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Abstract—Tensor completion and robust principal component
analysis have been widely used in machine learning while the
key problem relies on the minimization of a tensor rank that
is very challenging. A common way to tackle this difficulty is
to approximate the tensor rank with ℓ1−norm of the singular
values solved by the Tensor Singular Value Decomposition (T-
SVD). Besides, the sparsity of a tensor is also measured with
ℓ1−norm. However, the ℓ1 penalty is essentially biased and thus
the result will deviate. In order to sidestep the bias, we propose
a novel non-convex tensor rank surrogate function and a novel
non-convex sparsity measure. In this new setting by using the
concavity instead of the convexity, a majorization minimization
algorithm is further designed for tensor completion and robust
principal component analysis. Furthermore, we analyze its theo-
retical properties. Finally, the experiments on both natural and
hyperspectral images demonstrate the efficacy and efficiency of
our proposed method.

I. INTRODUCTION

Tensors [1], or multi-way arrays, have been extensively used

in computer vision [2], [3], signal processing and machine

learning [4], [5]. Due to technical reasons, tensors in most ap-

plications are incomplete or polluted. Generically, recovering

a tensor from corrupted observations is an inverse problem,

which is ill-posed without prior knowledge. However, in real

applications, entries in a tensor are usually highly correlated,

which means a high-dimensional tensor is intrinsically de-

termined by low-dimensional factors. Exploiting such low-

dimensional structure makes it possible to restore tensors from

limited or corrupted observations. Mathematically, this prior

knowledge is equivalent to assume the tensors are low-rank.

In this work, we mainly consider two tensor recovery

problems: tensor completion and tensor robust principal com-

ponent analysis (TRPCA). The tensor completion problem is to

estimate the missing values in tensors from partially observed

data, while TRPCA aims to decompose a tensor into a low-

rank tensor and sparse tensor.In the case of 2-order tensor,

i.e., the matrix case, both problems have been investigated

thoroughly [6], [7], [8], [9]. Since the concept of a tensor

is an extension of the matrix, it is natural to employ matrix

recovery methods to tensors. Most matrix recovery methods

are optimization-based, penalizing rank surrogate function,

or/and certain sparsity measure. Similar methods have been

developed for tensors Tensor ℓ1−norm is often used as sparsity

measure. However, the concept of tensor rank is far more

complicated than matrix rank, thus there are various surrogate

functions for tensor rank, such as the sum of the nuclear norm

(SNN) [2], tensor nuclear norm (TNN) [10] and twisted tensor

nuclear norm (t-TNN) [11].

Incomplete tensor Complete tensor

Corrupted tensor Low-rank tensor

+

Sparse tensor

Fig. 1. An illustration of tensor completion and TRPCA.

As in the matrix case, the choices of rank surrogate function

and sparsity measure substantially influence the final results.

The nuclear norm of a matrix is equivalent to the ℓ1−norm of

its singular value. However, as indicated by Fan and Li [12],

ℓ1−norm over-penalizes large entries of vectors. Smoothly

clipped absolute deviation (SCAD) penalty [12] and minimax

concave plus (MCP) penalty [13] were proposed as ideal

penalty functions, and their superiority over ℓ1−norm has been

demonstrated in [13], [12], [14], [15]. This fact inspires us

that nuclear norm based tensor rank surrogate functions and

ℓ1−norm based tensor sparsity measure may suffer from a

similar problem. To alleviate such phenomena, we propose

to use non-convex penalties (SCAD and MCP) instead of an

ℓ1−norm in TNN and tensor sparsity measures.

However, the introduction of non-convex penalties makes

optimization problems even harder to solve. For example, TNN

based TRPCA [10] is a convex optimization model, thus can

be efficiently solved by alternating direction multiplier method

(ADMM) [16]. Once we replace ℓ1−norm by SCAD or MCP,

the problem is not convex anymore.Therefore, we apply the

majorization minimization algorithm [17], [18] to solve the

non-convex optimization problems and analyze the theoretical

properties of these algorithms. Based on the proposed non-

convex tensor completion and TRPCA models and their corre-

sponding MM algorithms, we conduct experiments on natural
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images and multispectral images to validate the efficacy of the

proposed methods.

II. RELATED WORK

Tensor recovery. For tensor completion, one seminal work

is [2], in which SNN was proposed and three different

algorithms for solving SNN based TC were devised. Zhao

et al.proposed Bayesian CANDECOMP/PARAFAC (CP) ten-

sor factorization model in [3]. The highlights of [3] include au-

tomatic rank determination property, full Bayesian treatment,

and uncertainty quantification. Kilmer and Martin proposed

a new tensor singular value decomposition (t-SVD) based on

discrete Fourier transform for 3−order tensors in [19], [20].

The key point is that t-SVD offers an efficient way to define

tensor nuclear norm (TNN), which has been extensively used

in tensor recovery recently [21], [10], [22], [23]. Furthermore,

Lu et al.proved the the exact recovery property of their

proposed TRPCA model under certain suitable assumptions

[10], [23].

Non-convex penalties. Wang and Zhang [24] developed

a non-convex optimization model for the low-rank matrix

recovery problem. Cao et al.[25] applied folded-concave

penalties in SNN, while Ji et al.[26] used log determinant

penalty instead. Zhao et al.[27] proposed to use the product

of nuclear norm instead of the sum of the nuclear norm, which

has a natural physical meaning. Besides, they also considered

non-convex penalties such as SCAD and MCP. One major

difference between our work and [25], [27] is that our methods

are based on t-SVD, while [25], [27] transform a tensor to

matrices simply via unfolding. Recently, Jiang et al.[28] and

Xu et al.[29] introduced non-convex penalties to TNN, but

neither MCP nor SCAD was considered. Besides, our work

not only improves the tensor rank surrogate function but

also modifies the tensor sparsity measure. Yokota et al.[30]

proposed a Tucker decomposition based non-convex tensor

completion model for a case where all of the elements in some

continuous slices are missing. Yao et al.[31] also considered

non-convex regularizers for tensor recovery and devised an

efficient solver based on the proximal average algorithm.

However, the non-convex penalties in [31] are based on SNN,

while ours are based on TNN.

III. NOTATIONS AND PRELIMINARIES

A. Notations

Throughout this paper, we use calligraphic letters to denote

3-way tensors, e.g., A ∈ C
n1×n2×n3 . The (i, j, k)-th element

of A may be denoted by A(i, j, k) or Aijk alternatively.

The k-th frontal slice of A is defined as A(:, :, k), which

is an n1 × n2 matrix. For brevity, we use A(k) to denote

A(:, :, k). The (i, j)-th tube of A is defined as A(i, j, :),
which is a vector of length n3. The inner product of two

3-way tensors A,B ∈ C
n1×n2×n3 is defined as 〈A,B〉 =

∑

k Tr((A(k))∗B(k)). We use |A| to denote the tensor with

(i, j, k)−th element equals to |Aijk|. Similar to vectors and

matrices, we can also define various norms of tensors. We

denote ℓ1−norm by ‖A‖1 =
∑

ijk |Aijk|, ℓ∞−norm by

‖A‖∞ = maxijk |Aijk| and Frobenius norm by ‖A‖F =
√

∑

ijk |Aijk|2. An n1×n2×n3 tensor A can be transformed

to an (n1n3)× (n2n3) block diagonal matrix A whose blocks

are the frontal slices A(1), · · · , A(n3). Both this transform and

its inverse are denoted by bdiag, and the meaning can be

understood according to the type of the input.

Discrete Fourier transform (DFT) and inverse discrete

Fourier transform (IDFT) are essential to the definitions in

Section III-B. We use fft and ifft to denote DFT and

IDFT applying to each tube of a 3-way tensor. We define

A = fft(A, 3), and it is obvious that A = ifft(A, , 3).
Furthermore, we use A = bdiag(A) to denote the block

diagonal matrix whose blocks are frontal slices of A. With a

little abuse of terminology, we say A is in original domain and

A (or equivalently A) is in transformation domain or Fourier

domain.

B. T-Product and T-SVD

Definition 3.1 (T-product): [19], [23] Suppose A ∈
C

n1×m×n3 and B ∈ C
m×n2×n3 , then the t-product A ∗ B ∈

C
n1×n2×n3 is defined as

A ∗ B = ifft(bdiag(AB), 3) (1)

Note that Definition 3.1 is different from [19], [23] in form,

but it is equivalent to the standard definitions. The reason why

we choose this form is to avoid some cumbersome notations

and better reveal the relationship between original domain and

transformation domain. We may regard t-product as transform-

ing the tensors by DFT, then multiplying corresponding frontal

slices in Fourier domain, and finally transforming the result

back to original domain by IDFT. It has been proved in [19],

[23] that C = A ∗ B is equivalent to C = AB.

Before we introduce T-SVD, we need some further def-

initions, which are direct extensions of the corresponding

definitions in the matrix case.

Definition 3.2 (Conjugate transpose): [19], [23] Suppose

A ∈ C
n1×n2×n3 , the conjugate transpose of A is denoted by

A∗ ∈ C
n2×n1×n3 whose first frontal slice equals to

(

A(1)
)∗

and whose k−th frontal slice (k = 2, 3 · · · , n3) equals to
(

A(n3+2−k)
)∗

.

Definition 3.3 (Identity tensor): [19], [23] The identity

tensor I ∈ R
n×n×n3 is the tensor whose first frontal slice

is the n× n identity matrix and whose other slices are zeros.

Definition 3.4 (Orthogonal tensor): [19], [23] A tensor

Q ∈ R
n×n×n3 is orthogonal if Q ∗ Q∗ = Q∗ ∗ Q = I.

Definition 3.5 (F-diagonal): [19], [23] A tensor is said to

be f-diagonal if its every frontal slice is a diagonal matrix.

Theorem 3.1 (T-SVD): [19], [23] Suppose A ∈ R
n1×n2×n3 .

Then there exists tensors U ∈ R
n1×n1×n3 ,V ∈ R

n2×n2×n3

and S ∈ R
n1×n2×n3 such that A = U ∗ S ∗ V∗. Furthermore,

U and V are orthogonal, while S is f-diagonal.

Note that A = U ∗ S ∗ V∗ in original domain is equivalent

to A = USV
∗

in Fourier domain. Intuitively, we can obtain

the T-SVD of A by calculating SVD of each frontal slice

A
(k)

in frequency domain, i.e., A
(k)

= U
(k)

S
(k)

(V
(k)

)∗, then
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n2

n1

n3

= * *

Fig. 2. An illustration of the t-SVD of an n1 × n2 × n3 tensor.

transforming U ,S,V to original domain by IDFT. However,

as indicated in [23], this method may result in complex entries

due to non-uniqueness of matrix SVD. We omit the detailed

algorithm for calculating T-SVD due to space limit, and refer

to [23] for further discussions.

The concept of rank for tensors is very complicated. There

are various definitions of tensor rank [1], [4], [5], and most

of them are NP-complete. The rank of a matrix is equivalent

to the number of its non-zero singular values, and we often

use nuclear norm (the sum of all singular values) as a

surrogate function for matrix rank. Intuitively, we may extend

the concept of the nuclear norm to the tensor case, and the

extension may be a reasonable surrogate for tensor rank.

Definition 3.6 (Tensor nuclear norm): [19], [23] Let A =
U∗S∗V∗ be the t-SVD of A, the nuclear norm of A is defined

as ‖A‖∗ =
∑

i S(i, i, 1).
It has been proved in [23] that Definition 3.6 is the convex

envelope of tensor average rank. Besides, the tensor nuclear

norm is the dual norm of the tensor spectral norm, which is

consistent with the matrix case. At first glance, the definition

above may be a little amazing since only the first frontal

slice of S is used. According to the definition of IDFT, we

have S(i, i, 1) = 1
n3

∑

k S(i, i, k). Thus, in the transformation

domain, the tensor nuclear norm is equal to the sum of all

singular values of all frontal slices up to a constant factor.

C. Non-convex Penalties: SCAD and MCP

As indicated in [12], an ideal penalty function should

result in an estimator with three properties: unbiasedness,

sparsity and continuity. Smoothly clipped absolute deviation

(SCAD) was proposed in [12] to improve the properties of

the ℓ1 penalty, which does not satisfies the three properties

simultaneously.

Definition 3.7 (SCAD): [12] For some γ > 2 and λ > 0,

the SCAD function is given by

ϕSCAD
λ,γ (t) =











λ|t| if|t| ≤ λ,
γλ|t|−0.5(t2+λ2)

γ−1 ifλ < |t| < γλ,
γ+1
2 λ2 if|t| > γλ.

(2)

A continuous, nearly unbiased and accurate variable selection

penalty called minimax concave penalty (MCP) was proposed

in [13]. The precise definition is given as follows.

Definition 3.8 (MCP): [13] For some γ > 1 and λ > 0, the

MCP function is given by

ϕMCP
λ,γ (t) =

{

λ|t| − t2

2γ if|t| < γλ,
γλ2

2 if|t| ≥ γλ.
(3)

It is well known that ℓ1−norm penalty over-penalizes large

components. However, in SCAD and MCP, the penalty re-

mains constant once the variable is larger than a threshold. Be-

sides, we point out that as γ → ∞, we have ϕSCAD
λ,γ (t) → λ|t|

and ϕMCP
λ,γ (t) → λ|t| pointwisely. Last but not least, if we

restrict t ≥ 0, or equivalently view SCAD and MCP as func-

tions of |t|, then they are concave functions. In the following,

we use ϕλ,γ(t) to denote SCAD or MCP alternatively.

The effects of λ and γ in SCAD and MCP can be understood

intuitively by considering ϕλ,γ(t) → λ|t|. Roughly, λ controls

the relative importance of the penalty, and γ controls how

similar is ϕλ,γ(t) compared with λ|t|.

IV. THEORETICAL FOUNDATIONS

A. A Novel Tensor Sparsity Measure

The ℓ1−norm has been widely used as a sparsity measure in

statistics, machine learning and computer vision. For tensors,

the tensor ℓ1−norm plays a vital role in TRPCA [27], [10],

[23]. However, ℓ1−norm penalty over-penalizes larger entries

and may result in biased estimator. Therefore, we propose to

use SCAD or MCP instead of the ℓ1−norm penalty. The novel

tensor sparsity measure is defined as

Φλ,γ(A) =

n1
∑

i=1

n2
∑

j=1

n3
∑

k=1

ϕλ,γ(Aijk). (4)

Here, we may set ϕλ,γ to be ϕSCAD
λ,γ or ϕMCP

λ,γ . We have the

following properties.

Proposition 4.1: For A ∈ R
n1×n2×n3 , Φλ,γ(A) satisfies:

(i) Φλ,γ(A) ≥ 0 with the equality holds iff A = 0;

(ii) Φλ,γ(A) is concave with respect to |A|;
(iii) Φλ,γ(A) is increasing in γ, Φλ,γ(A) ≤ λ‖A‖1 and

limγ→∞ Φλ,γ(A) = λ‖A‖1.

B. A Novel Tensor Rank Penalty

In this part, we always assume λ = 1. Similar to tensor

nuclear norm, we can apply SCAD or MCP to the singular

values of a tensor. However, this may result in difficulty

in optimization algorithms. Instead, we propose to apply

penalty function to all singular values in Fourier domain. More

precisely, suppose A has t-SVD A = U ∗ S ∗ V∗, we define

the γ−norm of A as

‖A‖γ =
1

n3

∑

i,k

ϕ1,γ(S(i, i, k)). (5)

The tensor γ−norm enjoys the following properties.

Proposition 4.2: For A ∈ R
n1×n2×n3 , suppose A has t-SVD

A = U ∗ S ∗ V∗, then ‖A‖γ satisfies:

(i) ‖A‖γ ≥ 0 with equality holds iff A = 0;

(ii) ‖A‖γ is increasing in γ, ‖A‖γ ≤ ‖A‖∗ and

limγ→∞ ‖A‖γ = ‖A‖∗;

(iii) ‖A‖γ is concave with respect to {S(i, i, k)}i,k;

(iv) ‖A‖γ is orthogonal invariant, i.e., for any orthogonal

tensors P ∈ R
n1×n1×n3 ,Q ∈ R

n2×n2×n3 , we have ‖P ∗
A ∗ Q‖γ = ‖A‖γ .
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C. Generalized Thresholding Operators

We will use majorization minimization algorithm in Section

V-A and V-B. In this part, we derive some properties that

are vital to MM algorithm based on the concavity of SCAD

and MCP. As mentioned in Section III-C, SCAP and MCP

are continuous differentiable concave functions restricted on

[0,∞), thus we can bound ϕλ,γ(t) by its first-order Taylor

expansion ϕλ,γ(t0) +ϕ′
λ,γ(t0)(t− t0). This observation leads

to the following theorem.
Theorem 4.3: We can view Φλ,µ(X ) as a function of |X |,

and ‖X‖γ as a function of {S(i, i, k)}i,k. For any X old, let

Qλ,γ(X|X old) = Φλ,γ(X
old) +

∑

i,j,k

ϕ
′

λ,γ(|X
old
ijk|)(|Xijk| − |X old

ijk |),

Qγ(X|X old) = ‖X old‖γ +
1

n3

∑

i,k

ϕ
′

1,γ(S
old

iik)(Siik − S
old

iik),

(6)

then

Qλ,γ(X
old|X old) = Φλ,γ(X

old),Φλ,γ(X ) ≤ Qλ,γ(X|X old),

Qγ(X
old|X old) = ‖X old‖γ , ‖X‖γ ≤ Qγ(X|X old).

(7)

Due to the concavity of Φλ,γ(X ) and ‖X‖γ , optimiza-

tion problems involving Φλ,γ(X ) and ‖X‖γ are generally

extremely difficult to solve. However, optimizing upper bounds

given in Theorem 4.3 instead is relatively easy. It’s well-known

that soft thresholding operator Tλ(z) = sgn(z)[|z|−λ]+ is the

proximal operator of ℓ1−norm. In the following, we introduce

generalized thresholding operators based on Tλ, then derive the

proximal operators of Qλ,γ(X|X old) and Qγ(X|X old).
Definition 4.1 (Generalized soft thresholding): Suppose

X ,W ∈ R
n1×n2×n3 , the generalized soft thresholding opera-

tor is defined as

[TW(X )]ijk = TWijk
(Xijk). (8)

Theorem 4.4: For ∀µ > 0, let Wijk = ϕ′
λ,γ(|X

old
ijk|)/µ, then

TW(Y) = argmin
X

Qλ,γ(X|X old) +
µ

2
‖X − Y‖2F . (9)

Definition 4.2 (Generalized t-SVT): Suppose a 3-way

tensor Y has t-SVD Y = U ∗ S ∗ V∗, W is a tensor with

the same shape of Y , the generalized tensor singular value

thresholding operator is defined as

DW(Y) = U ∗ S̃ ∗ V∗, (10)

where S̃ = ifft(TW(S), 3).

Theorem 4.5: For ∀µ > 0, let Wijk = δjiϕ
′
1,γ(S

old

iik)/µ

where δji is the Kronecker symbol, then

DW(Y) = argmin
X

Qγ(X|X old) +
µ

2
‖X − Y‖2F . (11)

V. PROPOSED NON-CONVEX TENSOR RECOVERY MODELS

AND ALGORITHMS

A. Non-convex Tensor Completion

Given a partially observed tensor O ∈ R
n1×n2×n3 , tensor

completion task aims to recover the full tensor X which

coincides with O in the observed positions. Suppose the

Algorithm 1 MM algorithm for non-convex low-rank tensor

completion

Input: Ω,O
Hyper parameters: γ, µ0, ρ, µmax

1: Initialize X old = X 0 by O⊛Ω or other tensor completion

algorithm.

2: while not converged do

3: Calculate S
old

and set Wt
ijk = δjiϕ

′
1,γ(S

old

iik)/µ.

4: Initialize X t
0 = X t,Yt

0 = 0.

5: while not converged do

6: Mt
l+1 = DWt(X t

l − 1
µl
Yt
l )

7: X t
l+1 = (Mt

l+1 +
1
µl
Yt
l )⊛ (1− Ω) +O ⊛ Ω

8: Yt
l+1 = Yt

l + µl(M
t
l+1 −X t

l+1)
9: µl+1 = min(ρµl, µmax)

10: end while

11: Update X t+1 by the result of inner iteration

12: Set X old = X t+1

13: end while

observed positions are indexed by Ω, i.e., Ωijk = 1 denotes

the (i, j, k)−th element is observed while Ωijk = 0 denotes

the (i, j, k)−th element is unknown. Based on low rank

assumption, tensor completion can be modeled as

min
X

rank(X ) s.t. OΩ = XΩ. (12)

Since the concept of rank is very complicated for tensors,

many types of tensor rank or surrogate functions can be used

in Equation 12. Here, we use the proposed tensor γ−norm,

min
X

‖X‖γ s.t. OΩ = XΩ. (13)

We can set ϕ1,γ in Equation (13) to be SCAD or MCP. In the

following we refer these non-convex tensor completion models

as LRTCscad and LRTCmcp respectively.

We apply majorization minimization algorithm to solve

problem (13). Given X old, we minimize the upper bound of

‖X‖γ given in Theorem 4.3, which leads to

min
X

Qγ(X|X old) s.t. OΩ = XΩ. (14)

Problem (14) is convex, thus we can use ADMM to solve it.

Introducing auxiliary variable M and let D be the feasible

domain {X |OΩ = XΩ}, then Equation (13) is equivalent to

min
X∈D

Qγ(M|X old) s.t. M = X . (15)

Problem (15) is easy to solve by standard ADMM iterations,

and the derivation of ADMM steps are omitted here for

page limit and included in the supplemental matrial. Note

that ADMM is the inner loop, after the ADMM converges

we should update X old and repeat ADMM iterations again.

Detailed algorithm is described in Algorithm 1. We have the

following theoretical guarantee for this algorithm.

Theorem 5.1: The iteration sequence generated by X t+1 ∈
argminOΩ=XΩ

Qγ(X|X t) is non-increasing, i.e., ‖X t+1‖γ ≤
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Algorithm 2 MM algorithm for tensor RPCA

Input: X
Hyper parameters: γ1, γ2, µ0, ρ, µmax

1: Initialize L0, E0 by other tensor RPCA algorithm

2: Initialize Y0 by random guess

3: while not converged do

4: Calculate t-SVD of Lold = U ∗ Sold ∗ V∗

5: Set Zt
ijk = δjiϕ

′
1,γ1

(S
old

iik)/µ

6: Set Wt
ijk = ϕ′

λ,γ2
(Eold

ijk)/µ
7: while not converged do

8: Lt
l+1 = DZt(X − (Et

l +
1
µl
Yt
l ))

9: Et
l+1 = TWt(X − (Lt

l+1 +
1
µl
Yl))

10: Yt
l+1 = Yt

l + µlL
t
l+1 + Et

l+1 −X )
11: µl+1 = min(ρµl, µmax)
12: end while

13: Update Lt+1, Et+1 by the result of inner iteration

14: Set Lold = Lt+1, Eold = Et+1

15: end while

‖X t‖γ and converges to some Q∗. Besides, there exists a

subsequence {X ik}∞k=1 converges to a minimal point X∗ of

‖X‖γ on {X |OΩ = XΩ}.

B. Non-convex Tensor Robust PCA

Given a tensor X , the goal of robust PCA is to decompose

X into two parts: low-rank tensor L and sparse tensor E . This

problem can be formulated as

min
L,E

rank(L) + ‖E‖0 s.t. L+ E = X . (16)

Apply the proposed novel sparsity measure and tensor

γ−norm, we obtain

min
L,E

‖L‖γ1
+Φλ,γ2

(E) s.t. L+ E = X . (17)

We may set ϕλ,γ to be SCAP or MCP in Equation (17), and

refer them as TRPCAscad and TRPCAmcp respectively.

We apply majorization minimization algorithm to solve

problem (17). Given Lold, Eold, we minimize the upper bound

of ‖L‖γ1
+Φλ,γ2

(E) given in Theorem 4.3,

min
L,E

Qγ1
(L|Lold) +Qλ,γ2

(E|Eold) s.t. L+ E = X . (18)

This problem is also easy to solve by ADMM. The sub-

problem of updating L and E has closed-form solutions

according to Theorem 4.4 and Theorem 4.5. We describe the

detailed algorithm in Algorithm 2. We have the following

theoretical result for this algorithm.

Theorem 5.2: The iteration sequence generated by

(Lt+1, Et+1) ∈ arg min
L+E=X

Qγ1
(L|Lt) +Qλ,γ2

(E|E t)

is non-increasing, i.e., ‖Lt+1‖γ1
+ Φλ,γ2

(Et+1) ≤ ‖Lt‖γ1
+

Φλ,γ2
(Et) and converges to some Q∗. Besides, there exists

a subsequence {(Lik , E ik)}∞k=1 converges to a minimal point

(L∗, E∗) of ‖L‖γ1
+Φλ,γ2

(E) on {(L, E)|L+ E = X}.

VI. EXPERIMENTS

A. Datasets and Experimental Settings

We evaluate the effectiveness of the proposed non-convex

tensor completion and tensor RPCA algorithms on Berke-

ley Segmentation 500 Dataset (BSD 500) [32] and Natural

Scenes 2002 Dataset (NS 2002) [33]. Berkeley Segmentation

500 Dataset consists of 500 natural images, and Natural

Scenes 2002 Dataset contains 8 hyperspectral images with

31 bands sampled from 410nm to 710nm at 10nm intervals.

All the hyperspectral images are downsampled by factor

2. We employ Mean Square Error (MSE), Peak Signal-to-

Noise Ratio (PSNR), Feature SIMilarity (FSIM) [34], Erreur

Relative Globale Adimensionnelle de Synthèse (ERGAS)[35]

and Spectral Angle Mapper (SAM) [36], [37] as performance

evaluation indexes. Smaller MSE, ERGAS, SAM and larger

PSNR, FSIM indicates the result is better.

There are some practical issues to clarify about Algorithm

1 and Algorithm 2. First, the hyper-parameters µ0, ρ, µmax

are introduced to accelerate the convergence speed. The in-

ner ADMM iteration is always convergent regardless of the

settings of these parameters, but the speed of convergence is

different. In practice, we find setting µ0 = 1, ρ = 1.1, µmax =
1e10 results in fast convergence. Second, the initialization of

X 0 and L, E is very important, since a good starting position

usually leads to better final result in non-convex optimization

problems. We suggest initializing X 0 or L0, E0 by other tensor

completion or tensor RPCA methods (such as TRPCA [23]).

Last but not least, it usually takes a long time for the outer

iteration to converge. In practice, it’s not necessary to wait for

convergence. Instead, we can iterate the outer loop for fixed

times.

B. Tensor Completion Experiments

We conduct tensor completion experiments on BSD 500

and NS 2002 to test the performances of LRTCmcp and

LRTCscad. For comparison, we also consider five compet-

ing tensor completion methods: Bayesian CP Factorization

(FBCP) [3], Simple Low-Rank Tensor Completion (SiLRTC)

[2], High Accuracy Low-Rank Tensor Completion (HaLRTC)

[2], tensor-SVD based method (t-SVD) [21], twist Tensor

Nuclear Norm based method (t-TNN) [11].

Natural image inpainting. We randomly select 200 im-

ages in BSD 500 for evaluation. For each image, pixels are

randomly sampled with a sampling rate ranging from 20% to

80%. For our LRTCmcp and LRTCscad models, we set γ = 25,

and use the result of t-TNN as initialization. To alleviate redun-

dant computations, we apply the one-step LLA strategy [38],

[24], i.e., we run the outer loop only once instead of waiting

for convergence. The average performances over selected 200

images under different sampling rates are summarized in Table

I. From this table, we can see that our proposed LRTCmcp and

LRTCscad outperform other competing methods in terms of all

performance evaluation indices. As for efficiency, the proposed

methods are significantly faster than FBCP, SiLRTC, HaLRTC,

and t-SVD. Since the proposed methods are initialized by t-

TNN, the running time is always slightly longer than t-TNN.
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Original Corrupted FBCP HaLRTC t-SVD t-TNN LRTCmcp LRTCscad

Fig. 3. Tensor completion performance comparison on example images.

TABLE I
TENSOR COMPLETION PERFORMANCES EVALUATION ON NATURAL IMAGES UNDER VARYING SAMPLING RATES.

Method
20% 40% 60% 80%

time (s)

PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

SiLRTC 23.59 0.798 0.822 27.987 0.899 0.915 32.24 0.951 0.964 37.47 0.977 0.988 19.95

HaLRTC 23.82 0.797 0.828 28.39 0.902 0.920 33.038 0.953 0.968 39.27 0.978 0.991 31.32

FBCP 24.08 0.668 0.794 26.40 0.753 0.837 27.35 0.799 0.857 27.71 0.82 0.865 103.68

t-SVD 24.13 0.764 0.835 29.703 0.893 0.931 36.03 0.950 0.977 45.04 0.969 0.992 33.47

t-TNN 25.30 0.841 0.864 30.50 0.923 0.943 36.27 0.952 0.978 44.14 0.967 0.991 3.03

LRTCmcp 25.70 0.845 0.869 31.06 0.927 0.946 36.87 0.959 0.980 45.46 0.973 0.993 3.79

LRTCscad 25.70 0.844 0.869 31.04 0.926 0.946 36.84 0.959 0.980 45.45 0.973 0.993 3.83

TABLE II
TENSOR COMPLETION PERFORMANCES EVALUATION ON HYPERSPECTRAL IMAGES UNDER VARYING SAMPLING RATES. THE UNIT IS 10

−4 FOR MSE.

Method
20% 40% 60% 80%

time (s)

PSNR MSE ERGAS PSNR MSE ERGAS PSNR MSE ERGAS PSNR MSE ERGAS

SiLRTC 41.71 4.70 30.912 45.46 1.95 21.524 49.14 0.827 14.412 52.86 0.354 10.341 42.21

HaLRTC 42.11 4.53 29.626 45.95 1.90 20.556 49.79 0.801 13.514 53.67 0.342 9.660 53.11

FBCP 37.09 14.47 52.931 43.25 3.85 29.318 46.00 2.225 22.344 46.67 2.011 20.688 210.18

t-SVD 41.64 5.10 31.835 45.52 2.12 22.142 49.42 0.886 14.685 53.49 0.365 10.157 224.21

t-TNN 42.46 3.81 28.702 46.07 1.60 20.135 49.82 0.667 13.272 53.61 0.290 9.515 47.29

LRTCmcp 42.91 3.58 27.799 46.75 1.51 19.684 50.47 0.665 13.293 54.11 0.316 9.642 70.95

LRTCscad 42.91 3.58 27.804 46.76 1.51 19.684 50.46 0.666 13.298 54.11 0.316 9.642 71.14

However, the performances are improved by only one MM

iteration and the extra running times are marginal. Therefore,

we claim that it is necessary to introduce non-convexity in

the tensor completion task. These observations demonstrate

LRTCmcp and LRTCscad are both effective and efficient. We

also give visual comparisons in Figure 3.

Hyperspectral image inpainting. We use all 8 hyperspec-

tral images in this experiment. For each hyperspectral image,

we randomly sample its elements with a sampling rate ranging

from 0.2 to 0.8. Since the sizes of hyperspectral images are

relatively large, we run the outer loop in Algorithm 1 for

10 iterations based on t-TNN initialization. The performance

comparison are shown in Table II. We have similar obser-

vations as in the natural image case: the results obtained

by LRTCmcp and LRTCscad have lower MSE, ERGAS, and

higher PSNR, indicating that the proposed methods outperform

competing methods. The fastest and the slowest algorithms are

different in Table I and II mainly because n3 = 3 for natural

images while n3 = 31 for hyperspectral images and the time

complexities of these algorithms depends on n3 differently.

Besides, we find that the results of LRTCmcp and LRTCscad

are nearly the same since MCP and SCAD shares very similar

properties.

C. Tensor RPCA Experiments

We compare our proposed TRPCAmcp and TRPCAscad with

matrix RPCA [9], [8] and TNN based TRPCA [10], [23] on

both natural images and multispectral images. To apply matrix

RPCA in tensor RPCA task, we simply apply matrix RPCA

to each frontal slices of the corrupted tensor.
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Original image Corrupted image RPCA TRPCA TRPCAmcp TRPCAscad

Fig. 4. Tensor RPCA performance comparison on example images. From top to bottom: pn = 0.1, 0.2, 0.3, 0.4.
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Fig. 5. Comparison of PSNR values obtained by RPCA, TRPCA, TRPCAmcp,TRPCAscad on randomly selected 50 images.

Natural image restoration. We first test TRPCAmcp and

TRPCAscad on BSD 500. Each image is corrupted by salt-and-

pepper noise with probability pn = 0.1. We set γ1 = γ2 = 20
and run the outer loop of Algorithm 2 for 10 iterations.

Performance comparison on randomly selected 50 images

are shown in Figure 5. From this figure, we have following

observations. First, the results of TRPCA,TRPCAmcp and

TRPCAscad are significantly better than results of RPCA. This

indicates that considering tensor structure helps to improve

recovery quality compared to consider each channel individ-

ually. Second, TRPCAmcp and TRPCAscad obtained better

performance than TRPCA, which means introducing concavity

to Tensor RPCA tasks are necessary. Third, the PSNR values

of TRPCAmcp and TRPCAscad are very similar, indicating the

final result is not sensitive to the choice of non-convex penalty.

We also give visual comparisons in Figure 4. Note that for the

noise proportion ranging from 0.1 to 0.4 in Figure 4.

Hyperspectral image restoration. In this part, we test the

proposed models on NS 2002. We add random noise to each

hyperspectral image with probability pn ranging from 0.1 to

0.4. Here, the noise is uniformly distributed in [0, 0.1 ∗ M)
where M is the maximum absolute value of the original

image. We set γ1 = γ2 = 50, and run the outer loop for

TABLE III
TENSOR ROBUST PRINCIPAL COMPONENT ANALYSIS PERFORMANCES

EVALUATION ON HYPER-SPECTRAL IMAGES.

pn Index RPCA TRPCA TRPCAmcp TRPCAscad

0.1

MSE 20.113 3.680 3.332 3.329

PSNR 41.89 46.11 46.57 46.57

ERGAS 23.224 13.203 12.898 12.893

SAM 0.0887 0.0894 0.0880 0.0879

0.2

MSE 21.298 4.353 3.837 3.834

PSNR 41.31 45.63 46.08 46.09

ERGAS 24.374 14.473 13.703 13.706

SAM 0.1191 0.1003 0.0961 0.0961

0.3

MSE 26.430 6.637 4.731 4.726

PSNR 39.68 44.13 45.28 45.27

ERGAS 28.956 18.668 15.177 15.205

SAM 0.1710 0.1291 0.1076 0.1079

0.4

MSE 49.858 28.275 6.979 6.964

PSNR 36.13 38.51 43.16 43.11

ERGAS 49.877 50.354 20.126 20.298

SAM 0.2602 0.2483 0.1428 0.1440

10 iterations. The results of TRPCA are used as initialization

for the proposed methods. We employ MSE, PSNR, ERGAS,

and SAM as quality indexes. The results are reported in
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Table III. It’s easy to see that TRPCAmcp and TRPCAscad

outperform competing methods in terms of all quality indexes.

Specifically, we note that when pn = 0.4, i.e., the noise

proportion is rather large, the proposed methods improve the

results of TRPCA significantly. In these circumstances, the

sparse assumption on noise may not hold. Although RPCA

and TRPCA have nice exact recovery property under certain

conditions, these conditions are rather strict and sometimes

not satisfied. However, the proposed methods still recover the

images successfully.

VII. CONCLUSIONS

In this paper, we have presented a new non-convex tensor

rank surrogate function and a new non-convex sparsity mea-

sure based on the MCP and SCAD penalty functions. Then,

we have analyzed some theoretical properties of the proposed

penalties. In particular, we applied the non-convex penalties

in tensor completion and tensor robust principal component

analysis tasks, and devised optimization algorithms based on

majorization minimization. Experimental results on natural

images and hyperspectral images substantiate the proposed

methods outperform competing methods.
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