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Abstract. The mixture of Gaussian processes (MGP) is a powerful framework 
for machine learning. However, its parameter learning or estimation is still a 
very challenging problem. In this paper, a precise hard-cut EM algorithm is 
proposed for learning the parameters of the MGP without any approximation in 
the derivation. It is demonstrated by the experimental results that our proposed 
hard-cut EM algorithm for MGP is feasible and even outperforms two available 
hard-cut EM algorithms. 
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1 Introduction 

Gaussian process (GP) is a powerful learning model for both regression and 
classification. Nevertheless, it cannot describe multimodality dataset and needs a large 
number of computations. To tackle these issues, Tresp [2] proposed the Mixture of 
GPs (MGP) in 2000, which was directly derived from the mixture of experts.  

From then on, various versions of MGP models have been suggested. Most of them 
could be classified into the conditional model ‘xzy’ [2-6] and the generative 
model ‘zxy’ [1],[7-10] where x, y and z denote the input, output and the latent 
component indicator, respectively. In comparison with the first model, the second one 
has two advantages: (1). The missing features can be easily inferred from the outputs; 
(2). The influence of inputs on the outputs is more clear [8].  

For the parameter learning or estimation of MGP, there are three kinds of learning 
algorithms: MCMC, variational Bayesian inference, and EM algorithm. As for 
MCMC approaches, Gibbs samples of the indicators, parameters or hyper-parameters 
were obtained in turn from their posteriors [8,9]. However, Nguyen & Bonilla [3] 
pointed out that the time complexity of the MCMC method is very high. As for the 
variational Bayesian algorithms, the main strategy is to approximate the posterior of 
parameters by a factorized and simplified form [5,6], but such an approximation may 
lead to a rather deviation from the true objective function.  
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In general, EM algorithm is a popular and efficient choice for the parameter 
learning of mixture models. However, the posteriors of latent variables and Q 
function in the cases of MGP are rather complicated as the outputs are dependent. In 
order to alleviate this difficulty, some EM algorithms with the help of certain 
approximation mechanisms have already been proposed successively.  

Tresp [2] firstly proposed the EM algorithm for MGP, in which the M-step 
integrated the posterior probability of each sample belonging to a GP component into 
the learning of each component. Along this direction, Stachniss et al. [4] developed a 
similar EM algorithm for the sparse MGP. However, the learning in the M-step was 
heuristic in [2] and [4] without maximizing Q function and the time complexity in [2] 
was still high as that in [1]. On the other hand, Yuan & Neubauer [1], Nguyen & 
Bonilla [3], Miguel et al. [5] and Sun & Xu [10] proposed some variational EM 
algorithms for MGP in which the posterior probabilities were approximated with 
certain factorized forms. Recently, Yang & Ma [7] also proposed the EM algorithm 
for MGP with the help of leave-one-out cross-validation (LOOCV) probability 
decomposition of the total likelihood. 

Although the approximations or simplifications have been made for the learning in 
the M-step, these soft EM algorithms for MGP are still time-consuming. In order to 
reduce the time complexity, Nguyen & Bonilla [3] recently proposed a variational 
hard-cut EM algorithm for MGP under certain sparseness constraints, which actually 
partitions all the samples into these components according to the MAP criterion in the 
E-step. In fact, this hard-cut EM algorithm was more efficient than the soft EM 
algorithm since we could get the hyper-parameters of each GP independently in the 
M-step rather than maximize a complicated Q function. Moreover, in the same way, 
the soft EM algorithm for MGP with the LOOCV probability decomposition [7] can 
be easily turned into a hard-cut version of the EM algorithm for MGP, which is here 
referred to as the LOOCV hard-cut EM algorithm for convenience. 

In this paper, we follow the generative MGP model and propose a precise hard-cut 
EM algorithm for MGP without any approximation used for the likelihood function or 
Q function. Actually, we further refine the MGP model to exclude extra priors from 
the main chain ‘zxy’ and according to this refined model, the hard-cut EM 
algorithm becomes more accurate than some popular algorithms since the posterior 
probability of each sample belonging to each component used in the algorithm is 
strictly derived, and the heuristic approximations used in [3] and [7] are avoided. It is 
demonstrated by the experimental results that our proposed hard-cut EM algorithm is 
feasible and even outperforms the two available hard-cut EM algorithms. 

2 MGP Model 

2.1 GP Model 

For regression and prediction task, a GP is mathematically defined by 

 [ ] 2
1 2 ~ [ ( ), ( , ) ]

T

Ny y y y N m X K X X Iσ= + , (1) 
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where
1{( , )}N

t t tx y = denotes the set of given sample points or dataset, 2σ is the intensity 

of noise, I is an N N× identity matrix, [ ]1 2( ) ( ) ( ) ( )
T

Nm X m x m x m x=   

and ( , ) [ ( , )]i j N NK X X K x x ×= are the means and kernel matrix, respectively. For 

simplicity, we set ( ) 0m X = . The most commonly used kernel is the SE kernel [11], 

being given by 22 2( , ) exp( 0.5 )i j i jK x x l f x x= − − . 

In order to learn the hyper-parameters { }, ,l fθ σ= , we use the commonly adopted 

approach------maximize likelihood estimation (MLE). 
After the parameter learning process, the prediction of the output at a test input *x is 

 
^

2 1* ( *, )[ ( , ) ]y K x X K X X I yσ −= +  (2) 

where
1 2[ , , , ]T

Ny y y y=  is the vector of training outputs, ( , ) [ ( , )]i j N NK X X K x x ×= , 

and
1 2( *, ) [ ( *, ), ( *, ), , ( *, )]NK x X K x x K x x K x x=  denotes the kernel relationship 

vector of the training inputs to the test input. 

2.2 Generative MGP Model 

We adopt a full generative model (‘zxy’) due to its resistance to missing features 
and clear relationship between inputs and outputs [8].  

At first, the latent indicators
1{ }N

t tz = are generated by the Multinomial distribution: 

 ( )Pr ; 1 ~ . . 1 ~t cz c c C i i d for t Nπ= = = =  (3) 

Given indicators, each input fulfills a Gaussian distribution: 

 ( | ) ~ ( , ); 1 ~ . . 1 ~t t c cp x z c N S c C i i d for t Nμ= = =  (4) 

After specifying 1{ , }N
t t tz x = , the outputs of each component fulfill a GP, that is 

 ( ) ( )2
,1 ,2 , ( ) ,1 ,2 , ( ) , , ( )( ) ( )

~ 0, ( , | ) . . . 1~c c c N c c c c N c c i c j c c N cN c N c
p y y y x x x N K x x I i i d forc Cθ σ

×
      + =     


   (5) 

where for the c-th component, ( )
, , 1{ , }N c

c i c i ix y = are the samples, { , , }c c c cl fθ σ= are the GP 

hyper-parameters and
22 2

, ,( , | ) exp( 0.5 )c i c j c c c i jK x x l f x xθ = − − is the SE kernel function. 

The whole generative model can be completely defined by Eqs (3), (4) & (5). In fact, 
after the allocation of samples to these components, each GP can be learnt 
independently, as suggested in (4) and (5).  

3 Precise Hard-Cut EM Algorithm 

For this generative MGP model, we here adopt the EM algorithm framework to learn 
the whole parameters

1{ , , , , , }C
c c c c c c cS l fπ μ σ = , taking

1{ }N
t tz = as the latent variables. 
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Firstly, we derive the posterior probabilities of these indicators, i.e., tz . Based on Eqs 

(3), (4) & (5), we get the following likelihood function: 

 ( )2 2( , , ) ( | , ) 0,t t t c t c c t c cp z c x y N x S N y lπ μ σ= = +  (6) 

According to the Bayesian formula, it can be derived that 

 ( ) ( )2 2 2 2
' ' ' ' '

' 1

( | , ) ( | , ) 0, / ( | , ) 0,
C

t t t c t c c t c c c t c c t c c
c

p z c x y N x S N y l N x S N y lπ μ σ π μ σ
=

 = = + + 
 
  (7) 

As the computational complexity of Q function is O(CN) , it is more reasonable to 
construct a hard-cut version of the EM algorithm to reduce the computational burden. 
According to this idea, we propose a hard-cut EM algorithm as follows. 

• Step 1  Initialization of indicators: cluster{ } 1
( , )

N

t t t
x y

=
into C classes by the k-means 

clustering, and set 
tz The indicatorof the t th sampleto the cluster← −  

• Step 2  M-step: calculate cπ , cμ and cS in the way of the Gaussian mixture model: 

 
1 1

1

1 1

( ) ( )( )( )
1

( ), ,
( ) ( )

N N
T

t t t t c t cN
t t

c t c cN N
t

t t
t t

I z c x I z c x x
I z c S

N I z c I z c

μ μ
π μ = =

=

= =

= = − −
← = ← ←

= =

 


 

 (8) 

and obtain the GP parameters
1{ , , }C

c c c cl f σ = by maximizing the likelihood (5).  

• Step 3   E-step: classify each sample into the corresponding component according 
to the MAP criterion: 

 2 2

1 1
arg max ( | , ) arg max ( | , ) ( | 0, )t t t t c t c c t c c

c C c C

z p z c x y N x S N y lπ μ σ
≤ ≤ ≤ ≤

← = = +  (9) 

• Step 4   If the indicators do not change any more, stop and output the parameters 
of MGP. Otherwise, return to Step 2. 

After the convergence of the hard-cut EM algorithm, we have obtained the 
estimates of all the parameters of the MGP. For a test input *x , we can classify it into 
the z -th component of MGP by the MAP criterion as follows: 

 
1 1

arg max ( * | *) arg max ( * | , )c c c
c C c C

z p z c x N x Sπ μ
≤ ≤ ≤ ≤

= = =  (10) 

Based on such a classification, we can predict the output of the test input via the 
corresponding GP using (2). 
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4 Experimental Results 

4.1 On a Typical Synthetic Dataset of MGP 

In order to test the validity and feasibility of our proposed hard-cut EM algorithm, we 
begin to generate a typical synthetic dataset of MGP with 4 GP components. Actually, 
for each GP, we typically generate 500 training samples as well as 100 test samples. 
For the evaluation of the algorithm, we will compute the absolute error between the 
learned and true parameters as well as the root mean squared error (RMSE) for the 
output prediction. The true parameters of the four components are given in Table 1. 

We implement our proposed hard-cut EM algorithm on this synthetic dataset. It is 
found by the experiments that the classification error rates on the training and test 
datasets are 0.30% and 0.50%, respectively. The running time for both the learning 
and prediction tasks is just 81.8680s with an Intel(R) Core(TM) i5 CPU and 4.00GB 
of RAM using Matlab R2013a, which is acceptable since we have 2000 training 
samples and 400 test samples in total. The true and estimated values of the parameters 
as well as the absolute error between them are listed in Table 1. From Table 1, we can 
observe the absolute errors are generally very small, and it can be found from Fig.1 
that the predictive curve fits the test points very well. Moreover, the RMSE of the 
output prediction is only 0.4901. In sum, our proposed algorithm for MGP is 
demonstrated valid and feasible on the synthetic datasets. 

Table 1. The true value (TV), estimated value (EV) and absolute error (AE) of the parameters 
for each GP component (C) on the typical synthetic dataset of MGP 

C Value 
cπ  cμ  cS  2

cl  2
cσ  2

cf  

 
1 

TV 0.2500 0.0000 0.1000 0.9000 0.1000 2.0000 
EV 0.2500  -0.0069 0.1006 0.7978 0.1041 0.3461 
AE 0.0000 0.0069 0.0006 0.2022 0.0041 1.6539 

 
2 

TV 0.25 3.0000 0.2000 1.0000 0.2000 3.0000 
EV 0.2495 3.0151 0.1916 1.3512    0.2007 3.1279 
AE 0.0005 0.0151 0.0084 0.3512 0.0007 0.1279 

 
3 

TV 0.2500 6.0000 0.3000 1.1000 0.3000 4.0000 
EV 0.2500 6.0219 0.2982 2.7321    0.2966 2.6416 
AE 0.0000 0.0219 0.0018 1.6321 0.0034 1.3584 

 
4 

TV 0.2500 9.0000 0.4000 1.2000 0.4000 5.0000 
EV 0.2505 9.0060 0.4085 0.5385   0.3790 7.7323 
AE 0.0005 0.0060 0.0085 0.6615 0.0210 2.7323 
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Fig. 1. The predictive curve (red solid line) and test sample points (black dots) of our proposed 
hard-cut EM algorithm on the typical synthetic dataset 

4.2 Comparison with the LOOCV and Variational Hard-Cut EM Algorithms 

We further compare our proposed hard-cut EM algorithm with the LOOCV and 
variational hard-cut EM algorithms on a toy dataset and a motorcycle dataset used in 
[7] and [8]. Actually, the toy dataset consists of four groups which are generated from 
4 continuous functions. For each group, there are 50 training samples and 50 test 
samples. For the purpose of prediction, we certainly use the MGP with 4 components.  

Motorcycle dataset is another popular one for the evaluation of the MGP methods 
[3],[7]. It consists of observations of accelerometer readings at 133 different times, 
belonging to three actual classes. Here, we use the 7-fold cross-validation, with the k-th 
fold being composed of {(xt,yt) :t=7s+k,s=0,1,…,18}, where the inputs xt 

are sorted in 
an ascending order. In this case, we use the MGP with 3 components.  

We implement each of the three hard-cut EM algorithms five times on these two 
datasets under the same computational environment as above. The average prediction 
RMSEs and running times of the three algorithms on toy and motorcycle dataset are 
listed in Tables 2, respectively, while the corresponding predictive curves are also 
plotted in Figs. 2 & 3.  

From Table 2, it can be found that our proposed hard-cut EM algorithm converges 
more accurately than the LOOCV and variational hard-cut EM algorithms. The reason 
may be that our proposed algorithm is more precise since it is strictly derived without 
 

Table 2. The average prediction RMSEs and running times of the three hard-cut EM algorithms 
on toy and motorcycle dataset 

The hard-cut EM algorithms Toy dataset Motorcycle dataset 
Average 
RMSE 

Average 
Time (s) 

Average 
RMSE 

Average 
Time (s) 

Our proposed EM algorithm 16.5199 8.4513 19.1109 2.0401 
The LOOCV EM algorithm 24.9874 43.4974 28.9551 10.5501 

The variational EM algorithm 20.4238 57.3100 26.7883 62.0234 
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Fig. 2. The predictive curves (red solid line) and test points (black dots) of our proposed hard-cut 
EM algorithm (left), the LOOCV hard-cut EM algorithm (middle) and the variational hard-cut 
EM algorithm (right) on toy dataset 

 

Fig. 3. The predictive curves (red solid line) and test points (black dots) of our proposed hard-cut 
EM algorithm (left), the LOOCV hard-cut EM algorithm (middle) and the variational hard-cut 
EM algorithm (right) on motorcycle dataset with 7 fold CV 

any approximations like those used in the LOOCV decomposition and variational 
inference. Besides, our algorithm consumes much less time than the two EM 
algorithms due to its easy computation of the posterior probabilities. It can be also 
observed from Figs 2 & 3 that the predictive curves of our algorithm fit at least as well 
as the variational hard-cut EM algorithm, while these two hard-cut EM algorithms are 
smoother and fit better than those of the LOOCV hard-cut EM algorithm. On the 
whole, our proposed hard-cut EM algorithm clearly outperforms the LOOCV and 
variational hard-cut EM algorithm for prediction on both toy and motorcycle datasets.  

5 Conclusion 

We have investigated the learning problem of mixture of Gaussian processes (MGP) 
and proposed a precise hard-cut EM algorithm for it. In order to get this algorithm, the 
generative MGP model is redefined and the posterior probabilities of the latent 
indicators are strictly derived. In the algorithm design, the samples are partitioned in a 
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hard-cut way according to the MAP criterion on their posterior probabilities obtained 
in E-step, while each GP component is learned independently in M-step. It is 
demonstrated by the experimental results that our proposed hard-cut EM algorithm is 
effective and efficient, and even outperforms the LOOCV and variational hard-cut 
EM algorithms. 
 
Acknowledgements. This work was supported by the Natural Science Foundation of 
China for Grant 61171138. The authors would like to thank Dr. Yang Yan for her 
valuable discussions on the analysis and comparison of the LOOCV hard-cut EM 
algorithm for MGP. 

References  

1. Yuan, C., Neubauer, C.: Variational mixture of Gaussian process experts. In: Advances in 
Neural Information Processing Systems, vol. 21, pp. 1897–1904 (2009) 

2. Tresp, V.: Mixtures of Gaussian processes. In: Advances in Neural Information Processing 
Systems, vol. 13, pp. 654–660 (2000) 

3. Nguyen, T., Bonilla, E.: Fast Allocation of Gaussian Process Experts. In: Proceedings of 
The 31st International Conference on Machine Learning, pp. 145–153 (2014) 

4. Stachniss, C., Plagemann, C., Lilienthal, A.J., et al.: Gas Distribution Modeling using 
Sparse Gaussian Process Mixture Models. In: Proc. of Robotics: Science and Systems, pp. 
310–317 (2008) 

5. Lázaro-Gredilla, M., Van Vaerenbergh, S., Lawrence, N.D.: Overlapping Mixtures of 
Gaussian Processes for the data association problem. Pattern Recognition 45, 1386–1395 
(2012) 

6. Ross, J., Dy, J.: Nonparametric Mixture of Gaussian Processes with Constraints. In: 
Proceedings of the 30th International Conference on Machine Learning, pp. 1346–1354 
(2013) 

7. Yang, Y., Ma, J.: An efficient EM approach to parameter learning of the mixture of 
Gaussian processes. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds.) ISNN 
2011, Part II. LNCS, vol. 6676, pp. 165–174. Springer, Heidelberg (2011) 

8. Meeds, E., Osindero, S.: An alternative infinite mixture of Gaussian process experts. In: 
Advances in Neural Information Processing Systems, vol. 18, pp. 883–890 (2006) 

9. Sun, S.: Infinite mixtures of multivariate Gaussian processes. In: Proceedings of the 
International Conference on Machine Learning and Cybernetics, pp. 1–6 (2013) 

10. Sun, S., Xu, X.: Variational inference for infinite mixtures of Gaussian processes with 
applications to traffic flow prediction. IEEE Trans. on Intelligent Transportation 
Systems 12(2), 466–475 (2011) 

11. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. In: Adaptive 
Computation and Machine Learning. The MIT Press, Cambridge (2006) 


	A Precise Hard-Cut EM Algorithm for Mixtures of Gaussian Processes
	1 Introduction
	2 MGP Model
	2.1 GP Model
	2.2 Generative MGP Model

	3 Precise Hard-Cut EM Algorithm
	4 Experimental Results
	4.1 On a Typical Synthetic Dataset of MGP
	4.2 Comparison with the LOOCV and Variational Hard-Cut EM Algorithms

	5 Conclusion
	References




