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With the development of Internet technology and the popularity of digital devices, Content-Based Image
Retrieval (CBIR) has been quickly developed and applied in various fields related to computer vision and
artificial intelligence. Currently, it is possible to retrieve related images effectively and efficiently from a
large scale database with an input image. In the past ten years, great efforts have been made for new the-
ories and models of CBIR and many effective CBIR algorithms have been established. In this paper, we
present a survey on the fast developments and applications of CBIR theories and algorithms during the
period from 2009 to 2019. We mainly review the technological developments from the viewpoint of
image representation and database search. We further summarize the practical applications of CBIR in
the fields of fashion image retrieval, person re-identification, e-commerce product retrieval, remote sens-
ing image retrieval and trademark image retrieval. Finally, we discuss the future research directions of
CBIR with the challenge of big data and the utilization of deep learning techniques.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

With the development of Internet technology and the popular-
ity of digital devices, it is easy and convenient to take a photo or get
an image on any object we are interested in. In fact, there are a
huge number of images generated in our daily life. So, these images
can be utilized to improve the performance of information process-
ing and make our life more intelligent and convenient. Actually,
Content-Based Image Retrieval (CBIR) technique can retrieve
related images from a database with an input image of the object
or content we are interested in, which is widely used in various
fields of computer vision and artificial intelligence. Face retrieval
[1] can help police and other security personnels catch suspects
more quickly. In online shopping, commodity image retrieval [2]
can help customers find their favorite commodities. Building
retrieval [3] from the map can help us locate more accurately
and reduce the possibility of getting lost. Clothe retrieval [4] can
help consumers buy the clothes they want. Medical image retrieval
[5] can help doctors make medical diagnosis more effectively and
so on. As a matter of fact, many effective CBIR systems have been
developed and applied for those practical applications in recent
years.

For a CBIR system, there are two major mechanisms or compo-
nents which are respectively image representation for image
indexing and similarity measure for database search. Feature
vector or image representation is expected to be discriminative
so as to distinguish images. More importantly, it is also expected
to be invariant to certain transformations. Based on image repre-
sentation, the similarity measure between two images should
reflect the relevance in semantics. These two connected compo-
nents are crucial to the retrieval performance and the existing
algorithms of CBIR can be categorized according to their contribu-
tions to these two components. In fact, it is still challenging to get
an accurate retrieval image from a large-scale database. The great-
est challenge is the semantic gap between the high-level meaning
of the image and its low-level visual features [6]. To narrow this
semantic gap, extensive efforts have been made from both acade-
mia and industry. Consequently, CBIR has been witnessed to make
great advances in recent years. For example, Google and Baidu are
popular search engines which can search the related image by any
image. Some e-commerce sites like Alibaba, Amazon and eBay have
similar commodity search functions. Social platforms like Pinterest
have similar content recommendation functions.

Recently, there are already some surveys related to CBIR. Zheng
et al. [7] surveyed the image search from 2006 to 2016 based on
Scale-Invariant Feature Transform (SIFT) and Convolutional Neural
Network (CNN). Radenovic et al. [8] further surveyed the related
search methods from the perspective of Oxford and Paris datasets.
Zhou et al. [9] surveyed the CBIR researches in the past decade
after 2003. However, there are some deficiencies in these surveys.
On one hand, they did not include the latest researches from 2017
to 2019 during which the image retrieval technology has devel-
oped rapidly with the challenge of big data and the utilization of
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deep learning techniques. In fact, there are many new image retrie-
val algorithms which are worth being summarized. On the other
hand, they only focused on the technological developments, with-
out the in-depth summary of practical applications. In this survey,
we focus on both the technological developments and practical
applications of CBIR from 2009 to 2019.

The main contributions of this paper lie in three aspects:

� This paper is the first to review and classify the technological
developments from the viewpoint of image representation
and database search during the period from 2009 to 2019.

� We further summarize the practical applications of CBIR in the
fields of fashion image retrieval, person re-identification, e-
commerce product retrieval, remote sensing image retrieval
and trademark image retrieval during the period from 2009 to
2019.

� We analyze and discuss the future research directions of CBIR
with the challenge of big data and the utilization of deep learn-
ing techniques

The rest of this paper is organized as follows. Section 2 presents
a general pipeline of CBIR. Section 3 and Section 4 then review the
CBIR developments of image representation and database search in
recent years, respectively. The practical applications of CBIR are
further summarized in Section 5. Furthermore, we outline the
future potential directions of CBIR in Section 6. We finally make
a brief conclusion in Section 7.
2. General flowchart overview

We begin to introduce the general framework of CBIR system
which can be further divided into an off-line subsystem and an
online subsystem, as shown in Fig. 1. In the off-line subsystem,
every image is coded by its extracted feature vector as the index
Fig. 1. The general framework of CBIR. According to two different ways of
information processing, the CBIR system is divided into online and offline
subsystems, but they share the same feature extraction block.

Fig. 2. The hierarchical categories of im
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in the retrieval database. In the on-line subsystem, after a query
image is inputted, its feature vector is extracted in the same way
as those of the images in the retrieval dataset. Then, we use this
feature vector to score all the possible images in the database with
a similarity measure. Those images with a higher score than a pre-
defined threshold are selected to be further refined by enhancing
the visual context in contrast to the original query. Finally, these
images in the descent order of the rerank score are considered as
the probability-ordered results or outputs of the retrieval system.
In this framework, the feature-based image representation is fun-
damental for the dataset indexing with the help of certain similar-
ity measure. From a technological viewpoint, the CBIR system is
based on image representation and database search. So, we can
survey the CBIR researches from the developments of image repre-
sentation and database search, respectively.

3. Image representation

For CBIR, the key step is the image representation that extracts
the critical features from a given image and then transforms them
into a fix-sized vector (so called feature vector). In general, the
extracted features can be divided into three main categories: con-
ventional features, classification CNN features, and retrieval CNN
features. In this section, we summarize the methods of image rep-
resentation for CBIR according to these three feature categories in
the following subsections, respectively. For clarity, the hierarchical
categories of image representation based methods are shown as
Fig. 2.

3.1. Conventional feature based methods

Conventional features here refer to the features which are not
extracted through any CNN methods. They are mainly used in
the early CBIR systems, but also have developed remarkably in cer-
tain ways in recent years. These features are heuristically designed
and can be further categorized into the global and local features.
The global features are usually extracted from the color [10], shape
[11], texture [12], and structure of an image,respectively, and then
transformed into a holistic representation. Certainly, these multi-
type global features can be further combined together for image
retrieval. Li et al. [13] actually developed a two-phase generative/
discriminative learning algorithm to combine color, texture, and
structure features together for image retrieval. Specifically, the
generative phase normalized the lengths of various descriptions
of the images, while the discriminative phase recognized which
images contain the target object. In fact, this algorithm can com-
bine any number of different feature types without any modeling
age representation based methods.
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assumptions. Berman et al. [14] presented a set of operations for
combining features and proposed a Flexible Image Database Sys-
tem (FIDS) in which the gridded distance measures and combining
operations can also combine any group of multiple types of fea-
tures. Moreover, Zhao et al. [15] adopted the Sparse Representation
(SR) into image retrieval. They firstly explored the difference and
complementarity between the forward and backward SRs, and
then built a novel semi-supervised learning model called coopera-
tive sparse representation, which effectively combines them to
improve image annotation performance. As a result, this SR based
method achieved a good result on image retrieval. Although these
methods are suitable for duplicate detection in a large-scale image
database because of their compact expression, they may not work
well when the target images involve some background clutters.

On the other hand, one of the most famous local features is SIFT,
which mainly involves two steps: interest point detection and local
region description. In recent years, many local feature extraction
methods are the extensions of SIFT. For example, Zhou et al. [16]
developed the binary signature of the SIFT descriptor with two
median thresholds determined by the original descriptor itself.
Moreover, a new indexing scheme BSIFT for CBIR is established
with this binary SIFT [17]. Furthermore, on the basis of SIFT, the
edge is also added into the feature descriptor to establish Edge-
SIFT [18] and so on. Apart from the feature extraction methods of
image key points like SIFT, some local features methods extract
the features on the dense grids, possibly at multiple scales inde-
pendently of the image content [19]. In fact, a variety of local
descriptors have been developed in recent years. Since these
method have different kinds of superiority as claimed, it is rather
difficult to select the best one for a retrieval task. Nevertheless,
Madeo et al. [20] made a comparative analysis among some typical
local descriptors from three aspects: speed, compactness, and
discrimination.

When the sample image changes greatly with a large set of
some kind local features through the dataset, it is often necessary
to aggregate these local features into a vector representation with a
fixed length for the subsequent database search via the similarity
comparison of a query against all the database images. Most of
these aggregation schemes need to make a clustering analysis on
these local features to obtain a codebook of the centers of the
obtained clusters. According to this codebook, the original feature
vector can be aggregated in different ways. Sivic et al. [21] pro-
posed the Bag-of-Words (BoW) method which uses the k-means
algorithm to create the codebook. Then the clustering center near-
est to the feature point is used to replace the feature point. Usually,
this aggregation scheme can lose certain detailed information and
the generated BoW vector is very sparse. Perronnin et al. [22] fur-
ther proposed the Fisher Vector (FV) which aggregates local
descriptors using the Gaussian Mixture Model(GMM). Actually,
GMM can be used for clustering analysis, and it considers the dis-
tance from the feature point to each cluster center directly. In the
FV method, each feature point is represented by a linear combina-
tion of all cluster centers. And, this aggregation scheme also loses
some information in the process of GMM modeling. Based on
BOW and FV schemes, Jegou et al. [23] proposed Vector of Locally
Aggregated Descriptors (VLAD) scheme. On one hand, like BOW,
VLAD only considers the cluster center closest to the feature point,
and saves the distance from each feature point to the cluster center
closest to it. On the other hand, like FV, VLAD considers the value of
each dimension of the feature point that has a more detailed
description of the local information of the image. More
importantly, the VLAD feature has no loss of information. Some
other works [24–28] are the improvement or extension of VLAD,
which have been demonstrated by many experiments. Robust
Visual Descriptor (RVD) proposed by Husain [29] combined the
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rank-based multi-assignment with robust accumulation to reduce
the impact of outliers which is a relatively new investigation.

3.2. Classification CNN feature based methods

Because of the limited representation ability of conventional
features and the breakthrough of image processing via deep neural
networks, CNN based image retrieval has developed quickly in
recent years. Since CNN has made a big breakthrough on image
classification, many researchers attempt to use the CNN features
trained with a classification task for CBIR. In this subsection, we
make a summary of those methods with the classification CNN
features.

In the same way as above, CNN features can be also categorized
into two types: the global and local ones. The features from the
deep fully connected layers of CNN are essentially deep global fea-
tures which describe the overall semantic information of the
image. There exist certain methods based on deep global features.
Babenko et al. [30] took the activation of fully connected layers
where CNN is finetuned on the dataset that is relevant to the test
set as the global descriptors followed by dimensionality reduction.
However, the cost of making labeled training data is expensive, so
some works use the off-the-shelf networks only pre-trained on
ImageNet. Babenko et al. [30] showed that using the 7th fully con-
nected layer (fc7) features can have a better retrieval effect than
using the 8th fully connected layer (fc8) features. This is because
that the higher layer features are intended to perform the classifi-
cation task on the pre-training dataset, while the lower layer fea-
tures have better generalization capabilities for the other
datasets. These methods can produce compact embedding features
to enable fast similarity computation in the filtering step, but may
lack a description of the details of the image, which is not so signif-
icant for image retrieval. Therefore, there are more andmore works
focusing on local features of CNN.

According to the features in image representation extraction
process, local CNN feature-based methods can be further divided
into three categories: local representation aggregation, deep con-
volutional feature aggregation, and multi-layer fusion. Usually,
these methods use the off-the-shelf networks pre-trained only on
ImageNet as feature extractors.

We begin to consider the methods of local representation
aggregation. Actually, they first try to extract a series of local
regions from an input image, and then feed these local regions to
the network and generate the corresponding partial image repre-
sentations. So, these partial image representations are aggregated
into a compact image representation by a specific aggregation
method. According to the difference of extracting local regions,
we further classify this kind of methods into three categories: local
area extraction based on the sliding window, region of interest
detection, and local area extraction based on region proposal. The
first type of methods usually slide on the input image with a series
of different sliding windows to create a partial area. Razavian et al.
[31] used 4 different sizes of sliding windows and fc7 features as a
partial representation of the image. Gong et al. [32] proposed the
Multi-scale Orderless Pooling (MOP) algorithm to embed and pool
the CNN fully connected activation of image patches of an image at
different scale levels, then used the VLAD to aggregate these partial
image representations. The second type of methods implement
some specific detection algorithms to extract the regions of inter-
est in the input images. For example, Patch-Convolutional Kernel
Network (Patch-CKN) [33] utilized the Hessian-affine detector to
extract regions of interest in input images. Mopuri et al. [34] lever-
aged a detector trained for robust landmark localization to produce
more efficient regional search systems. The third type of methods
are based on region proposal and utilize some specific unsuper-
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vised candidate region generation algorithms to obtain local candi-
date regions that may contain targets. Mopuri et al. [35] used the
selective search to extract 2000 local regions and fed these regions
to the network, and then computed an image-level representation
by the max-pooling of the generated fc7 features. Complementary
CNN and SIFT (CCS) [36] used the EdgeBox to extract 100 local
regions per image and fed these regions to the network, and then
used the VLAD to aggregate these CNN features. All of the above
methods require multiple feedforward networks, so their efficien-
cies become the bottleneck.

Deep convolutional feature aggregation methods are based on
the fact that the deep convolution feature can be regarded as a
description of the local area of an input image. These methods
only feed the network once to generate the deep convolution fea-
tures and aggregate them to get the final representation of the
image, so the calculation efficiency is relatively high. The key
problem of these methods is how to aggregate the deep convolu-
tion features. By considering whether there is the weighting
mechanism in the aggregation, we can classify such methods into
direct aggregation and weighted aggregation. The direct aggrega-
tion methods use some specific aggregation methods to aggregate
the deep convolution features to obtain the final image represen-
tation. The aggregation methods can use the classic methods like
BOW, VLAD, FV, max-pooling, and sum-pooling. Regional-
Maximum Activation of Convolutions (R-MAC) [37] uniformly
sampled and aggregated by max-pooling local regions in a convo-
lutional feature map for considering region-wise information.
Sum-Pooled Convolutional (SPoC) [38] showed that the sum-
pooling method outperformed the max-pooling method when
the final image representation was whitened. The retrieval perfor-
mance was further improved when the Robust Visual Descriptor
with Whitening (RVD-W) method [29] was used for the aggrega-
tion of CNN features. Iscen et al. [39] leveraged the multi-scale
grids in conjunction with CNN features to enable query expansion
via diffusion. The weighted aggregation methods use the strategy
of direct aggregation to encode deep convolution features, and
weight the deep convolution features according to the importance
of each location feature. Selective Convolutional Descriptor Aggre-
gation (SCDA) [40] proposed an unsupervised method for localiz-
ing the representative object while removing the noisy
background, resulting in the improvement of fine-grained image
retrieval. Kalantidis et al. [41] proposed the Crow that extended
SPoC by introducing cross-dimensional weighting in aggregation
of CNN features. Jimenez et al. [42] employed the Class Activation
Maps (CAMs) for calculating semantic-aware spatial weights of a
convolutional feature map. It was found by Part-based Weighting
Aggregation (PWA) [43] that the different channels of the deep
convolution feature corresponded to the response of different
parts of the target. Some retrieval methods [44,45] adopt the
attention mechanisms. DEep Local Feature (DELF) [44] adopted
a learning-based attention network and used the attention net-
work for densely weighting all points of a feature map. Kim
et al. [45] proposed a simple, yet effective regional attention net-
work, which weighted an attentive score of a region considering
the global context.

Finally, we consider the methods of multi-layer fusion. In fact,
deep CNN features are hierarchical, that is, they change from the
low-level visual features to the high-level semantic features as
the layers of CNN goes deeper. As discussed above, deep convolu-
tional feature aggregation methods aim to complement the infor-
mation of different layer features in deep neural networks to
synthesize the invariance and discriminative ability of different
layer features. We can further fuse these multi-layer features
together. In fact, MultiScale-Regional Maximum Activation of Con-
volutions (MS-RMAC) [46] extracted the R-MAC features [37] sep-
arately from relu1-2 layer, relu2-1 layer, relu3-3 layer, relu4-3
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layer and relu5-3 layer in VGG-16, and then weighted the resulted
features into the final image representations. Seddati et al. [47]
proposed a modified RMAC signature that combined the multi-
scale and two-layer feature extraction mechanisms through fea-
ture selection. Region-Entropy based Multi-layer Abstraction Pool-
ing (REMAP) [48] learned and aggregated a hierarchy of deep
features from multiple CNN layers, and was trained in the way of
end-to-end with a triplet loss.
3.3. Retrieval CNN feature based methods

While so many researches focused on the features extracted
from the deep networks pre-trained for a classification task, it
was later shown that the deep networks could be trained
directly for the task of instance retrieval in an end-to-end man-
ner [49,50]. In order to enforce intra-class discrimination and
more fine-grained instance-level image representations, current
researches mainly use deep metric learning. Deep metric learn-
ing aims to learn an embedding space, where the embedded vec-
tors of similar samples are encouraged to be closer, while
dissimilar ones are pushed apart from each other. Its key is to
leverage a loss function that optimizes the ranking instead of
classification and has a hard-negative mining technique that
improves the quality of learned embedding space [51,52]. This
class of approaches represents the current state-of-the-art in
image retrieval [53–55].

There are some effective loss functions in deep metric learning,
such as contrastive loss, triplet loss, triplet-center loss, quadruplet
loss, lifted structure loss, N-pairs loss, binomial deviance loss, his-
togram loss, angular loss, distance weighted margin-based loss,
and hierarchical triplet loss. Their common principle is to subsam-
ple a small set of images, verify that they locally comply with the
ranking objective, perform a small model update if they do not,
and repeat these steps until convergence. Retrieval methods based
on retrieval CNN features employ above loss functions. Radenovic
et al. [56] used contrastive loss to learn image representation,
while Gordo et al. [49] introduced the triplet loss. Similarly, the
N-pairs loss [57], Triplet-center loss [58] and quadruplet loss [59]
were all effective on improving retrieval accuracy. Kim et al. [54]
proposed a new triplet loss that allows the distance ratios in the
label space to be preserved in the learned metric space. Recently,
He et al. [60] introduced the Average Precision (AP) loss and
demonstrated its outstanding results in the context of patch verifi-
cation, patch retrieval and image matching. Inspired by this,
Revaud et al. [53] directly optimized the global mean Average Pre-
cision (mAP) by leveraging recent advances in listwise loss formu-
lations. Compared with existing losses, it can consider thousands of
images simultaneously at each iteration, and also establishes a new
state-of-the-art image representation on many standard retrieval
benchmarks. Hard-negative mining techniques can remarkably
improve the quality of learned embedding space in deep metric
learning. In fact, a lot of work has been done in this area for CBIR.
The lifted structured loss [51] considered all positive and negative
pairs in a mini batch at each time by incorporating hard-negative
mining functionality within itself. Kim et al. [54] designed a triplet
mining strategy adapted to metric learning with continuous labels.
In general, the hard-negative mining techniques such as semi-hard
mining, smart mining, and distance weighted sampling, can be
used in retrieval methods based on retrieval CNN features. Espe-
cially, Wang et al. [55] established a General Pair Weighting
(GPW) framework, which cast the sampling problem of deep met-
ric learning into a unified view of pair weighting through gradient
analysis, providing a powerful tool for understanding recent pair-
based loss functions.
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4. Database search

With the effective image representation or feature vector, we
can further establish a database indexing method for the CBIR sys-
tem and search with the image indexes via a similarity measure.
For clarity, this whole process is referred to as database search.
Because the retrieval time is key to the performance of the CBIR
system, database search is very important, especially in a large-
scale image database. In fact, an efficient database search method
can significantly accelerate the retrieval process and reduces mem-
ory usage substantially. Database search methods for high-
dimensional feature vector are usually divided into two types:
feature-direct database search and feature-utilized database
search. In practical applications, however, database search meth-
ods often combine these two kinds of database search methods
together for the performance optimization. For clarity, the hierar-
chical categories of database search methods are shown as Fig. 3.
4.1. Feature-direct database search

Feature-direct database search methods utilize the feature vec-
tor of each image as its index for database search, that is, the fea-
ture vector is directly the index for the original image. In fact, there
exist certain efficient feature-direct database search methods for
CBIR. Some methods speed up the retrieval process by the inverted
file index techniques, while the other methods narrow the search
roads by the hierarchical clustering or K-Dimensional Tree (KD
Tree). The most commonly used search method of this kind is
the Inverted File Index (IFI) [61]. So, we give a summary on the
development of IFI for CBIR in recent years.

Inspired by the field of information retrieval, the IFI stores the
mapping of unique word IDs to the document IDs in which the
words occur. In the CBIR system, IFI is a compact representation
of a sparse matrix whose rows and columns represent images
and visual words, respectively. So, in the query phase, the database
image containing the common visual word with the query image
will participate in the calculation of similarity such as euclidean
distance, cosine distance and so on, which greatly improves the
time efficiency. IFI is the central component of many search sys-
tems [62,63] as it facilitates the faster and more scalable querying.
Some methods have made certain improvements to the original IFI.
Inverted Multi-Index (IMI) [64] uses the idea of product quantiza-
tion to construct a multi-index structure to optimize the reorder-
ing search space. The index of the traditional IFI structure is in
one-dimensional data, and the index of the IMI structure uses a
multi-dimensional table. When using the IMI for retrieval, the
returned candidate inverted list is shorter, and the candidate ele-
ments are closer to the query word, and the recall rate is higher.
Zheng et al. [65] used the multiple Inverse Document Frequency
(IDF) methods to adapt the correlation between multiple features
and store the corresponding binary code of the feature into the
Fig. 3. The hierarchical categories of database search methods.

679
inverted index, while Liu et al. [66] proposed the cross-indexes of
original SIFT feature space and the binary SIFT space.

In order to improve retrieval accuracy, some methods embed
semantic information in the inverted table. Karayev et al. [67]
removed the irrelevant images in the inverted table based on SIFT
features by semantic attributes, and inserted semantically related
images, which greatly enhanced the distinguishing power of fea-
tures in the index. Zhang et al. [68] proposed a method to co-
index semantic attributes into inverted index generated by local
features, which makes the index convey more semantic cues. There
also are some improved algorithms to speed up the retrieval. Zheng
et al. [69] proposed a Q index, which removed the unimportant
features of the query image and only retrieved more important fea-
tures of the inverted table based on the predefined feature scores.
For parallel retrieval, Ji et al. [70] built distributed indexes on mul-
tiple servers and defined the index distribution problem as a learn-
ing problem to reduce search latency between servers.

In order to increase the recall rate, multiple quantizers are usu-
ally used on an image to get multiple indexes [71,72]. Xia et al. [71]
used a collaborative index structure to optimize multiple quantiz-
ers simultaneously. Non-Orthogonal Inverted Multi-Index (NO-
IMI) proposed by et al. [72], was a fast indexing method for mas-
sive deep feature data. The NO-IMI included two code tables, S
and T, each of which contained K code words. S is a first-order code
table and generated by clustering of raw data, while T is a second-
order code table and generated by clustering the residual data
between the original data and the centroid of each corresponding
first-order cluster (the code word in S), which thus gets rid of
any decomposition of orthogonal subspaces. Therefore, the NO-
IMI provided more reasonable index cells with the centroids repre-
senting actual data distribution more accurately for massive deep
CNN feature data indexing.
4.2. Feature-utilized database search

Feature-utilized database search methods reduce the computa-
tional complexity of the distance by mapping the high-
dimensional floating-point feature vectors into the low-
dimensional vectors or binary vectors. One widely used feature-
utilized database search method is the hashing-based indexing
which compresses an image into a series of hashing codes such
that the search can be converted into a comparison of the Ham-
ming distances among the hashing codes. So, it can reduce both
the computational complexity and the storage cost. Generally
speaking, the hashing-based methods can be divided into the
data-independent methods [73] and the data-dependent methods
[74–77]. Actually, the data-dependent methods can be further
divided into the unsupervised hashing methods [74,75] and the
supervised hashing methods [76–78]. The hierarchical structure
of the hash-based methods is shown in Fig. 4.

The data-independent methods are based on the hash functions
which are generated independently without any information of
Fig. 4. The hierarchical categories of the hash-based methods where the methods
in same color belong to the same category.
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training data. The most representative one is the Locality-Sensitive
Hashing (LSH) [73], which uses many random mapping hash func-
tions to divide the feature space. When two feature vectors are
similar, they have a higher probability of collision. Given a query
image, a candidate list can be filtered based on the hash conflict,
and then be reranked by the accurate distance calculation. There
are lots of variants of this method to speed up the search process
[79]. However, since they lack the information from the training
dataset, their retrieval results are not satisfactory.

The unsupervised hashing methods only use the information of
training dataset without label information to guide the training
stage. Their representatives include the Isotropic Hashing (IsoH)
[74], Scalable Graph Hashing (SGH) [80], Ordinal Embedding Hash-
ing (OEH) [75] and so on. However, since there is no information
from the training dataset to guide the training process, their results
have certain limitations.

In the supervised hashing methods, they can be further divided
into traditional supervised hashing methods and CNN-based
supervised hashing methods. There exist some traditional super-
vised hashing methods, such as Fast supervised Hashing (FastH)
[81], Supervised Discrete Hashing (SDH) [82], COlumn Sampling
based DIscrete Supervised Hashing (COSDISH) [83] and Asymmet-
ric Inner-product Binary Coding (AIBC) [84]. Compared with the
unsupervised hashing, traditional supervised hashing methods
can use the label of images to generate a higher precision score
of hash codes. However, for streaming data, the hash models in
the data-dependent methods should be modified to adapt the dis-
tribution of new coming data. With the continuous growth of data
coming from the Internet, the online update of hashing on the mas-
sive social data becomes very time-consuming. To alleviate this
issue, Ma et al. [85] proposed Hamming Subspace Learning (HSL),
which was to generate a low-dimensional Hamming subspace
from a high-dimensional Hamming space by selecting representa-
tive hash functions. HSL is effective to improve the speed of online
updating and the performance of hashing in ceratin ways. Even so,
these traditional supervised hashing methods have two obvious
disadvantages: one is that their features extraction is independent
of hash function learning such that the designed features might not
be compatible with the hashing procedure; another one is that
they use traditional features which can not include semantic
information.

Recently, the CNN-based hashing methods become a hot spot of
CBIR research. To start with, Convolutional Neural Network Hash-
ing (CNNH) [86] pushed the deep hash algorithm based on CNN to
the forefront. This is not an end-to-end training. Network In Net-
work Hashing (NINH) [87] learned feature module and hash coding
module simultaneously based on CNN. Although it was an end-to-
end training, the accuracy of feature learning was not good enough.
The Compact Root Bilinear CNN (CRB-CNN) [76] used the inte-
grated network model to obtain better semantic features. Conjeti
et al. [88] and Cheng et al. [78] both proposed the residual hash
architecture to reduce the storage capacity of the computer and
improved the retrieval efficiency. Deep Semantic Ranking Hashing
(DSRH) [89] used a network structure similar to DeepID2 and
directly let the network learn to rank. Similarly, Shi et al. [77] pro-
posed a deep ranking hash for retrieval and classification tasks.
Inspired by the online training strategy of Deep Supervised Hash-
ing (DSH) [90] and taking the advantage of richer information on
using triplet labels, Zhou et al. [91] utilized the triplet loss function
to enhance the DSH algorithm for learning the compact binary
codes. In addition, Li et al. [92] proposed a novel hash code gener-
ation method based on CNN, namely the Piecewise Supervised
Deep Hashing (PSDH) method, which directly uses a latent layer
data and the output layer result of the classification network to
generate a two-segment hash code for every input image. In fact,
PSDH performed excellently in the search of pictures with similar
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features. Most of these methods are of end-to-end training where
their features extraction is dependent to hash function learning.
They have significant retrieval accuracy and can save retrieval
time. So, CNN-based hashing is getting more and more attention.

Another widely used feature-utilized database search method
of CBIR is the Product Quantization (PQ) which decomposes the
feature space into Cartesian products of multiple low-
dimensional subspaces, and then quantizes each subspace sepa-
rately. In the training phase, each subspace is clustered to obtain
multiple centroids (quantizers), and the Cartesian product of all
these centroids constitutes a dense partition of the whole space,
which can ensure that the quantization error is relatively small.
After the quantization learning, for a given query vector, the asym-
metric distance of the query vector and each vector in the database
can be calculated by looking up the table.

Generally, PQ is the best choice to generate a large codebook at
very low memory storage and time cost. Because the hashing
methods lack the accuracy of feature restoration, product quanti-
zation methods for minimizing the quantization error can achieve
the superior accuracy over the hashing methods in some cases
[93]. Like the supervised hashing methods, they can be also divided
into traditional product quantization methods and CNN-based pro-
duct quantization methods. For clarity, the hierarchical categories
of the PQ-based methods are shown in Fig. 5. The representative
traditional product quantization methods are the Product Quanti-
zation (PQ) [94], Optimized Product Quantization (OPQ) [95] and
Composite Quantization (CQ) [96]. In fact, PQ [94] and OPQ [95]
firstly split the whole feature space into many subspaces and then
perform a similar algorithm on each subspace separately. CQ [96]
learns enough codebooks using the same strategy as OPQ, but
the dimension of its code words is equal to that of the original fea-
tures. These traditional product quantization methods can gener-
ate large codebooks with low memory storage and time cost.

Recently, CNN-based product quantizationmethods have devel-
oped rapidly. They used end-to-end CNNs to perform the image
feature learning and quantization together. Deep quantization net-
work [97] is the first deep learning structure that learns and quan-
tizes well separated image features. Then, deep visual-semantic
quantization [93] uses CQ to quantize separated image features.
Yu et al. [98] proposed a differentiable quantization method. How-
ever, the above methods have two disadvantages. First, they need
to train many models if we want to get binary codes with different
code lengths. Second, the decomposition of the high-dimensional
vector space is tricky. To tackle these issues, both the Deep
Recurrent Quantization (DRQ) [99] and Deep Progressive Quantiza-
tion (DPQ) [100] made some efforts. The DRQ [99] used a deep
quantization method to construct a codebook that could be used
recurrently to generate sequential binary codes. Moreover, DPQ
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[100] proposed an alternative model to PQ for large scale image
retrieval.

5. Practical applications

With the development of Internet technology and the popular-
ity of digital devices, CBIR has been widely applied in many fields
such as biomedicine, medicine, military, commerce, art and so on.
In this section, we summarize some typical practical applications
of CBIR in respect of objects to be retrieved, and categorize them
into fashion image retrieval, person re-identification, e-commerce
product retrieval, remote sensing image retrieval and trademark
image retrieval, respectively.

5.1. Fashion image retrieval

The rapid development of clothing e-commerce and the
increase of the amount of clothing image data on the Internet have
made the Fashion Instance-level image Retrieval (FIR) be an
increasing interest in computer vision. FIR is the task of finding
fashion images similar to any query image, which satisfies the
needs of users. Actually, FIR is mainly related to the cross-
domain fashion image retrieval, which is to match two kinds of
images, one kind is casually taken by users and another is profes-
sionally taken by the sellers. It plays an important role in the grow-
ing demands of online shopping, fashion recognition, and web-
based recommendations. However, because the items of clothing
are highly deformable, the viewpoints of images are severely
changeful, and the shooting environment such as lighting and
background are also various, the FIR has been considered as a chal-
lenging task.

In the last decade, many fashion datasets have been proposed to
facilitate the FIR research. Table 1 gives a concise comparison
among them at the view of the numbers of images, categories,
pairs and the year they were released.

With the availability of large-scale fashion datasets, many FIR
methods based on deep learning were proposed and worked well.
These methods employed the advanced techniques of deep learn-
ing to enhance the retrieval performance. Some FIR methods adopt
various attention mechanisms by using the advances of metric
learning. Gajic et al. [106] paid much attention to improving train-
ing process and inference time. They stressed the importance of
proper training of simple architecture, used the triplet loss to train
the network, and adapted the general models to the specific task.
Visual Attention Model (VAM) [107] trained a two-stream network
with an attention branch and a global convolutional branch to form
an end-to-end network structure, and then concatenates the gen-
erated vectors to optimize a standard triplet objective function.
FashionNet [103] also trains network using a triplet loss. Zhao
et al. [108] proposed an adversarial network for Hard Triplet Gen-
eration (HTG) to optimize the network ability in distinguishing
similar examples of different categories as well as grouping varied
examples of the same categories. Hard-aware Deeply Cascaded
embedding (HDC) [109] combined a set of models with different
complexities in cascaded mechanism to mine hard examples at
multiple levels. Then, featured vectors from each sub-network
Table 1
The list of the most commonly used datasets in fashion image retrieval.

Dataset Images

DARN [101] 182,780
WTBI [102] 78,958
DeepFashion [103] 800,000
Modanet [104] 55,000
DeepFashion2 [105] 491,000
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were scaled by constant weights and concatenated to generate rep-
resentations which are used for retrieval. Grid Search Network
(GSN) [110] posited the training procedure as a search problem,
focuses on locating matches for a reference query image in a grid
containing both positive and negative images. Some FIR methods
uses attribute modules [111,101,112,113]. Minchul et al. [113]
aimed to achieve competitive performance on FIR. They proposed
a novel method that converted a query into a representation with
the desired attributes and introduced a new idea of attribute
manipulation at the feature level. Some algorithms combine many
techniques from deep learning. Park et al. [114] investigated train-
ing strategies and DNNs to improve the retrieval performance. It is
proved that better training strategies, better data augmentation,
and better structural refinement could achieve better FIR results.
As is shown in Table 2, we make a comparison of some methods
on two subsets of DeepFashion dataset.

5.2. Person Re-IDentification

Person Re-IDentification (Re-ID), also known as Person Retrie-
val, is to match the images of the same individual captured on dif-
ferent camera views and is usually considered as a sub-problem of
image retrieval. Person Re-ID can retrieve specific pedestrian tar-
gets in the cross-device image video and make up for the viewing
angle limitations of the current fixed camera. It has wide applica-
tions, such as intelligent security, intelligent video surveillance,
intelligent retrieval, etc. There are three main challenges in person
Re-ID. (1) The images from different camera views differ from each
other significantly because of the variation of background and
appearance (e.g., illumination, pose, occlusion, resolution). (2)
There exists some interference of similar images with different
identities. (3) Changes in human pose and human body occlusion
may make the problem more complicated. To address these chal-
lenges, numerous efforts have been paid from different theoretical
perspectives.

A branch of these works is to learn effective representations for
improving retrieval performance. In this branch, some person Re-
ID methods are based on attention [115,116]. Mancs [115] solved
the person re-identification problem by fully utilizing the attention
mechanism for the person misalignment problem. Li et al. [116]
showed the advantages of jointly learning attention selection and
feature representation in a CNN by maximizing the complemen-
tary information of different levels of visual attention subject to
Re-ID discriminative learning constraints. Inspired by effective
human posture estimation, some person Re-ID methods are guided
by pose [117–119]. Li et al. [117] proposed a novel method to learn
and localize deformable pedestrian parts using Spatial Transformer
Networks (STN) with novel spatial constraints. Saquib et al. [118]
proposed an effective approach that incorporated both the fine
and coarse pose information of the person to learn a discriminative
embedding. Furthermore, Attention-aware Feature Composition
(AFC) [119] estimated pose-guided visibility scores for body parts
to deal with part occlusion in the proposed AFC module. Some per-
son Re-ID methods are guided by mask because neglecting the
problem of background clutter can lead to degraded performance
[120]. In order to alleviate the problem of cluttered background,
Categories pairs year

20 91,390 2015
11 39479 2015
50 251;000 2016
13 - 2018
13 873,000 2019



Table 2
A comparison of some methods on DeepFashion dataset. The evaluation metric is top-k recall (R@k). C2S and IS indicate the consumer-to-shop subset of DeepFashion and the in-
shop subset of DeepFasion respectively.

Method DeepFashion(C2S) DeepFashion(IS)

R@1 R@5 R@20 R@50 R@1 R@5 R@20 R@50

WTBI [102] 0.024 0.035 0.063 0.087 0.347 0.424 0.506 0.541
DARN [101] 0.036 0.063 0.111 0.152 0.381 0.547 0.675 0.716
FashionNet [103] 0.073 0..121 0.188 0.226 0.532 0.678 0.764 0.800
VAM [107] 0.128 0.280 0.431 0.568 0.666 – 0.923 –
Gajic et al. [106] – 0.250 0.450 – – – – –
Minchul et al. [113] 0.265 0.497 0.664 0.755 0.887 0.961 0.984 0.991
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Qi et al. [120] incorporated masked images with only the fore-
ground regions and input them to the proposed neural network.
Some person RE-ID methods employ GAN [121–123]. Martinel
et al. [121] applied a dictionary-learning scheme to transfer the
feature learned by object recognition and person detection to tar-
get re-identification domain. Wei et al. [122] proposed a Person
Transfer Generative Adversarial Network (PTGAN) to bridge the
domain gap which essentially caused severe performance drop
when training and testing on different datasets. Camera Style
(CamStyle) [123] used a GAN serve as a data augmentation
approach that reduces the risk of overfitting and smooths the Cam-
Style disparities.

Another branch of these works pays efforts in deep metric
learning. Most existing Re-ID frameworks are optimized by con-
trastive loss or triplet loss [124] or quadruplet loss [59]. Cheng
et al. [124] introduced a pull term into the triplet loss to penalize
large distances between positive embeddings. Chen et al. [59]
added another pull term for the distance between negative pairs
in quadruplet loss, which could get a model with a larger inter-
class variation and a smaller intra-class variation. Bai et al. [125]
concentrated on re-ranking with the capacity of metric fusion for
Re-ID. The proposed Unified Ensemble Diffusion (UED) is an effec-
tive algorithm which achieves the state-of-the-art retrieval perfor-
mance on Market-1501 dataset. In addition to the above
algorithms for improving search performance, some researchers
tried to build a baseline for person Re-ID [126,127]. A good base-
line is very important to methods comparison and evaluation.
Firstly, it essentially leads to an unfair comparison between the dif-
ferent person Re-ID approaches without a public baseline. Sec-
ondly, it is significant to judge the objective capacity of the
existing CNN-based person re-identification methods. To deal with
the above problems, Xiong et al. [126] proposed three practices for
building an effective CNN baseline model towards person reidenti-
fication: batch normalization after the global pooling layer, execut-
ing identity categorization directly using only one fully-connected
layer, and using Adam as optimizer. Furthermore, Luo et al. [127]
collected and evaluated some effective training tricks in person
Re-ID, then combined these tricks to build a well-performed base-
line which achieves high performance.

With the extensive application of deep learning in person Re-
ID, several large-scale datasets have been published. They are
given in Table 3. We compare some Re-ID methods on Mar-
ket1501 dataset and DukeMTMC dataset. And, the results are
shown in Table 4.
Table 3
The list of the most commonly used datasets in person re-identification.

Dataset Images I

CUHK03 [128] 12,697 1
Market1501 [129] 32,668 1
DukeMTMC [130] 34,183 1
MSMT17 [122] 114,782 4
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5.3. E-commerce product retrieval

E-commerce product retrieval is one of the most important
parts on an E-commerce Platform such as Alibaba [131], JD [132],
eBay [133] and Walmart [134]. In e-commerce shopping, con-
sumers usually do not know the correct keywords used to find
their desired items. E-commerce product retrieval can help con-
sumers search the products they want. However, this task is chal-
lenging. First, it is very difficult to handle heterogeneous image
data and bridge the gap between real-shot images from users
and the online images. Second, dealing with large scale indexing
for massive updating data is also not an easy thing.

Recently, some researchers have made great efforts to this prob-
lem. Since the background of product images is significantly irrel-
evant to the product, Wang et al. [135] utilized the saliency box to
filter the proposals extracted by selective searching, then proposed
Channel Weighting Generalized Mean Pooling (CWGMP) feature
which preserved the discriminability and correlation of convolu-
tion features to improve retrieval performance. Pailitao in Alibaba
[131] focused on building a real-time and stable search engine. It
uses binary indexing engine and re-ranking to improve the engage-
ments, which allow users to freely take photos to find identical
items with millisecond response and lossless recall in a highly
available and scalable solution. However, Pailitao does not effec-
tively handle database update issues. For this, JD [132] handled fre-
quent image updates through distributed hierarchical architecture
and efficient indexing methods. Although implicit feedback, such
as page views and click logs, allows for model training with a tri-
plet loss even in Alibaba [131], implicit feedback is available only
after launching a visual search system into production. Yamaguchi
et al. [136] proposed an image representation method with query
feature transformation which narrows the gap between query vec-
tor and image vectors on retrieval dataset. In addition, Magnani
et al. [134] did an exploration of trained various product retrieval
models trained on search log data to further improve retrieval per-
formance. All of the above algorithms have their own datasets,
which are not public due to commercial competition and other
reasons.

5.4. Remote sensing image retrieval

With the development of remote sensing technologies, the
quantity and quality of remote sensing images have increased dra-
matically. Remote sensing images can be used in some fields to
dentities Cameras year

,467 5 2014
,501 6 2015
,402 8 2016
,101 15 2018



Table 4
A comparison of some Re-ID methods on Market1501 dataset and DukeMTMC dataset. The performance is measured via rank-1 accuracy (r = 1) and mean Average Precision
(mAP).

Type Market1501 DukeMTMC

r ¼ 1 mAP r ¼ 1 mAP

Attention-based Mancs [115] 93.1 82.3 84.9 71.8
Li et al. [116] 91.2 75.7 80.5 63.8

Pose-guided AFC [119] 85.9 66.8 76.8 59.3
Saquib et al. [118] 78.7 56.0 – –

Mask-guided Qi et al. [120] 90.0 75.3 78.8 61.9
Gan-based CamStyle [123] 88.1 68.7 75.3 53.5
Global feaure Xiong et al. [126] 92.5 79.8 83.5 68.5

Luo et al. [127] 94.5 85.9 86.4 76.4
UED [125] 95.9 92.8 – –
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solve important problems, such as weather prediction, climate
monitoring, urban planning, geological analysis, disaster monitor-
ing, resource investigation, and so on. Among them, Content-
Based Remote Sensing Image Retrieval (CBRSIR) is a key problem
that could effectively use these remote sensing data. It can auto-
matically and efficiently retrieve the remote sensing images that
users need from large scale image databases and has attracted
extensive attention from researchers all over the world. According
to the improvement of the method, we can divide the CBRSIR
methods in the past decade into two categories: feature-based
CBRSIR methods and hash-based CBRSIR methods.

Feature-based approaches improve retrieval performance by
extracting more discriminative and powerful features. Early meth-
ods mainly used conventional features [137,138]. Shao et al. [137]
combined color and texture features to improve the performance
of RSIR. Color-Texture-Structure-Spectral Speeded Up Robust Fea-
tures (CTSS-SURF) [138] is a novel local representation for remote
sensing image. It is achieved by dividing images into several parts
and then designing regional feature vectors. In this way, it can
effectively overcome the challenges of RSIR, such as scale, illumi-
nation, shift, and rotation variation. Some methods begin to use
CNN features through deep learning techniques [139–142]. Li
et al. [139] combined the deep features and conventional features
to represent remote sensing images, then use collaborative affinity
metric fusion to get retrieval results. Zhou et al. [140] proposed
two effective schemes for RSIR: fine-tuning the pre-trained CNNs
on a remote sensing dataset and using a novel CNN architecture
based on convolutional layers and a three-layer perceptron which
has fewer parameters to learn low dimensional features from lim-
ited labeled images. Hu et al. [143] introduced multiscale concate-
nation for convolutional features and multipatch pooling for fully
connected layers to RSIR. Some methods employ deep metric
learning to extract more discriminative features for RSIR [141].
Cao et al. [141] presented a novel triplet deep neural network-
based metric learning method to enhance RSIR. Using this method,
they embedded the remote sensing images into a semantic space in
which images from the same class were close to each other and
those from different classes were distinguishable from each other.
Some methods adopt deep attention mechanisms to improve
retrieval performance [142,144]. Xiong et al. [142] proposed a
new attention module for feature extraction for CBRSIR, which
could pay more attention to the salient features, and suppress
the less useful ones. This attention module can be easily embedded
with the last convolutional layer of any pre-trained CNNs and can
be applied along two dimensions: channel and spatial axises,
attending to emphasize the meaningful features along these two
axes. Ye et al. [144] presented an RSIR method based on weighted
distance and CNN. First, it uses the fine-tuned CNN models to
extract image features and label the class of image in the retrieval
dataset. Then it calculates the weight of each class according to the
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probability of the query image belonging to each class, and uses it
to adjust the distance between the query image and the retrieved
images.

Hash-based CBRSIR methods speed up retrieval in large-scale
dataset by optimizing database search [145–147]. Demir et al.
[145] introduced a kernel-based hashing method. It learns hash
functions in the kernel space from handcrafted features to enhance
the retrieval efficiency. Li et al. [146] introduced a Deep Hashing
Neural Network (DHNN), which could jointly learn the deep fea-
tures and deep hashing code utilizing a cross-entropy loss, for
large-scale RSIR. However, the absence of a margin threshold
between positive and negative samples in DHNN may lead to poor
generalization. To address this problem, Roy et al. [147] presented
Metric-Learning based deep hashing Network (MiLaN) that learned
a semantic-based metric space, while simultaneously producing
binary hash codes for fast and accurate retrieval of RS images.

The most commonly used datasets in RSIR are shown in Table 5.
We also compare some CBRSIR methods on UC-Merced dataset.
And, the results are shown in Table 6.
5.5. Trademark image retrieval

Trademark is the symbol of enterprise brand. Protecting the
trademarks from infringements and piracy is of great significance
to promote the development of enterprises and protect the inter-
ests of consumers. Trademark Image Retrieval (TIR) can search all
trademark images that are similar or related to a given input from
a trademark dataset. Trademark images are manually designed
artificially and very different from natural scene images. They usu-
ally consist of graphical and textual primitives, where the color and
typeface can be changeable and artistic. So some natural scene
images features are not powerful enough for describing compli-
cated trademark images. Various approaches have been proposed
for trademark image retrieval.

Some TIR methods use conventional features [153,154]. Tursun
et al. [153] proposed the color histogram, gradient orientation his-
togram, LBP, shape context, SIFT and triangular SIFT features to
search trademark images on their published dataset. Feng et al.
[154] extracted reversal invariant SIFT features from edges of the
segmented blocks of a trademark, then aggregated SIFT features
from each block to generate a single global representation. These
methods have limited performance owing to limited representa-
tion and complex calculations of conventional features. Some
methods use CNN features [155–158]. Aker et al. [155] provided
analysis on TR with deep features, and showed that deep features
were superior to conventional features. Lan et al. [156] utilized
mid-level convolutional features extracted from a pre-trained net-
work and applied uniform Local Binary Patterns (LBP) to features
maps for aggregation. Tursun et al. [157] provided a large-scale
dataset with benchmark queries, METU dataset. And, they pro-



Table 5
The list of the most commonly used datasets in remote sensing image retrieval.

Dataset Images Categories Resolution (m) Year

UC-Merced [148] 2,100 21 0.3 2010
AID [149] 10,000 30 0.5–0.8 2017
NWPU-RESISC45 [150] 31,500 45 0.2–30 2017
PatternNet [151] 30,400 38 0.062–4.693 2018
AID++ [152] 400,000 46 – 2018

Table 6
A comparison of some CBRSIR methods on UC-Merced dataset. The performance is measured via Average Normalized Modified Retrieval Rank(ANMRR), mean Average Precision
(mAP) and precision at k (P@k). For ANMRR, lower values indicate better performance, while for mAP and P@k, larger is better.

Method ANMRR mAP p@5 p@10 p@100

CTSS-SURF [138] 0.1470 0.8124 – 0.9680 0.7502
Zhou et al. [140] 0.3750 – – – –
Hu et al. [143] 0.2850 – – – –
Ye et al. [144] 0.0404 – – – –
Xiong et al. [142] 0.0890 0.8400 0.9190 0.9140 –
Cao et al. [141] 0.0223 0.9663 0.9775 0.9757 0.4855
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vided a baseline on this benchmark using the widely-used meth-
ods applied to TIR in the literature. Recently, they proposed both
hard and soft attention approaches [158], which directly focus on
critical information and reduce the attention given to distracting
and uninformative elements. This method achieved a new state-
of-the-art result on the METU dataset.

There are several wildly used datasets for trademark retrieval,
such as METU dataset [153], FlickrLogos [159] and NPU-TM
[156]. These datasets are shown in the Table 7. We further com-
pare some TIR methods on METU dataset with the experimental
results shown in Table 8.

Nowadays, wine culture has gradually integrated into our daily
life. As a result, wine label image retrieval has become an impor-
tant and emergent task. Although wine label can be considered
as a special trademark, the task of wine label image retrieval is
quite different from the general trademark image retrieval on
two aspects: (1). the input images of wine label image retrieval
systems are usually taken by a mobile phone without preprocess-
ing. These kinds of images contain complex backgrounds. In con-
trast, the general trademark image retrieval aims only at
processing noiseless trademark images, which is separated from
backgrounds. (2). The goal of the general trademark image retrieval
is just to return the trademark of each input image, however, a
wine label image retrieval system needs to output not only
main-brand (trademark) but also sub-brand (more fine-grained
information, such as production year and location), to help a con-
sumer purchase the wine or learn more about the wine taken by
him. In fact, wine label image retrieval has two major challenges.
First, there is a huge number of wine label images with a large
number of brands. Moreover, the numbers of samples in different
brands are various; Second, there is a significant difference among
many wine label images of the same brand, while the difference
among some wine label images of different brands is not obvious.
These challenges make the wine label image retrieval rather
difficult.

In the last decade, some researchers have made some efforts for
wine label image retrieval. Lim et al. [160] searched for wine label
Table 7
The list of the most commonly used datasets in trademark image retrieval

Dataset Images Categories Background

FlickrLogos [159] 8240 32 Yes
METU dataset [153] 930,328 409,834 No
NPU-TM [156] 7139 317 No
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images by recognizing the fonts of the brand texts. They firstly got
wine label regions by using an edge-based method, and then used
fuzzy c-means clustering in local regions of individual wine char-
acters to recognize these texts. While this system can achieve a
high recognition accuracy in some special wine label images, it
has some disadvantages obviously. First, it works well only if the
texts on the wine label are English. Second, the character recogni-
tion in this system relies heavily on the detection of candidate text
regions. However, the detection of candidate text regions by the
edge-based method is usually inaccurate in where the font style
is changeable and the sizes of characters are quite various. To
improve the detection accuracy of candidate text regions, Wang
et al. [161] proposed a new local Chan-Vese (LCV) model, which
is based on the techniques of curve evolution, local statistical func-
tion and level set method. Particularly, when the LCV model was
combined with an extended structure tensor by adding the inten-
sity information into the classical structure tensor for texture
image segmentation, the texture image can be efficiently seg-
mented no matter whether it presents intensity in homogeneity
or not. In fact, the LCV model can be efficient for the two-modal
(phase) images, which usually generate two segments, i.e., fore-
ground and background. As a bimodal model, it cannot simultane-
ously detect multiple objects in different intensities. The texts of
wine label images are usually in different intensities because of
artistic designs of the text fonts. So, the LSV method may not be
the most effective for detecting text. Wu et al. [162] further used
certain hierarchical features and a client-server architecture to
search the image from the retrieval dataset. Particularly they uti-
lized SURF descriptors, K-D tree and k-means methods to build
the retrieval system. However, there still exist certain disadvan-
tages in this mechanism. Leaving aside the fact that the SURF
descriptor is a kind of conventional local feature which can not
reduce the semantic gap in retrieval, the retrieval time of each
image will increase rapidly when the retrieval is implemented on
a large dataset. To address these problems, Li et al. proposed the
CNN-SIFT Consecutive Searching and Matching (CSCSM) frame-
work [163] and CNN-SURF Consecutive Filtering and Matching
Year

2011
2015
2017



Table 8
A comparison of some TIR methods on METU dataset on the Normalized Average
Ranks (NARs) where the smaller NAR indicates the better result.

Type Method NAR

Conventional feature-based Feng et al. [154] 0.083
TRI-SIFT [157] 0.324
Surf [157] 0.207
OR-SIFT [157] 0.190

Deep feature-based VggNet [157] 0.086
GoogLeNet [157] 0.118
Tursun et al. [157] 0.062
Tursun et al. [158] 0.040
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(CSCFM) framework [164] for wine label retrieval with a large
number of brands. The CSCSM framework firstly utilized an
advanced deep CNN to shrink the search range by recognizing
the main-brand in a supervised learning mode, and then applied
an improved SIFT descriptor based on the combination of the RAN-
dom SAmple Consensus (RANSAC) and Term Frequency-Inverse
Document Frequency (TF-IDF) mechanisms to match the final
sub-brand. The CSCFM framework improved and extended the pre-
vious study of the CSCSM framework methodologically and theo-
retically. It utilized a new version of CNN architecture and an
improved SURF matching scheme by adopting the RANSAC and
modified TF-IDF distance that can reduce the computational cost
and improve the retrieval performance greatly. Both the CSCSM
and CSCFM frameworks can not only retrieve the main-brand but
also find out the sub-brand. Moreover, they can implement the
wine label retrieval, and they all can increase the retrieval accuracy
on a large dataset effectively and efficiently.
6. Future research directions

By the above survey, it is clear that CBIR has made great pro-
gress on theory, technology and application in the past decade.
However, there are still many challenges, especially with the emer-
gence of big data and the utilization of deep learning techniques. In
this section, we discuss these challenges and give some potential
research directions of CBIR in the future.
6.1. Collecting more and larger datasets

One critical direction of CBIR in future research is to collect
more and larger datasets. Deep learning techniques are data-
driven. In general, as long as there emerge new and large scale
datasets, we can train the good deep neural network models to
refresh the retrieval accuracy and solve the database search prob-
lems. However, in the training process, the over-fitting problems
may hinder the breakthrough of the learning algorithm. So, more
and larger datasets are necessary and valuable. For the general
instance retrieval, more and larger instance datasets can make
the search applicable to many search purposes. If the CNN in a CBIR
system is trained with a larger dataset which combines the large
person re-identification dataset and large e-commerce product
retrieval dataset, it may be able to efficiently apply to both clothing
search and commodity search. For various specialized instance
retrieval, more and larger datasets are also crucial to the perfor-
mance of retrieval. The new state-of-art methods can be only
established with the larger scale and richer forms of datasets. To
effectively use the dataset, the label of the new dataset should be
accurate enough to eliminate some ambiguity problems in the rel-
evance of image content, such as commodity icon data.
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6.2. Establishing the effective learning strategies for small scale image
retrieval

Another critical direction of CBIR in future research is to estab-
lish some effective learning strategies for small scale image retrie-
val. At present, most CBIR methods require large enough, even
massive datasets. As for instance retrieval tasks, the cost of image
collection and labeling is difficult and expensive, which limits the
development of CBIR in real-world scenarios. However, human
beings have the ability to learn new concepts with little supervi-
sion information. For example, an adult can find the most similar
images without supervision. In order to enable CBIR to have the
same learning ability through a small number of training samples
as human beings, the researchers need to establish more effective
learning strategies with a small scale training dataset so that the
CBIR methods can make the large scale database search in various
real-world scenarios.
6.3. Establishing more efficient database search

In practical applications of instance retrieval, especially where
the reference dataset is extremely large, the time cost of searching
the nearest neighbor of an input image is awfully expensive. Due to
the advantages of easy implementation, fast query speed and low
storage cost, Hashing, especially deep Hashing, has been wildly
deployed to retrieval tasks on large-scale datasets. However, Hash-
ing based methods face another challenge of losing precision when
transforming feature vectors into binary encoding, which will
induce a sub-optimal retrieval result and further decrease the
searching accuracy. Therefore, how to establish a more efficient
and precise database search is our major breakthrough of the
future work.
6.4. Adoption of the automated machine learning and neural
architecture search

Currently, the most state-of-the-art architectures of deep neural
networks are designed artificially, however, this has been becom-
ing a limitation considering the rapidly developed computation
ability of machines and the ‘‘laggard” human knowledge. In order
to solve this problem, some new deep learning neural network
can design their own best architectures to a learning task. Auto-
mated Machine Learning (AutoML) and Neural Architecture Search
(NAS) are two such models attracting much attention in the com-
puter vision community. Actually, many recent methods based on
AutoML or NAS have already achieved the state-of-the-art results
and outperformed the and-designed architectures in various com-
puter vision applications. Therefore, it is worth trying to apply both
AutoML and NAS into the task of instance retrieval to get more
effective image representation.
7. Conclusion

In this survey, we have summarized recent developments of
Content-Based Image Retrieval from technological and practical
applications in the last decade. First, we review the developments
of image representation (or feature extraction) and database
search for CBIR. We then present the typical practical applications
of CBIR on fashion image retrieval, person re-identification, e-
commerce product retrieval, remote sensing image retrieval and
trademark label image retrieval, respectively. Finally, we discuss
the challenges and potential research directions in the future with
the emergence of big data and the utilization of deep learning tech-
niques. It is clear that CBIR has developed into a new era and will
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play an important role in artificial intelligence in the future for our
daily life.
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