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ABSTRACT
Finding informative genes from microarray data is an impor-
tant research problem in bioinformatics research and appli-
cations. Most of the existing methods rank features accord-
ing to their discriminative capability and then find a subset
of discriminative genes (usually top k genes). In particu-
lar, t-statistic criterion and its variants have been adopted
extensively. This kind of methods rely on the statistics prin-
ciple of t-test, which requires that the data follows a normal
distribution. However, according to our investigation, the
normality condition often cannot be met in real data sets.
To avoid the assumption of the normality condition, in

this paper, we propose a rank sum test method for informa-
tive gene discovery. The method uses a rank-sum statistic as
the ranking criterion. Moreover, we propose using the signif-
icance level threshold, instead of the number of informative
genes, as the parameter. The significance level threshold
as a parameter carries the quality specification in statistics.
We follow the Pitman efficiency theory to show that the
rank sum method is more accurate and more robust than
the t-statistic method in theory.
To verify the effectiveness of the rank sum method, we use
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support vector machine (SVM) to construct classifiers based
on the identified informative genes on two well known data
sets, namely colon data and leukemia data. The prediction
accuracy reaches 96.2% on the colon data and 100% on the
leukemia data. The results are clearly better than those
from the previous feature ranking methods. By experiments,
we also verify that using significance level threshold is more
effective than directly specifying an arbitrary k.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms, measurement

Keywords
Informative genes, ranking criterion, rank sum test, support
vector machine, classification

1. INTRODUCTION
The DNAmicroarray technology enables rapid, large-scale

screening for patterns of gene expression. A DNA microar-
ray experiment can provide simultaneous, semi-quantitative
readouts on expression levels for thousands of genes [3]. The
raw microarray data is transformed into gene expression ma-
trices. Figure 1 shows an example. Usually, a row in the
matrix represents a gene and a column represents a sample.
The numeric value in each cell characterizes the expression
level of a specific gene in a particular sample. Many data
sets are now available on the web (e.g., [19, 2, 8]).
In many microarrary data sets, the samples can be di-

vided into several subgroups, such as tumor tissues and nor-
mal tissues (cases and controls). Each subgroup is called
a phenotype. A critical task is to identify the informative
genes – the genes that are discriminative among different
phenotypes. To elaborate, suppose there are 8 samples in a
data set. Among them, 4 samples are tumor tissues and the
other 4 samples are normal tissues, as shown in Figure 2.
The expression levels of 5 genes are illustrated. Genes g1,
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Figure 1: A gene expression matrix.

g2 and g3 are informative, since they are more or less con-
sistent within each phenotype, and discriminative between
the two phenotypes. On the other hand, genes g4 and g5
are non-informative genes, since they cannot manifest any
difference between the two phenotypes.
There are often thousands of genes in a data set, but prob-

ably only a small subset of genes are highly related to the
phenotypes under investigation. Therefore, the discovery
of informative genes as feature selection from an extremely
high dimensional space has broad applications. For exam-
ple, to construct an effective classifier for tumor diagnosis,
the informative genes should be used. The non-informative
genes should be filtered out so that the classification can
avoid noises. Moreover, informative genes can also provide
insights into the causes of phenotypes. The investigation on
the informative genes may further indicate the inherent fac-
tors that lead to the differences between the cases (e.g., the
tumor tissues) and the controls (e.g., the normal tissues), or
between different subtypes of tumor tissues.
One may think, given a set of labeled samples, finding the

informative genes may be straightforward. We only need
to find the genes that are consistent within each phenotype
and very different between the phenotypes. Unfortunately,
the cases are far from that simple. The real microarray
data sets are always very noisy. Almost no gene is perfectly
consistent in each phenotype and sharply different between
phenotypes. Instead, from the very noisy data, we have to
find out the genes that are very likely to be informative.
The problem of informative gene discovery has been stud-

ied extensively in the last 5 years. It has become increasingly
clear that, for many data analysis tasks on microarray data
such as classification and clustering, instead of considering
many genes, it is effective to consider a small number of in-
formative genes [15]. To select informative genes, a ranking
criterion is often introduced to quantify the discriminative
capability of individual genes. Then, a subset of genes with
the highest ranking criterion values are selected as infor-
mative genes. This kind of methods are known as feature
ranking methods.
Although several ranking criteria have been proposed, there

exist two serious problems. First, many methods require a
user-specified threshold on the number of informative genes.

That is, they select the top k genes as the informative ones.
However, it is often hard for a user to specify such a pa-
rameter. Second, some methods use the t-statistic or its
variations as the selection criteria. The t-statistic requires
that the data follows the Gaussian (normal) distribution.
According to our investigation (see Section 3), the assump-
tion about the data distribution often does not hold in gene
expression data.
In this paper, we propose a novel ranking criterion for in-

formative gene discovery based on non-parametric testing.
In particular, we use rank sum test. By non-parametric test-
ing, we do not assume any specific data distribution in gene
expression data. Moreover, we use the significance level to
select informative genes and thus provide the quality guar-
antee in statistics. To verify the effectiveness of our new
method for informative gene discovery, we construct the sup-
port vector machine (SVM) classifiers using the identified
informative genes. Our experimental results on two well
known real data sets, the colon data set and the leukemia
data set, show that the rank sum test method is effective:
the SVM-based classifiers using the informative genes so
identified are clearly more accurate than the previous meth-
ods.
The rest of the paper is arranged as follows. In Sec-

tion 2, we describe the informative gene discovery problem
concisely and review the related work. The rank sum test
method is introduced in Section 3. The experimental results
are reported in Section 4. Section 5 discusses related issues
and Section 6 concludes the paper.

2. PROBLEM DESCRIPTION AND RELATED
WORK

In this section, we describe the problem of informative
gene discovery, and present a brief review of the related
work.

2.1 Informative Gene Discovery
In general, for a set of genes G and a set of samples S,

a microarray data set can be modeled as a two dimensional
matrix M = (mi,j)n×m, where mi,j is the expression level
of gene gi on sample sj .
Often, the microarray tests are conducted on controlled

groups of samples. That is, the samples can be divided into
certain groups (called phenotypes), such as the groups of
normal tissues and tumor tissues. Typically, a sample has
thousands of genes and there are only less than 100 samples
in a microarray data set. Typical data analysis tasks on
microarray data sets include classification, clustering and
pattern discovery.
If we treat each sample as an object and each gene as

a feature/dimension, the data analysis is in a very high di-
mensional space with thousands of dimensions. As indicated
by previous studies, data analysis in such high dimensional
spaces is usually ineffective and deficient. Therefore, it is de-
sirable to select a small subset of genes such that each gene is
discriminative among the subgroups of samples. Such genes
are called informative genes.
Previous studies strongly indicate that the number of in-

formative genes is usually much smaller than the total num-
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Figure 2: Informative genes

ber of genes. Data analysis using informative genes is effec-
tive and efficient.
Now, the problem becomes how we can discover the infor-

mative genes effectively. This is called the informative gene
discovery problem.

2.2 Related Work
Most of the existing informative gene selection methods

are based on feature ranking. A typical approach is in two
steps. First, a ranking criterion is defined to measure the
variance of the expression values in different phenotypes for
each gene. Then, the top-k genes with the best ranking
measure values are selected as the informative genes. In
particular, the t-statistic ranking criterion and its variants
are frequently used [1, 4, 7, 9, 17, 18].
The t-statistic [1] is defined as

T =
µi,+ − µi,−

Sw

√
1

n+
+ 1

n−

,

where

S2
w =

(n+ − 1)σ2
i,+ + (n− − 1)σ2

i,−
n+ + n− − 2 ,

and µi,+, µi,−, σi,+ and σi,− are the mean and standard
deviation of gene gi on the positive and negative samples,
respectively; n+ and n− are the number of samples in the
positive and negative classes, respectively.
Intuitively, the t-statistic measures the difference of means

between different phenotypes, and the difference is normal-
ized by an expression of variances. Actually, the t-statistic
is used to measure the difference between two Gaussian dis-
tributions. Based on the t-test theory, when the data follows
Gaussian distribution, we can also compute the p-values to
know how significant the difference is. Then, we can use
the significance level, which is a threshold of p-values, to
determine a set of informative genes [4].

Some simplified forms of t-statistic are also used as rank-
ing criteria. For example, Golub et al. [9] propose the fol-
lowing measure

wi =
µi,+ − µi,−
σi,+ + σi,−

,

where µi,+, µi,−, σi,+ and σi,− are the mean and standard
deviation of gene gi on the positive and negative samples,
respectively. This ranking criterion is also adopted in other
studies [7, 18]. As another example, Pavlidis et al. [17] adapt
the Fisher’s discriminant criterion (FDC) [5], and define a
criterion as

(µi,+ − µi,−)2

σ2
i,+ + σ

2
i,−

.

These two criteria have similar formulas as the t-statistic.
They are considered as variants of the t-statistic.
The t-statistic like methods take the assumption that the

data follows the Gaussian distribution. However, if the as-
sumption does not hold, two defections of the t-statistic
criterion may happen. First, the ranks of the genes may
not concur with their discriminative capabilities over phe-
notypes. Second, using significance level to determine the
informative genes may become meaningless in statistics. A
detailed discussion will follow in Section 3.1.
Some methods other than the t-statistic exist. For exam-

ple, the square ratio is used by Dudoit et al. [6]. Moreover,
Guyon et al. [11] propose a method that selects informative
genes according to their utilization to SVM classifier. The
method conducts the recursive feature elimination (RFE)
based on a linear SVM classifier. A recent work by Yu
et al. extends the RFE method to a polynomial-SVM [21].
However, selecting informative genes by a specific classifier
may “overfit” the classifier and thus may not be helpful for
other applications. A gene selection method independent
from specific analysis will have more extensive applications.
Moreover, the accuracy of the SVM classifier may not be an
intuitive and direct indicator for the quality of informative
genes.
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3. THE RANK SUM TEST METHOD
In this section, we develop our rank sum test method. We

first discuss why the rank sum test is introduced. Then, we
revisit the general idea of rank sum test, and explain how it
can be used in informative gene discovery.

3.1 Why Non-parametric Testing?
A statistical test is used to determine the statistical sig-

nificance of an observation. With an assumption of the un-
derlying distribution of the observed data, a parametric test
can be conducted.
T -test [10] is a typical parametric test. The t-statistic

ranking criterion is derived from the t-test, which is used to
test whether two Gaussian populations have different distri-
butions in statistics. For gene selection, a high variance of
distribution in different phenotypes indicates that the gene
has a strong capability of discriminating different pheno-
types.
Now, the key problem becomes, “Does the gene expression

data often follow the Gaussian distribution?”
We use three well-known real data sets, Colon cancer data

set [2], Breast cancer data set [19] and Leukemia data set [8],
to test if they follow the Gaussian distribution. We use the
Skewness and Kurtosis statistics to conduct the normality
test. The null hypothesis is that a gene satisfies the normal-
ity condition. We choose a significance level of 0.05. If the
null hypothesis of a gene is rejected, then the gene cannot be
considered to follow the normal distribution. The error rate
of mis-rejecting a gene that actually satisfies the normality
condition is smaller than the significance level of 0.05.
The results are shown in Table 1. As can be seen, nearly

half of the genes’ null hypotheses are rejected. Even for
those genes whose null hypotheses are not rejected, they
still may not follow the Gaussian distribution.
From this test, it is clear that the three data sets do not

satisfy the normality condition. The three data sets are
typical. In general, the gene expression data may not satisfy
the normality condition.
Can we still use the t-statistic if the gene expression does

not follow a Gaussian distribution? Generally, the t-statistic
still can loosely measure the difference of the distributions
between the phenotypes. However, it does not work as well
as when the normality condition holds. As discussed be-
fore, there are two problems when the normality condition
is violated. First, the order of genes in t-statistic may not
reflect their capabilities of discriminating phenotypes. For
instance, suppose a gene A follows the normal distribution,
and a gene B follows a uniform distribution within an in-
terval. Then, the t-statistic value of gene A can be larger
than that of gene B. Consequently, gene A ranks higher
than gene B. This may lead to an error in informative gene
selection. The key is that the p-value of gene B should be
calculated under the assumption of uniform distribution in-
stead of normal distribution. Then, gene B may rank higher
than gene A according to their p-values. In short, blindly
applying t-statistic to gene expression data that does not
follow a Gaussian distribution may lead to a wrong order of
genes.

Furthermore, if the normality condition is violated, the
t-statistic will not follow the t-distribution any more. So we
should not get the p-value of a gene from the t-distribution
table, that is, using the significance level to select the infor-
mative genes does not make sense in statistics any more.

3.2 The Pitman Efficiency Theory
When the underlying distribution of data is unknown, a

non-parametric test should be conducted. The Pitman ef-
ficiency theory [16], which is also called asymptotic relative
efficiency (ARE) theory, gives a good explanation on the
advantage of the non-parametric method when the normal-
ity condition is violated. Here, we review the basic ideas of
the Pitman efficiency.
In statistic test, two types of errors may happen.

• A type I error is the mis-rejection of a true null hy-
pothesis;

• A type II error is a failure to reject a false null hypoth-
esis.

The probability of the type I errors is just the significance
level, while the probability of the type II errors is equal to
one subtract the power—the probability of rejecting the null
hypothesis correctly.
Generally, a statistic test is good if it has relatively small

probabilities of both type I and type II errors. Given a cer-
tain number of samples, there is usually a tradeoff between
the probability of type I errors and that of type II errors.
When the sample size is growing to infinity, both probabili-
ties can approach to 0.
Suppose α and β are the probabilities of type I errors and

type II errors, respectively. For any statistical test T , there
exists a large enough sample size N such that T satisfies the
given α and β. The relative efficiency RE(A,B) is defined
as NB

NA
, where NA and NB are the sample sizes required for

test A and B to give the same accuracy in terms of α and
β, respectively.
RE(A,B) > 1 means that test A is more accurate than

test B. However, RE(A,B) is influenced by many factors
and is difficult to compute. So the asymptotic relative effi-
ciency ARE(A,B) is usually used, which is the limitation of
RE(A,B) when α is fixed and β is approaching 0, as an ob-
jective criterion to compare the efficiencies of different tests
in statistics. It is proved that ARE(A,B) provides a good
approximation of RE(A,B) [16] even with a small data set
size.
The Wilcoxon rank sum test [14, 20] is a non-parametric

alternative to the two-sample t-test. So, we are concerned
about ARE(W, t), which is the asymptotic relative efficiency
of Wilcoxon rank sum test to t-test. If we use f(x) to rep-
resent the underlying distribution function of the data, and
use σ2 to represent its variance, then it can be shown [16]
that, generally,

ARE(W, t) = 12σ2(

∫
f2(x)dx)2.

Table 2 shows some concrete ARE(W, t) values for some
common distributions. When the data follows the Gaussian
distribution perfectly, the t-test is a bit superior to Wilcoxon
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Colon cancer Breast cancer Leukemia
normal samples tumor samples normal samples tumor samples ALL samples AML samples

Total # of genes 2000 2000 5776 5776 7129 7129

Rejected genes 730 1483 2250 2474 4542 2558

Table 1: The results on normality test on three real data sets. (“AML” for acute myeloid leukemia and
“ALL” for acute lymphoblastic leukemia.)

rank sum test. However, when the data follows some other
distributions, the Wilcoxon rank sum test is much better
than the t-test.
Table 3 shows an example of the ARE(W, t) values, when

normal population is partly contaminated. The standard
normal distribution Φ(x) is contaminated with a different
scale normal distribution Φ(x/3), the contaminated portion
is ξ. The contaminated distribution function is

Fξ(x) = (1− ξ)Φ(x) + ξΦ(x/3).
In Table 3, we can see only contaminated portion 0.15 makes
the t-test much worse than Wilcoxon rank sum test. Gen-
erally, under different situations, the ARE(W, t) value varies
in the interval [0.864,+∞]. Thus, in most cases, the Wilcoxon
rank sum test is superior to the t-test. For gene selection
problem, the superiority means that the selected genes are
more reliable in terms of having different distributions in
different phenotypes. Therefore, it is more reasonable and
reliable to use the rank sum test method for gene selection
rather than the t-statistic method.

ξ 0 0.05 0.1 0.15

ARE(W, t) 0.955 1.196 1.373 1.497

Table 3: The ARE(W, t) values for contaminated nor-
mal distribution Fξ(x) = (1− ξ)Φ(x) + ξΦ(x/3).

3.3 Rank Sum Test
When the data does not follow a normal distribution, a

distribution free non-parametric test should be conducted.
The rank sum test is a big category of non-parametric tests.
The general idea is that, instead of using the original ob-
served data, we can list the data in the value ascending or-
der, and assign each data item a rank, which is the place of
the item in the sorted list. Then, the ranks are used in the
analysis. Using the ranks instead of the original observed
data makes the rank sum test much less sensitive to outliers
and noises than the classical (parametric) tests. An outlier
will change the t-statistic value greatly, but not much to the
ranks. A gene expression data set often has many outliers
and noises. Thus, it is more suitable to apply the rank sum
test on informative gene selection.
Depending on the number of classes in the data sets, we

have different kinds of rank sum tests. The Wilcoxon rank
sum test [20, 14] is a non-parametric alternative to the two-
samples t-test. The Kruskal-Wallis rank sum test is used for
multi-class testing.
In this paper, we focus on the Wilcoxon rank sum test.

Given a data set of two classes. The statistic W is the sum

of ranks of the samples in the smaller class. The major steps
of the Wilcoxon rank sum test are as follows.

1. Combine all observations from the two populations
and rank them in value ascending order. If some ob-
servations have tied values, we assign each observation
in a tie their average rank;

2. Add all the ranks associated with the observations
from the smaller group. This gives the Wilcoxon statis-
tic;

3. Finally, the p-value associated with theWilcoxon statis-
tic is found from the Wilcoxon rank sum distribution
table, or a statistics toolkit, such as Matlab or SAS.

The method is demonstrated as follows.

Example 1 (Wilcoxon rank sum test). SupposeX
and Y are the expression levels of a certain gene in normal
and tumor samples, respectively. The normal set X contains
12 observed values and the tumor set Y contains 7 observed
values, as shown in Table 4. We want to test whether null
hypothesis P (X > Y ) = P (X < Y ) holds, which means the
distribution in normal samples is identical to the distribu-
tion in tumor samples.
We combine all the samples in X and Y , and sort them

in the value ascending order. The ranks are assigned to
samples based on the order. If k samples have the same
value of rank i, then each of them has an average rank

(i+
k − 1
2

).

The results are shown in Table 5.
Let n1 and n2 be the numbers of samples in the smaller

and larger groups, respectively. The tumor set has a smaller
sample size, 7, so n1 = 7 and n2 = 12. Then, we compute
the sums of the tumor ranks and have the statistic W =
1 + 3 + 4 + 6 + 8.5 + 11 + 16 = 49.5.
If null hypothesis H : P (X > Y ) = P (X < Y ) holds, then

the statistic W should be around the expectation value

(n1 + n2 + 1) · n1

2
= 70.

If the value of W is either too large or too small, the null
hypothesis is likely to be false. Using the Matlab, the p-
value is computed as 0.0873. Thus, if we set the significance
level α is 0.05 < 0.0873, the null hypothesis H0 cannot be
rejected; but if we set the significance level α is 0.1 > 0.0873,
then the null hypothesis H0 is rejected. ✷

Generally, for a multi-class informative gene discovery ap-
plication (more than two phenotypes), the Kruskal-Wallis
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Distribution Distribution function ARE(W, t)

U(−1, 1) 1
2
I(−1, 1) 1

N(0, 1) 1√
2p
e

x2
2 3

π
� 0.955

Logistic e−x(1 + e−x)−2 π
2
9 � 1.097

Double Exp. 1
2
e−|x| 1.5

Exponential λe−λx 3

Table 2: The ARE(W, t) values for some common distributions.

Types Num Expression level

X (nor) 12 134 146 104 119 124 161 107 83 113 129 97 123

Y (tum) 7 70 118 101 85 107 132 94

Table 4: Gene expression levels in two phenotypes.

rank sum test, which is a generalization of the Wilcoxon
rank sum test, can be used. Limited by space, we omit the
details here.

3.4 Selecting Informative Genes by Significance
Level Threshold

Many previous methods select the top k genes as the in-
formative ones, where k is a parameter specified by the user.
As discussed before and will be illustrated using real data
later, the value k is very different from one data set to the
other. Thus, it is very hard for a user to guess the right
value.
Instead of guessing a magic number, is it possible that the

user specify the quality requirement on the informative gene
selection? Here, we propose a significance level threshold
approach.
In statistics, the significance level measures the probabil-

ity of type I errors. Thus, a user can use the significance
level to specify the quality requirement. By this idea, our
informative gene selection method takes a significance level
threshold αmax. Only the genes whose p-values that are less
than the threshold are selected.
The major steps of the informative gene selection are as

follows.

1. Specify a significance level threshold αmax (e.g. 0.01),
to indicate the quality requirement of informative gene
selection;

2. Compute the Wilcoxon-statistic for every gene;

3. Use the statistics to compute the corresponding p-
values;

4. Select the genes whose p-values are smaller than the
significance level threshold αmax, which means the dis-
tributions between phenotypes are not identical.

3.5 Verification
To verify the effect of our rank sum test method for in-

formative gene discovery, we build classifiers using support
vector machines (SVM). As indicated by the previous stud-
ies, SVM is capable of classification on high dimensional
data sets with a small number of samples.

4. EXPERIMENTS
We test the effectiveness of the rank sum test method

for informative gene discovery using two real data sets as
follows.

• The colon cancer data set [2]. It contains the ex-
pression profiles of 2, 000 genes in 22 normal tissues
and 40 colon tumor tissues.

• The leukemia data set [8]. It consists of 7, 129
genes in 47 acute lymphoblastic leukemia (ALL) and
25 acute myeloid leukemia (AML) samples.

The experiments are implemented using Matlab 6.5 and
SVM-Light [13]. SVM-Light is a free SVM software down-
loadable at http://svmlight.joachims.org/.
As reported in Table 1, the two data sets do not follow

the Gaussian distribution.

4.1 Evaluation of the Rank Sum Test
To evaluate the effectiveness of the rank sum method, we

compare the accuracy of the SVM classifiers with and with-
out the informative gene discovery.
For the rank sum method, we try four different signifi-

cance levels: 0.1, 0.05, 0.01 and 0.001, respectively. The
informative gene selection returns 210, 109, 34 and 8 infor-
mative genes on the colon data set, and 1837, 1425, 844 and
398 genes on the leukemia data set, respectively.
We also try the following 3 kinds of support vector ma-

chines.

• Linear SVM (no kernel);

• 3-poly SVM (cubic polynomial kernel); and

• Radial basis function SVM (RBF kernel).

Before plugging the data into the SVM-Light tool, we nor-
malize the original expression data sets so that the mean is
0 and the standard deviation is 1.
To make the test more robust, we conduct the 4-fold cross-

validation experiments [5]. In particular, we randomly di-
vide the colon data set that includes 40 tumor samples and
22 normal samples into 4 folds: each fold contains 10 tumor
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V alues 70 83 85 94 97 101 104 107 107 113

Types t n t t n t n n t n

Ranks 1 2 3 4 5 6 7 8.5 8.5 10

V alues 118 119 123 124 129 132 134 146 161

Types t n n n n t n n n

Ranks 11 12 13 14 15 16 17 18 19

Table 5: Assign ranks to each sample.

samples and 5 or 6 normal samples. Similarly, we randomly
divide the leukemia data set with 47 ALL samples and 25
AML samples into 4 folds: each fold contains 18 samples –
11 or 12 ALL samples and 6 or 7 AML samples.
Then, we try our experiment four times, each time we

use three folds as the training data set and one fold as the
testing data. Finally, we compute the average accuracy for
the 4 results as our evaluation result. We use the prediction
accuracy as our evaluation metric. We let the SVM-Light
toolkit accept all testing patterns. That is, no testing pat-
terns are rejected without labels. The prediction results are
shown in Table 6 and Table 7, respectively.
On the colon data set, the best accuracy achieved by using

the informative genes is 98.3%, where only one prediction
error happens in the 4-fold cross-validation experiment. On
the leukemia data set, the accuracy of the informative gene
based method is even 100%.
The effectiveness of the informative genes is significant:

using the informative genes improves the accuracy dramati-
cally. This is consistent with the results in previous studies.
Moreover, the accuracy is not sensitive to the significance

levels. The accuracy will decrease slightly, when either too
many or too few informative genes are selected. That is
because, on the one hand, too many genes (with a large
significance level value) may include some unrelated genes
that bring noise to the classifiers; on the other hand, too few
genes (with a small significance level value) may filter out
some useful information for the classifiers.
To analyze whether the number of genes determined by

significance level is proper, we use the Wilcoxon statistic as
the ranking criterion, and select the top k genes as common
feature ranking methods do. The number k is determined
by

kn = 10× 2n−1, n = 1, 2, . . .

That is, we select 10, 20, 40, . . . , 1280 genes for the colon
data set, and 10, 20, 40, . . . , 5120 genes for the leukemia
data set, respectively. Then, we construct SVM classifiers
to test the accuracy. The results are shown in Figure 3(a)
(for colon data set) and Figure 3(b) (for leukemia data set).
From the figures, we can see that the optimal numbers

of informative genes are quite different between colon data
and leukemia data. On the colon data set, the classifier
using the top 40 informative genes gives approximately the
best accuracy, while on the leukemia data set, the classifier
using the top k genes has a perfect 100% accuracy when k is
in the range of 160 to 1280. This experiment clearly shows
why it is hard for a user to choose the value for parameter
k in informative gene selection: the value of k can be very

different in various data sets. Thus, it is hard for a user to
choose a good value manually.
In the same figures, we also plot the numbers of infor-

mative genes selected by significance levels and the corre-
sponding prediction accuracy using the informative genes.
It is interesting to notice that the significance level of 0.01
leads to almost the best performance on both data sets.
This strongly suggests that the significance level indicates
the quality of the informative genes properly. By rank sum
test, we do not have to guess the number of informative
genes. Instead, we can use some proper significance level,
such as 0.01, to specify the quality requirement of the infor-
mative genes. We will come back to this point in Section 5.

4.2 Comparison with Previous Methods
We compare the rank sum test method with some typical

existing feature ranking methods. We choose two popular
methods in the comparison, the method developed by Golub
et al. [9] (called Golub’s method) and the t-statistic method
developed by Alon et al. [1]. Their ranking criteria are dis-
cussed in Section 2. For comparison, we select the same
number of informative genes as the rank sum test method
does at different significance levels for Golub’s method and
the t-statistic method, and then construct the SVM clas-
sifiers using the selected informative genes. The compari-
son results of the prediction accuracy (average among the 3
SVM variants) on colon and leukemia data sets are shown
in Table 8 and Table 9, respectively.
The results clearly show that the rank sum method is con-

sistently better than the Golub’s method and the t-statistic
method, while the latter two methods are comparable in
accuracy. The improvement in accuracy of the rank sum
method against the other two methods is about 2% − 5%.
This improvement is non-trivial, considering the baseline
methods also achieve accuracy above 90%.
Moreover, we use the significance level to guide the selec-

tion of number of informative genes. That is, the Golub’s
method and the t-statistic method are also benefited from
the proper numbers of informative genes in these experi-
ments.
The experimental results are consistent with the Pitman

efficiency theory. According to our normality test, both the
colon data set and the leukemia data set have many genes
violating the normality condition. So the statistics theory
guarantees that the rank sum test method will outperform
the t-statistic like methods in these two data sets. The
experimental results concur with the statistics theory very
well. In general, the rank sum test method is better than
the t-statistic like methods for informative gene discovery.
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Without informative Significance level (# informative genes)
gene discovery 0.1 (210) 0.05 (109) 0.01 (34) 0.001 (8)

Linear SVM 56.4% 90.3% 90.3% 95.1% 88.8%

3-poly SVM 31.3% 61.3% 90.3% 95.1% 88.8%

RBM SVM 45.3% 87.2% 93.6% 98.3% 88.8%

Average 44.3% 79.6% 91.4% 96.2% 88.8%

Table 6: The result on the colon data set.

Without informative Significance level (# informative genes)
gene discovery 0.1 (1837) 0.05 (1425) 0.01 (844) 0.001 (398)

Linear SVM 73.6% 94.4% 94.4% 100% 100%

3-poly SVM 55.6% 91.7% 91.7% 100% 95.8%

RBM SVM 52.8% 94.4% 100% 100% 100%

Average 60.7% 93.5% 95.4% 100% 98.6%

Table 7: The result on the leukemia data set.

5. DISCUSSION
As shown by the experiments, the rank sum method has a

clear advantage. In this section, we present a further discus-
sion on the rationale of informative gene discovery by rank
sum test.
To quantify the quality of informative genes, it is impor-

tant to measure the capability of a gene to discriminate
phenotypes. Such a measure should be independent to the
distribution of the gene expression levels. That is, such a
measure should be assumption free for data distribution.
Therefore, the Wilcoxon statistic (generally, the rank-sum
statistics) and the p-value in rank sum test are ideal candi-
dates for the quality measurement of informative genes.
The ranking criterion is critical for feature ranking meth-

ods. A good ranking criterion should provide the following
two guarantees. First, it should be able to quantify the sig-
nificance of the difference between phenotypes. That is, a
user can specify the quality requirement of the informative
genes by specifying a threshold parameter using the ranking
criterion. Second, a ranking criterion should give an order
of the genes in quality. It should guarantee that gene g1 is
better than g2 if g1 is before g2 in the order.
Most of the ranking criteria in the previous studies can-

not fully provide the above two guarantees. t-statistic can
provide the guarantees if the data follows the normal distri-
bution, which may not be true in microarray data.
Rank sum test is independent of data distribution. Thus,

the significance level reflects the quality of the informative
genes. This is guaranteed by the statistic properties.

6. CONCLUSIONS
Discovery of informative genes is crucial and indispensable

for gene expression data analysis. It has extensive applica-
tions in bioinformatics. Most of the previous methods take a
feature ranking criterion and select the top k genes with the
highest ranking values as the informative genes, where k is
a user specified parameter. Usually, it is hard for the users
to guess the values. The t-statistic method and its variants

are the state-of-the-art feature ranking methods. However,
this kind of methods inherently assume that the data fol-
lows the Gaussian distribution, which is often violated in
real microarray data sets according to our investigation.
In this paper, to overcome the defections mentioned above,

we present a non-parametric rank sum test method for in-
formative gene discovery. In statistics theory, the Pitman
efficiency indicates it is more reasonable and reliable to use
a rank sum test method rather than a t-statistic like method.
By experiments on real data sets, we also show that the rank
sum test approach is more accurate and robust.
Moreover, we propose the method to select informative

genes using a significance level threshold. We show that the
significance level threshold carries the quality requirement
in statistics, is easy to specify, and performs consistent well
on real data sets.
As future work, it is interesting to measure the quality

of the informative genes more accurately. Moreover, we
would like to explore more extensive applications of non-
parametric testing methods in other bioinformatics prob-
lems, such as analyzing time-series gene expression data,
three-dimensional gene expression data sets [12] and the in-
teraction between genes.
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