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Abstract. This paper presents an informative gene set selection
approach to tumor diagnosis based on the Distance Sensitive Rival Penal-
ized Competitive Learning (DSRPCL) algorithm and redundancy anal-
ysis. Since the DSRPCL algorithm can allocate an appropriate number
of clusters for an input dataset automatically, we can utilize it to classify
the genes (expressed by the gene expression levels of all the samples)
into certain basic clusters. Then, we apply the post-filtering algorithm
to each basic gene cluster to get the typical and independent informative
genes. In this way we can obtain a compact set of informative genes. To
test the effectiveness of the selected informative gene set, we utilize the
support vector machine (SVM) to construct a tumor diagnosis system
based on the express profiles of its genes. It is shown by the experiments
that the proposed method can achieve a higher diagnosis accuracy with a
smaller number of informative genes and less computational complexity
in comparison with the previous ones.

1 Introduction

Microarray data or gene expression profiles have been widely used in many ap-
plications, especially on tumor diagnosis (e.g., [1], [2]). Given a set of samples
labelled “tumorous” or “normal”, the task of tumor diagnosis is to build a binary
classifier as a diagnosis system to predict the unlabelled samples. Mathemati-
cally, a microarray dataset of N genes and d samples can be represented by a
matrix (z!') v x4, where the element z!' represents the expression level of the p-th
gene at the i-th sample. Generally, there are thousands of genes in a microarray
chip and so high dimensional data would cause a series of problems, such as
high computing complexity, low prediction accuracy and unexplainable biolog-
ical meanings [3]. Moreover, in comparison with the number of genes, we can
only collect a small number of samples at present because of the high expense.
In fact, there are only a small number of genes which are related or informative
to a tumor. Therefore, informative gene selection to a tumor is often used as a
preprocessing technique in the tumor diagnosis or classification.
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Actually, informative gene selection (to a tumor), i.e., finding the genes that
are discriminative between the normal and tumorous phenotypes, has been stud-
ied extensively in the past several years. Typically, informative genes are selected
by ranking genes according to a kind of criterion, such as t, F, rank sum and
x? test statistics [4],[5],[6], [7]. Generally, these traditional methods just select
the top k genes (k is a fixed positive integer). In this way, there again appears a
serious problem that informative genes selected through individual gene evalua-
tions are often highly correlated, which also leads to a low prediction accuracy
of the diagnosis system.

To maintain a high prediction accuracy of the diagnosis system, we should
find a set of uncorrelated or independent but still highly informative genes.
In order to do so, many researchers have made the redundancy analysis on
genes for selecting the independent informative gene set for tumor diagnosis
[8],[9],8]. However, many of these approaches are too sensitive to the order
of genes according to their individual ranks such that too many genes are
eliminated and thus some useful information may be lost. On the other hand,
some valuable information can also be discovered by evaluating the classifi-
cation capability of combinations of genes [I0]. To this end, we established
a post-filtering gene selection algorithm to select informative genes of a
tumor with a microarray dataset based on redundancy and multi-gene
analysis [11].

To further improve the efficiency of informative gene set selection, we can con-
sider the structure of genes expressed by the rows of the matrix of the microarray
dataset. That is, these genes consists of some different functional clusters to the
tumor. If we can get these clusters, we can implement the post-filtering gene
selection algorithm on each cluster to select the typical and independent genes.
In this way, we can get a compact set of informative genes which is efficient for
the tumor diagnosis.

Based on the above idea, this paper further proposes a new approach to the
informative gene set selection. Since the Distance Sensitive Rival Penalized Com-
petitive Learning (DSRPCL) algorithm [12], as a generalization of the original
rival penalized competitive learning algorithm [I3], can allocate an appropriate
number of clusters for an input dataset automatically, we utilize it to classify
the genes into a number of functional clusters. Then, we use the post-filtering
gene selection algorithm on each cluster to select the typical and independent
informative genes. Finally, we get the compact set of informative genes for tumor
diagnosis.

In the sequel, we introduce the DSRPCL algorithm for discovering the func-
tional gene clusters in Section 2. Section 3 describes the post-filtering gene se-
lection algorithm on each gene cluster for typical and independent informative
gene selection. The experiment results of the proposed informative gene set se-
lection method as well as their comparisons are presented in Section 4. Finally,
we conclude the paper in Section 5.
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2 The DSRPCL Algorithm for Functional Gene Clusters

Given a microarray dataset (zf')yxq of N genes and d samples, we let it be
S = {Xm})L,, where X* = [z, 2, - 2}]T represents the p-th gene through
its expression levels over all the d samples. Suppose that X* is just an input to a
simple competitive learning network, which only has one layer of units. Initially
there are n units with the weight vector W; = [wi1, wjz, - - -, w;q)T respectively
for the i-th unit. All the weight vectors can be represented by a big vector
W = vec[Wy, Wa, - -+, W,]. For each input X*, the basic idea of the DSRPCL
algorithm is that not only the weight vector of the winner unit is modified
to adapt to the input, but also the weight vectors of the rivals or losers are
punished to keep away from the input. As a weight vector diverges to infinity,
the corresponding cluster becomes empty and can be canceled. As a result, we
can automatically obtain the number of gene clusters as well as their centers,
or “representative genes”, of these clusters assuming n is larger than the true
number of the actual gene clusters. As a result, the genes are automatically
divided into several functional clusters by classifying each gene into the cluster
whose center is closest to it.

Table 1. The DSRPCL algorithm and its variants

1 Randomly initialize the vector Wl(()), S Wy(l()), and let T = 0.
2 Update W; with a learning rate n (0 < n <1):
1) Batch DSRPCL:

AW, — —n2E00) _ {nZM(X” - W), it i = (),

Wi -n ZH | X* — W;i||"P=2(X* — W;), otherwise.
2) DSRPCLI:
AW, = {n(X“ - W), o if Q= e(u),
—n|| X" — Wi 2(X" —W;), otherwise.
3) DSRPCL2:
n(X* — Wi, if i =c(p),
AW = & —pll X = Wil ~P=2(X% = Wi, if i = (),
0, otherwise.
4) SARPCL:

a) Let A = e(=F1T=ko) "y — o /(c1 T + ¢) and t = 0.
b) Randomly select X* from S = {X* ..., X"}, and take ¢ ~Uniform]0, 1].
0 AW, — {n(X“ - Wi), o if 4 :'c(u)7
—n|| X" — Wil (X* — W;), otherwise.
€<\ let AW; = —AW;.

d)Ift < M,let t =t + 1 and return to STEP b).

e) If XA < ¢, stop.
3If [EW)THD) — EW) D) | > g, let T = T + 1, and return to STEP 2; otherwise, stop.
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Mathematically, the DSRPCL algorithm tries to minimize the following cost
function:

E(W) = Ex(W) + Ex(W)
1 1 _
= 2E:HX“_Wc(u)”Q‘FP >ooIxr-wir, (1)
"

pyiFe(p)

where c(u) is the index of the winner unit for the pu-th gene. That is, W, is
the nearest weight vector for X*. P is a positive constant. Ma and Wang[I2]
obtained the derivatives of E(WW) with respect to w;; as follows:

Ty = = T Bictn (@ = wis) + (1= b)) | X* = WAl ) —wiy) (2)
where 6; ; is the Kronecker function. The DSRPCL algorithm is just a gradient
descent algorithm based on the above derivatives of the cost function E(WW).
Table [ gives the details of the DSRPCL algorithm and its variants, where we
denote it as the batch DSRPCL algorithm, the DSRPCLI algorithm is the adap-
tive DSRPCL algorithm, and the DSRPCL2 algorithm modifies only the rival
weight vector (i.e., the second winner) so that FEo(W) is only affected by the
largest term with r(u). The other variant of the DSRPCL algorithm is the sim-
ulated annealing rival penalized competitive learning (SARPCL) by applying
the simulated annealing mechanism to the DSRPCL1 algorithm. The stopping
threshold value ¢ is a pre-fixed small positive number. kg, k1, co and ¢; are posi-
tive constant numbers which can be selected by experience.

According to the properties of the DSRPCL algorithm shown in [12], when n
is selected to be large enough, the DSRPCL algorithm can lead to a number of
functional gene clusters from which we can detect the typical and independent
informative genes more efficiently.

3 The Post-filtering Gene Selection Algorithm for
Discovering the Independent Informative Genes

In order to attain a compact set of independent and informative genes to a tumor,
we can remove the redundant informative genes through the post-filtering gene se-
lection algorithm proposed in [I1]. Initially, genes are ranked by the goodness of
classification or diagnosis with the individual gene expression profile on the sam-
ples, which is measured through a statistical test under the null hypothesis that
no difference exists between the gene expression profiles of tumorous and normal
samples. The first gene will certainly be selected, but two types of redundant genes
are identified and dealt with differently from the second gene to the last one. Let
A be the expression profile of a selected gene and B be that of another candidate
gene. Firstly, B will be abandoned if it is highly correlated with A because no much
valuable classification information is added. Secondly, B is possibly redundant if
the p-value of the test on the combination of genes B and A is greater than that
of A alone. Otherwise, B will be chosen as a new informative gene. Furthermore,
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Table 2. The post-filtering gene selection algorithm

0. Let iteration number i = 0, and the output gene set O = 0,.
Order the gene sets:
1. If i==0,let S" = {X“l} u—1> V1 is the initial number of genes; otherwise,
= {S }# _,, where S}, = {RZ ! RZ Noi>1, andl,j =1,---,length(R"™1),
satlsfylng SN S =0 and T(S)) < T(S’) fori>1, VIi<gj,andl, j=1,---,N;.
Redundancy analysis:
2. Let r =0, p; = 1.
3.If T(S,,) > a, let r=r+1, R. =5 ; else
1) let j = ps + 1.
2) if corr(Sﬁi,Sj-) > 6, let ST =8" — Sji-;
elseif T'(S},,) < T(S,,S5), let r =r+1, R. =5}
3)ifj < length(Si) let 7 =741, go to STEP 2); otherwise, stop.
4. If p1; < length(S"), let pi = pi + 1, go to STEP 3.
.0=0US§S".
6. If i <M, leti=1741, got to STEP 1.

ot

the possibly redundant genes are combined into subsets and evaluated again from
the view of multi-genes in a similar way with the individual genes.

Based on the above ideas, the post-filtering gene selection algorithm can be de-
scried in TablePl The i” iteration of the algorithm evaluates the classification ca-
pability of 2/~1 genes and removes the redundant ones. S’ represents an ordered
list of subsets of 2'~! genes according to p-values of a kind of statistical test de-
noted by 7'(-). In the redundancy analysis, an element in S will be removed if its
correlation coefficient with other selected gene subsets are greater than §. Further-
more, an element in S? will be moved to R if it attains a p-value less than a or that
of the combination with some already selected gene subsets. The (i + 1) itera-
tion will evaluate larger gene subsets by combining two smaller ones from R?. If
« is relatively large, we tend to select genes with good classification by individual
evaluations. On the other hand, if a is too small, we tend to select genes with good
classification by multi-gene analysis. We can stop the algorithm when no more in-
formative genes can be found in an iteration. Alternatively, for simplicity, the al-
gorithm stops when it reaches a user-specified maximum number of iterations M.

As we implement the post-filtering gene selection algorithm on each of the
functional gene clusters obtained via the DSRPCL algorithm, we can get a set
of typical independent informative genes from different aspects with a high speed
since the number of genes in each cluster is generally much decreased.

4 Experimental Results and Comparisons

We tested the effectiveness of our proposed gene set selection method on the colon
cancer dataset[] through the support vector machine. This dataset contains the
expression profiles of 2000 genes in 22 normal tissues and 40 tumor tissues.

! Retrieved from http://microarray.princeton.edu/oncology/database.html
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Before our experiments, we normalized the gene expression profiles with zero
mean and unit variance in order to eliminate the possible noise. For a tumor diag-
nosis system, i.e., a binary classifier, we took its prediction accuracy as the eval-
uation metric of this method. We used the radial basis functions (RBF’s) as the
kernels to build SVMs with a MATLAB toolbox called OSUSV M3.0 4. There
were two parameters v and C' to be selected. We took a grid search procedure
from 16 x 16 pairs of v and C (v, C = 277,276 ... 2%) and chose the values
optimizing the performance of SVMs on the training dataset [14].

Table 3. Results of clustering on the colon dataset

clustering method n K the number of genes in each cluster

Batch DSRPCL 12 6 560, 413, 186, 36, 317, 488
DSRPCL1 10 6 178, 412,484, 351, 366,209
DSRPCL2 10 6 353, 409,40, 518, 193, 487
SARPCL 10 6 153, 55, 421, 248, 470,653

The first step was to cluster gene profiles using the DSRPCL algorithm and
its variants, which stopped when the difference of the cost functions E(W) be-
tween two successive steps was less than a threshold value 1.e-3. In addition,
the selection of parameters was important in the DSRPCL algorithm and its
variants. If P was too small, the power of de-learning might become so strong
that the result of clustering was wrong. P was usually selected around 0.15 [12].

Cluster 1 (560)

Cluster 2 (413)
Cluster 3 (1806)

Cluster 4 (36)

Cluster 5 (317)

Cluster 6 (488)

Fig. 1. The clustering result of Batch DSRPCL on the colon dataset

2 Available on http://eewww.eng.ohio-state.edu/ ~maj /osu svm
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With the initial number of clusters n, Table [3] showed the final number of
clusters K and the number of genes in each cluster after clustering by DSR-
PCL and its variants on the colon dataset. For the SARPCL algorithm, we set
t = 500, k1 = 0.005, kg = 1.200, ¢; = 0.015 based on experiments on a small sim-
ulated dataset. Both DSRPCL and it variants automatically clustered genes into
6 clusters. Figure [l illustrated the result of Batch DSRPCL clustering through
the program TreeView E, in which every row represented a gene profile and ev-
ery column a sample. In this experiment, we applied the hierarchical clustering
method to samples before clustering genes for the convenience of visual investi-
gation. The positive expression was shown in red, and the negative expression
was shown in green. Visually, 6 clusters distinguished themselves with others
well, which might imply some biological significance.

Table 4. The LOOCYV results of several methods of informative gene selection (Num-
bersu in brackets showed the number of selected informative genes)

clustering method | « 0.001 0.005 0.01 0.05
Traditional method|i=0| 90.3% (60) | 91.9% (137) | 91.9% (188) | 88.7% (389)
i=1|  91.9% (7) | 91.9% (10) | 91.9% (10) | 91.9% (13)
Post-filtering ~ |i=2 93.5% (9) 95.2% (19) 95.2% (22) 95.2% (34)
i=3| 93.5% (10) | 96.8% (23) | 98.4% (28) | 95.2% (49)
i=1| 93.5% (11) | 100% (13) | 100% (14) | 96.8% (19)
Batch DSRPCL [i=2 | 95.2% (65) | 93.5% (59) | 95.2% (56) | 95.2% (67)
i=3 | 96.8% (145) | 96.8% (147) | 95.2% (148) | 96.8% (135)
i=1| 95.2% (15) | 98.4% (17) | 96.8% (17) | 93.5% (23)
DSRPCL1  [i=2 | 935% (57) | 95.2% (59) | 96.8% (59) | 95.2% (67)
i=3 | 96.8% (137) | 96.8% (119) | 96.8% (123) | 96.8% (127)
i=1| 935% (13) | 95.2% (16) | 96.8% (17) | 96.8% (26)
DSRPCL2  [i=2 | 93.5% (65) | 96.8% (58) | 96.8% (57) | 93.5% (70)
i=3 | 96.8% (145) | 96.8% (122) | 96.8% (121)| 96.8% (130)
i=1| 96.8% (14) | 98.4% (13) | 98.4% (16) | 95.2% (20)
SARPCL  [i=2| 952% (58) | 95.2% (59) | 95.2% (64) | 93.5% (72)
i=3 | 95.2% (134) | 95.2% (147) | 95.2% (132) | 93.5% (140)

The second step was to apply the post-filtering informative gene selection
algorithm to each gene cluster. For each cluster, we conducted the leave-one-
out cross-validation (LOOCYV) experiments [I5]. The classifier was successively
learned on d — 1 samples and tested on the remaining one. We applied the gene
set selection in each cross-validation trial on the training samples of that trial.
The construction of a classifier was restricted to the selected informative genes
using the training data. Finally, we computed the average prediction accuracy

3 Which can be downloaded from http://rana.1lbl.gov
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and the number of informative genes for the d results as our evaluation result.
Here, we used 2-sample rank sum test for individual genes and 2-sample Hotelling
T? test as the multivariate statistical test on multiple genes, and chose 3 = 0.6
[11]. The prediction accuracies of several methods were presented in Tabledl The
traditional method selected genes only through rank sum test [6] without further
filtering (¢ = 0). Post-filtering chose genes of more informative by applying the
post-filtering algorithm to those selected by the traditional method. From Table
[, while the best prediction accuracy achieved by the post-filtering algorithm was
98.4% using 28 genes, the prediction accuracy could achieve 100% by the Batch
DSRPCL algorithm using only 13 genes. Moreover, we noticed the post-filtering
method often needed several iterations to reach a higher prediction accuracy,
but using the DSRPCL algorithm and its variants usually achieved the highest
prediction accuracy in the first iteration because the clustering process provided
some useful information for finding the informative genes.To compare with the
traditional clustering methods, we used the profile clustering program Clusterf]
written by Eisen to cluster genes on the colon dataset by using these methods.
Here, we set a = 0.005, 8 = 0.6, and used rank sum test. By letting the number
of cluster be 6, K-means clustering method completed the clustering after 35
iterations. The numbers of genes in every cluster were 75, 1042, 444, 28, 356 and
55, respectively. By using the hierarchical clustering method, when the genes
were divided into 6 clusters the numbers of genes in every cluster were 4, 293,
341,471, 5 and 886, respectively. From the results in Table[] it can be found that
the DSRPCL algorithm and its variants as the unsupervised clustering methods
were better than the traditional clustering methods. Particularly, the DSRPCL
methods not only needed not specify the number of clusters, but also led to
better prediction accuracies.

Table 5. The LOOCYV results of post-filtering algorithm using different clustering
methods (Numbers in brackets showed the number of selected informative genes)

hierarchical K-means Batch DSRPCL DSRPCL1 DSRPCL2 SARPCL
i=1 87.1% (16) 90.3% (19) 100% (13) 98.4% (17) 95.2% (16) 98.4% (13)
i=2 96.8% (82) 95.2% (73) 93.5% (59) 95.2% (59) 96.8% (58) 95.2% (59)
i=395.2% (166) 96.8% (153) 96.8% (147) 96.8% (119) 96.8% (122) 95.2% (147)

5 Conclusions

Traditional informative gene set selection methods are most simple and fast, but
selected genes may be highly correlated and redundant, which strongly influences
the prediction or diagnosis accuracy of a tumor. The post-filtering gene selection
algorithm tries to overcome this redundancy problem. However, it becomes very
slow if the number of genes is very large. Moreover, it is also difficult to explain

4 Which can be downloaded from http://rana.1lbl.gov
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these selected informative genes biologically. By utilizing the DSRPCL algorithm
and its variants to cluster genes automatically, we can divide genes into several
functional clusters without specifying the number of clusters in advance. In such
a way, the post-filtering gene selection algorithm performs more effectively on
each cluster due to the low computing complexity. Of course, the clustering pro-
cess itself is time-consuming, but it can result in some relatively uncorrelated
gene clusters which not only benefit the explainable biological meaning but also
aid selecting most unique and uncorrelated genes. All in all, the proposed infor-
mative gene set selection based on DSRPCL and redundancy analysis can achieve
higher diagnosis accuracy with a smaller number of informative genes and might
reduce the computing complexity and benefit the biological explanation.
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