
4894 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 10, OCTOBER 2018

A Two-Layer Mixture Model of Gaussian
Process Functional Regressions and

Its MCMC EM Algorithm
Di Wu and Jinwen Ma

Abstract— The mixture of Gaussian processes (GPs) is capable
of learning any general stochastic process based on a given set
of (sample) curves for the regression and prediction problems.
However, it is ineffective for curve clustering and prediction,
when the sample curves are derived from different stochastic
processes as independent sources linearly mixed together. In this
paper, we propose a two-layer mixture model of GP functional
regressions (GPFRs) to describe such a mixture of general
stochastic processes or independent sources, especially for curve
clustering and prediction. Specifically, in the lower layer, the
mixture of GPFRs (MGPFRs) is developed for a cluster (or class)
of curves within the input space. In the higher layer, the mixture
of MGPFRs is further established to divide the curves into
clusters according to its components in the output space. For
the parameter estimation of the two-layer mixture of GPFRs, we
develop a Monte Carlo EM algorithm based on a Monte Carlo
Markov chain (MCMC) method, in short, the MCMC EM algo-
rithm. We validate the hierarchical mixture of GPFRs and
MCMC EM algorithm using synthetic and real-world data
sets. Our results show that our new model outperforms the
conventional mixture models in curve clustering and prediction.

Index Terms— Curve clustering and prediction, EM algo-
rithm, Gaussian process (GP), mixture of Gaussian processes
(MGP/mix-GP), parameter learning.

I. INTRODUCTION

GAUSSIAN process (GP) is a powerful learning model
for time series regression and classification [1]–[4].

Actually, it has been successfully applied in the fields of
pattern recognition, image processing, computer vision, and so
on. However, there are two major limitations in the GP model
for practical applications. First, a single GP cannot deal with
data with a multimodal distribution that frequently appears
in practice. Second, it is usually assumed that the mean
function of the GP is zero. That is, the mean function is not
characterized with respect to the input variables. Nevertheless,
in certain complex cases, this input dependence should be
considered. To date, there is no effective solution to such
problems.
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In order to handle the multimodal data set, Tresp [5]
proposed a mixture of GPs (MGP), where the mean functions
of GPs were still assumed to be zero. Specifically, each
GP was considered as an expert, and thus the MGP can be
viewed as an extension of the mixture of experts [6], [7].
Since then, various MGP models have been suggested and
their applications have extended greatly in recent years. For
the parameter estimation of MGPs, there are three main
approaches: variational Bayesian (VB) inference, Monte Carlo
Markov chain (MCMC), and EM algorithm. Specifically,
VB assumes that the parameters and indicator variables are
conditionally independent under the given data set, and aims to
approximate the true posterior with a factorized form [8], [9],
which allows to compute the posterior efficiently. However,
such a factorial representation may be inaccurate in that
the approximate posterior deviates a lot from the true one,
especially when those parameters are highly correlated. The
MCMC sampling seems to be a more accurate approximation
method of the posterior [10]–[13]. However, the time con-
sumption of MCMC is rather high and it is difficult to diagnose
the convergence result.

In general, EM algorithm is an efficient and effective
learning approach for mixture modeling [14], [15]. As for
the MGP models, some approximation mechanisms must be
adopted, because the computational complexity of the exact
Q-function is exponential. In the heuristic EM algorithm [5],
some parameters were estimated directly without any learning
process, rather than through maximizing the Q-function. Such
an estimation in fact could be blind and lacked the guidance
of the data set. Variational EM algorithms [16]–[18] approxi-
mated the posterior with variational inference in E-step, which
shared the same shortcomings with VB. The leave-one-out
cross-validation (LOOCV) EM algorithm [19] computed the
predictive output distribution for each training sample via
the LOOCV mechanism, and summed up the expectations
of these log predictive distributions to form the Q-function.
However, the LOOCV approximation was not a very effective
approximation of the Q-function.

Recently, the hard-cut EM algorithms [20]–[22] were
suggested to divide the samples into different components
clearly via certain clustering methods and then estimate
the parameters of each GP separately in the M-step. This
hard-cut mechanism really speeded up the algorithm, but
might impair the algorithmic convergence, especially when
these GPs are strongly overlapped. On the other hand, the
MCMC method was also adopted to sample the hidden
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variables, so that the Q-function can be computed and esti-
mated with a given set of simulated samples of the hidden
variables via MCMC sampling [23], [24]. In fact, this Monte
Carlo EM algorithm can lead to a good result when the number
of simulated samples is properly selected, and we will adopt
this approximation mechanism for the EM algorithm in this
paper.

In the above MGP models, the mean functions of the
GPs are generally assumed to be zero. Accordingly, the
estimated GPs are mainly separated in the input or time region.
That is, from the viewpoint of a sample curve, each estimated
GP is just a piece of the curve mainly located on an interval
of the input region. Therefore, the learning algorithm aims
to separate those GPs from the input region. This kind of
multimodal data sets of mixture of GPs are referred to as
Type I data sets. On the other hand, there is another kind
of multimodal data sets of mixture of GPs that cannot be
separated from the input region. For clarity, we refer to them
as Type II data sets. A typical data set of Type II is generated
from a mixture of GPs, where all the GPs are overlapped in the
whole input region. In this case, each sample curve is subject
to a GP and there are a number of sample curves belonging
to different GPs. Since these GPs or sample curves cannot be
separated in the input region, we have to separate them in the
output space. In doing so, we can utilize the mean functions
of GPs in the mixture of GPs. In fact, Shi et al. [25] proposed
the GP functional regression (GPFR) as well as the mixture of
GPFRs (mix-GPFR) [26], [27] to make the mean functions be
learnable and flexible with the given data set. Specifically, the
mix-GPFR model had improved its original mixture model of
GPs (mix-GP) with the mean functions being zero [28], [29].
For parameter learning, the conventional EM algorithm and
the MCMC method were used for the mix-GPFR model as
well as the mix-GP model. For each GPFR model in the
mixture, its mean function is a linear sum of certain basis
functions, and the mixing proportions can be learned with the
data set.

For many Type II data sets, each sample curve is subject to
a general stochastic process, not just a single GP. In this situa-
tion, the sample curves are generated from a mixture of some
general stochastic processes or independent sources, which
often appears in practical applications, especially for curve
clustering and prediction. Obviously, the mix-GPFR cannot
describe this problem accurately. However, using a divide-and-
conquer strategy, we can solve this difficult problem through
a two-layer mixture model of GPs. First, we consider these
sample curves as Type I data set and characterize them using
a general MGP. For further separation in the output space, we
use the GPFR model instead of the original GP model. Second,
we use the mixture of the learned MGPs to characterize the
Type II data set. Together, we construct a two-layer mixture
of GPFRs (TMGPFRs).

In this paper, along the above analysis and direction, we
propose a TMGPFR model for the complex Type II data
sets. In the lower layer, the mixture of GPFRs (MGPFR)
is established for each cluster of sample curves, and in the
higher layer, the mixture of MGPFRs is further established
for all the sample curves or the whole data set. Furthermore,

a Monte Carlo EM algorithm is developed for the parameter
estimation of the TMGPFR model using MCMC sampling.
For clarity, this Monte Carlo EM algorithm is referred to
as the MCMC EM algorithm. Moreover, we validate the
proposed TMGPFR model and the MCMC EM algorithm
using synthetic data sets and two real data sets, and show
that the TMGPFR model outperforms the conventional mixture
models in curve clustering and prediction.

The remainder of this paper is organized as follows. The
GP and GPFR models are introduced in Section II. Section III
presents the TMGPFR model. The MCMC EM algorithm is
further derived in Section IV. The experimental results are
summarized in Section V. Finally, we conclude this paper
in Section VI.

II. GP AND GPFR MODELS

We begin with a brief introduction of the GP model. In fact,
the GP is a common and important stochastic process in
which any group of states (as random variables) are subject
to a Gaussian distribution. Suppose that y(x) ∈ R is a
stochastic process with an input variable x ∈ R. For any
given input data set {x1, . . . , xN } with any natural number N,
y(x) is defined as a GP if y = [y1, . . . , yN ]T , where yn =
y(xn) is subject to a Gaussian distribution N (μ, C), where
μ = [μ(x1), . . . , μ(xN )]T and C = [c(xn, xn�)]N×N in which
μ(x) is a mean function and c(x, x �) is a kernel or covariance
function. Mathematically, it is denoted as

y(x) ∼ GP[μ(x), c(x, x �)].
A widely used kernel function parameterized by θ in the

GP model takes the following form:
c(xn, xn� |θ)

= (θ(1))2 exp

[
−1

2
(θ(2))2(xn − xn�)2

]
+ (θ(3))2δnn� (1)

where δnn� is the Kronecker delta function and θ =
[θ(1), θ (2), θ (3)] in which θ(3) essentially controls the noise
in the GP model. We adopt this kernel function in the
GP model.

On the other hand, the mean function μ(x) of the GP model
is quite difficult to be estimated. In the literature, it is generally
assumed to be zero. Occasionally, it is assumed to be a linear
or other simple function of the input variable, which often
leads to an unsatisfactory result. In order to improve this
situation, Shi et al. [25] proposed the GPFR model in which a
number of B-spline basis functions [30] were introduced and
the mean function was assumed to be a linear combination of
these basis functions with the coefficients estimated from the
given data set. Specifically, the GPFR model can be described
as follows.

With a mean function μ(x), a GP y(x) is mathematically
equivalent to that

y(x) = μ(x) + τ (x)

where τ (x) ∼ GP[0, c(x, x �)]. Suppose that φ = [φ1(x), . . . ,
φD(x)] in which each φ j (x) is a B-spline basis function.
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Then, μ(x) can be approximated by the following functional
regression model:

μ(x) = φb =
D∑

j=1

b jφ j (x) (2)

where b = [b1, . . . , bD]T is a D-dimensional coefficient
vector. Thus, the GPFR model can be described by

y(x) ∼ GPFR(x; b, θ).

In this GPFR model, there are two types of parameters,
b and θ . In fact, the maximum likelihood (ML) approach
can be applied to estimate these two types of parameters
alternately step by step, which generally leads to a satisfactory
estimation result. Several methods have been developed for
the estimation of specific parameter θ , including the gradient-
ascent ML method, expectation propagation, Laplace’s approx-
imation, variational bounds, and so on (refer to [1] and [31]
for details). Generally, these methods can lead to a good
estimation result. As we consider the situation that the GPs are
strongly dependent on the input variable via the mean function,
the GPFR model as well as the alternating ML estimation
method will be utilized in our following network architecture
and learning paradigm.

III. TMGPFR MODEL

In this section, we present the TMGPFR model for the
complex Type II data sets. In the lower layer, an MGPFR
is employed to model each cluster or class of complex curves,
which can be divided into a number of curve segments that are
subject to GPs. Particularly, the mean functions are not zero,
but subject to the functional regression model given by (2).
In the higher layer, a mixture of MGPFRs is further
employed to describe all the curves structurally and then
make the curve clustering and prediction in a more reasonable
way.

A. Lower Layer: The MGPFR Model

The MGPFR model is a mixture of GPFRs located on some
disjoint intervals of the input region. That is, the group of curve
segments located on an interval are all subject to a GPFR. For
clarity, we assume that there are a cluster of M curves or
batches, as denoted by

D = {(xmn, ymn)|m = 1, . . . , M; n = 1, . . . , Nm }
where each point in a curve is referred to as a sample. It should
be noted that D and D are different notations. On the other
hand, there are G GPFRs or disjoint intervals of the input
region, i.e., the gth GPFR yg(x) is mainly located within the
gth interval, being denoted by

yg(x) ∼ GPFR(x; bg, θg) (3)

where g = 1, . . . , G. In each curve, all samples are divided
into G groups according to G GPFR models, respectively.
That is, each group consists of the samples subject to a
GPFR model. By combining these GPFRs in the input region,

we have the MGPFR model. The details of the MGPFR model
with the data set are given as follows.

The association of a sample with respect to the groups
is described by an indicator variable z(mn)

g , i.e., if the
nth sample of the mth curve belongs to the gth group,
z(mn)

g = 1; otherwise, z(mn)
g = 0. So, z(mn)

g is subject to

P(z(mn)
g = 1) = ηg

where
∑G

g=1 ηg = 1. Under the condition that the indicator
variables with respect to the gth group are 1, the input variable
xmn is subject to a Gaussian distribution, i.e.,

xmn|(z(mn)
g = 1) ∼ N (hg, s2

g)

where hg and sg are the mean and standard deviation (SD)
of the distribution, respectively. For mathematical details,
Gaussian distribution is described in Section 1 of the
Supplementary Material. Furthermore, yg(x) is subject to a
GPFR model given by (3).

It is clear that the information flow direction of the MGPFR
model is just z(mn)

g → xmn → ymn . In fact, the MGPFR model
is quite different from the mix-GPFR model, since the sample
curves are divided into GPFRs from the output space in the
mix-GPFR model, that is, a sample curve is completely subject
to a GPFR model, which limits the capability of learning more
complex curves.

B. Higher Layer: The Mixture of MGPFRs

According to the above description, the MGPFR model is a
complete model, which can solve the modeling of any stochas-
tic process with a set of sample curves. Indeed, it works well in
certain situations. However, if these curves belong to different
clusters associated with different mean functions or kernel
functions, the MGPFR model cannot characterize them well
and we need to consider a more flexible architecture. Naturally,
the mixture of MGPFRs owns such an architecture and we
employ it as the second layer. In this way, those MGPFRs
for different clusters of curves become the components of the
new mixture and each sample curve belongs to one component.
As a whole, it is just the TMGPFR.

We assume that there are K components corresponding to
K clusters of complex curves denoted by D in the same
manner, but generated from a TMGPFR model. For the
kth component or MGPFR, there are Gk GFPRs, that is,
each subcomponent stochastic process ykg(x) is subject to a
particular GPFR model in its gth interval

ykg(x) ∼ GPFR(x; bkg, θkg) (4)

where g = 1, . . . , Gk . As the MGPFR with Gk-specific
GPFRs, the kth component can be described in the same way
as in Section III-A. Together, we present the mathematical
details of the TMGPFR model as follows.

The association of a sample curve with respect to the
components (i.e., MGPFRs) in the higher layer mixture can be

described by an indicator variable z(m)
k , i.e., if the mth sample

curve belongs to the kth component, z(m)
k = 1; otherwise,
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Fig. 1. (a) Information flowchart of the variables with the parameters in
the TMGPFR model. (b) Hierarchical structure of the TMGPFR model: the
lower layer consists of GPFRs, the middle layer consists of MGPFRs, and
the higher layer is a mixture of MGPFRs.

z(m)
k = 0. Moreover, z(m)

k is subject to the following probability
distribution:

P(z(m)
k = 1) = πk

where
∑K

k=1 πk = 1.
Furthermore, the association of a sample in a curve of

the kth component (or cluster) with respect to the groups
(i.e., GPFRs) in the lower layer mixture can be described
by another indicator variable z(mn)

g|k , i.e., if the nth sample
of the mth curve belongs to the gth group on the condition
that the mth curve belongs to the kth component, z(mn)

g|k = 1;

otherwise, z(mn)
g|k = 0. Moreover, z(mn)

g|k is subject to the
following probability distribution:

P(z(mn)
g|k = 1) = ηg|k

where
∑Gk

g=1 ηg|k = 1. Let z(mn)
kg = z(m)

k z(mn)
g|k and assume that

the input variable is subject to a Gaussian distribution in each
group, that is

xmn|(z(mn)
kg = 1) ∼ N (hkg , s2

kg)

and y(x) is subject to a GPFR model given by (4).
Clearly, the information flow direction of the TMGPFR

model is (z(m)
k , z(mn)

g|k ) → xmn → ymn and the detailed
information flowchart is also shown in Fig. 1(a). The complete
structure of the TMGPFR model is shown in Fig. 1(b).

For clarity and analysis, we denote the set of all the
parameters in the TMGPFR model by

� = {(πk, ηg|k,�kg)|k = 1, . . . , K ; g = 1, . . . , Gk}
where �kg = {hkg, skg , bkg , θkg}, the m-th curve data set
by Dm = {(xmn, ymn)|n = 1, . . . , Nm }, the set of all the
indicator variables for the lower layer mixture by a tensor
Z = {Z(m)

k |m = 1, . . . , M; k = 1, . . . , K } with its component
matrixes Z(m)

k = (z(mn)
g|k )Nm×Gk (i.e., for n = 1, . . . , Nm ; g =

1, . . . , Gk), and the set of all the indicator variables for the
higher layer mixture by a matrix A = (z(m)

k )M×K (i.e., for
m = 1, . . . , M; k = 1, . . . , K ). Finally, the total log likelihood
function, L, can be expressed by

L(�,Z,A) =
M∑

m=1

K∑
k=1

z(m)
k ln P(Dm ,Z(m)

k |�) (5)

where

P(Dm ,Z(m)
k |�)

= πk

Gk∏
g=1

{
Nm∏

n=1

[ηg|k p(xmn|�kg)]z(mn)
g|k p(y(m)

g|k |x(m)
g|k ,�kg)

}

with x(m)
g|k = [xmn|z(mn)

g|k = 1; n = 1, . . . , Nm ] is just the col-

umn vector of xmn belonging to the gth group and y(m)
g|k is

defined for ymn in the same way as x(m)
g|k .

IV. MCMC EM ALGORITHM FOR THE TMGPFR MODEL

In this section, we establish a feasible EM algorithm for
identifying the parameters of the TMGPFR model. Since
the time complexity of the conventional EM algorithm
is of exponential order in this situation, we utilize the
MCMC method to estimate the Q-function so that the EM pro-
cedure can be feasibly implemented with a Monte Carlo
estimated Q-function, i.e., Q̂-function.

A. Derivation of Q̂-function

In the design of EM algorithm, the Q-function is a key to
the computation of both E-step and M-step. However, for the
TMGPFR model, there are two intractable problems about the
Q-function.

1) The Q-function is difficult to be explicitly expressed,
since there are two different indicator variables z(m)

k and
z(mn)

g|k involved in the two-layer mixture structure.
2) The time complexity of calculating the Q-function is of

exponential order, since all samples are not independent.
In fact, the samples belonging to a GPFR model are strongly
dependent. In order to overcome the first problem, we consider
two kinds of indicator variables separately and express the
Q-function by two consecutive steps.

We begin to derive F(�,Z|�̂), which is the conditional
expectation of the log likelihood L(�,Z,A) [given by (5)]
with respect to the indicator variable matrix A for the
higher layer mixture. For convenience, we let Z(m) =
{Z(m)

k |k = 1, . . . , K }. We then have

F(�,Z|�̂) = EA[L(�,Z,A)|D,Z, �̂]

=
M∑

m=1

K∑
k=1

E[z(m)
k |D,Z(m), �̂] ln P(Dm ,Z(m)

k |�).

We further obtain the Q-function, i.e., Q(�|�̂), of the
EM algorithm for the TMGPFR model, which is just the
expectation of F(�,Z|�̂) with respect to the indicator vari-
able tensor Z for the lower layer mixture

Q(�|�̂) = EZ [F(�,Z|�̂)|D, �̂]
=

∑
Z

P(Z|D, �̂)F(�,Z|�̂)

where P(Z|D, �̂) ∝ ∏M
m=1

∏K
k=1 P(Dm ,Z(m)

k |�̂).
As for the second problem, we utilize a specific MCMC

method to estimate the above Q-function. For clarity, we
denote the i th simulated sample of each indicator variable
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z(mn)
g|k by z(mni)

g|k for i = 1, . . . , I . In addition, we define

Z(i) by replacing every z(mn)
g|k of Z with z(mni)

g|k , and all the
notations about the i th simulated sample are defined in the
same way. Actually, in our complete MCMC sampling process,
we generate I simulated samples of the indicator variable
tensor Z according to P(Z|D, �̂) via a specialized Gibbs
sampling procedure. With this set of the MCMC samples, the
Q̂-function, i.e., the estimate of Q-function, can be computed
by

Q̂(�|�̂) = 1

I

I∑
i=1

F(�,Z(i)|�̂)

= 1

I

I∑
i=1

M∑
m=1

K∑
k=1

α
(mi)
k ln P(Dm ,Z(mi)

k |�) (6)

where α
(mi)
k is computed in the following way:

α
(mi)
k = E[z(m)

k |D,Z(mi), �̂]

∝ π̂
(m)
k

Gk∏
g=1

[ Nm∏
n=1

p(xmn|�̂kg)
z(mni)

g|k p(y(mi)
g|k |x(mi)

g|k , �̂kg)

]

(7)

with
∑K

k=1 α
(mi)
k = 1.

B. Algorithmic Implementation

Based on the Q̂-function derived in Section IV-A, the
MCMC EM algorithm of the TMGPFR model can be imple-
mented by five steps in Algorithm 1. For clarity, we divide the
E-step into two substeps, denoted as “E1-step” and “E2-step”
respectively.

During each iteration of the MCMC EM algorithm, the
simulated samples Z(1), . . . ,Z(I ) and the parameter set �
are updated iteratively in the E-step and M-step, respectively.
For the conventional EM algorithm, the convergence criterion
is generally set by (Qr − Qr−1)/|Qr−1| < ε. However, as
for the MCMC EM algorithm, Q̂r may fluctuate during the
learning process due to the randomness of simulated samples.
Therefore, we adopt a relative long-term convergence criterion
as [(Q̂r + Q̂r−1) − (Q̂r−2 + Q̂r−3)]/|Q̂r−2 + Q̂r−3| < ε.
It has been found that the threshold value ε = 0.002 works
well in our experiments. On the other hand, we also adopt
r ≤ T to avoid that the algorithm may be too slow in some
special situations. It has also been found from the experiments
that the algorithm always converges around the 20th iteration,
so we set T = 24.

In fact, as long as the Hierarchical Blocking Gibbs Sam-
pling (HBGS) is properly implemented, this MCMC EM
algorithm is quite effective for learning the parameters of
the TMGPFR model. Although it may be sensitive to the
initialization of the indicator variables for the lower layer
mixture, we have found that the k-means algorithm works well
in practice for initialization. For the MGPFR model, we can
also establish such an MCMC EM algorithm by using the
HBGS method for its indicator variables in the same way.
Since the MGPFR model is also a new development of the
general MGP model, its experimental results with the MCMC

Algorithm 1 MCMC EM Algorithm for TMGPFRs
Input: D, K , {Gk}, D.

Output: �, {α(mi)
k }, {z(mni)

g|k }, {Q̂r }.
1: Initialize z(m)

k by clustering all the curves into K compo-
nents, i.e., if the m-th curve belongs to the k-th cluster,
z(m)

k = 1; otherwise, z(m)
k = 0. In the same way, initialize

z(mn)
g|k by clustering {xm1, . . . , xmNm } into Gk groups. And

then, initialize the parameters of � with their ML estimators
by an ML estimator. Set r = 1, where r is the number of
current iteration.

2: E1-step. With �̂, generate a series of simulated samples
Z(1), . . . ,Z(I ) of the indicator variable tensor Z by our
specialized Hierarchical Blocking Gibbs Sampling (HBGS)
method that is described in detail in Section 2 of the
Supplementary Material.

3: E2-step. Calculate α
(mi)
k by (7). According to z(mni)

g|k and

α
(mi)
k , Q̂(�|�̂) is further calculated by (6).

4: M-step. Solve � by maximizing the Q̂-function. The
detailed process is given in Section 3 of the Supplementary
Material.

5: If [(Q̂r + Q̂r−1) − (Q̂r−2 + Q̂r−3)]/|Q̂r−2 + Q̂r−3| < ε
or r ≥ T, where Q̂r is the value of Q̂-function at the end
of the r -th iteration and T is set as the largest number of
iterations, stop; otherwise, r = r + 1 and return to Step 2,
i.e., E1-step.

EM algorithm are also given and compared in Section 6 of
the Supplementary Material.

As a general EM algorithm, this MCMC EM algorithm
needs to set K , the number of major components, correctly
or consistently with the structure of the data; otherwise,
we cannot get a reasonable result on curve clustering and
prediction. This is a model selection problem related with the
finite mixture model and the EM algorithm. In the structure
of the TMGPFR model, Gk can be set sufficiently large
to guarantee that each MGPFR model can describe a curve
cluster accurately. The selection of K becomes very important,
since it should be equal to the number of clusters or classes of
the curves, which is generally a very challenging problem to
estimate in practice. However, we can utilize the functional
PCA method [32] to reduce the dimension of the curves
remarkably and then apply certain automated model selection
algorithms [33]–[36] to obtain the true value of K for a
given data set. Certainly, the competitive learning mechanisms
involved in these automated model selection algorithms may
be introduced into the MCMC EM algorithm, so that the model
selection can be made automatically during the parameter
learning. In fact, a dynamical model selection mechanism was
already proposed for the hard-cut EM algorithm for the MGP
model with a synchronously balancing criterion [37], while
the reversible jump MCMC framework was also applied to
predict the possible K for the mix-GP model [29]. However,
since the structure of the TMGPFR model is hierarchical and
the model selection involves G1, · · · , GK and D, the task
of automated model selection becomes rather difficult and
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we put off this exploration in the future. But for a relatively
small-scale problem, we can use the cross-validation method
to select the best K for a data set and model to make the
curve clustering and prediction. The cross-validation method
for model selection is further described in Section 5 of the
Supplementary Material.

After the establishment of the MCMC EM algorithm, we
further introduce our prediction method for the TMGPFR
model. A test curve can be defined as the (M + 1)th curve
denoted by DM+1 = {(xM+1,n, yM+1,n)|n = 1, . . . , NM+1}.
Our purpose is to make a reasonable prediction y∗ at a
new input x∗ in the (M + 1)th curve. After � is finally
estimated by our EM algorithm, we calculate z(M+1,n,i)

g|k by the
HBGS method. Thus, the predictive output is given by

ŷ(i)
kg = φ∗bkg + c∗(C(M+1,i)

g|k
)−1(y(M+1,i)

g|k − �
(M+1,i)
g|k bkg

)
where φ∗ = [φ1(x∗), . . . , φD(x∗)]
C(mi)

g|k =[
c(xmn, xmn� )|z(mni)

g|k = z(mn�i)
g|k =1; n, n� =1, . . . , Nm

]
which is the kernel-based covariance matrix of the gth GPFR,
�

(mi)
g|k = [φ j (xmn)|z(mni)

g|k = 1; n = 1, . . . , Nm ; j = 1, . . . , D]
is the matrix of φ j (xmn), in which the number of columns
is D, and c∗ = [c(x∗, xM+1,n)|z(M+1,n,i)

g|k = 1; n = 1, . . . ,

NM+1] represents a row vector of c(x∗, xM+1,n). As a result,
we have the overall predictive output as follows:

ŷ∗ = 1

I

I∑
i=1

K∑
k=1

α
(M+1,i)
k

Gk∑
g=1

α∗
g|k ŷ(i)

kg

where α
(M+1,i)
k is also obtained by (7) and α∗

g|k =
E[z∗

g|k = 1|x∗,�] = ηg|k p(x∗|�kg)/
∑Gk

g=1 ηg|k p(x∗|�kg).

V. EXPERIMENTAL RESULTS

In this section, we test the TMGPFR model on some typical
synthetic data sets and two real-world data sets. We also
compare them with the GP, MGP, mix-GP, GPFR, mix-GPFR,
and MGPFR models in the literature. It should be noted that
the mix-GP, MGP, and GP models assume that their GPs
have zero mean functions and the MGP model consists of
some separated GPs along the input region. The connections
between all these models are further discussed in Section 4 of
the Supplementary Material.

A. On Synthetic Data Sets of the TMGPFR Model

We begin to test the TMGPFR model on synthetic data
sets generated from different TMGPFR models without any
overlap among the subcomponents, i.e., GPFRs. For clarity,
we first generate the original data set from a typical TMGPFR
model and then extend it to the small, noisy, and unbalanced
data sets, respectively, for the more difficult situations. Specif-
ically, the original data set is generated from the TMGPFR
model with two components, which, respectively, have two
disjoined subcomponents. That is, the two components are
the MGPFRs that consist of two connected GPFRs or groups
as their subcomponents, respectively. Specifically, the first
component consists of two groups or GPFRs whose mean

Fig. 2. (a) Sketch of ten sample curves in the original data set of the
TMGPFR model. (b) Sketch of ten sample curves in the original data set of
the mix-GGPFR model.

functions are set by μ1|1(x) = 0.5 sin[0.125(x − 4)2] + 3
and μ2|1(x) = 0.06(x − 8)2 − 0.3x + 5.6483, respectively.
As for the second component, the mean functions of two
GPFRs are set by μ1|2(x) = −3(2π)−0.5 exp[−0.125
(x − 4)2] + 3.7 and μ2|2(x) = 0.5 arctan(0.5x − 5) + 3.5277,
respectively. In this situation, we set the number of B-spline
basis functions D = 32, and denote θkg = [θ(1)

kg , θ
(2)
kg , θ

(3)
kg ].

Moreover, we set K = 2 and G1 = G2 = G = 2 according
to the structure of the data set. In the same way, we assume
G1 = · · · = GK = G and the remainder of this section
share the same assumption. There are 200 training curves and
400 test curves. Furthermore, each training curve consists of
50 samples, while each test curve consists of 150 samples
in which 40 samples are known in advance and 110 samples
are needed to be predicted. As shown in Fig. 2(a), there are
ten sample curves of this data set, which are rather difficult to
be clustered.

According to the experimental results, the sketches of the
variation of α̂

(m)
1 = 1

I

∑I
i=1 α

(mi)
1 on 200 training curves at

three iterations of the MCMC EM algorithm are shown in
Fig. 3(a). In fact, we can easily evaluate our EM algorithm by
these resulted values of α̂

(m)
1 (i.e., an estimate of the posterior

probability of z(m)
1 ). It is found that our MCMC EM algorithm

is effective on the evolution of α̂
(m)
1 , because α̂

(m)
1 ≈ 1 for

all the curves of the first component and α̂
(m)
1 ≈ 0 for all

the curves of the second component just after three iterations.
Therefore, our MCMC EM algorithm for the TMGPFR model
is both effective and efficient in this case, which is further
shown by the following experimental results on the more
complex data sets in Fig. 3(b)–(d). In light of the maximum
posterior probability under the resulted TMGPFR model, we
assign any curve into one of the components or MGPFRs. That
is, all curves can be clustered into K classes.

The estimates of the parameters in the TMGPFR model
via our MCMC EM algorithm are listed in Table I. The
sketches of the real and predicted mean functions are shown in
Fig. 4(a) and (b). It is found that the average estimates (AEs)
and true values (TVs) are almost identical, and the estimated
SDs of the parameters are rather small except for the cases of
πk and θ

(1)
kg . The estimated SD of πk is relatively larger due

to the randomness of the training data set. On the other hand,
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TABLE I

AEs OF THE PARAMETERS OF THE TMGPFR MODEL WITH ESTIMATED SDs VERSUS THE TVs OVER 50 TRIALS ON THE ORIGINAL DATA SET

Fig. 3. Sketches of variation of α̂
(m)
1 on all the samples at three particular

iterations of the MCMC EM algorithm for the TMGPFR model on four
data sets of TMGPFR. We give each curve a number for distinction, and
the horizontal axis in each iteration is the number of the curve. The round
and square points for the values of α̂

(m)
1 represent the corresponding curves

belonging to the first and second components, respectively. Moreover, the
dashed-dotted line separates the points of two components. That is, the points
on the left and right of the line represent the corresponding curves belonging
to the first and second components, respectively. (a) and (b) At the first three
iterations on the original and small data sets, respectively. (c) and (d) At
the first, third, and fifth iterations on the noisy and unbalanced data sets,
respectively.

since the TMGPFR model is robust to θ
(1)
kg , it is less critical

that the estimated SD of θ
(1)
kg is relatively larger.

We further compare the TMGPFR and other state-of-the-art
mixture models on more complex data sets of the TMGPFR
model. Specifically, they come from the original data set, but
change in different ways as follows.

1) The Small Data Set: Being a smaller size data set
of the original one. There are 60 training curves and
120 test curves in the small data set. Moreover, each

Fig. 4. (a) and (b) Sketches of the real and predicted mean functions of
two components in the TMGPFR model on the original data set of TMGPFR,
respectively.

training curve consists of 30 samples, while each test
curve has 24 known samples and 66 predictive samples.

2) The Noisy Data Set: Being generated with a larger noise
than the original data set. In the noisy data set, θ

(3)
1,1 =

θ
(3)
1,2 = θ

(3)
2,1 = θ

(3)
2,2 = 0.2000.

3) The Unbalanced Data Set: Being an unbalanced data
set of the original data set with different values of πk

and ηg|k . In the unbalanced data set, π2 = η1|1 = η2|2 =
0.7500 and π1 = η1|2 = η2|1 = 0.2500.

The prediction experimental results of the TMGPFR model
on the original, small, noisy, and unbalanced data sets are
given in Table II, in which we further compare the TMGPFR
model with the other mixture models, such as the MGPFR,
mix-GPFR [26], MGP, and mix-GP [28], as well as the pure
GPFR and GP models. It should be noted that the MGPFR
and MGP models aim to model a stochastic process via a
number of GPFRs (with adaptive mean functions) or GPs
(with zero mean functions) being linearly mixed along the
input region, while the mix-GPFR and mix-GP models aim
to model a stochastic process via a number of GPFRs or
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TABLE II

AVERAGE PREDICTED RMSEs OF THE TMGPFR AND COMPARATIVE MODELS WITH SDs OVER 30 TRIALS ON THE ORIGINAL, SMALL, NOISY,
AND UNBALANCED DATA SETS GENERATED FROM THE TMGPFR MODELS. THE BEST RESULTS ARE SHOWN IN BOLD FONT

TABLE III

AVERAGE CURVE CARs OF THE TMGPFR, MIX-GPFR, AND MIX-GP
MODELS OVER 30 TRIALS ON THE ORIGINAL, SMALL, NOISY,

AND UNBALANCED DATA SETS GENERATED

FROM THE TMGPFR MODELS

GPs being linearly mixed in the output space. According to
the average predicted root-mean-square errors (RMSEs) on
the four synthetic data sets listed in Table II, we find that
the TMGPFR model with our proposed EM algorithm works
well on curve prediction and outperforms the other models
considerably. In addition, the average predicted RMSEs of
the GPFR, MGPFR, and mix-GPFR models are always much
smaller than those of the GP, MGP, and mix-GP models,
respectively. Therefore, the mean functions play an important
role on the GP modeling. We also find that the average
predicted RMSEs of the GPFR model are even much smaller
than those of the MGPFR model, which further demonstrates
that the GPFR model is more robust than the MGPFR model.
For curve clustering, the average curve classification accuracy
rates (CARs) of the TMGPFR model on the four data sets
are listed in Table III, which are all above 99.5% and are
remarkably better than those of the two comparative models.
As the components of the MGPFR or MGP model are only
a set of piecewise curve segments and thus unable to make
curve clustering analysis on the whole input region, we do
not compare them on curve clustering.

B. On Synthetic Data Sets of the Mix-GGPFR Models

We further test the TMGPFR model on synthetic data
sets generated from different stochastic processes. For con-
venience, we utilize the generalized GPFR (GGPFR) model
to generate each cluster of sample curves. That is, the whole
data set is generated from a mixture of GGPFRs. In fact, the
GGPFR model is different from the GPFR model via letting
the parameter θ in (1) be a function of the input x, i.e.,
θ = θ(x). In this case, each sample curve is generated globally
and strongly depended on the input variable. Specifically, we

TABLE IV

PARAMETERS OF THE MIX-GGPFR MODEL FOR THE ORIGINAL DATA SET

generate the original synthetic data set by a mix-GGPFR
model with θk = [θ(1)

k , θ
(2)
k , λ

(1)
k xn + λ

(2)
k ] for k = 1, 2, with

its parameters being listed in Table IV. The mean functions
of the first and second components are just the same as
μ1|1(x) and μ1|2(x) in Section V-A, respectively. The input
variables are generated from a uniform distribution in the inter-
val [0, 9]. The numbers of training and test samples remain
the same as those of the original data set in Section V-A.
In our learning process, we set K and D in the same way
as in Section V-A. As for G, we test it from G = 2 and
find out that G = 2 is good enough and the improvement of
the performance of the TMGPFR model is too trivial with a
larger G. So, we also set G = 2 as in Section V-A. As shown
in Fig. 2(b), we can find ten sample curves in the original
data set, which are quite noisy and overlapped, and therefore
difficult for clustering analysis. In this sense, we do not need to
produce the noisy data set from it. But for the other situations,
the small and unbalanced data sets are also produced from the
original data set as follows.

1) The Small Data Set: All the numbers of training and
test samples are the same as those of small data set
in Section V-A.

2) The Unbalanced Data Set: π1 = 0.2500 and
π2 = 0.7500.

The prediction and curve clustering results on these data
sets are listed in Tables V and VI, respectively. It is clear
that the TMGPFR model is the best on both prediction and
curve clustering. Moreover, the TMGPFR model can cluster all
these complex curves correctly or almost correctly on each of
the three data sets. Theoretically, the time complexities of the
learning algorithms for the GP, GPFR, mix-GP, and mix-GPFR
models are O[M(max Nm )3], while the time complexities of
the MCMC EM algorithms for the TMGPFR, MGPFR, and
MGP models are O[M(max Nm )4]. Therefore, the MCMC
EM algorithms for the TMGPFR, MGPFR, and MGP models
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TABLE V

AVERAGE PREDICTED RMSEs AND AVERAGE COMPUTING TIME (MINUTE) OF THE SEVEN MODELS WITH SDs OVER 30 TRIALS ON THE ORIGINAL,
SMALL, AND UNBALANCED DATA SETS GENERATED FROM THE MIX-GGPFR MODELS. THE BEST RESULTS ARE SHOWN IN BOLD FONT

TABLE VI

AVERAGE CURVE CARs OF THE TMGPFR, MIX-GPFR, AND MIX-GP
MODELS OVER 30 TRIALS ON THE ORIGINAL, SMALL, AND

UNBALANCED DATA SETS GENERATED FROM THE
MIX-GGPFR MODELS. THE BEST RESULTS

ARE SHOWN IN BOLD FONT

become rather slower as the numbers of samples in the sample
curves become larger, which is actually demonstrated by the
recorded time consumptions on the same desktop computer
running MATLAB 2016b listed in Tables V and VII. However,
the MCMC EM algorithm for the TMGPFR model can be
implemented efficiently on these synthetic data sets with
hundreds of sample curves. Fortunately, the computing time
of the MCMC EM algorithm can be overcome with the devel-
opment of computing power. In many practical applications,
the accuracies of the prediction and curve clustering are much
more important than the computing time complexity.

C. On Electrical Load Prediction

Furthermore, we apply the TMGPFR model to solving
the problem of electrical load prediction, which plays a
vital role in optimal unit commitment, startup and shut-down
of thermal plants, and control of reserve and exchanging
electric power in interconnected systems [38]. The electrical
load (million kW) data set was issued by the Northwest
China Grid Company. In this data set, there are 100 curves,
which all consist of 96 samples or points. In fact, these
curves were the observations of electrical load for 100 days,
respectively, and through each day, the electrical load
was recorded every quarter hour so that there are
96 (24 × 4) samples in each curve. In this situation, we use
50 curves for training and 50 curves for testing. In each test
curve, there are 48 known samples and 48 predictive samples.

For comparison, we apply the TMGPFR model and
six other possible models to the electrical load prediction task.
The average predicted RMSEs and average time consumptions

of the TMGPFR and comparative models are listed in
Table VII. We use a twofold cross validation procedure for
model selection [39] on the training data set with various
choices [K , G, D] and select the optimal values of [K , G, D]
in Table VII. It is found that the average predicted RMSE
of the TMGPFR model is the smallest among all the models
and its SD is also small. Therefore, the TMGPFR model is
the most effective model for this electrical load prediction
task. As the average predicted RMSEs of the MGPFR, mix-
GPFR, and GPFR models are much smaller than those of
the MGP, mix-GP, and GP models, the mean functions of
GPs are very important for this practical application. As shown
in Fig. 5(a), according to the resulted TMGPFR model,
50 training curves are clustered into two classes corresponding
to the two components, being illustrated by two curve styles,
respectively, which is very reasonable in interpretation.

D. On Weather Prediction

Finally, we apply the TMGPFR model to solve the weather
prediction problem with a real-world data set that recorded
daily temperature (°C) averages over the year from 1961 to
1994 in 35 Canadian weather stations [40]. In fact, there
are 35 curves in the data set and each curve consists of the
observations of a weather station in Canada as its samples.
In fact, 73 (365/5) samples in each curve were the mean
temperatures of every five days within one year. We use
18 curves for training and 17 curves for testing. In each test
curve, there are 37 known samples and 36 predictive samples.

In a similar manner, we apply the TMGPFR model and
six other possible models to solve the weather prediction
problem. The prediction RMSEs and time consumptions
of the TMGPFR and comparative models are also listed
in Table VII. We use a twofold cross validation procedure
for model selection. It is found that the TMGPFR model
is the most effective model for this weather prediction task.
However, the MGPFR model does not perform well on this
data set and it is even worse than the mix-GFFR, mix-GP,
and GP models in this situation. As shown in Fig. 5(b), the
18 training curves are clustered into two classes by the resulted
TMGPFR model. It appears that the curves of two classes
are just the observations of the stations in the south and
north of Canada, respectively, which also demonstrates that
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Fig. 5. (a) Two clusters of the resulted TMGPFR model on the training curves of electrical load data set. (b) Two clusters of the resulted TMGPFR model
on the training curves of weather data set.

TABLE VII

AVERAGE PREDICTED RMSEs AND AVERAGE COMPUTING TIME (MINUTE) OF SEVEN MODELS WITH SDs OVER 30 TRIALS

ON THE ELECTRICAL LOAD DATA SET AND THE WEATHER DATA SET. ALGORITHMS FOR RELATED MODELS

ARE THE SAME AS THOSE IN TABLE II. THE BEST RESULTS ARE SHOWN IN BOLD FONT

the structure discovered by the TMGPFR model is reasonable
for interpretation.

VI. DISCUSSION AND CONCLUSION

In this paper, we have proposed the TMGPFR model for a
very general and complex class of data set, where some inde-
pendent stochastic processes are linearly mixed together. In the
lower layer of the TMGPFR model, we use a number of mix-
tures of Gaussian process functional regressions (MGPFRs)
as the processing units to characterize the same number of
general stochastic processes in an independent manner. In the
higher layer, we use a mixture of MGPFRs to describe these
linearly mixed stochastic processes structurally. Therefore,
the TMGPFR model can deal with the more complex data
sets involved in many practical applications, especially in
curve clustering and prediction. For its parameter learning,
the MCMC EM algorithm is developed. It is demonstrated
by computer simulations that the TMGPFR model estimated
with the MCMC EM algorithm outperforms the conventional
mixture models in curve clustering and prediction. Finally, the
TMGPFR model is successfully applied to two real world

problems of the electrical load prediction and the weather
prediction.

Thus far, we have assumed that the model size
(i.e., K and Gk) of the TMGPFR model is known or easily
identifiable from cross validation. Development of automatic
model selection methods for TMGPFRs remains an important
research topic in the future. Furthermore, the dimension of
the input in the TMGPFR model is only one. However, it is
rather straightforward to adapt the TMGPFR model for high-
dimensional input data.
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