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Abstract. For the learning of mixtures of Gaussian processes, model se-
lection is an important but difficult problem. In this paper, we develop an
automatic model selection algorithm for mixtures of Gaussian processes
in the light of the reversible jump Markov chain Monte Carlo frame-
work for Gaussian mixtures. In this way, the component number and
the parameters are updated according the five types of random moves
and model selection can be made automatically. The key idea is that the
moves of component splitting or merging preserve the zeroth, first and
second moments of the components so that the covariance parameters of
the new components can be related to the origin ones. It is demonstrated
by the simulation experiments that this automatic model selection algo-
rithm is feasible and effective.
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1 Introduction

As a powerful statistical learning tool, Gaussian Process (GP) is widely used in
machine learning and pattern recognition [1]. Since a single GP model cannot
deal with the multimodality dataset, the Mixture of Gaussian Processes (MGP)
[2] have been developed to model a general multimodality dataset. Obviously,
MGP can also overcome a major disadvantage of the Gaussian process modeling
that calculating the inversion of an N ×N covariance matrix requires the time
complexity of O(N3) for a training dataset with N points. Structurally, Shi et
al. [3],[4] considered MGP as a hierarchical model and fit the data in two levels.
Moreover, they proposed the hybrid Markove Chain Monte-Carlo algorithm to
train the covariance parameters and then to utilize BIC to determine the number
K of GP components in the mixture. However, BIC is not so effective for the
model selection on the mixtures of Gaussian processes.

On the other hand, Green [5] proposed the reversible jump Markov chain
Monte Carlo (RJMCMC) framework to determine the dimension of parameters
through the Markov chain Monte Carlo simulation. Later on, according to this
theory, Richardson and Green [6] developed a RJMCMC approach to decide the
number of actual components in the Gaussian mixture. Although this approach
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is effective for Gaussian mixtures, its idea can also used to design the learning
algorithm for MGPs and solve the model selection problem in this case. However,
the structure of the likelihood function of MGP is quite different from that of
Gaussian mixture so that the split and merge moves in the algorithm cannot be
implemented directly.

In this paper, we develop an automatic model selection algorithm for MGPs
in the light of the RJMCMC framework by making the split and merge moves
feasible and effective. As we find, the difficulty in the split moves focuses on
that the overall dispersion should keep relatively constant when a covariance
matrix is split into two matrices. In order to solve this difficulty, we can keep the
first two moments of the components to be same during a split or merge move.
By mathematics analysis, we find that once the sampling interval is set small
enough, these moments remains almost constant. In this way, our automatic
model selection algorithm can be constructed effectively. It is demonstrated by
simulation experiments that this automatic model selection algorithm is feasible
and effective in the same way as the RJMCMC algorithm for Gaussian mixtures.

The rest of the paper is organised as follows. In Section 2, we revisit the
mixture of Gaussian processes and give the Bayesian forms of the priors of the
parameters. Section 3 presents the automatic model selection algorithm with five
move types. Simulation experiments are conducted in Section 4. We conclude
briefly in Section 5.

2 The Hierarchical Mixtures of Gaussian Processes

2.1 The Basic Model

For clarity, we consider MGP as the hierarchical mixture of Gaussian processes
described Shi et al. [3]. Clearly, it tries to model a large dataset with groups of
repeated measurements. Actually, the lower-level model fits the measurements in
the same group, while the higher-level model tries to describe the heterogeneity
among different groups. For example, the dataset used in [4] is a set of repeated
standing-up trajectories corresponding to different paraplegic patients. For this
case, the lower-level model fitted those standing-up trajectories of paraplegic pa-
tients in the same type, while the higher-level model described the heterogeneity
among different types of paraplegic patients.

Mathematically, in the higher-level model, we let {(xmn, ymn),m = 1, · · · ,M}
be M curves belong to a number K of Gaussian processes, which can represent
all the points on the training curves. The mixture model can be given by

ym ∼
K∑

k=1

πkGP (θk). (1)

In the lower-level model, each curve is assumed to be a function fm(·) plus a
white noise, that is,

ymn = fm(xmn) + εmn,

where εmn ∼ N (0, σ2
k). The m-th curve follows a Gaussian process if any finite

subsequence or subset of the curve, say Dm = {Xm,Y m} = {(xmn, ymn), n =
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1, · · · , Nm}, follows a Gaussian distribution if Y m ∼ N (0,Σ(Xm,Xm; θk)),
where

Σ(xmi, xmj ; θk) = C(xmi, xmj ; θk) + σ2
kδij ,

where

C(xmi, xmj ; θk) = vk exp

(
−1

2
wk(xmi − xmj)

2

)
.

So, all the covariance parameters are θk = (wk, vk, σ
2
k).

For a test input x∗, if we assume it is on the m-th curve, and the m-th curve
is belong to the k-th component, i.e., Gaussian process, the mean and variance
of its prediction can be obtained as follows:

E[fm(x∗)|Dm] = σT (x∗)Σ−1(Xm,Xm; θk)Y m;

V ar[fm(x∗|Dm)] = C(x∗, x∗)− σT (x∗)Σ−1(Xm,Xm; θk)σ(x
∗),

where σ(x∗) = (C(x∗, xm,1), · · · , C(x∗, xm,Nm))T .
For the parameter learning of this hierarchical mixture model of Gaussian

process, we introduce the latent variables zm as follows:

fm(Xm)|zm = k ∼ GP (θk),

and assume the mixing form of Eq.(1).

2.2 The Priors and its Bayesian Form

In the hierarchical mixtures of Gaussian processes, we adopt the forms of the
priors as given in [4], that is,

wk ∼ IΓ (
1

2
,
1

2
), vk ∼ LN (−1, 12), σ2

k ∼ LN (−3, 32), k = 1, · · · ,K
where IΓ represents the inverse gamma distribution, and

(π1, · · · , πK) ∼ Dir(1, · · · , 1).
In the Bayesian analysis, the priors are as important as the posteriors and

likelihood function. Supposing that Θ = (θ1, . . . , θK), π = (π1, . . . , πK), D is
the set of training data, we then have

(i) The posterior of the parameters:

p(Θ,π|D) ∝ p(Θ,π)L(D|Θ,π);

(ii) The likelihood of the mixture model:

L(D|Θ,π) =

M∏

m=1

K∑

k=1

πkN (ym|0,Σk(xm));

(iii) The prior distribution:

p(Θ,π) = p(π)
K∏

k=1

p(θk).

In the next section, we will sample parameters from p(Θ,π|D).
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3 The Markov Chain Monte Carlo Algorithm for the
Hierarchical Mixtures of Gaussian Processes

In this section, we construct the Markov Chain Monte Carlo (MCMC) algorithm
for the hierarchical mixtures of Gaussian processes in a similar way as the MCMC
algorithm for Gaussian mixtures in [6]. Actually, the mathematical framework
of our MCMC algorithm keeps the same, including a number of moves of the
components or their parameters with time, but the components become Gaussian
processes.

3.1 The Move Types

In [6], six types of moves were used. But here, since the adopted priors have
no hyperparameters, there is no need for updating the hyperparameters. So,
remaining five types of moves can be given as follows:

(a) π = (π1, · · · , πK);
(b) Θ = (θ1, · · · , θK), where θk = (wk, vk, σ

2
k);

(c) z = (z1, · · · , zM );
(d) Split or merge;
(e) Remove empty components.

For clarity, we refer to one process of implementing these five moves completely
as a sweep, being set as the basic step of the MCMC algorithm.

3.2 The Moves with the Component Number Fixed

The moves with fixed component number include the first three steps(a)(b)(c)
in section 3.1. For this part, we adopt the algorithm in [4]:

For π and z, we use Gibbs sampling:

(i) sample zm from (zm = k|D,Θ,π) ∝ πkp(ym|θk),m = 1, · · · ,M, k =
1, · · · ,K

(ii) sample π from (π1, · · · , πK)|z ∼ Dir(1 + c1, · · · , 1 + cK)

Here, ck represents the element number in the set {m = 1, · · · ,M |zm = k} and
Dir(·) represents Dirichlet distribution.

And for Θ, we sample it from its posterior:

p(Θ|D, z) ∝
K∏

k=1

p(θk|Dm, z)

Then, the posterior of θk, k = 1, · · · ,K are independent with each other and we
can sample each θk separately. Here we adopt Hybrid Monte Carlo or Hamil-
tonian Monte Carlo to sample θk. Actually, this sampling method used to be
adopted to simulate a physical system where a puck moves up and down along
with a smooth surface and the total energy remains constant. However, in our ap-
plication, we restate the potential energy as E(θk) = − log p(θk|Dm, z) and the
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kinetic energy as: K(φk) =
1
2

∑
φ2
k,i, φk,i ∼ N (0, 1),φk = (φk,1, φk,2, φk,3). Then

the total energy of the hamiltonian system for θk is H(θk,φk) = E(θk)+K(φk).
For the convenience of calculation, we split H(θk,φk) as follows:

H(q, p) = − 1

2

∑

m∈{zm=k}
log p(ym|θk)

︸ ︷︷ ︸
U0
2

+ [− log p(θk) + K(φk)]︸ ︷︷ ︸
U1

− 1

2

∑

m∈{zm=k}
log p(ym|θk)

︸ ︷︷ ︸
U0
2

thus the sample update step is:

(i) From the current state (θk,φk), we use a leapfrog step with step size ε to
calculate the new state (θ∗

k,φ
∗
k):

φ∗
k = φk −

ε

2

∂U0

∂θk
(θk)

θ∗
k = θk + εφ∗

k

φ∗
k = φ∗

k −
ε

2

∂U1

∂θk
(θ∗

k,φ
∗
k)

φ∗
k = φ∗

k −
ε

2

∂U0

∂θk
(θ∗

k)

(ii) Then new current state is:

(θ∗
k,φ

∗
k) =

{
(θ∗

k,φ
∗
k) prob = min(1, exp(−H(θ∗

k,φ
∗
k) +H(θk,φk)))

(θk,−φk) otherwise

(iii) Finally, generate νk,i ∼ N (0, 1), and update φk as: φ∗
k = αφ∗

k+
√
1− α2νk.

In addition, according to the advise in [7], we set ε = 0.5N
−1/2
m , α = 0.95.

For k = 1, · · · ,K, by repeating (i)(ii)(iii) n = 20 times, we finish one sweep of
step(b). Note that wk, vk, σ

2
k > 0, through the analysis of the method of handling

constraints in [8], we reject the current state when wk, vk, σ
2
k < 0

3.3 The Moves with the Component Number Changed

The moves with the component number changed include the last two steps(d)(e).
For move(e), all the components whose πk < 1% are considered to be empty
components and we delete them directly.

The Detailed Balance Framework. For move(d), we construct a detailed
balance framework for the move with the component number changed so that
the covariance parameters of the new components can be related to the original
ones. The key to success is that the first two moments remain almost constant.
For convenience we shall denote the splitted component as k∗th component and
the two new components as k1, k2.

(I) Actually, for the zeroth moment of ym, by simple mathematics calculation

we find it is
∑K

k=1 πk, thus keeping the zeroth moment constant means
πk∗ = πk1 + πk2 .

(II) In the case of the first moment, it is 0 since we assume that the Gaussian
process is zero mean. Thus its first moment always keep constant.
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(III) However, the secondmoment is somewhat complicated and it is
∑K

k=1 πkΣk.
Then keeping the second moment constant means πk∗Σk∗ = πk1Σk1 +
πk2Σk2 .
(i) For the diagonal entry, let i = j, then we get a balance formula:

πk∗(vk∗ + σ2
k∗) = πk1(vk1 + σ2

k1
) + πk2(vk2 + σ2

k2
)

(ii) For the off diagonal entry, let i �= j, we have:

πk∗(vk∗ exp

(
−wk∗(xi − xj)

2

2

)
) = πk1(vk1 exp

(
−wk1(xi − xj)

2

2

)
)

+ πk2 (vk2 exp

(
−wk2(xi − xj)

2

2

)
) (2)

For convenience, denote Eq.(2) as a function of (xi − xj)
2:

f(x) := πk∗(vk∗ exp
(
−wk∗

2
x
)
)− πk1(vk1 exp

(
−wk1

2
x
)
)

− πk2(vk2 exp
(
−wk2

2
x
)
) ≡ 0 (3)

In fact, f(x) is exponential decreasing aboutx andx is in {ε2, 22ε2, · · · ,
N2

mε2}, thus we can conclude that when x gets the minimum ε2, f(x)
reaches the maximum. Therefore, in order to keep f(x) ≈ 0 we just
need keep f(ε2) ≈ 0. Do Taylor’s expansion of f(x) at x = 0 and
denote the n-th term as an for convenience. What surprise us is that
when x = ε2 and if ε is small enough, an will be monotonic decreas-
ing, then a0 will be the largest term and a1 will be the second largest
term. Therefore just let a0, a1 be zero, the second moment will keep
almost constant.

Then, we have got our detailed balance framework:
πk∗ = πk1 + πk2 (4a)

πk∗σ2
k∗ = πk1σ

2
k1

+ πk2σ
2
k2

(4b)

πk∗vk∗ = πk1vk1 + πk2vk2 (4c)

πk∗vk∗wk∗ = πk1vk1wk1 + πk2vk2wk2 (4d)

The Merge and Split Formula. For merge move, we can use Eq.(4) to merge
two components, so Eq.(4) is also our merge formula. For split move, reversible
jump in [5] is needed. According to the theory above, 4 dimensions random
variable u = (u1, u2, u3, u4) need to be generated to decide these new parame-
ters: ui ∼ Beta(2, 2), i = 1, · · · , 4. By combining these random parameters, the
balance formula Eq.(4) and the reversible jump theory, we can write the split
formula as:

πk1 = u1πk∗ , πk2 = (1− u1)πk∗ , u1 ∈ (0, 1) (5a)

σ2
k1

= u2σ
2
k∗

πk∗

πk1

, σ2
k2

= (1− u2)σ
2
k∗

πk∗

πk2

, u2 ∈ (0, 1) (5b)

vk1 = u3vk∗
πk∗

πk1

, vk2 = (1− u3)v
k∗
0

πk∗

πk2

, u3 ∈ (0, 1) (5c)

wk1 =
1− u4

u3
wk∗ , wk2 =

u4

1− u3
wk∗ , u4 ∈ (0, 1) (5d)
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It is easy to validate that split formula Eq.(5) matches with merge formula
Eq.(4).

The split and merge move is a Markov birth-death chain, and we set the split
probability and merge probability as bk, dk = 1 − bk respectively, depending on
k: d1 = 0, bkmax = 0, bk = dk = 0.5, ∀k = 2, · · · , kmax − 1, where kmax is the
maximum component number that we set according to individual cases. Then
based on the acceptance probability formula of reversible jump move in [5] the
acceptance ratio for a split move is min(1, A) and a merge move is min(1, A−1)
where

A =

M∏

m=1

l(Y m|θk+1)

l(Y m|θk)
× dk+1

bk
× p(θk+1)

p(θk)︸ ︷︷ ︸
T1

× 1

Beta(u|θk+1, θk)︸ ︷︷ ︸
T2

×
∣∣∣∣
∂θk+1

∂(θk,u)

∣∣∣∣
︸ ︷︷ ︸

T3

Here, k∗, k1, k2 are chosen randomly from the K components.

4 Experimental Results

Our experiments are conducted on a set of simulated data generated from a mix-
ture of three Gaussian processes with θ1 = (1.0, 0.2, 0.0025), θ2 = (0.5, 1.0, 0.001),
θ3 = (10, 0.2, 0.0005), respectively, each with 3 curves. The data points are with
t = −4 : 0.08 : 4, being equally spaced. We have two kinds of prediction, type
I prediction: choosing half data randomly from each of the 9 curves as training
data, the rest as test data; type II prediction: generating a new curve from the
first GP, choosing half data randomly on this curve as known data, using this
half and training parameters from the type I prediction to simulate the other un-
known half data. In the later two subsections, the two type of prediction is used
to verify the component number fixed algorithm and the component number
varied algorithm for regression and model selection. For both of the two algo-
rithms, we run them for 20000 sweep. Here we discard the first 10000 iterations
and select one sample from each 200 iterations, in order to have approximately
independent draws.

4.1 The Component Number Fixed

First, we fix k = 3, and use only the moves with the component number fixed for
training. The log-likelihood tends to stabilize after about 1700 iteration. Table
(1) presents the predictions. We will compare it with the component number
varied result in the next subsection.

4.2 The Component Number Varied

Then we use our component number varied method to train and predict the same
curves as before. Fig.(1) is p(k < j|D), k = 1, · · · , 6, from which we can conclude
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Table 1. RMSE and correlation coefficient(r) between true and predicted responses

Training data:half data on the first 9 curves
model: fixed component number of GP mixture regression model
Test data RMSE r
the first GP 0.2329 0.9485
the second GP 0.3612 0.8520
the third GP 0.2266 0.9024
the 10th curve 0.2037 0.7566

Training data:half data on the first 9 curves
model: varied component number of GP mixture regression model
Test data RMSE r
the first GP 0.0602 0.9900
the second GP 0.0253 0.9982
the third GP 0.0645 0.9867
the 10th curve 0.0493 0.9820

Fig. 1. p(k < j|D), j = 1, · · · , 6 for 40000 iterations

Table 2. posterior of k for Gaussian process mixture model

curve number p(k|D) proportion (%) of moves accepted
split merge

9 p(1)=0.0001 p(2) = 0.0563 p(3)=0.3811 14 2
p(4)=0.3677 p(5) = 0.1558

∑
k≥6 p(k) = 0.0391

that the algorithm has converged after about 10000 iteration. Additionally, we
also present the posterior of k for mixtures of Gaussian processes in Table (2).
From this table, we can conclude this model favors 3 − 4 components. In this



Automatic Model Selection of the Mixtures of Gaussian Processes 343

Fig. 2. predict curve with the component number varied method on 9 curves, the solid
line represent the real value, and the dash line represents the predict line with 95%
confidence interval

Fig. 3. the deviance of the kernel smooth density posterior of k

part, we initially add the birth and death moves in [6] to the algorithm in order
to increase the opportunities for split and merge thus to speed up convergence
of Markov chain, but finally it doesn’t work, and we delete this type move.

The final predict results are presented in Fig.(2). We can see that predict
curves almost overlap with the true curves. For type II prediction, the 95%
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confidence interval is quite small. RMSE and correlation coefficient are in Table
(1). The RMSE is about one tenth of that for the component number fixed case
and the correlation coefficient ≥ 0.9800 which is also improved.

In addition, we analyze the deviance of the kernel smooth density of posterior
of k –−2 ∗ log p(k|D) in Fig.(3). Since the deviance of k = 2 separate with k = 3
and from k = 3 to k = 6 the deviances are overlapping together, we can conclude
that k = 3 can represent most information of train data.

Increasing the curve number to 30 and even to 90, we find that it does not
improve the RMSE and correlation coefficient obviously. Therefore, this become
a burden to waste time but of no use for improving algorithm accuracy and is
unnecessary.

5 Conclusion

We have developed an automatic model selection algorithm for mixtures of Gaus-
sian processes in the light of the reversible jump Markov chain Monte Carlo
framework for Gaussian mixtures. The split and merge moves of Gaussian pro-
cesses in the iteration keep the first two moments constant. In this way, the au-
tomatic model selection algorithm makes it possible to do the Bayesian analysis
of both parameter estimation and model selection for the mixtures of Gaussian
processes. Moreover, it is demonstrated that this developed algorithm is feasible
and outperform the the hybrid MCMC algorithm.
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