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The Gaussian process is a powerful statistical learning model and has been applied widely in nonlinear
regression and classification. However, it fails to model multi-modal data from a non-stationary source
since a prior Gaussian process is generally stationary. Based on the idea of the mixture of experts, the
mixture of Gaussian processes was established to increase the model flexibility. On the other hand, the
Gaussian process is also sensitive to outliers and thus robust Gaussian processes have been suggested
to own the heavy-tailed property. In practical applications, the datasets may be multi-modal and contain
outliers at the same time. In order to overcome these two difficulties together, we propose a mixture of
robust Gaussian processes (MRGP) model and establish a precise hard-cut EM algorithm for learning its
parameters. Since the exact solving process is intractable due to the fact that non-Gaussian probability
density functions of the noises are adopted into the likelihood of the proposed model on the dataset,
we employ a variational bounding method to approximate the marginal likelihood functions so that
the hard-cut EM algorithm can be implemented effectively. Moreover, we conduct various experiments
on both synthetic and real-world datasets to evaluate and compare our proposed MRGP method with
several competitive nonlinear regression methods. The experimental results demonstrate that our
MRGP model with the hard-cut EM algorithm is much more effective and robust than the competitive
nonlinear regression models.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Gaussian Process (GP) [1] is one of the most popular models in
machine learning, pattern recognition, and time series prediction.
In fact, it is a non-parametric model and we can use it to infer over
uncertain time series or functions. However, the Gaussian pro-
cesses used for machine learning suffer from two severe problems.
Firstly, a prior Gaussian process with zero mean function and com-
monly used covariance functions is generally stationary [1], which
strongly limits the fitting flexibility. So, it is unreasonable to use a
single Gaussian process to model the data generated from a non-
stationary source, which is very common in practice. For example,
in Fig. 1(a) we generate a multimodal dataset and we fit this data-
set with a single Gaussian process. The fitted curve is shown in
Fig. 1(b). In the first component, the fitted curve oscillates fre-
quently and fails to capture the smooth characteristics of the
underlying function. Secondly, Gaussian processes are not robust.
In fact, the trained models are sensitive to outliers in the training
set, as illustrated in Fig. 2. If there exists no outlier, the trained
Gaussian process can fit the data along with the function sinðxÞ
very well, but if there exits only a single outlier, the fitting of the
trained Gaussian process degenerates remarkably.

To tackle these two problems, many strategies based on con-
ventional Gaussian processes have been suggested. One effective
way to overcome the first problem is to adopt the mixture struc-
ture in Gaussian processes. In fact, based on the idea of mixture
of experts [2,3], various Mixture of Gaussian Processes (MGP) mod-
els [4–6] have been proposed to improve the model flexibility for
non-stationary sources. In Fig. 1(c), we also show the fitted curve
based on the MGP model. By comparing Fig. 1(b) and (c), we can
see that introducing mixture structure into Gaussian process mod-
els significantly improve the model flexibility and capacity. How-
ever, the parameter learning for an MGP model on a given
dataset is very challenging because the samples are not indepen-
dent, but correlated. To get rid of this difficulty, different kinks of
approximate leaning algorithms have been established for the
MGP models. We review these MGP models as well as the learning
algorithms in Section 2.1.
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Fig. 1. An example of multimodal/non-stationary data fitting task. The data is generated by f ðxÞ ¼ 2 sinð0:8xÞIðx 6 �3Þ þ 0:5 sinð2xÞIð�3 < x < 3Þ þ sinð4xÞIðx P 3Þ, and we
the generate 400 samples. The inputs x obeys a mixture of Gaussian distributions: 1
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Fig. 2. Gaussian processes are sensitive to outliers in the training set. Left: Gaussian process successfully learn sinðxÞ very well from the data when there is no outlier. Right:
The learned function is remarkably deviated from sinðxÞ with the influence of a single outlier.
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On the other hand, the Robust Gaussian processes (RGPs) [7–9]
have been suggested to overcome the second problem. In conven-
tional Gaussian processes, the noises are assumed to be also Gaus-
sian. Under this assumption, the latent function can be integrated
225
out analytically, and the marginal likelihood can be calculated
explicitly. However, Gaussian distribution is not heavy-tailed,
which means it is sensitive to outliers. In [8,9], student-t distribu-
tion or Laplace distribution is utilized to model the noise so that



Fig. 3. Illustrations of two mixture of experts architectures. Here, xi denotes i-th
input, yi denotes i-th output, and the latent variable zi represents the expert index
corresponding to i-th observation. Left: the discriminative mixture of experts
model. Right: the generative mixture of experts model.

Fig. 4. Illustrations of two kinds of mixture of Gaussian processes. Note that the
outputs y1; y2; � � � ; yn are no longer independent. Here, xi denotes i-th input, yi
denotes i-th output, and the latent variable zi represents the expert index
corresponding to i-th sample. Note that the samples are not identically indepen-
dently distributed in these models. Left: the discriminative mixture of Gaussian
processes. Right: the generative mixture of Gaussian processes.
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the modified Gaussian process becomes robust. However, this
robust Gaussian process becomes much more complicated than
the conventional Gaussian process because its exact solving pro-
cess of the parameters via Maximum likelihood (ML) is intractable.
Therefore, certain approximate mechanisms should be adopted
into the ML learning of the parameters such as Expectation Propa-
gation (EP) [10], Laplace approximation [11], Variational Bayesian
(VB) [12] and so on.

In practical applications, it is common that the data source is
non-stationary, while there exist outliers at the same time, due
to technical reasons or some factors beyond our control. Thus it
is vital to develop a regression model that is not only able to model
non-stationary data but also robust to outliers. In this paper, by
combining the ideas of MGP and RGP together, we propose a novel
model: Mixture of Robust Gaussian Processes (MRGP), which
inherits the advantages of both MGP and RGP to solve the multi-
model data and outlier-sensitive problems. Moreover, we design
a hard-cut EM algorithm with variational bounding approximation
for the parameter learning of MRGP. It is demonstrated by the
experimental results on both synthetic and real-world datasets
that our proposed MRGP model with the hard-cut EM algorithm
is much more effective and robust than the competitive nonlinear
regression models.

The contributions of this paper are summarized as follows:

� We establish a model that is both robust to outliers and able to
model non-stationary data, which overcomes the problems of
traditional Gaussian processes simultaneously.

� We develop an effective learning algorithm for the proposed
model based on the variational bounding technique.

� We conduct extensive experiments on various datasets to com-
pare common non-linear regression techniques in the presence
of outliers.

The rest of this paper is organized as follows. In Section 2, we
review related works on MGP, approximate inference in the train-
ing of GP, as well as the robust modeling. Then we introduce the GP
and MGP models in Section 3. The MRGP model and its hard-cut
EM algorithm are presented in Section 4. We summarize the exper-
imental results on both synthetic and real-world datasets in Sec-
tion 5. Finally, we conclude this paper in Section 6.
2. Related works

2.1. Mixture of Gaussian processes and learning algorithms

The mixture of experts (ME) was originally introduced in [2]
with the idea that the final prediction result is a weighted summa-
tion of the prediction results obtained by certain local experts, and
their weights are calculated by a gating function adaptively. Actu-
ally, this kind of ME architecture is discriminative, as shown in the
left panel of Fig. 3. Tresp [4] adopted the idea of ME to the case of
Gaussian processes and further introduced the mixture of Gaussian
processes with the architecture in a similar way, as shown in the
left panel of Fig. 4. The major difference between ME and MGP is
that the samples of MGP are not independent but correlated, and
the prediction is based on the correlation relationships between
these samples. In the MGP model, both local experts and gating
networks are Gaussian processes. So, we can utilize an MGP to
model any general conditional probability density and address
the input-dependent bandwidth problem of a stochastic process.
The MGP model is further extended to the Dirichlet process based
infinite mixture of Gaussian processes in [13].

From an alternative view of ME [3], the ME architecture can be
fully generative and uses the posterior responsibilities from a mix-
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ture distribution as the gating network, as shown in the right panel
of Fig. 3. Based on this architecture, an infinite mixture of Gaussian
processes model [6] was also developed. In fact, the generative
finite mixture of Gaussian processes has been investigated exten-
sively in recent years [14–18], and the corresponding probabilistic
graphical model is shown in Fig. 4. It is clear that the MGP model is
generative in the sense that for each sample xi, we assume there is
a latent variable zi such that ðxi; yiÞ is generated from the zi-th
component.

To date, there are three major approaches to parameter learning
of the mixture model: EM algorithm [19,20], variational Bayesian
inference [21], and MCMC [22]. As a stochastic simulation method,
MCMC, or more precisely Gibbs sampling method [23] has been
successfully applied in MGP [13,6]. However, its time consumption
can be prohibitively large if you want to achieve accurate results
on a large dataset. Variational Bayesian inference is efficient, but
the conditional independent assumption sometimes leads to
unsatisfactory results. Nevertheless, variational Bayesian inference
has already been employed for the parameter learning of MGP
[24,25]. The EM algorithm is a general framework for parameter
estimation from incomplete data, which is both effective and effi-
cient. When we use the EM algorithm to estimate the parameters
of MGP, the main challenge is that there are exponentially many
summations in the Q-function because the samples are not inde-
pendent. To overcome this difficulty, several approximate EM
methods have been proposed [14,26,15]. Certainly, it is a good
way to combine these three methods to design new learning algo-
rithms. For example, an MCMC-EM algorithm was already pro-
posed to approximate the Q-function via MCMC sampling
[17,18]. Moreover, the MCMC-EM algorithm can be extended to
more general models such as the two-layer mixture of Gaussian
processes [27] for functional data analysis.
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2.2. Robust modeling and heavy-tailed distributions

In regression analysis, there are probably outliers among the
observations. Since they deviate far away from the normal obser-
vations or samples, they may influence the parameter learning as
well as the prediction result strongly. As well-known, the common
least square based methods are sensitive to outliers, and thus it is
urgent to develop robust regression methods for outliers.

In fact, robust regression models have been investigated exten-
sively, and one popular approach to robust modeling with outliers
is to assume heavy-tailed distributions for the noises. In probabil-
ity theory, heavy-tailed distributions are probability distributions
whose tails are not exponentially attenuated. Intuitively, a distri-
bution whose probabilistic density function has a heavier tail than
the exponential distribution is heavy-tailed. According to this def-
inition, student-t is heavy-tailed. Although Laplace distribution is
not so heavy-tailed, it has a much heavier tail than Gaussian distri-
bution. Actually, it has been used as the distribution of the noise in
the least absolute deviation regression [28]. Moreover, student-t
distribution and skew-t distribution have been adopted in the
mixture-distribution models to enhance the robustness [29–31].
In Fig. 5, we sketch the probabilistic density functions of Gaussian
distribution, Laplace distribution and student-t distribution with
mean 0 and variance 2.

In conventional Gaussian process analysis, the noise assump-
tion of Gaussian distribution makes it tractable to get the exact
ML solutions of the parameters, but the resulted model is very sen-
sitive to outliers. As the noise assumption of heavy-tail distribu-
tions can make the model robust to outliers, Laplace distribution
and student-t distribution have been adopted into the model of
the Gaussian process to obtain a robust regression model
[32,8,9]. However, none of these works extends such a robust mod-
eling approach to the MGP model for the regression analysis of
multi-modal or non-stationary temporal data.
2.3. Likelihood approximation methods in Gaussian processes

When the noises are assumed to be heavy-tail distributions, it is
intractable to get the exact solutions of the parameters by maxi-
mizing the likelihood of the regression model on a given dataset.
Therefore, we have to approximate the likelihood to make it tract-
able for finding the ML solution of the parameters as well as the
corresponding inference. A comprehensive overview of approxi-
mate likelihood inference for Gaussian processes is summarized
in [33]. Laplace likelihood approximation can be made with a
second-order Taylor expansion of the posterior probability distri-
bution around the posterior mode to construct a Gaussian approx-
imation. Expectation propagation [10] can approximate each
likelihood term with an un-normalized Gaussian, and iteratively
update the parameters to match marginal moments. In [8], EP is
employed to estimate the parameters in robust Gaussian processes
with a student-t likelihood. KL-divergence minimization method
Fig. 5. The probabilistic density functions (pdf) of Gaussian distribution, Laplace
distribution and student-t distribution with mean equals to 0 and variance equals
to 2. Left: pdf over interval ð�6;6Þ; Right: pdf over interval ð3;6Þ.
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can approximate the posterior by a Gaussian Nðh;AÞ, and deter-
mine the mean vector and covariance matrix, h; A , by minimizing
the reverse KL-divergence between the exact and approximate
posteriors. The variational bounding method can be considered
as a special case of the KL-divergence minimization method which
takes a variational lower bound instead of each likelihood term. By
such a variational bound approximation, the intractable integral in
each marginal likelihood is converted to a convex optimization
problem based on Fenchel-Legendre duality [34]. In this paper,
we will apply an optimization procedure to obtain a tighter lower
bound of each marginal likelihood iteratively. A double-loop algo-
rithm for variational bounding approximation is also proposed in
[35,36] to solve the optimization problem in the majorization-
minimization way [37].

The approximate likelihood approaches mentioned above have
their advantages under different application scenarios, and there
is no generally best one. We adopt the variational bounding
method in this paper because it enjoys nice theoretical properties
and guaranteed convergence [35,36].

2.4. Recent advances in Gaussian processes

Recently, Deep Gaussian processes (DGP) [38–40] has been an
active topic in Gaussian process community. DGP can be seen as
a deep extension of the Gaussian Processes Latent Variable Model
(GP-LVM) [41]. Originally, GP-LVM was developed as a non-linear
dimensional reduction technique. DGP is a generative model aim-
ing at modeling high-dimensional data. This manuscript concerns
the nonlinear regression problem, which is supervised, while
dimensional-reduction and generative models are unsupervised.

Warped Gaussian processes (WGP) [42] attempts to model non-
Gaussian processes by mapping the observations into a latent
space. Compared with MGP model, this method resolves the prob-
lem that traditional GPs cannot model non-stationary data in a dif-
ferent way. Besides, robustness has not been taken into
consideration in WGPs.

Various variational techniques have been developed for learn-
ing Gaussian processes in recent years, such as [43–46]. These
techniques mainly target at making Gaussian processes scalable
on large datasets. Scalability of Gaussian processes is also an
important topic, which has also been discussed thoroughly in
[47,48]. However, in this manuscript we concern about the robust-
ness and non-stationarity.

3. Gaussian processes and mixture of Gaussian processes

3.1. Gaussian processes

The Gaussian process is one of the dominant models in non-
parametric statistics for temporal data regression and classifica-
tion. Recently, it has been adopted into the field of machine learn-
ing and applied widely for the learning and analysis of time series
since Gaussian distributions involved in the process can be easily
analyzed and processed. Mathematically, the Gaussian process
model is defined as follows.

Suppose that there is a dataset D ¼ fðxi; yiÞgNi¼1 and we let

x ¼ ½x1; x2; � � � ; xN�T; y ¼ ½y1; y2; � � � ; yN�T for brevity. We say y is a
Gaussian process with input x if they are linked by an underlying
function f:

yi ¼ f ðxiÞ þ ei; 8i ¼ 1;2; � � � ;N;
where f ðxiÞ is always subject to a Gaussian distribution and feigNi¼1

are independent noises. Let f ¼ ½f ðx1Þ; f ðx2Þ; � � � ; f ðxNÞ�T, the defini-
tion of Gaussian process is equivalent to say fjx is a multivariate
Gaussian random vector, i:e:, fjx � Nðl;CÞ. Usually, the mean l is
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assumed to be zero for simplicity, while the covariance C is deter-
mined by x. Given a covariance function cð�; �; hÞ parameterized by
h, then Cij ¼ cðxi; xj; hÞ.

There are many choices for covariance functions [1]. Generally,
the choice of proper covariance function is highly related to the
data. In this paper, we consider the squared exponential covariance
function which has been widely used, but the extension to other
kinds of covariance functions are direct. Mathematically, the
squared exponential covariance function is defined as

cðxi; xjjhÞ ¼ h21 exp �h22
ðxi � xjÞ2

2

 !
:

As indicated in [1,49], h1 is the vertical scale of variations, h�1
2 is

the length scale or so-called bandwidth. However, f are latent vari-
able and only x; y are observed. In order to inference over hyper-

parameters, one usually assume feigNi¼1 are independent Gaussian
noise, i:e:, yijf i � Nðf i; c2Þ. Integrating out f, we obtain

yjx � Nð0;Cþ c2INÞ:
Thus, one may learn parameters h; c via Type-II maximum like-

lihood estimation (marginal likelihood maximization) [1]. Since
the dimension of the Gaussian distribution is N, the time complex-
ity of parameter learning is OðN3Þ, which is very high when N is rel-
atively large.

Given a new input x�, the aim of prediction is to estimate the
corresponding output y�. Note that it is equivalent to predict f �,
since y�jf � � Nðf �; c2Þ. From the definition of Gaussian process
we immediately have

y
f �

� �
� N

0
0

� �
;

Cþ c2IN cðx; x�Þ
cðx�;xÞ cðx�; x�Þ

" # !
:

Using the conditional properties of Gaussian distribution, we
further have that f �jD; x� also obeys a Gaussian distribution,

f �jD; x� � Nðlf ;r2
f Þ;

lf ¼ cðx�;xÞðCþ c2INÞ�1y

r2
f ¼ cðx�; x�Þ � cðx�;xÞðCþ c2INÞ�1cðx; x�Þ:

ð1Þ

The time complexity for prediction is OðN2Þ if the precision

matrix ðCþ r2INÞ�1 has been calculated.
Although the assumption of Gaussian noises makes the infer-

ence very easy, this conventional Gaussian process is not robust
because Gaussian distributions are not heavy-tailed. In practical
applications, the data may contain some outliers due to technical
reasons and we certainly do not want these outliers to influence
the final result too much. To get rid of this problem, heavy-tailed
distributions have been adopted to model the noises, such as
Laplace noise and student-t noise. The corresponding models are
referred to as robust Gaussian processes. In these cases, it is
intractable to integrate out f to obtain the marginal likelihood,
and thus the approximate inference methods such as Laplace
approximation, expectation propagation, and variational Bayesian
approximation are often employed to tackle this critical problem.

3.2. Mixture of Gaussian processes

As the previously defined Gaussian processes are always sta-
tionary, the mixture of Gaussian processes (MGP) has been intro-
duced to model multi-model data or non-stationary time series.
Moreover, the time complexity of learning a MGP is greatly
decreased reduced since the training samples are divided by these
Gaussian processes and the computation for the inverses of their
covariance matrices becomes much easier. In fact, the time com-
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plexity of learning a single Gaussian process is OðN3Þ, which
becomes prohibitively high as the number N of samples is large.
Here, we assume that the MGP model is generative and there are
K independent Gaussian processes involved in the mixture along

the input region. Mathematically, suppose that fzigNi¼1 are latent
variables indicating which component ðxi; yiÞ belongs to. The mix-
ing proportions fpkgKk¼1 are non-negative scalars satisfyingPK

k¼1pk ¼ 1, and

pðzi ¼ kÞ ¼ pk:

Conditioned on zi ¼ k, we assume the input xi is generated from
a Gaussian distribution, that is,

xijzi ¼ k � Nðlk;r
2
kÞ;

where lk and rk are mean and standard deviation, respectively. In
fact, this is equivalent to assume that all the inputs are generated by
a Gaussian mixture model. We further divide the samples by these
zi and define the component Gaussian processes as follows.

xk ¼ fxijzi ¼ k; i ¼ 1; � � � ;Ng; fk ¼ ff ijzi ¼ k; i ¼ 1; � � � ;Ng;
yk ¼ fyijzi ¼ k; i ¼ 1; � � � ;Ng;
and Ck be the covariance matrix of k-th Gaussian processes param-
eterized by hk, then

fkjxk � Nð0;CkÞ; k ¼ 1;2; � � � ;K:
As for the noises, we usually assume feijzi ¼ kg shares the same

Gaussian distribution, with standard deviation ck. Integrating out
fk, we have

ykjxk � Nð0;Ck þ c2kIÞ:
Similar to the Gaussian mixture model, we can use the EM algo-

rithm to learn the parameters H ¼ fpk;lk;rk; hk; ckgKk¼1 of MGP
iteratively. In fact, the log likelihood function of the MGP model
is given by

LðH; zÞ ¼
XK
k¼1

XN
i¼1

Iðzi ¼ kÞ½log pk þ log pðxi;lk;rkÞ� þ log pðykjxk; hk; ckÞ
 !

:

ð2Þ
The M-step of the EM algorithm is relatively easy: given

z; fpk;lk;rkgKk¼1 can be updated by the standard EM formulae for

Gaussian mixtures, while the update of fhk; ckgKk¼1 can be obtained
by learning the parameters of K Gaussian processes from their
datasets separately. On the other hand, the E-step of the EM algo-
rithm is rather difficult because L is not separable with respect to
z, thus there are exponentially many OðKNÞ terms in the summa-
tion. In order to avoid the summation of these exponentially many
terms, the hard-cut EM algorithm simply ignores the dependency
between samples in the E-step. More precisely, in the E-step of
hard-cut EM algorithm, we update zi by

zi ¼ arg max
k¼1;2;���;K

pkpðxi;lk;rkÞpðyijxi; hk; ckÞ:

Since the noises are assumed to be Gaussian, yijxi; hk; ck is just
Nð0; h2k;1 þ c2kÞ, which can be calculated directly. Using this approx-
imation, the time consumption of E-step is almost negligible, while

a single M-step requires about OðKðN=KÞ3Þ ¼ OðN3=K2Þ. As a result,
if the number of required EM iteration is T, the overall time com-
plexity of the hard-cut EM algorithm is OðTN3=K2Þ.

As long as the parameters of MGP are estimated by the EM algo-
rithm, we can predict the output ŷ at x�. We firstly calculate the
probability that x� belongs to each component as

pðz� ¼ kÞ / pkNðx�;lk;r
2
kÞ;
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and then get the final prediction result by

ŷ ¼
XK
k¼1

pðz� ¼ kÞŷðkÞ;

where ŷðkÞ is assumed to be the prediction result of the k-th Gaus-
sian process at x� given by Eq. (1).

4. The proposed mixture of robust Gaussian processes

4.1. Model formulation

Although the mixture of Gaussian processes is quite effective to
model non-stationary temporal data which has a multi-model
structure, it is still sensitive to outlier and thus not so robust in
practical applications. In order to overcome this problem, we pro-
pose a mixture of robust Gaussian processes in which the noises of
each component Gaussian process are assumed to be heavy-tail
distributions instead of Gaussian ones. Here, we mainly consider
Laplace noise and student-t noise. For a Laplace noise, the corre-
sponding likelihood term takes the following form:

pðyijf i; cÞ ¼
1
2c

exp � jyi � f ij
c

� �
:

where c is the dispersion parameter. For a student-t noise, the like-
lihood term is given by

pðyijf i; cÞ ¼
Cðcþ1

2 Þ
Cðc2Þ

1ffiffiffiffiffifficpp 1þ ðyi � f iÞ2
c

 !�cþ1
2

;

where Cð�Þ is the Gamma function and c is now the degree of free-
dom. The mixture of robust Gaussian processes can be defined in
the same way as the mixture of Gaussian processes in Section 3.2
except that the probability density function of each noise is that
of Laplace or student-t. Although the formal modification seems
minor, it makes the analysis far more challenging because ykjxk is
no longer Gaussian. In fact, the marginal likelihood of the k-th com-
ponent Gaussian process, i.e., the conditional probability of yk with
respect to xk, is

pðykjxk; hk; ckÞ ¼
Z

pðykjfk; ckÞpðfkjxk; hkÞdfk: ð3Þ

The main difficulty arises from the intractable integral in
pðykjxk; hk; ckÞ. On one hand, in the M-step, the updating of
fhk; ckg becomes difficult because pðykjxk; hk; ckÞ does not have a
closed-form expression. On the other hand, in the E-step, the allo-
cation of zi involves the calculation of pðyijxi; hk; ckÞ that is also
intractable. Instead of calculating the marginal likelihood explic-
itly, we employ a variational bounding method to calculate the
marginal likelihood approximately. Moreover, we need the poste-
rior fk of each component Gaussian process in the prediction stage.
Since the noises are non-Gaussian, ½yk; f �� is not Gaussian but ½fk; f ��
is still Gaussian and we can predict f � by conditioning on fk. As we
will see, this approximate marginal likelihood can lead to an
approximate posterior at the same time.

4.2. Variational approximation of marginal likelihood

For ease of notation, we omit the subscript k in marginal likeli-
hood and consider one single Gaussian process temporarily, since
we learn each Gaussian process expert separately in the M-step.
The variational bounding method introduced here has been used
in large scale linear models [35], image processing [36] and Gaus-
sian processes [50], but there are no complete derivations for the
case of robust Gaussian processes to the best of our knowledge.
For completeness, we give the strict derivations of the variational
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bounding approximation results for the marginal likelihood of
robust Gaussian processes in detail, which are summarized in the
following theorem.

Theorem 1. Let tðs; cÞ be a super-Gaussian probabilistic density
function centered at 0; gðxÞ ¼ log tð ffiffiffi

x
p Þ and hðkÞ ¼ 2g�ð�1=ð2kÞÞ

where g� is the Fenchel-Legendre dual function of g. Furthermore, let

k ¼

k1
k2;

..

.

kn

2
66664

3
77775; K ¼

k1 0 � � � 0
0 k2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � kn

2
66664

3
77775; hðkÞ ¼

Xn
i¼1

hðkiÞ;

we have the following theoretical results:

(a) The marginal likelihood pðyjx; h; cÞ takes the following varia-
tional form
pðyjx; h; cÞ ¼ jCj�1=2 exp � 1
2min
k�0;f

uðk; fÞ
� �

;

uðk; fÞ ¼ hðkÞ þ log jAj þ ðy � fÞTK�1ðy � fÞ þ fC�1f:
(b) Given v ¼ rk�1 log jAj ¼ diagððC�1 þ K�1Þ�1Þ,
/vðk; fÞ ¼
Xn
i¼1

v i þ ðyi � f iÞ2
ki

þ hðkiÞ þ fC�1f � g�
1ðvÞ

is an upper bound for uðk; fÞ.

(c) /vðk; fÞ can be further optimized by the alternative minimiza-

tion of k and fÞ: the minimum of k is

ki ¼ �ð2g0ðv i þ ðyi � f iÞ2ÞÞ
�1

when f is fixed, while the mini-
mum of f can be obtained by the gradient descent algorithm
when k is fixed.
Proof. We prove the three results one by one. Since tðs; cÞ is a
super-Gaussian [34] probabilistic density function (for example,
Laplace distribution or Student-t distribution) centered at
0; log tðs; cÞ is symmetric and monotone decreasing with respect
to s. Furthermore,

ffiffi
s

p ! log tðs; cÞ is convex whenever s P 0, so
gðxÞ ¼ log tð ffiffiffi

x
p Þ is convex and monotone decreasing. According to

Fenchel-Legendre duality, we have

gðxÞ ¼ sup
w

ðxw� g�ðwÞÞ;

where g�ðwÞ ¼ supxP0ðxw� gðxÞÞ is the dual function of gðxÞ.
Because gðxÞ is decreasing, the domain of g�ðwÞmust be bR�. There-
fore, it is equivalent to have

gðxÞ ¼ sup
w60

ðxw� g�ðwÞÞ ¼ sup
wP0

ð�xw� g�ð�wÞÞ:

By taking k ¼ 1=ð2wÞ;hðkÞ ¼ 2g�ð�1=ð2kÞÞ, we have

log tðs; cÞ ¼ gðs2Þ ¼ sup
wP0

� s2

2k
� g�ð� 1

2k
Þ

� �

¼ sup
kP0

� s2

2k
� 1
2
hðkÞ

� �
: ð4Þ

Since pðyjf; cÞ ¼Qn
i¼1pðyijf i; cÞ is decomposable with respect to

individual observations, we can consider each individual term sep-
arately. Putting pðyijf i; cÞ ¼ pðf i � yij0; cÞ ¼ tðf i � yiÞ into Eq. (4), we
obtain a variational representation of log pðyijf i; cÞ as follows:

logpðyijf i; cÞ ¼ sup
kiP0

�ðyi � f iÞ2
2ki

� 1
2
hðkiÞ

 !
:
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Consequently, we have

logpðyjf; cÞ ¼ sup
kP0

�1
2
ðy � fÞTK�1ðy � fÞ � 1

2
hðkÞ

� �
:

With this representation, we further have pðyjx; h; cÞ:
pðyjx; h; cÞ ¼ R pðyjf; cÞpðfjx; hÞdf

¼ R exp log pðyjf; cÞð ÞNðfj0;CÞdf
¼ max

kP0
exp � 1

2 hðkÞ
� � R

exp � 1
2 ðy � fÞK�1ðy � fÞ� �

Nðfj0;CÞdf:
ð5Þ

The term inside the integral is actually a lower bound of the
posterior of f. By completing the squares, we can find out that
the approximate posterior of f given observations x; y and param-

eter k is Gaussian Nðh;A�1Þ where

A ¼ K�1 þ C�1;h ¼ A�1K�1y: ð6Þ
The integral in Eq. (5) can be calculated explicitly, but we seek a

variational form for further purpose. Given h and A defined above,
we have

exp � 1
2 ðy � fÞK�1ðy � fÞ� �

Nðfj0;CÞR
exp � 1

2 ðy � fÞK�1ðy � fÞ� �
Nðfj0;CÞdf

¼ jAj1=2
ð2pÞn=2

exp �1
2
ðf � hÞTAðf � hÞ

� �
:

Taking maximum with respect to f, we further haveR
exp � 1

2 ðy � fÞK�1ðy � fÞ� �
Nðfj0;CÞdf

¼ ð2pÞn=2
jAj1=2 max

f
exp � 1

2 ðy � fÞK�1ðy � fÞ� �
Nðfj0;CÞ

¼ 1
jACj1=2 max

f
exp � 1

2 ðy � fÞK�1ðy � fÞ � 1
2 f

TC�1f
	 


:

ð7Þ

By combining Eq. (5) and (7), we can rewrite pðyjx; h; cÞ into a
variational form with respect to f and k as

pðyjx; h; cÞ ¼ jCj�1=2 exp � 1
2min
k�0;f

uðk; fÞ
� �

;

uðk; fÞ ¼ hðkÞ þ log jAj þ ðy � fÞTK�1ðy � fÞ þ fC�1f:

This proves part (a) of Theorem 1.
It follows from (a) that the problem of calculating marginal

likelihood pðyjx; h; cÞ boils down to solve the optimization problem
mink�0;fuðk; fÞ. The main difficulty lies in the term log jAj that
depends on k. We use a majorization-minimization method to

tackle this problem. As shown in [36], let k�1 ¼ ½k�1
1 ; k�2

2 ; � � � ; k�1
n �T,

then k�1 ! � log jAj is a convex function. Again by Fenchel-
Legendre transformation, we obtain

log jAj ¼ minvP0 vTk�1 � g�1ðvÞ
	 


, where g�1 is the dual function.

For a fixed k�1, the equality holds when

v ¼ rk�1 log jAj ¼ diagððC�1 þ K�1Þ�1Þ: ð8Þ
For a general v P 0; log jAj 6 vTk�1 � g�

1ðvÞ, and we thus have

/vðk; fÞ ¼ vTk�1 � g�
1ðvÞ þ hðkÞ þ ðy � fÞTK�1ðy � fÞ þ fC�1f

¼
Xn
i¼1

v iþðyi�f iÞ2
ki

þ hðkiÞ þ fC�1f � g�
1ðvÞ;

which is an upper bound of uðk; fÞ. This proves part (b) of
Theorem 1.

We further employ the double loop optimization method to
optimize uðk; fÞ, i:e:, to get a tighter bound instead. In the inner
loop, we minimize the upper bound uvðk; fÞ given v. While in the
outer loop, we update current v to achieve tighter bounds. In the
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inner loop there are two variables, and we solve this optimization
problem with the two variables alternatively. For the k part,
according to the definition of hðkiÞ, it is easy to get
min
ki�0

v iþðyi�f iÞ2
ki

þ hðkiÞ ¼ min
ki�0

2 v iþðyi�f iÞ2
2ki

þ 2g� � 1
2ki

	 
	 

¼ �2max

ki�0
ð� v iþðyi�f iÞ2

2ki
� g�ð�2kiÞÞ

¼ �2gðv i þ ðyi � f iÞ2Þ ¼ �2 log t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v i þ ðyi � f iÞ2

q� �

¼ �2 log p yij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v i þ ðyi � f iÞ2

q
þ yi; c

� �
:

At first glance, this result is a little surprising since we do not
need to know the explicit form of h. By the optimal condition,
when f i is fixed, the optimal value is obtain when

ki ¼ �ð2g0ðv i þ ðyi � f iÞ2ÞÞ
�1
. After updating k, the objective func-

tion becomes

fTC�1f � 2
Xn
i¼1

logp yij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v i þ ðyi � f iÞ2

q
þ yi; c

� �
;

which can be easily solved using the gradient descent algorithm.
This process is very similar to finding the posterior mode of f, the
only difference here is the likelihood term is smoothed by v.

To calculate approximate marginal likelihood pðyjx; h; cÞ accord-
ing to Theorem 1 in practice, we begin to iteratively update k and f
in the inner loop until convergence. Then, we turn to the outer loop
and update v according to Eq. (8) to get a new upper bound for
uðk; fÞ. The entire optimization process is guaranteed to converge
due to the convexity [35,36]. After the process has converged, we
also obtain an approximation for the posterior of f given y as indi-
cated in Eq. (6). The approximate marginal likelihood in Theorem 1
involves optimization procedure and has no explicit formula, so it
is still intractable to calculate gradients with respect to h and c.
However, part (c) of Theorem 1 gives an f, which is an estimation
of latent function values without noises. Therefore we can approx-
imate the gradients by taking derivates of the surrogate log-
likelihood:

�1
2
log jCj � 1

2
fTC�1f þ

Xn
i¼1

log tðyi � f i; cÞ:
4.3. The hard-cut EM algorithm

We further establish the hard-cut EM algorithm for mixtures of
robust Gaussian processes in this subsection. In the E-step, we
need to calculate the expectation of complete log likelihood (2)
with respect to posterior distributions of z. Since the samples are
dependent, this task involves KN summations and is thus computa-
tional intractable. In order to get rid of this difficulty, we employ a
kind of hard-cut allocation to update z as follows:

zi ¼ arg max
k¼1;2;���;K

pkpðxi;ll;rkÞpðyijxi; hk; ckÞ: ð9Þ

That is, all the samples are assumed to be separable to those
components of the mixture in each iteration. Although this
assumption may be too strict, it can make the EM algorithm tract-
able. Moreover, the experiments have already demonstrated that
this hard-cut strategy is reasonable and effective. Therefore, we
adopt this strategy to design the hard-cut EM algorithm.

In the mixture of robust Gaussian processes, the noises are not
Gaussian, so the exact calculation of pðyijxi; hk; ckÞ is intractable as
we discussed previously. In order to solve this problem efficiently,
we implement the variational Bayesian approximated method
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given in Section 4.2 in the EM algorithm. With the hard-cut version
of z, let Ik ¼ fijzi ¼ kg, then the Q-function is given by

QðHÞ ¼
XK
k¼1

X
i2Ik

ðlogpk þ logpðxi;lk;rkÞÞ þ
XK
k¼1

log pðykjxk; hk; ckÞ:

The M-step aims to maximize QðHÞ with respect to all the

parameters. For fpk;lk;rkgKk¼1, we have

pk ¼ jIkj
N

; lk ¼
1

jIkj
X
i2Ik

xi; rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jIkj
X
i2Ik

ðxi � lkÞ2
s

: ð10Þ

As for hyper-parameters of robust Gaussian processes, we firstly
approximate pðykjxk; hk; ckÞ via the variational bounding method,
and then optimize the approximate marginal likelihood via the gra-
dient ascent algorithm. As the approximations are local, we also
need to update the approximations once we update fhk; ckgKk¼1. In

fact, the procedure of learning fhk; ckgKk¼1 in a single M-step can be
seen as a variational EM algorithm as indicated in [9]. Sincewe need
to run the double loop iteration for each Gaussian process compo-
nent in every M-step, the total time consumption may be rather
large. We summarize the harde-cut EM algorithm for mixtures of
robust Gaussian processes in Algorithm 1.

Algorithm 1. The hard-cut EM algorithm for MRGP

Input: observations fðxi; yiÞgNi¼1, the number of components K.

Parameters: mixing proportions fpkgKi¼1, mixture parameters

flk;rkgKk¼1, Gaussian process parameters fhk; ckgKk¼1.

Latent variables: latent variables fzigNi¼1.

1: Initialize fzigNi¼1 via k-means.
2: while not converged do
3: for k ¼ 1;2; � � � ;K do
4: Update mixture parameters of k-th component

according to Eq. (10).
5: while not converged do
6: Approximate pðykjxk; hk; ckÞ using Theorem 1.
7: Update hk; ck using gradient ascent.
8: end while
9: end for
10: for i ¼ 1;2; � � � ;N do
11: Update zi via hard-cut allocation according to Eq. (9).
12: end for
13: end while
4.4. Prediction strategy

We take the following prediction strategy with the obtained
mixture of robust Gaussian processes. Given a new input x�, we
firstly calculate the probability that x� belongs to k-th component
as follows:

pðz� ¼ kÞ ¼ pkNðx�;lk;r2
kÞPK

l¼1plNðx�;ll;r2
l Þ
:

Next, we consider the prediction conditioned on z� ¼ k. This is

different from the case of Gaussian process (1) because ½yk; f
ðkÞ
� � is

not jointly Gaussian. Nevertheless, ½fk; f ðkÞ� � is still Gaussian and thus

f ðkÞ� jfk is easy to calculate, although we don’t have access to fk
directly. The posterior of fkjxk; yk; hk; ck is approximated as a Gaus-

sian distribution Nðfkjhk;A
�1
k Þ as in Eq. (6). Therefore, we can inte-

grate out fk with respect to its approximate posterior distribution

Nðfkjhk;A
�1
k Þ, and the predictive distribution of f ðkÞ� is given by
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pðf ðkÞ� jx�;xk; ykÞ ¼ R pðf ðkÞ� jfk; x�;xkÞpðfkjxk; yk; hk; ckÞdfk
	 R pðf ðkÞ� jfk; x�;xkÞNðfkjhk;A

�1
k Þdfk:

Simple calculation reveals that the approximate predictive dis-

tribution of f ðkÞ� is also Gaussian, whose mean is ðcðkÞ� ÞTC�1
k hk where

ðcðkÞ� Þ ¼ cðxk; x�; hkÞ. Therefore, the prediction at x� conditioned on

z� ¼ k is ŷðkÞ ¼ ðcðkÞ� ÞTC�1
k hk and the final prediction is obtained by

f̂ ¼
XK
k¼1

pðz� ¼ kÞŷðkÞ:
5. Experimental results

5.1. On synthetic data

We firstly evaluate the proposed MRGP models with the hard-
cut EM algorithm on a group of typical synthetic datasets, as in
[17,18,27]. These synthetic datasets are generated from typical
mixtures of Gaussian processes, being referred to as S1; � � � ;S12,
respectively. Among them, S1 and S7 are basic and their parame-
ters are listed in Table 1. Based on S1 and S7, we vary the noise
level, overlapping level and mixing proportions to obtain other
datasets.

Specifically, S1 consists of 900 samples, and we randomly
select 1=3 of them for training and the rest for testing. There are
three actual Gaussian processes in S1, i:e:, K ¼ 3 in this dataset.
S2 �S6 are based on S1 with the variations as follows:

(a) S2 (a more noisy dataset): ½h1�3 ¼ ½h2�3 ¼ ½h3�3 ¼ 0:2.
(b) S3 (a less noisy dataset): ½h1�3 ¼ ½h2�3 ¼ ½h3�3 ¼ 0:05.
(c) S4 (an unbalanced dataset): p1 ¼ 0:2;p2 ¼ 0:5;p3 ¼ 0:3.
(d) S5 (a mildly overlapping dataset): r2

1 ¼ r2
2 ¼ r2

3 ¼ 1:2.
(e) S6 (a heavily overlapping dataset): r2

1 ¼ r2
2 ¼ r2

3 ¼ 2.

S7 is also a basic dataset with five actural Gaussian processes. It
contains 1500 samples, in which 500 are used for training and
1000 are used for testing. FromS7;S8 �S12 are obtained in a sim-
ilar way as above. In particular, for S10, the mixing proportions are
set as p1 ¼ 0:15;p2 ¼ 0:25;p3 ¼ 0:2;p4 ¼ 0:25;p5 ¼ 0:15. The
sketches of five typical synthetic datasets are shown in Fig. 6.

After generating these datasets, we add certain outliers to
these datasets for testing the robustness of the proposed MRGP
models. Suppose that the maximum of fyigNi¼1 is x, we randomly
select gN=3 samples from the training set, and then add randomly
generated noises from ð�mx; mxÞ to the corresponding targets.
However, these modified points are not necessarily outliers, since
it is possible that the random noise generated from ð�mx; mxÞ is
close to 0. On the whole, we can use two parameters: outlier ratio
g and outlier level m. Intuitively, there will be more outliers as we
increase g, while the outliers will be more extreme as we increase
m. We consider three outlier ratios: low, medium, high, corre-
sponding to g ¼ 0:05;0:1;0:15, respectively and three outlier
levels: low, medium, high, corresponds to m ¼ 1:5;2:0;2:5,
respectively.

We also implement the competitive regression methods (based
on GPML toolbox [50]) for comparison. The details about the com-
petitive methods are summarized as follows:

(a) GP: Gaussian process with Gaussian noises.
(b) RGP (Laplace): Robust Gaussian process with Laplace noises.
(c) RGP (Student-t): Robust Gaussian process with student-t

noises.
(d) MGP: Mixture of Gaussian processes with Gaussian noises.
(e) SVM: Support vector regression with Gaussian kernel.



Table 1
Parameters of basic datasets S1 and S7.

Dataset Component pk lk r2
k

hk

S1 1 1=3 �6 1:5 ½2:00;3:33;0:10�
2 1=3 0 1:5 ½0:75;10:00;0:10�
3 1=3 6 1:5 ½1:50;1:25;0:10�

S7 1 0:2 �12 1:5 ½2:00;3:33;0:10�
2 0:2 �6 1:5 ½0:75;10:00;0:10�
3 0:2 0 1:5 ½1:50;1:25;0:10�
4 0:2 6 1:5 ½0:50;2:50;0:10�
5 0:2 12 1:5 ½1:50;5:00;0:10�

Fig. 6. Visualizations of synthetic datasets used in experiments: S1;S2;S5;S7 and S12. Different components are represented by different colors. S1 and S7 are basic
datasets. S2 is more noisy than S1;S5 is a mildly overlapping dataset, and S12 is a heavily overlapping dataset.
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(f) FNN: Feedforward neural network with three hidden layers
containing 10;10;5 units, respectively.

For the fairest, we adopt the ‘‘two-stage” versions of GP, MGP,
SVM, and FNN. That is, we firstly use a common outlier detection
method to remove possible outliers from the training set, and then
perform the corresponding algorithms on the improved training
set.

Our proposed methods are the MRGP models with Laplace
noises and Student-t noises through the parameter learning of
the hard-cut EM algorithm, being referred to as MRGP (Laplace)
and MRGP (Student-t), respectively. For all the MGP methods, the
number of Gaussian processes is set to be the number of actual
Gaussian processes in the dataset, i:e:, 3 for S1 �S6 and 5 for
S7 �S12. The implementation is based on the GPML toolbox
[50], and all experiments are conducted on a personal computer
[Intel(R) Core(TM) i7-6700HQ CPU 2.60 GHz, 8G RAM].

We begin to fix outlier level m to be 2, and vary outlier ratio in
f0:05;0:10;0:15g. For each dataset, we add outliers to the training
set with low, medium and high ratios, then we test the prediction
performances of all the methods. The performance is measured by
Rooted Mean Square Error (RMSE), which is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
j¼1

ðŷj � ~yjÞ2
vuut ;
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where M is the size of test set, f~yjgMj¼1 are ground-truth values,

whilefŷjgMj¼1 are the predicted results. Since the final results of the

algorithms depend on the initializations of fzigNi¼1 and fhk; ckgKk¼1,
different runs may lead to different results due to randomness.
Therefore, we repeat the experiments for 10 times, and the average
RMSEs of all the methods are listed in Table 2. To investigate the
effect of the outlier level, we then fix the outlier ratio g to be
0:10, and vary outlier level m in f1:5;2:5g. The average RMSEs of
all the methods in this situation are listed in Table 3.

From these two tables, we have the following significant obser-
vations. First, all the robust models obtain better results than con-
ventional Gaussian process based models, which demonstrates
that Laplace or Student-t noises improve the robustness of the
regression model. Second, two-stage methods usually achieve
lower RMSEs in comparison with the original methods, but in cer-
tain cases, the process of removing outliers makes the results
worse. One possible explanation is that it is very difficult to iden-
tify which samples are outliers, and thus the outlier detection algo-
rithm is likely to falsely remove non-outliers or fail to identify
outliers. Third, the adoption of a mixture structure usually
improves the performance of the regression model because MGP
is more flexible than GP. However, GP outperforms MGP occasion-
ally, the reason is that in the learning process, each component has
fewer samples and it is more easily to be affected by extreme out-



Table 2
The average RMSEs of our MRGP and competitive regression methods on 12 synthetic datasets over 10 trials, where the outlier level m is fixed to be 2 and the outlier ratio g varies
in f0:05;0:10;0:15g, and the best results are in bold.

Outlier ratio Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Low (g ¼ 0:05) GP 0.5400 0.4520 0.4493 0.5846 0.4924 0.6082 0.5362 0.7158 0.3761 0.5596 0.5992 0.6276
GP (TS) 0.5352 0.3326 0.3664 1.1176 0.3421 0.4792 0.8739 0.4638 0.2924 0.5734 0.3223 0.4397
SVM 0.6340 0.5723 0.6128 0.8040 0.5132 0.7262 0.6830 1.0649 0.8271 0.9303 0.9521 0.9675

SVM (TS) 0.6192 0.7468 0.6329 0.9790 0.5597 0.9149 0.7302 1.1217 0.7871 0.9526 0.8941 1.2704
FNN 0.7206 0.7867 0.9111 0.9280 0.8937 1.0610 0.7764 1.0618 0.8158 0.9775 0.7570 1.0105

FNN (TS) 0.6789 0.5527 0.5610 0.8304 0.4839 0.5518 0.7351 0.8649 0.5026 0.8682 1.0765 0.4729
RGP (Laplace) 0.2951 0.3232 0.3511 0.3196 0.3409 0.4682 0.2842 0.4228 0.2573 0.3576 0.2232 0.4124
RGP (Student-t) 0.2673 0.3404 0.3416 0.3175 0.4300 0.4944 0.3128 0.4479 0.2231 0.3732 0.2203 0.3696

MGP 0.4256 0.4291 0.5794 0.5251 0.3841 0.5765 0.4980 0.8658 0.3597 0.5148 0.6279 0.5949
MGP (TS) 0.5082 0.3050 0.2618 0.9272 0.2378 0.3934 0.4747 0.4019 0.2844 0.3960 0.2344 0.3426

MRGP (Laplace) 0.2337 0.3067 0.2749 0.2254 0.1983 0.3638 0.2639 0.3806 0.2259 0.2873 0.1907 0.3180
MRGP (Student-t) 0.2423 0.3042 0.2579 0.2175 0.1913 0.3521 0.2448 0.3346 0.1716 0.2839 0.1843 0.3498

Medium (g ¼ 0:10) GP 0.7016 0.6503 0.6376 0.7378 0.5475 0.7241 0.4490 0.6233 0.4854 0.6545 0.5435 0.6198
GP (TS) 0.3921 0.4050 0.4421 1.1092 0.9433 0.5273 0.7827 0.5054 0.3799 0.5747 0.3236 0.4574
SVM 0.5497 0.6017 0.6469 0.7451 0.5128 0.8483 0.6839 1.0515 0.8651 0.9253 0.9332 1.2003

SVM (TS) 0.6559 0.7621 0.6909 0.9613 0.6052 0.8823 0.7979 1.0965 0.7544 0.9060 0.9030 1.0341
FNN 0.7998 0.8114 0.9290 1.0415 0.9035 1.0000 0.6563 1.0923 0.8244 0.9356 1.0852 1.0427

FNN (TS) 0.5656 0.8313 0.4430 1.2403 0.6054 0.5850 0.3775 1.3183 0.8635 0.6244 0.5952 1.1725
RGP (Laplace) 0.2706 0.3657 0.3815 0.3620 0.3551 0.4985 0.3066 0.4280 0.3028 0.4442 0.2491 0.4260
RGP (Student-t) 0.2772 0.3483 0.3810 0.3322 0.4151 0.5076 0.3081 0.4983 0.2797 0.3729 0.2510 0.3718

MGP 0.6027 0.6286 0.5859 0.7606 0.5319 0.6762 0.4662 0.5556 0.5236 0.7324 0.5124 0.6475
MGP (TS) 0.3319 0.3633 0.3734 1.0008 0.4990 0.4814 0.3042 0.3754 0.3088 0.3588 0.3394 0.4319

MRGP (Laplace) 0.2345 0.3318 0.2847 0.3005 0.2256 0.3876 0.2679 0.3565 0.2276 0.3295 0.2275 0.3517
MRGP (Student-t) 0.2386 0.3066 0.2487 0.2206 0.1905 0.3519 0.2557 0.3334 0.1756 0.2856 0.1816 0.3483

High (g ¼ 0:15) GP 0.7638 0.7572 0.6772 0.5284 0.6902 0.7660 0.6386 0.9249 0.6012 0.6628 0.6867 0.7110
GP (TS) 0.6405 0.4680 0.5191 0.9625 0.4749 0.5387 0.4655 0.5018 0.4118 0.5728 0.4870 0.5194
SVM 0.6512 0.7286 0.6013 0.7446 0.5717 0.9725 0.6919 1.0509 0.7539 0.9679 0.9028 0.8428

SVM (TS) 0.6774 0.5645 0.6914 1.0055 0.5044 0.7471 0.7239 1.0886 0.7939 0.9586 0.9126 1.0185
FNN 0.7828 1.0117 1.0115 0.9070 0.8758 0.8234 0.8956 1.2199 0.7831 1.0207 1.1145 1.3124

FNN (TS) 0.6940 0.8043 1.3943 0.9322 0.6360 0.5590 0.4354 1.0600 0.7791 0.7547 0.6825 0.7442
RGP (Laplace) 0.4906 0.4616 0.4324 0.3582 0.5282 0.5017 0.3732 0.4730 0.3446 0.5010 0.3987 0.4406
RGP (Student-t) 0.3534 0.3631 0.3600 0.3154 0.4480 0.5281 0.2961 0.4591 0.2516 0.3972 0.2571 0.4034

MGP 0.8257 0.7689 0.6554 0.7423 0.6015 0.7788 0.6346 0.9758 0.6540 0.6620 0.7462 0.7363
MGP (TS) 0.6007 0.4221 0.8251 0.8401 0.4597 0.4720 0.3438 0.4039 0.3982 0.6399 0.6649 0.4876

MRGP (Laplace) 0.2844 0.3947 0.3573 0.3532 0.2459 0.4042 0.3034 0.3751 0.2480 0.4402 0.3555 0.3943
MRGP (Student-t) 0.2412 0.3192 0.2664 0.2130 0.3526 0.3531 0.2504 0.3815 0.1733 0.3892 0.1814 0.4388

Table 3
The average RMSEs of our MRGP and competitive regression methods on 12 synthetic datasets over 10 trials, where the outlier level m is fixed to be 0:10 and the outlier ratio g
varies in f1:5;2:5g, and the best results are in bold.

Outlier level Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Low (m ¼ 1:5) GP 0.5815 0.9124 0.5052 0.7265 0.5381 0.6693 0.5401 0.5714 0.4223 0.5323 0.4586 0.6529
GP (TS) 0.3554 0.4678 0.4806 1.1282 0.4302 0.9689 0.9045 0.5263 0.3263 0.5163 0.4693 0.4512
SVM 0.5843 0.7907 0.6400 0.8825 0.5117 0.8211 0.6768 1.0485 0.8682 0.9242 0.7092 1.0971

SVM (TS) 0.6052 0.7901 0.6600 1.0219 0.5726 0.9329 0.7735 1.0686 0.8484 0.9251 0.9031 1.2059
FNN 0.7795 1.0624 1.0836 0.8211 0.8548 1.0864 0.8595 0.8541 0.9031 0.9287 1.0611 0.9513

FNN (TS) 0.6085 0.6892 0.8602 0.8547 0.5002 0.6120 0.5915 1.1037 0.7963 0.9556 1.1165 0.7909
RGP (Laplace) 0.2772 0.3752 0.3822 0.3329 0.3503 0.4865 0.3332 0.4338 0.2727 0.3532 0.2407 0.4248
RGP (Student-t) 0.3470 0.3427 0.3780 0.3242 0.4209 0.4951 0.2969 0.4253 0.2226 0.3621 0.2427 0.3807

MGP 0.4734 0.8827 0.5617 0.6385 0.3800 0.6549 0.4887 0.5394 0.3870 0.5980 0.4386 0.6850
MGP (TS) 0.3577 0.4963 0.5293 1.0362 0.3679 1.1550 0.6118 0.4723 0.2817 0.4068 0.4312 0.4815

MRGP (Laplace) 0.2454 0.3295 0.3000 0.2994 0.2096 0.3960 0.2641 0.3738 0.2011 0.3012 0.2265 0.3562
MRGP (Student-t) 0.2308 0.3069 0.2486 0.2182 0.1911 0.3568 0.2530 0.3366 0.1738 0.2889 0.1766 0.3521

High (m ¼ 2:5) GP 0.8333 0.8952 0.6695 0.9217 0.7114 0.8344 0.6561 0.9250 0.5149 0.7747 0.6471 0.7967
GP (TS) 0.3935 0.3776 0.4518 1.1000 0.3655 0.6355 0.8009 0.4960 0.3593 0.6713 0.3841 0.5105
SVM 0.5737 0.6755 0.6331 0.8132 0.5771 0.7490 0.6864 1.0585 0.8207 0.8996 0.8179 1.1225

SVM (TS) 0.5372 0.7552 0.5887 0.9769 0.5172 0.9883 0.8181 1.1089 0.8510 0.9610 0.8921 1.0987
FNN 1.3731 0.8585 1.0517 1.0505 0.9015 2.8179 0.7714 1.2513 0.8520 0.8899 0.9924 1.2133

FNN (TS) 0.5754 0.8092 1.0313 1.0387 0.5670 0.7117 0.6830 1.0960 0.8531 0.6736 1.1491 0.8296
RGP (Laplace) 0.2702 0.3658 0.3746 0.4047 0.5446 0.4743 0.3438 0.4437 0.3086 0.4154 0.2936 0.4544
RGP (Student-t) 0.3427 0.3486 0.4267 0.3153 0.2953 0.5094 0.2962 0.4442 0.2380 0.3867 0.2554 0.4213

MGP 0.7807 0.9288 0.7934 0.9149 0.7557 0.8304 0.6083 1.1960 0.7060 0.8164 0.7260 0.6668
MGP (TS) 0.3843 0.3946 0.3859 0.9135 0.2755 0.6007 0.3322 0.3667 0.3149 0.7110 0.3192 0.4317

MRGP (Laplace) 0.2200 0.3391 0.2865 0.3684 0.3670 0.3947 0.3311 0.3903 0.2251 0.3505 0.2504 0.3585
MRGP (Student-t) 0.2528 0.3108 0.2502 0.2229 0.1908 0.3515 0.3193 0.3358 0.1735 0.2841 0.1768 0.3640
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liers. Finally, our proposed methods obtain the best results in
almost all cases, which demonstrates the effectiveness of the pro-
posed models. We can observe that MRGP (Student-t) outperforms
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MRGP (Laplace) almost all, but there are a few cases that MRGP
(Laplace) outperforms MRGP (Student-t). Therefore, we can not
conclude which model is generally better, and this may depend



Table 4
The average classification accuracy rates of MGP, MRGP (Laplace) and MGRP (Student-t) on synthetic datasets under various settings.

Setting Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

g ¼ 0:05; m ¼ 2:0 MGP 99:3% 99:0% 99:3% 98:7% 100:0% 97:0% 98:8% 98:6% 99:0% 98:8% 99:2% 98:2%
MRGP (Laplace) 99:3% 99:0% 99:3% 98:7% 100:0% 97:0% 99:0% 98:8% 99:2% 98:8% 99:2% 98:0%
MRGP (Student-t) 97:7% 98:3% 98:3% 99:3% 100:0% 97:0% 98:4% 99:2% 97:4% 99:6% 98:8% 96:2%

g ¼ 0:10; m ¼ 2:0 MGP 99:3% 98:7% 99:3% 98:3% 100:0% 96:7% 98:8% 74:8% 98:8% 99:4% 99:2% 98:0%
MRGP (Laplace) 99:3% 99:0% 99:3% 99:0% 100:0% 97:3% 98:8% 98:8% 99:0% 99:2% 99:2% 97:8%
MRGP (Student-t) 97:7% 97:7% 99:0% 99:3% 100:0% 97:7% 98:8% 99:2% 98:0% 99:8% 99:0% 97:4%

g ¼ 0:15; m ¼ 2:0 MGP 99:3% 98:7% 99:3% 98:7% 100:0% 97:0% 98:6% 99:0% 99:0% 99:4% 99:2% 97:8%
MRGP (Laplace) 99:3% 99:0% 99:3% 98:7% 100:0% 97:7% 98:6% 97:7% 99:0% 99:4% 99:2% 98:0%
MRGP (Student-t) 98:0% 98:3% 99:0% 99:0% 100:0% 96:7% 98:2% 99:2% 98:4% 96:8% 99:0% 96:8%

g ¼ 0:10; m ¼ 1:5 MGP 99:3% 99:0% 99:3% 98:7% 100:0% 97:0% 98:8% 99:0% 99:0% 99:4% 99:2% 98:2%
MRGP (Laplace) 99:3% 99:0% 99:3% 98:7% 100:0% 97:0% 98:8% 98:8% 99:2% 99:2% 99:2% 98:0%
MRGP (Student-t) 97:7% 98:3% 99:0% 99:3% 100:0% 97:7% 98:4% 99:2% 98:0% 99:6% 99:2% 97:4%

g ¼ 0:10; m ¼ 2:5 MGP 99:3% 98:7% 99:3% 98:7% 99:7% 95:3% 98:8% 99:0% 98:8% 98:8% 99:2% 96:8%
MRGP (Laplace) 99:3% 99:0% 99:3% 98:7% 100:0% 97:7% 97:4% 99:0% 98:6% 98:0% 99:2% 98:0%
MRGP (Student-t) 97:7% 97:7% 99:0% 99:3% 100:0% 97:7% 97:8% 99:2% 98:4% 99:8% 99:2% 97:4%

1 https://www.cs.toronto.edu/delve/data/boston/bostonDetail.html.
2 https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power
consumption.
3 https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+Five+Chinese+Cities.
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on the dataset. Empirically, we find out that when the outlier ratio
is relatively low, MRGP (Laplace) and MRGP (Student-t) lead to
similar results, but as the outlier ratio increases, MRGP(Student-
t) generally becomes better than MRGP (Laplace).

The hard-cut EM algorithm is an approximation of the original
EM algorithm. Specifically, in the E-step, the posterior distributions

of latent variables fzigNi¼1 are approximated by deterministic hard-
cut allocations. Such an approximation may cause errors in the
learning process. We evaluate the quality of approximation empir-
ically. Since the original EM algorithm for MGP consists of expo-
nentially many summation terms and is prohibitively time-
consuming, it is intractable to run the original EM algorithm and
compare the performances with the results of the hard-cut EM
algorithm. Nevertheless, we can calculate the Classification Accu-
racy Rates (CARs) to validate the effectiveness of the hard-cut EM
algorithm. In synthetic datasets, we have the ground-truth compo-
nent labels, so we can compare the estimated component labels

fẑigNi¼1 by hard-cut EM algorithm with the ground-truth labels

fzigNi¼1. Formally, the CAR is defined as

CAR ¼ max
n2PK

1
N

XN
i¼1

bIðzi ¼ nðz^ iÞÞ:

Here, PK denotes the set of K-permutations, and the permuta-
tion n is employed to account for the label switching problem. Intu-
itively, CAR measures how well we cluster the observations into
correct components. The results are shown in Table 4. Since MGP
is also learned by the hard-cit EM algorithm, we also include the
CARs of MGP for comparison. From this table, we find that in terms
of CARs, the hard-cut EM algorithm based MGP andMRGPmethods
perform well on all the synthetic datasets, under all settings. This
observation demonstrates that the hard-cut EM algorithm is effec-
tive and the quality of approximation is satisfying. We also find the
CARs are relatively high on S5;S11 and relatively low on S6;S12.
This observation coincides with the fact that S5;S11 are mildly
overlapped thus easier to cluster the samples, while S6;S12 are
heavily overlapped thus harder to cluster the observations cor-
rectly. Besides, we find that on S6 and S12, the classification accu-
racy rates of MGP drop significantly (97:0% ! 95:3% and
98:2% ! 96:8%) as we increase the outlier ratio and outlier level
from g ¼ 0:05; m ¼ 2:0 to g ¼ 0:10; m ¼ 2:5. On the other hand, the
classification accuracy rates of MRGP (Laplace) and MRGP
(Student-t) are not sensitive to the outlier ratios and outlier levels.
This further demonstrates that MRGP models are more robust than
the MGP model.

For further comparison, the posterior curves of these methods
on S1 with g ¼ 0:10 and m ¼ 2:0 are shown in Fig. 7. It can be
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observed from Fig. 7(a) that the posterior curve of GP is stable
and severely affected by outliers. By taking heavy-tailed distribu-
tions as the noises distributions instead of Gaussian distributions,
the posterior curves in Fig. 7(b) are less affected by outliers. How-
ever, these two curves can not capture the non-stationary trends.
The posterior function of RGP (Student-t) oscillates acutely in the
third component, while the posterior function of RGP (Laplace) is
too smooth in the second component. From Fig. 7(c), we can find
that the posterior function of MGP is not stationary, but in each
component, the function suffers from outliers severely. Finally,
from Fig. 7(d) we can observe that the posterior functions of MRGP
(Laplace) and MRGP (Student-t) perfectly fit the trends without
being affected by outliers. Therefore, these detailed results further
demonstrate that our proposed methods are able to model non-
stationary sources and insensitive to outliers.

5.2. On real-world data

We further evaluate our proposed methods on three real-world
datasets.

� Boston housing. The Boston housing dataset1 [51] contains
information collected by the U.S Census Service concerning hous-
ing in the area of Boston Mass. There are 506 samples in total, and
each case of the dataset consists of 14 attributes including crime
rate, number of rooms, accessibility to radial highways, prices
and so on. The aim is to predict the price of a house given other
13 attributes. We randomly choose 250 samples for training and
the rest 256 samples are used for testing.

� Electricity. The individual household electric power consump-
tion dataset 2 contains 2075259 measurements gathered in a
house located in Sceaux (7 km of Paris, France) between Decem-
ber 2006 and November 2010 (47 months). This dataset records
six attributes, and we use the global minute-averaged active
power (in kilowatt) in our experiment. We further average the
records in one day to obtain daily-averaged active power, which
results in 1433 valid records. We randomly choose 500 samples
for training and 933 samples for testing.

� Weather. The PM2.5 dataset 3 [52] collects hourly meteorologi-
cal records of five Chinese cities. In this experiment, we use the
temperature records of Chengdu in 2015. Similarly, we average
the records in one day to obtain daily-averaged temperatures.
+

https://www.cs.toronto.edu/delve/data/boston/bostonDetail.html
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/PM2.5+Data+of+Five+Chinese+Cities


Fig. 7. The posterior curves of GP, RGP (Laplace), RGP (Student-t), MGP, MRGP (Laplace) and MRGP (Student-t) on synthetic dataset S1 with outlier ratio g ¼ 0:10 and outlier
level m ¼ 2:0.
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Among the 365 samples, we randomly choose 200 samples for
training and 165 samples for testing.

However, it is unreasonable to contain outliers in the test set
since one only concerns about estimating the underlying regres-
sion function and it is unnecessary to predict outliers in real appli-
cations. In real applications, one only concerns about estimating
the underlying regression function and it is unnecessary to predict
Table 5
The average RMSEs and running times (seconds) of our MRGP and competitive regression

K Method Boston housing

RMSE Time

1 GP 3:0570
 0:0000 0:55
 0:07 0:130
SVM 3:6394
 0:1033 0:18
 0:14 0:133
FNN 4:2566
 0:6081 0:62
 0:44 0:136

RGP (Laplace) 2:8749
 0:0000 12:71
 0:17 0:133
RGP (Student-t) 2:8420
 0:0000 22:43
 0:21 0:129

2 MGP 2:9898
 0:0000 1:85
 0:12 0:132
MGP (Laplace) 2:8246
 0:0114 59:59
 0:51 0:132
MGP (Student-t) 2:6062
 0:0000 55:26
 0:44 0:131

3 MGP 3:0862
 0:0804 1:98
 0:72 0:132
MGP (Laplace) 2:8144
 0:0932 53:41
 22:30 0:128
MGP (Student-t) 2:7502
 0:1015 50:21
 17:06 0:129

4 MGP 3:1318
 0:1181 2:7542 0:134
MGP (Laplace) 2:8786
 0:1337 101:52
 27:86 0:130
MGP (Student-t) 2:7722
 0:1209 70:99
 24:70 0:129

5 MGP 3:1315
 0:0423 3:36
 0:55 0:134
MGP (Laplace) 2:8936
 0:0834 100:52
 32:59 0:133
MGP (Student-t) 2:8590
 0:1405 68:17
 12:73 0:131
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outliers. Including outliers in the test set will introduce bias in the
evaluation metrics. In practice, we first use Grubbs’s outlier detec-
tion method to detect the outliers of the test set and then move
them into the training set.

We compare our proposed methods with GP, SVM, FNN, RGP
(Laplace), RGP (Student-t) and MGP(hard-cut) as in experiments
on synthetic datasets. For the mixture models, since we do not
know the correct number of components a prior, we set the num-
methods on Boston dataset and electricity dataset. The best results are in bold.

Electricity Weather

RMSE Time RMSE Time

9
 0:0000 3:41
 0:01 1:9934
 0:0000 0:65
 0:35
2
 0:0007 0:16
 0:10 2:0451
 0:0218 0:22
 0:18
7
 0:0053 0:57
 0:43 2:0868
 0:1622 0:81
 0:41
4
 0:0000 65:52
 0:03 2:0431
 0:0000 15:52
 0:31
2
 0:0000 71:21
 0:05 2:1785
 0:0000 9:62
 0:15

9
 0:0001 4:30
 0:53 2:2228
 0:0000 2:14
 0:24
3
 0:0008 112:64
 0:19 1:9469
 0:1080 74:02
 9:09
8
 0:0001 54:92
 5:09 2:1716
 0:0000 34:40
 2:52

6
 0:0003 3:92
 3:03 1:7108
 0:0269 2:07
 0:19
9
 0:0000 73:82
 51:84 1:6705
 0:0278 83:95
 3:70
4
 0:0018 99:46
 1:19 1:6726
 0:0241 24:42
 3:19

5
 0:0003 4:33
 0:67 2:0571
 0:0835 4:29
 1:38
5
 0:0003 148:55
 23:73 1:7096
 0:0368 90:89
 36:94
5
 0:0008 54:29
 13:69 1:7724
 0:0390 41:95
 13:25

5
 0:0004 3:43
 0:88 1:8990
 0:0306 5:31
 0:75
7
 0:0001 86:97
 55:25 1:7317
 0:0515 140:68
 12:30
4
 0:0007 66:05
 3:10 1:9688
 0:1120 57:88
 3:16
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ber of components in f2;3;4;5g respectively. For each dataset, we
run each method for 10 times, and list the average RMSE (together
with standard deviations) and running time in Table 5. From this
table, we can find out MRGP (Laplace) and MRGP (Student-t) out-
perform the other methods on the prediction performance. Specif-
ically, on Boston housing dataset MRGP (Student-t) with K ¼ 2
achieves the lowest RMSE, and MRGP (Laplace) with K ¼ 3 obtains
the best results on Electricity and Weather datasets. This indicates
both MRGP (Laplace) and MRGP (Student-t) have their own advan-
tages and it is generally difficult to determine which model is more
suitable for the task in hand. The choice of K is also subtle. From
Table 5, we can see K influence the prediction performances
severely. The choice of K also depends on the dataset. On Electricity
and Weather datasets, 2 components are far from enough to fit the
data, while too many components (i:e:,K ¼ 5) also lead to large
errors due to over-fitting. On the Boston housing dataset, increas-
ing K almost always leads to larger errors. One possible explana-
tion is the inputs lie in a 13-dimensional space, but we only have
250 training samples. Therefore, dividing these samples to several
components will cause difficulty for learning in each individual
component since the samples are too sparse in the 13-
dimensional space. We can observe that the proper number of
components for different mixture models are almost the same:
K ¼ 2 for Boston housing dataset and K ¼ 3 for Electricity and
Weather dataset. Thus, how to set K relies heavily on the dataset
rather than the mixture model. Finally, we can also find out that
our proposed methods are much more time-consuming than the
other methods because. Therefore, the proposed methods may
not be well-suited for real-time tasks.
6. Conclusion and discussion

We have established the mixture of robust Gaussian processes
(MRGP) by adopting Laplace or student-t noises with heavy-
tailed property into Gaussian processes. In such a way, the MRGP
model has the ability to model non-stationary temporal data effec-
tively and also to be insensitive to outliers. The hard-cut EM algo-
rithm is further developed for the MRGPmodel with the help of the
variational bounding method to make the marginal likelihood of
the robust Gaussian process be tractable in the ML solving process.
It is demonstrated by the experimental results on both synthetic
and real-world datasets that our proposed MRGP methods are
much more effective and robust than the competitive nonlinear
regression models.

How to set the number of components adaptively in real appli-
cations is an interesting direction. We can further develop auto-
mated model selection methods for the mixture of robust
Gaussian processes. In fact, split-and-merge EM algorithm
[53,54], rival penalized EM algorithm [55], reversible jump MCMC
[56,57], entropy penalty [58–60] and Bayesian Ying-Yang (BYY)
harmony learning [61–65] have been shown to be effective for
the automated mode selection on mixture models. However, these
methods are not so easy to apply to the mixture of Gaussian pro-
cesses since the samples are not independent and highly corre-
lated. A synchronously balancing criterion [66] has been
proposed for model selection of MGP, but its penalty coefficient
is still difficult to determine. The automatic model selection for
the mixture of robust Gaussian processes is certainly a potential
future direction. It is also promising to reduce the computational
cost by introducing inducing points to our proposed model. Using
inducing points [47,67,43] in Gaussian processes can improve the
computational complexity significantly, and the extension to a
mixture of Gaussian processes has been studied in [16]. However,
sparse Gaussian processes usually have lower prediction accuracy,
and how to balance the trade-off between performance and com-
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putational time generally depends on the particular task in hand.
The extensions of the proposed model to classification task [33]
or state-space model [68–70] is also promising. Finally, further
incorporating domain-specific priors in the model [71] is a poten-
tial direction.
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