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Abstract

This paper presents a theoretical analysis on the asymptotic memory capacity of the generalized Hopfield network. The perceptron
learning scheme is proposed to store sample patterns as the stable states in a generalized Hopfield network. We have obtained that�n 2
1� and 2n are a lower and an upper bound of the asymptotic memory capacity of the network ofn neurons, respectively, which shows that the
generalized Hopfield network can store the larger number of sample patterns than Hopfield network.q 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

When Hopfield network was proposed as an associative
memory model in 1982, the sum-of-outer product scheme
was applied to store the sample patterns (Hopfield, 1982).
Hopfield demonstrated by computer simulation that the
network with n neurons could store about 0.15n patterns
in the form of the stable states. It is now well known that
the asymptotic memory capacity of Hopfield network withn
neurons isn=�4 log n� patterns (McMliece et al., 1987).

Hopfield network is a single layer recurrent network ofn
bipolar (or binary) neurons uniquely defined by�W; u�
whereW is a symmetric zero-diagonal real weight matrix,
and u is a real threshold vector. If the weight matrix is
changed to be an asymmetric and zero-diagonal one, the
network is usually called an asymmetric Hopfield network.
In this paper, we define a generalized Hopfield network
(GHN) to be such kind of a network with a general (asym-
metric or symmetric) and zero-diagonal real weight matrix.

Recent researches (Ma, 1997) show that the GHN having
stable states can be stable in the same way as a Hopfield
network. Thus it is possible to apply this neural architecture
to associative memory with some learning scheme which
enables a set of prescribed patterns as the stable states of a
GHN. Moreover, several such learning schemes on the
GHNs for associative memory have already been estab-
lished (see, e.g. Gardner, 1988; Wang et al., 1993).
However, the memory capacity of the GHN with any

learning scheme has not been investigated in depth. From
the literature of neural networks, the following theoretical
results are related to the memory capacity of the GHN.

Abu-Mostafa and Jacques (1985) defined the memory
capacity as the maximal number of arbitrary state patterns
that can be stable in a GHN ofn neurons and proved1 that it
is bounded byn. In fact, this deterministic definition of
memory capacity is too strict since we can easily verify
that any pair of the two state patterns with one Hamming
distance cannot be stable in any GHN. Therefore the
memory capacity defined by this deterministic formulation
is insignificant and the obtained bound is loose and useless.

The other way to define the memory capacity of some
kind of neural network (with some learning scheme) is via
the probability sequenceP�m;n� that m random state
patterns can be stable in a choice of the neural network of
n neurons (by the learning scheme). Venkatesh and Psaltis
(1989) defined a functionC�n� as the (asymptotic) memory
capacity if, and only if, for everyl [ �0;1�; as n! ∞;

P�m;n� approaches one wheneverm # �1 2 l�C�n�; and
zero wheneverm $ �1 1 l�C�n�: By this definition, they
found thatC�n� � 2n is the asymptotic memory capacity
of the recurrent network defined by a general weight matrix
and a threshold vector (Venkatesh, 1987; Venkatesh and
Psaltis, 1989). In a special case that the threshold vector is
zero, it was proved thatC�n� � n under each of the spectral
strategies (Venkatesh & Psaltis, 1989). Obviously, the
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1 Since the weight matrix of the network in the theorem of Abu-Mostafa
and Jacques (1985) is just a real-valued zero-diagonal matrix, the model of
the network is actually a GHN.



recurrent network is also a generalization of Hopfield
network, but the diagonal elements of the weight matrix
are not necessarily zero. Thus it is different from the GHN
defined in this paper.

Here we prefer the model of the GHN that remainswii �
0 for the two reasons: (1) It is proved that the GHN with
nonnegative weights is stable in randomly asynchronous
mode and it is also shown by simulation experiments that
almost any GHN having stable states is stable in randomly
asynchronous mode (Ma, 1997). By these results, we can
consider that the GHN maintains some important properties
of the stability of Hopfield network for associative memory.
(2) Whenwii is restricted to be zero, the network is easy to
be implemented for the applications.

However, the restriction thatwii � 0; actually brings the
difficulty on solving the asymptotic memory capacity and
we cannot use the results obtained by Venkatesh and Psaltis
(1989). In this paper we will use a method of combinatorial
analysis to study the asymptotic memory capacity of the
GHN.

The main contribution of this paper is obtaining lower
and upper bounds of the asymptotic memory capacity of
the GHN. In Section 2, we will propose the main theorem
after a brief description of the GHN and the perceptron
learning scheme. The proof of the main theorem is given
in Section 3. A brief conclusion is given in Section 4.

2. The main theorem

We first give the mathematical model of a GHN. A GHN
is composed ofn interconnected neurons with�W; u� where
W is ann × n zero-diagonal matrix with elementwi;j denot-
ing the weight on the connection from neuronj to neuroni;
andu is a vector of dimensionn with componentui denoting
the threshold of neuroni. For simplicity, we letui � 0; i �
1; 2;…;n in this paper.

Every neuron can be in one of two possible states, either 1
or 2 1. The state of neuroni at time t is denoted byxi�t�:
The state of the network at timet is denoted by the vector
X�t� � �x1�t�; x2�t�;…; xn�t��T. The state of neuroni at time
t 1 1 is computed by

xi�t 1 1� � sgn�Hi�t�� �
1 if Hi�t� $ 0

21 otherwise
;

(
�1�

where

Hi�t� �
Xn
j�1

wi;jxj�t�:

The next state of the network, i.e.X�t 1 1� is computed
from the current state by performing the evaluation of Eq.
(1) at any neuron of the network. This mode of operation is
synchronous. The network can operate in the asynchronous
mode if the evaluation of Eq. (1) is performed at a single
neuron in any time.

A stateX � �x1; x2;…; xn�T of the network is called stable
if

xi � sgn
Xn
j�1

wij xj

0@ 1A �i � 1;2;…; n� �2�

i.e. if the state of the network will never change as a result of
evolution in any asynchronous or synchronous mode.
Therefore the stable state of the network in any operation
mode is the same.

As a dynamical system, the GHN can have the similar
characteristics of content-addressed memory as a Hopfield
network, especially in randomly asynchronous mode (Ma,
1997). When the network starts with an initial state nearby
some stable state which constitutes a stored pattern in the
memory, it evolves and probably enters the stable state. For
associative memory, we usually have a given sample set
M � { X1

;X2
;…;Xm} that consists ofm different sample

patterns (vectors) in {2 1; 1}n
; where

�Xj � �xj;1; xj;2;…; xj;n�T �j � 1;2;…;m�:� �3�
Thus the key problem concerning the use of a GHN as an

associative memory is how to construct its matrixW which
enables each ofX1

;X2
;…;Xm to be the stable state of the

network when it is possible. For clarity, we introduce the
following definition:

Definition 1. A sample set {X1
;X2

;…;Xm} is storable if
all m sample patternsX1

;X2
;…;Xm can be the stable states

of some GHNN � �W;O� whereW is a zero-diagonal real
matrix andO is the zero vector of dimensionn.

When {X1
;X2

;…;Xm} is storable, the perceptron learning
algorithm (Rosenblatt, 1962) can be used to compute the
rows of the desiredW from neuron 1 to neuronn indepen-
dently. During each learning process, the threshold value of
the perceptron is always set to be zero. We refer to this
method of constructingW as the perceptron learning
scheme. Obviously,W can be successfully constructed by
the perceptron learning scheme if, and only if, the sample
set is storable. Therefore the asymptotic memory capacity of
the GHN is the same as that of the GHN with the perceptron
learning scheme.

We now analyze the asymptotic memory capacity of the
GHN (with the perceptron learning scheme). Assuming that
eachsampleset {X1

;X2
;…;Xm} (whichhasmdifferentsample

vectors without ordinal relation) has the equal probability

1
2n

m

 !

over the sample set space, we define the probability sequence
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of storage of the GHN as follows:

P�m; n� �P�{{ X1
;X2

;…;Xm} : { X1
;X2

;…;Xm} is storable}�;

wherem;n [ N � {1 ; 2;…} : Obviously,P�m; n� decreases
with m.

We now introduce the mathematical definition of the
asymptotic memory capacity of the GHN based onP�m; n�
as follows:

Definition 2. An integer functionC�n� is the asymptotic
memory capacity of the GHN if the following conditions
hold:
(1).

lim
n!∞

P�m;n� � 1 �4�

wheneverm # C�n�;
(2).

lim
n!∞

inf P�m; n� , 1 �5�

wheneverm . C�n�.
We sayC�n� is a lower bound of the asymptotic memory

capacity of the GHN if it satisfies the first condition; and that
C�n� is an upper bound of the asymptotic memory capacity
if Eq. (5) holds wheneverm $ C�n�.

It is clear that this probabilistic definition of the asymp-
totic memory capacity is different from the definition of
Venkatesh and Psaltis (1989) (see in Section 1). We propose
this probabilistic definition in order to overcome the two
weaknesses of Venkatesh and Psaltis’ definition. First, it
cannot be proved that the existence of the asymptotic
memory capacity of the GHN by Venkatesh and Psaltis’
definition. Second, even if there exists the asymptotic
memory capacity in this case, it may be not unique under
Venkatesh and Psaltis’ definition. However, under this prob-
abilistic definition and by the decrease ofP�m;n�with m, we
can easily prove that there exists a unique asymptotic
memory capacity (function) of the GHN. Further, this prob-
abilistic definition of the asymptotic memory capacity is
consistent with the general understanding. Suppose that
C�n� is the asymptotic memory capacity function of the
GHN. If m # C�n�; almost all choices ofm patterns can
be made stable in a GHN. Otherwise ifm . C�n�; the
number of the choices ofm patterns that cannot be made
stable in any GHN is of order

2n

m

 !
i.e. the number of all choices ofm patterns with a finite
number ofn. ThenC�n� is the maximal number of random
state patterns that can be stable in a GHN with probability
one. Therefore it is consistent with the general understand-
ing and this probabilistic definition of the asymptotic

memory capacity (function) is more reasonable and applic-
able.

We now propose our main theorem as follows:

Theorem 1. Supposing P�m; n� is the probability
sequence of storage of the GHN, we have
(i).

lim
n!∞

P�n 2 1;n� � 1;

(ii).

lim
n!∞

inf P�2n;n� #
1
2
:

The proof of the main theorem is given in next section. We
now discuss the significance of the theorem. BecauseP�m;n�
decreases withm, we have by the main theorem that�n 2 1�
and 2n are a lower and an upper bound of the asymptotic
memory capacity function of the GHN, respectively. Since
there exists the asymptotic memory capacity of the GHN
C�n�; then C�n� $ n 2 1: ThereforeC�n� is much greater
than n=�4 logn�—the asymptotic memory capacity of
Hopfield network ofn neurons with the sum-of-outer product
scheme. On the contrary,C�n� , 2n;which seems reasonable
since each neuron of the network can store at most 2npatterns
when the threshold value is not necessarily zero.

3. The proof of the main theorem

In this section, we will prove the main theorem. The basic
difficulty to prove the theorem comes from the fact thatW
must have zero diagonal. Whenwii is not necessarily zero,
the proof of relation (i) is closely related to the question of
computing theVapnik dimensionof the linear classifier
(Pollard, 1989). In this case, things are not difficult (linear
separability ofn 2 1 bipolar vectors inRn). But whenwii �
0; we arrive at the problem of checking the linear separabil-
ity of a dichotomy ofn 2 1 vectors inRn21

; which causes
the difficulty, and the vectors are no longer in general posi-
tion. In order to overcome the difficulty, we will use a suffi-
cient condition of storage to estimate the number of the
storable sample sets. By the combinatorial analyses of the
number of the storable sample sets over the total number of
the sample sets, we will complete the proof of relation (i).
On the contrary, we will use Cover’s inequality (Cover,
1965) to prove relation (ii).

We first give some lemmas and begin with a sufficient
condition of storage under the perceptron learning scheme.

Lemma 1. Consider a sample set{ X1
;X2

;…;Xn21} . If the
same component of each of the vectors X1

;X2
;…;Xn21 is
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deleted and the n2 1 remaining �n 2 1�-dim vectors are
linearly independent then{ X1

;X2
;…;Xn21} is storable.

Proof. Let

Xi � �xi;1; xi;2;…; xi;n�T �i � 1;2;…;n 2 1�: �6�
As for {X1

;X2
;…;Xn21} and the ith neuron of the

network N � �W;O�, we construct the following system
of linear equations:

where wi;1;…;wi;i21;wi;i11;…;wi;n are �n 2 1� unknown
numbers.

Using the condition of the lemma, it is deduced that the
rank of the system matrix of linear equations Eq. (7) is�n 2
1�: Thus the linear equations have a unique solution of
wi;1;…;wi;i21;wi;i11;…;wi;n: In this way for all the neurons,
we can obtain W. According to Eqs. (2) and (7),
X1

;X2
;…;Xn21 are the stable states of the obtained network

N � �W;O�: Therefore {X1
;X2

;…;Xn21} is storable and
the proof is completed. A

Lemma 2. Let

An � u{ �ai;j�n×n : ai;j [ {1 ;21} and rank�ai;j�n×n # n 2 1} u;

whereuBu is the number of the elements of the set B. Then we
have

lim
n!∞

An

2n2

� �
� 0: �8�

The proof is analogous to that of Komlos’ theorem
(Komlos, 1967) (Komlos’ result is forn × n {0 ;1} matrices,
but it holds well forn × n { 2 1; 1} matrices).

Foranym-set ofpoints (vectors)M , Rn
; letB(M) denote

the family of dichotomies ofM that are homogeneous linearly
separable. Here a dichotomy�M1

;M2� belongs toB(M) if,
and only if, there exists a weight vectorW �
�w1;w2;…;wn�T [ Rn such that�X � �x1;…; xn�T [ Rn�

sgn�WTX� � sgn
Xn
i�1

wixi

 !
� 1 if X [ M1;

21 if X [ M2
:

(
�9�

The following estimate for the number of homogeneous
linearly separable dichotomies was given and proved by
Cover (1965).

Lemma 3. LetM , Rn be an m-set of points. The following

estimate holds:

B�m;n� � uB�M�u # C�m;n� � 2
Xn2 1

i�0

Cm21
i : �10�

Now we are ready to prove the main theorem.

The Proof of the Main Theorem. (i) Assuming that
X1

;X2
;…;Xn21 are represented as Eq. (3), we introduce

the following symbols.

D�n21� � {{ X1
;…;Xn21} : { X1

;…;Xn21} is not storable};

Dp
�n21� is the complementary set ofD�n21�, and

D�n21� � uD�n21�u; Dp
�n21� � uDp

�n21�u:

E�n21�×n �

e1;1 e1;2
… e1;n

e2;1 e2;2
… e2;n

..

. ..
.

]
..
.

en21;1 en21;2
… en21;n

0BBBBBBB@

1CCCCCCCA

E�n21�×n�i� �

e1;1
… e1;i21 e1;i11

… e1;n

e2;1
… e2;i21 e2;i11

… e2;n

..

.
]

..

. ..
.

]
..
.

en21;1
… en21;i21 en21;i11

… en21;n

0BBBBBBB@

1CCCCCCCA
where ei;j [ {1 ;21} ;E�n21�×n�i� is defined for i �
1;2;…; n:

Ep
�n21� � { E�n21�×n : rankE�n21�×n�i� � n 2 1; i � 1; 2;…;n} ;

E�n21� is the complementary set ofEp
�n21�, and

E�n21� � uE�n21�u; Ep
�n21� � uEp

�n21�u:

We consider the following matrix constructed by
X1

;X2
;…;Xn21 as

X�n21�×n �

x1;1 x1;2
… x1;n

x2;1 x2;2
… x2;n

..

. ..
.

]
..
.

xn21;1 xn21;2
… xn21;n

0BBBBBBB@

1CCCCCCCA:
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Then it is anE�n21�×n matrix. According to Lemma 1, we
have the following inequality:

�n 2 1�! × D�n21� # E�n21�: �11�
We now estimateE�n21� in the following. Let

An;k � u{ �ai;j�n×n : ai;j [ {1 ;21} and rank�ai;j�n×n � k} u;

wherek � 1; 2;…;n;

An �
Xn2 1

k�1

An;k

and E�n21�×�n21� � E�n21�×n�n�: Then the number of
elements ofE�n21� can be estimated fromE�n21�×�n21� by
extending a column vector as follows:

(1) If rank E�n21�×�n21� , n 2 1, obviously,
E�n21�×n [ E�n21�. Define E1

�n21� as the number of the
matrices ofE�n21�×n in that case. Then

E1
�n21� � An21;12n21 1 An21;22n21 1 …1 An21;n222n21

� An212n21
:

(2) If rank E�n21�×�n21� � n 2 1 and E�n21�×n [ E�n21�;
then thenth column vector ofE�n21�×n must be able to be
represented as a linear combination of the�n 2 1� column
vectors ofE�n21�×�n21�: DefineE2

�n21� as the number of the
matrices ofE�n21�×n in this case. Lete1;e2;…; en21 be the
column vectors ofE�n21�×�n21�, then {e1; e2;…;en21} is a
base ofRn21. Thus anyU [ Rn21 has a unique representa-
tion of linear combination on the base {e1;e2;…; en21}, that
is

U �
Xn2 1

j�1

ajej : �12�

U is called a non-zero linear combination of
{ e1;e2;…; en21} if aj ± 0 for eachj � 1;2;…; n 2 1; and
we letF�e1;e2;…; en21� � { U [ {1 ;21}n21 : U is a non-
zero linear combination of {e1,e2,…,en21}}. We define for
ei [ {1 ;21}n21

; i � 1;…; k Qk � { �e1;e2;…;

ek� : e1; e2;…;ek are linear independent inR�n21�}; and Qp
k

is the complementary set ofQk. Now we have

E2
�n21� �

X
�e1;…;en2 1�[Qn2 1

u{ U [ {1 ;21}n21 : U

Ó F�e1;…;en21�} u:

In order to estimateE2
�n21�, we further define fork #

n 2 1

�L�e1;e2;…;ek� �L�e1; e2;…;ek�> {1 ;21} �n21�
;

where L�e1;e2;…;ek� is the linear spanning space of
{ e1;e2;…; ek} :

Then we have

E2
�n21� �

X
�e1;…;en2 1�[Qn2 1

u{ U [ {1 ;21}n21 : U

Ó F�e1;…;en21�} u

�
X

�e1;…;en2 2�[Qn2 2

X
en2 1Ó �L�e1;…;en2 2�

u{ U : U

[ �L�e1;…;en22�} u �
X

�e1;…;en2 2;U�[Qp
n2 1

u{ en21

[ {1 ;21}n21 : en21 Ó �L�e1;…;en22�} u

# 2n21An21;n22:

Summing up the results of the two cases, we have

E�n21� � E1
�n21� 1 E2

�n21� # 2n21An21 1 2n21An21;n22

# 2nAn21:

According to Lemma 2 and the fact

lim
n!∞

2n2

Pn
2n

 !
� 1 �Pm

n � n�n 2 1�…�n 2 m1 1��; �13�

we have

1 2 P�n 2 1;n� � Dn21

2n

n 2 1

 ! � �n 2 1�!Dn21

�n 2 1�!
2n

n 2 1

 !

� �n 2 1�!Dn21

Pn21
2n

� 2n�n21�

Pn21
2n

 !
× �n 2 1�!Dn21

2n�n21�

� �

#
2n2

Pn
2n

 !
× En21

2n�n21�

� �
# 2

2n2

Pn
2n

 !
× An21

2�n21�2
� �

! 0�n! ∞�:
Therefore we have

lim
n!∞

P�n 2 1;n� � 1:

(ii) For a sample set {X1
;X2

;…;X2n} ; we let

Xi�1� � �xi;2; xi;3;…; xi;n�T �i � 1; 2;…;2n�;

M�1� � { X1�1�;…;X2n�1�} ;

M1�1� � { Xi�1� : �xi1; �Xi�1��T�T � Xi andxi1 � 11} ;

M2�1� � { Xi�1� : �xi1; �Xi�1��T�T � Xi andxi1 � 21} :

If X1
;X2

;…;X2n are the stable states of a GHN
N � �W;O�, then the dichotomy �M1�1�;M2�1�� is
homogeneous linearly separable. We now consider the

Jinwen Ma / Neural Networks 12 (1999) 1207–1212 1211



matrix

X2n×n �

x1;1 x1;2
… x1;n

x2;1 x2;2
… x2;n

..

. ..
.

]
..
.

x2n;1 x2n;2
… x2n;n

0BBBBBBB@

1CCCCCCCA �
x1;1 X1�1�
x2;1 X2�1�
..
. ..

.

x2n;1 X2n�1�

0BBBBBBBB@

1CCCCCCCCA
:

According to Lemma 3 and the factC�2n; n 2 1� ,
22n21

; we have

�2n�!Dp
2n # 22n×�2n21�C�2n;n 2 1� # 22n×�2n21�22n21

� 2�2n�221

and

P�2n; n� � Dp
2n

2n

2n

 ! � �2n�!Dp
2n

P2n
22n

#
2�2n�221

P2n
22n

� 1
2

� �
× 2�2n�2

P2n
22n

:

Therefore we have by Eq. (13)

lim
n!∞ inf P�2n; n�# lim

n!∞ supP�2n;n�# 1
2 lim

n!∞
sup

2�2n�2

P2n
22n

 !

� 1
2
:

The proof is completed.A

In our analyses, one basic assumption is that the prob-
ability distribution of the sample set {X1

;X2
;…;Xm}is the

uniform measure on the set ofm different bipolar vectors of
sizen. But from the proof of the theorem, it is clear that the
results are also true when the sample vectors have i.i.d.
entries distributed according to a Bernoulli measure with
probability of success12.

4. Conclusion

In this paper, we have studied the asymptotic memory

capacity of the generalized Hopfield network with the
perceptron learning scheme. It is proved that�n 2 1� and
2n are the lower and upper bounds of the asymptotic
memory capacity of the generalized Hopfield network ofn
neurons. By this lower bound�n 2 1�; we have that the
asymptotic memory capacity (function) of the GHN is
much greater than that of Hopfield network with the sum-
of-outer product learning scheme. Therefore the GHN has
the high memory capacity for associative memory.
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