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Abstract

Bayesian Ying–Yang (BYY) learning has provided a new mechanism that makes parameter learning with automated model selection via
maximizing a harmony function on a backward architecture of the BYY system for the Gaussian mixture. However, since there are a large
number of local maxima for the harmony function, any local searching algorithm, such as the hard-cut EM algorithm, does not work well. In
order to overcome this difficulty, we propose a simulated annealing learning algorithm to search the global maximum of the harmony function,
being expressed as a kind of deterministic annealing EM procedure. It is demonstrated by the simulation experiments that this BYY annealing
learning algorithm can efficiently and automatically determine the number of clusters or Gaussians during the learning process. Moreover, the
BYY annealing learning algorithm is successfully applied to two real-life data sets, including Iris data classification and unsupervised color
image segmentation.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

As a powerful tool for data clustering or partitioning, Gaus-
sian mixture model has been extensively studied in the litera-
ture for either parameter estimation or learning with a sample
data set. Although there are several statistical methods to do
such a task, e.g., the k-means algorithm [1] and the EM algo-
rithm [2], it is usually assumed that the number of clusters or
Gaussians is pre-known. However, in many cases this key in-
formation is not available and then the appropriate number of
Gaussians must be selected along with the estimation of pa-
rameters in the mixture, which becomes a rather complicated
and difficult task [3].

As the number of Gaussians is just a scale of the Gaussian
mixture model, the selection of number of Gaussians in the
Gaussian mixture modeling is generally referred to as model
selection. Thus, the general Gaussian mixture modeling is ac-
tually a compound problem of parameter learning (namely,
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estimation and model selection). In fact, this compound prob-
lem has been investigated by many researchers from different
directions. The traditional approach was to choose an optimal
number of Gaussians in the mixture via certain selection crite-
rion. There have been several statistical selection criteria for this
purpose. Among them, Akaike’s information criterion (AIC)
[4] as well as its extensions, such as the consistent Akaike’s
information criteria (CAIC) [5], are well known. However, all
the existing statistical selection criteria have their limitations
and often lead to a wrong result. Moreover, the process of eval-
uating a criterion incurs a large computational cost since we
need to repeat the entire parameter learning process as different
numbers of mixtures are estimated.

Since 1990s, there have appeared some new approaches to
solve this problem. One approach was to use a kind of stochas-
tic simulation to infer the optimal mixture model. The two typ-
ical implementations are the methods of Dirichlet processes [6]
and reversible jump Markov chain Monte Carlo (RJMCMC)
[7]. However, these stochastic simulation methods generally
require a large number of samples through different sampling
rules. Another approach was to introduce a kind of determin-
istic annealing in the partition learning process [8]. Certainly,
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there were several deterministic annealing methods that try
to overcome the local convergence problem of the cost-
based parameter estimation with the number of Gaussians
or clusters fixed and given in advance (i.e., without the
model selection procedure) (e.g., Refs. [9–11]). Recently,
this compound problem was also investigated using max-
imum certainty partitioning [12] and variational Bayesian
learning [13].

Alternatively, the Bayesian Ying–Yang (BYY) harmony
learning system and theory, which was first proposed in 1995
[14] and then systematically developed and summarized in
Refs. [15–17], has also established a theoretical foundation
to solve this compound problem. The BYY harmony learning
acts as a general statistical learning framework, which is not
only useful for understanding several existing major learning
approaches but also for tackling the learning problem on a set
of finite samples with a new learning mechanism that makes
model selection automatically during parameter learning. Par-
ticularly, for solving the current problem of interest, we can
implement a mechanism of parameter learning with automated
model selection on a certain BYY system for the Gaussian
mixture via maximizing a harmony function, which is reduced
from the harmony measure between the Ying and Yang ma-
chines. In fact, in Refs. [18–20], this mechanism was already
implemented on a bidirectional architecture (BI-architecture)
of the BYY system via some gradient-type learning algo-
rithms in order to solve this compound problem of parameter
learning and model selection. Moreover, a backward architec-
ture (B-architecture) of the BYY system can also be applied
to solving it. Actually, by simply ignoring the regularization
term in the harmony function on this BYY system, a direct
maximization of the harmony function leads to a discrete
optimal problem with a hard-cut EM algorithm [15], which
suffers from the difficulty of being stuck at a local maximum
solution.

In the current paper, we follow the simulated annealing
idea of gradually shifting the maximum likelihood (or equiv-
alently the Kullback divergence learning) to the harmony
learning suggested in [16,17] and present a simulated an-
nealing procedure for searching the global maximum of the
harmony function on the B-architecture of the BYY sys-
tem, such that model selection and parameter learning on
the Gaussian mixture can be accomplished simultaneously
and efficiently. Namely, a BYY annealing learning algorithm
is constructed for parameter learning on the Gaussian mix-
ture with automated model selection. It is demonstrated by
experiments that the BYY annealing learning algorithm can
always perform model selection automatically during the pa-
rameter learning and leads to a good clustering or partitioning
result.

In the sequel, the BYY harmony learning system and ar-
chitecture are briefly introduced, and the BYY annealing
learning algorithm is derived in Section 2. Several simula-
tion and practical experiments are conducted in Section 3
to demonstrate the efficiency of the proposed anneal-
ing learning algorithm. Finally, we conclude the paper in
Section 4.

2. The BYY annealing learning algorithm

A BYY system describes each observation x ∈ X ⊂ Rn and
its corresponding inner representation y ∈ Y ⊂ Rm via two
types of Bayesian decomposition of the joint probability den-
sity functions: p(x, y)=p(x)p(y|x) and q(x, y)=q(x|y)q(y),
which are called Yang machine and Ying machine, respectively.
Given a data set Dx = {xt }Nt=1, the goal of harmony learning
on a BYY system is to extract the hidden probabilistic struc-
ture of x with the help of y from specifying all the aspects
of p(y|x), p(x), q(x|y), q(y) via a harmony learning principle
implemented by maximizing the following functional:

H(p||q) =
∫

p(y|x)p(x) ln[q(x|y)q(y)] dx dy − ln zq , (1)

where zq is a regularization term. That is, the harmony learning
principle attempts to minimize the difference between p(x, y)

and q(x, y), plus certain regularization. The theoretical details
are referred in [16,17].

The BYY system is called to have a B-architecture (short
for Backward architecture) if q(x|y) is parametric, i.e., from a
family of probability densities with a parameter �, while p(y|x)

is free to be determined by learning. For the Gaussian mixture
modeling, we can use the following B-architecture of the BYY
system. The inner representation y is discrete, i.e., y ∈ Y =
{1, 2, . . . , k} ⊂ R with m = 1 and q(y = j) = �j with �j �0
and

∑k
j=1 �j = 1. Also, we ignore the regularization term zq

(i.e., set zq = 1) and let p(x) be directly given by the empirical
probability density p0(x) = (1/N)

∑N
t=1 g(x − xt ), where x ∈

X = Rn and g(·) is a kind of kernel function (e.g., Gaussian
function). Moreover, each q(x|y = j) = q(x|�j ) is a Gaussian
probability density q(x|mj , �j ), as given by

q(x|�j ) = q(x|mj , �j )

= 1

(2�)1/n|�j |1/2
e−(1/2)(x−mj )T�−1

j (x−mj ), (2)

where mj denotes the mean vector and �j denotes the covari-
ance matrix which is assumed to be positive definite. Moreover,
p(y|x) is a probability distribution that is free to be determined
under the general constraints: p(j |x)�0 and

∑k
j=1 p(j |x)=1.

Putting all these component densities into Eq. (1) and letting
the kernel functions approach the delta functions �(x), H(p||q)

reduces to the following harmony function:

J (�k) = 1

N

N∑
t=1

k∑
j=1

p(j |xt ) ln[�j q(xt |mj , �j )], (3)

on the parameters �k ={�j , mj , �j , p(j |xt ), t=1, . . . , N}kj=1.

For clarity, we let �̂k = {�j , mj , �j }kj=1 and q(x|�̂k) =∑k
j=1 �j q(x|mj , �j ) is just the Gaussian mixture density to

match the true density q(x|�̂∗
k∗) = ∑k∗

j=1 �∗
j q(x|m∗

j , �
∗
j ) given

the sample data in Dx , where k∗ denotes the true number of
Gaussian densities. Maximizing J (�k) with respect to a free



J. Ma, J. Liu / Pattern Recognition 40 (2007) 2029–2037 2031

p(j |xt ) leads to the following hard-cut form:

p(y|xt ) =
{

1 if y = argmax[�j q(xt |mj , �j )],
0 otherwise

(4)

which, together with the maximization with respect to other
parameters, leads to the hard-cut EM algorithm suggested in
Ref. [15]. As pointed out in Ref. [16], it is the nature by the
harmony learning that the global maximization of J (�k) leads
to automatical detection of k∗ as long as k is initially selected
to be greater than k∗. On the other hand, the winner-take-all
(WTA) competition mechanism by Eq. (4) makes the maxi-
mization of Eq. (3) a discrete optimization that is very easy to
be trapped into a local maximum.

With the above background, we now derive a simulated an-
nealing BYY harmony learning algorithm that can make each
p(j |xt ) gradually shift from a soft version to the WTA hard-
cut version by Eq. (4). Specifically, in the light of Eq. (60) of
Ref. [17], we consider

L�(�k) = J (�k) + �ON(p(y|x)), (5)

where

ON(p(y|x)) = − 1

N

N∑
t=1

k∑
j=1

p(j |xt ) ln p(j |xt ), (6)

and ��0. When � = 1, the maximum of L�(�k) is just the
Kullback divergence learning that is equivalent to maximum
likelihood learning directly on q(x|�̂k) [15]. However, when
� = 0, Eq. (5) reduces to Eq. (3). Thus, as � reduces from one
to zero, the maximization of L�(�k) will make p(j |xt ) shift
from a soft version in the conventional EM algorithm to the
WTA or hard-cut version by Eq. (4). If we can let � → 0 from
�0 = 1 appropriately in a simulated annealing procedure, the
maximum of L�(�k) will correspond to the global maximum
of J (�k) with a high probability .

Specifically, the parameters in �k can be divided into two
groups: �1 and �2, where �1 = {p(j |xt ), t = 1, . . . , N, j =
1, . . . , k} and �2 = �̂k . Then, we have

max
�k

L�(�k) = max
�1,�2

L�(�k) = max
�1,�2

L�(�1, �2),

which can be implemented by an alternative maximization it-
erative procedure:

Step 1: Fix �2 = �old
2 , get �new

1 = argmax�1
L�(�1, �2).

Step 2: Fix �1 = �old
1 , get �new

2 = argmax�2
L�(�1, �2).

This iterative procedure is guaranteed to reduce L�(�k) until
it converges to a local maximum when � is fixed. Furthermore,
�new

1 and �new
2 can be solved in detail as follows.

On the one hand, we fix �2 and solve the maximum of �1.
Since

∑k
j=1 p(j |xt ) = 1 for each xt , we introduce N Lagrange

multipliers 	1, . . . , 	N , and construct the following Lagrange
function:

L�(�k, 	1, . . . , 	N) = L�(�k) +
N∑

t=1

	t

⎛
⎝ k∑

j=1

p(j |xt ) − 1

⎞
⎠ .

(7)

By letting the derivatives of L�(�k, 	1, . . . , 	N) with respect
to all 	t and p(j |xt ) be zeros, we obtain a series of equations:

ln[�j q(xt |mj , �j )] − �(1 + ln p(j |xt )) + 	t = 0, (8)

k∑
j=1

p(j |xt ) = 1, (9)

for t = 1, . . . , N; j = 1, . . . , k. From these equations, we have
a unique solution for �1:

p(j |xt ) = [�j q(xt |mj , �j )]1/�

∑k
i=1 [�iq(xt |mi, �i )]1/�

,

t = 1, . . . , N; j = 1, . . . , k. (10)

On the other hand, we fix �1 and solve the maximum of �2.
Since

∑k
j=1 �j = 1, we introduce another Lagrange multiplier

	 and construct the following Lagrange function:

L�(�k, 	) = L�(�k) + 	

⎛
⎝ k∑

j=1

�j − 1

⎞
⎠ . (11)

By letting the derivatives of L�(�k, 	) with respect to 	 and
all the parameters in �2 be zeros, we have another series of
equations as follows:

1

N

N∑
t=1

p(j |xt )
1

�j

− 	 = 0, (12)

1

N

N∑
t=1

p(j |xt )(xt − mj) = 0, (13)

1

2N

N∑
t=1

p(j |xt )�
−1
j [(xt−mj)(xt−mj)

T−�j ]�j=0, (14)

k∑
j=1

�j = 1, (15)

for j = 1, . . . , k. By solving this series of equations, we have
the following unique solution for �2:

�̂j = 1

N

N∑
t=1

p(j |xt ), (16)

m̂j = 1∑N
t=1 p(j |xt )

N∑
t=1

p(j |xt )xt , (17)

�̂j = 1∑N
t=1 p(j |xt )

N∑
t=1

p(j |xt )(xt − m̂j )(xt − m̂j )
T. (18)

From the above derivations, we have already established an
alternative optimization algorithm for maximizing L�(�k). It
takes the same form as the standard EM algorithm for the Gaus-
sian mixtures, but differs in the E-step, in which the posteriori
probabilities p(j |xt ) tend to be the hard-cut version as � → 0.
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If � attenuates appropriately along time, this alternative maxi-
mization algorithm anneals to search for the global maximum of
J (�k), which further leads to automated model selection with
parameter estimation. That is, when we set k to be greater than
k∗ (i.e., the number of actual Gaussians in the sample data set
Dx), the annealing learning algorithm can make k∗ Gaussians
in the estimated mixture match the actual Gaussians upon con-
vergence and force the mixing proportions of the other (k−k∗)
extra Gaussians to vanish (i.e., eliminate them from the mix-
ture automatically). For clarity and convenience, we refer to the
derived algorithm as the BYY annealing learning algorithm.

Interestingly, the BYY annealing learning algorithm derived
here takes a similar form as that of the deterministic annealing
EM algorithm proposed in Ref. [11]. Actually, the annealing
parameter 	 (0 < 	min �	�1) in the deterministic annealing
EM algorithm serves as 1/� in the BYY annealing learning al-
gorithm. However, the deterministic annealing EM algorithm
makes 	 gradually approach to 1 so that it can search for the
global maximum of the likelihood function for overcoming the
local maxima problem associated with the conventional EM
algorithm. Therefore, the deterministic EM algorithm leads to
a good maximum likelihood estimate, but it has no ability to
make model selection for the Gaussian mixture. On the con-
trary, the BYY annealing learning algorithm makes 1/� grad-
ually tend to the positive infinity or � → 0 so that it tries to
globally maximize the harmony function for the Gaussian mix-
tures. Hence, the BYY annealing learning algorithm has the
ability to make model selection for the Gaussian mixture mod-
eling. As a result, these two annealing-type algorithms anneal
in different ways and achieve different goals; nevertheless, they
take the similar forms and can be considered to belong to the
same family of deterministic annealing EM algorithms.

3. Experimental results

In this section, several simulation experiments are carried out
to demonstrate the performance of the BYY annealing learning
algorithm for automated model selection as well as clustering
on the sample data from a Gaussian mixture with certain de-
gree of overlap. Moreover, the BYY annealing learning algo-
rithm is applied to two real-life data sets, including Iris data
classification and unsupervised color image segmentation.

3.1. On simulation data sets

As shown in Fig. 1, four typical sets of sample data from
different Gaussian mixtures were used in our simulation exper-
iments. The sample data in each set were randomly and inde-
pendently generated from a mixture of four or three bivariate
Gaussians with a certain degree of overlap on the plane coor-
dinate system (i.e., d = 2). These four sets of sample data are
quite representative. The Gaussians (i.e., clusters) in S1 are
sphere-shaped, with the equal number of samples. But those
in S2 are ellipse-shaped, with different numbers of samples.
Moreover, S3 consists of three very flat Gaussians and S4 has
a small number of samples, with the same structure as S2.

We ran the BYY annealing learning algorithm on the given
four sample data sets, respectively, by letting k > k∗ and set-
ting the stopping criterion: |J (�new

k ) − J (�old
k )| < 10−7. The

initial parameters were randomly selected within certain inter-
vals. However, it was found by the experiments that if the initial
mean vectors of k Gaussians are trained by the rival penalized
competitive learning (RPCL) algorithm [21] on the sample data
with a small number of iterations, the BYY annealing learning
algorithm converges more quickly. Thus, we always selected
the initial mean vectors of k Gaussians with the aid of a short
RPCL process. For the annealing parameter �, we let

� = �(t) = 1

a(1 − e−b(t−1)) + c
, (19)

where t denotes the iteration time. In this case, a = 100, b =
ln 10/10 000 and c = 0.5.

The experimental results of the BYY annealing learning al-
gorithm on the four sample sets in the case of k = 8 and k∗ = 4
(or 3), are given in Figs. 2–5, respectively. In order to vividly
describe a Gaussian distribution in the estimated mixture ob-
tained from the algorithm, we use the graded contour lines of
its probability density starting from the center point (i.e., the
mean vector), and gradually expanding unless the density is
less than e−3. From each of these four figures, we observed
that there are four (or three) Gaussians, which accurately match
the actual ones in the sample data set. Also, we can find that
the mixing proportions �j of the extra Gaussians were forced
to be zeros. That is, the BYY annealing learning algorithm
can detect the correct number of the Gaussians or clusters in
each of these sample data sets. We also observed that an extra
Gaussian can be stable with any shape while its mixing pro-
portion is attenuating to zero. Frequently, it degenerates to a
point.

In addition to the Gaussian number detection, we further
found that the clustering or partitioning result according to the
converged posteriori probabilities p(j |xt )(=0, 1) on the given
sample data is generally as good as the conventional EM algo-
rithm for the Gaussian mixtures with k = k∗. That is, by dis-
carding those extra Gaussians, the final posteriori probabilities
p(j |xt ) can lead to a reasonable partition on the sample data.

Through further experiments on these sample sets, we also
compared the BYY annealing learning algorithm with other
state-of-the-art statistical approaches. In comparison with the
simulation results of the gradient-type learning algorithms
[18–20] on these four data sets, we have found that our anneal-
ing learning algorithm converges more accurately and stably
than the gradient-type learning algorithms, for both tasks of
correct number detection and data partitioning. Although it
takes the form of simulated annealing, our annealing learning
algorithm generally converges as quickly as the gradient-type
learning algorithms.

In comparison with the hard-cut EM algorithm [15] and the
methods of RJMCMC and Dirichlet processes, the BYY an-
nealing learning algorithm has a better convergence behavior.
Generally, the BYY annealing learning algorithm is not sen-
sitive to the initial values of the parameters and always leads
to a good result. On the contrary, the hard-cut EM algorithm
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Fig. 1. Four sets of sample data used in the experiments. (a) Set S1; (b) set S2; (c) set S3; (d) set S4.

is very sensitive to the initial values of the parameters, this
also showed that the harmony function with a general data set
has a large number of local maxima and thus the annealing
learning mechanism is necessary. As compared with the deter-
ministic annealing approach for pairwise data clustering [8],
the BYY annealing learning algorithm converges at a faster
speed, while their convergence results are generally similar. As
compared with the methods of maximum certainty partitioning
and variational Bayesian learning, the BYY annealing learn-
ing algorithm has a simpler structure and thus less computation
cost.

3.2. On classification of the Iris data

We further applied the BYY annealing learning algorithm to
the task of Iris data classification (or recognition) [22], which
is known to be a classification benchmark in either supervised
or unsupervised learning mode. The Iris data set consists of
150 samples of three classes: Iris Versicolor, Iris Virginica, and

Iris Setosa, each class containing 50 samples. Each sample
or datum is four-dimensional, which represents measures of
the plants morphology. Here, the category or class index of
each sample in the Iris data set is already clear. As the BYY
annealing learning algorithm is a kind of unsupervised learning
algorithm, we can consider that all of 150 samples blindly
come from a mixture of three Gaussians, which represent the
three Iris classes separately. In this way, we can implement the
BYY annealing learning algorithm on these 150 samples to
detect these three representative Gaussians and classify them
according to the posteriori probabilities p(j |xt ) of the final
estimated Gaussians. To evaluate the classification performance
of the algorithm, we compute the classification accuracy given
the real categories of the 150 samples.

In our experiments, for ease of classification we first regular-
ized the original Iris data via dividing them by some integers
so that they can be located within a reasonable region. Since
the scales of the four components of the Iris data are quite
different, we used the four different integers: 35, 20, 25, and
10, to regularize the first to fourth components of the Iris data,
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Fig. 2. The experimental result of the BYY annealing learning algorithm on
S1 (after 53 iterations).
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Fig. 3. The experimental result of the BYY annealing learning algorithm on
S2 (after 62 iterations).

respectively. Then, we implemented the BYY annealing learn-
ing algorithm on the regularized Iris data to solve the above
unsupervised classification problem by setting k = 6, i.e., two
times of the number of the actual classes. For the other initial
parameters, we set �j =1/k= 1

6 and the mean vectors mj were
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Fig. 4. The experimental result of the BYY annealing learning algorithm on
S3 (after 55 iterations).
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Fig. 5. The experimental result of the BYY annealing learning algorithm on
S4 (after 15 iterations).

selected through a short RPCL process. The covariance matri-
ces �j were simply set as the identity matrices. For simplicity,
we formulated the annealing parameter by �(t) = 1/(1 + at),
where a = 0.1. For faster convergence of the algorithm, we
also set a low threshold value T =0.07 such that when �j < T ,
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Fig. 6. The segmentation result on the color image of house. (a) The original color image of house; (b) the segmented image via the BYY annealing learning
algorithm (after 21 iterations).

we cancel the j th Gaussian in the mixture in the later learn-
ing iterations. In this case, the learning process was stopped
when |J (�new

k )−J (�old
k )| < 10−5. It was shown in the exper-

iments that the BYY annealing learning algorithm can always
correctly detect the three actual classes of the Iris data within
150 iterations. Moreover, the optimal classification accuracy of
the BYY annealing learning algorithm could reach 98% (there
are only two errors in the second class and one error in the
third class), which is as good as the optimal classification ac-
curacy of the maximum certainty partitioning method with a
large number of linear mixing Gaussian kernels [12].

3.3. On unsupervised color image segmentation

Finally, we applied the BYY annealing learning algorithm to
the problem of unsupervised color image segmentation, which
has been recognized as a promising and challenging topic in
image processing [23]. Segmenting a digital color image into
homogenous regions corresponding to the objects (including
the background) is a fundamental problem in image processing.
When the number of objects in an image is not known in ad-
vance, the image segmentation problem is in an unsupervised
mode and becomes rather difficult in practice. If we consider
each object as a Gaussian distribution, the whole color image
can be regarded as a Gaussian mixture in the data or color
space. Then, the BYY annealing learning algorithm provides a
new tool for solving this unsupervised color image segmenta-
tion problem. In the following, we applied it to the unsuper-
vised color image segmentation on three typical color images
that are expressed in the three-dimensional color space by the
RGB system. Specifically, we used each Gaussian in the algo-
rithm to represent an object in a color image and set k to be
greater than the number k∗ of the actual objects in the image.
When the mixing proportion of the estimated Gaussians are less
than a small threshold T, we eliminate these Gaussians imme-
diately. Finally, the pixels in the image are partitioned accord-
ing to the posteriori probabilities p(j |xt ) of the final estimated
Gaussians.

Fig. 7. The segmentation result on the color image of cactus. (a) The original
color image of cactus; (b) the segmented image via the BYY annealing
learning algorithm (after 16 iterations).

As shown in Figs. 6–8(a), three typical color images of
house, cactus, and jellies, are selected for the segmentation ex-
periments. Each pixel in the image is represented by a three-
dimensional point that correspond to the coding of the RGB
system. In our experiments, for the ease of segmentation we
regularized all the three coordinates of the pixels in each color
image via dividing them by 128 so that the regularized coordi-
nates are within a reasonable interval. Upon such a preprocess-
ing, we implemented the BYY annealing learning algorithm
on the three color images, respectively, by letting k = 6 with
a simplified stopping criterion:

∑k
j=1 ‖mnew

j − mold
j ‖ < 0.02.

The other initial parameters were selected in the same way as
in Section 3.2 except a = 0.2 and T = 0.06, 0.08, 0.05 for the
three color images, respectively.

The experimental results of the BYY annealing learning
algorithm on the three color images of house, cactus, and jel-
lies are given in Figs. 6–8(b), respectively. From these three
segmented images, we can observe that two or three objects
are finally located accurately. That is, the partitions accurately
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Fig. 8. The segmentation result on the color image of jellies. (a) The original color image of jellies; (b) the segmented image via the BYY annealing learning
algorithm (after 22 iterations).

match the actual object boundaries in the image. Also, we found
from the experiments that the mixing proportions �j of those
extra objects could be quickly reduced to below the threshold T
and be discarded in the algorithm. That is, the BYY annealing
learning algorithm can detect the number of actual objects cor-
rectly in these color images. Moreover, the segmentation results
of the BYY annealing learning algorithm are better than those
of the generalized competitive clustering (GCC) algorithm [23]
(based on the fuzzy clustering theory). Actually, in comparison
with the segmented result of the cactus color image from the
web http://www-rocq.inria.fr/∼boujemaa/Partielle2.html, we
found that the BYY annealing learning algorithm obtains a
more accurate segmentation on the contours of the objects in
the same cactus color image.

4. Conclusions

We have proposed a Bayesian Ying–Yang (BYY) annealing
learning algorithm for data clustering or partition with auto-
mated model selection. The algorithm is derived to search for
the global maximum of the harmony function on a specific B-
architecture of the BYY system in a simulated annealing way,
such that the posteriori probabilities of the Gaussian mixture
gradually change from the soft version to the final hard-cut
version. Our algorithm can be considered as a kind of simu-
lated annealing EM algorithm for the Gaussian mixture, but
it outperforms the deterministic annealing EM algorithm [11]
with a new feature that the model selection can be performed
automatically along with parameter learning. The simulation
experiments have shown that the BYY annealing learning al-
gorithm can automatically and efficiently determine the num-
ber of clusters or Gaussians for learning a parametric mix-
ture model of a sample data set. Moreover, the BYY annealing
learning algorithm succeeds in two real-life unsupervised learn-
ing tasks, including of Iris data classification and color image
segmentation.
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