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Abstract—Fast development of sensor technology makes sensor
equipments more and more smart and wearable. It further boost
the need of sensor-based human activity recognition. Due to the
lack of large-scale labeled datasets in practical AI applications,
it is important to utilize prior information of the categories
in sensor-based human activity recognition. In this paper, we
propose a Hierarchical Multi-Classificaion (HMC) framework for
sensor-based badminton activity recognition with the help of the
prior information of badminton activity categories. Specifically,
the multi-class sensor-based badminton activity recognition task
is performed in two steps: (1). Any input data for a badminton
activity are classified into one of the major classes which are
based on their characteristic features; (2). They are further
classified into one of the specific categories of badminton activity
as required. It is demonstrated by the experimental results on
BSS-V2 dataset that our proposed method can get up to 83.9%
badminton activity recognition accuracy which is 1.7% better
than previous state-of-the-art models.

Keywords—Hierarchical classification, Badminton Activity
Recognition, Multi-Classification.

I. INTRODUCTION

Human activity recognition (HAR) is a fundamental and
practical task, which has attracted increasing research efforts
in recent years due to its extremely broad applications in
many areas, such as healthcare [1], gesture recognition [2]
and smart environment [3]. According to the forms of data,
it can be classified into two typical categories: video-based
HAR [4]–[6] and sensor-based HAR [7]. Literally, video-
based HAR aims to recognize the activities in videos, while
sensor-based HAR focuses on the data taken from smart
sensors such as accelerometers, gyroscopes, bluetooth, sound
sensors and so on. Compared with videos, sensor data has
two advantages: Firstly, it is much cleaner for its freedom
from noisy background [7]. Secondly, in general, the storage
of sensor data is much less than video if both of them are taken
with the same frequency and time duration. Benefited from it,
the computation cost of sensor-based HAR is usually much
less than that of video-based HAR. Due to the advantages
above, sensor-based HAR is quite applicable and efficient to
be inserted into various equipments, such as wearable devices
[2], [8] and sports equipments [7]. However, though the task
of sensor-based HAR is emergent for artificial intelligence
applying to our daily life, it suffers from two challenges
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waiting to be overcomed by researchers: (1) Due to the
cost of human labeled data, the dataset of most of realistic
applications are not sufficient to train a deep CNN with
satisfactory generalization. (2) The relationship of categories
which is evident for human knowledge cannot be captured by
classifiers effectively, especially in small scale datasets.

First of all, different categories are not independent of each
other, in other words, the categories cannot be naively seen
as individuals. In the field of badminton sports, as for the
correlation of “similarity”, the relationship of “Forehand Net
Kill” and “Backhand Net Kill” is more significant than that of
“Forehand Net Kill” and “Midfield Forehand Smash”. Single
Deep Neural Networks (DNN) learn the relation of categories
with large-scale datasets implicitly, however when it comes
to small-scale datasets, maybe they will fail to capture the
complex relationship of various categories. Secondly, most
of single DNNs can be formed as a two-stage mapping:
y = F1 ◦ F0(X), where F0 : X 7→ f denotes the feature
extraction process and F1 : f 7→ y is the mapping from
feature space to label space. Naturally, a question is raised, is
it reasonable to take all samples of different categories equally
and cast them into the same feature space? Taking “Forehand
Net Kill”, “Backhand Net Kill”, “Midfield Forehand Smash”
and “Midfield Backhand Smash” as an example, “Forehand
Net Kill’ and “Backhand Net Kill” are separable with each
other in accelerometer, while it is easier to distinguish “Mid-
field Forehand Smash” and “Midfield Backhand Smash” with
spatial attitude angles. Deep DNN deals with this problem
with redundant learnable features. However, compared with
shallow DNN which maybe cannot generate a good enough
feature space to cover all needed discriminative feature, deep
DNN is usually easier to overfit especially small-scale datasets.
It is inspired that casting samples into different feature spaces
can help to settle this problem.

As far as we know, there has been no effective method
which can utilize the relationship of categories in the area
of sensor-based HAR. However, in the other fields, some
methods have been proposed to mine the label correlations to
improve the recognition accuracy. For example, KSSNet [4]
utilizes a graph convolution network to boost the performance
of multi-label video recognition, probabilistic graph model
[9], [10] and RNN [11] are used to capture dependencies
among labels. However, with more label-relation parameters
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introduced, the training of their models need sufficient labeled
samples. However, it is usually not available in many tasks.

In this paper, we try to establish a new method to capture the
relationship of categories as well as casting samples to their
own characteristics-based feature spaces. Actually, we propose
a novel Hierarchical Multi-Classification (HMC) framework
for this task. Our strategy is to separate the classification task
into two sub-tasks: casting the input data into a feature space
and using a classifier affiliated with the feature space to predict
the specific category of the input date. Specifically, we firstly
construct some feature spaces and each of them has a specific
classifier as the feature encoder. Then a lightweight coarse-
grained classifier is utilized to cast the input date into the
right feature spaces. After that, a specific classifier encodes the
feature of input data and sends it to the fine-grained classifier
to make a prediction of the category. As the mapping of the
output of coarse-grained classifier and the choice of feature
spaces are specified by human prior, our approach does not
need extra dataset to train the relationship of the categories.

II. HIERARCHICAL MULTI-CLASSIFICATION

We now propose a Hierarchical Multi-Classification (HMC)
framework for leveraging the badminton activity recognition
performance with human priors. As Table I shows, it releases
a complex HAR task to two-stage hierarchical subtasks. Given
the input sensor-based data, Task 1 is conducted to recognize
its main-classes, which is affiliated with a specific feature
space. Then, Task 2 is implemented for recognizing their
exact activities (called subclasses). In detail, it chooses a
subsequencial classifier according to the result of Task 1
and utilizes it to extract the deep CNN feature of the raw
input sensor-based data, finally predicts the subclass of the
input sample. The mapping from Task 1 to the classifiers
of Task 2 is determined by human priors, which is not
experit and easy to be implemented. Using this strategy, our
proposed HMC framework can superimpose knowledge priors
into various state-of-the-art CNN-based classifiers, such as our
work AFEB-MobileNet [7] which is also the previous state-
of-the-art in our collected BSS-V2 dataset.

Usually, conventional CNN-based classifiers use a single
CNN to output the prediction of input data, however as
we mentioned in Section I, it suffers from two drawbacks:
depending on large-scale labeled datasets and lacking the
capacity to capture the relationship of categories. In order
to overcome these problems, our proposed HMC is designed
as a two-stage classifier. Formally, it can be formulated as a
composite function:

Z = f(g(X), X) (1)

where X ∈ RN×C is the input sensor-based data. N is the
number of records and C is the dimension of each record.
g is a main-class classifier (M-classifier) whose output is the
main-class of input data. It acts as a jobs allocator choosing
a specific downstream classifier from a set of classifiers. f
is a binary function built with prior knowledge. It takes the
first argument to choose a sub-classifier, the second one as

the input to form a fine-grained classification task and outputs
the predicted class of X . We first segment the total classes
into three groups, the classes in the same groups have similar
characteristics, while the classes lying in different groups are
more distinctly different from each other. This structure is
guided by expert knowledge. After that, g is trained on the
training set where all samples are relabeled with main-classes
to make a coarse-grained classification of the input sensor-
based data. Next, a specific subclass classifier (S-classifier)
acting as CNN encoder for each main-class is trained with
the samples of this main-class. Each S-classifier only takes
the subclasses belonging to its corresponding main-class as
labels. Therefore, it is much easier to be trained compared
with considering all classes simultaneously.

Usually, as for some tasks which have complex label
relationship, the accuracies of g and f are much higher than
that of the single CNN version of classifier, the reasons are
following:
• As a hierarchical multi-classification framework, both g

and f have significantly less classes (even orders of
magnitude less) than single classifier variant. So the clas-
sification difficulty of our HMC is alleviated significantly.

• The labels of g are distinctly different from each other in
the expert knowledge, which is not available in the task
of single classifier variant. It results that the classification
task of main-classifiers and sub-classifiers is much easier.

• The framework of our proposed HMC employs a M-
classifier to map the input data into different feature
spaces, after that the chosen sub-classifier only deals
with the samples of the same main-class, therefore it can
focus on learning to distinguish samples from different
subclasses of the same main-class. Obviously, each S-
classifier has much less labels than the single classifier
which has to classify all classes. Though the similarity of
the subclasses in a main-class is remarkable, in summary
both the main-classifier and the sub-classifiers of HMC
are easier to be learnt compared with the single classifier
variant, because the later has much more extra different
labels, which will impact the accuracy of classification
task.

III. EXPERIMENT

In this section, we conduct experiments to show that our
proposed framework can achieve pretty good performance in
our self collected Badminton Single Sensor dataset (BSS-V2).
Then, we carry out ablation studies to evaluate the effective-
ness of the proposed HMC and to analyze the influence of the
number of main-classes.

1) BSS-V2 Dataset: Recently, we have extended our pre-
vious self-collected dataset: Badminton Single Sensor (BSS)
dataset [7] to a new version, called BSS-V2. It is also col-
lected with a fixed specialized sensor on a badminton racket.
The badminton rocket is composed of four parts: the LED,
controller, sensor and rocket, The former three are fixed on the
racket. The frequency of sensor is fixed to 200 HZ. The data
of each record includes acceleration in a three-dimensional
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orthogonal system and spatial attitude angles (roll, pitch and
yaw). The collected data include 37 major activities, which
cover almost all badminton activities, such as “Backhand Hook
Diagonal”, “Forehand Clear” and “Backhand High Clear”.
On average, each activity contains about 215 samples. On
average, each sample contains about 368.9 records, about 1.8s.
However, samples from different activities, even the same
activity, have significantly different numbers of records. For
example, as for the samples of “Backhand Lift”, the shortest
sample has 269 records, while the longest one has 719 records.

We segment BSS-V2 dataset into two parts, 80% of it as
training set and 20% of it as test set randomly. Besides, we use
this splitting strategy five times, as a result, we have five pairs
of training and test set. Without otherwise stated, we evaluate
all the methods five times with each pair of training and test
set, then report the average results of them.

A. Implementation Details

1) Experiment on BSS-V2: We utilize the low-pass But-
terWorth filter to eliminate the noise of sensor. In order to
reduce the cost of computation, we choose a lightweight CNN,
MobileNet [12], as the backbone of our HMC, which is pre-
trained on ImageNet. The connection of Task 1 and Task
2 is designed manually as Table I, where Task 1 has three
main-classes, each main-class has 15, 10 and 12 subclasses,
respectively.

TABLE I
THE MAPPING FROM TASK 1 TO TASK 2. “M1”, “M2” AND “M3” ARE

THE MANUALLY SPECIFIED MAIN-CLASSES OF TASK 1.

Task 1 M1 M2 M3

Task 2

Forehand High Serve Forehand Net Lift Forehand High Clear
Backhand High Clear Backhand Net Lift Overhead High Clear
Backhand Clear Forehand Intercept Forehand Clear
Forehand Serve Backhand Intercept Overhead Clear
Backhand Serve Forehand Intercept Drive Forehand Smash
Forehand Net Shot Backhand Intercept Drive Overhead Smash
Backhand Net Shot Forehand Intercept Straight Midfield Forehand Smash
Forehand Hook Diagonal Backhand Intercept Straight Midfield Backhand Smash
Backhand Hook Diagonal Forehand Intercept Diagonal Forehand Drop Shot
Forehand Net Backhand Intercept Diagonal Overhead Drop Shot
Backhand Net - Forehand Full Strike
Forehand Net Kill - Overhead Full Strike
Backhand Net Kill - -
Forehand Return - -
Backhand Return - -

During training, The input sensor data are cropped with
SWAB, following [7]. After that, we resize all samples into
300 records with linear interpolation and compression, as done
in [7]. The models without AFEB need extra artificial feature
extraction. We compute the mean values, standard deviation,
skewness and kurtosis of each attributes as supplement of raw
data. As for the models embedded with AFEB, we simply take
the raw attribute: three-dimensional acceleration and spatial
attitude angles (roll, pitch and yaw) as input. The sliding
window of LSTM is 30 records with a overlap of 15 records.
We also horizontally flipped the rocket with probability of 0.5
as data augmentation. For network optimization, Adam is used
as the optimizer with a momentum of 0.9, weight decay of
10−4 and batch size of 64. The initial learning rate of Adam is
0.001. All models are trained for 500 epochs in total. Without

otherwise stated, all the experiments are implemented on a
linux server with two 1080 GPUs.

B. Comparison with Baselines

In this part, we present comparisons with some methods on
BSS-V2 to show the effectiveness of our proposed methods.

As shown in Table II, compared with HMCs and their single
classifier versions, the improvements of accuracy are 1.7%,
0.4% and 1.9% for the versions of MobileNetv2, ResNet50
and ResNet101 respectively. It indicates that human prior
can leverage the performance of badminton human activity
recognition. As the depth of backbone CNNs goes deeper, the
performance of single classifiers and our HMCs all become
worse due to the lack of training data.

C. Ablation Studies

In this section, we perform ablation studies to evaluate the
influence of mapping from the M-classifiers to S-classifiers,
illustrated in Table I, and the influence of the number of main-
classes.

1) Mapping from the M-classifiers to S-classifiers: Consid-
ering the effective enhancement of our proposed HMC, there
is a question left: does the human prior is really useful in this
task? That is, whether the enhancement of HMC is gained
by the human prior mapping or just the strategy of splitting
one complicated classification task to a number of easier
classification tasks? To answer this question, we construct
random mappings from the M-classifier to S-classifiers as well
as some other mappings with human prior. The backbones of
all versions are set as AFEB-MobileNetv2.

Table VII summarizes the results of HMCs with different
mappings from the M-classifiers to S-classifiers. The exper-
iment shows that HMC relys on the mappings constructed
manually. Detailly, the mappings built with human priors can
boost the performance of backbone models. HMC-MobileNets
with mappings from Table V, Table VI and Table I achieve
1.5%, 1.0% and 1.7% gains compared with their backbone
AFEB-MobileNet. In addition, HMC-MobileNets with map-
ping from Table I outperforms other methods, which indicates
that better human priors (badminton activities similarity) can
facilitate better accuracy, though simple naive human priors
(the names of badminton activities) can also be helpful to
improve the classification results. The performance of HMCs
with random mappings is even worse than their backbone. The
reason is that: random mappings will result in the accuracy of
M-classifier going down remarkably because the main-classes
are meaningless and the separability of subclasses in the same
main-classes are probably not more significant than those of
different main-classes.

2) Influence of the Number of Main-classes: In this part,
we conduct ablation to study the influence of the number of
main-classes.

Experimental results on BSS-V2 dataset are shown in
Table VIII. It is obvious, with humna prior, even with just
two main-classes, our HMC still obtains 0.9% improvement
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TABLE II
QUANTITATIVE RESULTS OF BASELINES AND HMC. WE REPORT THE AVERAGE ACCURACY OF FIVE TEST DATASETS WITH THE STRATETY OF CROSS

VALIDATION.

Method Backbone Pretrain Accuracy
LSTM LSTM - 68.4%

MobileNet mobilenetv2 ImageNet 80.0%
ResNet50 ResNet50 ImageNet 79.5%

ResNet101 ResNet101 ImageNet 79.4%
AFEB-MobileNet mobilenetv2 ImageNet 82.2%
AFEB-ResNet50 ResNet50 ImageNet 82.0%

AFEB-ResNet101 ResNet101 ImageNet 81.7%
HMC-MobileNet AFEB-MobileNetv2, AFEB-MobileNetv2 ImageNet 83.9%
HMC-ResNet50 AFEB-ResNet50, AFEB-ResNet50 ImageNet 83.6%

HMC-ResNet101 AFEB-ResNet101, AFEB-ResNet101 ImageNet 82.4%

TABLE III
THE RANDOM MAPPING FROM MAIN-CLASSES TO SUB-CLASSIFIERS.

EACH MAIN-CLASS COVERS 12, 12, 13 SUBCLASSES.

Task 1 M1 M2 M3

Task 2

Backhand Hook Diagonal Overhead Clear Backhand Return
Backhand Intercept Diagonal Forehand Net Kill Forehand Serve
Backhand Net Shot Midfield Backhand Smash Overhead Full Strike
Forehand Drop Shot Forehand Intercept Forehand Intercept Straight
Forehand Intercept Diagonal Forehand Return Backhand Net Kill
Backhand Clear Forehand Net Shot Forehand High Clear
Forehand Intercept Drive Backhand Net Overhead Drop Shot
Forehand Net Forehand Full Strike Midfield Forehand Smash
Overhead High Clear Backhand Intercept Forehand Hook Diagonal
Backhand Intercept Straight Backhand Serve Backhand High Clear
Forehand Clear Backhand Intercept Drive Forehand Smash
Forehand High Serve Backhand Net Lift Forehand Net Lift
- - Overhead Smash

TABLE IV
ANOTHER RANDOM MAPPING FROM MAIN-CLASSES TO SUB-CLASSIFIERS.

EACH MAIN-CLASS COVERS 12, 12, 13 SUBCLASSES.

Task 1 M1 M2 M3

Task 2

Overhead Clear Backhand Net Kill Forehand Net Lift
Backhand Intercept Diagonal Forehand Net Kill Forehand Hook Diagonal
Forehand Net Forehand Net Shot Midfield Backhand Smash
Forehand Clear Forehand Intercept Drive Backhand Intercept Straight
Backhand Intercept Drive Forehand High Serve Overhead Drop Shot
Overhead Smash Backhand Net Shot Forehand Intercept Diagonal
Backhand Intercept Forehand Drop Shot Backhand Net
Overhead Full Strike Forehand Serve Backhand Return
Forehand Full Strike Midfield Forehand Smash Overhead high Clear
Backhand High Clear Forehand Intercept Straight Forehand Smash
Forehand Intercept Backhand Net Lift Backhand Hook Diagonal
Backhand Serve Backhand Clear Forehand Return
- - Forehand High Clear

TABLE V
THE MAPPING FROM TASK 1 TO TASK 2. “M1”, “M2” AND “M3” ARE

THE MANUALLY SPECIFIED MAIN-CLASSES OF TASK 1. IT IS BUILT
ACCORDING TO THE NAMES OF BADMINTON ACTIVITIES REGARDLESS OF

THEIR REAL SIMILARITY.
Task 1 M1 M2 M3

Task 2

Forehand High Serve Forehand High Clear Forehand Net
Forehand Serve Overhead High Clear Backhand Net
Backhand Serve Backhand Clear Forehand Hook Diagonal
Forehand Intercept Forehand Clear Backhand Hook Diagonal
Backhand Intercept High Clear Forehand Intercept Diagonal
Forehand Intercept Drive Overhead Clear Backhand Intercept Diagonal
Backhand Intercept Drive Forehand Smash Forehand Full Strike
Forehand Intercept Straight Overhead Smash Overhead Full Strike
Backhand Intercept Straight Midfield Forehand Smash Forehand Net Kill
Forehand Net Lift Midfield Backhand Smash Backhand Net Kill
Backhand Net Lift Forehand Net Shot Forehand Return
- Backhand Net Shot Backhand Return
- Forehand Drop Shot -
- Overhead Drop Shot -

compared with its backbone. HMC-MobileNet with 2 main-

TABLE VI
ANOTHER MAPPING FROM TASK 1 TO TASK 2 BUT CONSIDERING THE

NAMES OF BADMINTON ACTIVITIES. “M1”, “M2” AND “M3” ARE THE
MANUALLY SPECIFIED MAIN-CLASSES OF TASK 1.

Task 1 M1 M2 M3

Task 2

Forehand High Serve Forehand Intercept Forehand Net
Forehand Serve Backhand Intercept Backhand Net
Backhand Serve Forehand Intercept Drive Forehand Full Strike
Forehand High Clear Backhand Intercept Drive Overhead Full Strike
Overhead High Clear Forehand Intercept Straight Forehand Net Kill
Backhand Clear Backhand Intercept Straight Backhand Net Kill
Forehand Clear Forehand Intercept Diagonal Forehand Smash
High Clear Backhand Intercept Diagonal Overhead Smash
Overhead Clear Forehand Net Lift Midfield Forehand Smash
Forehand Hook Diagonal Backhand Net Lift Midfield backhand Smash
Backhand Hook Diagonal - Forehand Net Shot
- - Backhand Net Shot
- - Forehand Drop Shot
- - Overhead Drop Shot
- - Forehand Return
- - Backhand Return

classes gets the best accuracy among three HMC versions in
Table VIII. HMC-MobileNet with 3 main-classes also obtains
a competitive result.

IV. CONCLUSION

We have established a novel hierarchical multi-classification
(HMC) framework for sensor-based badminton activity recog-
nition with the help of the prior information of badminton
activity categories. In fact, it is constructed with a M-classifier
and certain S-classifier. M-classificator is utilized to cast the
input data into a specific feature map. Each feature map has
its own S-classifier which acts as an encoder. The fine-grained
prediction of input data is given by the chosen S-classificator.
In this hierarchical framework, human prior information of
the badminton activity categories is manipulated to design
the mapping from the main-classes to the sub-classifiers. It is
demonstrated by the experimental results on BSS-V2 dataset
that our proposed HMC framework is effective and even
outperforms the previous state-of-the-art model considerably.
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