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Abstract. Mixture of Gaussian processes (MGP) is a powerful model
for dealing with data with multi-modality. However, input distributions
of Gaussian process (GP) components of an MGP are designed to be
Gaussians, which cannot model complex distributions that frequently
appear in datasets. It has been proven that neural spline flow (NSF)
models can transform a simple base distribution into any complex target
distribution through the change of variables formula. In this paper, we
propose an NSF-based mixture model of Gaussian processes (NMGP),
which extends the conventional MGP by using distributions modeled
by NSFs for the input variables instead of Gaussians. In addition, a
variational EM algorithm is established to estimate the parameters of an
NMGP. It is demonstrated by the experimental results that our proposed
NMGP models outperform classic MGPs.
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1 Introduction

Gaussian process (GP) has proven to be an effective tool for a wide variety of
applications in machine learning, such as modeling the inverse dynamics of a
robot arm [1]. Unfortunately, GPs fail to handle multimodal datasets and, given
N training samples, training a GP suffers from an expensive time complexity
scaling as O(N3). To overcome these two limitations, Tresp [2] proposed the
mixture of Gaussian processes (MGP), in which more than one GP is combined
through a gating network. The gating network of an MGP is set to be a Gaus-
sian mixture model (GMM) [2–5], in which each Gaussian determines the input
distribution of a GP component. However, Gaussians cannot model complex
distributions which frequently appear in datasets. Therefore, Yuan et al. [6] sug-
gested replacing the Gaussians with GMMs. Although GMMs can alleviate the
problem, we must determine the number of Gaussians in each GMM in advance.
Inappropriate numbers may lead to bad predictive accuracy. In addition, Li et al.
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[7] proposed using Student’s t-distributions as the input distributions to deal
with multimodal data with overlaps between different modalities. Both GMMs
and Student’s t-distributions are parametric, which are not flexible enough to
model a complex distribution.

One of the most important tasks in machine learning and statistics is to
model an unknown probability distribution given samples drawn from that dis-
tribution, and normalizing flow models, proposed by Tabak et al. [8] and Tabak
et al. [9], are widely applied to this problem [10]. Normalizing flow is an invert-
ible differentiable function, which can transform a simple base distribution, e.g.
N (0, I), into any complex distribution through the change of variables formula.

In this paper, we propose a neural-spline-flow-based mixture model of Gaus-
sian processes (NMGP), where the neural spline flows (NSF), to be introduced in
Sect. 3, are a kind of normalizing flows. In an NMGP model, the input distribu-
tions are designed to be distributions generated via NSFs instead of Gaussians. A
variational EM algorithm is developed to train our proposed NMGP models, and
experimental results show that NMGPs not only produce smaller errors compared
to the conventional MGPs but also explore the true input distributions.

The remainder of this paper is organized as follows. We briefly introduce GP
and MGP models in Sect. 2. Section 3 describes the construction of NMGPs. The
variational EM algorithm is described in Sect. 4. Then, we present the experi-
mental results in Sect. 5 and Sect. 6 concludes this paper.

2 GP and MGP Models

First, a short description of GP models is given. A GP, expressed as {f(x)|x ∈
X}, is a collection of random variables, any finite number of which follow a mul-
tivariate Gaussian distribution [1], and it is completely specified by its mean
function m(x) and covariance function c(x,x′), where m(x) = E[f(x)] and
c(x,x′) = E[(f(x) − m(x))(f(x′) − m(x′))]. In practice, we usually use a noisy
GP, {y(x)|x ∈ X}, obtained by adding i.i.d. Gaussian noise to each f(x), i.e.
y(x) = f(x) + ε(x) with ε(x) ∼ N (0, r−1), where r−1 denotes the noise level.
We write a noisy GP as y ∼ GP(m(x), c(x,x′) + r−1δ(x,x′)), where δ(x,x′) is
the Kronecker delta function.

In this paper, we set m(x) to be zero for simplicity and use the squared-
exponential covariance function, defined as c(x,x′|σ) = σ2

0 exp{−1/2
∑d

i=1(xi −
x′

i)
2/σ2

i }, where σi > 0 and d is the dimensionality of x. In such a setting, given
a training set D = {(xn, yn)}N

n=1 from a GP, we have

y|X ∼ N (0,C + r−1IN ), (1)

where C(m,n) = c(xm,xn|σ).
Next, we briefly introduce MGP models. Here, suppose that D is drawn from

an MGP composed of K GP components. We introduce an indicator variable τn

for each sample (xn, yn). The generative process of D is given by:

p(τn = k) = πk, xn|τn = k ∼ N (μk,Σk), (2)

and
yn|τn = k ∼ GP(0, c(x,x′|σk) + r−1

k δ(x,x′)). (3)
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3 NSF-Based Mixture of Gaussian Processes

Let z ∼ N (0, Id) be the base variable and x the target variable following the
distribution we want to model. Suppose that h(x|θ) is a monotonic rational-
quadratic spline [11] parameterized by θ, whose inverse and derivative are eas-
ily computed. Then a one-layer NSF1 z = h(x) is given by z1 = h(x1|θ1)
and zi = h(xi|θi(x1:i−1)), i = 2, . . . , d, where θi(x1:i−1)), i = 2, . . . , d, are
neural networks taking x1:i−1 as inputs [12]. The inverse, x = h−1(z), is
x1 = h−1(z1|θ1) and xi = h−1(zi|θi(x1:i−1)), i = 2, . . . , d. Recursively, a J-
layer NSF is defined as z = ϕ(x) = hJ (hJ−1(. . .h1(x) . . .)). It is obtained that
px(x) = pz(ϕ(x))

∏J
j=1 |det(∂xj/∂xj−1)|, where xj = hj(hj−1(. . .h1(x) . . .)),

j = 1, . . . , J , xJ = z, and x0 = x. Computing the determinants is cheap because
the Jacobians are lower triangular. Therefore, we can easily calculate the likeli-
hood of x.

In an NMGP, a base variable zk, subject to N (0, Id), and an NSF
ϕk(x|ωk), where ωk denotes the parameters, are introduced for kth GP.
Then, to build an NMGP, we only need to replace the N (μk,Σk) in Eq.
(2) with the probability distribution of x = ϕ−1

k (zk|ωk), i.e. p(x|ωk) =
pzk

(ϕk(x|ωk))|det(∂ϕk(x|ωk)/∂x)|.

4 Variational EM Algorithm

4.1 E-Step

Similar to the variational EM algorithm for MGP models, the linear GP model
[6,13–15], an approximation of the standard GP, is used to eliminate the depen-
dency between the outputs yn, n = 1, . . . , N . To construct a linear GP, we
need to choose M (� N) samples from D to form a support set D′. Let
λ follow N (0,C−1

MM ), where CMM is the M × M covariance matrix con-
sisting of covariance functions between samples in D′. Then we assume that
yn|λ ∼ N (c(xn,D′)λ, r−1). It follows that y ∼ N (0,CNMC−1

MMCT
NM + r−1IN ),

where CNM is composed of covariance functions between samples in D and D′.
That is identical to the likelihood of a sparse Gaussian process obtained via
the subset of regressors (SoR) method [16], which shows the rationality of lin-
ear models. The most important advantage of linear models is that, given λ,
yn, n = 1, 2, . . . , N , are independent.

In order to develop a variational EM algorithm for NMGPs, we pick K sup-
port sets Dk, k = 1, 2, . . . ,K, and introduce corresponding variables λk, k =
1, 2, . . . ,K. Then, K linear GPs are built to take the place of K standard GPs.
We give π a Dirichlet prior Dir(α) and rk a Gamma prior Γ(a, b). The graphical
model representation for the proposed model is shown in Fig. 1.

For simplicity, we denote all the latent variables as Γ = {πk,λk, rk, τn|k =
1, 2, . . . ,K, n = 1, 2, . . . , N}. In the framework of linear models, the complete
data log-likelihood is given by
1 In this paper, only autoregressive transforms are utilized.
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Fig. 1. The graphical model representation for the proposed model.

ln p(Γ,X,y) = ln p(π) +
∑K

k=1
(ln p(λk) + ln p(rk)) +

∑N

n=1
ln p(τn|π)

+
∑N

n=1
(ln p(xn|τn) + ln p(yn|τn,xn,λτn , rτn)).

(4)

According to variational inference based on mean field theory, we choose a vari-
ational posterior distribution of the form

q(Γ) = q(π)
∏K

k=1
{q(λk)q(rk)}

∏N

n=1
q(τn) (5)

to approximate the true one in the E-step. Formulas used to calculate the above
variational factors iteratively are standard [15] and thus omitted here.

4.2 M-Step

In an NMGP, the whole parameters, their current values, and the current vari-
ational posterior are denoted as Θ, Θt, and qt(Γ), respectively. The true Q-
function, Q(Θ|Θt) = Ep(Γ|X,y,Θt) ln p(Γ,X,y|Θ), cannot be computed analyti-
cally. Therefore, we use Q̂(Θ|Θt) = Eqt(Γ) ln p(Γ,X,y|Θ) as its approximation.
We maximize Q̂(Θ|Θt) w.r.t. Θ through gradient ascent methods. The deep
learning framework PyTorch is utilized so there is no need to calculate the gra-
dient manually.

4.3 Updating Support Sets

The first step of the variational EM algorithm is to determine K support sets
randomly, and then a certain number, denoted as S, of E-steps and M-steps are
performed. After that, to improve the result, the K support sets are updated
according to certain criteria, and E-steps and M-steps are conducted again. We
repeat the process T times determined in advance.
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Fixing the parameters and variational posteriors of Γ\{λk}K
k=1, it is reason-

able to assume that the best Dk maximizes the value of q(λk) at the mean
[6,13–15]. That is equivalent to maximizing

|Tk| = |Ck + Eqrk

∑N

n=1
qnkck(xn)ck(xn)T |, (6)

where Ck is the covariance matrix composed of covariance functions between
data points in Dk and ck(xn) is the column vector consisting of covariance func-
tions between xn and training samples in Dk. |Tk| can be thought of as a function
of Dk.

Finding the best Dk from
(

N
M

)
candidates is an NP problem. Therefore, a

greedy algorithm [6,13–15] is employed to find a suboptimal solution.

4.4 Predictive Distribution

Assume that x∗ is a new input and y∗ represents its predictive output. We need
to calculate the distribution p(y∗|x∗,D) =

∫
p(y∗|x∗,Γ)p(Γ|D)dΓ. Similar to the

calculation of Q-function, we can replace p(Γ|D) with the variational posterior
q(Γ) obtained in the last E-step. Thus, we have

p(y∗|x∗,D) ≈
∫

p(y∗|x∗,Γ)q(Γ)dΓ ≈ p(y∗|x∗,EqΓ)

=
∑

k

Eqπkp(x∗|ωk)
∑

i Eqπip(x∗|ωi)
N (ck(x∗)T

Eq(λk), (Eqrk)−1),
(7)

which is the weighted sum of K independent Gaussian distributions.

5 Experiments

In this section, experiments on three datasets are presented. In all experiments,
α, a and b are set to be (1, 1, . . . , 1)T , 0.01 and 0.0001, respectively [6]. In
addition, we set T = 10 and S = 10. We use the root mean squared error
(RMSE) to measure the prediction accuracy. Let {(xi, yi)}I

i=1 be a test set and
{ŷi}I

i=1 the set of predictive values, the RMSE is defined as

RMSE =

√
1
I

∑I

i=1
(yi − ŷi)2. (8)

It is demonstrated by the results to be discussed that our proposed NMGP
models outperform the conventional MGP models.

5.1 Synthetic Dataset

This synthetic dataset, shown in Fig. 2, is drawn from the following three func-
tions:

f0(x) = −2.5 sin(2πx/12.5), x ∼ 0.5N (−12.5, 1.22) + 0.5N (−7.5, 1.52),

f1(x) = 6 sin(2πx/10), x ∼ 0.5N (−2.5, 1.52) + 0.5N (2.5, 1.52),

f2(x) = −4.5 sin(2πx/15), x ∼ 0.5N (7.5, 1.52) + 0.5N (12.5, 1.22).

(9)
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The training set contains 300 points, in which points from three functions
account for 30%, 40%, and 30%, respectively. The test set consists of 300 points
evenly distributed in [−15, 15]. Gaussian noise, following N (0, 0.32), is added to
all samples in this dataset.

We employ an NMGP consisting of three GP components to model the
dataset and set M = 30 and Q = 30. The predictive curve, pointwise stan-
dard deviations, and three learned input distributions, similar to the true ones,
are plotted in Fig. 2. The RMSEs of our NMGP and baseline models are shown
in Table 1. The result demonstrates that our proposed NMGP not only caused
smaller error but also produced more proper approximations of the true input
distributions.

Table 1. RMSEs on three datasets

Synthetic
dataset

Coal gas
dataset

Motorcycle
dataset

MGP (MCMC EM) [5] 0.5411 0.6011 24.2000

TMGP (Hard-cut EM) [7] 0.5322 0.5939 23.8888

TMGP (Variational EM) [15] 0.5245 0.5854 21.6147

Our NMGP 0.5139 0.5799 21.5936

5.2 Coal Gas Dataset

The proposed NMGP model was also applied to a coal gas dataset [7,15], where
the training set consists of 200 samples and the test set consists of 113 samples.
Here, we set K = 4, M = 20 and Q = 20 following Guo et al. [15]. We display
the dataset and the predictions in Fig. 2, and the RMSEs in Table 1.

5.3 Motorcycle Dataset

Finally, we employed the NMGP model to fit the motorcycle dataset [5,15]
composed of 133 samples. The whole dataset is used to train the model and
compute the RMSEs. Figure 2 shows the dataset and the result of our proposed
model, and the RMSEs are presented in Table 1.
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Fig. 2. Three datasets

6 Conclusion

We have proposed an NSF-based mixture model of Gaussian processes and devel-
oped a variational EM algorithm for training this model. NMGPs model input
distributions using NSF models instead of Gaussians. It is demonstrated by the
experimental results on three datasets that our proposed NMGP models out-
perform MGPs. However, the variational EM algorithm cannot be applied to
large datasets since the calculation of the variational posterior involves the sum
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of N terms. Thus, an algorithm with lower computational complexity should be
developed in the future, e.g. hard-cut EM algorithm.
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