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Abstract. Independent component analysis (ICA) has been applied in
many fields of signal processing and many ICA learning algorithms have
been proposed from different perspectives. However, there is still a lack
of a deep mathematical theory to describe the ICA learning algorithm or
problem, especially in the cases of both super- and sub-Gaussian sources.
In this paper, from the point of view of the one-bit-matching principle,
we propose two adaptive matching learning algorithms for the general
ICA problem. It is shown by the simulation experiments that the adap-
tive matching learning algorithms can efficiently solve the ICA problem
with both super- and sub-Gaussian sources and outperform the typical
existing ICA algorithms in certain aspects.

1 Introduction

The independent component analysis (ICA) [1, 2] aims to blindly separate the
independent sources s from their linear mixture x = As via

y = Wx, x ∈ IRm, y ∈ IRn, W ∈ IRm×n, (1)

where A is a mixing matrix, and W is the de-mixing matrix to be estimated.
In the general case, the number of mixed signals equals to the number of source
signals, i.e., m = n, and A is n × n nonsingular matrix. Although the ICA
problem has been studied from different perspectives [3, 4, 5], it can be typically
solved by minimizing the following objective function:

J = −H(y) −
n∑

i=1

∫
pW(yi;W) log pi(yi)dyi, (2)

where H(y) = −
∫

p(y) log p(y)dy is the entropy of y, pi(yi) is the predetermined
model probability density function (pdf), and pW(yi;W) is the probability dis-
tribution on y = Wx.

In the literature, how to choose the model pdfs pi(yi) is still a key issue
for the Eq.(2) based ICA algorithms [6, 7]. In fact, there has not existed any
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efficient method for the cases that sources of both super-Gaussian and sub-
Gaussian coexist in an unknown manner. In order to solve this difficult problem,
Xu, Cheung and Amari [7] summarized the one-bit-matching conjecture which
states that “all the sources can be separated as long as there is a one-to-one
same-sign-correspondence between the kurtosis signs of all source pdf’s and the
kurtosis signs of all model pdf’s”. Clearly, this conjecture is important since, if
it is true, the complicated task of learning the underlining distribution of each
source can be greatly simplified to the task of learning only its kurtosis sign.

Since there have been many studies supporting the one-bit-matching conjec-
ture, e.g. [8, 9], it is widely believed in the ICA community. Recently, Liu et al.
[10] proved that under certain assumptions, the global minimum of the objec-
tive function with the one-bit-matching condition leads to a feasible solution of
the ICA problem. Ma et al. [11] further proved that under the same assump-
tions, all the local minimums of the objective function on the two-source ICA
problem with the one-bit-matching condition lead to the feasible solutions of the
ICA problem. Moreover, many simulation experiments also showed that the ICA
problem can be solved successfully via minimizing the objective function under
the one-bit-matching condition. So, we can believe that the minimization of the
objective function with the one-bit-matching condition can lead to a feasible so-
lution of the ICA problem. On the other hand, if we can parametrize the model
pdfs such that they can become super-Gaussian or sub-Gaussian adaptively and
make them match the source pdfs according to the kurtosis signs during the
learning process, the minimization of the objective function can also lead to a
feasible solution of the ICA problem. Xu et al. [6] have designed a model pdf
with mixer of Gaussians and have shown its capability to estimate the source
distribution. However, their model is complicated.

In this paper, we parametrize the model pdfs in two simple ways and propose
two adaptive matching learning algorithms for the general ICA problem. That
is, if we continuously change the parameter of model pdf, the kurtosis can con-
tinuously shift between positive and negative values. In the adaptation process,
we learn the parameters of the model pdfs and the de-mixing matrix together
via minimizing the objective function. It is shown by the simulation experiments
that these adaptive matching learning algorithms can efficiently solve the ICA
problem with both super- and sub-Gaussian sources and outperform the typical
existing ICA algorithms in certain aspects.

2 The Adaptive Matching Learning Algorithms

We make two flexible pdf models, which can continuously shift between super-
Gaussian and sub-Gaussian. One is a linear mixer of a super-Gaussian pdf and
a sub-Gaussian pdf. The other is made of two translated super-Gaussian pdfs.

2.1 The Linearly Mixed Super- and Sub-Gaussian Model Pdf

We consider the following flexible parametric mixture pdf:

pi(yi) = αipsuper(yi) + βipsub(yi), (3)
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where psuper is a super-Gaussian pdf, while psub is a sub-Gaussian pdf. αi, βi are
parameters, with αi, βi ≥ 0, αi+βi = 1. If αi is greater than some constant value
α0 (determinded by the two fixed pdfs), pi(yi) is super-Gaussian. Otherwise, if
αi < α0, pi(yi) is sub-Gaussian.

We select the fixed pdf as

psuper(u) =
1
π

sech(u), psub(u) =
1
2
[pN(1,1)(u) + pN(−1,1)(u)],

where pN(µ,σ2) denotes the Normal distribution.
In order to ensure that αi, βi satisfy the constraints, we use the following

transformation:

αi =
exp(γi1)

exp(γi1) + exp(γi2)
, βi =

exp(γi2)
exp(γi1) + exp(γi2)

,

so that αi and βj are equivalently expressed by free variables γi1 and γi2. We can
denote this flexible parametric mixture pdf by pi(yi, γi) where γi = (γi1, γi2).

First, we must update W to learn a de-mixing matrix. We compute the deriva-
tives of the objective function J = J(W, γ) with respect to W, and apply the
natural gradient algorithm to modify W in each step. The derivation is the same
as in [4, 6, 8] and W is modified by

∆W = η
[
I + Φ(y)yT

]
W. (4)

where η is the learning rate, Φ(y) = [φ1(y1), · · · , φn(yn)]T , and

φi(yi) =
p′i(yi, γi)
pi(yi, γi)

=
αip

′
super(yi) + βip

′
sub(yi)

αipsuper(yi) + βipsub(yi)
(5)

Meanwhile, we need to update the parameters of the model pdfs via the
derivatives of J(W, γ) with respect to γi1 and γi2. In fact, we have

∆γi1 = η
∂

∂γi1

(
n∑

l=1

log pl(yl, γl)

)

= η
psuper(yi) − psub(yi)

αipsuper(yi) + βipsub(yi)
· exp(γi1) exp(γi2)
(exp(γi1) + exp(γi2))2

= η
(psuper(yi) − psub(yi))αiβi

αipsuper(yi) + βipsub(yi)

With the same derivation we can found out that ∆γi2 = −∆γi1.
Finally, we get to the following adaptive matching learning algorithm. At

iteration k with an input x, we can calculate y via y = Wx. Then, W and γ
are modified by

W(k+1) = W(k) + ∆W, γ
(k+1)
ij = γ

(k)
ij + ∆γij . (6)
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2.2 Mixed Translated Super-Gaussian Model Pdf

Another flexible model pdf is constructed by two symmetrically translated pdfs:

pi(yi) =
1
4
sech2(yi + θi) +

1
4
sech2(yi − θi), (7)

where θi ≥ 0 is the model parameter. As θ increase, the kurtosis decrease and
the model pdf change from super-Gaussian to sub-Gaussian.

The derivation of the learning algorithm is quite similar to that in the previous
subsection. We replace θi with eγi in order to keep it positive. The procedure to
update W is the same as Eq. (4) with

φi(yi) =
−2sech2(yi + θi) tanh(yi + θi) + 2sech2(−yi + θi) tanh(−yi + θi)

sech2(yi + θi) + sech2(yi − θi)

Also, we need to update the parameters γi, and it turns out that

∆γi = η
∂

∂γi

(
n∑

l=1

log
{

1
4
sech2(yi + eγi) +

1
4
sech2(yi − eγi)

})

= −2ηθi
sech2(yi + θi) tanh(yi + θi) + sech2(−yi + θi) tanh(−yi + θi)

sech2(yi + θi) + sech2(yi − θi)
.

3 Experimental Results and Comparisons

First, we consider the ICA problem of seven independent sources including four
super-Gaussian sources (generated from the exponential distribution E(0.5), the
Chisquare distribution χ2(6), the gamma distribution γ(1, 4) and the F distri-
bution F (10, 50), respectively) and three sub-Gaussian sources (generated from
the beta distributions β(2, 2), β(0.5, 0.5), and the uniform distribution U([0, 1]),
respectively). For each source, 100000 i.i.d. samples were generated and further
normalized with zero mean and unit variance. The mixing matrix A was ran-
domly chosen.

We set the learning rate η = 0.001. W was initially set as an identity matrix,
and the initial model parameters were chosen such that the initial kurtosis of
each mixture pdf pi(yi, γi) is nearly zero.

The result of the adaptive matching learning algorithm using two model pdfs,
respectively given by Eq. (3) and Eq. (7) are shown below, with W1 denoting
the final W got using the first model pdf and W2 using the second one.

W1A =

�
������������

−0.0125 −0.0100 −0.0283 −0.0027 −0.0041 −0.0145 −1.4867
−0.0143 0.0021 0.0087 −1.5540 0.0034 −0.0366 −0.0077
1.7166 −0.0193 0.0159 −0.0190 −0.0074 0.0333 0.0066

−0.0179 0.0006 1.6702 −0.0203 0.0387 0.0075 −0.0111
0.0149 1.5592 −0.0202 0.0055 0.0024 0.0090 0.0168

−0.0009 −0.0204 −0.0336 0.0018 −1.4433 −0.0060 0.0083
−0.0188 −0.0048 −0.0157 −0.0015 −0.0143 −1.4397 −0.0162

�
������������
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W2A =

�
�����������

−0.9769 −0.0094 0.0078 −0.0027 0.0303 0.0178 0.0193
−0.0190 −0.0021 −0.0117 −0.0161 −1.4425 −0.0165 −0.0045
−0.0046 −0.0027 −0.0072 0.0052 −0.0062 −0.0150 −1.7547
−0.0061 −0.0002 0.9820 −0.0131 0.0217 0.0241 0.0199

0.0159 −0.0045 −0.0258 0.9444 0.0186 0.0213 0.0443
−0.0203 −0.0220 0.0010 −0.0054 −0.0098 1.2511 −0.0095

0.0271 0.9799 −0.0113 0.0030 −0.0008 −0.0176 −0.0510

�
�����������

For a feasible solution of the ICA problem, the obtained W should make
WA = ΛP satisfied or approximately satisfied to a certain extent, where ΛP =
diag[λ1, λ2, · · · , λn] with each λi �= 0, and P is a permutation matrix. We can
see, that our adaptive matching learning algorithm can solve this ICA problem
of both super- and sub-Gaussian sources efficiently.

Next, we use audio data to perform the tests. Eight sound clips1, each con-
taining 100000 samples (at 22050Hz sample rate), were normalized and then
mixed using an 8 × 8 random matrix. We process the mixed signals with our
adaptive matching learning algorithms. We rearrange the output signals so that
each output yi matches the recovered source si. Figure 2 shows the wave forms
of four of the eight sources and their corresponding recovered signals obtained
by the algorithm given in Section 2.1.

Fig. 1. Wave forms of 4 audio sources (left) and recovered signals (right)

For comparision, we performed experiments using the Extended Infomax
algorithm[8] and the Fast-ICA algorithm[5]. Then we calculate signal-to-noise
ratio (SNR) to evaluate each recovered signal. The results are summarized in
Table 1. We can find that on the average, our two adaptive matching algorithms
perform better than the Extended Infomax and the Fast-ICA algorithms in this
test.

1 wav files downloaded from http://www-bcl.cs.may.ie/~bap/demos.html
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Table 1. The SNR of recovered sources by each method

Signal-to-Noise Ratio (dB)
Audio Source 1 2 3 4 5 6 7 8 Med. Avg.
Adaptive Alg. 1 22.65 16.24 19.10 15.37 29.67 20.43 21.89 32.71 21.16 22.26
Adaptive Alg. 2 23.97 16.32 20.03 16.00 27.01 18.65 21.29 32.09 20.66 21.92
Extended Infomax 19.59 16.37 19.79 17.56 23.39 15.91 16.72 28.74 18.57 19.76
Fast-ICA 20.65 14.17 17.68 10.37 33.99 12.61 18.62 38.50 18.15 20.82

4 Conclusions

We have investigated the ICA problem from the point of view of the one-bit-
matching principle and established two adaptive matching learning algorithms
via two simple ways of parametrization of the model pdfs. It is demonstrated
by the simulation experiments that the two adaptive learning algorithm solves
the general ICA problem efficiently and even outperforms the typical existing
algorithms in certain aspects.
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