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Abstract: As an analytic tool in medicine, particularly in radiology, deep learning is gaining much attention and opening a new
way for disease diagnosis. Nonetheless, it is rather challenging to acquire large-scale detailed labelled datasets in the field of
medical imaging. In fact, transfer learning provides a possible way to resolve this issue to a certain extent such that the
parameter learning of a neural network starts with its pre-trained weights learned from a large-scale dataset of certain similar
task, and fine-tunes on a small comprehensively annotated dataset for the particular target task. The main aim of this study is to
apply the deep learning model to detect the synovial fluid of human knee joint from magnetic resonance images. A specialized
convolutional neural network architecture is proposed for automated detection of human knee joint's synovial fluid. Two
independent datasets are used in the training, development, and evaluation of the proposed model. It is demonstrated by the
experimental results that the proposed model obtains high sensitivity, specificity, precision, and accuracy to the detection of
human knee joint's synovial fluid. As a result, this proposed approach provides a novel and feasible way for automating and
expediting the synovial fluid analysis.

1 Introduction
Object detection has been an important and challenging task in the
field of computer vision for the last two decades. It is a process of
finding an instance of object in an input image from one of the
given classes. If there exists such an instance of the object in the
image, the task of object detection is to determine its location or
bounding box and category [1]. There are various applications of
object detection such as self-driving vehicles, robot vision, and
human–machine interaction. As the object detection tasks become
more complicated, it is rather difficult for conventional machine
learning algorithms to extract effective features from training
images. Nonetheless, in recent years, deep learning has developed
smart techniques for extracting effective features from images
automatically [2]. Krizhevsky et al. [3] developed the powerful
deep neural network architecture, AlexNet, which attained the
excellent performance on ImageNet challenge for classification
task [4]. After that, several deep neural network architectures for
object detection have been established to achieve much better
results, such as Inception [5]. Actually, significant advancement
has been made on object detection mainly due to the improvement
of architecture of convolutional neural networks (CNNs), large-
scale comprehensively labelled datasets, and innovation of
processing devices. Thus, deep learning can provide an effective
way for detection of human body organs and their tissues and the
objective of this study is to apply it to the detection of synovial
fluid in human knee joints from magnetic resonance (MR) images.

In anatomy, knee joint is the most complex joint in human body,
which appears like a simple hinge joint in which the bones are so
articulated as to allow extensive movement in one plane. A knee
joint consists of three parts: patella, tibia, and femur. All of these
are line with the cartilage that yields less friction surface to achieve
different types of body movements. It is encircled by a capsule
producing synovial fluid, which serves as a joint lubricating fluid,
so that the knee joint can move in an efficient way [6]. Synovial

fluid is a viscoelastic liquid emerged in the synovial joints’
cavities. This fluid serves as lubricating agent to lessen friction
during movement between the cartilages of synovial joints [7]. It
also provides nutrition to the articular cartilage to the bones of the
joint. This fluid moves into the articular cartilage when the joint is
in rest and keep a thin layer on the articular cartilage surface when
the joint is active.

Human body makes an additional quantity of synovial fluid in
knee joint due to diseases or injury sometimes; blood, pus, or
crystalline substance may be added into the synovial fluid,
aggravating the joint and affecting knee to swell. Surgeons may
suggest knee MR image scan if they suspect abnormalities such as
an accumulation of fluid, baker's cyst, with an unknown cause
within knee joint. So, it has various significant clinical implications
to detect and analyse the synovial fluid of knee joints of a patient.
Actually, this helps diagnose the reason of joint inflammation. In
joint diseases like arthritis, the synovium of the joint is the main
place where inflammation appears.

In order to do so, the MR imaging system with powerful
magnet, radio frequency pulses, and a computer can be utilised to
reconstruct a comprehensive picture of organs and soft tissues
within human bodies. In fact, it can be used for body examination
together with anomalies of the head and backbone injuries and
abnormalities of the joints such as the hip and knee, heart problems
such as congenital heart disease. Consequently, the MR images are
valuable to prevent diseases, help diagnoses, prescribe drugs, and
evaluate how potent earlier medications have been [8]. Due to the
wide application and excellent evaluation performance of MR
imaging, X-ray and computed tomography have been abandoned to
examine most of knee and hip joints’ diseases. Organs and tissues
can be observed clearly via MR imaging, such as fibrocartilage and
hyaline. Cartilage and synovial-based diseases can also be detected
with the help of it [9]. MR imaging further supports the prompt
diagnosis and treatment of abnormal feature of femoral head in
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osteonecrosis as a result of its high contrast as well as good
resolution features [10]. Hence, it is an effective way to use the MR
image for detecting the synovial fluid. Indeed, surgeons often
analyse and diagnose the cartilage and synovial-based diseases
with the help of MR images. However, to the best of our
knowledge, there is no automated and effective synovial fluid
detection system available in medical centres. In fact, an effective
and efficient synovial fluid system can save time, decrease
subjectivity, and inaccuracy due to the tiredness of medical
specialists. This type of automatic system can greatly lessen the
workload of radiologists.

The objective of this research work is to detect the synovial
fluid of human knee joint automatically (rather than human) with
high accuracy from MR images. First, Digital Imaging and
Communications in Medicine (DICOM) files of human knee joint
are acquired from Shanghai Key Laboratory of Orthopaedic
Implants [11] for training the models, and from PC Hospital
Liaoning [12] for development and testing the models. As a matter
of fact, these datasets are annotated by the radiologists with the
help of PixelAnnotationTool program [13]. A specialised CNN
architecture is then proposed to solve this problem effectively and
efficiently. In fact, this network is initialised with the pre-trained
weights obtained on the Microsoft common objects in context
(COCO) dataset [14] via transfer learning. These weights are
further updated through the fine-tuning on the specific training set.
In this way, it can learn new features which are more precise to the
synovial fluid detection. Furthermore, the hyperparameters are
tuned to improve the performance of the proposed model.
Specifically, the hyperparameters are selected according to the
lowest average loss on the development or validation set. Finally,
the proposed model is evaluated on the test set.

For comparison, four state-of-the-art CNN architectures are
used: Inception-v2, ResNet-50, Inception-ResNet-v2, and
ResNet-101, being implemented in the same way as above, to
make the synovial fluid detection. Specifically, the proposed model
is compared with these four baseline models in terms of sensitivity,
specificity, precision, accuracy, and evaluation time. The MR
image annotations for the two datasets of human knee joint are
performed by two co-authors (G. S. and N. R.), both have more
than 10 years of experience in radiology field.

The remainder of the paper is organised as follows. Section 2
concisely explains recent medical applications using deep learning.
Section 3 briefly describes the detail of the proposed architecture
and baseline models which are used in this research work. Section
4 presents the experimental results of the proposed CNN
architecture as well as comparison with the baseline models.
Finally, Section 5 concludes the paper.

2 Deep learning to healthcare
Recently, deep learning is totally reshaping healthcare as an
industry. In fact, fast-paced developments of deep neural networks
have made progresses on medical imaging in an incredible way.
CNN-based healthcare aided systems can now offer medical
professional precise disease diagnosis and even assist doctors to
make better medical decisions. Although certain conventional
machine learning algorithms have been adopted in some healthcare
aided systems, they need human experts to design the feature
extractors which convert raw data into appropriate feature
representations. On the contrary, deep learning is a form of feature
learning and representation in which a machine receives raw data
and creates their own feature representations needed to detect the
patterns [15], which is more beneficial to the healthcare aided
systems than as conventional machine learning. In the following
paragraphs of this section, the major related works of deep learning
to healthcare are reviewed.

The classification of heartbeats via electrocardiogram is a time-
consuming and challenging task because there always exists certain
noise which corrupts the actual signals. In fact, the heartbeats can
be classified into five different classes namely fusion, non-ectopic,
ventricular ectopic, supraventricular ectopic, and unknown beats.
Acharya et al. [16] developed six layers’ network architecture to
classify arrhythmia and normal heart rhythm. Javadi and

Mirroshandel [17] further developed a deep model of 26
convolutional layers based on Visual Geometry Group (VGG)
network [18] for assessment of human sperm. They prepared 1540
sperm image collection, MHSMA dataset, from 235 subjects with
male factor infertility. Their experimental results showed good
accuracy for morphological deformities detection. In another study,
Hernandez et al. [19] investigated two to eight densely connected
layers’ networks to predict the force capabilities using the force
feasible set of the human upper-limbs. They created 17
musculoskeletal models based on anthropometric data of right
upper-limb. Their method could be used smoothly with real-time
feedback to evaluate human gesture and hand force control for
demanding tasks.

On the other hand, the deep network models trained on medical
images could reach the dermatologist-level result on identifying
skin malignancy. In fact, the recent deep learning methods excelled
the ordinary dermatologist in a contrast of predictions and the
judgements by a team of dermatologists on a photographic images
set. In such a work [20], the Inception network [21] was used for
the classification of skin lesions using a dataset of more than
hundred thousand clinical images. The doctors and machine
learning experts trained the model via retinal photographs to detect
diabetic retinopathy and diabetic macular oedema. In that research
work, the achieved results were very close to the performance of
eye specialist [22]. That group also showed that CNNs can extract
earlier unrecognised association between retinal image patterns and
age, sex, smoking status, and systolic blood pressure [23]. Both of
these retinal fundus photographs researches used Inception network
architecture [21] to train the model. Chang et al. [24] introduced
the SCIAN dataset which have about 2000 images for classification
of human sperm heads for semen analysis. In that work, they used
four classification techniques namely K-nearest neighbours [25],
naive-Bayes [26], decision trees [27], and support vector machine
[28] for classification of human sperm heads into five different
categories. Another research [29] related to human sperm
classification used VGG-based network. They achieved 72 and
62% classification accuracy in 3-out-of-3 and at least 2-out-of-3
expert agreement datasets, respectively. That approach shows the
potential of deep learning technologies to surpass specialists in
terms of reliability and accuracy.

All of the above works in the field of healthcare utilise the deep
learning approaches to make a remarkable success in medical
analysis and diagnosis. They certainly open new ways for
automatic medical diagnosis. However, these deep learning models
such as Inception network are not so beneficial to extract effective
features of synovial fluid of human knee joint from MR images due
to the complexity and specificity of this problem. In order to solve
this particular synovial fluid detection problem, a specialised deep
CNN architecture is designed and presented in the next section.

3 Models and methods
Inception [5] is a well-known deep network architecture. When it
needs to design a layer for an architecture, kernel size should be
carefully selected such as 5-by-5 or 3-by-3, or 1-by-1. That
network uses different kernel sizes and concatenate the results,
which makes the architecture of that network more powerful for
classification and regression tasks. As a matter of fact, the Residual
Network (ResNet) [30] is a deep neural network architecture which
can handle more sophisticated learning tasks. Usually, it faces two
problems with a learning task. First, the accuracy can saturate,
while the degradation may arise, which is triggered by the
overfitting. Second, there may appear the situation of vanishing or
exploding gradient, that is, the gradient becomes vanishingly small
or explodingly large to prevent the weights from modifying their
values. Fortunately, ResNet can deal with these problems by using
skip connections, which uses the residual mapping to preserve the
inputs. Xception network [31] uses the modified form of depthwise
separable convolutions. It is actually inspired by Inception-v3 in
which first apply pointwise convolution then use a depthwise
convolution. Therefore, that neural network architecture has better
ImageNet validation accuracy with less number of parameters in
comparison with Inception-v3. Another renowned deep neural
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network architecture is Inception-ResNet-v2 [32]. That network is
a combination and modification of Inception and ResNet networks.
As it uses skip connections and several kernel sizes, that network
attains better accuracy in a smaller number of epochs in
comparison with Inception-v4.

Being inspired by these advanced deep learning architectures, a
specialised CNN architecture is proposed to solve the problem of
automatic detection of synovial fluid in human knee joints, which
is a difficult task even for experienced radiologist. To tackle this
problem, the proposed architecture is composed of four main parts.
In the first part, there are 9 convolutional layers for detecting
simple features such as features of femur and tibia. In the second
part, there are 30 convolutional layers for detecting complex
patterns such as patella and bursa patterns. In the third part, there
are further 75 convolutional layers often looking for more complex
features such as features of synovial membrane. In the last part,
there are finally 9 convolutional layers for learning features which
are quite precise to describe the synovial fluid. There are total 125
convolutional layers in this architecture. After every three
convolutional layers, there is a residual mapping to preserve the
inputs and make the architecture more effective for this task. All
convolutional layers are followed by rectified linear units (ReLU)
[33] and batch normalisation [34]. Fig. 1 illustrates this
architecture's layout schematically in detail. ‘x’ with prefix 2, 9 and
24 signify that that block repeat prefix times.

In various medical fields, such as medical imaging and
oncology, it is hard to create a large-scale comprehensively labelled
dataset due to the data confidentiality and expensive labelling.
However, transfer learning [35] is a machine learning technique
such that a network trained on one problem is re-purposed on
another similar problem. It is an enhancement of learning in a new
problem through the knowledge transfer from a related problem
that has already been learned. The pre-trained neural network
model can be fine-tuned on a medium or small medical dataset so
that it can converge quicker and learn the problem-specific
features. With this tactic, the weights of the network can be
effectively and efficiently learned in the course of fine-tuning step
from the pre-trained weights, allowing the network to learn the
features precise to the new problem. In recent years, various
research works have shown that fine-tuning is capable for a range
of problems in the field of medicine [36]. According to this fact,
the weights of the proposed model can be initialised with the
learned values obtained on the COCO dataset via transfer learning.
Actually, the COCO dataset is an outstanding large-scale image
dataset aimed to help the advanced research in object recognition,
image captioning, segmentation, keypoint detection, and scene
understanding. It was an initiative to collect images that reflect
everyday scene and provides contextual information. In natural
images, several objects can be found in one image and each must
be labelled as a different object and segmented appropriately. This
dataset has 91 classes, and about 2.5 million labelled object
instances in more than 300 thousand images.

TensorFlow object detection application programming interface
(API) [37] is a framework for using TensorFlow [38] deep learning
library that allows to train the model and also evaluate it with ease.
The COCO dataset is used to train this API. For comparison, four
pre-trained well-known models are used from this API: Inception-
v2, ResNet-50, Inception-ResNet-v2, and ResNet-101, which are
considered as the baseline model-1, baseline model-2, baseline
model-3, and baseline model-4, respectively. Actually, these four
baseline models use the Mask RCNN [39], Atrous Convolutions
[40], and COCO dataset for training. The pre-trained models are
fine-tuned using TensorFlow deep learning platform with the
specific training set.

Fig. 2 shows the complete pipeline of the proposed approach for
detecting the synovial fluid of human knee joint from MR images. 
First, the MR images are pre-processed and annotated by expert
panel to form the training, development, and test sets. In pre-
processing step, the images are resized to 450-by-450 pixels. The
ground truth of the MR image is a binary image with the mask
pinpointing the synovial fluid. Then, the specialised CNN model is
fine-tuned with the training set. The hyperparameters are selected
according to the best performance of the model, i.e. the lowest
average loss, on the development set. Finally, the obtained model is
chosen for evaluation on the test set.

Fig. 1  Layout of the proposed CNN architecture. Note that all
convolutional layers are followed by ReLU [33] and batch normalisation
[34] (not included in the diagram). ‘FC’ signifies fully connected layer
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4 Experimental results
In this section, several experiments of the proposed CNN
architecture and baseline models are performed to detect the
synovial fluid of human knee joint from MR images. All of the MR
image annotations of the knee joint are performed by two co-
authors, radiologists (G. S. and N. R.), who have more than 10
years of radiology experiences. Throughout the experiments
NVIDIA GeForce GTX 1080 card with 8 GB GDDR5X memory is
used.

4.1 Training setting

DICOM files from Shanghai Key Laboratory of Orthopaedic
Implants of 49 subjects (mean age 41.7 years; 28 female subjects)
from 2015 to 2017 are acquired for training and 1433 images are
extracted in which 890 images (296 transverse, 296 coronal, and
298 sagittal planes) have synovial fluid (T2 and PD pulse
sequences) and 543 images (213 transverse, 151 coronal, and 179
sagittal planes) do not have synovial fluid. To make the model
more robust to numerous shapes of synovial fluid and to achieve
better generalisability, this dataset is augmented with the following
operations: horizontal flip, crop image, crop to aspect ratio, pixel
value scale, rotation, adjust brightness, adjust contrast, adjust hue,
adjust saturation, distort colour and black patches. There are total
17 196 images including 1433 original images and 15 763
augmented images for training. All of the subjects are de-identified
in pre-processing step.

As for the development and test sets, DICOM files are acquired
from PC Hospital Liaoning. There are 40 subjects (mean age 45.5
years; 17 female subjects) in this dataset. The first 15 subjects are
considered for development set and the remaining 25 subjects for
test set from this dataset. Splitting one dataset or combination of
the datasets randomly into training and testing can be considered a
restriction. Test set should be left out so that the generalisation
measures, such as sensitivity, and specificity will not be biased and
will show the performance of real model. In this study, independent
datasets are used for training and testing to prove the robustness of
the proposed approach. Thus, there is no overlap (same instance,
multiple views) exists between the training and test sets because of
the different datasets but the instances might be similar within the
training set due to the data augmentation. All of the knee joint MR

images are annotated by two co-authors, proficient medical
specialists. These annotations are used to create images of binary
mask as the same resolution as the MR images. All the pixels
within annotated area are labelled as synovial fluid, while rest of
them are labelled as none. Three models are fine-tuned, one for
each plane (coronal, sagittal, transverse), therefore, there are total
15 fine-tuned models; 12 for the baseline and three for the
proposed architecture.

Fig. 3 illustrates some typical MR images of the training,
development, and test sets in three planes. Table 1 shows the
training time as well as the hyperparameters which are used to fine-
tune the models for detecting the synovial fluid from the MR
images of the knee joint. The proposed CNN architecture has 30%
less training time in comparison with the baseline model-3 due to
the simplicity of this network. Fig. 4a shows the classification loss. 
In this subfigure, the classification loss can be seen in three planes
of the proposed and baseline models. Fig. 4b shows the localisation
loss during the training of the proposed and baseline models.
Fig. 4c shows the total loss of training. The total loss is the sum of
region proposal network (RPN) loss and box classifier loss. Fig. 4d
shows the training time for the knee joint of the proposed and
baseline models. According to this figure, it can conclude that the
proposed model takes about 7 min per epoch for each plane while
the baseline model takes about 9.1 min per epoch for each plane for
training of the knee joint. The average training MR image size of
the knee joint is ∼450-by-450 by three colour channels.

4.2 Hyperparameter configuration

The hyperparameters of the proposed and baseline models are
tuned with the development set. There are 360 knee MR images in
development set, in which 120 are transverse, 120 are sagittal, and
120 are coronal planes. This number is similar to the standard of
the ImageNet computer vision challenge [4], which has 50–100
images per object category for development set. The average
development MR image size of the knee joint is ∼512-by-512 by
three colour channels. Several hyperparameters are tuned to
improve the performance of the proposed CNN architecture and
baseline models. Adam [41] and Momentum [42] optimisers are
used with learning rates from 0.00001 to 0.0008, but it has been
found that the Momentum algorithm with momentum term 0.9

Fig. 2  Automated deep learning-based human knee joint's synovial fluid detection pipeline. For training set: extract all pulse sequences except T1 from 49
subjects. For development and test sets: extract coronal proton-density weighting with fat suppression (PDFS), sagittal PDFS, and transverse T2 weighting
with fat suppression (T2FS) from 15 subjects for development and 25 subjects for evaluation
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performs the best. The mini-batch size is set to 1. Various epochs
from 100 to 500 are used for fine-tuning, however, it hardly gets
any major improvement after 400 epochs. Due to limited number
of training MR images, dropout [43] is used during training to
avoid overfitting with a number of dropout rate between 0.2 and
0.5, and it makes significant improvement on the performance with
0.3 dropout rate.

Table 1 shows the near optimal hyperparameters, which are
selected according to the best performance of the models on the
development set. The model with the lowest average loss on the
development set is chosen for evaluation on the test set. The
average loss is the average of four losses. Table 2 shows the RPN

loss and box classifier loss on the development set for the proposed
and baseline models. This hyperparameter configuration is
optimised for the best performance of the models on the
development set.

4.3 Evaluation and comparison

In this section, the proposed and baseline models are evaluated and
compared on the test set for detecting the synovial fluid of human
knee joint in MR images. The percentage of synovial fluid images
for training, development, and testing in coronal, sagittal,
transverse planes are given in Fig. 5. In this figure, it can be seen

Fig. 3  Typical training, development, and test MR images of human knee joint of coronal (left), sagittal (middle), and transverse (right) planes
 

Table 1 Training time and hyperparameter configuration of the proposed and baseline models
CNN Learning Learning Mini-

batch
Epochs Dropout Data augmentation No. of Total

training
architecture algorithm rate size rate subjects time

(hours)
baseline
model-1

momentum 2 × 10−4 1 ∼400 0.3 horizontal flip, crop image, crop to aspect ratio, pixel
value scale, rotation, adjust brightness, adjust contrast,
adjust hue, adjust saturation, distort colour, and black

patches

49 ∼37.50

baseline
model-2

3 × 10−4 ∼81.57

baseline
model-3

∼182.16

baseline
model-4

∼127.53

proposed model ∼140.15
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that the similar number of synovial fluid images are available in
three planes for training, development as well as for testing. Some
typical evaluation results of detecting synovial fluid are shown in
Fig. 6 in three planes. The detection time of synovial fluid could be

much faster if multiple graphics processing unit or tensor
processing unit are used.

For evaluation, there are 582 knee joint MR images in the test
set, in which 200 are transverse, 194 are sagittal, and 188 are
coronal planes. The average test MR image size of the knee joint is

Fig. 4  Comparison of proposed and baseline models in coronal, sagittal, and transverse planes
(a) Classification loss, (b) Localisation loss, (c) Total loss, (d) Training time for the baseline model-3 and proposed model for each plane. ‘B’ indicates for the baseline model-3 and
‘P’ indicates for the proposed model

 
Table 2 Development losses of the proposed and baseline models in coronal, sagittal, and transverse planes
CNN architecture Plane No. of subjects RPN loss Box classifier loss

Localisation loss Objectness loss Classification loss Localisation loss
baseline model-1 coronal 15 0.1024 0.1841 0.0801 0.0391

sagittal 0.1108 0.2254 0.1012 0.0512
transverse 0.0269 0.1722 0.0465 0.0212

overall 0.0800 0.1939 0.0759 0.0372
baseline model-2 coronal 0.1547 0.2470 0.0942 0.0462

sagittal 0.1834 0.3978 0.1057 0.0530
transverse 0.0493 0.1884 0.0477 0.0215

overall 0.1291 0.2773 0.0825 0.0402
baseline model-3 coronal 0.1084 0.2309 0.0764 0.0341

sagittal 0.1446 0.3247 0.1108 0.0636
transverse 0.0346 0.1576 0.0541 0.0196

overall 0.0959 0.2377 0.0804 0.0391
baseline model-4 coronal 0.1344 0.2056 0.1068 0.0483

sagittal 0.1940 0.3794 0.1287 0.0635
transverse 0.0288 0.1151 0.0831 0.0471

overall 0.1191 0.2334 0.1062 0.0529
proposed model coronal 0.1239 0.1870 0.1026 0.0463

sagittal 0.1801 0.3906 0.0979 0.0642
transverse 0.0383 0.1212 0.0632 0.0266

overall 0.1141 0.2329 0.0879 0.0457
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roughly 512-by-512 by three colour channels. If the centre of
predicted mask is within the ground truth or vice versa, it
considered the detection result as a true-positive (TP). Fig. 6 shows
the typical detection results of synovial fluids of the knee joint by
the proposed and baseline models. Table 3 shows a detailed
comparison of the proposed and baseline models. All of the
optimal metrics of the baseline models are less than those of the
proposed model in coronal sagittal and transverse planes, except
for the specificity of the baseline model-3 on sagittal plane. The
overall values in Tables 2 and 3 are the corresponding weighted
average values of coronal, sagittal, and transverse planes. The
proposed model is 1.1 times faster than the baseline model-3 for
detecting synovial fluid of the knee joint. The bold values in this
table show the best results. The false-positive (FP) and false-
negative (FN) indices may be reduced by increasing the number of

training examples. The accuracy of the proposed model for
detecting the synovial fluid is approximately similar in three
planes. Despite the limited number of training examples, it
achieves high precision, sensitivity, and specificity. These results
support the statement that deep learning models can be helpful to
medical practitioners during medical imaging interpretation. In
comparison to the medical expert, who requires more than 5 h to
trace/contour the synovial fluid from 25 subjects, with the help of
deep learning it can be easily done within 7 min.

4.4 Discussion

The objective of this work is to make and investigate a deep
learning model for synovial fluid detection on knee MR images.
Due to incorrect or late diagnosis, a few cases of wrong treatment

Fig. 5  Percentages of synovial fluid images in coronal, sagittal, and transverse planes for training, development, and test sets. ‘P’ denotes for positive
example and ‘N’ denotes for negative example of synovial fluid

 

Fig. 6  Successful detection of human knee joint's synovial fluid instances in coronal (left), sagittal (middle), and transverse (right) planes of the baseline
model-3 and proposed model
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have been filed. Since effect of treatment takes time to appear,
sometimes misdiagnosis leads to an increased need for surgical
treatment and hospitalisation duration [44]. Developing an
automatic synovial fluid detection system could be good to lessen
the workload of radiologists or even orthopaedic surgeons and also
decreasing the subjectivity, inaccuracies due to the tiredness of
medical specialists. This proposed work can also be useful when
experienced radiologists are not readily available and for low-
experienced clinicians in the third world countries. This detection
system can be integrated with the MR imaging machines. This
proposed method is easily extensible to several image modalities
such as radiography to detect the joint dislocation or fractured
bones, elastography to diagnose the presence or status of disease in
soft tissues.

It can be found from Table 3 that those baseline models are not
so powerful to extract effective features from the MR images and
to detect the synovial fluid of human knee joint in comparison with
the proposed model according to the specificity and complexity. It
even finds out that the proposed model improves the accuracy by a
factor of 10%, and decrease as the evaluation time by a factor of
9% compared with the baseline model-3 in the experiments.

These results provide strong support to that the deep learning
approach is able to play a key role in assisting doctors and
healthcare systems, but more research is required to evaluate the
deep models in clinical setting. It is worth indicating the limitations
of this deep learning-based detection system. As mentioned before,
experiments are conducted with 89 (training: 49, development: 15,
test: 25) subjects. This number of subjects is relatively small.
Therefore, to obtain better generalisability, it is essential to increase
the number of subjects in the future. Secondly, due to the limited
computational power and memory, the training time is very high.
The small size of the panel of medical professionals, two co-
authors, is also main limitation of this research.

5 Conclusion
A deep learning-based method for automatic detection of synovial
fluid from MR images of human knee joint has been proposed in
this research. The specialised deep CNN architecture is designed
for the complicated synovial fluid detection task and the transfer
learning is implemented from the pre-trained weights of COCO
dataset. The experimental results demonstrate that the proposed
deep learning approach with transfer learning mechanism can

detect the synovial fluid of human knee joint with high accuracy.
While these results are encouraging, further validation and
improvement are still necessary before it can be entirely executed
in medical practice. MR imaging datasets of human knee joint for
synovial fluid detection are introduced to facilitate future research.
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