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Abstract. Radial basis function (RBF) networks of Gaussian activation 
functions have been widely used in many applications due to its simplicity, 
robustness, good approximation and generalization ability, etc.. However, the 
training of such a RBF network is still a rather difficult task in the general case 
and the main crucial problem is how to select the number and locations of the 
hidden units appropriately. In this paper, we utilize a new kind of Bayesian 
Ying-Yang (BYY) automated model selection (AMS) learning algorithm to 
select the appropriate number and initial locations of the hidden units or 
Gaussians automatically for an input data set. It is demonstrated well by the 
experiments that this BYY-AMS training method is quite efficient and 
considerably outperforms the typical existing training methods on the training 
of RBF networks for both clustering analysis and nonlinear time series 
prediction. 

1   Introduction 

The radial basis function (RBF) networks [1]-[3] are a typical class of forward neural 
networks widely used in the fields of pattern recognition and signal processing. 
Clearly, it was developed from the approximation theory of radial basis functions for 
multivariate interpolation. That is, the RBFs are embedded in a two-layer neural 
network such that each hidden unit implements a radial basis function and the output 
units implement a weighted sum of hidden unit outputs. With such a structure, a RBF 
network can approximate any continuous function at a certain degree as long as the 
number of hidden units are large enough. Moreover, the structure of the input data can 
be appropriately matched via the selection of receptive fields of the radial basis 
functions with the hidden units, which leads to a good generalization of the RBF 
network. Therefore, the RBF network has been widely applied to various fields of 
pattern recognition and signal processing such as speech recognition, clustering 
analysis, time series prediction, industrial control etc., and the most commonly used 
radial basis functions in the RBF networks are Gaussian activation functions.     

However, the training of a RBF network of Gaussian activation functions is still a 
rather difficult task. In fact, the main crucial problem is how to select the number and 
locations of the hidden units appropriately for a practical problem. In the previous  
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approaches, the number of hidden units was just the number of sample data and the 
locations of the hidden units were those sample data. However, it was proved that 
such a training or selection is expensive in terms of memory requirement. Moreover, 
the exact fit to the training set might cause a bad generalization. In order to overcome 
these problems, many training methods were proposed for training RBF networks and 
most of them utilized a test-and-growing or evolutionary approach to selecting the 
number of hidden units on the practical applications (e.g., [4]-[6]). Actually, a good 
selection of hidden units should appropriately match the structure of the input data 
associated with the practical problem. If the input data set consists of k clusters, the 
RBF network should select k  hidden units with their locations being the centers of 
the k clusters, respectively. However, the selection of number of clusters for an input 
data set is also a difficult problem [7].  

With development of competitive learning, the rival penalized competitive learning 
(RPCL) algorithm was proposed to determine the number of clusters or Gaussians in a 
sample data automatically [8]-[9]. Therefore, it has provided a new tool for the 
training of the RBF network (e.g., [10]-[11]). On the other hand, the scatter-based 
clustering (SBC) method [12] and the least biased fuzzy clustering method [13] were 
also proposed to determine the best number of hidden units in a RBF network.  

Recently, based on the Bayesian Ying-Yang (BYY) harmony learning theory [14]-
[16], a new kind of automated model selection (AMS) learning mechanism has been 
established for the Gaussian mixture modeling [17]-[19]. Actually, this kind of BYY-
AMS learning rules can determine the number of Gaussians automatically during the 
parameter learning, which can be utilized to select the number of Gaussians as the 
hidden units in the RBF network.  

In this paper, we utilize the BYY-AMS adaptive gradient learning algorithm [19] 
to select the appropriate number and initial locations of the Gaussians automatically 
on an input data set for the train of the RBF network. It is demonstrated by the 
experiments that this new training method is quite efficient and considerably 
outperforms some typical existing methods on the training of a RBF network for both 
clustering analysis and nonlinear time series prediction. 

2   BYY-AMS Adaptive Gradient Learning Algorithm 

We begin to introduce the adaptive gradient learning algorithm of automated model 
selection on the Gaussian mixture model proposed in [19] in the light of the BYY 
harmony learning theory. A BYY system describes each observation dx X R∈ ⊂  and 
its corresponding inner representation my Y R∈ ⊂  via the two types of Bayesian 

decomposition of the joint density ( , ) ( ) ( | )p x y p x p y x=  and ( , ) ( | ) ( )q x y q x y q y= , 

being called Yang machine and Ying machine, respectively. For the Gaussian mixture 
modeling, y  is only limited to be an integer variable, i.e., 

{1, 2, , }y Y K R∈ = ⋅⋅ ⋅ ⊂ with m = 1. Given a data set 1{ }N
x t tD x == , the task of 

learning on a BYY system consists of specifying all the aspects of  
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( | )p y x , ( )p x , ( | )q x y , ( )q y via a harmony learning principle implemented by 

maximizing the functional: 

      ( || ) ( | ) ( ) ln[ ( | ) ( )] ln ,qH p q p y x p x q x y q y dxdy z= −∫                         (1) 

where qz is a regularization term. 

If both ( | )p y x  and ( | )q x y  are parametric, i.e., from a family of probability 

densities with some parameterθ , the BYY system is called to have a Bi-directional 
Architecture (or BI-Architecture for short). For the Gaussian mixture modeling, we 
use the following specific BI-architecture of the BYY system. ( ) jq y j α= =  with 

0jα ≥ and 
1

1
K

jj
α

=
=∑ . Also, we ignore the regularization term qz (i.e., set qz =1) 

and let ( )p x be the empirical density
1

1
( ) ( )

N

tt
p x x x

N
δ

=
= −∑ . Moreover, the BI-

architecture is constructed with the following parametric form: 

  ( | )
( | ) ( | )

( , )
j j

K

q x
p y j x p j x

q x

α θ
= = =

Θ
  ,    

1

( , ) ( | )
K

K j j
j

q x q xα θ
=

Θ =∑  ,             (2) 

where ( | ) ( | )jq x q x y jθ = = with
jθ consisting of all its parameters and 

1{ , }K
K j j jα θ =Θ =  is the set of parameters for the finite mixture model.  

Substituting these component densities into Eq. (1), we have 

     
1 1

1

( | )1
( || ) ( ) ln[ ( | )].

( | )

N K
j t j

K j t jK
t j j t ji

q x
H p q J q x

N q x

α θ
α θ

α θ= =
=

= Θ = ∑∑
∑

                      (3) 

That is, ( || )H p q becomes a harmony function ( )KJ Θ on the parameters KΘ . 

Furthermore, we let )|( jxq θ be a Gaussian density given by  

           11
2

1
2 2

( ) ( )1
( | ) ( | , ) ,

(2 ) | |

T
j j j

n

x m x m

j j j

j

q x q x m eθ
π

−− Σ −= Σ =
Σ

                                (4) 

where jm  is the mean vector and jΣ  is the covariance matrix which is assumed 

positive definite. 
According to the harmony function given in Eq.(3), we can construct an adaptive  

gradient algorithm or rule to search for a maximum of ( )KJ Θ as an estimate of the 

parameters 
KΘ with the sample data set 

xD . For convenience of derivation, we let 

1

, , 1,2, , ,
j

j

T
j j j jK

i

e
B B j K

e

β

βα
=

= Σ = =
∑

 

where
1, , Kβ β−∞ < ⋅⋅⋅ < +∞ and jB is a nonsingular square matrix. Via these 

transformations, the parameters in ( )KJ Θ turn into
1{ , , }K

j j j jm Bβ = .  
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Denoting ( ) ( | , )j j j jU x q x mα= Σ  for 1, , ,j K= ⋅⋅⋅ ( )KJ Θ has the following 

simple expression: 

1

1
( ) ( )

N

K t K
t

J J
N =

Θ = Θ∑ , 
1

1

( )
( ) ln ( )

( )

K
j t

t K j tK
j i ti

U x
J U x

U x=
=

Θ =∑
∑

.             (5) 

Furthermore, we have the derivatives of ( )KJ Θ with respect to jβ , jm and jB , 

respectively, as follows. 

      
1

( ) 1
( )( ) ( ),

( | )

K
t K

i ij j i t
ij t k

J
t U x

q x
λ δ α

β =

∂ Θ = −
∂ Θ ∑                               (6) 

          1( )
( | ) ( ) ( ),t K

t j j t j
j

J
p j x t x m

m
λ −∂ Θ = Σ −

∂
                                               (7) 

    
( )( ) ( )

[ ] [ ],
T

j jt K t k

j j j

B BJ J
vec vec

B B

∂∂ Θ ∂ Θ=
∂ ∂ ∂Σ

                             (8) 

where ijδ is the Kronecker function, [ ]vec A denotes the vector obtained by stacking 

the column vectors of the matrix A, and 

1

( ) 1 ( ( | ) ) ln[ ( | , )]
K

i t il l t l l
l

t p l x q x mλ δ α
=

= − − Σ∑ ,                                  (9) 

1 1 1( ) 1
( | ) ( )[ ( )( ) ]

2
Tt K

t j j t j t j j j
j

J
p j x t x m x mλ − − −∂ Θ = Σ − − Σ − Σ

∂Σ
,   (10) 

2 2

( )
,

T
T T

d d d d d d d dd d

BB
I B E B I

B × × × ××

∂ = ⊗ + ⊗
∂

i   

where ⊗ denotes the Kronecker product (or tensor product), and 

2 2 2 2

2 2

11 1

1

( ) ,
dT

ijd d d d

d dd d d

B
E

B× ×

×

Γ Γ⎛ ⎞
∂ ⎜ ⎟= = Γ = ⎜ ⎟∂ ⎜ ⎟Γ Γ⎝ ⎠

 

where ijΓ is an d × d matrix whose ( , )thj i element is just 1, with all the other 

elements being zero. With the above expression of ( )TBB

B

∂
∂

, we have  
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2 2

( ) 1
[ ] ( | ) ( )( )

2
T TK

t j d d d d d d d dd d
j

J
vec p j x t I B E B I

B
λ × × × ××

∂ Θ = ⊗ + ⊗
∂

i  

                                 1 1 1[ ( )( ) ]T
j t j t j j jvec x m x m− − −× Σ − − Σ − Σ .                     (11) 

Based on the above preparations, we have the adaptive gradient learning algorithm 
as follows.  

1

( )( ) ( ),
( | )

K

j i ij j i t
it k

t U x
q x

ηβ λ δ α
=

Δ = −
Θ ∑                                            (12) 

 
1( | ) ( ) ( ),j t j j t jm p j x t x mη λ −Δ = Σ −                                            (13) 

2 2( | ) ( )( )
2

T T
j t j d d d d d d d dd d

vecB p j x t I B E B I
η λ × × × ××

Δ = ⊗ + ⊗i  

 1 1 1[ ( )( ) ],T
j t j t j j jvec x m x m− − −× Σ − − Σ − Σ                                 (14) 

where η  denotes the learning rate that starts from a reasonable initial value and then 

reduces to zero with the iteration number n  in such a way that 0 ( ) 1nη≤ ≤ , and  

lim ( ) 0
n

nη
→∞

=  ,   
1

( )
n

nη
∞

=

= ∞∑ ,                                                (15) 

i.e. , in the way used in the conventional stochastic approximation procedure [20]. 

The typical example of the learning rate satisfying Eq.(15) is 0( ) /n nη η= , where 

0η  is a positive constant, which will be used in the following experiments.  

This kind of BYY harmony learning can make model selection automatically on 
the Gaussian mixture model by forcing the mixing proportions of the extra Gaussians 
to be reduced to zero during the parameters learning as long as K is set to be larger 
than the number of actual Gaussians in the sample data. Actually, it had shown by the 
experiments in [19] that this BYY-AMS adaptive gradient learning algorithm can 
make model selection efficiently with a good estimate for the true parameters of the 
Gaussian mixture generating the sample data xD  .  

3   Training of the RBF Network  

We now consider the training of the RBF network via the above BYY-AMS adaptive 
gradient learning algorithm. In fact, the RBF network is just a two-layer forward 
neural network and its outputs are given by  

             
1

( ) ( ),
n

j ij i
j

y x w xφ
=

=∑                                                          (16) 
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where n  is the number of hidden units or RBF’s， ijw is the connection weight from 

the thi  hidden unit to the thj output unit. )(xiφ  is just a Gaussian radial basis 

function (RBF) as the activation function corresponding to the output of the thi  
hidden unit given by  

2

2

|| ||
( ) (|| ||) exp( ),

2
j

j j j
j

x m
x x mφ φ

σ
−

= − = −                           (17) 

where ,j jm σ  are  the center  and scale of the Gaussian RBF ( )j xφ , respectively.    

Without loss of generality, we just consider the case of the RBF network with one 
single output unit. In this special case, the output function of the RBF network takes 
a simple form as follows. 

2

2
1 1

|| ||
( ) ( ) exp( ),

2

n n
j

j j j
j j j

x m
y x xλ φ λ

σ= =

−
= = −∑ ∑                               (18) 

where
jλ  is the connection weight from the thj  hidden unit or RBF to the output unit. 

Thus, the parameters of the RBF network are just , , ( 0)j j jmλ σ >  

for 1, 2, ,j n= . Moreover, the mean square error of the RBF network on a sample 

set ( , ) {( , ) : 1,2, , }x y i iD x y i N= =  can be given as follows.   

     

2 2

1 1 1

2

2
2

1 1

1 1
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−
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∑ ∑
                          (19) 

According to the least mean square error principle, we have the following learning 
rules on the parameters of the single-output-unit RBF network as follows: 

1 1

2

1 1

3
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∑ ∑

       (20) 

where λη ， mη ， ση are the learning rates for the updates of the parameters 

, ,j j jmλ σ , respectively, which are assumed to be invariant with the index j .  
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Usually, these learning rates are selected as some small positive constants by 
experience.   

However, the LMS learning algorithm given by Eq.(20) has a major  disadvantage 
that it is very sensitive to the selection of n  and  the initial values of the other 
parameters. Fortunately, the BYY-AMS adaptive gradient learning algorithm can be 
utilized to solve this sensitiveness problem. Actually, based on the input data set, the 
BYY-AMS adaptive gradient learning algorithm can determine an appropriate 

number of Gaussians, i.e., Gaussian RBF’s, for the network. That is, we let *n K= , 

where *K is the number of actual Gaussians in the input sample data obtained by the 
the BYY-AMS adaptive gradient learning algorithm. Moreover, the final values of the 
mixing proportions and mean vectors can serve the initial values of the weights and 

centers of the n RBF’s, respectively. And the initial value of jσ  can be set by 

                   
1

( ) ( )
t j

T
j t j t j

x Cj

x m x m
N

σ
∈

= − −∑ ,                                     (21) 

where jC  is the set of the input sample set tx  with the maximum posteriori 

probability ( | )tp j x  , jN  is the number of elements in jC  and  jm  is the final 

value of the mean vector obtained by the BYY-AMS adaptive gradient learning 
algorithm. Augmented with the BYY-AMS adaptive gradient learning algorithm in 
this way, the LMS learning algorithm becomes very efficient on the training of the 
RBF network, which will be demonstrated by the experiments in the next section. For 
clarity, we refer to this compound training method just as the BYY-AMS training 
method for the RBF network.         

4   Experiment Results        

In this section, two kinds of experiments are carried out to demonstrate the efficiency 
of the BYY-AMS adaptive gradient learning algorithm on the training of a RBF 
network. Moreover, we compare the BYY-AMS training method with some other 
typical existing training methods.  

4.1   On the Noisy XOR Problem  

The noisy XOR problem [11] is a typical non-linear classification problem and we use 
a RBF network to learn it. The sample data are shown in Fig. 1 such that the sample 
points around the centers (1,0) and (-1,0)  are in the first class and their outputs should 
be 1, while the sample points around the centers  (0,1) and (0,-1) are in the second 
class and their outputs should be 0. For this problem, we generated 800 sample points 
totally, and 200 sample points per each center. We took 100 points per each center, 
and total 400 points to form the training set, and let the other 400 points be the test 
set. The actual outputs of the RBF network obtained by the BYY-AMS training 
method on the 400 test samples are given in Fig. 2.  
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Fig. 1. The sample points of the noisy XOR 
problem 

Fig. 2. The outputs of the trained RBF 
network on the test sample points 

When we let the output of RBF network on an input point be processed via a 
threshold function such that if the output value of the network is over 0.5, the 
classification output is considered to be 1, otherwise, the classification output is 
considered to be 0, the correct classification rate of the trained RBF network on the 
test sample points can reach to 99.75%. However, in the same situation, the correct 
classification rates of the trained RBF networks with the RPCL and SBC methods can 
only reach to 97.5% and 97.75%, respectively.  

4.2   On the Mackey-Glass Time Series Prediction  

We further trained the RBF network with the help of  the BYY-AMS adaptive 
gradient learning algorithm for time series prediction. As shown in Fig. 3, a piece of 
the Mackey-Glass time series was generated via  the following iterative equation: 

                
10

( )
( 1) (1 ) ( )

1 ( )

ax t
x t b x t

x t

τ
τ

−+ = − +
+ −

，                                         (22) 

where 0.2a = , 0.1b = , 17τ = . Particularly, 1000 sample data were generated to form  
pieces of  time series as { ( 18), ( 12), ( 6), ( ), ( 6)}x t x t x t x t x t− − − + ,118 1117t≤ ≤ , 

where the first four data were considered as an input data of the RBF network, while 
the last one was considered as the prediction result of the RBF network. 
Mathematically, the mapping relation behind the Mackey-Glass time series can be given 

as ( )i iy f x= , where [ ( 18), ( 12), ( 6), ( )]T
ix x t x t x t x t= − − −  , ( 6)iy x t= + , and 

1, ,i N= ⋅⋅⋅ . In our experiment, we divided these 1000 sample data into two sets: the 

training and test sets with the preceding and remaining 500 sample data, respectively. 
The mean square error (MSE) was used to measure the prediction accuracy.  

We implemented the BYY-AMS training method to train the RBF network for the 
prediction of this time series and the prediction result on the test data is given in Fig. 4, 
with the prediction mean square error 0.0033, which may be the lowest  prediction 
error on the the Mackey-Glass time series. For comparison, we also implemented the 
least biased fuzzy clustering (LBFC) method to train the RBF network on the same 
data set and obtained the prediction result with the prediction mean square error as 
0.2328, which is much greater than that of the RBF network via  the BYY-AMS 
training method.  
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Fig. 3. The sketch of the piece of the Mackey-Glass time series 

 

Fig. 4. The prediction result with the BYY-AMS adaptive gradient learning algorithm, where + 
represents the sample datum, while·represents the prediction  datum 

5   Conclusions  

We have investigated the training of a RBF network with the help of a new kind of 
automated model selection learning algorithm based on the BYY harmony learning 
theory. Since this BYY-AMS learning algorithm can detect the structure of the input 
sample data, it can make the RBF network be more appropriate to a practical problem 
and improve the approximation and generalization or prediction abilities. The 
experimental results show that this BYY-AMS training method is very efficient and 
considerably outperforms the typical existing training methods on the training of a 
RBF network for clustering analysis and nonlinear time series prediction. 
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