
Uncertainty Coefficient Symmetric 0.0731 0.0271 0.0199 0.1262

The FREQ Procedure � Example 8: Computing Friedman’s Chi-Square Statistic 615

Somers’ D (C|R)measures the association. The column variable (Adverse) is the response and
the row variable (Dose) is a predictor. Because the asymptotic 95% confidence limit does not
contain zero, this indicates a strong positive association. Similarly, Pearson and Spearman
correlation coefficients show evidence of a strong positive association as hypothesized.

The Cochran-Armitage test supports the trend hypothesis. The small left-sided p-values
indicate that the probability of the Column 1 level (Adverse=No) decreases as Dose increases, or
equivalently, that the probability of the Column 2 level (Adverse=Yes) increases as Dose
increases. The two-sided p-value tests against either the increasing or the decreasing
alternative. This is an appropriate hypothesis when you want to determine whether the drug
has progressive effects on the probability of adverse effects, but the direction is unknown.

Clinical Trial for Treatment of Pain 2

The FREQ Procedure

Statistics for Table of Dose by Adverse

Somers’ D C|R

Somers’ D C|R 0.2569
ASE 0.0499
95% Lower Conf Limit 0.1592
95% Upper Conf Limit 0.3547

Test of H0: Somers’ D C|R = 0

ASE under H0 0.0499
Z 5.1511
One-sided Pr > Z <.0001
Two-sided Pr > |Z| <.0001

Cochran-Armitage Trend Test

Statistic (Z) -4.7918

Asymptotic Test
One-sided Pr < Z <.0001
Two-sided Pr > |Z| <.0001

Exact Test
One-sided Pr <= Z 7.237E-07
Two-sided Pr >= |Z| 1.324E-06

Sample Size = 161

Example 8: Computing Friedman’s Chi-Square Statistic
Procedure features:

TABLES statement, multiple requests
TABLES statement options:

CMH2
NOPRINT
SCORES=
SCOROUT

616 Program � Chapter 23

This example

� computes the first two Cochran-Mantel-Haenszel statistics

� uses rank scores to compute the Cochran-Mantel-Haenszel statistics

� suppresses the display of contingency tables for each stratum.

Friedman’s test is a nonparametric test for treatment differences in a randomized
complete block design. Each block of the design may be a subject or a homogeneous
group of subjects. If blocks are groups of subjects, the number of subjects in each block
must equal the number of treatments. Treatments are randomly assigned to subjects
within each block. If there is one subject per block, then the subjects are repeatedly
measured once they are under each treatment. The order of treatments is randomized
for each subject.

In this setting, Friedman’s test is identical to the ANOVA (row means scores) CMH
statistic when the analysis uses rank scores (SCORES=RANK). The three-way table
uses subject (or subject group) as the stratifying variable, treatment as the row
variable, and response as the column variable. PROC FREQ handles ties by assigning
midranks to tied response values. If there are multiple subjects per treatment in each
block, the ANOVA CMH statistic is a generalization of Friedman’s test.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

options nodate pageno=1 linesize=80;

Create the HYPNOSIS data set. This data set contains data for a study investigating
whether hypnosis has the same effect on skin potential (measured in millivolts) for four
emotions (Lehmann 1975, 264). Eight subjects are asked to display fear, happiness (joy),
depression (sadness), and calmness under hypnosis. The data are recorded as one observation
per subject for each emotion.

data hypnosis;
length Emotion $ 10;
input Subject Emotion $ SkinResponse @@;
datalines;

1 fear 23.1 1 joy 22.7 1 sadness 22.5 1 calmness 22.6
2 fear 57.6 2 joy 53.2 2 sadness 53.7 2 calmness 53.1
3 fear 10.5 3 joy 9.7 3 sadness 10.8 3 calmness 8.3
4 fear 23.6 4 joy 19.6 4 sadness 21.1 4 calmness 21.6
5 fear 11.9 5 joy 13.8 5 sadness 13.7 5 calmness 13.3
6 fear 54.6 6 joy 47.1 6 sadness 39.2 6 calmness 37.0
7 fear 21.0 7 joy 13.6 7 sadness 13.7 7 calmness 14.8
8 fear 20.3 8 joy 23.6 8 sadness 16.3 8 calmness 14.8
;

The FREQ Procedure � Output 617

Specify the variables to use to create the three-way table and the two-way table.
Compute adjusted relative risks and odds ratios, CMH correlation, and row mean
scores (ANOVA) statistic by using rank scores. Suppress the printing of the tables.
The TABLES statement requests a three-way table stratified by Subject and a two-way table.
Emotion and SkinResponse form the rows and columns of each table. CMH2 requests the first
two Cochran-Mantel-Haenszel statistics. SCORES=RANK uses rank scores to compute these
statistics. NOPRINT suppresses the display of contingency tables.

proc freq data=hypnosis;
tables subject*emotion*skinresponse emotion*skinresponse

/cmh2 scores=rank noprint;

Specify the title.

title1 ’Examining the Effect of Hypnosis on Skin Potential’;
run;

Output

PROC FREQ computes Cochran-Mantel-Haenszel statistics across strata controlling for Subject.
Because CMH statistics are based on rank scores, the Row Mean Scores Differ statistic is
identical to Friedman’s chi-square (Q=6.45). The p-value of .09 indicates that differences in skin
potential response for different emotions are significant at the 10% level but not at the 5% level.

When you do not stratify by subject, the Row Mean Scores Differ CMH statistic is identical to a
Kruskal-Wallis test and is not significant (p=.904). Thus, adjusting for subject is critical to
reducing the background variation due to subject differences.

Examining the Effect of Hypnosis on Skin Potential 1

The FREQ Procedure

Summary Statistics for Emotion by SkinResponse
Controlling for Subject

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 0.2400 0.6242
2 Row Mean Scores Differ 3 6.4500 0.0917

Total Sample Size = 32

618 Example 9: Testing Marginal Homogeneity with Cochran’s Q � Chapter 23

Examining the Effect of Hypnosis on Skin Potential 2

The FREQ Procedure

Summary Statistics for Emotion by SkinResponse

Cochran-Mantel-Haenszel Statistics (Based on Rank Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 0.0001 0.9933
2 Row Mean Scores Differ 3 0.5678 0.9038

Total Sample Size = 32

Example 9: Testing Marginal Homogeneity with Cochran’s Q
Procedure features:

TABLES statement, multiple requests
TABLES statement options:

AGREE
NOCUM
NOPRINT

WEIGHT statement
Other features:

FORMAT procedure

This example
� creates frequency tables for the analysis variables using existing cell counts
� computes tests and measures of agreement, which include Cochran’s Q statistic for

stratified 2�2 contingency tables
� suppresses the cumulative frequencies and cumulative percentages
� suppresses the display of contingency tables.

When a binary response is measured several times or under different conditions,
Cochran’s Q tests that the marginal probability of a positive response is unchanged
across the times or conditions. When there are more than two response categories, you
can use PROC CATMOD in SAS/STAT software to fit a repeated-measures model. Data
for this example are from Categorical Data Analysis by Alan Agresti. Copyright © 1990.
Reprinted by permission of John Wiley and Sons, Inc.

Program

Set the SAS system options. The NODATE option specifies to omit the date and time when
the SAS job began. The PAGENO= option specifies the page number for the next page of output
that SAS produces. The LINESIZE= option specifies the line size. The PAGESIZE= option
specifies the number of lines for a page of SAS output.

The FREQ Procedure � Program 619

options nodate pageno=1 linesize=80 pagesize=60;

Assign a character string format to a single character value. PROC FORMAT creates a
user-written format to identify the response to treatment.

proc format;
value $responsefmt ’F’=’Favorable’

’U’=’Unfavorable’;
run;

Create the DRUGS data set. This data set contains data for a study of three drugs to treat a
chronic condition (Agresti, 1990). Forty-six subjects receive drugs A, B, and C. The response to
each is coded as favorable (F) or unfavorable (U). The data are recorded as cell counts instead of
as one observation per patient. The variable Count contains the cell count.

data drugs;
input Drug_A $ Drug_B $ Drug_C $ Count @@;
datalines;

F F F 6 F F U 16 F U F 2
F U U 4 U F F 2 U F U 4
U U F 6 U U U 6
;

Generate the crosstabulation table from existing cell counts. The WEIGHT statement
uses Count to weight the observations.

proc freq data=drugs;
weight count;

Specify the variables to use to create the frequency tables. The TABLES statement
requests frequency tables of Drug_A, Drug_B, and Drug_C. NOCUM suppresses the cumulative
values.

tables drug_a drug_b drug_c/nocum;

Specify the variables to use to create the three-way table. Compute tests and
measures of classification agreement. Suppress the printing of the tables. The TABLES
statement requests a three-way table of Drug_A, Drug_B, and Drug_C. AGREE requests
measures of agreement. NOPRINT suppresses the display of contingency tables.

tables drug_a*drug_b*drug_c/agree noprint;

Assign a format to a variable and specify a title for the report. The FORMAT statement
assigns formats to the levels of Drug_A, Drug_B, and Drug_C. The TITLE statement specifies a
title.

format drug_a drug_b drug_c $responsefmt.;
title ’Study of Three Drug Treatments for a Chronic Disease’;

620 Output � Chapter 23

run;

Output

The one-way frequency tables provides the marginal response for each drug. For drugs A and B,
61% of the subjects reported a favorable response while 35% of the subjects reported a favorable
response for drug C.

Study of Three Drug Treatments for a Chronic Disease 1

The FREQ Procedure

Drug_A Frequency Percent

Favorable 28 60.87
Unfavorable 18 39.13

Drug_B Frequency Percent

Favorable 28 60.87
Unfavorable 18 39.13

Drug_C Frequency Percent

Favorable 16 34.78
Unfavorable 30 65.22

The FREQ Procedure � Output 621

McNemar’s test shows strong discordance between drugs B and C when the response to drug A
is favorable. A small negative value of simple kappa indicates no agreement between the drug B
response and the drug C response.

Study of Three Drug Treatments for a Chronic Disease 2

The FREQ Procedure

Statistics for Table 1 of Drug_B by Drug_C
Controlling for Drug_A=Favorable

McNemar’s Test

Statistic (S) 10.8889
DF 1
Pr > S 0.0010

Simple Kappa Coefficient

Kappa -0.0328
ASE 0.1167
95% Lower Conf Limit -0.2615
95% Upper Conf Limit 0.1960

Sample Size = 28

Statistics for Table 2 of Drug_B by Drug_C
Controlling for Drug_A=Unfavorable

McNemar’s Test

Statistic (S) 0.4000
DF 1
Pr > S 0.5271

Simple Kappa Coefficient

Kappa -0.1538
ASE 0.2230
95% Lower Conf Limit -0.5909
95% Upper Conf Limit 0.2832

Sample Size = 18

622 Output � Chapter 23

In this example, the hypothesis of interest is whether the response to treatment is equal for the
three drugs. Cochran’s Q is statistically significant (p=.014), which leads to rejection of the null
hypothesis that the probability of favorable response is the same for the three drugs.

Study of Three Drug Treatments for a Chronic Disease 3

The FREQ Procedure

Summary Statistics for Drug_B by Drug_C
Controlling for Drug_A

Overall Kappa Coefficient

Kappa -0.0588
ASE 0.1034
95% Lower Conf Limit -0.2615
95% Upper Conf Limit 0.1439

Test for Equal Kappa
Coefficients

Chi-Square 0.2314
DF 1
Pr > ChiSq 0.6305

Cochran’s Q, for Drug_A
by Drug_B by Drug_C

Statistic (Q) 8.4706
DF 2
Pr > Q 0.0145

Total Sample Size = 46

The FREQ Procedure � References 623

References

Agresti, A. (1992), "A Survey of Exact Inference for Contingency Tables," Statistical
Science, 7(1), 131–177.

Agresti, A. (1996), An Introduction to Categorical Data Analysis, New York: John
Wiley and Sons, Inc.

Agresti, A. (1990), Categorical Data Analysis, New York: John Wiley and Sons, Inc.
Agresti, A., Mehta, C.R. and Patel, N.R. (1990), "Exact Inference for Contingency

Tables with Ordered Categories," Journal of the American Statistical Association,
85, 453–458.

Agresti, A., Wackerly, D. and Boyett, J.M. (1979), " Exact Conditional Tests for
Cross-Classifications: Approximation of Attained Significance Levels,"
Psychometrika, 44, 75-83.

Birch, M.W. (1965), "The Detection of Partial Association, II: The General Case,"
Journal of the Royal Statistical Society, B, 27, 111–124.

Bishop, Y., Fienberg, S.E., and Holland, P.W. (1975), Discrete Multivariate Analysis:
Theory and Practice, Cambridge, MA: MIT Press.

Bowker, A.H. (1948), "Bowker’s Test for Symmetry," Journal of the American
Statistical Association, 43, 572–574.

Breslow, N.E. (1996), “Statistics in Epidemiology: The Case-Control Study”, Journal
of the American Statistical Association, 91, 14-26.

Breslow, N.E. and Day, N.E. (1980), Statistical Methods in Cancer Research, Volume
I: The Analysis of Case-Control Studies, IARC Scientific Publications, No. 32,
Lyon, International Agency for Research on Cancer.

Breslow, N.E. and Day, N.E. (1980), Statistical Methods in Cancer Research, Volume
II: The Design and Analysis of Cohort Studies, IARC Scientific Publications, No.
82, Lyon, International Agency for Research on Cancer.

Bross, I.D.J. (1958), "How to Use Ridit Analysis," Biometrics, 14, 18–38.
Brown, M.B. and Benedetti, J.K. (1977), "Sampling Behavior of Tests for Correlation

in Two-Way Contingency Tables," Journal of the American Statistical Association
72, 309–315.

Cicchetti, D.V. and Allison, T. (1971), "A New Procedure for Assessing Reliability of
Scoring EEG Sleep Recordings," American Journal of EEG Technology, 11,
101–109.

Cochran, W.G. (1950), "The Comparison of Percentages in Matched Samples,"
Biometrika, 37, 256–266.

Cochran, W.G. (1954), "Some Methods for Strengthening the Common �
2 Tests,"

Biometrics, 10, 417–451.
Collett, D. (1991), Modelling Binary Data, London: Chapman and Hall.
Cohen, J. (1960), "A Coefficient of Agreement for Nominal Scales," Educational and

Psychological Measurement, 20, 37–46.
Drasgow, F. (1986), "Polychoric and Polyserial Correlations" in Encyclopedia of

Statistical Sciences, Volume 7, eds. S. Kotz and N. L. Johnson, New York: John
Wiley and Sons, Inc., 68–74.

Fienberg, S.E. (1980), The Analysis of Cross-Classified Data, 2nd Edition, Cambridge,
MA: MIT Press.

Fleiss, J.L. (2000), Statistical Methods for Rates and Proportions, 2nd Edition, New
York: John Wiley and Sons, Inc.

624 References � Chapter 23

Fleiss, J.L. and Cohen, J. (1973), " The Equivalence of Weighted Kappa and the
Intraclass Correlation Coefficient as Measures of Reliability," Educational and
Psychological Measurement, 33, 613–619.

Fleiss, J.L., Cohen, J., and Everitt, B.S. (1969), "Large-Sample Standard Errors of
Kappa and Weighted Kappa," Psychological Bulletin, 72, 323–327.

Freeman, G.H. and Halton, J.H. (1951), "Note on an Exact Treatment of Contingency,
Goodness of Fit and Other Problems of Significance," Biometrika, 38, 141–149.

Gail, M. and Mantel, N. (1977), "Counting the Number of r�c Contingency Tables
with Fixed Margins," Journal of the American Statistical Association, 72, 859-862.

Gart, J.J. (1971), "The Comparison of Proportions: A Review of Significance Tests,
Confidence Intervals and Adjustments for Stratification," Review of the
International Statistical Institute, 39(2), 148–169.

Goodman, L.A. and Kruskal, W.H. (1954, 1959, 1963, 1972), "Measures of Association
for Cross-Classification I, II, III, and IV," Journal of the American Statistical
Association, 49, 732–764; 54, 123–163; 58, 310–364; 67, 415–421.

Greenland, S. and Robins, J.M. (1985), "Estimators of the Mantel-Haenszel Variance
Consistent in Both Sparse Data and Large-Strata Limiting Models," Biometrics,
42, 311-323.

Haldane, J.B.S. (1955), "The Estimation and Significance of the Logarithm of a Ratio
of Frequencies," Annals of Human Genetics, 20, 309–314.

Hollander, M. and Wolfe, D.A. (1999), Nonparametric Statistical Methods, Second
Edition, New York: John Wiley and Sons, Inc.

Jones, M.P., O’Gorman, T.W., Lemka, J.H., and Woolson, R.F. (1989), “A Monte Carlo
Investigation of Homogeneity Tests of the Odds Ratio Under Various Sample Size
Configurations,” Biometrics, 45, 171–181.

Kendall, M. (1955), Rank Correlation Methods, 2nd Edition, London: Charles Griffin
and Co.

Kendall, M. and Stuart, A. (1979), The Advanced Theory of Statistics, Volume 2, New
York: Macmillan Publishing Company, Inc.

Kleinbaum, D.G., Kupper, L.L., and Morgenstern, H. (1982), Epidemiologic Research:
Principles and Quantitative Methods, Research Methods Series, New York: Van
Nostrand Reinhold.

Landis, R.J., Heyman, E.R., and Koch, G.G. (1978), "Average Partial Association in
Three-way Contingency Tables: A Review and Discussion of Alternative Tests,"
International Statistical Review, 46, 237–254.

Leemis, L.M. and Trivedi, K.S. (1996), "A Comparison of Approximate Interval
Estimators for the Bernoulli Parameter," The American Statistician, 50(1), 63–68.

Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based on Ranks, San
Francisco: Holden-Day, Inc.

Liebetrau, A.M. (1983), Measures of Association, Quantitative Application in the
Social Sciences, Vol. 32, Beverly Hills: Sage Publications, Inc.

Mack, G.A. and Skillings, J.H. (1980), "A Friedman-Type Rank Test for Main Effects
in a Two-Factor ANOVA," Journal of the American Statistical Association, 75,
947–951.

Mantel, N. (1963), "Chi-square Tests with One Degree of Freedom: Extensions of the
Mantel-Haenszel Procedure," Journal of the American Statistical Association, 58,
690–700.

Mantel, N. and Haenszel, W. (1959), "Statistical Aspects of the Analysis of Data from
Retrospective Studies of Disease," Journal of the National Cancer Institute, 22,
719–748.

The FREQ Procedure � References 625

Margolin, B.H. (1988), "Test for Trend in Proportions," Johnson’s Encyclopedia of
Statistics, Volume 9, eds. S. Kotz and N.L. Johnson, New York: John Wiley and
Sons, Inc., 334–336.

McNemar, Q. (1947), "Note on the Sampling Error of the Difference Between
Correlated Proportions or Percentages," Psychometrika, 12, 153–157.

Mehta, C.R. and Patel, N.R. (1983), "A Network Algorithm for Performing Fisher’s
Exact Test in r�c Contingency Tables," Journal of the American Statistical
Association, 78, 427–434.

Mehta, C.R., Patel, N.R., and Senchaudhuri, P. (1991), "Exact Stratified Linear Rank
Tests for Binary Data," Computing Science and Statistics: Proceedings of the 23rd
Symposium on the Interface, ed. E.M. Keramidas, 200–207.

Mehta, C.R., Patel, N.R., and Tsiatis, A.A. (1984), "Exact Significance Testing to
Establish Treatment Equivalence with Ordered Categorical Data," Biometrics, 40,
819–825.

Narayanan, A. and Watts, D. (1996), "Exact Methods in the NPAR1WAY Procedure,"
in Proceedings of the Twenty-First Annual SAS Users Group International
Conference, Cary, NC: SAS Institute Inc., 1290–1294.

Olsson, U. (1979), "Maximum Likelihood Estimation of the Polychoric Correlation
Coefficient," Psychometrika, 12, 443–460.

Pirie, W. (1983), "Jonckheere Tests for Ordered Alternatives," in Encyclopedia of
Statistical Sciences, Volume 4, eds. S. Kotz and N.L. Johnson, New York: John
Wiley and Sons, Inc., 315–318.

Radlow, R. and Alf, E.F. (1975), "An Alternate Multinomial Assessment of the
Accuracy of the Chi-Square Test of Goodness of Fit," Journal of the American
Statistical Association, 70, 811-813.

Robins, J.M., Breslow, N., and Greenland, S. (1986), "Estimators of the
Mantel-Haenszel Variance Consistent in Both Sparse Data and Large-Strata
Limiting Models," Biometrics, 42, 311-323.

Snedecor, G.W. and Cochran, W.G. (1989), Statistical Methods, 8th Edition, Ames, IA:
Iowa State University Press.

Somers, R.H. (1962), "A New Asymmetric Measure of Association for Ordinal
Variables," American Sociological Review, 27, 799–811.

Stokes, M.E., Davis, C.S., and Koch, G.G. (2000), Categorical Data Analysis Using the
SAS System, Second edition, Cary, NC: SAS Institute Inc.

Tarone, R.E. (1985), “On Heterogeneity Tests Based on Efficient Scores,” Biometrika,
72, 1, 91-95.

Theil, H. (1972), Statistical Decomposition Analysis, Amsterdam: North-Holland
Publishing Company.

Thomas, D.G. (1971), "Algorithm AS-36. Exact Confidence Limits for the Odds Ratio
in a 2�2 Table," Applied Statistics, 20, 105–110.

Valz, P.D. and Thompson, M.E. (1994), "Exact Inference for Kendall’s S and
Spearman’s Rho with Extensions to Fisher’s Exact Test in r�c Contingency
Tables," Journal of Computational and Graphical Statistics, 3(4), 459–472.

van Elteren, P.H. (1960), "On the Combination of Independent Two-Sample Tests of
Wilcoxon," Bulletin of the International Statistical Institute, 37, 351–361.

Woolf, B. (1955), "On Estimating the Relationship between Blood Group and
Disease," Annals of Human Genetics, 19, 251–253.

626

627

C H A P T E R

24
The FSLIST Procedure

Overview: FSLIST Procedure 627
Syntax: FSLIST Procedure 627

Statement Descriptions 628

PROC FSLIST Statement 628

FSLIST Command 630

Overview: FSLIST Procedure

The FSLIST procedure allows you to browse external files that are not SAS data sets
within a SAS session. Because the files are displayed in an interactive window, the
procedure provides a highly convenient mechanism for examining file contents. In
addition, you can copy text from the FSLIST window into any window that uses the
SAS Text Editor.

Note: For complete documentation on PROC FSLIST, see SAS/FSP Procedures
Guide. �

Syntax: FSLIST Procedure

PROC FSLIST

FILEREF=file-specification|UNIT=nn <option(s)>;

� You must specify either the FILEREF= or the UNIT= argument with the PROC
FSLIST statement.

� Option(s) can be one or more of the following:

CAPS|NOCAPS

CC|FORTCC|NOCC

HSCROLL=HALF|PAGE|n

NOBORDER

NUM|NONUM

OVP|NOOVP

628 Statement Descriptions � Chapter 24

Statement Descriptions

The only statement that the FSLIST procedure supports is the PROC FSLIST
statement, which starts the procedure.

Requirements
You must specify an external file for PROC FSLIST to browse.

FSLIST Command
The FSLIST procedure can also be initiated by entering the following command on

the command line of any SAS window:

FSLIST <*|?| file-specification <carriage-control-option <overprinting-option>>>

where carriage-control-option can be CC, FORTCC, or NOCC and overprinting-option
can be OVP or NOOVP.

Note: OVP is ignored if NOCC is in effect. �

PROC FSLIST Statement

The PROC FSLIST statement initiates the FSLIST procedure and specifies the
external file to browse. Statement options allow you to modify the default behavior of
the procedure.

PROC FSLIST Statement Requirements
The PROC FSLIST statement must include one of the following arguments that

specifies the external file to browse.

FILEREF=file-specification
DDNAME=file-specification
DD=file-specification

specifies the external file to browse. file-specification can be one of the following:

’external-file’
is the complete operating environment file specification (called the fully qualified
pathname under some operating enfironments) for the external file. You must
enclose the name in quotation marks.

fileref
is a fileref that has been previously assigned to the external file. You can use the
FILENAME statement to associate a fileref with an actual filename. For
information about the FILENAME statement, see the section on statements in
SAS Language Reference: Dictionary.

UNIT=nn

The FSLIST Procedure � PROC FSLIST Statement 629

defines the FORTRAN-style logical unit number of the external file to browse. This
option is useful when the file to browse has a fileref of the form FTnnF001, where nn
is the logical unit number specified in the UNITS= argument. For example, you can
specify

proc fslist unit=20;

instead of

proc fslist fileref=ft20f001;

This form of fileref was used for a variety of SAS output files in Version 5 SAS software
under the MVS, CMS, and VSE operating environments. For example, the SAS log was
written to a file with the fileref (DDname) FT11F001.

PROC FSLIST Statement Options
The following options can be used with the PROC FSLIST statement:

CAPS | NOCAPS
controls how search strings for the FIND command are treated:

CAPS translates search strings into uppercase unless they are enclosed
in quotes. For example, with this option in effect, the command

find nc

locates occurrences of NC, but not nc. To locate lowercase
characters, enclose the search string in quotes:

find ’nc’

NOCAPS does not perform a translation; the FIND command locates only
those text strings that exactly match the search string.

The default is NOCAPS. You can use the CAPS command in the FSLIST window to
change the behavior of the procedure while you are browsing a file.

CC | FORTCC | NOCC
indicates whether carriage-control characters are used to format the display. You can
specify one of the following values for this option:

CC uses the native carriage-control characters of the host operating
environment.

FORTCC uses FORTRAN-style carriage control. The first column of each
line in the external file is not displayed; the character in this
column is interpreted as a carriage-control code. The FSLIST
procedure recognizes the following carriage-control characters:

+ skip zero lines and print (overprint)

blank skip one line and print (single space)

0 skip two lines and print (double space)

- skip three lines and print (triple space)

1 go to new page print.

NOCC treats carriage-control characters as regular text.

If the FSLIST procedure can determine from the file’s attributes that the file
contains-carriage control information, then that carriage-control information is used
to format the displayed text (the CC option is the default). Otherwise, the entire
contents of the file are treated as text (the NOCC option the default).

630 FSLIST Command � Chapter 24

Note: Under some operating environments, FORTRAN-style carriage control is
the native carriage control. For these environments, the FORTCC and CC options
produce the same behavior. �

HSCROLL=n|HALF|PAGE
indicates the default horizontal scroll amount for the LEFT and RIGHT commands.
The following values are valid:

n sets the default scroll amount to n columns.

HALF sets the default scroll amount to half the window width.

PAGE sets the default scroll amount to the full window width.
The default is HSCROLL=HALF. You can use the HSCROLL command in the

FSLIST window to change the default scroll amount.

NOBORDER
suppresses the sides and bottom of the FSLIST window’s border. When this option is
used, text can appear in the columns and row that are normally occupied by the
border.

NUM | NONUM
controls the display of line sequence numbers in files that have a record length of 80
and contain sequence numbers in columns 73 through 80. NUM displays the line
sequence numbers; NONUM suppresses them. The default is NONUM.

OVP| NOOVP
indicates whether the carriage-control code for overprinting is honored:

OVP causes the procedure to honor the overprint code and print the
current line over the previous line when the code is encountered.

NOOVP causes the procedure to ignore the overprint code and print each
line from the file on a separate line of the display.

The default is NOOVP. The OVP option is ignored if the NOCC option is in effect.

FSLIST Command

The FSLIST command provides a handy way to initiate an FSLIST session from any
SAS window. The command allows you to use either a fileref or a filename to specify
the file to browse. It also allows you to specify how carriage-control information is
interpreted.

FSLIST Command Syntax
The general form of the FSLIST command is

FSLIST <*|?| file-specification <carriage-control-option <overprinting-option>>>

where carriage-control-option can be CC, FORTCC, or NOCC and overprinting-option
can be OVP or NOOVP.

Note: OVP is ignored if NOCC is in effect. �

FSLIST Command Arguments
You can specify one of the following arguments with the FSLIST command:

The FSLIST Procedure � FSLIST Command 631

*
opens a dialog window in which you can specify the name of the file to browse, along
with various FSLIST procedure options. In the dialog window, you can specify either
a physical filename, a fileref, or a directory name. If you specify a directory name, a
selection list of the files in the directory is displayed, from which you can choose the
desired file.

?
opens a selection window from which you can choose the external file to browse. The
selection list in the window includes all external files that are identified in the
current SAS session (all files with defined filerefs).

Note: Only filerefs defined within the current SAS session appear in the selection
list. Under some operating environments, it is possible to allocate filerefs outside of
SAS. Such filerefs do not appear in the selection list that is displayed by the FSLIST
command. �

To select a file, position the cursor on the corresponding fileref and press ENTER.

Note: The selection window is not opened if no filerefs have been defined in the
current SAS session. Instead, an error message is printed, instructing you to enter a
filename with the FSLIST command. �

file-specification
identifies the external file to browse. file-specification can be one of the following:

’external-file’
the complete operating environment file specification (called the fully qualified
pathname under some operating environments) for the external file. You must
enclose the name in quotation marks.

If the specified file is not found, a selection window is opened showing all
available filerefs.

fileref
a fileref previously assigned to an external file. If you specify a fileref that is not
currently defined, a selection window is opened that shows all available filerefs.
An error message in the selection window indicates that the specified fileref is not
defined.

If you do not specify any of these three arguments, a selection window is opened that
shows the available filerefs (as if you had used the ? argument). The selection window is
not opened if no filerefs have been defined in the current SAS session. Instead, an error
message is printed that instructs you to enter a filename with the FSLIST command.

FSLIST Command Options
If you use a file-specification with the FSLIST command, you can also use the

following options. These options are not valid with the ? argument, or when no
argument is used:

CC | FORTCC | NOCC
indicates whether carriage-control characters are used to format the display. You can
specify one of the following values for this option:

CC uses the native carriage-control characters of the host operating
environment.

FORTCC uses FORTRAN-style carriage control. See the discussion of the
PROC FSLIST statement’s FORTCC option on page 629 for
details.

632 FSLIST Command � Chapter 24

NOCC treats carriage-control characters as regular text.
If the FSLIST procedure can determine from the file’s attributes that the file

contains carriage-control information, then that carriage-control information is used
to format the displayed text (the CC option is the default). Otherwise, the entire
contents of the file are treated as text (the NOCC option is the default).

OVP | NOOVP
indicates whether the carriage-control code for overprinting is honored. OVP causes
the overprint code to be honored; NOOVP causes it to be ignored. The default is
NOOVP. The OVP option is ignored if NOCC is in effect.

633

C H A P T E R

25
The IMPORT Procedure

Overview: IMPORT Procedure 633
Syntax: PROC IMPORT 634

PROC IMPORT Statement 634

Data Source Statements 638

Examples: IMPORT Procedure 641

Example 1: Importing a Delimited External File 641
Example 2: Importing a Specific Spreadsheet from an Excel Workbook 645

Example 3: Importing a Subset of Records from an Excel Spreadsheet 646

Example 4: Importing a Microsoft Access Table 647

Overview: IMPORT Procedure
The IMPORT procedure reads data from an external data source and writes it to a

SAS data set. External data sources can include Microsoft Access Database, Excel files,
Lotus spreadsheets, and delimited external files (in which columns of data values are
separated by a delimiter such as a blank, comma, or tab).

When you execute PROC IMPORT, the procedure reads the input file and writes the
data to a SAS data set. The SAS variable definitions are based on the input records.
PROC IMPORT imports the data by one of the following methods:

� generated DATA step code
� generated SAS/ACCESS code
� translation engines.

You control the results with statements and options that are specific to the input data
source. PROC IMPORT generates the specified output SAS data set and writes
information regarding the import to the SAS log. In the log, you see the DATA step or
the SAS/ACCESS code that is generated by PROC IMPORT. If a translation engine is
used, then no code is submitted.

Note: To import data, you can also use the Import Wizard, which is a windowing
tool that guides you through the steps to import an external data source. You can
request the Import Wizard to generate IMPORT procedure statements, which you can
save to a file for subsequent use. To invoke the Import Wizard, from the SAS
windowing environment select

File � Import Data

�

634 Syntax: PROC IMPORT � Chapter 25

Syntax: PROC IMPORT
Restriction: PROC IMPORT is available for the following operating environments:

� OpenVMS Alpha

� UNIX
� Microsoft Windows.

PROC IMPORT
DATAFILE="filename" | TABLE="tablename"
OUT=<libref.>SAS-data-set <(SAS-data-set-options)>
<DBMS=identifier><REPLACE> ;

<data-source-statement(s);>

PROC IMPORT Statement
Featured in: All examples

PROC IMPORT
DATAFILE="filename" | TABLE="tablename"
OUT=<libref.>SAS-data-set <(SAS-data-set-options)>
<DBMS=identifier><REPLACE> ;

Required Arguments

DATAFILE="filename"
specifies the complete path and filename or a fileref for the input PC file,
spreadsheet, or delimited external file. If you specify a fileref or if the complete path
and filename does not include special characters (such as the backslash in a path),
lowercase characters, or spaces, you can omit the quotation marks. A fileref is a SAS
name that is associated with the physical location of the output file. To assign a
fileref, use the FILENAME statement. For more information about PC file formats,
see SAS/ACCESS for PC Files: Reference.

Featured in: Example 1 on page 641, Example 2 on page 645, and Example 3 on
page 646

Restriction: PROC IMPORT does not support device types or access methods for
the FILENAME statement except for DISK. For example, PROC IMPORT does not
support the TEMP device type, which creates a temporary external file.

Interaction: For some input data sources like a Microsoft Excel spreadsheet, in
order to determine the data type (numeric or character) for a column, the first
eight rows of data are scanned and the most prevalent type of data is used. If
most of the data in the first eight rows is missing, SAS defaults to the character
data type; any subsequent numeric data for that column becomes missing as well.
Mixed data can also create missing values. For example, if the first eight rows

The IMPORT Procedure � PROC IMPORT Statement 635

contain mostly character data, SAS assigns the column as a character data type;
any subsequent numeric data for that column becomes missing.

Restriction: PROC IMPORT can import data only if the data type is supported by
SAS. SAS supports numeric and character types of data but not, for example,
binary objects. If the data that you want to import is a type not supported by SAS,
PROC IMPORT may not be able to import it correctly. In many cases, the
procedure attempts to convert the data to the best of its ability; however, for some
types, this is not possible.

Tip: For information about how SAS converts data types, see the specific
information for the data source that you are importing in SAS/ACCESS for PC
Files: Reference. For example, see the chapter “Understanding XLS Essentials” for
a table that lists XLS data types and the resulting SAS variable data type and
formats.

Tip: For a DBF file, if the file was created by Microsoft Visual FoxPro, the file must
be exported by Visual FoxPro into an appropriate dBASE format in order to import
the file to SAS.

TABLE="tablename"
specifies the table name of the input DBMS table. If the name does not include
special characters (such as question marks), lowercase characters, or spaces, you can
omit the quotation marks. Note that the DBMS table name may be case sensitive.

Requirement: When you import a DBMS table, you must specify the DBMS=
option.

Featured in: Example 4 on page 647

OUT=<libref.>SAS-data-set
identifies the output SAS data set with either a one- or two-level SAS name (library
and member name). If the specified SAS data set does not exist, PROC IMPORT
creates it. If you specify a one-level name, by default PROC IMPORT uses either the
USER library (if assigned) or the WORK library (if USER not assigned).

Featured in: All examples

(SAS-data-set-options)
specifies SAS data set options. For example, to assign a password to the resulting
SAS data set, you can use the ALTER=, PW=, READ=, or WRITE= data set option,
or to import only data that meets a specified condition, you can use the WHERE=
data set option. For information about all SAS data set options, see “Data Set
Options” in SAS Language Reference: Dictionary.

Restriction: You cannot specify data set options when importing delimited,
comma-separated, or tab-delimited external files.

Featured in: Example 3 on page 646

Options

DBMS=identifier
specifies the type of data to import. To import a DBMS table, you must specify
DBMS= using a valid database identifier. For example, DBMS=ACCESS specifies to
import a Microsoft Access 2000 or 2002 table. To import PC files, spreadsheets, and
delimited external files, you do not have to specify DBMS= if the filename that is
specified by DATAFILE= contains a valid extension so that PROC IMPORT can
recognize the type of data. For example, PROC IMPORT recognizes the filename
ACCOUNTS.WK1 as a Lotus 1-2-3 Release 2 spreadsheet and the filename

636 PROC IMPORT Statement � Chapter 25

MYDATA.CSV as a delimited external file that contains comma-separated data
values; therefore, a DBMS= specification is not necessary.

The following values are valid for the DBMS= option:

Identifier Input Data Source Extension Host
Availability

ACCESS Microsoft Access 2000 or 2002 table .mdb Microsoft
Windows *

ACCESS97 Microsoft Access 97 table .mdb Microsoft
Windows *

ACCESS2000 Microsoft Access 2000 table .mdb Microsoft
Windows *

ACCESS2002 Microsoft Access 2002 table .mdb Microsoft
Windows *

CSV delimited file (comma-separated values) .csv OpenVMS
Alpha, UNIX,
Microsoft
Windows

DBF dBASE 5.0, IV, III+, and III files .dbf UNIX,
Microsoft
Windows

DLM delimited file (default delimiter is a blank) .* OpenVMS
Alpha, UNIX,
Microsoft
Windows

EXCEL Excel 2000 or 2002 spreadsheet .xls Microsoft
Windows *

EXCEL4 Excel 4.0 spreadsheet .xls Microsoft
Windows

EXCEL5 Excel 5.0 or 7.0 (95) spreadsheet .xls Microsoft
Windows

EXCEL97 Excel 97 or 7.0 (95) spreadsheet .xls Microsoft
Windows *

EXCEL2000 Excel 2000 spreadsheet .xls Microsoft
Windows *

EXCEL2002 Excel 2002 spreadsheet .xls Microsoft
Windows *

TAB delimited file (tab-delimited values) .txt OpenVMS
Alpha, UNIX,
Microsoft
Windows

WK1 Lotus 1-2-3 Release 2 spreadsheet .wk1 Microsoft
Windows

The IMPORT Procedure � PROC IMPORT Statement 637

Identifier Input Data Source Extension Host
Availability

WK3 Lotus 1-2-3 Release 3 spreadsheet .wk3 Microsoft
Windows

WK4 Lotus 1-2-3 Release 4 or 5 spreadsheet .wk4 Microsoft
Windows

* Not available for Microsoft Windows 64-Bit Edition.

Restriction: The availability of an input data source depends on

� the operating environment, and in some cases the platform, as specified in
the previous table.

� whether your site has a license to the SAS/ACCESS software for PC file
formats. If you do not have a license, only delimited files are supported.

Featured in: Example 1 on page 641 and Example 4 on page 647

When you specify a value for DBMS=, consider the following:

� To import a Microsoft Access table, PROC IMPORT can distinguish whether the
table is in Access 97, 2000, or 2002 format regardless of your specification. For
example, if you specify DBMS=ACCESS and the table is an Access 97 table,
PROC IMPORT will import the file.

� To import a Microsoft Excel spreadsheet, PROC IMPORT can distinguish some
versions regardless of your specification. For example, if you specify
DBMS=EXCEL and the spreadsheet is an Excel 97 spreadsheet, PROC
IMPORT can import the file. However, if you specify DBMS=EXCEL4 and the
spreadsheet is an Excel 2000 spreadsheet, PROC IMPORT cannot import the
file. The following table lists the spreadsheets and whether PROC IMPORT can
distinguish them based on the DBMS= specification:

Specification Excel 2002 Excel 2000 Excel 97 Excel 5.0 Excel 4.0

EXCEL yes yes yes yes yes

EXCEL2002 yes yes yes yes yes

EXCEL2000 yes yes yes yes yes

EXCEL97 yes yes yes yes yes

EXCEL5 no no no yes yes

EXCEL4 no no no yes yes

Note: Although Excel 4.0 and Excel 5.0 spreadsheets are often
interchangeable, it is recommended that you specify the exact version. �

REPLACE
overwrites an existing SAS data set. If you do not specify REPLACE, PROC
IMPORT does not overwrite an existing data set.

Featured in: Example 1 on page 641

638 Data Source Statements � Chapter 25

Data Source Statements
Featured in: All examples

PROC IMPORT provides a variety of statements that are specific to the input data
source.

Statements for PC Files, Spreadsheets, or Delimited External Files
The following table lists the statements that are available to import PC files,

spreadsheets, and delimited external files, and it denotes which statements are valid for
a specific data source. For example, Excel spreadsheets have optional statements to
indicate whether column names are in the first row of data or which sheet and range of
data to import, while a dBASE file (DBF) does not. For more information about PC file
formats, see SAS/ACCESS for PC Files: Reference.

Data
Source

GETNAMES RANGE SHEET DELIMITERGETDELETEDDATAROW MEMOSIZE

DBF X

WK1 X X X

WK3 X X X

WK4 X X X

EXCEL X X X

EXCEL4 X X X

EXCEL5 X X X

EXCEL97 X X X X

EXCEL2000 X X X X

EXCEL2002 X X X X

DLM X X X

CSV X X

TAB X X

DATAROW=n;
starts reading data from row number n in the external file.
Default:

1 when GETNAMES=NO

2 when GETNAMES=YES (default for GETNAMES=)
Interaction: When GETNAMES=YES, DATAROW= must be equal to or greater

than 2. When GETNAMES=NO, DATAROW must be equal to or greater than 1.

DELIMITER=’char’ | ’nn’x;

The IMPORT Procedure � Data Source Statements 639

for a delimited external file, specifies the delimiter that separates columns of data
in the input file. You can specify the delimiter as a single character or as a
hexadecimal value. For example, if columns of data are separated by an
ampersand, specify DELIMITER=’&’. If you do not specify DELIMITER=, PROC
IMPORT assumes that the delimiter is the blank. You can replace the equal sign
with a blank.

Featured in: Example 1 on page 641

GETDELETED=YES | NO;
for a dBASE file (DBF), indicates whether to write records to the SAS data set
that are marked for deletion but have not been purged. You can replace the equal
sign with a blank.

Default: NO

GETNAMES=YES | NO;
for spreadsheets and delimited external files, determines whether to generate SAS
variable names from the column names in the input file’s first row of data. You
can replace the equal sign with a blank.

If you specify GETNAMES=NO or if the column names are not valid SAS
names, PROC IMPORT uses default variable names. For example, for a delimited
file, PROC IMPORT uses VAR1, VAR2, VAR3, and so on.

Note that if a column name contains special characters that are not valid in a
SAS name, such as a blank, SAS converts the character to an underscore. For
example, the column name Occupancy Code would become the variable name
Occupancy_Code.

Default: YES

Featured in: Example 1 on page 641 and Example 2 on page 645

MEMOSIZE=field-length;
specifies the field length for importing Microsoft Excel 97, 2000, or 2002 Memo
fields.

Range: 1 - 32,767

Default: 1024

RANGE="range-name | absolute-range";
subsets a spreadsheet by identifying the rectangular set of cells to import from the
specified spreadsheet. The syntax for range-name and absolute-range is native to
the file being read. You can replace the equal sign with a blank.

range-name is a name that has been assigned to represent a range, such as
a range of cells within the spreadsheet.

Limitation: SAS supports range names up to 32 characters. If a
range name exceeds 32 characters, SAS will notify you that
the name is invalid.

Tip: For Microsoft Excel, range names do not contain special
characters such as spaces or hyphens.

absolute-range identifies the top left cell that begins the range and the bottom
right cell that ends the range. For Excel 4.0, 5.0, and 7.0 (95),
the beginning and ending cells are separated by two periods;
that is, C9..F12 specifies a cell range that begins at cell C9,
ends at cell F12, and includes all the cells in between. For
Excel 97, 2000, and 2002, the beginning and ending cells are
separated by a colon – that is, C9:F12.

640 Data Source Statements � Chapter 25

Tip: For Excel 97, 2000, and 2002, you can include the
spreadsheet name with an absolute range, such as
range="North B$a1:d3". If you do not include the
spreadsheet name, PROC IMPORT uses the first sheet in the
workbook or the spreadsheet name specified with SHEET=.

Default: The entire spreadsheet is selected.
Interaction: For Excel 97, 2000, and 2002 spreadsheets, when RANGE= is

specified, a spreadsheet name specified with SHEET= is ignored when the
conflict occurs.

SHEET=spreadsheet-name;
identifies a particular spreadsheet in a group of spreadsheets. Use this statement
with spreadsheets that support multiple spreadsheets within a single file. The
naming convention for the spreadsheet name is native to the file being read.
Featured in: Example 2 on page 645
Default: The default depends on the type of spreadsheet. For Excel 4.0 and 5.0,

PROC IMPORT reads the first spreadsheet in the file. For Excel 97 and later,
PROC IMPORT reads the first spreadsheet from an ascending sort of the
spreadsheet names. To be certain that PROC IMPORT reads the desired
spreadsheet, you should identify the spreadsheet by specifying SHEET=.

Limitation: SAS supports spreadsheet names up to 31 characters. With the $
appended, the maximum length of a spreadsheet name is 32 characters.

Statements for DBMS Tables
The following data source statements are available to establish a connection to the

DBMS when you import a DBMS table.

DATABASE=“database”;
specifies the complete path and filename of the database that contains the
specified DBMS table. If the database name does not contain lowercase characters,
special characters, or national characters ($, #, or @), you can omit the quotation
marks. You can replace the equal sign with a blank.

Note: A default may be configured in the DBMS client software; however, SAS
does not generate a default value. �

Featured in: Example 4 on page 647

DBPWD=“database password”;
specifies a password that allows access to a database. You can replace the equal
sign with a blank.
Featured in: Example 4 on page 647

MEMOSIZE=field-length;
specifies the field length for importing Microsoft Access Memo fields.
Range: 1 - 32,767
Default: 1024
Tip: To prevent Memo fields from being imported, you can specify MEMOSIZE=0.

PWD=“password”;
specifies the user password used by the DBMS to validate a specific userid. If the
password does not contain lowercase characters, special characters, or national
characters, you can omit the quotation marks. You can replace the equal sign with
a blank.

The IMPORT Procedure � Example 1: Importing a Delimited External File 641

Note: The DBMS client software may default to the userid and password that
were used to log in to the operating environment; SAS does not generate a default
value. �

Featured in: Example 4 on page 647

UID=“userid”;
identifies the user to the DBMS. If the userid does not contain lowercase
characters, special characters, or national characters, you can omit the quotation
marks. You can replace the equal sign with a blank.

Note: The DBMS client software may default to the userid and password that
were used to log in to the operating environment; SAS does not generate a default
value. �
Featured in: Example 4 on page 647

WGDB=“workgroup-database-name”;
specifies the workgroup (security) database name that contains the USERID and
PWD data for the DBMS. If the workgroup database name does not contain
lowercase characters, special characters, or national characters, you can omit the
quotation marks. You can replace the equal sign with a blank.

Note: A default workgroup database may be used by the DBMS; SAS does not
generate a default value. �
Featured in: Example 4 on page 647

Security Levels for Microsoft Access Tables
Microsoft Access tables have the following levels of security, for which specific
combinations of security statements must be used:

None
Do not specify DBPWD=, PWD=, UID=, or WGDB=.

Password
Specify only DBPWD=.

User-level
Specify only PWD=, UID=, and WGDB=.

Full
Specify DBPWD=, PWD=, UID=, and WGDB=.

Each statement has a default value; however, you may find it necessary to provide a
value for each statement explicitly.

Examples: IMPORT Procedure

Example 1: Importing a Delimited External File

Procedure features:
PROC IMPORT statement arguments:

642 Program � Chapter 25

DATAFILE=
OUT=
DBMS=
REPLACE

Data source statements:

DELIMITER=
GETNAMES=

Other features:
PRINT procedure

This example imports the following delimited external file and creates a temporary
SAS data set named WORK.MYDATA:

Region&State&Month&Expenses&Revenue
Southern&GA&JAN2001&2000&8000
Southern&GA&FEB2001&1200&6000
Southern&FL&FEB2001&8500&11000
Northern&NY&FEB2001&3000&4000
Northern&NY&MAR2001&6000&5000
Southern&FL&MAR2001&9800&13500
Northern&MA&MAR2001&1500&1000

Program

Specify the input file.

proc import datafile="C:\My Documents\myfiles\delimiter.txt"

Identify the output SAS data set.

out=mydata

Specify that the input file is a delimited external file.

dbms=dlm

Overwrite the data set if it exists.

replace;

Specify the delimiter. The DELIMITER= option specifies that an & (ampersand) delimits data
fields in the input file. The delimiter separates the columns of data in the input file.

delimiter=’&’;

The IMPORT Procedure � Program 643

Generate the variable names from the first row of data in the input file.

getnames=yes;
run;

Print the WORK.MYDATA data set. PROC PRINT produces a simple listing.

options nodate ps=60 ls=80;

proc print data=mydata;
run;

644 SAS Log � Chapter 25

SAS Log
The SAS log displays information about the successful import. For this example,

PROC IMPORT generates a SAS DATA step, as shown in the partial log that follows.

/**
79 * PRODUCT: SAS
80 * VERSION: 9.00
81 * CREATOR: External File Interface
82 * DATE: 24JAN02
83 * DESC: Generated SAS Datastep Code
84 * TEMPLATE SOURCE: (None Specified.)
85 ***/
86 data MYDATA ;
87 %let _EFIERR_ = 0; /* set the ERROR detection macro variable */
88 infile ’C:\My Documents\myfiles\delimiter.txt’ delimiter = ’&’ MISSOVER
88 ! DSD lrecl=32767 firstobs=2 ;
89 informat Region $8. ;
90 informat State $2. ;
91 informat Month $7. ;
92 informat Expenses best32. ;
93 informat Revenue best32. ;
94 format Region $8. ;
95 format State $2. ;
96 format Month $7. ;
97 format Expenses best12. ;
98 format Revenue best12. ;
99 input
100 Region $
101 State $
102 Month $
103 Expenses
104 Revenue
105 ;
106 if _ERROR_ then call symput(’_EFIERR_’,1); /* set ERROR detection
106! macro variable */
107 run;

NOTE: Numeric values have been converted to character
values at the places given by: (Line):(Column).
106:44

NOTE: The infile ’C:\My Documents\myfiles\delimiter.txt’ is:
File Name=C:\My Documents\myfiles\delimiter.txt,
RECFM=V,LRECL=32767

NOTE: 7 records were read from the infile ’C:\My
Documents\myfiles\delimiter.txt’.
The minimum record length was 29.
The maximum record length was 31.

NOTE: The data set WORK.MYDATA has 7 observations and 5 variables.
NOTE: DATA statement used (Total process time):

real time 0.04 seconds
cpu time 0.05 seconds

7 rows created in MYDATA from C:\My
Documents\myfiles\delimiter.txt.

NOTE: .MYDATA was successfully created.

The IMPORT Procedure � Program 645

Output
This output lists the output data set, MYDATA, created by PROC IMPORT from the

delimited external file.

The SAS System

Obs Region State Month Expenses Revenue

1 Southern GA JAN2001 2000 8000
2 Southern GA FEB2001 1200 6000
3 Southern FL FEB2001 8500 11000
4 Northern NY FEB2001 3000 4000
5 Northern NY MAR2001 6000 5000
6 Southern FL MAR2001 9800 13500
7 Northern MA MAR2001 1500 1000

Example 2: Importing a Specific Spreadsheet from an Excel Workbook

Procedure features:
PROC IMPORT statement arguments:

DATAFILE=
OUT=

Data source statements:
SHEET=
GETNAMES=

Other features:
PRINT procedure option:

OBS=

This example imports a specific spreadsheet from an Excel workbook, which contains
multiple spreadsheets, and creates a new, permanent SAS data set named
SASUSER.ACCOUNTS.

Program

Specify the input file. The filename contains the extension .XLS, which PROC IMPORT
recognizes as identifying an Excel 2000 spreadsheet.

proc import datafile="c:\myfiles\Accounts.xls"

Identify the output SAS data set.

out=sasuser.accounts;

Import only the sheet PRICES that is contained in the file ACCOUNTS.XLS.

646 Output � Chapter 25

sheet=’Prices$’;

Do not generate the variable names from the input file. PROC IMPORT will use default
variable names.

getnames=no;
run;

Print the SASUSER.ACCOUNTS data set. PROC PRINT produces a simple listing. The
OBS= data set option limits the output to the first 10 observations.

proc print data=sasuser.accounts(obs=10);
run;

Output
The following output displays the first 10 observations of the output data set,

SASUSER.ACCOUNTS:

The SAS System 1

OBS F1 F2 F3

1 Dharamsala Tea 10 boxes x 20 bags 18.00
2 Tibetan Barley Beer 24 - 12 oz bottles 19.00
3 Licorice Syrup 12 - 550 ml bottles 10.00
4 Chef Anton’s Cajun Seasoning 48 - 6 oz jars 22.00
5 Chef Anton’s Gumbo Mix 36 boxes 21.35
6 Grandma’s Boysenberry Spread 12 - 8 oz jars 25.00
7 Uncle Bob’s Organic Dried Pears 12 - 1 lb pkgs. 30.00
8 Northwoods Cranberry Sauce 12 - 12 oz jars 40.00
9 Mishi Kobe Beef 18 - 500 g pkgss. 97.00

10 Fish Roe 12 - 200 ml jars 31.00

Example 3: Importing a Subset of Records from an Excel Spreadsheet
Procedure features:

PROC IMPORT statement arguments:
DATAFILE=
OUT=

This example imports a subset of an Excel spreadsheet and creates a temporary SAS
data set. The WHERE= SAS data set option is specified in order to import only a subset
of records from the Excel spreadsheet.

Program

Specify the input file.

proc import datafile=’c:\Myfiles\Class.xls’

The IMPORT Procedure � Program 647

Identify the output SAS data set, and request that only a subset of the records be
imported.

out=work.femaleclass (where=(sex=’F’));
run;

Print the new SAS data set. PROC PRINT produces a simple listing.

proc print data=work.femaleclass;
run;

Output
The following output displays the output SAS data set, WORK.FEMALECLASS:

The SAS System 1

Obs Name Sex Age Height Weight

1 Alice F 13 56.5 84.0
2 Barbara F 13 65.3 98.0
3 Carol F 14 62.8 102.5
4 Jane F 12 59.8 84.5
5 Janet F 15 62.5 112.5
6 Joyce F 11 51.3 50.5
7 Judy F 14 64.3 90.0
8 Louise F 12 56.3 77.0
9 Mary F 15 66.5 112.0

Example 4: Importing a Microsoft Access Table

Procedure features:
PROC IMPORT statement arguments:

TABLE=
OUT=
DBMS=

Data source Statements:
DATABASE=
PWD=
UID=
WGDB=

This example imports a Microsoft Access 97 table and creates a permanent SAS data
set named SASUSER.CUST. The Access table has user-level security, so it is necessary
to specify values for the PWD=, UID=, and WGDB= statements.

Program

Specify the input DBMS table name.

648 Output � Chapter 25

proc import table="customers"

Identify the output SAS data set.

out=sasuser.cust

Specify that the input file is a Microsoft Access 97 table.

dbms=access97;

Identify the user ID to the DBMS.

uid="userid";

Specify the DBMS password to access the table.

pwd="mypassword";

Specify the path and filename of the database that contains the table.

database="c:\myfiles\east.mdb";

Specify the workgroup (security) database name that contains the user ID and
password data for the Microsoft Access table.

wgdb="c:\winnt\system32\security.mdb";

Print the SASUSER.CUST data set. PROC PRINT produces a simple listing. The OBS= data
set option limits the output to the first five observations.

proc print data=sasuser.cust(obs=5);
run;

Output
The following output displays the first five observations of the output data set,

SASUSER.CUST.

The SAS System 1

Obs Name Street Zipcode

1 David Taylor 124 Oxbow Street 72511
2 Theo Barnes 2412 McAllen Avenue 72513
3 Lydia Stirog 12550 Overton Place 72516
4 Anton Niroles 486 Gypsum Street 72511
5 Cheryl Gaspar 36 E. Broadway 72515

649

C H A P T E R

26
The MEANS Procedure

Overview: MEANS Procedure 650
Syntax: MEANS Procedure 652

PROC MEANS Statement 653

BY Statement 660

CLASS Statement 661

FREQ Statement 665
ID Statement 665

OUTPUT Statement 666

TYPES Statement 672

VAR Statement 673

WAYS Statement 674

WEIGHT Statement 674
Concepts: MEANS Procedure 675

Using Class Variables 675

Ordering the Class Values 676

Computational Resources 677

Statistical Computations: MEANS Procedure 678
Confidence Limits 679

Student’s t Test 680

Quantiles 680

Results: MEANS Procedure 681

Missing Values 681
Column Width for the Output 681

The N Obs Statistic 681

Output Data Set 682

Examples: MEANS Procedure 683

Example 1: Computing Specific Descriptive Statistics 683

Example 2: Computing Descriptive Statistics with Class Variables 685
Example 3: Using the BY Statement with Class Variables 687

Example 4: Using a CLASSDATA= Data Set with Class Variables 689

Example 5: Using Multilabel Value Formats with Class Variables 693

Example 6: Using Preloaded Formats with Class Variables 696

Example 7: Computing a Confidence Limit for the Mean 699
Example 8: Computing Output Statistics 700

Example 9: Computing Different Output Statistics for Several Variables 702

Example 10: Computing Output Statistics with Missing Class Variable Values 704

Example 11: Identifying an Extreme Value with the Output Statistics 706

Example 12: Identifying the Top Three Extreme Values with the Output Statistics 709
References 712

650 Overview: MEANS Procedure � Chapter 26

Overview: MEANS Procedure
The MEANS procedure provides data summarization tools to compute descriptive

statistics for variables across all observations and within groups of observations. For
example, PROC MEANS

� calculates descriptive statistics based on moments
� estimates quantiles, which includes the median
� calculates confidence limits for the mean
� identifies extreme values
� performs a t test.

By default, PROC MEANS displays output. You can also use the OUTPUT statement to
store the statistics in a SAS data set.

PROC MEANS and PROC SUMMARY are very similar; see Chapter 42, “The
SUMMARY Procedure,” on page 1257 for an explanation of the differences.

Output 26.1 on page 650 shows the default output that PROC MEANS displays. The
data set that PROC MEANS analyzes contains the integers 1 through 10. The output
reports the number of observations, the mean, the standard deviation, the minimum
value, and the maximum value. The statements that produce the output follow:

proc means data=OnetoTen;
run;

Output 26.1 The Default Descriptive Statistics

The SAS System 1

The MEANS Procedure

Analysis Variable : Integer

N Mean Std Dev Minimum Maximum
--
10 5.5000000 3.0276504 1.0000000 10.0000000
--

Output 26.2 on page 650 shows the results of a more extensive analysis of two
variables, MoneyRaised and HoursVolunteered. The analysis data set contains
information about the amount of money raised and the number of hours volunteered by
high-school students for a local charity. PROC MEANS uses six combinations of two
categorical variables to compute the number of observations, the mean, and the range.
The first variable, School, has two values and the other variable, Year, has three values.
For an explanation of the program that produces the output, see Example 11 on page
706.

The MEANS Procedure � Overview: MEANS Procedure 651

Output 26.2 Specified Statistics for Class Levels and Identification of Maximum Values

Summary of Volunteer Work by School and Year 1

The MEANS Procedure

N
School Year Obs Variable N Mean Range

Kennedy 1992 15 MoneyRaised 15 29.0800000 39.7500000

HoursVolunteered 15 22.1333333 30.0000000

1993 20 MoneyRaised 20 28.5660000 23.5600000
HoursVolunteered 20 19.2000000 20.0000000

1994 18 MoneyRaised 18 31.5794444 65.4400000
HoursVolunteered 18 24.2777778 15.0000000

Monroe 1992 16 MoneyRaised 16 28.5450000 48.2700000
HoursVolunteered 16 18.8125000 38.0000000

1993 12 MoneyRaised 12 28.0500000 52.4600000
HoursVolunteered 12 15.8333333 21.0000000

1994 28 MoneyRaised 28 29.4100000 73.5300000
HoursVolunteered 28 19.1428571 26.0000000

Best Results: Most Money Raised and Most Hours Worked 2

Most Most Money Hours
Obs School Year _TYPE_ _FREQ_ Cash Time Raised Volunteered

1 . 0 109 Willard Tonya 78.65 40
2 1992 1 31 Tonya Tonya 55.16 40
3 1993 1 32 Cameron Amy 65.44 31
4 1994 1 46 Willard L.T. 78.65 33
5 Kennedy . 2 53 Luther Jay 72.22 35
6 Monroe . 2 56 Willard Tonya 78.65 40
7 Kennedy 1992 3 15 Thelma Jay 52.63 35
8 Kennedy 1993 3 20 Bill Amy 42.23 31
9 Kennedy 1994 3 18 Luther Che-Min 72.22 33

10 Monroe 1992 3 16 Tonya Tonya 55.16 40
11 Monroe 1993 3 12 Cameron Myrtle 65.44 26
12 Monroe 1994 3 28 Willard L.T. 78.65 33

In addition to the report, the program also creates an output data set (located on
page 2 of the output) that identifies the students who raised the most money and who
volunteered the most time over all the combinations of School and Year and within the
combinations of School and Year:

� The first observation in the data set shows the students with the maximum values
overall for MoneyRaised and HoursVolunteered.

� Observations 2 through 4 show the students with the maximum values for each
year, regardless of school.

� Observations 5 and 6 show the students with the maximum values for each school,
regardless of year.

� Observations 7 through 12 show the students with the maximum values for each
school-year combination.

652 Syntax: MEANS Procedure � Chapter 26

Syntax: MEANS Procedure
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.

Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.

PROC MEANS <option(s)> <statistic-keyword(s)>;

BY <DESCENDING> variable-1 <… <DESCENDING> variable-n><NOTSORTED>;

CLASS variable(s) </ option(s)>;

FREQ variable;

ID variable(s);

OUTPUT <OUT=SAS-data-set> <output-statistic-specification(s)>
<id-group-specification(s)> <maximum-id-specification(s)>
<minimum-id-specification(s)> </ option(s)> ;

TYPES request(s);

VAR variable(s) < / WEIGHT=weight-variable>;

WAYS list;

WEIGHT variable;

To do this Use this statement

Calculate separate statistics for each BY group BY

Identify variables whose values define subgroups for the analysis CLASS

Identify a variable whose values represent the frequency of each
observation

FREQ

Include additional identification variables in the output data set ID

Create an output data set that contains specified statistics and
identification variables

OUTPUT

Identify specific combinations of class variables to use to subdivide
the data

TYPES

Identify the analysis variables and their order in the results VAR

Specify the number of ways to make unique combinations of class
variables

WAYS

Identify a variable whose values weight each observation in the
statistical calculations

WEIGHT

The MEANS Procedure � PROC MEANS Statement 653

PROC MEANS Statement
See also: Chapter 42, “The SUMMARY Procedure,” on page 1257

PROC MEANS <option(s)> <statistic-keyword(s)>;

To do this Use this option

Specify the input data set DATA=

Disable floating point exception recovery NOTRAP

Specify the amount of memory to use for data summarization with
class variables

SUMSIZE=

Override the SAS system option THREADS | NOTHREADS THREADS | NOTHREADS

Control the classification levels

Specify a secondary data set that contains the combinations of
class variables to analyze

CLASSDATA=

Create all possible combinations of class variable values COMPLETETYPES

Exclude from the analysis all combinations of class variable
values that are not in the CLASSDATA= data set

EXCLUSIVE

Use missing values as valid values to create combinations of
class variables

MISSING

Control the statistical analysis

Specify the confidence level for the confidence limits ALPHA=

Exclude observations with nonpositive weights from the
analysis

EXCLNPWGTS

Specify the sample size to use for the P2 quantile estimation
method

QMARKERS=

Specify the quantile estimation method QMETHOD=

Specify the mathematical definition used to compute quantiles QNTLDEF=

Select the statistics statistic-keyword

Specify the variance divisor VARDEF=

Control the output

Specify the field width for the statistics FW=

Specify the number of decimal places for the statistics MAXDEC=

Suppress reporting the total number of observations for each
unique combination of the class variables

NONOBS

Suppress all displayed output NOPRINT

Order the values of the class variables according to the
specified order

ORDER=

Display the output PRINT

654 PROC MEANS Statement � Chapter 26

To do this Use this option

Display the analysis for all requested combinations of class
variables

PRINTALLTYPES

Display the values of the ID variables PRINTIDVARS

Control the output data set

Specify that the _TYPE_ variable contain character values. CHARTYPE

Order the output data set by descending _TYPE_ value DESCENDTYPES

Select ID variables based on minimum values IDMIN

Limit the output statistics to the observations with the highest
TYPE value

NWAY

Options

ALPHA=value
specifies the confidence level to compute the confidence limits for the mean. The
percentage for the confidence limits is (1−value)�100. For example, ALPHA=.05
results in a 95% confidence limit.
Default: .05
Range: between 0 and 1
Interaction: To compute confidence limits specify the statistic-keyword CLM,

LCLM, or UCLM.
See also: “Confidence Limits” on page 679
Featured in: Example 7 on page 699

CHARTYPE
specifies that the _TYPE_ variable in the output data set is a character
representation of the binary value of _TYPE_. The length of the variable equals the
number of class variables.
Main discussion: “Output Data Set” on page 682
Interaction: When you specify more than 32 class variables, _TYPE_ automatically

becomes a character variable.
Featured in: Example 10 on page 704

CLASSDATA=SAS-data-set
specifies a data set that contains the combinations of values of the class variables
that must be present in the output. Any combinations of values of the class variables
that occur in the CLASSDATA= data set but not in the input data set appear in the
output and have a frequency of zero.
Restriction: The CLASSDATA= data set must contain all class variables. Their

data type and format must match the corresponding class variables in the input
data set.

Interaction: If you use the EXCLUSIVE option, then PROC MEANS excludes any
observation in the input data set whose combination of class variables is not in the
CLASSDATA= data set.

Tip: Use the CLASSDATA= data set to filter or to supplement the input data set.
Featured in: Example 4 on page 689

The MEANS Procedure � PROC MEANS Statement 655

COMPLETETYPES
creates all possible combinations of class variables even if the combination does not
occur in the input data set.
Interaction: The PRELOADFMT option in the CLASS statement ensures that

PROC MEANS writes all user-defined format ranges or values for the
combinations of class variables to the output, even when a frequency is zero.

Tip: Using COMPLETETYPES does not increase the memory requirements.
Featured in: Example 6 on page 696

DATA=SAS-data-set
identifies the input SAS data set.
Main discussion: “Input Data Sets” on page 19

DESCENDTYPES
orders observations in the output data set by descending _TYPE_ value.
Alias: DESCENDING | DESCEND
Interaction: Descending has no effect if you specify NWAY.
Tip: Use DESCENDTYPES to make the overall total (_TYPE_=0) the last

observation in each BY group.
See also: “Output Data Set” on page 682
Featured in: Example 9 on page 702

EXCLNPWGTS
excludes observations with nonpositive weight values (zero or negative) from the
analysis. By default, PROC MEANS treats observations with negative weights like
those with zero weights and counts them in the total number of observations.
Alias: EXCLNPWGT
See also: WEIGHT= on page 673 and “WEIGHT Statement” on page 674

EXCLUSIVE
excludes from the analysis all combinations of the class variables that are not found
in the CLASSDATA= data set.
Requirement: If a CLASSDATA= data set is not specified, then this option is

ignored.
Featured in: Example 4 on page 689

FW=field-width
specifies the field width to display the statistics in printed or displayed output. FW=
has no effect on statistics that are saved in an output data set.
Default: 12
Tip: If PROC MEANS truncates column labels in the output, then increase the field

width.
Featured in: Example 1 on page 683, Example 4 on page 689, and Example 5 on

page 693

IDMIN
specifies that the output data set contain the minimum value of the ID variables.
Interaction: Specify PRINTIDVARS to display the value of the ID variables in the

output.
See also: “ID Statement” on page 665

MAXDEC=number
specifies the maximum number of decimal places to display the statistics in the
printed or displayed output. MAXDEC= has no effect on statistics that are saved in
an output data set.

656 PROC MEANS Statement � Chapter 26

Default: BEST. width for columnar format, typically about 7.
Range: 0-8
Featured in: Example 2 on page 685 and Example 4 on page 689

MISSING
considers missing values as valid values to create the combinations of class variables.
Special missing values that represent numeric values (the letters A through Z and
the underscore (_) character) are each considered as a separate value.
Default: If you omit MISSING, then PROC MEANS excludes the observations with

a missing class variable value from the analysis.
See also: SAS Language Reference: Concepts for a discussion of missing values that

have special meaning.
Featured in: Example 6 on page 696

NONOBS
suppresses the column that displays the total number of observations for each unique
combination of the values of the class variables. This column corresponds to the
FREQ variable in the output data set.
See also: “The N Obs Statistic” on page 681
Featured in: Example 5 on page 693 and Example 6 on page 696

NOPRINT
See PRINT | NOPRINT.

NOTHREADS
See THREADS | NOTHREADS.

NOTRAP
disables floating point exception (FPE) recovery during data processing. By default,
PROC MEANS traps these errors and sets the statistic to missing.

In operating environments where the overhead of FPE recovery is significant,
NOTRAP can improve performance. Note that normal SAS FPE handling is still in
effect so that PROC MEANS terminates in the case of math exceptions.

NWAY
specifies that the output data set contain only statistics for the observations with the
highest _TYPE_ and _WAY_ values. When you specify class variables, this
corresponds to the combination of all class variables.
Interaction: If you specify a TYPES statement or a WAYS statement, then PROC

MEANS ignores this option.
See also: “Output Data Set” on page 682
Featured in: Example 10 on page 704

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
specifies the sort order to create the unique combinations for the values of the class
variables in the output, where

DATA
orders values according to their order in the input data set.
Interaction: If you use PRELOADFMT in the CLASS statement, then the order for

the values of each class variable matches the order that PROC FORMAT uses to
store the values of the associated user-defined format. If you use the
CLASSDATA= option, then PROC MEANS uses the order of the unique values
of each class variable in the CLASSDATA= data set to order the output levels.
If you use both options, then PROC MEANS first uses the user-defined formats
to order the output. If you omit EXCLUSIVE, then PROC MEANS appends

The MEANS Procedure � PROC MEANS Statement 657

after the user-defined format and the CLASSDATA= values the unique values of
the class variables in the input data set based on the order in which they are
encountered.

Tip: By default, PROC FORMAT stores a format definition in sorted order. Use
the NOTSORTED option to store the values or ranges of a user defined format
in the order that you define them.

FORMATTED
orders values by their ascending formatted values. This order depends on your
operating environment.
Alias: FMT | EXTERNAL

FREQ
orders values by descending frequency count so that levels with the most
observations are listed first.
Interaction: For multiway combinations of the class variables, PROC MEANS

determines the order of a class variable combination from the individual class
variable frequencies.

Interaction: Use the ASCENDING option in the CLASS statement to order values
by ascending frequency count.

UNFORMATTED
orders values by their unformatted values, which yields the same order as PROC
SORT. This order depends on your operating environment.
Alias: UNFMT | INTERNAL

Default: UNFORMATTED
See also: “Ordering the Class Values” on page 676

PRINT | NOPRINT
specifies whether PROC MEANS displays the statistical analysis. NOPRINT
suppresses all the output.
Default: PRINT
Tip: Use NOPRINT when you want to create only an OUT= output data set.
Featured in: For an example of NOPRINT, see Example 8 on page 700 and

Example 12 on page 709

PRINTALLTYPES
displays all requested combinations of class variables (all _TYPE_ values) in the
printed or displayed output. Normally, PROC MEANS shows only the NWAY type.
Alias: PRINTALL
Interaction: If you use the NWAY option, the TYPES statement, or the WAYS

statement, then PROC MEANS ignores this option.
Featured in: Example 4 on page 689

PRINTIDVARS
displays the values of the ID variables in printed or displayed output.
Alias: PRINTIDS
Interaction: Specify IDMIN to display the minimum value of the ID variables.
See also: “ID Statement” on page 665

QMARKERS=number
specifies the default number of markers to use for the P2 quantile estimation method.
The number of markers controls the size of fixed memory space.
Default: The default value depends on which quantiles you request. For the median

(P50), number is 7. For the quartiles (P25 and P50), number is 25. For the

658 PROC MEANS Statement � Chapter 26

quantiles P1, P5, P10, P90, P95, or P99, number is 105. If you request several
quantiles, then PROC MEANS uses the largest value of number.

Range: an odd integer greater than 3
Tip: Increase the number of markers above the defaults settings to improve the

accuracy of the estimate; reduce the number of markers to conserve memory and
computing time.

Main Discussion: “Quantiles” on page 680

QMETHOD=OS|P2|HIST
specifies the method PROC MEANS uses to process the input data when it computes
quantiles. If the number of observations is less than or equal to the QMARKERS=
value and QNTLDEF=5, then both methods produce the same results.

OS
uses order statistics. This is the same method that PROC UNIVARIATE uses.

Note: This technique can be very memory-intensive. �

P2|HIST
uses the P2 method to approximate the quantile.

Default: OS
Restriction: When QMETHOD=P2, PROC MEANS will not compute weighted

quantiles.
Tip: When QMETHOD=P2, reliable estimations of some quantiles (P1,P5,P95,P99)

may not be possible for some data sets.
Main Discussion: “Quantiles” on page 680

QNTLDEF=1|2|3|4|5
specifies the mathematical definition that PROC MEANS uses to calculate quantiles
when QMETHOD=OS. To use QMETHOD=P2, you must use QNTLDEF=5.
Default: 5
Alias: PCTLDEF=
Main discussion: “Calculating Percentiles” on page 1528

statistic-keyword(s)
specifies which statistics to compute and the order to display them in the output.
The available keywords in the PROC statement are

Descriptive statistic keywords

CLM RANGE

CSS SKEWNESS|SKEW

CV STDDEV|STD

KURTOSIS|KURT STDERR

LCLM SUM

MAX SUMWGT

MEAN UCLM

MIN USS

N VAR

NMISS

Quantile statistic keywords

The MEANS Procedure � PROC MEANS Statement 659

MEDIAN|P50 Q3|P75

P1 P90

P5 P95

P10 P99

Q1|P25 QRANGE

Hypothesis testing keywords

PROBT T

Default: N, MEAN, STD, MIN, and MAX
Requirement: To compute standard error, confidence limits for the mean, and the

Student’s t-test, you must use the default value of the VARDEF= option, which is
DF. To compute skewness or kurtosis, you must use VARDEF=N or VARDEF=DF.

Tip: Use CLM or both LCLM and UCLM to compute a two-sided confidence limit
for the mean. Use only LCLM or UCLM, to compute a one-sided confidence limit.

Main discussion: The definitions of the keywords and the formulas for the
associated statistics are listed in “Keywords and Formulas” on page 1578.

Featured in: Example 1 on page 683 and Example 3 on page 687

SUMSIZE=value
specifies the amount of memory that is available for data summarization when you
use class variables. value may be one of the following:

n|nK| nM| nG
specifies the amount of memory available in bytes, kilobytes, megabytes, or
gigabytes, respectively. If n is 0, then PROC MEANS use the value of the SAS
system option SUMSIZE=.

MAXIMUM|MAX
specifies the maximum amount of memory that is available.

Default: The value of the SUMSIZE= system option.
Tip: For best results, do not make SUMSIZE= larger than the amount of physical

memory that is available for the PROC step. If additional space is needed, then
PROC MEANS uses utility files.

See also: The SAS system option SUMSIZE= in SAS Language Reference:
Dictionary.

Main discussion: “Computational Resources” on page 677

THREADS | NOTHREADS
enables or disables parallel processing of the input data set. This option overrides
the SAS system option THREADS | NOTHREADS. See SAS Language Reference:
Concepts for more information about parallel processing.
(SAS 9 Early Adopter Feature)
Default: value of SAS system option THREADS | NOTHREADS.
Interaction: PROC MEANS honors the SAS system option THREADS except when

a BY statement is specified or the value of the SAS system option CPUCOUNT is
less than 2. You can use THREADS in the PROC MEANS statement to force
PROC MEANS to use parallel processing in these situations.

VARDEF=divisor
specifies the divisor to use in the calculation of the variance and standard deviation.
Table 26.1 on page 660 shows the possible values for divisor and associated divisors.

660 BY Statement � Chapter 26

Table 26.1 Possible Values for VARDEF=

Value Divisor Formula for Divisor

DF degrees of freedom n − 1

N number of observations n

WDF sum of weights minus one (�i wi) − 1

WEIGHT | WGT sum of weights �i wi

The procedure computes the variance as �����������, where ��� is the corrected
sums of squares and equals

�
�	� � 	��. When you weight the analysis variables,

��� equals
�

� �	� � 	��
�, where 	� is the weighted mean.

Default: DF

Requirement: To compute the standard error of the mean, confidence limits for the
mean, or the Student’s t-test, use the default value of VARDEF=.

Tip: When you use the WEIGHT statement and VARDEF=DF, the variance is an
estimate of ��, where the variance of the ith observation is ��� ���� � ����� and
�� is the weight for the ith observation. This yields an estimate of the variance of
an observation with unit weight.

Tip: When you use the WEIGHT statement and VARDEF=WGT, the computed
variance is asymptotically (for large n) an estimate of ����, where � is the
average weight. This yields an asymptotic estimate of the variance of an
observation with average weight.

See also: “Weighted Statistics Example” on page 60

Main discussion: “Keywords and Formulas” on page 1578

BY Statement

Produces separate statistics for each BY group.

Main discussion: “BY” on page 54

See also: “Comparison of the BY and CLASS Statements” on page 664

Featured in: Example 3 on page 687

BY <DESCENDING> variable-1 <…<DESCENDING> variable-n> <NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you omit the NOTSORTED option in the BY statement,
then the observations in the data set either must be sorted by all the variables that
you specify or must be indexed appropriately. Variables in a BY statement are called
BY variables.

The MEANS Procedure � CLASS Statement 661

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The observations are sorted in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, then the procedure treats each contiguous set as a separate BY
group.

Using the BY Statement with the SAS System Option NOBYLINE
If you use the BY statement with the SAS system option NOBYLINE, which

suppresses the BY line that normally appears in output that is produced with BY-group
processing, then PROC MEANS always starts a new page for each BY group. This
behavior ensures that if you create customized BY lines by putting BY-group
information in the title and suppressing the default BY lines with NOBYLINE, then the
information in the titles matches the report on the pages. (See “Creating Titles That
Contain BY-Group Information” on page 19 and “Suppressing the Default BY Line” on
page 19.)

CLASS Statement

Specifies the variables whose values define the subgroup combinations for the analysis.

Tip: You can use multiple CLASS statements.
Tip: Some CLASS statement options are also available in the PROC MEANS
statement. They affect all CLASS variables. Options that you specify in a CLASS
statement apply only to the variables in that CLASS statement.
See also: For information about how the CLASS statement groups formatted values, see
“Formatted Values” on page 25.
Featured in: Example 2 on page 685, Example 4 on page 689, Example 5 on page 693,
Example 6 on page 696, and Example 10 on page 704

CLASS variable(s) </ options>;

Required Arguments

variable(s)
specifies one or more variables that the procedure uses to group the data. Variables
in a CLASS statement are referred to as class variables. Class variables are numeric

662 CLASS Statement � Chapter 26

or character. Class variables can have continuous values, but they typically have a
few discrete values that define levels of the variable. You do not have to sort the data
by class variables.
Interaction: Use the TYPES statement or the WAYS statement to control which

class variables that PROC MEANS uses to group the data.
Tip: To reduce the number of class variable levels, use a FORMAT statement to

combine variable values. When a format combines several internal values into one
formatted value, PROC MEANS outputs the lowest internal value.

See also: “Using Class Variables” on page 675

Options

ASCENDING
specifies to sort the class variable levels in ascending order.
Alias: ASCEND
Interaction: PROC MEANS issues a warning message if you specify both

ASCENDING and DESCENDING and ignores both options.
Featured in: Example 10 on page 704

DESCENDING
specifies to sort the class variable levels in descending order.

Alias: DESCEND
Interaction: PROC MEANS issues a warning message if you specify both

ASCENDING and DESCENDING and ignores both options.

EXCLUSIVE
excludes from the analysis all combinations of the class variables that are not found
in the preloaded range of user-defined formats.
Requirement: You must specify PRELOADFMT to preload the class variable

formats.
Featured in: Example 6 on page 696

GROUPINTERNAL
specifies not to apply formats to the class variables when PROC MEANS groups the
values to create combinations of class variables.
Interaction: If you specify the PRELOADFMT option, then PROC MEANS ignores

the GROUPINTERNAL option and uses the formatted values.
Interaction: If you specify the ORDER=FORMATTED option, then PROC MEANS

ignores the GROUPINTERNAL option and uses the formatted values.
Tip: This option saves computer resources when the numeric class variables contain

discrete values.
See also: “Computer Resources” on page 665

MISSING
considers missing values as valid values for the class variable levels. Special missing
values that represent numeric values (the letters A through Z and the underscore (_)
character) are each considered as a separate value.

Default: If you omit MISSING, then PROC MEANS excludes the observations with
a missing class variable value from the analysis.

See also: SAS Language Reference: Concepts for a discussion of missing values with
special meanings.

The MEANS Procedure � CLASS Statement 663

Featured in: Example 10 on page 704

MLF
enables PROC MEANS to use the primary and secondary format labels for a given
range or overlapping ranges to create subgroup combinations when a multilabel
format is assigned to a class variable.
Requirement: You must use PROC FORMAT and the MULTILABEL option in the

VALUE statement to create a multilabel format.
Interaction: If you use the OUTPUT statement with MLF, then the class variable

contains a character string that corresponds to the formatted value. Because the
formatted value becomes the internal value, the length of this variable is the
number of characters in the longest format label.

Interaction: Using MLF with ORDER=FREQ may not produce the order that you
expect for the formatted values.

Tip: If you omit MLF, then PROC MEANS uses the primary format labels, which
corresponds to using the first external format value, to determine the subgroup
combinations.

See also: The MULTILABEL option in the VALUE statement of the FORMAT
procedure on page 451.

Featured in: Example 5 on page 693
Note: When the formatted values overlap, one internal class variable value maps

to more than one class variable subgroup combination. Therefore, the sum of the N
statistics for all subgroups is greater than the number of observations in the data set
(the overall N statistic). �

ORDER=DATA | FORMATTED | FREQ | UNFORMATTED
specifies the order to group the levels of the class variables in the output, where

DATA
orders values according to their order in the input data set.
Interaction: If you use PRELOADFMT, then the order of the values of each class

variable matches the order that PROC FORMAT uses to store the values of the
associated user-defined format. If you use the CLASSDATA= option in the
PROC statement, then PROC MEANS uses the order of the unique values of
each class variable in the CLASSDATA= data set to order the output levels. If
you use both options, then PROC MEANS first uses the user-defined formats to
order the output. If you omit EXCLUSIVE in the PROC statement, then PROC
MEANS appends after the user-defined format and the CLASSDATA= values
the unique values of the class variables in the input data set based on the order
in which they are encountered.

Tip: By default, PROC FORMAT stores a format definition in sorted order. Use
the NOTSORTED option to store the values or ranges of a user defined format
in the order that you define them.

Featured in: Example 10 on page 704

FORMATTED
orders values by their ascending formatted values. This order depends on your
operating environment. If no format has been assigned to a class variable, then
the default format, BEST12., is used.
Alias: FMT | EXTERNAL
Featured in: Example 5 on page 693

FREQ
orders values by descending frequency count so that levels with the most
observations are listed first.

664 CLASS Statement � Chapter 26

Interaction: For multiway combinations of the class variables, PROC MEANS
determines the order of a level from the individual class variable frequencies.

Interaction: Use the ASCENDING option to order values by ascending frequency
count.

Featured in: Example 5 on page 693

UNFORMATTED
orders values by their unformatted values, which yields the same order as PROC
SORT. This order depends on your operating environment. This sort sequence is
particularly useful for displaying dates chronologically.

Alias: UNFMT | INTERNAL

Default: UNFORMATTED

Tip: By default, all orders except FREQ are ascending. For descending orders, use
the DESCENDING option.

See also: “Ordering the Class Values” on page 676

PRELOADFMT
specifies that all formats are preloaded for the class variables.

Requirement: PRELOADFMT has no effect unless you specify either
COMPLETETYPES, EXCLUSIVE, or ORDER=DATA and you assign formats to
the class variables.

Interaction: To limit PROC MEANS output to the combinations of formatted class
variable values present in the input data set, use the EXCLUSIVE option in the
CLASS statement.

Interaction: To include all ranges and values of the user-defined formats in the
output, even when the frequency is zero, use COMPLETETYPES in the PROC
statement.

Featured in: Example 6 on page 696

Comparison of the BY and CLASS Statements

Using the BY statement is similar to using the CLASS statement and the NWAY
option in that PROC MEANS summarizes each BY group as an independent subset of
the input data. Therefore, no overall summarization of the input data is available.
However, unlike the CLASS statement, the BY statement requires that you previously
sort BY variables.

When you use the NWAY option, PROC MEANS might encounter insufficient
memory for the summarization of all the class variables. You can move some class
variables to the BY statement. For maximum benefit, move class variables to the BY
statement that are already sorted or that have the greatest number of unique values.

You can use the CLASS and BY statements together to analyze the data by the levels
of class variables within BY groups. See Example 3 on page 687.

How PROC MEANS Handles Missing Values for Class Variables
By default, if an observation contains a missing value for any class variable, then

PROC MEANS excludes that observation from the analysis. If you specify the
MISSING option in the PROC statement, then the procedure considers missing values
as valid levels for the combination of class variables.

Specifying the MISSING option in the CLASS statement allows you to control the
acceptance of missing values for individual class variables.

The MEANS Procedure � ID Statement 665

Computer Resources
The total of unique class values that PROC MEANS allows depends on the amount of

computer memory that is available. See “Computational Resources” on page 677 for
more information.

The GROUPINTERNAL option can improve computer performance because the
grouping process is based on the internal values of the class variables. If a numeric
class variable is not assigned a format and you do not specify GROUPINTERNAL, then
PROC MEANS uses the default format, BEST12., to format numeric values as
character strings. Then PROC MEANS groups these numeric variables by their
character values, which takes additional time and computer memory.

FREQ Statement

Specifies a numeric variable that contains the frequency of each observation.

Main discussion: “FREQ” on page 56

FREQ variable;

Required Arguments

variable
specifies a numeric variable whose value represents the frequency of the observation.
If you use the FREQ statement, then the procedure assumes that each observation
represents n observations, where n is the value of variable. If n is not an integer,
then SAS truncates it. If n is less than 1 or is missing, then the procedure does not
use that observation to calculate statistics.

The sum of the frequency variable represents the total number of observations.

Note: The FREQ variable does not affect how PROC MEANS identifies multiple
extremes when you use the IDGROUP syntax in the OUTPUT statement. �

ID Statement

Includes additional variables in the output data set.

See Also: Discussion of id-group-specification in “OUTPUT Statement” on page 666.

ID variable(s);

Required Arguments

variable(s)

666 OUTPUT Statement � Chapter 26

identifies one or more variables from the input data set whose maximum values for
groups of observations PROC MEANS includes in the output data set.
Interaction: Use IDMIN in the PROC statement to include the minimum value of

the ID variables in the output data set.
Tip: Use the PRINTIDVARS option in the PROC statement to include the value of

the ID variable in the displayed output.

Selecting the Values of the ID Variables
When you specify only one variable in the ID statement, the value of the ID variable

for a given observation is the maximum (minimum) value found in the corresponding
group of observations in the input data set. When you specify multiple variables in the
ID statement, PROC MEANS selects the maximum value by processing the variables in
the ID statement in the order that you list them. PROC MEANS determines which
observation to use from all the ID variables by comparing the values of the first ID
variable. If more than one observation contains the same maximum (minimum) ID
value, then PROC MEANS uses the second and subsequent ID variable values as
“tiebreakers.” In any case, all ID values are taken from the same observation for any
given BY group or classification level within a type.

See “Sorting Orders for Character Variables” on page 1101 for information on how
PROC MEANS compares character values to determine the maximum value.

OUTPUT Statement

Writes statistics to a new SAS data set.

Tip: You can use multiple OUTPUT statements to create several OUT= data sets.
Featured in: Example 8 on page 700, Example 9 on page 702, Example 10 on page 704,
Example 11 on page 706, and Example 12 on page 709

OUTPUT <OUT=SAS-data-set> <output-statistic-specification(s)>
<id-group-specification(s)> <maximum-id-specification(s)>
<minimum-id-specification(s)> </ option(s)>;

Options

OUT=SAS-data-set
names the new output data set. If SAS-data-set does not exist, then PROC MEANS
creates it. If you omit OUT=, then the data set is named DATAn, where n is the
smallest integer that makes the name unique.
Default: DATAn
Tip: You can use data set options with the OUT= option. See “Data Set Options” on

page 17 for a list.

output-statistic-specification(s)
specifies the statistics to store in the OUT= data set and names one or more
variables that contain the statistics. The form of the output-statistic-specification is

statistic-keyword<(variable-list)>=<name(s)>

The MEANS Procedure � OUTPUT Statement 667

where

statistic-keyword
specifies which statistic to store in the output data set. The available statistic
keywords are

Descriptive statistics keyword

CSS RANGE

CV SKEWNESS|SKEW

KURTOSIS|KURT STDDEV |STD

LCLM STDERR

MAX SUM

MEAN SUMWGT

MIN UCLM

N USS

NMISS VAR

Quantile statistics keyword

MEDIAN|P50 Q3|P75

P1 P90

P5 P95

P10 P99

Q1|P25 QRANGE

Hypothesis testing keyword

PROBT T

By default the statistics in the output data set automatically inherit the
analysis variable’s format, informat, and label. However, statistics computed for
N, NMISS, SUMWGT, USS, CSS, VAR, CV, T, PROBT, SKEWNESS, and
KURTOSIS will not inherit the analysis variable’s format because this format may
be invalid for these statistics (for example, dollar or datetime formats).
Restriction: If you omit variable and name(s), then PROC MEANS allows the

statistic-keyword only once in a single OUTPUT statement, unless you also use
the AUTONAME option.

Featured in: Example 8 on page 700, Example 9 on page 702, Example 11 on page
706, and Example 12 on page 709

variable-list
specifies the names of one or more numeric analysis variables whose statistics you
want to store in the output data set.
Default: all numeric analysis variables

name(s)
specifies one or more names for the variables in output data set that will contain
the analysis variable statistics. The first name contains the statistic for the first
analysis variable; the second name contains the statistic for the second analysis
variable; and so on.

668 OUTPUT Statement � Chapter 26

Default: the analysis variable name. If you specify AUTONAME, then the default
is the combination of the analysis variable name and the statistic-keyword.

Interaction: If you specify variable-list, then PROC MEANS uses the order in
which you specify the analysis variables to store the statistics in the output
data set variables.

Featured in: Example 8 on page 700
Default: If you use the CLASS statement and an OUTPUT statement without an

output-statistic-specification, then the output data set contains five observations
for each combination of class variables: the value of N, MIN, MAX, MEAN, and
STD. If you use the WEIGHT statement or the WEIGHT option in the VAR
statement, then the output data set also contains an observation with the sum of
weights (SUMWGT) for each combination of class variables.

Tip: Use the AUTONAME option to have PROC MEANS generate unique names
for multiple variables and statistics.

id-group-specification
combines the features and extends the ID statement, the IDMIN option in the PROC
statement, and the MAXID and MINID options in the OUTPUT statement to create
an OUT= data set that identifies multiple extreme values. The form of the
id-group-specification is

IDGROUP (<MIN|MAX (variable-list-1) <…MIN|MAX (variable-list-n)>>
<<MISSING> <OBS> <LAST>> OUT <[n]>
(id-variable-list)=<name(s)>)

MIN|MAX(variable-list)
specifies the selection criteria to determine the extreme values of one or more
input data set variables specified in variable-list. Use MIN to determine the
minimum extreme value and MAX to determine the maximum extreme value.

When you specify multiple selection variables, the ordering of observations for
the selection of n extremes is done the same way that PROC SORT sorts data with
multiple BY variables. PROC MEANS concatenates the variable values into a
single key. The MAX(variable-list) selection criterion is similar to using PROC
SORT and the DESCENDING option in the BY statement.
Default: If you do not specify MIN or MAX, then PROC MEANS uses the

observation number as the selection criterion to output observations.
Restriction: If you specify criteria that are contradictory, then PROC MEANS uses

only the first selection criterion.
Interaction: When multiple observations contain the same extreme values in all

the MIN or MAX variables, PROC MEANS uses the observation number to
resolve which observation to write to the output. By default, PROC MEANS
uses the first observation to resolve any ties. However, if you specify the LAST
option, then PROC MEANS uses the last observation to resolve any ties.

LAST
specifies that the OUT= data set contains values from the last observation (or the
last n observations, if n is specified). If you do not specify LAST, then the OUT=
data set contains values from the first observation (or the first n observations, if n
is specified). The OUT= data set might contain several observations because in
addition to the value of the last (first) observation, the OUT= data set contains
values from the last (first) observation of each subgroup level that is defined by
combinations of class variable values.
Interaction: When you specify MIN or MAX and when multiple observations

contain the same extreme values, PROC MEANS uses the observation number
to resolve which observation to save to the OUT= data set. If you specify LAST,

The MEANS Procedure � OUTPUT Statement 669

then PROC MEANS uses the later observations to resolve any ties. If you do
not specify LAST, then PROC MEANS uses the earlier observations to resolve
any ties.

MISSING
specifies that missing values be used in selection criteria.

Alias: MISS

OBS
includes an _OBS_ variable in the OUT= data set that contains the number of the
observation in the input data set where the extreme value was found.
Interaction: If you use WHERE processing, then the value of _OBS_ might not

correspond to the location of the observation in the input data set.
Interaction: If you use [n] to write multiple extreme values to the output, then

PROC MEANS creates n _OBS_ variables and uses the suffix n to create the
variable names, where n is a sequential integer from 1 to n.

[n]
specifies the number of extreme values for each variable in id-variable-list to
include in the OUT= data set. PROC MEANS creates n new variables and uses the
suffix _n to create the variable names, where n is a sequential integer from 1 to n.

By default, PROC MEANS determines one extreme value for each level of each
requested type. If n is greater than one, then n extremes are output for each level
of each type. When n is greater than one and you request extreme value selection,
the time complexity is �� � �� ���

�
��, where � is the number of types

requested and � is the number of observations in the input data set. By
comparison, to group the entire data set, the time complexity is ��� ���

�
��.

Default: 1
Range: an integer between 1 and 100
Example: To output two minimum extreme values for each variable, use

idgroup(min(x) out[2](x y z)=MinX MinY MinZ);

The OUT= data set contains the variables MinX_1, MinX_2, MinY_1, MinY_2,
MinZ_1, and MinZ_2.

(id-variable-list)
identifies one or more input data set variables whose values PROC MEANS
includes in the OUT= data set. PROC MEANS determines which observations to
output by the selection criteria that you specify (MIN, MAX, and LAST).

name(s)
specifies one or more names for variables in the OUT= data set.

Default: If you omit name, then PROC MEANS uses the names of variables in the
id-variable-list.

Tip: Use the AUTONAME option to automatically resolve naming conflicts.

Alias: IDGRP

Requirement: You must specify the MIN|MAX selection criteria first and
OUT(id-variable-list)= after the suboptions MISSING, OBS, and LAST.

Tip: You can use id-group-specification to mimic the behavior of the ID statement
and a maximum-id-specification or mimimum-id-specification in the OUTPUT
statement.

Tip: When you want the output data set to contain extreme values along with other
id variables, it is more efficient to include them in the id-variable-list than to
request separate statistics. For example, the statement

670 OUTPUT Statement � Chapter 26

output idgrp(max(x) out(x a b)=);

is more efficient than the statement

output idgrp(max(x) out(a b)=) max(x)=;

Featured in: Example 8 on page 700 and Example 12 on page 709

CAUTION:
The IDGROUP syntax allows you to create output variables with the same name. When
this happens, only the first variable appears in the output data set. Use the
AUTONAME option to automatically resolve these naming conflicts. �

Note: If you specify fewer new variable names than the combination of analysis
variables and identification variables, then the remaining output variables use the
corresponding names of the ID variables as soon as PROC MEANS exhausts the list
of new variable names. �

maximum-id-specification(s)
specifies that one or more identification variables be associated with the maximum
values of the analysis variables. The form of the maximum-id-specification is

MAXID <(variable-1 <(id-variable-list-1)> <…variable-n
<(id-variable-list-n)>>)> = name(s)

variable
identifies the numeric analysis variable whose maximum values PROC MEANS
determines. PROC MEANS may determine several maximum values for a variable
because, in addition to the overall maximum value, subgroup levels, which are
defined by combinations of class variables values, also have maximum values.
Tip: If you use an ID statement and omit variable, then PROC MEANS uses all

analysis variables.

id-variable-list
identifies one or more variables whose values identify the observations with the
maximum values of the analysis variable.
Default: the ID statement variables

name(s)
specifies the names for new variables that contain the values of the identification
variable associated with the maximum value of each analysis variable.

Tip: If you use an ID statement, and omit variable and id-variable, then PROC
MEANS associates all ID statement variables with each analysis variable. Thus,
for each analysis variable, the number of variables that are created in the output
data set equals the number of variables that you specify in the ID statement.

Tip: Use the AUTONAME option to automatically resolve naming conflicts.
Limitation: If multiple observations contain the maximum value within a class

level, then PROC MEANS saves the value of the ID variable for only the first of
those observations in the output data set.

Featured in: Example 11 on page 706

CAUTION:
The MAXID syntax allows you to create output variables with the same name. When
this happens, only the first variable appears in the output data set. Use the
AUTONAME option to automatically resolve these naming conflicts. �

Note: If you specify fewer new variable names than the combination of analysis
variables and identification variables, then the remaining output variables use the
corresponding names of the ID variables as soon as PROC MEANS exhausts the list
of new variable names. �

The MEANS Procedure � OUTPUT Statement 671

minid-specification
See the description of maximum-id-specification on page 670. This option behaves in
exactly the same way, except that PROC MEANS determines the minimum values
instead of the maximum values. The form of the minid-specification is

MINID<(variable-1 <(id-variable-list-1)> <…variable-n
<(id-variable-list-n)>>)> = name(s)

AUTOLABEL
specifies that PROC MEANS appends the statistic name to the end of the variable
label. If an analysis variable has no label, then PROC MEANS creates a label by
appending the statistic name to the analysis variable name.
Featured in: Example 12 on page 709

AUTONAME
specifies that PROC MEANS creates a unique variable name for an output statistic
when you do not explicitly assign the variable name in the OUTPUT statement. This
is accomplished by appending the statistic-keyword to the end of the input variable
name from which the statistic was derived. For example, the statement

output min(x)=/autoname;

produces the x_Min variable in the output data set.
AUTONAME activates the SAS internal mechanism to automatically resolve

conflicts in the variable names in the output data set. Duplicate variables will not
generate errors. As a result, the statement

output min(x)= min(x)=/autoname;

produces two variables, x_Min and x_Min2, in the output data set.
Featured in: Example 12 on page 709

KEEPLEN
specifies that statistics in the output data set inherit the length of the analysis
variable that PROC MEANS uses to derive them.

CAUTION:
You permanently lose numeric precision when the length of the analysis variable causes
PROC MEANS to truncate or round the value of the statistic. However, the precision of
the statistic will match that of the input. �

LEVELS
includes a variable named _LEVEL_ in the output data set. This variable contains a
value from 1 to n that indicates a unique combination of the values of class variables
(the values of _TYPE_ variable).
Main discussion: “Output Data Set” on page 682
Featured in: Example 8 on page 700

NOINHERIT
specifies that the variables in the output data set that contain statistics do not
inherit the attributes (label and format) of the analysis variables which are used to
derive them.
Tip: By default, the output data set includes an output variable for each analysis

variable and for five observations that contain N, MIN, MAX, MEAN, and
STDDEV. Unless you specify NOINHERIT, this variable inherits the format of the

672 TYPES Statement � Chapter 26

analysis variable, which may be invalid for the N statistic (for example, datetime
formats).

WAYS
includes a variable named _WAY_ in the output data set. This variable contains a
value from 1 to the maximum number of class variables that indicates how many
class variables PROC MEANS combines to create the TYPE value.

Main discussion: “Output Data Set” on page 682

See also: “WAYS Statement” on page 674

Featured in: Example 8 on page 700

TYPES Statement

Identifies which of the possible combinations of class variables to generate.

Main discussion: “Output Data Set” on page 682

Requirement: CLASS statement

Featured in: Example 2 on page 685, Example 5 on page 693, and Example 12 on page
709

TYPES request(s);

Required Arguments

request(s)
specifies which of the �

� combinations of class variables PROC MEANS uses to
create the types, where � is the number of class variables. A request is composed of
one class variable name, several class variable names separated by asterisks, or ().

To request class variable combinations quickly, use a grouping syntax by placing
parentheses around several variables and joining other variables or variable
combinations. For example, the following statements illustrate grouping syntax:

Request Equivalent to

types A*(B C); types A*B A*C;

types (A B)*(C D); types A*C A*D B*C B*D;

types (A B C)*D; types A*D B*D C*D;

Interaction The CLASSDATA= option places constraints on the NWAY type. PROC
MEANS generates all other types as if derived from the resulting NWAY type.

Tip: Use ()to request the overall total (_TYPE_=0).

Tip: If you do not need all types in the output data set, then use the TYPES
statement to specify particular subtypes rather than applying a WHERE clause to
the data set. Doing so saves time and computer memory.

The MEANS Procedure � VAR Statement 673

VAR Statement

Identifies the analysis variables and their order in the output.

Default: If you omit the VAR statement, then PROC MEANS analyzes all numeric
variables that are not listed in the other statements. When all variables are character
variables, PROC MEANS produces a simple count of observations.

Tip: You can use multiple VAR statements.
See also: Chapter 42, “The SUMMARY Procedure,” on page 1257

Featured in: Example 1 on page 683

VAR variable(s) </ WEIGHT=weight-variable>;

Required Arguments

variable(s)
identifies the analysis variables and specifies their order in the results.

Option

WEIGHT=weight-variable
specifies a numeric variable whose values weight the values of the variables that are
specified in the VAR statement. The variable does not have to be an integer. If the
value of the weight variable is

Weight value... PROC MEANS...

0 counts the observation in the total number of observations

less than 0 converts the value to zero and counts the observation in the total
number of observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,
exclude negative and zero weights by default.

The weight variable does not change how the procedure determines the range,
extreme values, or number of missing values.
Restriction: To compute weighted quantiles, use QMETHOD=OS in the PROC

statement.

Restriction: Skewness and kurtosis are not available with the WEIGHT option.
Tip: When you use the WEIGHT option, consider which value of the VARDEF=

option is appropriate. See the discussion of VARDEF= on page 659.

Tip: Use the WEIGHT option in multiple VAR statements to specify different
weights for the analysis variables.

674 WAYS Statement � Chapter 26

Note: Prior to Version 7 of SAS, the procedure did not exclude the observations
with missing weights from the count of observations. �

WAYS Statement

Specifies the number of ways to make unique combinations of class variables.

Tip: Use the TYPES statement to specify additional combinations of class variables.

Featured in: Example 6 on page 696

WAYS list;

Required Arguments

list
specifies one or more integers that define the number of class variables to combine to
form all the unique combinations of class variables. For example, you can specify 2
for all possible pairs and 3 for all possible triples. The list can be specified in the
following ways:

m

m1 m2 … mn

m1,m2,…,mn

m TO n <BY increment>
m1,m2, TO m3 <BY increment>, m4

Range: 0 to maximum number of class variables

Example: To create the two-way types for the classification variables A, B, and C,
use

class A B C ;
ways 2;

This WAYS statement is equivalent to specifying a*b, a*c, and b*c in the TYPES
statement.

See also: WAYS option on page 672

WEIGHT Statement

Specifies weights for observations in the statistical calculations.

See also: For information on how to calculate weighted statistics and for an example
that uses the WEIGHT statement, see “WEIGHT” on page 59

WEIGHT variable;

The MEANS Procedure � Using Class Variables 675

Required Arguments

variable
specifies a numeric variable whose values weight the values of the analysis variables.
The values of the variable do not have to be integers. If the value of the weight
variable is

Weight value… PROC MEANS…

0 counts the observation in the total number of observations

less than 0 converts the value to zero and counts the observation in the
total number of observations

missing excludes the observation

To exclude observations that contain negative and zero weights from the analysis,
use EXCLNPWGT. Note that most SAS/STAT procedures, such as PROC GLM,
exclude negative and zero weights by default.
Restriction: To compute weighted quantiles, use QMETHOD=OS in the PROC

statement.
Restriction: Skewness and kurtosis are not available with the WEIGHT statement.
Interaction: If you use the WEIGHT= option in a VAR statement to specify a

weight variable, then PROC MEANS uses this variable instead to weight those
VAR statement variables.

Tip: When you use the WEIGHT statement, consider which value of the VARDEF=
option is appropriate. See the discussion of VARDEF= on page 659 and the
calculation of weighted statistics in “Keywords and Formulas” on page 1578 for
more information.
Note: Prior to Version 7 of SAS, the procedure did not exclude the observations

with missing weights from the count of observations. �

Concepts: MEANS Procedure

Using Class Variables
The TYPES statement controls which of the available class variables PROC MEANS

uses to subgroup the data. The unique combinations of these active class variable
values that occur together in any single observation of the input data set determine the
data subgroups. Each subgroup that PROC MEANS generates for a given type is called
a level of that type. Note that for all types, the inactive class variables can still affect
the total observation count of the rejection of observations with missing values.

When you use a WAYS statement, PROC MEANS generates types that correspond to
every possible unique combination of n class variables chosen from the complete set of
class variables. For example

proc means;
class a b c d e;

676 Using Class Variables � Chapter 26

ways 2 3;
run;

is equivalent to

proc means;
class a b c d e;
types a*b a*c a*d a*e b*c b*d b*e c*d c*e d*e

a*b*c a*b*d a*b*e a*c*d a*c*e a*d*e
b*c*d b*c*e c*d*e;

run;

If you omit the TYPES statement and the WAYS statement, then PROC MEANS uses
all class variables to subgroup the data (the NWAY type) for displayed output and
computes all types (��) for the output data set.

Ordering the Class Values
PROC MEANS determines the order of each class variable in any type by examining

the order of that class variable in the corresponding one-way type. You see the effect of
this behavior in the options ORDER=DATA or ORDER=FREQ. When PROC MEANS
subdivides the input data set into subsets, the classification process does not apply the
options ORDER=DATA or ORDER=FREQ independently for each subgroup. Instead,
one frequency and data order is established for all output based on an nonsubdivided
view of the entire data set. For example, consider the following statements:

data pets;
input Pet $ Gender $;
datalines;

dog m
dog f
dog f
dog f
cat m
cat m
cat f
;

proc means data=pets order=freq;
class pet gender;

run;

The statements produce this output.

The MEANS Procedure � Computational Resources 677

The SAS System 1

The MEANS Procedure

N
Pet Gender Obs

dog f 3

m 1

cat f 1

m 2

In the example, PROC MEANS does not list male cats before female cats. Instead, it
determines the order of gender for all types over the entire data set. PROC MEANS
found more observations for female pets (f=4, m=3).

Computational Resources
PROC MEANS employs the same memory allocation scheme across all operating

environments. When class variables are involved, PROC MEANS must keep a copy of
each unique value of each class variable in memory. You can estimate the memory
requirements to group the class variable by calculating

��� ���� ��� ���� ���� ��� � ������� ���� ���

where

��� is the number of unique values for the class variable

��� is the combined unformatted and formatted length of ��

� is some constant on the order of 32 bytes (64 for 64-bit architectures).

When you use the GROUPINTERNAL option in the CLASS statement, ��� is simply
the unformatted length of ��.

Each unique combination of class variables, ��� ��� , for a given type forms a level in
that type (see “TYPES Statement” on page 672). You can estimate the maximum
potential space requirements for all levels of a given type, when all combinations
actually exist in the data (a complete type), by calculating

� ���� ���� � ��� ����

where

� is a constant based on the number of variables analyzed and the
number of statistics calculated (unless you request QMETHOD=OS
to compute the quantiles).

��������� are the number of unique levels for the active class variables of the
given type.

678 Statistical Computations: MEANS Procedure � Chapter 26

Clearly, the memory requirements of the levels overwhelm those of the class variables.
For this reason, PROC MEANS may open one or more utility files and write the levels
of one or more types to disk. These types are either the primary types that PROC
MEANS built during the input data scan or the derived types.

If PROC MEANS must write partially complete primary types to disk while it
processes input data, then one or more merge passes may be required to combine type
levels in memory with those on disk. In addition, if you use an order other than DATA
for any class variable, then PROC MEANS groups the completed types on disk. For this
reason, the peak disk space requirements can be more than twice the memory
requirements for a given type.

When PROC MEANS uses a temporary work file, you will receive the following note
in the SAS log:

Processing on disk occurred during summarization.
Peak disk usage was approximately nnn Mbytes.
Adjusting SUMSIZE may improve performance.

In most cases processing ends normally.
When you specify class variables in a CLASS statement, the amount of

data-dependent memory that PROC MEANS uses before it writes to a utility file is
controlled by the SAS system option and PROC option SUMSIZE=. Like the system
option SORTSIZE=, SUMSIZE= sets the memory threshold where disk-based
operations begin. For best results, set SUMSIZE= to less than the amount of real
memory that is likely to be available for the task. For efficiency reasons, PROC
MEANS may internally round up the value of SUMSIZE=. SUMSIZE= has no effect
unless you specify class variables.

As an alternative, you can set the SAS system option REALMEMSIZE= in the same
way that you would set SUMSIZE=. The value of REALMEMSIZE= indicates the
amount of real (as opposed to virtual) memory that SAS can expect to allocate. PROC
MEANS determines how much data-dependent memory to use before writing to utility
files by calculating the lesser of these two values:

� the value of REALMEMSIZE=
� 0.8*(M-U), where M is the value of MEMSIZE= and U is the amount of memory

that is already in use.

Operating Environment Information: The REALMEMSIZE= SAS system option is not
available in all operating environments. For details, see the SAS Companion for your
operating environment. �

If PROC MEANS reports that there is insufficient memory, then increase SUMSIZE=
(or REALMEMSIZE=). A SUMSIZE= (or REALMEMSIZE=) value that is greater than
MEMSIZE= will have no effect. Therefore, you might also need to increase MEMSIZE=.
If PROC MEANS reports insufficient disk space, then increase the WORK space
allocation. See the SAS documentation for your operating environment for more
information on how to adjust your computation resource parameters.

Another way to enhance performance is by carefully applying the TYPES or WAYS
statement, limiting the computations to only those combinations of class variables that
you are interested in. In particular, significant resource savings can be achieved by not
requesting the combination of all class variables.

Statistical Computations: MEANS Procedure
PROC MEANS uses single-pass algorithms to compute the moment statistics (such

as mean, variance, skewness, and kurtosis). See “Keywords and Formulas” on page
1578 for the statistical formulas.

The MEANS Procedure � Confidence Limits 679

The computational details for confidence limits, hypothesis test statistics, and
quantile statistics follow.

Confidence Limits
With the keywords CLM, LCLM, and UCLM, you can compute confidence limits for

the mean. A confidence limit is a range, constructed around the value of a sample
statistic, that contains the corresponding true population value with given probability
(ALPHA=) in repeated sampling.

A two-sided ��� ��� ��% confidence interval for the mean has upper and lower
limits

�� ������������
��
�

where � is
�

�
���

�
��� � ��� and ������������ is the (�� ���) critical value of the

Student’s t statistics with �� � degrees of freedom.
A one-sided ��� �� � ��% confidence interval is computed as

�� ����������
��
�

�upper�

�� ����������
��
�

�lower�

A two-sided ��� ��� ��% confidence interval for the standard deviation has lower
and upper limits

�

�
�� �

��
�����������

� �

�
� � �

��
���������

where ��
����������� and ��

��������� are the �� � ���� and ��� critical values of the

chi-square statistic with �� � degrees of freedom. A one-sided ��� ��� ��%
confidence interval is computed by replacing ��� with �.

A ��� �� � ��% confidence interval for the variance has upper and lower limits that
are equal to the squares of the corresponding upper and lower limits for the standard
deviation.

When you use the WEIGHT statement or WEIGHT= in a VAR statement and the
default value of VARDEF=, which is DF, the ��� �� � ��% confidence interval for the
weighted mean has upper and lower limits

�� � ��������
���
��
���

	�

where �� is the weighted mean, �� is the weighted standard deviation, 	� is the
weight for
�� observation, and �������� is the �� � ���� critical value for the
Student’s t distribution with �� � degrees of freedom.

680 Student’s t Test � Chapter 26

Student’s t Test
PROC MEANS calculates the t statistic as

� �
�� ��
��
�
�

where � is the sample mean, � is the number of nonmissing values for a variable, and �
is the sample standard deviation. Under the null hypothesis, the population mean
equals ��. When the data values are approximately normally distributed, the
probability under the null hypothesis of a t statistic as extreme as, or more extreme
than, the observed value (the p-value) is obtained from the t distribution with � � �

degrees of freedom. For large �, the t statistic is asymptotically equivalent to a z test.
When you use the WEIGHT statement or WEIGHT= in a VAR statement and the

default value of VARDEF=, which is DF, the Student’s t statistic is calculated as

�� �
�� � ��

���

�
��
���

��

where �� is the weighted mean, �� is the weighted standard deviation, and �� is the
weight for ��	 observation. The �� statistic is treated as having a Student’s t
distribution with � � � degrees of freedom. If you specify the EXCLNPWGT option in
the PROC statement, then � is the number of nonmissing observations when the value
of the WEIGHT variable is positive. By default, � is the number of nonmissing
observations for the WEIGHT variable.

Quantiles
The options QMETHOD=, QNTLDEF=, and QMARKERS= determine how PROC

MEANS calculates quantiles. QNTLDEF= deals with the mathematical definition of a
quantile. See “Calculating Percentiles” on page 1528. QMETHOD= deals with the
mechanics of how PROC MEANS handles the input data. The two methods are

OS
reads all data into memory and sorts it by unique value.

P2
accumulates all data into a fixed sample size that is used to approximate the
quantile.

If data set A has 100 unique values for a numeric variable X and data set B has 1000
unique values for numeric variable X, then QMETHOD=OS for data set B will take 10
times as much memory as it does for data set A. If QMETHOD=P2, then both data sets
A and B will require the same memory space to generate quantiles.

The QMETHOD=P2 technique is based on the piecewise-parabolic (P2) algorithm
invented by Jain and Chlamtac (1985). P2 is a one-pass algorithm to determine
quantiles for a large data set. It requires a fixed amount of memory for each variable
for each level within the type. However, using simulation studies, reliable estimations
of some quantiles (P1, P5, P95, P99) may not be possible for some data sets such as
those with heavily tailed or skewed distributions.

The MEANS Procedure � The N Obs Statistic 681

If the number of observations is less than the QMARKERS= value, then
QMETHOD=P2 produces the same results as QMETHOD=OS when QNTLDEF=5. To
compute weighted quantiles, you must use QMETHOD=OS.

Results: MEANS Procedure

Missing Values
PROC MEANS excludes missing values for the analysis variables before calculating

statistics. Each analysis variable is treated individually; a missing value for an
observation in one variable does not affect the calculations for other variables. The
statements handle missing values as follows:

� If a class variable has a missing value for an observation, then PROC MEANS
excludes that observation from the analysis unless you use the MISSING option in
the PROC statement or CLASS statement.

� If a BY or ID variable value is missing, then PROC MEANS treats it like any
other BY or ID variable value. The missing values form a separate BY group.

� If a FREQ variable value is missing or nonpositive, then PROC MEANS excludes
the observation from the analysis.

� If a WEIGHT variable value is missing, then PROC MEANS excludes the
observation from the analysis.

PROC MEANS tabulates the number of the missing values. Before the number of
missing values are tabulated, PROC MEANS excludes observations with frequencies
that are nonpositive when you use the FREQ statement and observations with weights
that are missing or nonpositive (when you use the EXCLNPWGT option) when you use
the WEIGHT statement. To report this information in the procedure output use the
NMISS statistical keyword in the PROC statement.

Column Width for the Output
You control the column width for the displayed statistics with the FW= option in the

PROC statement. Unless you assign a format to a numeric class or an ID variable,
PROC MEANS uses the value of the FW= option. When you assign a format to a
numeric class or an ID variable, PROC MEANS determines the column width directly
from the format. If you use the PRELOADFMT option in the CLASS statement, then
PROC MEANS determines the column width for a class variable from the assigned
format.

The N Obs Statistic
By default when you use a CLASS statement, PROC MEANS displays an additional

statistic called N Obs. This statistic reports the total number of observations or the
sum of the observations of the FREQ variable that PROC MEANS processes for each
class level. PROC MEANS might omit observations from this total because of missing
values in one or more class variables or because of the effect of the EXCLUSIVE option
when you use it with the PRELOADFMT option or the CLASSDATA= option. Because

682 Output Data Set � Chapter 26

of this and the exclusion of observations when the WEIGHT variable contains missing
values, there is not always a direct relationship between N Obs, N, and NMISS.

In the output data set, the value of N Obs is stored in the _FREQ_ variable. Use the
NONOBS option in the PROC statement to suppress this information in the displayed
output.

Output Data Set
PROC MEANS can create one or more output data sets. The procedure does not

print the output data set. Use PROC PRINT, PROC REPORT, or another SAS reporting
tool to display the output data set.

Note: By default the statistics in the output data set automatically inherit the
analysis variable’s format and label. However, statistics computed for N, NMISS,
SUMWGT, USS, CSS, VAR, CV, T, PROBT, SKEWNESS, and KURTOSIS do not inherit
the analysis variable’s format because this format may be invalid for these statistics.
Use the NOINHERIT option in the OUTPUT statement to prevent the other statistics
from inheriting the format and label attributes. �

The output data set can contain these variables:
� the variables specified in the BY statement.
� the variables specified in the ID statement.
� the variables specified in the CLASS statement.
� the variable _TYPE_ that contains information about the class variables. By

default _TYPE_ is a numeric variable. If you specify CHARTYPE in the PROC
statement, then _TYPE_ is a character variable. When you use more than 32 class
variables, _TYPE_ is automatically a character variable.

� the variable _FREQ_ that contains the number of observations that a given output
level represents.

� the variables requested in the OUTPUT statement that contain the output
statistics and extreme values.

� the variable _STAT_ that contains the names of the default statistics if you omit
statistic keywords.

� the variable _LEVEL_ if you specify the LEVEL option.
� the variable _WAY_ if you specify the WAYS option.

The value of _TYPE_ indicates which combination of the class variables PROC
MEANS uses to compute the statistics. The character value of _TYPE_ is a series of
zeros and ones, where each value of one indicates an active class variable in the type.
For example, with three class variables, PROC MEANS represents type 1 as 001, type 5
as 101, and so on.

Usually, the output data set contains one observation per level per type. However, if
you omit statistical keywords in the OUTPUT statement, then the output data set
contains five observations per level (six if you specify a WEIGHT variable). Therefore,
the total number of observations in the output data set is equal to the sum of the levels
for all the types you request multiplied by 1, 5, or 6, whichever is applicable.

If you omit the CLASS statement (_TYPE_= 0), then there is always exactly one level
of output per BY group. If you use a CLASS statement, then the number of levels for
each type that you request has an upper bound equal to the number of observations in
the input data set. By default, PROC MEANS generates all possible types. In this case
the total number of levels for each BY group has an upper bound equal to

� �

�
�
�
� �

�
� �� �

The MEANS Procedure � Example 1: Computing Specific Descriptive Statistics 683

where � is the number of class variables and � is the number of observations for the
given BY group in the input data set and � is 1, 5, or 6.

PROC MEANS determines the actual number of levels for a given type from the
number of unique combinations of each active class variable. A single level is composed
of all input observations whose formatted class values match.

Figure 26.1 on page 683 shows the values of _TYPE_ and the number of observations
in the data set when you specify one, two, and three class variables.

Figure 26.1 The Effect of Class Variables on the OUTPUT Data Set

Character binary
equivalent of
TYPE
(CHARTYPE
option)

A ,B ,C=CLASS a, b, c,=number of levels of A, B, C,
variables respectively

on
e

CLASS
 v

ar
ia

bl
e

th
re

e
CLASS

 v
ar

ia
bl

es

tw
o

CLASS
 v

ar
ia

bl
es

Number of observations Total number of
Subgroup of this _TYPE_ and _WAY_ observations

C B A _WAY_ _TYPE_ defined by in the data set in the data set

0 0 0 0 0 Total 1

0 0 1 1 1 A a 1+a

0 1 0 1 2 B b

0 1 1 2 3 A*B a*b 1+a+b+a*b

1 0 0 1 4 C c

1 0 1 2 5 A*C a*c

1 1 0 2 6 B*C b*c 1+a+b+a*b+c

1 1 1 3 7 A*B*C a*b*c +a*c+b*c+a*b*c

Examples: MEANS Procedure

Example 1: Computing Specific Descriptive Statistics

Procedure features:
PROC MEANS statement options:

statistic keywords
FW=

VAR statement

684 Program � Chapter 26

This example
� specifies the analysis variables

� computes the statistics for the specified keywords and displays them in order
� specifies the field width of the statistics.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the CAKE data set. CAKE contains data from a cake-baking contest: each
participant’s last name, age, score for presentation, score for taste, cake flavor, and number of
cake layers. The number of cake layers is missing for two observations. The cake flavor is
missing for another observation.

data cake;
input LastName $ 1-12 Age 13-14 PresentScore 16-17

TasteScore 19-20 Flavor $ 23-32 Layers 34 ;
datalines;

Orlando 27 93 80 Vanilla 1
Ramey 32 84 72 Rum 2
Goldston 46 68 75 Vanilla 1
Roe 38 79 73 Vanilla 2
Larsen 23 77 84 Chocolate .
Davis 51 86 91 Spice 3
Strickland 19 82 79 Chocolate 1
Nguyen 57 77 84 Vanilla .
Hildenbrand 33 81 83 Chocolate 1
Byron 62 72 87 Vanilla 2
Sanders 26 56 79 Chocolate 1
Jaeger 43 66 74 1
Davis 28 69 75 Chocolate 2
Conrad 69 85 94 Vanilla 1
Walters 55 67 72 Chocolate 2
Rossburger 28 78 81 Spice 2
Matthew 42 81 92 Chocolate 2
Becker 36 62 83 Spice 2
Anderson 27 87 85 Chocolate 1
Merritt 62 73 84 Chocolate 1
;

Specify the analyses and the analysis options. The statistic keywords specify the statistics
and their order in the output. FW= uses a field width of eight to display the statistics.

The MEANS Procedure � Program 685

proc means data=cake n mean max min range std fw=8;

Specify the analysis variables. The VAR statement specifies that PROC MEANS calculate
statistics on the PresentScore and TasteScore variables.

var PresentScore TasteScore;

Specify the title.

title ’Summary of Presentation and Taste Scores’;
run;

Output

PROC MEANS lists PresentScore first because this is the first variable that is specified in the
VAR statement. A field width of eight truncates the statistics to four decimal places.

Summary of Presentation and Taste Scores 1

The MEANS Procedure

Variable N Mean Maximum Minimum Range Std Dev
--
PresentScore 20 76.1500 93.0000 56.0000 37.0000 9.3768
TasteScore 20 81.3500 94.0000 72.0000 22.0000 6.6116
--

Example 2: Computing Descriptive Statistics with Class Variables
Procedure features:

PROC MEANS statement option:
MAXDEC=

CLASS statement
TYPES statement

This example
� analyzes the data for the two-way combination of class variables and across all

observations
� limits the number of decimal places for the displayed statistics.

Program

686 Program � Chapter 26

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the GRADE data set. GRADE contains each student’s last name, gender, status of
either undergraduate (1) or graduate (2), expected year of graduation, class section (A or B),
final exam score, and final grade for the course.

data grade;
input Name $ 1-8 Gender $ 11 Status $13 Year $ 15-16

Section $ 18 Score 20-21 FinalGrade 23-24;
datalines;

Abbott F 2 97 A 90 87
Branford M 1 98 A 92 97
Crandell M 2 98 B 81 71
Dennison M 1 97 A 85 72
Edgar F 1 98 B 89 80
Faust M 1 97 B 78 73
Greeley F 2 97 A 82 91
Hart F 1 98 B 84 80
Isley M 2 97 A 88 86
Jasper M 1 97 B 91 93
;

Generate the default statistics and specify the analysis options. Because no statistics are
specified in the PROC MEANS statement, all default statistics (N, MEAN, STD, MIN, MAX) are
generated. MAXDEC= limits the displayed statistics to three decimal places.

proc means data=grade maxdec=3;

Specify the analysis variable. The VAR statement specifies that PROC MEANS calculate
statistics on the Score variable.

var Score;

Specify subgroups for the analysis. The CLASS statement separates the analysis into
subgroups. Each combination of unique values for Status and Year represents a subgroup.

class Status Year;

Specify which subgroups to analyze. The TYPES statement requests that the analysis be
performed on all the observations in the GRADE data set as well as the two-way combination
of Status and Year, which results in four subgroups (because Status and Year each have two
unique values).

types () status*year;

The MEANS Procedure � Example 3: Using the BY Statement with Class Variables 687

Specify the title.

title ’Final Exam Grades for Student Status and Year of Graduation’;
run;

Output

PROC MEANS displays the default statistics for all the observations (_TYPE_=0) and the four
class levels of the Status and Year combination (Status=1, Year=97; Status=1, Year=98;
Status=2, Year=97; Status=2, Year=98).

Final Exam Grades for Student Status and Year of Graduation 1

The MEANS Procedure

Analysis Variable : Score

N
Obs N Mean Std Dev Minimum Maximum

10 10 86.000 4.714 78.000 92.000

Analysis Variable : Score

N
Status Year Obs N Mean Std Dev Minimum Maximum

1 97 3 3 84.667 6.506 78.000 91.000

98 3 3 88.333 4.041 84.000 92.000

2 97 3 3 86.667 4.163 82.000 90.000

98 1 1 81.000 . 81.000 81.000

Example 3: Using the BY Statement with Class Variables
Procedure features:

PROC MEANS statement option:
statistic keywords

BY statement
CLASS statement

Other features:
SORT procedure

Data set: GRADE on page 686

This example

688 Program � Chapter 26

� separates the analysis for the combination of class variables within BY values
� shows the sort order requirement for the BY statement
� calculates the minimum, maximum, and median.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Sort the GRADE data set. PROC SORT sorts the observations by the variable Section.
Sorting is required in order to use Section as a BY variable in the PROC MEANS step.

proc sort data=Grade out=GradeBySection;
by section;

run;

Specify the analyses. The statistic keywords specify the statistics and their order in the
output.

proc means data=GradeBySection min max median;

Divide the data set into BY groups. The BY statement produces a separate analysis for each
value of Section.

by Section;

Specify the analysis variable. The VAR statement specifies that PROC MEANS calculate
statistics on the Score variable.

var Score;

Specify subgroups for the analysis. The CLASS statement separates the analysis by the
values of Status and Year. Because there is no TYPES statement in this program, analyses are
performed for each subgroup, within each BY group.

class Status Year;

Specify the titles.

title1 ’Final Exam Scores for Student Status and Year of Graduation’;
title2 ’ Within Each Section’;

The MEANS Procedure � Example 4: Using a CLASSDATA= Data Set with Class Variables 689

run;

Output

Final Exam Scores for Student Status and Year of Graduation 1
Within Each Section

---------------------------------- Section=A -----------------------------------

The MEANS Procedure

Analysis Variable : Score

N
Status Year Obs Minimum Maximum Median

1 97 1 85.0000000 85.0000000 85.0000000

98 1 92.0000000 92.0000000 92.0000000

2 97 3 82.0000000 90.0000000 88.0000000

---------------------------------- Section=B -----------------------------------

Analysis Variable : Score

N
Status Year Obs Minimum Maximum Median

1 97 2 78.0000000 91.0000000 84.5000000

98 2 84.0000000 89.0000000 86.5000000

2 98 1 81.0000000 81.0000000 81.0000000

Example 4: Using a CLASSDATA= Data Set with Class Variables

Procedure features:
PROC MEANS statement options:

CLASSDATA=
EXCLUSIVE
FW=
MAXDEC=
PRINTALLTYPES

CLASS statement
Data set: CAKE on page 684

This example
� specifies the field width and decimal places of the displayed statistics

690 Program � Chapter 26

� uses only the values in CLASSDATA= data set as the levels of the combinations of
class variables

� calculates the range, median, minimum, and maximum
� displays all combinations of the class variables in the analysis.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Create the CAKETYPE data set. CAKETYPE contains the cake flavors and number of layers
that must occur in the PROC MEANS output.

data caketype;
input Flavor $ 1-10 Layers 12;
datalines;

Vanilla 1
Vanilla 2
Vanilla 3
Chocolate 1
Chocolate 2
Chocolate 3
;

Specify the analyses and the analysis options. The FW= option uses a field width of seven
and the MAXDEC= option uses zero decimal places to display the statistics. CLASSDATA= and
EXCLUSIVE restrict the class levels to the values that are in the CAKETYPE data set.
PRINTALLTYPES displays all combinations of class variables in the output.

proc means data=cake range median min max fw=7 maxdec=0
classdata=caketype exclusive printalltypes;

Specify the analysis variable. The VAR statement specifies that PROC MEANS calculate
statistics on the TasteScore variable.

var TasteScore;

Specify subgroups for analysis. The CLASS statement separates the analysis by the values
of Flavor and Layers. Note that these variables, and only these variables, must appear in the
CAKETYPE data set.

class flavor layers;

The MEANS Procedure � Program 691

Specify the title.

title ’Taste Score For Number of Layers and Cake Flavor’;
run;

692 Output � Chapter 26

Output

PROC MEANS calculates statistics for the 13 chocolate and vanilla cakes. Because the
CLASSDATA= data set contains 3 as the value of Layers, PROC MEANS uses 3 as a class value
even though the frequency is zero.

Taste Score For Number of Layers and Cake Flavor 1

The MEANS Procedure

Analysis Variable : TasteScore

N
Obs Range Median Minimum Maximum

13 22 80 72 94

Analysis Variable : TasteScore

N
Layers Obs Range Median Minimum Maximum

--
1 8 19 82 75 94

2 5 20 75 72 92

3 0
--

Analysis Variable : TasteScore

N
Flavor Obs Range Median Minimum Maximum

Chocolate 8 20 81 72 92

Vanilla 5 21 80 73 94

Analysis Variable : TasteScore

N
Flavor Layers Obs Range Median Minimum Maximum
--
Chocolate 1 5 6 83 79 85

2 3 20 75 72 92

3 0

Vanilla 1 3 19 80 75 94

2 2 14 80 73 87

3 0
--

The MEANS Procedure � Program 693

Example 5: Using Multilabel Value Formats with Class Variables

Procedure features:
PROC MEANS statement options:

statistic keywords
FW=
NONOBS

CLASS statement options:
MLF
ORDER=

TYPES statement
Other features

FORMAT procedure
FORMAT statement

Data set: CAKE on page 684

This example
� computes the statistics for the specified keywords and displays them in order
� specifies the field width of the statistics
� suppresses the column with the total number of observations
� analyzes the data for the one-way combination of cake flavor and the two-way

combination of cake flavor and participant’s age
� assigns user-defined formats to the class variables
� uses multilabel formats as the levels of class variables
� orders the levels of the cake flavors by the descending frequency count and orders

the levels of age by the ascending formatted values.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=64;

Create the $FLVRFMT. and AGEFMT. formats. PROC FORMAT creates user-defined
formats to categorize the cake flavors and ages of the participants. MULTILABEL creates a
multilabel format for Age. A multilabel format is one in which multiple labels can be assigned to
the same value, in this case because of overlapping ranges. Each value is represented in the
output for each range in which it occurs.

proc format;
value $flvrfmt

’Chocolate’=’Chocolate’
’Vanilla’=’Vanilla’

694 Program � Chapter 26

’Rum’,’Spice’=’Other Flavor’;
value agefmt (multilabel)

15 - 29=’below 30 years’
30 - 50=’between 30 and 50’
51 - high=’over 50 years’
15 - 19=’15 to 19’
20 - 25=’20 to 25’
25 - 39=’25 to 39’
40 - 55=’40 to 55’
56 - high=’56 and above’;

run;

Specify the analyses and the analysis options. FW= uses a field width of six to display the
statistics. The statistic keywords specify the statistics and their order in the output. NONOBS
suppresses the N Obs column.

proc means data=cake fw=6 n min max median nonobs;

Specify subgroups for the analysis. The CLASS statements separate the analysis by values
of Flavor and Age. ORDER=FREQ orders the levels of Flavor by descending frequency count.
ORDER=FMT orders the levels of Age by ascending formatted values. MLF specifies that
multilabel value formats be used for Age.

class flavor/order=freq;
class age /mlf order=fmt;

Specify which subgroups to analyze. The TYPES statement requests the analysis for the
one-way combination of Flavor and the two-way combination of Flavor and Age.

types flavor flavor*age;

Specify the analysis variable. The VAR statement specifies that PROC MEANS calculate
statistics on the TasteScore variable.

var TasteScore;

Format the output. The FORMAT statement assigns user-defined formats to the Age and
Flavor variables for this analysis.

format age agefmt. flavor $flvrfmt.;

Specify the title.

title ’Taste Score for Cake Flavors and Participant’’s Age’;
run;

The MEANS Procedure � Output 695

Output

The one-way combination of class variables appears before the two-way combination. A field
width of six truncates the statistics to four decimal places. For the two-way combination of Age
and Flavor, the total number of observations is greater than the one-way combination of Flavor.
This situation arises because of the multilabel format for age, which maps one internal value to
more than one formatted value.
The order of the levels of Flavor is based on the frequency count for each level. The order of the
levels of Age is based on the order of the user-defined formats.

Taste Score for Cake Flavors and Participant’s Age 1

The MEANS Procedure

Analysis Variable : TasteScore

Flavor N Min Max Median
--
Chocolate 9 72.00 92.00 83.00

Vanilla 6 73.00 94.00 82.00

Other Flavor 4 72.00 91.00 82.00
--

Analysis Variable : TasteScore

Flavor Age N Min Max Median

Chocolate 15 to 19 1 79.00 79.00 79.00

20 to 25 1 84.00 84.00 84.00

25 to 39 4 75.00 85.00 81.00

40 to 55 2 72.00 92.00 82.00

56 and above 1 84.00 84.00 84.00

below 30 years 5 75.00 85.00 79.00

between 30 and 50 2 83.00 92.00 87.50

over 50 years 2 72.00 84.00 78.00

Vanilla 25 to 39 2 73.00 80.00 76.50

40 to 55 1 75.00 75.00 75.00

56 and above 3 84.00 94.00 87.00

below 30 years 1 80.00 80.00 80.00

between 30 and 50 2 73.00 75.00 74.00

over 50 years 3 84.00 94.00 87.00

Other Flavor 25 to 39 3 72.00 83.00 81.00

40 to 55 1 91.00 91.00 91.00

below 30 years 1 81.00 81.00 81.00

between 30 and 50 2 72.00 83.00 77.50

over 50 years 1 91.00 91.00 91.00

696 Example 6: Using Preloaded Formats with Class Variables � Chapter 26

Example 6: Using Preloaded Formats with Class Variables
Procedure features:

PROC MEANS statement options:
COMPLETETYPES
FW=
MISSING
NONOBS

CLASS statement options:
EXCLUSIVE
ORDER=
PRELOADFMT

WAYS statement
Other features

FORMAT procedure
FORMAT statement

Data set: CAKE on page 684

This example
� specifies the field width of the statistics
� suppresses the column with the total number of observations
� includes all possible combinations of class variables values in the analysis even if

the frequency is zero
� considers missing values as valid class levels
� analyzes the one-way and two-way combinations of class variables
� assigns user-defined formats to the class variables
� uses only the preloaded range of user-defined formats as the levels of class

variables
� orders the results by the value of the formatted data.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=64;

Create the LAYERFMT. and $FLVRFMT. formats. PROC FORMAT creates user-defined
formats to categorize the number of cake layers and the cake flavors. NOTSORTED keeps
$FLVRFMT unsorted to preserve the original order of the format values.

proc format;
value layerfmt 1=’single layer’

2-3=’multi-layer’

The MEANS Procedure � Program 697

.=’unknown’;
value $flvrfmt (notsorted)

’Vanilla’=’Vanilla’
’Orange’,’Lemon’=’Citrus’
’Spice’=’Spice’
’Rum’,’Mint’,’Almond’=’Other Flavor’;

run;

Generate the default statistics and specify the analysis options. FW= uses a field width of
seven to display the statistics. COMPLETETYPES includes class levels with a frequency of zero.
MISSING considers missing values valid values for all class variables. NONOBS suppresses the
N Obs column. Because no specific analyses are requested, all default analyses are performed.

proc means data=cake fw=7 completetypes missing nonobs;

Specify subgroups for the analysis. The CLASS statement separates the analysis by values
of Flavor and Layers. PRELOADFMT and EXCLUSIVE restrict the levels to the preloaded
values of the user-defined formats. ORDER=DATA orders the levels of Flavor and Layer by
formatted data values.

class flavor layers/preloadfmt exclusive order=data;

Specify which subgroups to analyze. The WAYS statement requests one-way and two-way
combinations of class variables.

ways 1 2;

Specify the analysis variable. The VAR statement specifies that PROC MEANS calculate
statistics on the TasteScore variable.

var TasteScore;

Format the output. The FORMAT statement assigns user-defined formats to the Flavor and
Layers variables for this analysis.

format layers layerfmt. flavor $flvrfmt.;

Specify the title.

title ’Taste Score For Number of Layers and Cake Flavors’;
run;

698 Output � Chapter 26

Output

The one-way combination of class variables appears before the two-way combination. PROC
MEANS reports only the level values that are listed in the preloaded range of user-defined
formats even when the frequency of observations is zero (in this case, citrus). PROC MEANS
rejects entire observations based on the exclusion of any single class value in a given
observation. Therefore, when the number of layers is unknown, statistics are calculated for only
one observation. The other observation is excluded because the flavor chocolate was not
included in the preloaded user-defined format for Flavor.
The order of the levels is based on the order of the user-defined formats. PROC FORMAT
automatically sorted the Layers format and did not sort the Flavor format.

Taste Score For Number of Layers and Cake Flavors 1

The MEANS Procedure

Analysis Variable : TasteScore

Layers N Mean Std Dev Minimum Maximum
--
unknown 1 84.000 . 84.000 84.000

single layer 3 83.000 9.849 75.000 94.000

multi-layer 6 81.167 7.548 72.000 91.000
--

Analysis Variable : TasteScore

Flavor N Mean Std Dev Minimum Maximum
--
Vanilla 6 82.167 7.834 73.000 94.000

Citrus 0

Spice 3 85.000 5.292 81.000 91.000

Other Flavor 1 72.000 . 72.000 72.000
--

Analysis Variable : TasteScore

Flavor Layers N Mean Std Dev Minimum Maximum
--
Vanilla unknown 1 84.000 . 84.000 84.000

single layer 3 83.000 9.849 75.000 94.000

multi-layer 2 80.000 9.899 73.000 87.000

Citrus unknown 0

single layer 0

multi-layer 0

Spice unknown 0

single layer 0

multi-layer 3 85.000 5.292 81.000 91.000

Other Flavor unknown 0

single layer 0

multi-layer 1 72.000 . 72.000 72.000
--

The MEANS Procedure � Program 699

Example 7: Computing a Confidence Limit for the Mean
Procedure features:

PROC MEANS statement options:
ALPHA=
FW=
MAXDEC=

CLASS statement

This example
� specifies the field width and number of decimal places of the statistics
� computes a two-sided 90 percent confidence limit for the mean values of

MoneyRaised and HoursVolunteered for the three years of data.

If this data is representative of a larger population of volunteers, then the confidence
limits provide ranges of likely values for the true population means.

Program

Create the CHARITY data set. CHARITY contains information about high-school students’
volunteer work for a charity. The variables give the name of the high school, the year of the
fund-raiser, the first name of each student, the amount of money each student raised, and the
number of hours each student volunteered. A DATA step on page 1617 creates this data set.

data charity;
input School $ 1-7 Year 9-12 Name $ 14-20 MoneyRaised 22-26

HoursVolunteered 28-29;
datalines;

Monroe 1992 Allison 31.65 19
Monroe 1992 Barry 23.76 16
Monroe 1992 Candace 21.11 5

. . . more data lines . . .

Kennedy 1994 Sid 27.45 25
Kennedy 1994 Will 28.88 21
Kennedy 1994 Morty 34.44 25
;

Specify the analyses and the analysis options. FW= uses a field width of eight and
MAXDEC= uses two decimal places to display the statistics. ALPHA=0.1 specifies a 90%
confidence limit, and the CLM keyword requests two-sided confidence limits. MEAN and STD
request the mean and the standard deviation, respectively.

proc means data=charity fw=8 maxdec=2 alpha=0.1 clm mean std;

Specify subgroups for the analysis. The CLASS statement separates the analysis by values
of Year.

700 Output � Chapter 26

class Year;

Specify the analysis variables. The VAR statement specifies that PROC MEANS calculate
statistics on the MoneyRaised and HoursVolunteered variables.

var MoneyRaised HoursVolunteered;

Specify the titles.

title ’Confidence Limits for Fund Raising Statistics’;
title2 ’1992-94’;

run;

Output

PROC MEANS displays the lower and upper confidence limits for both variables for each year.

Confidence Limits for Fund Raising Statistics 1
1992-94

The MEANS Procedure

N Lower 90% Upper 90%
Year Obs Variable CL for Mean CL for Mean Mean Std Dev

1992 31 MoneyRaised 25.21 32.40 28.80 11.79

HoursVolunteered 17.67 23.17 20.42 9.01

1993 32 MoneyRaised 25.17 31.58 28.37 10.69
HoursVolunteered 15.86 20.02 17.94 6.94

1994 46 MoneyRaised 26.73 33.78 30.26 14.23
HoursVolunteered 19.68 22.63 21.15 5.96

Example 8: Computing Output Statistics
Procedure features:

PROC MEANS statement option:
NOPRINT

CLASS statement
OUTPUT statement options

statistic keywords
IDGROUP
LEVELS
WAYS

The MEANS Procedure � Program 701

Other features:
PRINT procedure

Data set: GRADE on page 686

This example
� suppresses the display of PROC MEANS output
� stores the average final grade in a new variable
� stores the name of the student with the best final exam scores in a new variable
� stores the number of class variables are that are combined in the _WAY_ variable
� stores the value of the class level in the _LEVEL_ variable
� displays the output data set.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the analysis options. NOPRINT suppresses the display of all PROC MEANS output.

proc means data=Grade noprint;

Specify subgroups for the analysis. The CLASS statement separates the analysis by values
of Status and Year.

class Status Year;

Specify the analysis variable. The VAR statement specifies that PROC MEANS calculate
statistics on the FinalGrade variable.

var FinalGrade;

Specify the output data set options. The OUTPUT statement creates the SUMSTAT data
set and writes the mean value for the final grade to the new variable AverageGrade. IDGROUP
writes the name of the student with the top exam score to the variable BestScore and the
observation number that contained the top score. WAYS and LEVELS write information on how
the class variables are combined.

output out=sumstat mean=AverageGrade
idgroup (max(score) obs out (name)=BestScore)
/ ways levels;

run;

702 Output � Chapter 26

Print the output data set WORK.SUMSTAT. The NOOBS option suppresses the observation
numbers.

proc print data=sumstat noobs;
title1 ’Average Undergraduate and Graduate Course Grades’;
title2 ’For Two Years’;

run;

Output

The first observation contains the average course grade and the name of the student with the
highest exam score over the two-year period. The next four observations contain values for each
class variable value. The remaining four observations contain values for the Year and Status
combination. The variables _WAY_, _TYPE_, and _LEVEL_ show how PROC MEANS created
the class variable combinations. The variable _OBS_ contains the observation number in the
GRADE data set that contained the highest exam score.

Average Undergraduate and Graduate Course Grades 1
For Two Years

Average Best
Status Year _WAY_ _TYPE_ _LEVEL_ _FREQ_ Grade Score _OBS_

0 0 1 10 83.0000 Branford 2
97 1 1 1 6 83.6667 Jasper 10
98 1 1 2 4 82.0000 Branford 2

1 1 2 1 6 82.5000 Branford 2
2 1 2 2 4 83.7500 Abbott 1
1 97 2 3 1 3 79.3333 Jasper 10
1 98 2 3 2 3 85.6667 Branford 2
2 97 2 3 3 3 88.0000 Abbott 1
2 98 2 3 4 1 71.0000 Crandell 3

Example 9: Computing Different Output Statistics for Several Variables
Procedure features:

PROC MEANS statement options:
DESCEND
NOPRINT

CLASS statement
OUTPUT statement options:

statistic keywords
Other features:

PRINT procedure
WHERE= data set option

Data set: GRADE on page 686

The MEANS Procedure � Program 703

This example

� suppresses the display of PROC MEANS output

� stores the statistics for the class level and combinations of class variables that are
specified by WHERE= in the output data set

� orders observations in the output data set by descending _TYPE_ value

� stores the mean exam scores and mean final grades without assigning new
variables names

� stores the median final grade in a new variable

� displays the output data set.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the analysis options. NOPRINT suppresses the display of all PROC MEANS output.
DESCEND orders the observations in the OUT= data set by descending _TYPE_ value.

proc means data=Grade noprint descend;

Specify subgroups for the analysis. The CLASS statement separates the analysis by values
of Status and Year.

class Status Year;

Specify the analysis variables. The VAR statement specifies that PROC MEANS calculate
statistics on the Score and FinalGrade variables.

var Score FinalGrade;

Specify the output data set options. The OUTPUT statement writes the mean for Score and
FinalGrade to variables of the same name. The median final grade is written to the variable
MedianGrade. The WHERE= data set option restricts the observations in SUMDATA. One
observation contains overall statistics (_TYPE_=0). The remainder must have a status of 1.

output out=Sumdata (where=(status=’1’ or _type_=0))
mean= median(finalgrade)=MedianGrade;

run;

704 Output � Chapter 26

Print the output data set WORK.SUMDATA.

proc print data=Sumdata;
title ’Exam and Course Grades for Undergraduates Only’;
title2 ’and for All Students’;

run;

Output

The first three observations contain statistics for the class variable levels with a status of 1.
The last observation contains the statistics for all the observations (no subgroup). Score
contains the mean test score and FinalGrade contains the mean final grade.

Exam and Course Grades for Undergraduates Only 1
and for All Students

Final Median
Obs Status Year _TYPE_ _FREQ_ Score Grade Grade

1 1 97 3 3 84.6667 79.3333 73
2 1 98 3 3 88.3333 85.6667 80
3 1 2 6 86.5000 82.5000 80
4 0 10 86.0000 83.0000 83

Example 10: Computing Output Statistics with Missing Class Variable Values

Procedure features:
PROC MEANS statement options:

CHARTYPE
NOPRINT
NWAY

CLASS statement options:
ASCENDING
MISSING
ORDER=

OUTPUT statement
Other features:

PRINT procedure
Data set: CAKE on page 684

This example
� suppresses the display of PROC MEANS output
� considers missing values as valid level values for only one class variable
� orders observations in the output data set by the ascending frequency for a single

class variable
� stores observations for only the highest _TYPE_ value

The MEANS Procedure � Output 705

� stores _TYPE_ as binary character values
� stores the maximum taste score in a new variable
� displays the output data set.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the analysis options. NWAY prints observations with the highest _TYPE_ value.
NOPRINT suppresses the display of all PROC MEANS output.

proc means data=cake nway noprint;

Specify subgroups for the analysis. The CLASS statements separate the analysis by Flavor
and Layers. ORDER=FREQ and ASCENDING order the levels of Flavor by ascending
frequency. MISSING uses missing values of Layers as a valid class level value.

class flavor /order=freq ascending;
class layers /missing;

Specify the analysis variable. The VAR statement specifies that PROC MEANS calculate
statistics on the TasteScore variable.

var TasteScore;

Specify the output data set options. The OUTPUT statement creates the CAKESTAT data
set and outputs the maximum value for the taste score to the new variable HighScore.

output out=cakestat max=HighScore;
run;

Print the output data set WORK.CAKESTAT.

proc print data=cakestat;
title ’Maximum Taste Score for Flavor and Cake Layers’;

run;

Output

706 Example 11: Identifying an Extreme Value with the Output Statistics � Chapter 26

The CAKESTAT output data set contains only observations for the combination of both class
variables, Flavor and Layers. Therefore, the value of _TYPE_ is 3 for all observations. The
observations are ordered by ascending frequency of Flavor. The missing value in Layers is a
valid value for this class variable. PROC MEANS excludes the observation with the missing
flavor because it is an invalid value for Flavor.

Maximum Taste Score for Flavor and Cake Layers 1

High
Obs Flavor Layers _TYPE_ _FREQ_ Score

1 Rum 2 3 1 72
2 Spice 2 3 2 83
3 Spice 3 3 1 91
4 Vanilla . 3 1 84
5 Vanilla 1 3 3 94
6 Vanilla 2 3 2 87
7 Chocolate . 3 1 84
8 Chocolate 1 3 5 85
9 Chocolate 2 3 3 92

Example 11: Identifying an Extreme Value with the Output Statistics
Procedure features:

CLASS statement
OUTPUT statement options:

statistic keyword
MAXID

Other features:
PRINT procedure

Data set: CHARITY on page 699

This example
� identifies the observations with maximum values for two variables
� creates new variables for the maximum values
� displays the output data set.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

Specify the analyses. The statistic keywords specify the statistics and their order in the
output. CHARTYPE writes the _TYPE_ values as binary characters in the output data set

The MEANS Procedure � Output 707

proc means data=Charity n mean range chartype;

Specify subgroups for the analysis. The CLASS statement separates the analysis by School
and Year.

class School Year;

Specify the analysis variables. The VAR statement specifies that PROC MEANS calculate
statistics on the MoneyRaised and HoursVolunteered variables.

var MoneyRaised HoursVolunteered;

Specify the output data set options. The OUTPUT statement writes the new variables,
MostCash and MostTime, which contain the names of the students who collected the most
money and volunteered the most time, respectively, to the PRIZE data set.

output out=Prize maxid(MoneyRaised(name)
HoursVolunteered(name))= MostCash MostTime
max= ;

Specify the title.

title ’Summary of Volunteer Work by School and Year’;
run;

Print the WORK.PRIZE output data set.

proc print data=Prize;
title ’Best Results: Most Money Raised and Most Hours Worked’;

run;

Output

708 Output � Chapter 26

The first page of output shows the output from PROC MEANS with the statistics for six class
levels: one for Monroe High for the years 1992, 1993, and 1994; and one for Kennedy High for
the same three years.

Summary of Volunteer Work by School and Year 1

The MEANS Procedure

N
School Year Obs Variable N Mean Range

Kennedy 1992 15 MoneyRaised 15 29.0800000 39.7500000

HoursVolunteered 15 22.1333333 30.0000000

1993 20 MoneyRaised 20 28.5660000 23.5600000
HoursVolunteered 20 19.2000000 20.0000000

1994 18 MoneyRaised 18 31.5794444 65.4400000
HoursVolunteered 18 24.2777778 15.0000000

Monroe 1992 16 MoneyRaised 16 28.5450000 48.2700000
HoursVolunteered 16 18.8125000 38.0000000

1993 12 MoneyRaised 12 28.0500000 52.4600000
HoursVolunteered 12 15.8333333 21.0000000

1994 28 MoneyRaised 28 29.4100000 73.5300000
HoursVolunteered 28 19.1428571 26.0000000

The output from PROC PRINT shows the maximum MoneyRaised and HoursVolunteered values
and the names of the students who are responsible for them. The first observation contains the
overall results, the next three contain the results by year, the next two contain the results by
school, and the final six contain the results by School and Year.

Best Results: Most Money Raised and Most Hours Worked 2

Most Most Money Hours
Obs School Year _TYPE_ _FREQ_ Cash Time Raised Volunteered

1 . 00 109 Willard Tonya 78.65 40
2 1992 01 31 Tonya Tonya 55.16 40
3 1993 01 32 Cameron Amy 65.44 31
4 1994 01 46 Willard L.T. 78.65 33
5 Kennedy . 10 53 Luther Jay 72.22 35
6 Monroe . 10 56 Willard Tonya 78.65 40
7 Kennedy 1992 11 15 Thelma Jay 52.63 35
8 Kennedy 1993 11 20 Bill Amy 42.23 31
9 Kennedy 1994 11 18 Luther Che-Min 72.22 33

10 Monroe 1992 11 16 Tonya Tonya 55.16 40
11 Monroe 1993 11 12 Cameron Myrtle 65.44 26
12 Monroe 1994 11 28 Willard L.T. 78.65 33

The MEANS Procedure � Program 709

Example 12: Identifying the Top Three Extreme Values with the Output
Statistics

Procedure features:
PROC MEANS statement option:

NOPRINT
CLASS statement
OUTPUT statement options:

statistic keywords
AUTOLABEL
AUTONAME
IDGROUP

TYPES statement
Other features:

FORMAT procedure
FORMAT statement
PRINT procedure
RENAME = data set option

Data set: CHARITY on page 699

This example
� suppresses the display of PROC MEANS output
� analyzes the data for the one-way combination of the class variables and across all

observations
� stores the total and average amount of money raised in new variables
� stores in new variables the top three amounts of money raised, the names of the

three students who raised the money, the years when it occurred, and the schools
the students attended

� automatically resolves conflicts in the variable names when names are assigned to
the new variables in the output data set

� appends the statistic name to the label of the variables in the output data set that
contain statistics that were computed for the analysis variable.

� assigns a format to the analysis variable so that the statistics that are computed
from this variable inherit the attribute in the output data set

� renames the _FREQ_ variable in the output data set
� displays the output data set and its contents.

Program

Set the SAS system options. The NODATE option suppresses the display of the date and time
in the output. PAGENO= specifies the starting page number. LINESIZE= specifies the output
line length, and PAGESIZE= specifies the number of lines on an output page.

options nodate pageno=1 linesize=80 pagesize=60;

710 Program � Chapter 26

Create the YRFMT. and $SCHFMT. formats. PROC FORMAT creates user-defined formats
that assign the value of All to the missing levels of the class variables.

proc format;
value yrFmt . = " All";
value $schFmt ’ ’ = "All ";

run;

Generate the default statistics and specify the analysis options. NOPRINT suppresses
the display of all PROC MEANS output.

proc means data=Charity noprint;

Specify subgroups for the analysis. The CLASS statement separates the analysis by values
of School and Year.

class School Year;

Specify which subgroups to analyze. The TYPES statement requests the analysis across all
the observations and for each one-way combination of School and Year.

types () school year;

Specify the analysis variable. The VAR statement specifies that PROC MEANS calculate
statistics on the MoneyRaised variable.

var MoneyRaised;

Specify the output data set options. The OUTPUT statement creates the TOP3LIST data
set. RENAME= renames the _FREQ_ variable that contains frequency count for each class level.
SUM= and MEAN= specify that the sum and mean of the analysis variable (MoneyRaised) are
written to the output data set. IDGROUP writes 12 variables that contain the top three
amounts of money raised and the three corresponding students, schools, and years.
AUTOLABEL appends the analysis variable name to the label for the output variables that
contain the sum and mean. AUTONAME resolves naming conflicts for these variables.

output out=top3list(rename=(_freq_=NumberStudents))sum= mean=
idgroup(max(moneyraised) out[3] (moneyraised name

school year)=)/autolabel autoname;

Format the output. The LABEL statement assigns a label to the analysis variable
MoneyRaised. The FORMAT statement assigns user-defined formats to the Year and School
variables and a SAS dollar format to the MoneyRaised variable.

label MoneyRaised=’Amount Raised’;
format year yrfmt. school $schfmt.

The MEANS Procedure � Output 711

moneyraised dollar8.2;
run;

Print the output data set WORK.TOP3LIST.

proc print data=top3list;
title1 ’School Fund Raising Report’;
title2 ’Top Three Students’;

run;

Display information about the TOP3LIST data set. PROC DATASETS displays the contents
of the TOP3LIST data set. NOLIST suppresses the directory listing for the WORK data library.

proc datasets library=work nolist;
contents data=top3list;
title1 ’Contents of the PROC MEANS Output Data Set’;

run;

Output

The output from PROC PRINT shows the top three values of MoneyRaised, the names of the
students who raised these amounts, the schools the students attended, and the years when the
money was raised. The first observation contains the overall results, the next three contain the
results by year, and the final two contain the results by school. The missing class levels for
School and Year are replaced with the value ALL.

The labels for the variables that contain statistics that were computed from MoneyRaised
include the statistic name at the end of the label.

School Fund Raising Report 1
Top Three Students

Money Money
Number Raised_ Raised_ Money Money Money

Obs School Year _TYPE_ Students Sum Mean Raised_1 Raised_2 Raised_3

1 All All 0 109 $3192.75 $29.29 $78.65 $72.22 $65.44
2 All 1992 1 31 $892.92 $28.80 $55.16 $53.76 $52.63
3 All 1993 1 32 $907.92 $28.37 $65.44 $47.33 $42.23
4 All 1994 1 46 $1391.91 $30.26 $78.65 $72.22 $56.87
5 Kennedy All 2 53 $1575.95 $29.73 $72.22 $52.63 $43.89
6 Monroe All 2 56 $1616.80 $28.87 $78.65 $65.44 $56.87

Obs Name_1 Name_2 Name_3 School_1 School_2 School_3 Year_1 Year_2 Year_3

1 Willard Luther Cameron Monroe Kennedy Monroe 1994 1994 1993
2 Tonya Edward Thelma Monroe Monroe Kennedy 1992 1992 1992
3 Cameron Myrtle Bill Monroe Monroe Kennedy 1993 1993 1993
4 Willard Luther L.T. Monroe Kennedy Monroe 1994 1994 1994
5 Luther Thelma Jenny Kennedy Kennedy Kennedy 1994 1992 1992
6 Willard Cameron L.T. Monroe Monroe Monroe 1994 1993 1994

712 References � Chapter 26

Contents of the PROC MEANS Output Data Set 2

The DATASETS Procedure

Data Set Name WORK.TOP3LIST Observations 6
Member Type DATA Variables 18
Engine V9 Indexes 0
Created 18:59 Thursday, March 14, 2002 Observation Length 144
Last Modified 18:59 Thursday, March 14, 2002 Deleted Observations 0
Protection Compressed NO
Data Set Type Sorted NO
Label
Data Representation WINDOWS
Encoding wlatin1 Western (Windows)

Engine/Host Dependent Information

Data Set Page Size 12288
Number of Data Set Pages 1
First Data Page 1
Max Obs per Page 85
Obs in First Data Page 6
Number of Data Set Repairs 0
File Name filename
Release Created 9.0000B0
Host Created WIN_PRO

Alphabetic List of Variables and Attributes

Variable Type Len Format Label

7 MoneyRaised_1 Num 8 DOLLAR8.2 Amount Raised
8 MoneyRaised_2 Num 8 DOLLAR8.2 Amount Raised
9 MoneyRaised_3 Num 8 DOLLAR8.2 Amount Raised
6 MoneyRaised_Mean Num 8 DOLLAR8.2 Amount Raised_Mean
5 MoneyRaised_Sum Num 8 DOLLAR8.2 Amount Raised_Sum

10 Name_1 Char 7
11 Name_2 Char 7
12 Name_3 Char 7

4 NumberStudents Num 8
1 School Char 7 $SCHFMT.

13 School_1 Char 7 $SCHFMT.
14 School_2 Char 7 $SCHFMT.
15 School_3 Char 7 $SCHFMT.

2 Year Num 8 YRFMT.
16 Year_1 Num 8 YRFMT.
17 Year_2 Num 8 YRFMT.
18 Year_3 Num 8 YRFMT.

3 _TYPE_ Num 8

See the TEMPLATE procedure in SAS Output Delivery System User’s Guide for an
example of how to create a custom table definition for this output data set.

References

Jain R. and Chlamtac I., (1985) “The P2 Algorithm for Dynamic Calculation of
Quantiles and Histograms Without Sorting Observations,” Communications of the
Association of Computing Machinery, 28:10.

713

C H A P T E R

27
The OPTIONS Procedure

Overview: OPTIONS Procedure 713
Syntax: OPTIONS Procedure 716

PROC OPTIONS Statement 716

Results: OPTIONS Procedure 717

SAS Log 717

Examples: OPTIONS Procedure 717
Example 1: Producing the Short Form of the Options Listing 717

Example 2: Displaying the Setting of a Single Option 718

Overview: OPTIONS Procedure

The OPTIONS procedure lists the current settings of SAS system options. The
results are displayed in the SAS log.

SAS system options control how the SAS System formats output, handles files,
processes data sets, interacts with the operating environment, and does other tasks
that are not specific to a single SAS program or data set. You can change the settings of
SAS system options

� in the SAS command

� in a configuration or autoexec file

� in the SAS OPTIONS statement

� through the SAS System Options window

� by using SCL functions

� in a STARTSAS window or a STARTSAS statement

� in other ways, depending on your operating environment. See the companion for
your operating environment for details.

For information about SAS system options, see the section on SAS system options in
SAS Language Reference: Dictionary.

The log that results from running PROC OPTIONS shows both the portable and host
systems options, their settings, and short descriptions. Output 27.1 on page 713 shows
a partial log that displays the settings of portable options through those that begin with
the letter “C.”

proc options;
run;

714 Overview: OPTIONS Procedure � Chapter 27

Output 27.1 Log Showing a Partial Listing of SAS System Options

NOTE: PROCEDURE PRINTTO used (Total process time):
real time 0.04 seconds
cpu time 0.00 seconds

6
7 proc options;
8 run;

SAS (r) Proprietary Software Release 9.XX TS0A1

Portable Options:

APPLETLOC=\\dntsrc\sas\m900\avdobj\jar
Location of Java applets

ARMAGENT= ARM Agent to use to collect ARM records
ARMFORMAT=DEFAULT SAS collector to use to log ARM records
ARMLOC= Identify location where ARM records are to be written
ARMSUBSYS=ARM_NONE

Enable/Disable ARMing of SAS subsystems
ASYNCHIO Enable asynchronous input/output
NOAUTOSIGNON SAS/CONNECT remote submit will not automatically attempt

to SIGNON
NOBATCH Do not use the batch set of default values for SAS system

options
BINDING=DEFAULT Controls the binding edge for duplexed output
BOTTOMMARGIN=0.000

Bottom margin for printed output
BUFNO=1 Number of buffers for each SAS data set
BUFSIZE=0 Size of buffer for page of SAS data set
BYERR Set the error flag if a null data set is input to the SORT

procedure
BYLINE Print the by-line at the beginning of each by-group
BYSORTED Require SAS data set observations to be sorted for BY

processing
NOCAPS Do not translate source input to uppercase
NOCARDIMAGE Do not process SAS source and data lines as 80-byte records
CATCACHE=0 Number of SAS catalogs to keep in cache memory
CBUFNO=0 Number of buffers to use for each SAS catalog
CENTER Center SAS procedure output
NOCHARCODE Do not use character combinations as substitute for

special characters not on the keyboard
CLEANUP Attempt recovery from out-of-resources condition
NOCMDMAC Do not support command-style macros
CMPOPT Enable SAS compiler performance optimizations
NOCOLLATE Do not collate multiple copies of printed output

Output 27.2 on page 714 shows a log that PROC OPTIONS produces for a single SAS
system option.

options pagesize=60;
proc options option=pagesize;
run;

The OPTIONS Procedure � Overview: OPTIONS Procedure 715

Output 27.2 The Setting of a Single SAS System Option

NOTE: PROCEDURE PRINTTO used (Total process time):
real time 0.03 seconds
cpu time 0.00 seconds

25 options pagesize=60;
26 proc options option=pagesize;
27 run;

SAS (r) Proprietary Software Release 9.XXX TS0A1

PAGESIZE=60 Number of lines printed per page of output
NOTE: PROCEDURE OPTIONS used

716 Syntax: OPTIONS Procedure � Chapter 27

Syntax: OPTIONS Procedure
PROC OPTIONS <option(s)>;

PROC OPTIONS Statement

PROC OPTIONS <option(s)>;

To do this Use this option

Choose the format of the listing

Specify the long form LONG

Specify the short form SHORT

Display the option’s description, type and group

Display the option’s value and scope

DEFINE

VALUE

Restrict the number of options displayed

Display options belonging to a group GROUP=

Display host options only HOST

Display portable options only NOHOST

Display a single option OPTION=

Options

DEFINE
displays the short description of the option, the option group, option type, and how to
set and display the option value.

Interaction: This option has no effect when SHORT is specified.

GROUP=group-name
displays the options in the group specified by group-name. For more information on
options groups, see SAS Language Reference: Dictionary.

HOST | NOHOST
displays only host options (HOST) or displays only portable options (NOHOST).

Alias: PORTABLE is an alias for NOHOST.

LONG | SHORT
specifies the format for displaying the settings of the SAS system options. LONG
lists each option on a separate line with a description; SHORT produces a
compressed listing without the descriptions.

The OPTIONS Procedure � Example 1: Producing the Short Form of the Options Listing 717

Default: LONG
Featured in: Example 1 on page 717

NOHOST
See HOST | NOHOST.

OPTION=option-name
displays a short description and the value (if any) of the option specified by
option-name. DEFINE and VALUE provide additional information about the option.

option-name
specifies the option to use as input to the procedure.

Requirement: If a SAS system option uses an equals sign, such as PAGESIZE=, do
not include the equals sign when specifying the option to OPTION=.

Featured in: Example 2 on page 718

SHORT
See LONG | SHORT.

VALUE
displays the option value and scope, as well as how the value was set.
Interaction: This option has no effect when SHORT is specified.

Results: OPTIONS Procedure

SAS Log
SAS writes the options list to the SAS log. SAS system options of the form option |

NOoption are listed as either option or NOoption, depending on the current setting, but
they are always sorted by the positive form. For example, NOCAPS would be listed
under the Cs.

Operating Environment Information: PROC OPTIONS produces additional
information that is specific to the environment under which you are running the SAS
System. Refer to the SAS documentation for your operating environment for more
information about this and for descriptions of host-specific options. �

Examples: OPTIONS Procedure

Example 1: Producing the Short Form of the Options Listing

Procedure features:
PROC OPTIONS statement option:

SHORT

718 Program � Chapter 27

This example shows how to generate the short form of the listing of SAS system
option settings. Compare this short form with the long form shown in “Overview:
OPTIONS Procedure” on page 713.

Program

SHORT lists the SAS system options and their settings without any descriptions.

proc options short;
run;

Log (partial)

Output 27.3

NOTE: PROCEDURE PRINTTO used (Total process time):
real time 0.09 seconds
cpu time 0.00 seconds

16 proc options short;
17 run;

SAS (r) Proprietary Software Release 9.XX TS0A1

Portable Options:

APPLETLOC=\\dntsrc\sas\m900\avdobj\jar ARMAGENT= ARMFORMAT=DEFAULT ARMLOC=
ARMSUBSYS=ARM_NONE ASYNCHIO NOAUTOSIGNON NOBATCH BINDING=DEFAULT
BOTTOMMARGIN=0.000 BUFNO=1 BUFSIZE=0 BYERR BYLINE BYSORTED NOCAPS NOCARDIMAGE
CATCACHE=0 CBUFNO=0 CENTER NOCHARCODE CLEANUP NOCMDMAC CMPOPT NOCOLLATE
COLORPRINTING COMPRESS=NO CONNECTPERSIST=YES CONNECTREMOTE= CONNECTSTATUS
CONNECTWAIT CONSOLELOG= COPIES=1 CPUCOUNT=1 CPUID DATASTMTCHK=COREKEYWORDS
DATE DATESTYLE=MDY DBSLICEPARM=(THREADED_APPS, 2) DBSRVTP=NONE NODETAILS
DEVICE= DFLANG=ENGLISH DKRICOND=ERROR DKROCOND=WARN DLDMGACTION=REPAIR NODMR
NODMS NODMSEXP NODMSSYNCHK DQLOCALE= DSNFERR NODTRESET NODUPLEX NOECHOAUTO
EMAILAUTHPROTOCOL=NONE EMAILHOST=LOCALHOST EMAILID= EMAILPORT=25 EMAILPW=
ENGINE=V9 NOERRORABEND NOERRORBYABEND ERRORCHECK=NORMAL ERRORS=20 NOEXPLORER
FIRSTOBS=1 FMTERR FMTSEARCH=(WORK LIBRARY) FONTSLOC=C:\V9setup\font
FORMCHAR=£$<>\^_{|}~+=|-/\<>* FORMDLIM= FORMS=DEFAULT GISMAPS= GWINDOW
HELPENCMD HELPINDEX=(/help/common.hlp/index.txt /help/common.hlp/keywords.htm
common.hhk) HELPTOC=(/help/common.hlp/contents.txt /help/common.hlp/toc.htm
common.hhc) IBUFSIZE=0 NOIMPLMAC INITCMD= INITSTMT= INVALIDDATA=. LABEL
LEFTMARGIN=0.000 LINESIZE=78

Example 2: Displaying the Setting of a Single Option

Procedure features:
PROC OPTIONS statement option:

OPTION=
DEFINE

The OPTIONS Procedure � Log 719

VALUE

This example shows how to display the setting of a single SAS system option. The
log shows the current setting of the SAS system option PAGESIZE=. The DEFINE and
VALUE options display additional information.

Program

PAGESIZE=60 sets the number of lines on a page to 60.

options pagesize=60;

OPTION=PAGESIZE displays the setting of PAGESIZE in the log. DEFINE and VALUE display
additional information.

proc options option=pagesize define value;
run;

Log

Output 27.4

NOTE: PROCEDURE PRINTTO used (Total process time):
real time 0.07 seconds
cpu time 0.01 seconds

6 proc options option=pagesize define value;
7 run;

SAS (r) Proprietary Software Release 9.XX TS0A1

Option Value Information For SAS Option PAGESIZE
Option Value: 55
Option Scope: Line Mode Process
How option value set: Unknown

Option Definition Information for SAS Option PAGESIZE
Group= LOG_LISTCONTROL
Group Description: SAS log and procedure output settings
Description: Number of lines printed per page of output
Type: The option value is of type LONG

Range of Values: The minimum is 15 and the maximum is 32767
Valid Syntax(any casing): MIN|MAX|n|nK|nM|nG|nT|hex

When Can Set: Startup or anytime during the SAS Session
SAS Language: Can "get" the option value using SAS language
SAS Language: Can "set" the option value using SAS language
Print or Display: Special keyword is NOT required
Documentation: See http://sww.sas.com/sas/m900/dhost/doc/optArchive.html

NOTE: PROCEDURE OPTIONS used (Total process time):
real time 0.63 seconds
cpu time 0.07 seconds

8 proc printto; run;

720

721

C H A P T E R

28
The OPTLOAD Procedure

Overview: OPTLOAD Procedure 721
Syntax: OPTLOAD Procedure 721

PROC OPTLOAD Statement 721

Overview: OPTLOAD Procedure
The OPTLOAD procedure reads SAS system option settings that are stored in the

SAS registry or a SAS data set and puts them into effect.
You can load SAS system option settings from a SAS data set or registry key by using
� the DMOPTLOAD command from a command line in the SAS windowing

environment. For example, DMOPTLOAD key= “core\options”.
� the PROC OPTLOAD statement.

Some SAS options are not t be saved with PROC OPTSAVE and therefore cannot be
loaded with OPTLOAD. The following is a list of these options:

� ARMAGENT system option
� ARMFORMAT system option
� ARMLOC system option
� ARMSUBSYS system option
� AWSDEF system option
� FONTALIAS system option
� SORTMSG system option
� STIMER system option
� TPSEC system option
� All SAS system options that can be specified only during startup
� All SAS system options that identify a password.

Syntax: OPTLOAD Procedure
PROC OPTLOAD <options>;

PROC OPTLOAD Statement

PROC OPTLOAD <options>;

722 PROC OPTLOAD Statement � Chapter 28

To do this Use this option

Load SAS system option settings from an existing registry key KEY=

Load SAS system option settings from an existing data set DATA=

Options

DATA=libref.dataset
specifies the library and data set name from where SAS system option settings are
loaded. The SAS variable OPTNAME contains the character value of the SAS system
option name, and the SAS variable OPTVALUE contains the character value of the
SAS system option setting.
Requirement: The SAS library and data set must exist.
Default: If you omit the DATA= option and the KEY= option, the procedure will use

the default SAS library and data set. The default library is where the current user
profile resides. Unless you specify a library, the default library is SASUSER. If
SASUSER is being used by another active SAS session, then the temporary
WORK library is the default location from which the data set is loaded. The
default data set name is MYOPTS.

KEY=“SAS registry key”
specifies the location in the SAS registry of stored SAS system option settings. The
registry is retained in SASUSER. If SASUSER is not available, then the temporary
WORK library is used. For example, KEY="OPTIONS".
Requirement: “SAS registry key” must be an existing SAS registry key.

Requirement: You must use quotation marks around the “SAS registry key” name.
Separate the names in a sequence of key names with a backslash (\). For
example, KEY=“CORE\OPTIONS”.

723

C H A P T E R

29
The OPTSAVE Procedure

Overview: OPTSAVE Procedure 723
Syntax: OPTSAVE Procedure 723

PROC OPTSAVE Statement 724

Overview: OPTSAVE Procedure

PROC OPTSAVE saves the current SAS system option settings in the SAS registry
or in a SAS data set.

SAS system options can be saved across SAS sessions. You can save the settings of
the SAS system options in a SAS data set or registry key by using

� the DMOPTSAVE command from a command line in the SAS windowing
environment. Use the command like this: DMOPTSAVE <save-location>.

� the PROC OPTSAVE statement.

Some SAS options will not be saved with PROC OPTSAVE. The following is a list of
these options:

� ARMAGENT system option

� ARMFORMAT system option

� ARMLOC system option

� ARMSUBSYS system option

� AWSDEF system option

� FONTALIAS system option

� SORTMSG system option

� STIMER system option

� TPSEC system option

� All SAS system options that can be specified only during startup

� All SAS system options that identify a password.

Syntax: OPTSAVE Procedure
Tip: The only statement that is used with the OPTSAVE procedure is the PROC
statement.

PROC OPTSAVE <options >;

724 PROC OPTSAVE Statement � Chapter 29

PROC OPTSAVE Statement

PROC OPTSAVE <options >;

To do this Use this option

Save SAS system option settings to a registry key KEY=

Save SAS system option settings to a SAS data set DATA=

Options

KEY=“SAS registry key”
specifies the location in the SAS registry of stored SAS system option settings. The
registry is retained in SASUSER. If SASUSER is not available, then the temporary
WORK library is used. For example, KEY="OPTIONS".
Restriction: “SAS registry key” names cannot span multiple lines.
Requirement: Separate the names in a sequence of key names with a backslash

(\). Individual key names can contain any character except a backslash.
Requirement: The length of a key name cannot exceed 255 characters (including

the backslashes).
Requirement: You must use quotation marks around the “SAS registry key” name.
Tip: To specify a subkey, enter multiple key names starting with the root key.
Caution: If the key already exists, it will be overwritten. If the specified key does

not already exist in the current SAS registry, then the key is automatically created
when option settings are saved in the SAS registry.

DATA=libref.dataset
specifies the names of the library and data set where SAS system option settings are
saved. The SAS variable OPTNAME contains the character value of the SAS system
option name. The SAS variable OPTVALUE contains the character value of the SAS
system option setting.
Caution: If the data set already exists, it will be overwritten.
Default: If you omit the DATA= and the KEY= options, the procedure will use the

default SAS library and data set. The default SAS library is where the current
user profile resides. Unless you specify a SAS library, the default library is
SASUSER. If SASUSER is in use by another active SAS session, then the
temporary WORK library is the default location where the data set is saved. The
default data set name is MYOPTS.

725

C H A P T E R

30
The PLOT Procedure

Overview: PLOT Procedure 726
Syntax: PLOT Procedure 728

PROC PLOT Statement 729

BY Statement 732

PLOT Statement 732

Concepts: PLOT Procedure 744
RUN Groups 744

Generating Data with Program Statements 744

Labeling Plot Points with Values of a Variable 745

Pointer Symbols 745

Understanding Penalties 746

Changing Penalties 747
Collision States 747

Reference Lines 748

Hidden Label Characters 748

Overlaying Label Plots 748

Computational Resources Used for Label Plots 748
Time 748

Memory 748

Results: PLOT Procedure 749

Scale of the Axes 749

Printed Output 749
Missing Values 749

Hidden Observations 749

Examples: PLOT Procedure 750

Example 1: Specifying a Plotting Symbol 750

Example 2: Controlling the Horizontal Axis and Adding a Reference Line 751

Example 3: Overlaying Two Plots 752
Example 4: Producing Multiple Plots per Page 753

Example 5: Plotting Data on a Logarithmic Scale 755

Example 6: Plotting Date Values on an Axis 757

Example 7: Producing a Contour Plot 759

Example 8: Plotting BY Groups 762
Example 9: Adding Labels to a Plot 764

Example 10: Excluding Observations That Have Missing Values 767

Example 11: Adjusting Labels on a Plot with the PLACEMENT= Option 769

Example 12: Adjusting Labeling on a Plot with a Macro 773

Example 13: Changing a Default Penalty 775

726 Overview: PLOT Procedure � Chapter 30

Overview: PLOT Procedure
The PLOT procedure plots the values of two variables for each observation in an

input SAS data set. The coordinates of each point on the plot correspond to the two
variables’ values in one or more observations of the input data set.

Output 30.1 on page 726 is a simple plot of the high values of the Dow Jones
Industrial Average (DJIA) between 1954 and 1994. PROC PLOT determines the plotting
symbol and the scales for the axes. These are the statements that produce the output:

options nodate pageno=1 linesize=64
pagesize=25;

proc plot data=djia;
plot high*year;
title ’High Values of the Dow Jones’;
title2 ’Industrial Average’;
title3 ’from 1954 to 1994’;

run;

Output 30.1 A Simple Plot

High Values of the Dow Jones 1
Industrial Average
from 1954 to 1994

Plot of High*Year. Legend: A = 1 obs, B = 2 obs, etc.

4000 + A
| A
| AA

High | A
| A A
| A

2000 + A
| A
| AA
| AAAAAAAAAAAAAAAAAAA
| AAAAAAAA
| AA

0 +
---+---------+---------+---------+---------+---------+--

1950 1960 1970 1980 1990 2000

Year

You can also overlay two plots, as shown in Output 30.2 on page 726. One plot shows
the high values of the DJIA; the other plot shows the low values. The plot also shows
that you can specify plotting symbols and put a box around a plot. The statements that
produce Output 30.2 on page 726 are shown in Example 3 on page 752.

The PLOT Procedure � Overview: PLOT Procedure 727

Output 30.2 Plotting Two Sets of Values at Once

Plot of Highs and Lows 1
for the Dow Jones Industrial Average

Plot of High*Year. Symbol used is ’*’.
Plot of Low*Year. Symbol used is ’o’.

---+---------+---------+---------+---------+---------+---
4000 + * +

| * |
| * o |
| *oo |

High | * |
| * * |
| o |
| *oo |

2000 + * o +
| o |
| *o |
| **o |
| ****** ************oo |
| *****oooooo*o o oooooooo |
| *****oooo o |
| o |

0 + +
---+---------+---------+---------+---------+---------+---

1950 1960 1970 1980 1990 2000

Year

NOTE: 7 obs hidden.

PROC PLOT can also label points on a plot with the values of a variable, as shown in
Output 30.3 on page 727. The data plotted represent population density and crime
rates for selected U.S. states. The SAS code that produces Output 30.3 on page 727 is
shown in Example 11 on page 769.

728 Syntax: PLOT Procedure � Chapter 30

Output 30.3 Labeling Points on a Plot

A Plot of Population Density and Crime Rates 1

Plot of Density*CrimeRate$State. Symbol is value of State.

---+------------+------------+------------+------------+------------+------------+------------+---

Density | |

500 + +

| |

| Maryland |

| M |

| |

| |

| |

| |

| Delaware |

| D |

| Pennsylvania Ohio |

| P O |

250 + +

| Illinois |

| I Florida |

| F |

| North Carolina California |

| New South C |

| West Hampshire Alabama N Carolina |

| Virginia N T S G Georgia |

| W Mississippi A Tennessee Washington Texas |

| M Vermont V M Missouri Oklahoma W T |

| South Arkansas A M Minnesota O Oregon |

| Dakota I Idaho Nevada O |

0 + S N North Dakota N +

---+------------+------------+------------+------------+------------+------------+------------+---

2000 3000 4000 5000 6000 7000 8000 9000

CrimeRate

Syntax: PLOT Procedure
Requirement: At least one PLOT statement is required.

Tip: Supports RUN-group processing

Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.

Reminder: You can use the ATTRIB, FORMAT, LABEL, and WHERE statements. See
Chapter 3, “Statements with the Same Function in Multiple Procedures,” on page 53 for
details. You can also use any global statements as well. See “Global Statements” on
page 18 for a list.

PROC PLOT <option(s)>;

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

PLOT plot-request(s) </ option(s)>;

The PLOT Procedure � PROC PLOT Statement 729

To do this Use this statement

Produce a separate plot for each BY group BY

Describe the plots you want PLOT

PROC PLOT Statement
Reminder: You can use data set options with the DATA= option. See “Data Set Options”
on page 17 for a list.

PROC PLOT <option(s)>;

To do this Use this option

Specify the input data set DATA=

Control the axes

Include missing character variable values MISSING

Exclude observations with missing values NOMISS

Uniformly scale axes across BY groups UNIFORM

Control the appearance of the plot

Specify the characters that construct the borders
of the plot

FORMCHAR=

Suppress the legend at the top of the plot NOLEGEND

Specify the aspect ratio of the characters on the
output device

VTOH=

Control the size of the plot

Specify the percentage of the available
horizontal space for each plot

HPERCENT=

Specify the percentage of the available vertical
space for each plot

VPERCENT=

Options

DATA=SAS-data-set
specifies the input SAS data set.
Main discussion: See Chapter 2, "Fundamental Concepts for Using Base SAS

Procedures."

FORMCHAR <(position(s))>=’formatting-character(s)’

730 PROC PLOT Statement � Chapter 30

defines the characters to use for constructing the borders of the plot.

position(s)
identifies the position of one or more characters in the SAS formatting-character
string. A space or a comma separates the positions.
Default: Omitting (position(s)), is the same as specifying all twenty possible SAS

formatting characters, in order.
Range: PROC PLOT uses formatting characters 1, 2, 3, 5, 7, 9, and 11. The

following table shows the formatting characters that PROC PLOT uses.

Position Default Used to draw

1 | vertical separators

2 - horizontal separators

3 5 9 1 1 - corners

7 + intersection of vertical
and horizontal separators

formatting-character(s)
lists the characters to use for the specified positions. PROC PLOT assigns
characters in formatting-character(s) to position(s), in the order that they are
listed. For instance, the following option assigns the asterisk (*) to the third
formatting character, the pound sign (#) to the seventh character, and does not
alter the remaining characters:

formchar(3,7)=’*#’

Interaction: The SAS system option FORMCHAR= specifies the default formatting
characters. The system option defines the entire string of formatting characters.
The FORMCHAR= option in a procedure can redefine selected characters.

Tip: You can use any character in formatting-characters, including hexadecimal
characters. If you use hexadecimal characters, you must put an x after the closing
quote. For instance the following option assigns the hexadecimal character 2D to
the third formatting character, the hexadecimal character 7C to the seventh
character, and does not alter the remaining characters:

formchar(3,7)=’2D7C’x

Tip: Specifying all blanks for formatting-character(s) produces plots with no
borders, for example

formchar (1,2,7)=’’

HPERCENT=percent(s)
specifies one or more percentages of the available horizontal space to use for each
plot. HPERCENT= enables you to put multiple plots on one page. PROC PLOT tries
to fit as many plots as possible on a page. After using each of the percent(s), PROC
PLOT cycles back to the beginning of the list. A zero in the list forces PROC PLOT to
go to a new page even though it could fit the next plot on the same page.

hpercent=33
prints three plots per page horizontally, each plot is one-third of a page wide.

hpercent=50 25 25
prints three plots per page, the first is twice as wide as the other two.

The PLOT Procedure � PROC PLOT Statement 731

hpercent=33 0
produces plots that are one-third of a page wide, each plot is on a separate page.

hpercent=300
produces plots three pages wide.
At the beginning of every BY group and after each RUN statement, PROC PLOT

returns to the beginning of the percent(s) and starts printing a new page.

Alias: HPCT=

Default: 100

Featured in: Example 4 on page 753

MISSING
includes missing character variable values in the construction of the axes. It has no
effect on numeric variables.

Interaction: overrides the NOMISS option for character variables

NOLEGEND
suppresses the legend at the top of each plot. The legend lists the names of the
variables being plotted and the plotting symbols used in the plot.

NOMISS
excludes observations for which either variable is missing from the calculation of the
axes. Normally, PROC PLOT draws an axis based on all the values of the variable
being plotted, including points for which the other variable is missing.

Interaction: The HAXIS= option overrides the effect of NOMISS on the horizontal
axis. The VAXIS= option overrides the effect on the vertical axis.

Interaction: NOMISS is overridden by MISSING for character variables.

Featured in: Example 10 on page 767

UNIFORM
uniformly scales axes across BY groups. Uniform scaling allows you to directly
compare the plots for different values of the BY variables.

Restriction: You cannot use PROC PLOT with the UNIFORM option with an
engine that supports concurrent access if another user is updating the data set at
the same time.

VPERCENT=percent(s)
specifies one or more percentages of the available vertical space to use for each plot.
If you use a percentage greater than 100, PROC PLOT prints sections of the plot on
successive pages.

Alias: VPCT=

Default: 100

Featured in: Example 4 on page 753

See also: HPERCENT= on page 730

VTOH=aspect-ratio
specifies the aspect ratio (vertical to horizontal) of the characters on the output
device. aspect-ratio is a positive real number. If you use the VTOH= option, PROC
PLOT spaces tick marks so that the distance between horizontal tick marks is nearly
equal to the distance between vertical tick marks. For example, if characters are
twice as high as wide, specify VTOH=2.

Minimum: 0

Interaction: VTOH= has no effect if you use the HSPACE= and the VSPACE=
options in the PLOT statement.

732 BY Statement � Chapter 30

See also: HAXIS= on page 736 for a way to equate axes so that the given distance
represents the same data range on both axes.

BY Statement

Produces a separate plot and starts a new page for each BY group.

Main discussion: “BY” on page 54
Featured in: Example 8 on page 762

BY <DESCENDING> variable-1
<…<DESCENDING> variable-n>
<NOTSORTED>;

Required Arguments

variable
specifies the variable that the procedure uses to form BY groups. You can specify
more than one variable. If you do not use the NOTSORTED option in the BY
statement, the observations in the data set must either be sorted by all the variables
that you specify, or they must be indexed appropriately. Variables in a BY statement
are called BY variables.

Options

DESCENDING
specifies that the observations are sorted in descending order by the variable that
immediately follows the word DESCENDING in the BY statement.

NOTSORTED
specifies that observations are not necessarily sorted in alphabetic or numeric order.
The data are grouped in another way, for example, chronological order.

The requirement for ordering or indexing observations according to the values of
BY variables is suspended for BY-group processing when you use the NOTSORTED
option. In fact, the procedure does not use an index if you specify NOTSORTED. The
procedure defines a BY group as a set of contiguous observations that have the same
values for all BY variables. If observations with the same values for the BY variables
are not contiguous, the procedure treats each contiguous set as a separate BY group.

PLOT Statement

Requests the plots to be produced by PROC PLOT.

Tip: You can use multiple PLOT statements.

The PLOT Procedure � PLOT Statement 733

PLOT plot-request(s) </ option(s)>;

To do this Use this option

Control the axes

Specify the tick-mark values HAXIS= and VAXIS=

Expand the axis HEXPAND and VEXPAND

Specify the number of print positions HPOS=

and

VPOS=

Reverse the order of the values HREVERSE and VREVERSE

Specify the number of print positions between
tick marks

HSPACE= and VSPACE=

Assign a value of zero to the first tick mark HZERO

and

VZERO

Specify reference lines

Draw a line perpendicular to the specified
values on the axis

HREF=

and

VREF=

Specify a character to use to draw the reference
line

HREFCHAR= and VREFCHAR=

Put a box around the plot BOX

Overlay plots OVERLAY

Produce a contour plot

Draw a contour plot CONTOUR

Specify the plotting symbol for one contour level Scontour-level=

Specify the plotting symbol for multiple contour
levels

SLIST=

Label points on a plot

List the penalty and the placement state of the
points

LIST=

Force the labels away from the origin OUTWARD=

Change default penalties PENALTIES=

Specify locations for the placement of the labels PLACEMENT=

Specify a split character for the label SPLIT=

List all placement states in effect STATES

Required Arguments

734 PLOT Statement � Chapter 30

plot-request(s)
specifies the variables (vertical and horizontal) to plot and the plotting symbol to use
to mark the points on the plot.

Each form of plot-request(s) supports a label variable. A label variable is preceded
by a dollar sign ($) and specifies a variable whose values label the points on the plot.
For example,

plot y*x $ label-variable

plot y*x=’*’ $ label-variable

See “Labeling Plot Points with Values of a Variable” on page 745 for more
information. In addition, see Example 9 on page 764 and all the examples that follow
it.

The plot-request(s) can be one or more of the following:

vertical*horizontal <$ label-variable>
specifies the variable to plot on the vertical axis and the variable to plot on the
horizontal axis.

For example, the following statement requests a plot of Y by X:

plot y*x;

Y appears on the vertical axis, X on the horizontal axis.
This form of the plot request uses the default method of choosing a plotting

symbol to mark plot points. When a point on the plot represents the values of one
observation in the data set, PROC PLOT puts the character A at that point. When
a point represents the values of two observations, the character B appears. When
a point represents values of three observations, the character C appears, and so on
through the alphabet. The character Z is used for the occurrence of 26 or more
observations at the same printing position.

vertical*horizontal=’character’ <$ label-variable>
specifies the variables to plot on the vertical and horizontal axes and specifies a
plotting symbol to mark each point on the plot. A single character is used to
represent values from one or more observations.

For example, the following statement requests a plot of Y by X, with each point
on the plot represented by a plus sign (+):

plot y*x=’+’;

vertical*horizontal=variable <$ label-variable>
specifies the variables to plot on the vertical and horizontal axes and specifies a
variable whose values are to mark each point on the plot. The variable can be
either numeric or character. The first (left-most) nonblank character in the
formatted value of the variable is used as the plotting symbol (even if more than
one value starts with the same letter). When more than one observation maps to
the same plotting position, the value from the first observation marks the point.
For example, in the following statement GENDER is a character variable with
values of FEMALE and MALE : the values F and M mark each observation on the plot.

plot height*weight=gender;

Specifying Variable Lists in Plot Requests
You can use SAS variable lists in plot requests. For example, the following are valid

plot requests:

The PLOT Procedure � PLOT Statement 735

Plot request What is plotted

(a - - d) a*b a*c a*d b*c b*d
c*d

(x1 - x4) x1*x2
x1*x3 x1*x4 x2*x3
x2*x4 x3*x4

(_numeric_) All combinations of numeric variables

y*(x1 - x4) y*x1
y*x2 y*x4 y*x4

If both the vertical and horizontal specifications request more than one variable and
a variable appears in both lists, it will not be plotted against itself. For example, the
following statement does not plot B*B and C*C:

plot (a b c)*(b c d);

Specifying Combinations of Variables
The operator in request is either an asterisk (*) or a colon (:). An asterisk combines

the variables in the lists to produce all possible combinations of x and y variables. For
example, the following plot requests are equivalent:

plot (y1-y2) * (x1-x2);

plot y1*x1 y1*x2 y2*x1 y2*x2;

A colon combines the variables pairwise. Thus, the first variables of each list
combine to request a plot, as do the second, third, and so on. For example, the following
plot requests are equivalent:

plot (y1-y2) : (x1-x2);

plot y1*x1 y2*x2;

Options

BOX
draws a border around the entire plot, rather than just on the left side and bottom.
Featured in: Example 3 on page 752

CONTOUR<=number-of-levels>
draws a contour plot using plotting symbols with varying degrees of shading where
number-of-levels is the number of levels for dividing the range of variable. The plot
request must be of the form vertical*horizontal=variable where variable is a numeric
variable in the data set. The intensity of shading is determined by the values of this
variable.

When you use CONTOUR, PROC PLOT does not plot observations with missing
values for variable.

Overprinting, if it is allowed by the OVP system option, is used to produce the
shading. Otherwise, single characters varying in darkness are used. The CONTOUR
option is most effective when the plot is dense.
Default: 10

736 PLOT Statement � Chapter 30

Range: 1-10

Featured in: Example 7 on page 759

HAXIS=axis-specification
specifies the tick-mark values for the horizontal axis.

� For numeric values, axis-specification is either an explicit list of values, a BY
increment, or a combination of both:

n <...n>

BY increment

n TO n BY increment

The values must be in either ascending or descending order. Use a negative
value for increment to specify descending order. The specified values are spaced
evenly along the horizontal axis even if the values are not uniformly
distributed. Numeric values can be specified in the following ways:

HAXIS= value Comments

10 to 100 by 5 Values appear in increments of 5, starting
at 10 and ending at 100.

by 5 Values are incremented by 5. PROC PLOT
determines the minimum and maximum
values for the tick marks.

10 100 1000 10000 Values are not uniformly distributed. This
specification produces a logarithmic plot. If
PROC PLOT cannot determine the function
implied by the axis specification, it uses
simple linear interpolation between the
points. To determine whether PROC PLOT
correctly interpolates a function, you can
use the DATA step to generate data that
determines the function and see whether it
appears linear when plotted. See Example 5
on page 755 for an example.

1 2 10 to 100
by 5

A combination of the previous specifications.

� For character variables, axis-specification is a list of unique values that are
enclosed in quotes:

’value-1’ <...’value-n’>

For example,

haxis=’Paris’ ’London’ ’Tokyo’

The character strings are case-sensitive. If a character variable has an
associated format, axis-specification must specify the formatted value. The
values can appear in any order.

The PLOT Procedure � PLOT Statement 737

� For axis variables that contain date-time values, axis-specification is either an
explicit list of values or a starting and an ending value with an increment
specified:

’date-time-value’i <...’date-time-value’i>

’date-time-value’i TO <...’date-time-value’i>
<BY increment>

’date-time-value’i
any SAS date, time, or datetime value described for the SAS functions
INTCK and INTNX. The suffix i is one of the following:

D date

T time

DT datetime

increment
one of the valid arguments for the INTCK or INTNX functions: For dates,
increment can be one of the following:

DAY
WEEK
MONTH
QTR
YEAR
For datetimes, increment can be one of the following:
DTDAY
DTWEEK
DTMONTH
DTQTR
DTYEAR
For times, increment can be one of the following:
HOUR
MINUTE
SECOND
For example,

haxis=’01JAN95’d to ’01JAN96’d
by month

haxis=’01JAN95’d to ’01JAN96’d
by qtr

Note: You must use a FORMAT statement to print the tick-mark values
in an understandable form. �

Interaction: You can use the HAXIS= and VAXIS= options with the VTOH= option
to equate axes. If your data are suitable, use HAXIS=BY n and VAXIS=BY n with
the same value for n and specify a value for the VTOH= option. The number of
columns separating the horizontal tick marks is nearly equal to the number of
lines separating the vertical tick marks times the value of the VTOH= option. In
some cases, PROC PLOT cannot simultaneously use all three values and changes
one or more of the values.

738 PLOT Statement � Chapter 30

Featured in: Example 2 on page 751, Example 5 on page 755, and Example 6 on
page 757

HEXPAND
expands the horizontal axis to minimize the margins at the sides of the plot and to
maximize the distance between tick marks, if possible.

HEXPAND causes PROC PLOT to ignore information about the spacing of the
data. Plots produced with this option waste less space but may obscure the nature of
the relationship between the variables.

HPOS=axis-length
specifies the number of print positions on the horizontal axis. The maximum value of
axis-length that allows a plot to fit on one page is three positions less than the value
of the LINESIZE= system option because there must be space for the procedure to
print information next to the vertical axis. The exact maximum depends on the
number of characters in the vertical variable’s values. If axis-length is too large to fit
on a line, PROC PLOT ignores the option.

HREF=value-specification
draws lines on the plot perpendicular to the specified values on the horizontal axis.
PROC PLOT includes the values you specify with the HREF= option on the
horizontal axis unless you specify otherwise with the HAXIS= option.

For the syntax for value-specification, see HAXIS= on page 736.

Featured in: Example 8 on page 762

HREFCHAR=’character’
specifies the character to use to draw the horizontal reference line.
Default: vertical bar (|)

See also: FORMCHAR= option on page 730 and HREF= on page 738

HREVERSE
reverses the order of the values on the horizontal axis.

HSPACE=n
specifies that a tick mark will occur on the horizontal axis at every nth print
position, where n is the value of HSPACE=.

HZERO
assigns a value of zero to the first tick mark on the horizontal axis.
Interaction: PROC PLOT ignores HZERO if the horizontal variable has negative

values or if the HAXIS= option specifies a range that does not begin with zero.

LIST<=penalty-value>
lists the horizontal and vertical axis values, the penalty, and the placement state of
all points plotted with a penalty greater than or equal to penalty-value. If no plotted
points have a penalty greater than or equal to penalty-value, then no list is printed.

Tip: LIST is equivalent to LIST=0.
See also: “Understanding Penalties” on page 746

Featured in: Example 11 on page 769

OUTWARD=’character’
tries to force the point labels outward, away from the origin of the plot, by protecting
positions next to symbols that match character that are in the direction of the origin
(0,0). The algorithm tries to avoid putting the labels in the protected positions, so
they usually move outward.

Tip: This option is useful only when you are labeling points with the values of a
variable.

The PLOT Procedure � PLOT Statement 739

OVERLAY
overlays all plots specified in the PLOT statement on one set of axes. The variable
names, or variable labels if they exist, from the first plot are used to label the axes.
Unless you use the HAXIS= or the VAXIS= option, PROC PLOT automatically scales
the axes in the way that best fits all the variables.

When the SAS system option OVP is in effect and overprinting is allowed, the
plots are superimposed; otherwise, when NOOVP is in effect, PROC PLOT uses the
plotting symbol from the first plot to represent points appearing in more than one
plot. In such a case, the output includes a message telling you how many
observations are hidden.
Featured in: Example 3 on page 752

PENALTIES<(index-list)>=penalty-list
changes the default penalties. The index-list provides the positions of the penalties in
the list of penalties. The penalty-list contains the values you are specifying for the
penalties indicated in the index-list. The index-list and the penalty-list can contain
one or more integers. In addition, both index-list and penalty-list accept the form:

value TO value

See also: “Understanding Penalties” on page 746
Featured in: Example 13 on page 775

PLACEMENT=(expression(s))
controls the placement of labels by specifying possible locations of the labels relative
to their coordinates. Each expression consists of a list of one or more suboptions (H=,
L=, S=, or V=) that are joined by an asterisk or a colon. PROC PLOT uses the
asterisk and colon to expand each expression into combinations of values for the four
possible suboptions. The asterisk creates every possible combination of values in the
expression list. A colon creates only pairwise combinations. The colon takes
precedence over the asterisk. With the colon, if one list is shorter than the other, the
values in the shorter list are reused as necessary.

Use the following suboptions to control the placement:

H=integer(s)
specifies the number of horizontal spaces (columns) to shift the label relative to
the starting position. Both positive and negative integers are valid. Positive
integers shift the label to the right; negative integers shift it to the left. For
example, you can use the H= suboption in the following way:

place=(h=0 1 -1 2 -2)

You can use the keywords BY ALT in this list. BY ALT produces a series of
numbers whose signs alternate between positive and negative and whose absolute
values change by one after each pair. For instance, the following PLACE=
specifications are equivalent:

place=(h=0 -1 to -3 by alt)

place=(h=0 -1 1 -2 2 -3 3)

If the series includes zero, the zero appears twice. For example, the following
PLACE= options are equivalent:

place=(h= 0 to 2 by alt)

place=(h=0 0 1 -1 2 -2)

Default: H=0

740 PLOT Statement � Chapter 30

Range: −500 to 500

L=integer(s)
specifies the number of lines onto which the label may be split.
Default: L=1
Range: 1-200

S=start-position(s)
specifies where to start printing the label. The value for start-position can be one
or more of the following

CENTER
the procedure centers the label around the plotting symbol.

RIGHT
the label starts at the plotting symbol location and continues to the right.

LEFT
the label starts to the left of the plotting symbol and ends at the plotting symbol
location.

Default: CENTER

V=integer(s)
specifies the number of vertical spaces (lines) to shift the label relative to the
starting position. V= behaves the same as the H= suboption, described earlier.
A new expression begins when a suboption is not preceded by an operator.

Parentheses around each expression are optional. They make it easier to recognize
individual expressions in the list. However, the entire expression list must be in
parentheses, as shown in the following example. Table 30.1 on page 741 shows how
this expression is expanded and describes each placement state.

place=((v=1)
(s=right left : h=2 -2)
(v=-1)
(h=0 1 to 2 by alt * v=1 -1)
(l=1 to 3 * v=1 to 2 by alt *

h=0 1 to 2 by alt))

Each combination of values is a placement state. The procedure uses the
placement states in the order in which they appear in the placement states list, so
specify your most preferred placements first. For each label, the procedure tries all
states, then uses the first state that places the label with minimum penalty. Once all
labels are initially placed, the procedure cycles through the plot multiple times,
systematically refining the placements. The refinement step tries to both minimize
the penalties and to use placements nearer to the beginning of the states list.
However, PROC PLOT uses a heuristic approach for placements, so the procedure
does not always find the best set of placements.
Alias: PLACE=
Defaults: There are two defaults for the PLACE= option. If you are using a blank

as your plotting symbol, the default placement state is PLACE=(S=CENTER : V=0
: H=0 : L=1), which centers the label. If you are using anything other than a
blank, the default is PLACE=((S=RIGHT LEFT : H=2 −2) (V=1 −1 * H=0 1 -1 2
-2)). The default for labels placed with symbols includes multiple positions around
the plotting symbol so the procedure has flexibility when placing labels on a
crowded plot.

Tip: Use the STATES option to print a list of placement states.
See also: “Labeling Plot Points with Values of a Variable” on page 745
Featured in: Example 11 on page 769 and Example 12 on page 773

The PLOT Procedure � PLOT Statement 741

Table 30.1 Expanding an Expression List into Placement States

Expression Placement state Meaning

(V=1) S=CENTER L=1 H=0 V=1 Center the label, relative to the
point, on the line above the
point. Use one line for the label.

(S=RIGHT LEFT : H=2 −2) S=RIGHT L=1 H=2 V=0 Begin the label in the second
column to the right of the point.
Use one line for the label.

S=LEFT L=1 H=−2 V=0 End the label in the second
column to the left of the point.
Use one line for the label.

(V=−1) S=CENTER L=1 H=0 V=− 1 Center the label, relative to the
point, on the line below the
point. Use one line for the label.

(H=0 1 to 2 BY ALT * V=1 −1) S=CENTER L=1 H=0 V=1 Center the label, relative to the
point, on the line above the
point.

S=CENTER L=1 H=0 V=−1 Center the label, relative to the
point, on the line below the
point.

S=CENTER L=1 H=1 V=1 From center, shift the label one
column to the right on the line
above the point.

S=CENTER L=1 H=1 V=−1 From center, shift the label one
column to the right on the line
below the point.

S=CENTER L=1 H=−1 V=1 From center, shift the label one
column to the left on the line
above the point.

S=CENTER L=1 H=− 1 V=−1 From center, shift the label one
column to the left on the line
below the point.

S=CENTER L=1 H=2 V=1
S=CENTER L=1 H=2 V=−1

From center, shift the labels two
columns to the right, first on
the line above the point, then
on the line below.

S=CENTER L=1 H=−2 V=1

S=CENTER L=1 H=−2 V=−1

From center, shift the labels two
columns to the left, first on the
line above the point, then on
the line below.

(L=1 to 3 * V=1 to 2 BY ALT * H=0 1 to
2 BY ALT)

S=CENTER L=1 H=0 V=1 Center the label, relative to the
point, on the line above the
point. Use one line for the label.

S=CENTER L=1 H=1 V=1
S=CENTER L=1 H=−1 V=1
S=CENTER L=1 H=2 V=1
S=CENTER L=1 H=−2 V=1

From center, shift the label one
or two columns to the right or
left on the line above the point.
Use one line for the label.

742 PLOT Statement � Chapter 30

Expression Placement state Meaning

S=CENTER L=1 H=0 V=−1 Center the label, relative to the
point, on the line below the
point. Use one line for the label.

S=CENTER L=1 H=1 V=−1
S=CENTER L=1 H=−1 V=−1
S=CENTER L=1 H=2 V=−1
S=CENTER L=1 H=−2 V=−1

From center, shift the label one
or two columns to the right and
the left on the line below the
point.

.

.

. Use the same horizontal shifts
on the line two lines above the
point and on the line two lines
below the point.

S=CENTER L=1 H=− 2 V=−2

S=CENTER L=2 H=0 V=1 Repeat the whole process
splitting the label over two
lines. Then repeat it splitting
the label over three lines.

.

.

.

S=CENTER L=3 H=− 2 V=−2

Scontour-level=’character-list’
specifies the plotting symbol to use for a single contour level. When PROC PLOT
produces contour plots, it automatically chooses the symbols to use for each level of
intensity. You can use the S= option to override these symbols and specify your own.
You can include up to three characters in character-list. If overprinting is not
allowed, PROC PLOT uses only the first character.

For example, to specify three levels of shading for the Z variable, use the following
statement:

plot y*x=z /
contour=3 s1=’A’ s2=’+’ s3=’X0A’;

You can also specify the plotting symbols as hexadecimal constants:

plot y*x=z /
contour=3 s1=’7A’x s2=’7F’x s3=’A6’x;

This feature was designed especially for printers where the hex constants can
represent grey-scale fill characters.

Range: 1 to the highest contour level (determined by the CONTOUR option).

See also: SLIST= and CONTOUR

SLIST=’character-list-1’ <...’character-list-n’>
specifies plotting symbols for multiple contour levels. Each character-list specifies the
plotting symbol for one contour level: the first character-list for the first level, the
second character-list for the second level, and so on. For example:

The PLOT Procedure � PLOT Statement 743

plot y*x=z /
contour=5 slist=’.’ ’:’ ’!’ ’=’ ’+O’;

Default: If you omit a plotting symbol for each contour level, PROC PLOT uses the
default symbols:

slist=’.’ ’,’ ’-’ ’=’ ’+’ ’O’ ’X’
’W’ ’*’ ’#’

Restriction: If you use the SLIST= option, it must be listed last in the PLOT
statement.

See also: Scontour-level= and CONTOUR=

SPLIT=’split-character’
when labeling plot points, specifies where to split the label when the label spans two
or more lines. The label is split onto the number of lines specified in the L=
suboption to the PLACEMENT= option. If you specify a split character, the
procedure always splits the label on each occurrence of that character, even if it
cannot find a suitable placement. If you specify L=2 or more but do not specify a split
character, the procedure tries to split the label on blanks or punctuation but will split
words if necessary.

PROC PLOT shifts split labels as a block, not as individual fragments (a fragment
is the part of the split label that is contained on one line). For example, to force This
is a label to split after the a , change it to This is a*label and specify
SPLIT=’* ’.
See also: “Labeling Plot Points with Values of a Variable” on page 745

STATES
lists all the placement states in effect. STATES prints the placement states in the
order that you specify them in the PLACE= option.

VAXIS=axis-specification
specifies tick mark values for the vertical axis. VAXIS= follows the same rules as
theHAXIS= option on page 736.
Featured in: Example 7 on page 759 and Example 12 on page 773

VEXPAND
expands the vertical axis to minimize the margins above and below the plot and to
maximize the space between vertical tick marks, if possible.
See also: HEXPAND on page 738

VPOS=axis-length
specifies the number of print positions on the vertical axis. The maximum value for
axis-length that allows a plot to fit on one page is 8 lines less than the value of the
SAS system option PAGESIZE= because you must allow room for the procedure to
print information under the horizontal axis. The exact maximum depends on the
titles used, whether or not plots are overlayed, and whether or not CONTOUR is
specified. If the value of axis-length specifies a plot that cannot fit on one page, the
plot spans multiple pages.
See also: HPOS= on page 738

VREF=value-specification
draws lines on the plot perpendicular to the specified values on the vertical axis.
PROC PLOT includes the values you specify with the VREF= option on the vertical
axis unless you specify otherwise with the VAXIS= option. For the syntax for
value-specification, see HAXIS= on page 736.
Featured in: Example 2 on page 751

VREFCHAR=’character’

744 Concepts: PLOT Procedure � Chapter 30

specifies the character to use to draw the vertical reference lines.
Default: horizontal bar (-)
See also: FORMCHAR= option on page 730, HREFCHAR= on page 738, and

VREF= on page 743

VREVERSE
reverses the order of the values on the vertical axis.

VSPACE=n
specifies that a tick mark will occur on the vertical axis at every nth print position,
where n is the value of VSPACE=.

VZERO
assigns a value of zero to the first tick mark on the vertical axis.
Interaction: PROC PLOT ignores the VZERO option if the vertical variable has

negative values or if the VAXIS= option specifies a range that does not begin with
zero.

Concepts: PLOT Procedure

RUN Groups
PROC PLOT is an interactive procedure. It remains active after a RUN statement is

executed. Usually, SAS terminates a procedure after executing a RUN statement. Once
you start the procedure, you can continue to submit any valid statements without
resubmitting the PROC PLOT statement. Thus, you can easily experiment with
changing labels, values of tick marks, and so forth. Any options submitted in the PROC
PLOT statement remain in effect until you submit another PROC PLOT statement.

When you submit a RUN statement, PROC PLOT executes all the statements
submitted since the last PROC PLOT or RUN statement. Each group of statements is
called a RUN group. With each RUN group, PROC PLOT begins a new page and begins
with the first item in the VPERCENT= and HPERCENT= lists, if any.

To terminate the procedure, submit a QUIT statement, a DATA statement, or a
PROC statement. Like the RUN statement, each of these statements completes a RUN
group. If you do not want to execute the statements in the RUN group, use the RUN
CANCEL statement, which terminates the procedure immediately.

You can use the BY statement interactively. The BY statement remains in effect
until you submit another BY statement or terminate the procedure.

See Example 11 on page 769 for an example of using RUN group processing with
PROC PLOT.

Generating Data with Program Statements
When you generate data to be plotted, a good rule is to generate fewer observations

than the number of positions on the horizontal axis. PROC PLOT then uses the
increment of the horizontal variable as the interval between tick marks.

Because PROC PLOT prints one character for each observation, using SAS program
statements to generate the data set for PROC PLOT can enhance the effectiveness of
continuous plots. For example, suppose that you want to generate data in order to plot
the following equation, for x ranging from 0 to 100:

The PLOT Procedure � Labeling Plot Points with Values of a Variable 745

� � ���� � �����

You can submit these statements:

options linesize=80;
data generate;

do x=0 to 100 by 2;
y=2.54+3.83*x;
output;

end;
run;
proc plot data=generate;

plot y*x;
run;

If the plot is printed with a LINESIZE= value of 80, about 75 positions are available
on the horizontal axis for the X values. Thus, 2 is a good increment: 51 observations
are generated, which is fewer than the 75 available positions on the horizontal axis.

However, if the plot is printed with a LINESIZE= value of 132, an increment of 2
produces a plot with a space between each plotting symbol. For a smoother line, a
better increment is 1, since 101 observations are generated.

Labeling Plot Points with Values of a Variable

Pointer Symbols
When you are using a label variable and do not specify a plotting symbol or if the

value of the variable you use as the plotting symbol is null (’00’x), PROC PLOT uses
pointer symbols as plotting symbols. Pointer symbols associate a point with its label by
pointing in the general direction of the label placement. PROC PLOT uses four
different pointer symbols based on the value of the S= and V= suboptions in the
PLACEMENT= option. The table below shows the pointer symbols:

S= V= Symbol

LEFT any <

RIGHT any >

CENTER >0

C

ˆ

ENTER <=0 v

If you are using pointer symbols and multiple points coincide, PROC PLOT uses the
number of points as the plotting symbol if it is between 2 and 9. If it is more than 9,
the procedure uses an asterisk.

Note: Because of character set differences among operating environments, the
pointer symbol for S=CENTER and V>0 may differ from the one shown here. �

746 Labeling Plot Points with Values of a Variable � Chapter 30

Understanding Penalties
PROC PLOT assesses the quality of placements with penalties. If all labels are

plotted with zero penalty, no labels collide and all labels are near their symbols. When
it is not possible to place all labels with zero penalty, PROC PLOT tries to minimize the
total penalty. Table 30.2 on page 746 gives a description of the penalty, the default
value of the penalty, the index you use to reference the penalty, and the range of values
you can specify if you change the penalties. Each penalty is described in more detail in
Table 30.3 on page 746.

Table 30.2 Penalties Table

Penalty Default penalty Index Range

not placing a blank 1 1 0-500

bad split, no split character specified 1 2 0-500

bad split with split character 50 3 0-500

free horizontal shift, fhs 2 4 0-500

free vertical shift, fvs 1 5 0-500

vertical shift weight, vsw 2 6 0-500

vertical/horizontal shift denominator, vhsd 5 7 1-500

collision state 500 8 0-10,000

(reserved for future use) 9-14

not placing the first character 11 15 0-500

not placing the second character 10 16 0-500

not placing the third character 8 17 0-500

not placing the fourth character 5 18 0-500

not placing the fifth through 200th character 2 19-214 0-500

Table 30.3 on page 746 contains the index values from Table 30.2 on page 746 with a
description of the corresponding penalty.

Table 30.3 Index Values for Penalties

1 a nonblank character in the plot collides with an embedded blank in a label, or there is not a blank or a
plot boundary before or after each label fragment.

2 a split occurs on a nonblank or nonpunctuation character when you do not specify a split character.

3 a label is placed with a different number of lines than the L= suboption specifies, when you specify a
split character.

The PLOT Procedure � Labeling Plot Points with Values of a Variable 747

4-7 a label is placed far away from the corresponding point. PROC PLOT calculates the penalty according to
this (integer arithmetic) formula:

������� � � ���� �� � ��� ������� � � ��������� � � �� ��� ��	 ����	

Notice that penalties 4 through 7 are actually just components of the formula used to determine the
penalty. Changing the penalty for a free horizontal or free vertical shift to a large value such as 500 has
the effect of removing any penalty for a large horizontal or vertical shift. Example 6 on page 757
illustrates a case in which removing the horizontal shift penalty is useful.

8 a label may collide with its own plotting symbol. If the plotting symbol is blank, a collision state cannot
occur. See “Collision States” on page 747 for more information.

15-214 a label character does not appear in the plot. By default, the penalty for not printing the first character
is greater than the penalty for not printing the second character, and so on. By default, the penalty for
not printing the fifth and subsequent characters is the same.

Note: Labels can share characters without penalty. �

Changing Penalties
You can change the default penalties with the PENALTIES= option in the PLOT

statement. Because PROC PLOT considers penalties when it places labels, changing
the default penalties can change the placement of the labels. For example, if you have
labels that all begin with the same two-letter prefix, you might want to increase the
default penalty for not printing the third, fourth, and fifth characters to 11, 10, and 8
and decrease the penalties for not printing the first and second characters to 2. The
following PENALTIES= option accomplishes this change:

penalties(15 to 20)=2 2 11 10 8 2

This example extends the penalty list. The twentieth penalty of 2 is the penalty for
not printing the sixth through 200th character. When the last index i is greater than
18, the last penalty is used for the (i − 14)th character and beyond.

You can also extend the penalty list by just specifying the starting index. For
example, the following PENALTIES= option is equivalent to the one above:

penalties(15)=2 2 11 10 8 2

Collision States
Collision states are placement states that may cause a label to collide with its own

plotting symbol. PROC PLOT usually avoids using collision states because of the large
default penalty of 500 that is associated with them. PROC PLOT does not consider the
actual length or splitting of any particular label when determining if a placement state
is a collision state. The following are the rules that PROC PLOT uses to determine
collision states:

� When S=CENTER, placement states that do not shift the label up or down
sufficiently so that all of the label is shifted onto completely different lines from
the symbol are collision states.

� When S=RIGHT, placement states that shift the label zero or more positions to the
left without first shifting the label up or down onto completely different lines from
the symbol are collision states.

� When S=LEFT, placement states that shift the label zero or more positions to the
right without first shifting the label up or down onto completely different lines
from the symbol are collision states.

748 Labeling Plot Points with Values of a Variable � Chapter 30

Note: A collision state cannot occur if you do not use a plotting symbol. �

Reference Lines
PROC PLOT places labels and computes penalties before placing reference lines on a

plot. The procedure does not attempt to avoid rows and columns that contain reference
lines.

Hidden Label Characters
In addition to the number of hidden observations and hidden plotting symbols, PROC

PLOT prints the number of hidden label characters. Label characters can be hidden by
plotting symbols or other label characters.

Overlaying Label Plots
When you overlay a label plot and a nonlabel plot, PROC PLOT tries to avoid

collisions between the labels and the characters of the nonlabel plot. When a label
character collides with a character in a nonlabel plot, PROC PLOT adds the usual
penalty to the penalty sum.

When you overlay two or more label plots, all label plots are treated as a single plot
in avoiding collisions and computing hidden character counts. Labels of different plots
never overprint, even with the OVP system option in effect.

Computational Resources Used for Label Plots
This section uses the following variables to discuss how much time and memory

PROC PLOT uses to construct label plots:

n number of points with labels

len constant length of labels

s number of label pieces, or fragments

p number of placement states specified in the PLACE= option.

Time
For a given plot size, the time required to construct the plot is roughly proportional

to �� ���. The amount of time required to split the labels is roughly proportional to
��

�. Generally, the more placement states you specify, the more time that PROC PLOT
needs to place the labels. However, increasing the number of horizontal and vertical
shifts gives PROC PLOT more flexibility to avoid collisions, often resulting in less time
used to place labels.

Memory
PROC PLOT uses 24p bytes of memory for the internal placement state list. PROC

PLOT uses � ��� � ����� �� �� � ��� ��� ���� bytes for the internal list of labels.
PROC PLOT buildsall plots in memory; each printing position uses one byte of memory.
If you run out of memory, request fewer plots in each PLOT statement and put a RUN
statement after each PLOT statement.

The PLOT Procedure � Hidden Observations 749

Results: PLOT Procedure

Scale of the Axes
Normally, PROC PLOT looks at the minimum difference between each pair of the five

lowest ordered values of each variable (the delta) and ensures that there is no more
than one of these intervals per print position on the final scaled axis, if possible. If
there is not enough room to do this, and if PROC PLOT guesses that the data were
artificially generated, it puts a fixed number of deltas in each print position. Otherwise,
it ignores the value.

Printed Output
Each plot uses one full page unless the plot’s size is changed by the VPOS= and

HPOS= options in the PLOT statement, the VPERCENT= or HPERCENT= options in
the PROC PLOT statement, or the PAGESIZE= and LINESIZE= system options. Titles,
legends, and variable labels are printed at the top of each page. Each axis is labeled
with the variable’s name or, if it exists, the variable’s label.

Normally, PROC PLOT begins a new plot on a new page. However, the VPERCENT=
and HPERCENT= options enable you to print more than one plot on a page.
VPERCENT= and HPERCENT= are described earlier in “PROC PLOT Statement” on
page 729.

PROC PLOT always begins a new page after a RUN statement and at the beginning
of a BY group.

Missing Values
If values of either of the plotting variables are missing, PROC PLOT does not include

the observation in the plot. However, in a plot of Y*X, values of X with corresponding
missing values of Y are included in scaling the X axis, unless the NOMISS option is
specified in the PROC PLOT statement.

Hidden Observations
By default, PROC PLOT uses different plotting symbols (A, B, C, and so on) to

represent observations whose values coincide on a plot. However, if you specify your
own plotting symbol or if you use the OVERLAY option, you may not be able to
recognize coinciding values.

If you specify a plotting symbol, PROC PLOT uses the same symbol regardless of the
number of observations whose values coincide. If you use the OVERLAY option and
overprinting is not in effect, PROC PLOT uses the symbol from the first plot request. In
both cases, the output includes a message telling you how many observations are
hidden.

750 Examples: PLOT Procedure � Chapter 30

Examples: PLOT Procedure

Example 1: Specifying a Plotting Symbol

Procedure features:
PLOT statement

plotting symbol in plot request

This example expands on Output 30.1 on page 726 by specifying a different plotting
symbol.

Program

options nodate number pageno=1 linesize=80 pagesize=35;

The data set DJIA contains the high and low closing marks for the Dow Jones Industrial
Average from 1954 to 1994. A DATA step on page 1621 creates this data set.

data djia;
input Year @7 HighDate date7. High @24 LowDate date7. Low;
format highdate lowdate date7.;
datalines;

1954 31DEC54 404.39 11JAN54 279.87
1955 30DEC55 488.40 17JAN55 388.20
...more data lines...
1993 29DEC93 3794.33 20JAN93 3241.95
1994 31JAN94 3978.36 04APR94 3593.35
;

The plot request plots the values of High on the vertical axis and the values of Year on the
horizontal axis. It also specifies an asterisk as the plotting symbol.

proc plot data=djia;
plot high*year=’*’;
title ’High Values of the Dow Jones Industrial Average’;
title2 ’from 1954 to 1994’;

run;

The PLOT Procedure � Program 751

Output

PROC PLOT determines the tick marks and the scale of both axes.

High Values of the Dow Jones Industrial Average 1
from 1954 to 1994

Plot of High*Year. Symbol used is ’*’.

High |
|

4000 + *
| *
|
| *
| *

3000 + *
| * *
|
|
| *

2000 + *
|
| *
|
| **

1000 + ***** *** *** ***
| **** * ** *
| *****
| **
|

0 +
|
---+---------+---------+---------+---------+---------+--

1950 1960 1970 1980 1990 2000

Year

Example 2: Controlling the Horizontal Axis and Adding a Reference Line
Procedure features:

PLOT statement options:
HAXIS=
VREF=

Data set: DJIA on page 750

This example specifies values for the horizontal axis and draws a reference line from
the vertical axis.

Program

options nodate pageno=1 linesize=80 pagesize=35;

752 Output � Chapter 30

The plot request plots the values of High on the vertical axis and the values of Year on the
horizontal axis. It also specifies an asterisk as the plotting symbol. HAXIS= specifies that the
horizontal axis will show the values 1950 to 1995 in five-year increments. VREF= draws a
reference line that extends from the value 3000 on the vertical axis.

proc plot data=djia;
plot high*year=’*’ / haxis=1950 to 1995 by 5 vref=3000;
title ’High Values of Dow Jones Industrial Average’;
title2 ’from 1954 to 1994’;

run;

Output

High Values of Dow Jones Industrial Average 1
from 1954 to 1994

Plot of High*Year. Symbol used is ’*’.

High |
|

4000 + *
| *
|
| *
| *

3000 +--*---------
| * *
|
|
| *

2000 + *
|
| *
|
| **

1000 + * ** ** ** * ** * * **
| ** ** * * * *
| ** ** *
| * *
|

0 +
|
-+-------+-------+-------+-------+-------+-------+-------+-------+-------+-

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995

Year

Example 3: Overlaying Two Plots

Procedure features:
PLOT statement options

BOX
OVERLAY

Data set: DJIA on page 750

The PLOT Procedure � Example 4: Producing Multiple Plots per Page 753

This example overlays two plots and puts a box around the plot.

Program

options nodate pageno=1 linesize=64 pagesize=30;

The first plot request plots High on the vertical axis, plots Year on the horizontal axis, and
specifies an asterisk as a plotting symbol. The second plot request plots Low on the vertical axis,
plots Year on the horizontal axis, and specifies an ’o ’ as a plotting symbol. OVERLAY
superimposes the second plot onto the first. BOX draws a box around the plot. OVERLAY and
BOX apply to both plot requests.

proc plot data=djia;
plot high*year=’*’

low*year=’o’ / overlay box;
title ’Plot of Highs and Lows’;
title2 ’for the Dow Jones Industrial Average’;

run;

Output

Plot of Highs and Lows 1
for the Dow Jones Industrial Average

Plot of High*Year. Symbol used is ’*’.
Plot of Low*Year. Symbol used is ’o’.

---+---------+---------+---------+---------+---------+---
4000 + * +

| * |
| * o |
| *oo |

High | * |
| * * |
| o |
| *oo |

2000 + * o +
| o |
| *o |
| **o |
| ****** ************oo |
| *****oooooo*o o oooooooo |
| *****oooo o |
| o |

0 + +
---+---------+---------+---------+---------+---------+---

1950 1960 1970 1980 1990 2000

Year

NOTE: 7 obs hidden.

Example 4: Producing Multiple Plots per Page
Procedure features:

754 Program � Chapter 30

PROC PLOT statement options
HPERCENT=
VPERCENT=

Data set: DJIA on page 750

This example puts three plots on one page of output.

Program

options nodate pageno=1 linesize=120 pagesize=60;

VPERCENT= specifies that 50% of the vertical space on the page of output is used for each plot.
HPERCENT= specifies that 50% of the horizontal space is used for each plot.

proc plot data=djia vpercent=50 hpercent=50;

This plot request plots the values of High on the vertical axis and the values of Year on the
horizontal axis. It also specifies an asterisk as the plotting symbol.

plot high*year=’*’;

This plot request plots the values of Low on the vertical axis and the values of Year on the
horizontal axis. It also specifies an asterisk as the plotting symbol.

plot low*year=’o’;

The first plot request plots High on the vertical axis, plots Year on the horizontal axis, and
specifies an asterisk as a plotting symbol. The second plot request plots Low on the vertical axis,
plots Year on the horizontal axis, and specifies an ’o ’ as a plotting symbol. OVERLAY
superimposes the second plot onto the first. BOX draws a box around the plot. OVERLAY and
BOX apply to both plot requests.

plot high*year=’*’ low*year=’o’ / overlay box;
title ’Plots of the Dow Jones Industrial Average’;
title2 ’from 1954 to 1994’;
run;

The PLOT Procedure � Example 5: Plotting Data on a Logarithmic Scale 755

Output

Plots of the Dow Jones Industrial Average 1

from 1954 to 1994

Plot of High*Year. Symbol used is ’*’. Plot of Low*Year. Symbol used is ’o’.

4000 + * 4000 +

| * |

| | o

| * | o

High | * Low | o

| ** |

| * |

| | oo

| * | o

2000 + * 2000 +

| | oo

| * | o

| ** |

| ** * *** | ooo

| ******** ** *** | o oo ooo oo o o

| ****** | ooo oo o oo oo o o o

| **** | oooo o

| | o

0 + 0 +

-+---------+---------+---------+---------+---------+- -+---------+---------+---------+---------+---------+-

1950 1960 1970 1980 1990 2000 1950 1960 1970 1980 1990 2000

Year Year

Plot of High*Year. Symbol used is ’*’.

Plot of Low*Year. Symbol used is ’o’.

-+---------+---------+---------+---------+---------+-

4000 + * +

| * |

| * o |

| *oo |

High | * |

| * * |

| o |

| *oo |

2000 + * o +

| o |

| *o |

| **o |

| ****** ************oo |

| *****oooooo*o o oooooooo |

| *****oooo o |

| o |

0 + +

-+---------+---------+---------+---------+---------+-

1950 1960 1970 1980 1990 2000

Year

NOTE: 7 obs hidden.

Example 5: Plotting Data on a Logarithmic Scale
Procedure features:

756 Program � Chapter 30

PLOT statement option
HAXIS=

This example uses a DATA step to generate data. The PROC PLOT step shows two
plots of the same data — one plot without a horizontal axis specification and one plot
with a logarithmic scale specified for the horizontal axis.

Program

options nodate pageno=1 linesize=80 pagesize=40;

The DATA step generates the values of X and Y. The values of X result from using specified
values of Y as an exponent.

data equa;
do Y=1 to 3 by .1;

X=10**y;
output;

end;
run;

HPERCENT= makes room for two plots side-by-side by specifying that 50% of the horizontal
space is used for each plot.

proc plot data=equa hpercent=50;

The plot requests plot Y on the vertical axis and X on the horizontal axis. HAXIS= specifies a
logarithmic scale for the horizontal axis for the second plot.

plot y*x;
plot y*x / haxis=10 100 1000;
title ’Two Plots with Different’;
title2 ’Horizontal Axis Specifications’;

run;

The PLOT Procedure � Program 757

Output

Two Plots with Different 1
Horizontal Axis Specifications

Plot of Y*X. A=1, B=2, etc. Plot of Y*X. A=1, B=2, etc.

Y | Y |
| |

3.0 + A 3.0 + A
2.9 + A 2.9 + A
2.8 + A 2.8 + A
2.7 + A 2.7 + A
2.6 + A 2.6 + A
2.5 + A 2.5 + A
2.4 + A 2.4 + A
2.3 + A 2.3 + A
2.2 + A 2.2 + A
2.1 + A 2.1 + A
2.0 + A 2.0 + A
1.9 + A 1.9 + A
1.8 + A 1.8 + A
1.7 + A 1.7 + A
1.6 + A 1.6 + A
1.5 + A 1.5 + A
1.4 + A 1.4 + A
1.3 + A 1.3 + A
1.2 + A 1.2 + A
1.1 +A 1.1 + A
1.0 +A 1.0 +A

| |
-+---------------+---------------+ -+---------------+---------------+

0 500 1000 10 100 1000

X X

Example 6: Plotting Date Values on an Axis
Procedure features:

PLOT statement option
HAXIS=

This example shows how you can specify date values on an axis.

Program

options nodate pageno=1 linesize=120 pagesize=40;

EMERGENCY_CALLS contains the number of phone calls to an emergency help line.

758 Program � Chapter 30

data emergency_calls;
input Date : date7. Calls @@;
label calls=’Number of Calls’;
datalines;

1APR94 134 11APR94 384 13FEB94 488
2MAR94 289 21MAR94 201 14MAR94 460
3JUN94 184 13JUN94 152 30APR94 356
4JAN94 179 14JAN94 128 16JUN94 480
5APR94 360 15APR94 350 24JUL94 388
6MAY94 245 15DEC94 150 17NOV94 328
7JUL94 280 16MAY94 240 25AUG94 280
8AUG94 494 17JUL94 499 26SEP94 394
9SEP94 309 18AUG94 248 23NOV94 590
19SEP94 356 24FEB94 201 29JUL94 330
10OCT94 222 25MAR94 183 30AUG94 321
11NOV94 294 26APR94 412 2DEC94 511
27MAY94 294 22DEC94 413 28JUN94 309
;

The plot request plots Calls on the vertical axis and Date on the horizontal axis. HAXIS= uses a
monthly time for the horizontal axis. The notation ’1JAN94’d is a date constant. The value
’1JAN95’d ensures that the axis will have enough room for observations from December.

proc plot data=emergency_calls;
plot calls*date / haxis=’1JAN94’d to ’1JAN95’d by month;

The FORMAT statement assigns the DATE7. format to Date.

format date date7.;
title ’Calls to City Emergency Services Number’;
title2 ’Sample of Days for 1994’;

run;

The PLOT Procedure � Example 7: Producing a Contour Plot 759

Output

PROC PLOT uses the variables’ labels on the axes.

Calls to City Emergency Services Number 1

Sample of Days for 1994

Plot of Calls*Date. Legend: A = 1 obs, B = 2 obs, etc.

|

|

600 + A

|

|

|

| A

N 500 + A A

u | A A

m | A

b |

e | A A

r 400 + A

| A A

o | A A A A

f | A

| A A

C 300 + A A A A

a | A A A

l |

l | A A A

s | A

200 + A A

| A A A

| A A

| A

| A

100 +

|

---+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--------+--

01JAN94 01FEB94 01MAR94 01APR94 01MAY94 01JUN94 01JUL94 01AUG94 01SEP94 01OCT94 01NOV94 01DEC94 01JAN95

Date

Example 7: Producing a Contour Plot
Procedure features:

PLOT statement option
CONTOUR=

This example shows how to represent the values of three variables with a
two-dimensional plot by setting one of the variables as the CONTOUR variable. The
variables X and Y appear on the axes, and Z is the contour variable. Program
statements are used to generate the observations for the plot, and the following
equation describes the contour surface:

� � ���� � ����� ������
�
� ��� � ������

�
� �������

760 Program � Chapter 30

Program

options nodate pageno=1 linesize=64 pagesize=25;

The DATA step creates the CONTOURS data set.

data contours;
format Z 5.1;
do X=0 to 400 by 5;

do Y=0 to 350 by 10;
z=46.2+.09*x-.0005*x**2+.1*y-.0005*y**2+.0004*x*y;
output;

end;
end;

run;

PROC PRINT prints the CONTOURS data set. The OBS= data set option limits the printing to
only the first 5 observations.

proc print data=contours(obs=5) noobs;
title ’CONTOURS Data Set’;
title2 ’First 5 Observations Only’;

run;

CONTOURS contains observations with values of X ranging from 0 to
400 by 5 and with values of Y ranging from 0 to 350 by 10.

CONTOURS Data Set 1
First 5 Observations Only

Z X Y

46.2 0 0
47.2 0 10
48.0 0 20
48.8 0 30
49.4 0 40

NOOVP ensures that overprinting is not used in the plot.

options nodate pageno=1 linesize=120 pagesize=60 noovp;

The plot request plots Y on the vertical axis, plots X on the horizontal axis, and specifies Z as
the contour variable. CONTOUR=10 specifies that the plot will divide the values of Z into ten
increments, and each increment will have a different plotting symbol.

The PLOT Procedure � Output 761

proc plot data=contours;
plot y*x=z / contour=10;

title ’A Contour Plot’;
run;

Output

The shadings associated with the values of Z appear at the bottom of the plot. The plotting symbol # shows
where high values of Z occur.

A Contour Plot 1

Contour plot of Y*X.

Y |

|

350 + ======++++++OOOOOOOOXXXXXXXXXXXWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWXXXXXXXXXXXOOOOOOOO

340 + ====++++++OOOOOOOXXXXXXXXXXWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWXXXXXXXXXXOOOOOOO

330 + =++++++OOOOOOOXXXXXXXXXWWXXXXXXXXXOOOOO

320 + +++++OOOOOOOXXXXXXXXWWWWWWWWWWWWWW********************WWWWWWWWWWWWWWXXXXXXXXXOOOO

310 + +++OOOOOOXXXXXXXXWWWWWWWWWWWW*****************************WWWWWWWWWWWXXXXXXXXOOOO

300 + +OOOOOOXXXXXXXXWWWWWWWWWW***********************************WWWWWWWWWWXXXXXXXXOOO

290 + OOOOOXXXXXXXWWWWWWWWWW**WWWWWWWWWXXXXXXXOOO

280 + OOOXXXXXXXWWWWWWWWW********************####********************WWWWWWWWWXXXXXXXOO

270 + OXXXXXXXWWWWWWWWW**************##################***************WWWWWWWWXXXXXXXOO

260 + XXXXXXWWWWWWWW*************#########################************WWWWWWWWXXXXXXXOO

250 + XXXXWWWWWWWW************#############################************WWWWWWWWXXXXXXOO

240 + XXXWWWWWWW***********#################################***********WWWWWWWWXXXXXXOO

230 + XWWWWWWWW**********####################################**********WWWWWWWXXXXXXXOO

220 + WWWWWWW**********######################################**********WWWWWWWXXXXXXOOO

210 + WWWWWW*********##**********WWWWWWWXXXXXXOOO

200 + WWWWW*********###*********WWWWWWWXXXXXXOOOO

190 + WWW**********##*********WWWWWWWXXXXXXOOOO

180 + WW*********###*********WWWWWWWXXXXXXOOOOO

170 + W*********##*********WWWWWWWXXXXXXOOOOO

160 + W*********###*********WWWWWWWXXXXXXOOOOO+

150 + *********###*********WWWWWWWXXXXXXOOOOO++

140 + ********###*********WWWWWWWXXXXXXOOOOO+++

130 + ********##*********WWWWWWWXXXXXXOOOOO++++

120 + ********##**********WWWWWWWXXXXXXOOOOO+++++

110 + ********#######################################**********WWWWWWWXXXXXXOOOOO+++++=

100 + ********#####################################**********WWWWWWWXXXXXXOOOOOO+++++==

90 + ********###################################**********WWWWWWWWXXXXXXOOOOO+++++====

80 + *********################################***********WWWWWWWXXXXXXXOOOOO+++++====-

70 + **********############################************WWWWWWWWXXXXXXOOOOOO+++++====--

60 + ************######################**************WWWWWWWWXXXXXXXOOOOO+++++=====---

50 + ***************###############***************WWWWWWWWWXXXXXXXOOOOOO+++++====----’

40 + W**WWWWWWWWWXXXXXXXOOOOOO+++++=====----’’

30 + WW**************************************WWWWWWWWWWXXXXXXXOOOOOO+++++=====----’’’’

20 + WWWW********************************WWWWWWWWWWWXXXXXXXXOOOOOO++++++====-----’’’’.

10 + WWWWWW**************************WWWWWWWWWWWWWXXXXXXXXOOOOOO++++++=====----’’’’...

0 + WWWWWWWWWW*****************WWWWWWWWWWWWWWWXXXXXXXXOOOOOOO++++++=====----’’’’’....

|

---+---------+---------+---------+---------+---------+---------+---------+---------+--

0 50 100 150 200 250 300 350 400

X

Symbol z Symbol z Symbol z Symbol z Symbol z

..... 2.2 - 8.1 ----- 14.0 - 19.9 +++++ 25.8 - 31.7 XXXXX 37.6 - 43.5 ***** 49.4 - 55.4

’’’’’ 8.1 - 14.0 ===== 19.9 - 25.8 OOOOO 31.7 - 37.6 WWWWW 43.5 - 49.4 ##### 55.4 - 61.3

762 Example 8: Plotting BY Groups � Chapter 30

Example 8: Plotting BY Groups
Procedure features:

PLOT statement option
HREF=

Other features:
BY statement

This example shows BY group processing in PROC PLOT.

Program

options nodate pageno=1 linesize=80 pagesize=35;

EDUCATION contains educational data* about some U.S. states. DropoutRate is the percentage
of high school dropouts. Expenditures is the dollar amount the state spends on each pupil.
MathScore is the score of 8th graders on a standardized math test. Not all states participated in
the math test. A DATA step on page 1622 creates this data set.

data education;
input State $14. +1 Code $ DropoutRate Expenditures MathScore

Region $;
label dropout=’Dropout Percentage - 1989’

expend=’Expenditure Per Pupil - 1989’
math=’8th Grade Math Exam - 1990’;

datalines;
Alabama AL 22.3 3197 252 SE
Alaska AK 35.8 7716 . W
...more data lines...
New York NY 35.0 . 261 NE
North Carolina NC 31.2 3874 250 SE
North Dakota ND 12.1 3952 281 MW
Ohio OH 24.4 4649 264 MW
;

PROC SORT sorts EDUCATION by Region so that Region can be used as the BY variable in
PROC PLOT.

proc sort data=education;
by region;

run;

The BY statement creates a separate plot for each value of Region.

* Data are from the U.S. Department of Education.

The PLOT Procedure � Output 763

proc plot data=education;
by region;

The plot request plots Expenditures on the vertical axis, plots DropoutRate on the horizontal
axis, and specifies an asterisk as the plotting symbol. HREF= draws a reference line extending
from 28.6 on the horizontal axis. The reference line represents the national average.

plot expenditures*dropoutrate=’*’ / href=28.6;
title ’Plot of Dropout Rate and Expenditure Per Pupil’;

run;

Output

PROC PLOT produces a plot for each BY group. Only the plots for Midwest and Northeast are
shown.

Plot of Dropout Rate and Expenditure Per Pupil 1

---------------------------------- Region=MW -----------------------------------

Plot of Expenditures*DropoutRate. Symbol used is ’*’.

Expenditures | |
5500 + |

| |
| |
| |
| | *

5000 + |
| * |
| * |
| |
| * |

4500 + |
| * * |
| ** * |
| |
| |

4000 + * |
| |
| |
| |
| |

3500 + |
| |
---+------------+------------+------------+------------+--

10 15 20 25 30

Dropout Percentage - 1989

764 Example 9: Adding Labels to a Plot � Chapter 30

Plot of Dropout Rate and Expenditure Per Pupil 2

---------------------------------- Region=NE -----------------------------------

Plot of Expenditures*DropoutRate. Symbol used is ’*’.

Expenditures | |
8000 + |

| |
| * |
| |
| |

7000 + |
| * |
| |
| |
| |

6000 + *|
| * |
| |
| *
| |

5000 + |
| * * |
| |
| |
| |

4000 + |
| |
---+------------+------------+------------+------------+--

15 20 25 30 35

Dropout Percentage - 1989

NOTE: 1 obs had missing values.

Example 9: Adding Labels to a Plot

Procedure features:
PLOT statement

label variable in plot request

Data set: EDUCATION on page 762

This example shows how to modify the plot request to label points on the plot with
the values of variables. This example adds labels to the plot shown in Example 8 on
page 762.

Program

options nodate pageno=1 linesize=80 pagesize=35;

PROC SORT sorts EDUCATION by Region so that Region can be used as the BY variable in
PROC PLOT.

The PLOT Procedure � Program 765

proc sort data=education;
by region;

run;

The BY statement creates a separate plot for each value of Region.

proc plot data=education;
by region;

The plot request plots Expenditures on the vertical axis, plots DropoutRate on the horizontal
axis, and specifies an asterisk as the plotting symbol. The label variable specification ($ state)
in the plot request labels each point on the plot with the name of the corresponding state.
HREF= draws a reference line extending from 28.6 on the horizontal axis. The reference line
represents the national average.

plot expenditures*dropoutrate=’*’ $ state / href=28.6;
title ’Plot of Dropout Rate and Expenditure Per Pupil’;

run;

766 Output � Chapter 30

Output

PROC PLOT produces a plot for each BY group. Only the plots for Midwest and Northeast are
shown.

Plot of Dropout Rate and Expenditure Per Pupil 1

---------------------------------- Region=MW -----------------------------------

Plot of Expenditures*DropoutRate$State. Symbol used is ’*’.

Expenditures | |
5500 + |

| |
| |
| |
| Michigan *

5000 + |
| * Illinois |
| * Minnesota |
| |
| * Ohio |

4500 + |
| * Nebraska * Kansas |
| Iowa ** Indiana * Missouri
| |
| |

4000 + * North Dakota |
| |
| |
| |
| |

3500 + |
| |
---+------------+------------+------------+------------+--

10 15 20 25 30

Dropout Percentage - 1989

The PLOT Procedure � Program 767

Plot of Dropout Rate and Expenditure Per Pupil 2

---------------------------------- Region=NE -----------------------------------

Plot of Expenditures*DropoutRate$State. Symbol used is ’*’.

Expenditures | |
8000 + |

| |
| * New Jersey |
| |
| |

7000 + |
| * Connecticut |
| |
| |
| |

6000 + *|Massachusetts
| * Maryland
| |
| * Delaware
| |

5000 + |
| * Maine * New Hampshire
| |
| |
| |

4000 + |
| |
---+------------+------------+------------+------------+--

15 20 25 30 35

Dropout Percentage - 1989

NOTE: 1 obs had missing values.

Example 10: Excluding Observations That Have Missing Values

Procedure features:
PROC PLOT statement option

NOMISS

Data set: EDUCATION on page 762

This example shows how missing values affect the calculation of the axes.

Program

options nodate pageno=1 linesize=80 pagesize=35;

PROC SORT sorts EDUCATION by Region so that Region can be used as the BY variable in
PROC PLOT.

proc sort data=education;
by region;

768 Program � Chapter 30

run;

NOMISS excludes observations that have a missing value for either of the axis variables.

proc plot data=education nomiss;

The BY statement creates a separate plot for each value of Region.

by region;

The plot request plots Expenditures on the vertical axis, plots DropoutRate on the horizontal
axis, and specifies an asterisk as the plotting symbol. The label variable specification ($ state)
in the plot request labels each point on the plot with the name of the corresponding state.
HREF= draws a reference line extending from 28.6 on the horizontal axis. The reference line
represents the national average.

plot expenditures*dropoutrate=’*’ $ state / href=28.6;
title ’Plot of Dropout Rate and Expenditure Per Pupil’;

run;

The PLOT Procedure � Example 11: Adjusting Labels on a Plot with the PLACEMENT= Option 769

Output

PROC PLOT produces a plot for each BY group. Only the plot for the

Northeast

is shown. Because

New York

has a missing value for Expenditures, the observation is excluded and PROC PLOT does not use
the value 35 for DropoutRate to calculate the horizontal axis. Compare the horizontal axis in
this output with the horizontal axis in the plot for Northeast in Example 9 on page 764.

Plot of Dropout Rate and Expenditure Per Pupil 1

---------------------------------- Region=NE -----------------------------------

Plot of Expenditures*DropoutRate$State. Symbol used is ’*’.

Expenditures | |
8000 + |

| |
| * New Jersey |
| |
| |

7000 + |
| * Connecticut |
| |
| |
| |

6000 + Massachusetts * |
| * Maryland |
| |
| Delaware *|
| |

5000 + |
| * Maine * New Hampshire
| |
| |
| |

4000 + |
| |
--+--------+--------+--------+--------+--------+--------+--------+-

16 18 20 22 24 26 28 30

Dropout Percentage - 1989

NOTE: 1 obs had missing values.

Example 11: Adjusting Labels on a Plot with the PLACEMENT= Option

Procedure features:
PLOT statement options

label variable in plot request
LIST=
PLACEMENT=

Other features:
RUN group processing

770 Program � Chapter 30

This example illustrates the default placement of labels and how to adjust the
placement of labels on a crowded plot. The labels are values of variable in the data set.*

This example also shows RUN group processing in PROC PLOT.

Program

options nodate pageno=1 linesize=120 pagesize=37;

CENSUS contains the variables CrimeRate and Density for selected states. CrimeRate is the
number of crimes per 100,000 people. Density is the population density per square mile in the
1980 census. A DATA step on page 1616 creates this data set.

data census;
input Density CrimeRate State $ 14-27 PostalCode $ 29-30;
datalines;

263.3 4575.3 Ohio OH
62.1 7017.1 Washington WA

...more data lines...

111.6 4665.6 Tennessee TN
120.4 4649.9 North Carolina NC
;

The plot request plots Density on the vertical axis, CrimeRate on the horizontal axis, and uses
the first letter of the value of State as the plotting symbol. This makes it easier to match the
symbol with its label. The label variable specification ($ state) in the plot request labels each
point with the corresponding state name. BOX draws a box around the plot. LIST= lists the
labels that have penalties greater than or equal to 1. HAXIS= and VAXIS= specify increments
only. PROC PLOT uses the data to determine the range for the axes.

proc plot data=census;
plot density*crimerate=state $ state / box list=1

haxis=by 1000 vaxis=by 250;
title ’A Plot of Population Density and Crime Rates’;

run;

* The data are from the U.S. Bureau of the Census and the 1987 Uniform Crime Reports, FBI.

The PLOT Procedure � Program 771

The labels Tennessee, South Carolina, Arkansas, Minnesota, and South Dakota have penalties. The default
placement states do not provide enough possibilities for PROC PLOT to avoid penalties given the proximity of
the points. Seven label characters are hidden.

A Plot of Population Density and Crime Rates 1

Plot of Density*CrimeRate$State. Symbol is value of State.

---+------------+------------+------------+------------+------------+------------+------------+---

Density | |

500 + +

| |

| |

| M Maryland |

| |

| |

| |

| |

| |

| D Delaware |

| |

| P Pennsylvania O Ohio |

250 + +

| |

| I Illinois |

| F Florida|

| |

| North Carolina C California |

| TennNssee Georgia |

| N New Hampshire T S South Garolina |

| W West Virginia A Alabama |

| Mississippi M Vermont V M Missouri Washington W T Texas |

| MinneAoArkMnsas O Oklahoma |

| North Dakota I Idaho O Oregon |

0 + S Nouth Dakota N Nevada +

---+------------+------------+------------+------------+------------+------------+------------+---

2000 3000 4000 5000 6000 7000 8000 9000

CrimeRate

NOTE: 7 label characters hidden.

A Plot of Population Density and Crime Rates 2

List of Point Locations, Penalties, and Placement States

Vertical Horizontal Starting Vertical Horizontal

Label Axis Axis Penalty Position Lines Shift Shift

Tennessee 111.60 4665.6 2 Center 1 1 -1

South Carolina 103.40 5161.9 2 Right 1 0 2

Arkansas 43.90 4245.2 6 Right 1 0 2

Minnesota 51.20 4615.8 7 Left 1 0 -2

South Dakota 9.10 2678.0 11 Right 1 0 2

Because PROC PLOT is interactive, the procedure is still running at this point in the program.
It is not necessary to restart the procedure to submit another plot request. LIST=1 produces no
output because there are no penalties of 1 or greater.

772 Output � Chapter 30

plot density*crimerate=state $ state / box list=1
haxis=by 1000 vaxis=by 250

PLACEMENT= gives PROC PLOT more placement states to use to place the labels.
PLACEMENT= contains three expressions. The first expression specifies the preferred positions
for the label. The first expression resolves to placement states centered above the plotting
symbol, with the label on one or two lines. The second and third expressions resolve to
placement states that enable PROC PLOT to place the label in multiple positions around the
plotting symbol.

placement=((v=2 1 : l=2 1)
((l=2 2 1 : v=0 1 0) * (s=right left : h=2 -2))
(s=center right left * l=2 1 * v=0 1 -1 2 *

h=0 1 to 5 by alt));
title ’A Plot of Population Density and Crime Rates’;
run;

Output

The PLOT Procedure � Program 773

No collisions occur in the plot.

A Plot of Population Density and Crime Rates 3

Plot of Density*CrimeRate$State. Symbol is value of State.

---+------------+------------+------------+------------+------------+------------+------------+---

Density | |

500 + +

| |

| Maryland |

| M |

| |

| |

| |

| |

| Delaware |

| D |

| Pennsylvania Ohio |

| P O |

250 + +

| Illinois |

| I Florida |

| F |

| North Carolina California |

| New South C |

| West Hampshire Alabama N Carolina |

| Virginia N T S G Georgia |

| W Mississippi A Tennessee Washington Texas |

| M Vermont V M Missouri Oklahoma W T |

| South Arkansas A M Minnesota O Oregon |

| Dakota I Idaho Nevada O |

0 + S N North Dakota N +

---+------------+------------+------------+------------+------------+------------+------------+---

2000 3000 4000 5000 6000 7000 8000 9000

CrimeRate

Example 12: Adjusting Labeling on a Plot with a Macro

Procedure features:
PLOT statement options

label variable in plot request
PLACEMENT=

Data set: CENSUS on page 770

This example illustrates the default placement of labels and uses a macro to adjust
the placement of labels. The labels are values of a variable in the data set.

Program

options nodate pageno=1 linesize=120 pagesize=37;

774 Output � Chapter 30

The %PLACE macro provides an alternative to using the PLACEMENT= option. The higher the
value of n, the more freedom PROC PLOT has to place labels.

%macro place(n);
%if &n > 13 %then %let n = 13;

placement=(
%if &n <= 0 %then (s=center); %else (h=2 -2 : s=right left);
%if &n = 1 %then (v=1 * h=0 -1 to -2 by alt);
%else %if &n = 2 %then (v=1 -1 * h=0 -1 to -5 by alt);
%else %if &n > 2 %then (v=1 to 2 by alt * h=0 -1 to -10 by alt);
%if &n > 3 %then

(s=center right left * v=0 1 to %eval(&n - 2) by alt *
h=0 -1 to %eval(-3 * (&n - 2)) by alt *
l=1 to %eval(2 + (10 * &n - 35) / 30));)

%if &n > 4 %then penalty(7)=%eval((3 * &n) / 2);
%mend;

proc plot data=census;

The plot request plots Density on the vertical axis, CrimeRate on the horizontal axis, and uses
the first letter of the value of State as the plotting symbol. The label variable specification
($ state) in the plot request labels each point with the corresponding state name. BOX draws a
box around the plot. LIST= lists the labels that have penalties greater than or equal to 1.
HAXIS= and VAXIS= specify increments only. PROC PLOT uses the data to determine the
range for the axes. The PLACE macro determines the placement of the labels.

plot density*crimerate=state $ state / box list=1
haxis=by 1000 vaxis=by 250 %place(4);

title ’A Plot of Population Density and Crime Rates’;
run;

Output

The PLOT Procedure � Program 775

No collisions occur in the plot.

A Plot of Population Density and Crime Rates 1

Plot of Density*CrimeRate$State. Symbol is value of State.

---+------------+------------+------------+------------+------------+------------+------------+---

Density | |

500 + +

| |

| |

| M Maryland |

| |

| |

| |

| |

| |

| D Delaware |

| |

| P Pennsylvania O Ohio |

250 + +

| |

| I Illinois |

| F Florida|

| |

| North Carolina C California |

| N Tennessee |

| N New Hampshire T S G Georgia |

| W West Virginia Alabama A South Carolina |

| Mississippi M Vermont V M Missouri Washington W T Texas |

| Arkansas A M Minnesota O Oklahoma |

| South Dakota I Idaho O Oregon |

0 + S N North Dakota N Nevada +

---+------------+------------+------------+------------+------------+------------+------------+---

2000 3000 4000 5000 6000 7000 8000 9000

CrimeRate

Example 13: Changing a Default Penalty

Procedure features:
PLOT statement option

PENALTIES=

Data set: CENSUS on page 770

This example demonstrates how changing a default penalty affects the placement of
labels. The goal is to produce a plot that has labels that do not detract from how the
points are scattered.

Program

options nodate pageno=1 linesize=120 pagesize=37;

776 Program � Chapter 30

The plot request plots Density on the vertical axis, CrimeRate on the horizontal axis, and uses
the first letter of the value of State as the plotting symbol. The label variable specification
($ state) in the plot request labels each point with the corresponding state name.

proc plot data=census;
plot density*crimerate=state $ state /

PLACEMENT= specifies that the preferred placement states are 100 columns to the left and the
right of the point, on the same line with the point.

placement=(h=100 to 10 by alt * s=left right)

PENALTIES(4)= changes the default penalty for a free horizontal shift to 500, which removes
all penalties for a horizontal shift. LIST= shows how far PROC PLOT shifted the labels away
from their respective points.

penalties(4)=500 list=0

HAXIS= creates a horizontal axis long enough to leave space for the labels on the sides of the
plot. VAXIS= specifies that the values on the vertical axis be in increments of 100.

haxis=0 to 13000 by 1000 vaxis=by 100;
title ’A Plot of Population Density and Crime Rates’;
run;

The PLOT Procedure � Output 777

Output

A Plot of Population Density and Crime Rates 1

Plot of Density*CrimeRate$State. Symbol is value of State.

Density |

500 +

|

|

|

| M Maryland

400 +

|

|

|

|

300 + D Delaware

|

| P O Pennsylvania Ohio

|

|

200 + I Illinois

|Florida F

| C California

|

| T North Carolina Tennessee

100 +Georgia N S G New Hampshire South Carolina

| W A M Alabama Missouri West Virginia

|Washington Texas M V M W T Vermont Minnesota Mississippi

|Oklahoma A O Arkansas

|Oregon I O Idaho

0 + S N N North Dakota South Dakota Nevada

---+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+--

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000

CrimeRate

NOTE: 1 obs hidden.

778 Output � Chapter 30

A Plot of Population Density and Crime Rates 2

List of Point Locations, Penalties, and Placement States

Vertical Horizontal Starting Vertical Horizontal

Label Axis Axis Penalty Position Lines Shift Shift

Maryland 428.70 5477.6 0 Right 1 0 55

Delaware 307.60 4938.8 0 Right 1 0 59

Pennsylvania 264.30 3163.2 0 Right 1 0 65

Ohio 263.30 4575.3 0 Right 1 0 66

Illinois 205.30 5416.5 0 Right 1 0 56

Florida 180.00 8503.2 0 Left 1 0 -64

California 151.40 6506.4 0 Right 1 0 45

Tennessee 111.60 4665.6 0 Right 1 0 61

North Carolina 120.40 4649.9 0 Right 1 0 46

New Hampshire 102.40 3371.7 0 Right 1 0 52

South Carolina 103.40 5161.9 0 Right 1 0 52

Georgia 94.10 5792.0 0 Left 1 0 -42

West Virginia 80.80 2190.7 0 Right 1 0 76

Alabama 76.60 4451.4 0 Right 1 0 41

Missouri 71.20 4707.5 0 Right 1 0 47

Mississippi 53.40 3438.6 0 Right 1 0 68

Vermont 55.20 4271.2 0 Right 1 0 44

Minnesota 51.20 4615.8 0 Right 1 0 49

Washington 62.10 7017.1 0 Left 1 0 -49

Texas 54.30 7722.4 0 Left 1 0 -49

Arkansas 43.90 4245.2 0 Right 1 0 65

Oklahoma 44.10 6025.6 0 Left 1 0 -43

Idaho 11.50 4156.3 0 Right 1 0 69

Oregon 27.40 6969.9 0 Left 1 0 -53

South Dakota 9.10 2678.0 0 Right 1 0 67

North Dakota 9.40 2833.0 0 Right 1 0 52

Nevada 7.30 6371.4 0 Right 1 0 50

779

C H A P T E R

31
The PMENU Procedure

Overview: PMENU Procedure 779
Syntax: PMENU Procedure 780

PROC PMENU Statement 781

CHECKBOX Statement 782

DIALOG Statement 783

ITEM Statement 785
MENU Statement 787

RADIOBOX Statement 789

RBUTTON Statement 789

SELECTION Statement 790

SEPARATOR Statement 791

SUBMENU Statement 791
TEXT Statement 792

Concepts: PMENU Procedure 793

Procedure Execution 793

Ending the Procedure 794

Steps for Building and Using PMENU Catalog Entries 794
Templates for Coding PROC PMENU Steps 794

Examples: PMENU Procedure 796

Example 1: Building a Menu Bar for an FSEDIT Application 796

Example 2: Collecting User Input in a Dialog Box 798

Example 3: Creating a Dialog Box to Search Multiple Variables 801
Example 4: Creating Menus for a DATA Step Window Application 807

Example 5: Associating Menus with a FRAME Application 813

Overview: PMENU Procedure

The PMENU procedure defines menus that can be used in DATA step windows,
macro windows, both SAS/AF and SAS/FSP windows, or in any SAS application that
enables you to specify customized menus.

Menus can replace the command line as a way to execute commands. To activate
menus, issue the PMENU command from any command line. Menus must be activated
in order for them to appear.

When menus are activated, each active window has a menu bar, which lists items
that you can select. Depending upon which item you select, SAS either processes a
command, displays a menu or a submenu, or requests that you complete information in
a dialog box. The dialog box is simply a box of questions or choices that require
answers before an action can be performed. The following figure illustrates features
that you can create with PROC PMENU.

780 Syntax: PMENU Procedure � Chapter 31

Figure 31.1 Menu Bar, Pull-Down Menu, and Dialog Box

Select a commodity:

File Edit Reports Help

Select a market:

Wheat

Corn

Oats

Farmville

Monticello

Plainview

Enter a year from 1950 to 1996:

Check here for double spacing:

OK Cancel

Menu bar
Dialog box

pull-down
menu

Reports

Farm

Industrial...

Manufacturing...

Note: A menu bar in some operating environments may appear as a popup menu or
may appear at the bottom of the window. �

The PMENU procedure produces no immediately visible output. It simply builds a
catalog entry of type PMENU that can be used later in an application.

Syntax: PMENU Procedure
Restriction: You must use at least one MENU statement followed by at least one ITEM
statement.
Tip: Supports RUN group processing
Tip: Supports the Output Delivery System. See “Output Delivery System” on page 32
for details.
Reminder: You can also use appropriate global statements with this procedure. See
Chapter 2, “Fundamental Concepts for Using Base SAS Procedures,” on page 15 for a
list.

PROC PMENU <CATALOG=< libref.>catalog>
<DESC ’entry-description’>;

MENU menu-bar;
ITEM command <option(s)>;
ITEM ’menu-item’ <option(s)>;

DIALOG dialog-box ’command-string
field-number-specification’;

CHECKBOX <ON> #line @column
’text-for-selection’
<COLOR=color> <SUBSTITUTE=’text-for-substitution’>;

RADIOBOX DEFAULT=button-number;
RBUTTON <NONE> #line @column

’text-for-selection’ <COLOR=color>
<SUBSTITUTE=’text-for-substitution’>;

TEXT #line @column field-description

The PMENU Procedure � PROC PMENU Statement 781

<ATTR=attribute> <COLOR=color>;
MENU pull-down-menu;
SELECTION selection ’command-string’;
SEPARATOR;
SUBMENU submenu-name SAS-file;

To do this Use this statement

Define choices a user can make in a dialog box CHECKBOX

Describe a dialog box that is associated with an item
in a pull-down menu

DIALOG

Identify an item to be listed in a menu bar or in a
pull-down menu

ITEM

Name the catalog entry or define a pull-down menu MENU

List and define mutually exclusive choices within a
dialog box

RADIOBOX and RBUTTON

Define a command that is submitted when an item is
selected

SELECTION

Draw a line between items in a pull-down menu SEPARATOR

Define a common submenu associated with an item SUBMENU

Specify text and the input fields for a dialog box TEXT

PROC PMENU Statement

Invokes the PMENU procedure and specifies where to store all PMENU catalog entries created in
the PROC PMENU step.

PROC PMENU <CATALOG=< libref.>catalog>
<DESC ’entry-description’>;

Options

CATALOG=<libref.>catalog
specifies the catalog in which you want to store PMENU entries.

Default: If you omit libref, the PMENU entries are stored in a catalog in the
SASUSER data library. If you omit CATALOG=, the entries are stored in the
SASUSER.PROFILE catalog.

Featured in: Example 1 on page 796

DESC ’entry-description’
provides a description for the PMENU catalog entries created in the step.

Default: Menu description

782 CHECKBOX Statement � Chapter 31

Note: These descriptions are displayed when you use the CATALOG window in
the windowing environment or the CONTENTS statement in the CATALOG
procedure. �

CHECKBOX Statement

Defines choices that a user can make within a dialog box.

Restriction: Must be used after a DIALOG statement.

CHECKBOX <ON> #line @column
’text-for-selection’
<COLOR=color> <SUBSTITUTE=’text-for-substitution’>;

Required Arguments

column
specifies the column in the dialog box where the checkbox and text are placed.

line
specifies the line in the dialog box where the checkbox and text are placed.

text-for-selection
defines the text that describes this check box. This text appears in the window and,
if the SUBSTITUTE= option is not used, is also inserted into the command in the
preceding DIALOG statement when the user selects the check box.

Options

COLOR=color
defines the color of the check box and the text that describes it.

ON
indicates that by default this check box is active. If you use this option, you must
specify it immediately after the CHECKBOX keyword.

SUBSTITUTE=’text-for-substitution’
specifies the text that is to be inserted into the command in the DIALOG statement.

Check Boxes in a Dialog Box

Each CHECKBOX statement defines a single item that the user can select
independent of other selections. That is, if you define five choices with five CHECKBOX
statements, the user can select any combination of these choices. When the user selects
choices, the text-for-selection values that are associated with the selections are inserted
into the command string of the previous DIALOG statement at field locations prefixed
by an ampersand (&).

The PMENU Procedure � DIALOG Statement 783

DIALOG Statement

Describes a dialog box that is associated with an item on a pull-down menu.

Restriction: Must be followed by at least one TEXT statement.
Featured in: Example 2 on page 798, Example 3 on page 801, and Example 4 on page 807

DIALOG dialog-box ’command-string
field-number-specification’;

Required Arguments

command-string
is the command or partial command that is executed when the item is selected. The
limit of the command-string that results after the substitutions are made is the
command-line limit for your operating environment. Typically, the command-line
limit is approximately 80 characters.

The limit for ’command-string field-number-specification’ is 200 characters.

Note: If you are using PROC PMENU to submit any command that is valid only
in the PROGRAM EDITOR window (such as the INCLUDE command), you must
have the windowing environment running, and you must return control to the
PROGRAM EDITOR window. �

dialog-box
is the same name specified for the DIALOG= option in a previous ITEM statement.

field-number-specification
can be one or more of the following:

@1...@n

%1...%n

&1...&n
You can embed the field numbers, for example @1, %1, or &1, in the command

string and mix different types of field numbers within a command string. The
numeric portion of the field number corresponds to the relative position of TEXT,
RADIOBOX, and CHECKBOX statements, not to any actual number in these
statements.

@1...@n
are optional TEXT statement numbers that can add information to the command
before it is submitted. Numbers preceded by an at sign (@) correspond to TEXT
statements that use the LEN= option to define input fields.

%1...%n
are optional RADIOBOX statement numbers that can add information to the
command before it is submitted. Numbers preceded by a percent sign (%)
correspond to RADIOBOX statements following the DIALOG statement.

Note: Keep in mind that the numbers correspond to RADIOBOX statements,
not to RBUTTON statements. �

784 DIALOG Statement � Chapter 31

&1...&n
are optional CHECKBOX statement numbers that can add information to the
command before it is submitted. Numbers preceded by an ampersand (&)
correspond to CHECKBOX statements following the DIALOG statement.

Note: To specify a literal @ (at sign), % (percent sign), or & (ampersand) in the
command-string, use a double character: @@ (at signs), %% (percent signs), or &&
(ampersands). �

Details

� You cannot control the placement of the dialog box. The dialog box is not
scrollable. The size and placement of the dialog box are determined by your
windowing environment.

� To use the DIALOG statement, specify an ITEM statement with the DIALOG=
option in the ITEM statement.

� The ITEM statement creates an entry in a menu bar or in a pull-down menu, and
the DIALOG= option specifies which DIALOG statement describes the dialog box.

� You can use CHECKBOX, RADIOBOX, and RBUTTON statements to define the
contents of the dialog box.

� Figure 31.2 on page 784 shows a typical dialog box. A dialog box can request
information in three ways:

� Fill in a field. Fields that accept text from a user are called text fields.
� Choose from a list of mutually exclusive choices. A group of selections of this

type is called a radio box, and each individual selection is called a radio
button.

� Indicate whether you want to select other independent choices. For example,
you could choose to use various options by selecting any or all of the listed
selections. A selection of this type is called a check box.

Figure 31.2 A Typical Dialog Box

Select a commodity: Select a market:

Wheat

Corn

Oats

Farmville

Monticello

Plainview

Enter a year from 1950 to 1996:

Check here for double spacing:

OK Cancel

Radio button

Text field

Check box

Push button

Radio box

The PMENU Procedure � ITEM Statement 785

Dialog boxes have two or more push buttons, such as OK and Cancel,
automatically built into the box.* A push button causes an action to occur.

ITEM Statement

Identifies an item to be listed in a menu bar or in a pull-down menu.

Featured in: Example 1 on page 796

ITEM command <option(s)><action-options>;

ITEM ’menu-item’ <option(s)><action-options>;

To do this Use this option

Specify the action for the item

Associate the item with a dialog box DIALOG=

Associate the item with a pull-down menu MENU=

Associate the item with a command SELECTION=

Associate the item with a common submenu SUBMENU=

Specify help text for an item HELP=

Define a key that can be used instead of the
pull-down menu

ACCELERATE=

Indicate that the item is not an active choice in the
window

GRAY

Provide an ID number for an item ID=

Define a single character that can select the item MNEMONIC=

Place a check box or a radio button next to an item STATE=

Required Arguments

command
a single word that is a valid SAS command for the window in which the menu
appears. Commands that are more than one word, such as WHERE CLEAR, must be
in single quotes. The command appears in uppercase letters on the menu bar.

If you want to control the casing of a SAS command on the menu, enclose the
command in single quotes and the case that you used then appears on the menu.

menu-item
a word or text string, enclosed in quotes, that describes the action that occurs when
the user selects this item. A menu item should not begin with a percent sign (%).

* The actual names of the push buttons vary in different windowing environments.

786 ITEM Statement � Chapter 31

Options

ACCELERATE=name-of-key
defines a key sequence that can be used instead of selecting an item. When the user
presses the key sequence, it has the same effect as selecting the item from the menu
bar or pull-down menu.
Restriction: The functionality of this option is limited to only a few characters. For

details, see the SAS documentation for your operating environment.
Restriction: This option is not available in all operating environments. If you

include this option and it is not available in your operating environment, the
option is ignored.

action-option
is one of the following:

DIALOG=dialog-box
the name of an associated DIALOG statement, which displays a dialog box when
the user selects this item.
Featured in: Example 3 on page 801

MENU=pull-down-menu
the name of an associated MENU statement, which displays a pull-down menu
when the user selects this item.
Featured in: Example 1 on page 796

SELECTION=selection
the name of an associated SELECTION statement, which submits a command
when the user selects this item.
Featured in: Example 1 on page 796

SUBMENU=submenu
the name of an associated SUBMENU statement, which displays a pmenu entry
when the user selects this item.
Featured in: Example 1 on page 796
If no DIALOG=, MENU=, SELECTION=, or SUBMENU= option is specified, the

command or menu-item text string is submitted as a command-line command when
the user selects the item.

GRAY
indicates that the item is not an active choice in this window. This option is useful
when you want to define standard lists of items for many windows, but not all items
are valid in all windows. When this option is set and the user selects the item, no
action occurs.

HELP=’help-text’
specifies text that is displayed when the user displays the menu item. For example,
if you use a mouse to pull down a menu, hold the mouse button on the item and the
text is displayed.
Restriction: This option is not available in all operating environments. If you

include this option and it is not available in your operating environment, the
option is ignored.

Tip: The place where the text is displayed is operating environment-specific.

ID=integer
a value that is used as an identifier for an item in a pull-down menu. This identifier
is used within a SAS/AF application to selectively gray or ungray items in a menu or
to set the state of an item as a check box or a radio button.

The PMENU Procedure � MENU Statement 787

Minimum: 3001
Restriction: Integers from 0 - 3000 are reserved for operating environment and

SAS System use.
Restriction: This option is not available in all operating environments. If you

include this option and it is not available in your operating environment, the
option is ignored.

Tip: ID= is useful with the WINFO function in SAS Screen Control Language.
Tip: You can use the same ID for more than one item.
See also: STATE= option on page 787

MNEMONIC=character
underlines the first occurrence of character in the text string that appears on the
pull-down menu. The character must be in the text string.

The character is typically used in combination with another key, such as ALT.
When you use the key sequence, it has the same effect as putting your cursor on the
item. But it does not invoke the action that the item controls.
Restriction: This option is not available in all operating environments. If you

include this option and it is not available in your operating environment, the
option is ignored.

STATE=CHECK|RADIO
provides the ability to place a check box or a radio button next to an item that has
been selected.
Tip: STATE= is used with the ID= option and the WINFO function in SAS Screen

Control Language.
Restriction: This option is not available in all operating environments. If you

include this option and it is not available in your operating environment, the
option is ignored.

Defining Items on the Menu Bar
You must use ITEM statements to name all the items that appear in a menu bar.

You also use the ITEM statement to name the items that appear in any pull-down
menus. The items that you specify in the ITEM statement can be commands that are
issued when the user selects the item, or they can be descriptions of other actions that
are performed by associated DIALOG, MENU, SELECTION, or SUBMENU statements.

All ITEM statements for a menu must be placed immediately after the MENU
statement and before any DIALOG, SELECTION, SUBMENU, or other MENU
statements. In some operating environments, you can insert SEPARATOR statements
between ITEM statements to produce lines separating groups of items in a pull-down
menu. See “SEPARATOR Statement” on page 791 for more information.

CAUTION:
If you specify a menu bar that is too long for the window, it might be truncated or

wrapped to multiple lines. �

MENU Statement

Names the catalog entry that stores the menus or defines a pull-down menu.

Featured in: Example 1 on page 796

788 MENU Statement � Chapter 31

MENU menu-bar;

MENU pull-down-menu;

Required Arguments

One of the following arguments is required:

menu-bar
names the catalog entry that stores the menus.

pull-down-menu
names the pull-down menu that appears when the user selects an item in the menu
bar. The value of pull-down-menu must match the pull-down-menu name that is
specified in the MENU= option in a previous ITEM statement.

Defining Pull-Down Menus

When used to define a pull-down menu, the MENU statement must follow an ITEM
statement that specifies the MENU= option. Both the ITEM statement and the MENU
statement for the pull-down menu must be in the same RUN group as the MENU
statement that defines the menu bar for the PMENU catalog entry.

For both menu bars and pull-down menus, follow the MENU statement with ITEM
statements that define each of the items that appear on the menu. Group all ITEM
statements for a menu together. For example, the following PROC PMENU step creates
one catalog entry, WINDOWS, which produces a menu bar with two items, Primary
windows and Other windows. When you select one of these items, a pull-down menu is
displayed.

libname proclib ’SAS-data-library’;

proc pmenu cat=proclib.mycat;

/* create catalog entry */
menu windows;
item ’Primary windows’ menu=prime;
item ’Other windows’ menu=other;

/* create first pull-down menu */
menu prime;
item output;
item manager;
item log;
item pgm;

/* create second pull-down menu */
menu other;
item keys;
item help;
item pmenu;
item bye;

/* end of run group */
run;

The following figure shows the resulting menu selections.

The PMENU Procedure � RBUTTON Statement 789

Figure 31.3 Pull-Down Menu

Primary windows Other windows

OUTPUT
MANAGER
LOG
PGM

KEYS
HELP
PMENU
BYE

RADIOBOX Statement

Defines a box that contains mutually exclusive choices within a dialog box.

Restriction: Must be used after a DIALOG statement.

Restriction: Must be followed by one or more RBUTTON statements.

Featured in: Example 3 on page 801

RADIOBOX DEFAULT=button-number;

Required Arguments

DEFAULT=button-number
indicates which radio button is the default.

Default: 1

Details

The RADIOBOX statement indicates the beginning of a list of selections.
Immediately after the RADIOBOX statement, you must list an RBUTTON statement
for each of the selections the user can make. When the user makes a choice, the text
value that is associated with the selection is inserted into the command string of the
previous DIALOG statement at field locations prefixed by a percent sign (%).

RBUTTON Statement

Lists mutually exclusive choices within a dialog box.

Restriction: Must be used after a RADIOBOX statement.

Featured in: Example 3 on page 801

790 SELECTION Statement � Chapter 31

RBUTTON <NONE> #line @column
’text-for-selection’ <COLOR=color> <SUBSTITUTE=’text-for-substitution’>;

Required Arguments

column
specifies the column in the dialog box where the radio button and text are placed.

line
specifies the line in the dialog box where the radio button and text are placed.

text-for-selection
defines the text that appears in the dialog box and, if the SUBSTITUTE= option is
not used, defines the text that is inserted into the command in the preceding
DIALOG statement.

CAUTION:
Be careful not to overlap columns and lines when placing text and radio buttons. You
receive an error message if you overlap text or buttons. In addition, specify space
between other text and a radio button. �

Options

COLOR=color
defines the color of the radio button and the text that describes the button.
Restriction: This option is not available in all operating environments. If you

include this option and it is not available in your operating environment, the
option is ignored.

NONE
defines a button that indicates none of the other choices. Defining this button
enables the user to ignore any of the other choices. No characters, including blanks,
are inserted into the DIALOG statement.
Restriction: If you use this option, it must occur immediately after the RBUTTON

keyword.

SUBSTITUTE=’text-for-substitution’
specifies the text that is to be inserted into the command in the DIALOG statement.
Featured in: Example 3 on page 801

SELECTION Statement

Defines a command that is submitted when an item is selected.

Restriction: Must be used after an ITEM statement
Featured in: Example 1 on page 796 and Example 4 on page 807

SELECTION selection ’command-string’;

The PMENU Procedure � SUBMENU Statement 791

Required Arguments

selection
is the same name specified for the SELECTION= option in a previous ITEM
statement.

command-string
is a text string, enclosed in quotes, that is submitted as a command-line command
when the user selects this item. There is a limit of 200 characters for
command-string. However, the command-line limit of approximately 80 characters
cannot be exceeded. The command-line limit differs slightly for various operating
environments.

Details
You define the name of the item in the ITEM statement and specify the

SELECTION= option to associate the item with a subsequent SELECTION statement.
The SELECTION statement then defines the actual command that is submitted when
the user chooses the item in the menu bar or pull-down menu.

You are likely to use the SELECTION statement to define a command string. You
create a simple alias by using the ITEM statement, which invokes a longer command
string that is defined in the SELECTION statement. For example, you could include an
item in the menu bar that invokes a WINDOW statement to allow data entry. The
actual commands that are processed when the user selects this item are the commands
to include and submit the application.

Note: If you are using PROC PMENU to issue any command that is valid only in
the PROGRAM EDITOR window (such as the INCLUDE command), you must have the
windowing environment running, and you must return control to the PROGRAM
EDITOR window. �

SEPARATOR Statement

Draws a line between items on a pull-down menu.

Restriction: Must be used after an ITEM statement.
Restriction: Not available in all operating environments.

SEPARATOR;

SUBMENU Statement

Specifies the SAS file that contains a common submenu associated with an item.

Featured in: Example 1 on page 796

792 TEXT Statement � Chapter 31

SUBMENU submenu-name SAS-file;

Required Arguments

submenu-name
specifies a name for the submenu statement. To associate a submenu with a menu
item, submenu-name must match the submenu name specified in the SUBMENU=
action-option in the ITEM statement.

SAS-file
specifies the name of the SAS file that contains the common submenu.

TEXT Statement

Specifies text and the input fields for a dialog box.

Restriction: Can be used only after a DIALOG statement.
Featured in: Example 2 on page 798

TEXT #line @column field-description
<ATTR=attribute> <COLOR=color>;

Required Arguments

column
specifies the starting column for the text or input field.

field-description
defines how the TEXT statement is used. The field-description can be one of the
following:

LEN=field-length
is the length of an input field in which the user can enter information. If the
LEN= argument is used, the information entered in the field is inserted into the
command string of the previous DIALOG statement at field locations prefixed by
an at sign (@).
Featured in: Example 2 on page 798

’text’
is the text string that appears inside the dialog box at the location defined by line
and column.

line
specifies the line number for the text or input field.

Options

ATTR=attribute

The PMENU Procedure � Procedure Execution 793

defines the attribute for the text or input field. Valid attribute values are
� BLINK
� HIGHLIGH
� REV_VIDE
� UNDERLIN

Restriction: This option is not available in all operating environments. If you
include this option and it is not available in your operating environment, the
option is ignored.

Restriction: Your hardware may not support all of these attributes.

COLOR=color
defines the color for the text or input field characters. These are the color values that
you can use:

BLACK BROWN

GRAY MAGENTA

PINK WHITE

BLUE CYAN

GREEN ORANGE

RED YELLOW

Restriction: This option is not available in all operating environments. If you
include this option and it is not available in your operating environment, the
option is ignored.

Restriction: Your hardware may not support all of these colors.

Concepts: PMENU Procedure

Procedure Execution
You can define multiple menus by separating their definitions with RUN statements.

A group of statements that ends with a RUN statement is called a RUN group. You
must completely define a PMENU catalog entry before submitting a RUN statement.
You do not have to restart the procedure after a RUN statement.

You must include an initial MENU statement that defines the menu bar, and you
must include all ITEM statements and any SELECTION, MENU, SUBMENU, and
DIALOG statements as well as statements that are associated with the DIALOG
statement within the same RUN group. For example, the following statements define
two separate PMENU catalog entries. Both are stored in the same catalog, but each
PMENU catalog entry is independent of the other. In the example, both PMENU
catalog entries create menu bars that simply list windowing environment commands
the user can select and execute:

libname proclib ’SAS-data-library’;

794 Steps for Building and Using PMENU Catalog Entries � Chapter 31

proc pmenu catalog=proclib.mycat;
menu menu1;
item end;
item bye;

run;

menu menu2;
item end;
item pgm;
item log;
item output;

run;

When you submit these statements, you receive a message that says that the
PMENU entries have been created. To display one of these menu bars, you must
associate the PMENU catalog entry with a window and then activate the window with
the menus turned on, as described in “Steps for Building and Using PMENU Catalog
Entries” on page 794.

Ending the Procedure
Submit a QUIT, DATA, or new PROC statement to execute any statements that have

not executed and end the PMENU procedure. Submit a RUN CANCEL statement to
cancel any statements that have not executed and end the PMENU procedure.

Steps for Building and Using PMENU Catalog Entries
In most cases, building and using PMENU entries requires the following steps:
1 Use PROC PMENU to define the menu bars, pull-down menus and other features

that you want. Store the output of PROC PMENU in a SAS catalog.
2 Define a window using SAS/AF and SAS/FSP Software, or the WINDOW or

%WINDOW statement in base SAS software.
3 Associate the PMENU catalog entry created in step 1 with a window by using one

of the following:
� the MENU= option in the WINDOW statement in base SAS software. See

“Associating a Menu with a Window” on page 810.
� the MENU= option in the %WINDOW statement in the macro facility.
� the Command Menu field in the GATTR window in PROGRAM entries in SAS/

AF Software.
� the Keys, Pmenu, and Commands window in a FRAME entry in SAS/AF

Software. See Example 5 on page 813.
� the PMENU function in SAS/AF and SAS/FSP Software.
� the SETPMENU command in SAS/FSP Software. See Example 1 on page 796.

4 Activate the window you have created. Make sure that the menus are turned on.

Templates for Coding PROC PMENU Steps
The following coding templates summarize how to use the statements in the PMENU

procedure. Refer to descriptions of the statements for more information:
� Build a simple menu bar. All items on the menu bar are windowing environment

commands:

The PMENU Procedure � Templates for Coding PROC PMENU Steps 795

proc pmenu;
menu menu-bar;
item command;
...more-ITEM-statements...

run;

� Create a menu bar with an item that produces a pull-down menu:

proc pmenu;
menu menu-bar;
item ’menu-item’ menu=pull-down-menu;
...more-ITEM-statements...
menu pull-down-menu;
...ITEM-statements-for-pull-down-menu...

run;

� Create a menu bar with an item that submits a command other than that which
appears on the menu bar:

proc pmenu;
menu menu-bar;
item ’menu-item’ selection=selection;
...more-ITEM-statements...
selection selection ’command-string’;

run;

� Create a menu bar with an item that opens a dialog box, which displays
information and requests text input:

proc pmenu;
menu menu-bar;
item ’menu-item’ menu=pull-down-menu;
...more-ITEM-statements...
menu pull-down-menu;

item ’menu-item’ dialog=dialog-box;
dialog dialog-box ’command @1’;

text #line @column ’text’;
text #line @column LEN=field-length;

run;

� Create a menu bar with an item that opens a dialog box, which permits one choice
from a list of possible values:

proc pmenu;
menu menu-bar;
item ’menu-item’ menu=pull-down-menu;
...more-ITEM-statements...
menu pull-down-menu;

item ’menu-item’ dialog=dialog-box;
dialog dialog-box ’command %1’;

text #line @column ’text’;
radiobox default=button-number;
rbutton #line @column

’text-for-selection’;
...more-RBUTTON-statements...

run;

� Create a menu bar with an item that opens a dialog box, which permits several
independent choices:

796 Examples: PMENU Procedure � Chapter 31

proc pmenu;
menu menu-bar;
item ’menu-item’ menu=pull-down-menu;
...more-ITEM-statements...
menu pull-down-menu;

item ’menu-item’ dialog=dialog-box;
dialog dialog-box ’command &1’;

text #line @column ’text’;
checkbox #line @column ’text’;
...more-CHECKBOX-statements...

run;

Examples: PMENU Procedure
The windows in these examples were produced in the UNIX environment and may

appear slightly different from the same windows in other operating environments.
You should know the operating environment-specific system options that can affect

how menus are displayed and merged with existing SAS menus. For details, see the
SAS documentation for your operating environment.

Example 1: Building a Menu Bar for an FSEDIT Application
Procedure features:

PROC PMENU statement option:
CATALOG=

ITEM statement options:
MENU=
SELECTION=
SUBMENU=

MENU statement
SELECTION statement
SUBMENU statement

This example creates a menu bar that can be used in an FSEDIT application to
replace the default menu bar. The selections available on these pull-down menus do not
enable end users to delete or duplicate observations.

Program

libname proclib ’SAS-data-library’;

CATALOG= specifies PROCLIB.MENUCAT as the catalog that stores the menus.

proc pmenu catalog=proclib.menucat;

The PMENU Procedure � Program 797

The MENU statement specifies PROJECT as the name of the catalog entry. The menus are
stored in the catalog entry PROCLIB.MENUCAT.PROJECT.PMENU.

menu project;

The ITEM statements specify the items for the menu bar. The value of the MENU= option is
used in a subsequent MENU statement. The Edit item uses a common predefined submenu; the
menus for the other items are defined in this PROC step.

item ’File’ menu=f;
item ’Edit’ submenu=editmnu;
item ’Scroll’ menu=s;
item ’Help’ menu=h;

This group of statements defines the selections available under File on the menu bar. The first
ITEM statement specifies Goback as the first selection under File. The value of the
SELECTION= option corresponds to the subsequent SELECTION statement, which specifies
END as the command that is issued for that selection. The second ITEM statement specifies
that the SAVE command is issued for that selection.

menu f;
item ’Goback’ selection=g;
item ’Save’;
selection g ’end’;

The SUBMENU statement associates a predefined submenu that is located in the SAS file
SASHELP.CORE.EDIT with the Edit item on the menu bar. The name of this SUBMENU
statement is EDITMNU, which corresponds with the name in the SUBMENU= action-option in
the ITEM statement for the Edit item.

submenu editmnu sashelp.core.edit;

This group of statements defines the selections available under Scroll on the menu bar.

menu s;
item ’Next Obs’ selection=n;
item ’Prev Obs’ selection=p;
item ’Top’;
item ’Bottom’;
selection n ’forward’;
selection p ’backward’;

This group of statements defines the selections available under Help on the menu bar. The
SETHELP command specifies a HELP entry that contains user-written information for this
FSEDIT application. The semicolon that appears after the HELP entry name allows the HELP
command to be included in the string. The HELP command invokes the HELP entry.

menu h;
item ’Keys’;

798 Associating a Menu Bar with an FSEDIT Session � Chapter 31

item ’About this application’ selection=hlp;
selection hlp ’sethelp user.menucat.staffhlp.help;help’;

quit;

Associating a Menu Bar with an FSEDIT Session
The following SETPMENU command associates the customized menu bar with the

FSEDIT window.

setpmenu proclib.menucat.project.pmenu;pmenu on

You can also specify the menu bar on the command line in the FSEDIT session or
with a CALL EXECCMD in Screen Control Language.

See “Associating a Menu Bar with an FSEDIT Session” on page 805 for other
methods of associating the customized menu bar with the FSEDIT window.

The FSEDIT window shows the menu bar.

Example 2: Collecting User Input in a Dialog Box
Procedure features:

DIALOG statement
TEXT statement option:

LEN=

This example adds a dialog box to the menus created in Example 1 on page 796. The
dialog box enables the user to use a WHERE clause to subset the SAS data set.

Tasks include
� collecting user input in a dialog box
� creating customized menus for an FSEDIT application.

Program

The PMENU Procedure � Program 799

libname proclib ’SAS-data-library’;

CATALOG= specifies PROCLIB.MENUCAT as the catalog that stores the menus.

proc pmenu c=proclib.menucat;

The MENU statement specifies PROJECT as the name of the catalog entry. The menus are
stored in the catalog entry PROCLIB.MENUCAT.PROJECT.PMENU.

menu project;

The ITEM statements specify the items for the menu bar. The value of the MENU= option is
used in a subsequent MENU statement.

item ’File’ menu=f;
item ’Edit’ menu=e;
item ’Scroll’ menu=s;
item ’Subset’ menu=sub;
item ’Help’ menu=h;

This group of statements defines the selections under File on the menu bar. The first ITEM
statement specifies Goback as the first selection under File. The value of the SELECTION=
option corresponds to the subsequent SELECTION statement, which specifies END as the
command that is issued for that selection. The second ITEM statement specifies that the SAVE
command is issued for that selection.

menu f;
item ’Goback’ selection=g;
item ’Save’;
selection g ’end’;

This group of statements defines the selections available under Edit on the menu bar.

menu e;
item ’Cancel’;
item ’Add’;

This group of statements defines the selections available under Scroll on the menu bar.

menu s;
item ’Next Obs’ selection=n;
item ’Prev Obs’ selection=p;
item ’Top’;
item ’Bottom’;
selection n ’forward’;
selection p ’backward’;

800 Associating a Menu Bar with an FSEDIT Window � Chapter 31

This group of statements defines the selections available under Subset on the menu bar. The
value d1 in the DIALOG= option is used in the subsequent DIALOG statement.

menu sub;
item ’Where’ dialog=d1;
item ’Where Clear’;

This group of statements defines the selections available under Help on the menu bar. The
SETHELP command specifies a HELP entry that contains user-written information for this
FSEDIT application. The semicolon allows for the HELP command to be included in the string.
The HELP command invokes the HELP entry.

menu h;
item ’Keys’;
item ’About this application’ selection=hlp;
selection hlp ’sethelp proclib.menucat.staffhlp.help;help’;

The DIALOG statement builds a WHERE command. The arguments for the WHERE command
are provided by user input into the text entry fields described by the three TEXT statements.
The @1 notation is a placeholder for user input in the text field. The TEXT statements specify
the text in the dialog box and the length of the input field.

dialog d1 ’where @1’;
text #2 @3 ’Enter a valid WHERE clause or UNDO’;
text #4 @3 ’WHERE ’;
text #4 @10 len=40;

quit;

Associating a Menu Bar with an FSEDIT Window
The following SETPMENU command associates the customized menu bar with the

FSEDIT window.

setpmenu proclib.menucat.project.pmenu;pmenu on

You can also specify the menu bar on the command line in the FSEDIT session or
with a CALL EXECCMD command in SAS Screen Control Language (SCL). Refer to
SAS Component Language: Reference for complete documentation on SCL.

See “Associating a Menu Bar with an FSEDIT Session” on page 805 for other
methods of associating the customized menu bar with the FSEDIT window.

The PMENU Procedure � Program 801

This dialog box appears when the user chooses Subset and then Where.

Example 3: Creating a Dialog Box to Search Multiple Variables

Procedure features:
DIALOG statement

SAS macro invocation
ITEM statement

DIALOG= option
RADIOBOX statement option:

DEFAULT=
RBUTTON statement option:

SUBSTITUTE=

Other features: SAS macro invocation

This example shows how to modify the menu bar in an FSEDIT session to enable a
search for one value across multiple variables. The example creates customized menus
to use in an FSEDIT session. The menu structure is the same as in the preceding
example, except for the WHERE dialog box.

Once selected, the menu item invokes a macro. The user input becomes values for
macro parameters. The macro generates a WHERE command that expands to include
all the variables needed for the search.

Tasks include

� associating customized menus with an FSEDIT session
� searching multiple variables with a WHERE clause
� extending PROC PMENU functionality with a SAS macro.

Program

libname proclib ’SAS-data-library’;

802 Program � Chapter 31

CATALOG= specifies PROCLIB.MENUCAT as the catalog that stores the PMENU entry.

proc pmenu catalog=proclib.menucat;

The MENU statement specifies STAFF as the name of the catalog entry. The menus are stored
in the catalog entry PROCLIB.MENUCAT.PROJECT.PMENU.

menu project;

The ITEM statements specify the items for the menu bar. The value of the MENU= option is
used in a subsequent MENU statement.

item ’File’ menu=f;
item ’Edit’ menu=e;
item ’Scroll’ menu=s;
item ’Subset’ menu=sub;
item ’Help’ menu=h;

This group of statements defines the selections under File on the menu bar. The first ITEM
statement specifies Goback as the first selection under File. The value of the SELECTION=
option corresponds to the subsequent SELECTION statement, which specifies END as the
command that is issued for that selection. The second ITEM statement specifies that the SAVE
command is issued for that selection.

menu f;
item ’Goback’ selection=g;
item ’Save’;
selection g ’end’;

The ITEM statements define the selections under Edit on the menu bar.

menu e;
item ’Cancel’;
item ’Add’;

This group of statements defines the selections under Scroll on the menu bar. If the quoted
string in the ITEM statement is not a valid command, the SELECTION= option corresponds to
a subsequent SELECTION statement, which specifies a valid command.

menu s;
item ’Next Obs’ selection=n;
item ’Prev Obs’ selection=p;
item ’Top’;
item ’Bottom’;
selection n ’forward’;
selection p ’backward’;

The PMENU Procedure � Program 803

This group of statements defines the selections under Subset on the menu bar. The DIALOG=
option names a dialog box that is defined in a subsequent DIALOG statement.

menu sub;
item ’Where’ dialog=d1;
item ’Where Clear’;

This group of statements defines the selections under Help on the menu bar. The SETHELP
command specifies a HELP entry that contains user-written information for this FSEDIT
application. The semicolon that appears after the HELP entry name allows the HELP command
to be included in the string. The HELP command invokes the HELP entry.

menu h;
item ’Keys’;
item ’About this application’ selection=hlp;
selection hlp ’sethelp proclib.menucat.staffhlp.help;help’;

WBUILD is a SAS macro. The double percent sign that precedes WBUILD is necessary to
prevent PROC PMENU from expecting a field number to follow. The field numbers %1, %2, and
%3 equate to the values specified by the user with the radio boxes. The field number @1 equates
to the search value that the user enters. See “How the WBUILD Macro Works” on page 806.

dialog d1 ’%%wbuild(%1,%2,@1,%3)’;

The TEXT statement specifies text for the dialog box that appears on line 1 and begins in
column 1. The RADIOBOX statement specifies that a radio box will appear in the dialog box.
DEFAULT= specifies that the first radio button (Northeast) will be selected by default. The
RBUTTON statements specify the mutually exclusive choices for the radio buttons: Northeast,
Northwest, Southeast, or Southwest. SUBSTITUTE= gives the value that is substituted for
the %1 in the DIALOG statement above if that radio button is selected.

text #1 @1 ’Choose a region:’;
radiobox default=1;

rbutton #3 @5 ’Northeast’ substitute=’NE’;
rbutton #4 @5 ’Northwest’ substitute=’NW’;
rbutton #5 @5 ’Southeast’ substitute=’SE’;
rbutton #6 @5 ’Southwest’ substitute=’SW’;

The TEXT statement specifies text for the dialog box that appears on line 8 (#8) and begins in
column 1 (@1). The RADIOBOX statement specifies that a radio box will appear in the dialog
box. DEFAULT= specifies that the first radio button (Pollutant A) will be selected by default.
The RBUTTON statements specify the mutually exclusive choices for the radio buttons:
Pollutant A or Pollutant B. SUBSTITUTE= gives the value that is substituted for the %2 in
the preceding DIALOG statement if that radio button is selected.

text #8 @1 ’Choose a contaminant:’;
radiobox default=1;

rbutton #10 @5 ’Pollutant A’ substitute=’pol_a,2’;

804 Program � Chapter 31

rbutton #11 @5 ’Pollutant B’ substitute=’pol_b,4’;

The first TEXT statement specifies text for the dialog box that appears on line 13 and begins in
column 1. The second TEXT statement specifies an input field that is 6 bytes long that appears
on line 13 and begins in column 25. The value that the user enters in the field is substituted for
the @1 in the preceding DIALOG statement.

text #13 @1 ’Enter Value for Search:’;
text #13 @25 len=6;

The TEXT statement specifies text for the dialog box that appears on line 15 and begins in
column 1. The RADIOBOX statement specifies that a radio box will appear in the dialog box.
DEFAULT= specifies that the first radio button (Greater Than or Equal To) will be selected
by default. The RBUTTON statements specify the mutually exclusive choices for the radio
buttons. SUBSTITUTE= gives the value that is substituted for the %3 in the preceding
DIALOG statement if that radio button is selected.

text #15 @1 ’Choose a comparison criterion:’;
radiobox default=1;

rbutton #16 @5 ’Greater Than or Equal To’
substitute=’GE’;

rbutton #17 @5 ’Less Than or Equal To’
substitute=’LE’;

rbutton #18 @5 ’Equal To’ substitute=’EQ’;
quit;

This dialog box appears when the user selects Subset and then Where.

The PMENU Procedure � Associating a Menu Bar with an FSEDIT Session 805

Associating a Menu Bar with an FSEDIT Session
The SAS data set PROCLIB.LAKES has data about several lakes. Two pollutants,

pollutant A and pollutant B, were tested at each lake. Tests were conducted for
pollutant A twice at each lake, and the results are recorded in the variables POL_A1
and POL_A2. Tests were conducted for pollutant B four times at each lake, and the
results are recorded in the variables POL_B1 - POL_B4. Each lake is located in one of
four regions. The following output lists the contents of PROCLIB.LAKES:

Output 31.1

PROCLIB.LAKES 1

region lake pol_a1 pol_a2 pol_b1 pol_b2 pol_b3 pol_b4

NE Carr 0.24 0.99 0.95 0.36 0.44 0.67
NE Duraleigh 0.34 0.01 0.48 0.58 0.12 0.56
NE Charlie 0.40 0.48 0.29 0.56 0.52 0.95
NE Farmer 0.60 0.65 0.25 0.20 0.30 0.64
NW Canyon 0.63 0.44 0.20 0.98 0.19 0.01
NW Morris 0.85 0.95 0.80 0.67 0.32 0.81
NW Golf 0.69 0.37 0.08 0.72 0.71 0.32
NW Falls 0.01 0.02 0.59 0.58 0.67 0.02
SE Pleasant 0.16 0.96 0.71 0.35 0.35 0.48
SE Juliette 0.82 0.35 0.09 0.03 0.59 0.90
SE Massey 1.01 0.77 0.45 0.32 0.55 0.66
SE Delta 0.84 1.05 0.90 0.09 0.64 0.03
SW Alumni 0.45 0.32 0.45 0.44 0.55 0.12
SW New Dam 0.80 0.70 0.31 0.98 1.00 0.22
SW Border 0.51 0.04 0.55 0.35 0.45 0.78
SW Red 0.22 0.09 0.02 0.10 0.32 0.01

A DATA step on page 1646 creates PROCLIB.LAKES.
The following statements initiate a PROC FSEDIT session for PROCLIB.LAKES:

proc fsedit data=proclib.lakes screen=proclib.lakes;
run;

To associate the customized menu bar menu with the FSEDIT session, do any one of
the following:

� enter a SETPMENU command on the command line. The command for this
example is

setpmenu proclib.menucat.project.pmenu

Turn on the menus by entering PMENU ON on the command line.

� enter the SETPMENU command in a Command window.

� include an SCL program with the FSEDIT session that uses the customized menus
and turns on the menus, for example:

fseinit:
call execcmd(’setpmenu proclib.menucat.project.pmenu;

pmenu on;’);
return;
init:
return;
main:
return;
term:
return;

806 How the WBUILD Macro Works � Chapter 31

How the WBUILD Macro Works
Consider how you would learn whether any of the lakes in the Southwest region

tested for a value of .50 or greater for pollutant A. Without the customized menu item,
you would issue the following WHERE command in the FSEDIT window:

where region="SW" and (pol_a1 ge .50 or pol_a2 ge .50);

Using the custom menu item, you would select Southwest, Pollutant A, enter .50
as the value, and choose Greater Than or Equal To as the comparison criterion. Two
lakes, New Dam and Border, meet the criteria.

The WBUILD macro uses the four pieces of information from the dialog box to
generate a WHERE command:

� One of the values for region, either NE, NW, SE, or SW, becomes the value of the
macro parameter REGION.

� Either pol_a,2 or pol_b,4 become the values of the PREFIX and NUMVAR
macro parameters. The comma is part of the value that is passed to the WBUILD
macro and serves to delimit the two parameters, PREFIX and NUMVAR.

� The value that the user enters for the search becomes the value of the macro
parameter VALUE.

� The operator that the user chooses becomes the value of the macro parameter
OPERATOR.

To see how the macro works, again consider the following example, in which you
want to know if any of the lakes in the southwest tested for a value of .50 or greater for
pollutant A. The values of the macro parameters would be

REGION SW

PREFIX pol_a

NUMVAR 2

VALUE .50

OPERATOR GE

The first %IF statement checks to make sure that the user entered a value. If a
value has been entered, the macro begins to generate the WHERE command. First, the
macro creates the beginning of the WHERE command:

where region="SW" and (

Next, the %DO loop executes. For pollutant A, it executes twice because NUMVAR=2.
In the macro definition, the period in &prefix.&i concatenates pol_a with 1 and with
2. At each iteration of the loop, the macro resolves PREFIX, OPERATOR, and VALUE,
and it generates a part of the WHERE command. On the first iteration, it generates

pol_a1 GE .50

The %IF statement in the loop checks to see if the loop is working on its last
iteration. If it is not, the macro makes a compound WHERE command by putting an OR
between the individual clauses. The next part of the WHERE command becomes

OR pol_a2 GE .50

The loop ends after two executions for pollutant A, and the macro generates the last
of the WHERE command:

The PMENU Procedure � Program 807

)

Results from the macro are placed on the command line. The following code is the
definition of the WBUILD macro. The underlined code shows the parts of the WHERE
command that are text strings that the macro does not resolve:

%macro wbuild(region,prefix,numvar,value,operator);

/* check to see if value is present */

%if &value ne %then %do;

where region="®ion" AND (

/* If the values are character, */

/* enclose &value in double quotes. */

%do i=1 %to &numvar;

&prefix.&i &operator &value

/* if not on last variable, */

/* generate ’OR’ */

%if &i ne &numvar %then %do;

OR

%end;

%end;

)

%end;

%mend wbuild;

Example 4: Creating Menus for a DATA Step Window Application
Procedure features:

DIALOG statement
SELECTION statement

Other features: FILENAME statement

This example defines an application that enables the user to enter human resources
data for various departments and to request reports from the data sets created by the
data entry.

The first part of the example describes the PROC PMENU step that creates the
menus. The subsequent sections describe how to use the menus in a DATA step window
application.

Tasks include
� associating customized menus with a DATA step window
� creating menus for a DATA step window
� submitting SAS code from a menu selection
� creating a pull-down menu selection that calls a dialog box.

Program

The LIBNAME statement defines the SAS data library in which the PMENU entries are stored.
The FILENAME statements define the external files in which the programs to create the
windows are stored.

808 Program � Chapter 31

libname proclib ’SAS-data-library’;
filename de ’external-file’;
filename prt ’external-file’;

CATALOG= specifies PROCLIB.MENUS as the catalog that stores menus.

proc pmenu catalog=proclib.menus;

The MENU statement specifies SELECT as the name of the catalog entry. The menus are stored
in the catalog entry PROCLIB.MENUS.SELECT.PMENU.

menu select;

The ITEM statements specify the three items on the menu bar. The value of the MENU= option
is used in a subsequent MENU statement.

item ’File’ menu=f;
item ’Data_Entry’ menu=deptsde;
item ’Print_Report’ menu=deptsprt;

This group of statements defines the selections under File. The value of the SELECTION=
option is used in a subsequent SELECTION statement.

menu f;
item ’End this window’ selection=endwdw;
item ’End this SAS session’ selection=endsas;
selection endwdw ’end’;
selection endsas ’bye’;

This group of statements defines the selections under Data_Entry on the menu bar. The ITEM
statements specify that For Dept01 and For Dept02 appear under Data_Entry. The value of
the SELECTION= option equates to a subsequent SELECTION statement, which contains the
string of commands that are actually submitted. The value of the DIALOG= option equates to a
subsequent DIALOG statement, which describes the dialog box that appears when this item is
selected.

menu deptsde;
item ’For Dept01’ selection=de1;
item ’For Dept02’ selection=de2;
item ’Other Departments’ dialog=deother;

The commands in single quotes are submitted when the user selects For
Dept01 or For Dept02. The END command ends the current window and returns to the
PROGRAM EDITOR window so that further commands can be submitted. The INCLUDE
command includes the SAS statements that create the data entry window. The CHANGE
command modifies the DATA statement in the included program so that it creates the correct
data set. See “Using a Data Entry Program” on page 811. The SUBMIT command submits the
DATA step program.

The PMENU Procedure � Program 809

selection de1 ’end;pgm;include de;change xx 01;submit’;
selection de2 ’end;pgm;include de;change xx 02;submit’;

The DIALOG statement defines the dialog box that appears when the user selects
Other Departments. The DIALOG statement modifies the command string so that the name of
the department that is entered by the user is used to change deptxx in the SAS program that is
included. See “Using a Data Entry Program” on page 811. The first two TEXT statements
specify text that appears in the dialog box. The third TEXT statement specifies an input field.
The name that is entered in this field is substituted for the @1 in the DIALOG statement.

dialog deother ’end;pgm;include de;c deptxx @1;submit’;
text #1 @1 ’Enter department name’;
text #2 @3 ’in the form DEPT99:’;
text #2 @25 len=7;

This group of statements defines the choices under the Print_Report item. These ITEM
statements specify that For Dept01 and For Dept02 appear in the pull-down menu. The value
of the SELECTION= option equates to a subsequent SELECTION statement, which contains
the string of commands that are actually submitted.

menu deptsprt;
item ’For Dept01’ selection=prt1;
item ’For Dept02’ selection=prt2;
item ’Other Departments’ dialog=prother;

The commands in single quotes are submitted when the user selects For
Dept01 or For Dept02. The END command ends the current window and returns to the
PROGRAM EDITOR window so that further commands can be submitted. The INCLUDE
command includes the SAS statements that print the report. See “Printing a Program” on page
812. The CHANGE command modifies the PROC PRINT step in the included program so that it
prints the correct data set. The SUBMIT command submits the PROC PRINT program.

selection prt1
’end;pgm;include prt;change xx 01 all;submit’;

selection prt2
’end;pgm;include prt;change xx 02 all;submit’;

The DIALOG statement defines the dialog box that appears when the user selects
Other Departments. The DIALOG statement modifies the command string so that the name of
the department that is entered by the user is used to change deptxx in the SAS program that is
included. See “Printing a Program” on page 812. The first two TEXT statements specify text
that appears in the dialog box. The third TEXT statement specifies an input field. The name
entered in this field is substituted for the @1 in the DIALOG statement.

dialog prother ’end;pgm;include prt;c deptxx @1 all;submit’;
text #1 @1 ’Enter department name’;
text #2 @3 ’in the form DEPT99:’;
text #2 @25 len=7;

810 Associating a Menu with a Window � Chapter 31

The RUN statement ends this RUN group.

run;

The MENU statement specifies ENTRDATA as the name of the catalog entry that this RUN
group is creating. File is the only item in the menu bar. The selections available are End
this window and End this SAS session.

menu entrdata;
item ’File’ menu=f;
menu f;

item ’End this window’ selection=endwdw;
item ’End this SAS session’ selection=endsas;
selection endwdw ’end’;
selection endsas ’bye’;

run;
quit;

Associating a Menu with a Window
The first group of statements defines the primary window for the application. These

statements are stored in the file that is referenced by the HRWDW fileref:

The WINDOW statement creates the HRSELECT window. MENU= associates the
PROCLIB.MENUS.SELECT.PMENU entry with this window.

data _null_;
window hrselect menu=proclib.menus.select
#4 @10 ’This application allows you to’
#6 @13 ’- Enter human resources data for’
#7 @15 ’one department at a time.’
#9 @13 ’- Print reports on human resources data for’
#10 @15 ’one department at a time.’
#12 @13 ’- End the application and return to the PGM window.’
#14 @13 ’- Exit from the SAS System.’
#19 @10 ’You must have the menus turned on.’;

The DISPLAY statement displays the window HRSELECT.

display hrselect;
run;

The PMENU Procedure � Using a Data Entry Program 811

Primary window, HRSELECT.

Using a Data Entry Program
When the user selects Data_Entry from the menu bar in the HRSELECT window, a

pull-down menu is displayed. When the user selects one of the listed departments or
chooses to enter a different department, the following statements are invoked. These
statements are stored in the file that is referenced by the DE fileref.

The WINDOW statement creates the HRDATA window. MENU= associates the
PROCLIB.MENUS.ENTRDATA.PMENU entry with the window.

data proclib.deptxx;
window hrdata menu=proclib.menus.entrdata
#5 @10 ’Employee Number’
#8 @10 ’Salary’
#11 @10 ’Employee Name’
#5 @31 empno $4.
#8 @31 salary 10.
#11 @31 name $30.
#19 @10 ’Press ENTER to add the observation to the data set.’;

The DISPLAY statement displays the HRDATA window.

display hrdata;
run;

The %INCLUDE statement recalls the statements in the file HRWDW. The statements in
HRWDW redisplay the primary window. See theHRSELECT on page 810 window.

812 Printing a Program � Chapter 31

filename hrwdw ’external-file’;
%include hrwdw;
run;

The SELECTION and DIALOG statements in the PROC PMENU step modify the
DATA statement in this program so that the correct department name is used when the
data set is created. That is, if the user selects Other Departments and enters DEPT05,
the DATA statement is changed by the command string on the DIALOG statement to

data proclib.dept05;

Data entry window, HRDATA.

Printing a Program
When the user selects Print_Report from the menu bar, a pull-down menu is

displayed. When the user selects one of the listed departments or chooses to enter a
different department, the following statements are invoked. These statements are
stored in the external file referenced by the PRT fileref.

PROC PRINTTO routes the output to an external file.

proc printto file=’external-file’ new;
run;

The xx’s are changed to the appropriate department number by the CHANGE command in the
SELECTION or DIALOG statement in the PROC PMENU step. PROC PRINT prints that data
set.

The PMENU Procedure � Program 813

libname proclib ’SAS-data-library’;

proc print data=proclib.deptxx;
title ’Information for deptxx’;

run;

This PROC PRINTTO steps restores the default output destination. See Chapter 33, “The
PRINTTO Procedure,” on page 879 for documentation on PROC PRINTTO.

proc printto;
run;

The %INCLUDE statement recalls the statements in the file HRWDW. The statements in
HRWDW redisplay the primary window.

filename hrwdw ’external-file’;
%include hrwdw;
run;

Example 5: Associating Menus with a FRAME Application
Procedure features:

ITEM statement
MENU statement

Other features: SAS/AF software

This example creates menus for a FRAME entry and gives the steps necessary to
associate the menus with a FRAME entry from SAS/AF software.

Program

libname proclib ’SAS-data-library’;

CATALOG= specifies PROCLIB.MENUCAT as the catalog that stores the menus.

proc pmenu catalog=proclib.menucat;

The MENU statement specifies FRAME as the name of the catalog entry. The menus are stored
in the catalog entry PROCLIB.MENUS.FRAME.PMENU.

menu frame;

814 Steps to Associate Menus with a FRAME � Chapter 31

The ITEM statements specify the items in the menu bar. The value of MENU= corresponds to a
subsequent MENU statement.

item ’File’ menu=f;
item ’Help’ menu=h;

The MENU statement equates to the MENU= option in a preceding ITEM statement. The
ITEM statements specify the selections that are available under File in the menu bar.

menu f;
item ’Cancel’;
item ’End’;

The MENU statement equates to the MENU= option in a preceding ITEM statement. The
ITEM statements specify the selections that are available under Help on the menu bar. The
value of the SELECTION= option equates to a subsequent SELECTION statement.

menu h;
item ’About the application’ selection=a;
item ’About the keys’ selection=k;

The SETHELP command specifies a HELP entry that contains user-written information for this
application. The semicolon that appears after the HELP entry name allows the HELP command
to be included in the string. The HELP command invokes the HELP entry.

selection a ’sethelp proclib.menucat.app.help;help’;
selection k ’sethelp proclib.menucat.keys.help;help’;

run;
quit;

Steps to Associate Menus with a FRAME

1 In the BUILD environment for the FRAME entry, from the menu bar, select

View � Properties Window

2 In the Properties window, select the Value field for the pmenuEntry Attribute
Name. The Select An Entry window opens.

3 In the Select An Entry window, enter the name of the catalog entry that is
specified in the PROC PMENU step that creates the menus.

4 Test the FRAME as follows from the menu bar of the FRAME:

Build � Test

The PMENU Procedure � Steps to Associate Menus with a FRAME 815

Notice that the menus are now associated with the FRAME.

Refer to Getting Started with the FRAME Entry: Developing Object-Oriented
Applications for more information on SAS programming with FRAME entries.

816

