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Abstract Tumor diagnosis by analyzing gene expression
profiles becomes an interesting topic in bioinformatics and
the main problem is to identify the genes related to a tumor.
This paper proposes a rank sum method to identify the re-
lated genes based on the rank sum test theory in statistics.
The tumor diagnosis system is constructed by the support
vector machine (SVM) trained on the set of the related gene
expression profiles. The experiments demonstrate that the
constructed tumor diagnosis system with the rank sum
method and SVM can reach an accuracy level of 96.2% on
the colon data and 100% on the leukemia data.
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With the rapid development of DNA micro-array
technology, more and more gene expression profiles be-
come available and accurate. These biological data can be
used to analyze human health status and disease factors.
Nowadays, how to reveal valuable information from gene
expression profiles has become an important topic in the
bioinformatics community.

Gene expression data is often expressed by a matrix
( )ij n mW w

×
= which can be described by Fig. 1. Usually,

a row in the matrix represents a gene and a column repre-
sents a sample (i.e. an instance). The numeric value wij

characterizes the mRNA expression level of a specific
gene “i” in a particular sample “j”. Through analyzing
gene expression data, biologists can obtain abundant
valuable biological information. In recent years, gene ex-
pression analysis methods have been applied to broad ar-
eas, such as tumor classification, diagnosis as well as gene
function analysis. The basic techniques for gene expres-
sion analysis include clustering, classification and princi-
ple component analysis (PCA). In particular, tumor diag-
nosis based on gene expression data has become an im-
portant research topic in bioinformatics[1�6]. In 1999,
Golub et al.[1] first used a nearest neighbor analysis
method to classify leukemia based on gene expression

Fig. 1. A gene expression matrix.

data. In his paper, he used a simplified formula of
t-statistic as the tumor discrimination criteria to select
related genes. In the same year, Alon et al.[2] clustered the
colon gene expression to find a relationship between
genes and tumors with the t-statistic to identify related
genes. In 2000, Brown et al.[3] applied several classifica-
tion techniques to tumor classification and compared the
results. It was reported that support vector machine
(SVM) is the best. Similar results are also verified by the
studies of Dudoit et al.[4], Furey et al.[5], and Guyon et
al.[6].

All these studies have shown that tumor classifica-
tion and diagnosis on gene expression profiles is feasible
and reliable. However, if the gene expression data is not
preprocessed to leave out noises before being inputted
into classifiers, the result is often unsatisfactory. In that
case, the generalization ability of the tumor classifier is
bad (testing error is high), even for the SVM. The reason
is that the gene expression profiles are usually containing
too much noise. There are often thousands of genes in a
typical gene expression profile, but probably only a small
part of genes are highly related to the tumor phenotype
under investigation. If the unrelated genes are not filtered
out, the huge number of data dimensions would make
classification difficult; furthermore, the unrelated genes
would become noise and affect the classifier. Some gene
selection methods have already been proposed to identify
the related genes[1,2,5�8]. The most extensively applied
methods are the t-statistic method and its variants. How-
ever, the t-statistic method is based on the theory of t-test
in statistics. As is well-known, t-test is a parametric testing
method that assumes that the samples follow Gaussian
(normal) distribution. Consequently, the t-statistic method
and its variants all explicitly or implicitly assume that the
normality condition holds. However, in our investigation,
this assumption is usually invalid in real applications.

To avoid the normality condition, we propose a rank
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sum method to identify the related genes, based on the
non-parametric statistical testing theory. Then, we use
SVM trained on identified related genes to construct the
tumor diagnosis system. Verified by experiments on two
data sets, our rank sum method can provide SVM with a
very good generalization ability.

1 Gene selection and tumor diagnosis

(�) Statistics analysis on related gene selection.
Researches on related gene discovery have been carried

out for a long time. But before DNA micro-array technol-
ogy emerged, previous researches were based on biologi-
cal characteristics. In the past five years, new techniques
based on statistical analyzing gene expression data have
been proposed. Most of the statistical methods introduce
some discrimination criteria to select genes with large
discrimination criterion value.

In particular, t-statistic and its variants are currently
the most extensively used discrimination criterion. The

expression of t-statistic is , ,
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, and mi,+, mi,−, Si,+ and

Si,− are the mean and standard deviation of gene “i” on the
positive and negative samples, respectively; n+ and n− are
the number of samples in the positive and negative class
respectively. Actually, the t-statistic is used in a
two-sample t-test to measure how large difference two
Gaussian populations have. So, the larger is the absolute
value of t-statistic, the more significantly the gene expres-
sion varies in different phenotypes. That means that the
gene with a large t-statistic value, is highly related to the
tumor factor. According to this intuition, the t-statistic
method selects the top K genes with the highest absolute t-
statistic values.

Some researchers also proposed several simplified
expressions of t-statistic. For example, Golub et al.[1] used
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as his discrimination criterion, and se-

lected the same number of genes with positive and nega-
tive Wi values. Furthermore, Furey et al.[5] used the abso-
lute value of Wi and Pavlidis et al.[7] used the quadratic
formula of Wi as their discrimination criterion. The
t-statistic and its variants are essentially the same, because
all their numerators are the difference in means between
different phenotypes, and the denominators are expres-
sions of variances for normalization.

Ding[8] proposed the F-statistic discrimination crite-
rion as a general formula of t-statistic to deal with the
multi-class (more than two tumor classes) gene selection
problem. Suppose 1 2( , , , )ng g g g�= is the expression

of a gene, K is the number of tumor classes, the F-statistic

expression is 2 2( ) /( 1) /k k

k

F n g g K S
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g and kg are the means of expression level of the en-

tire sample set and the Kth class sample set respectively, nk

and Sk are the means and standard deviations of the Kth

class sample set, 2 2( 1) /( )k k
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, the F-statistic degener-

ates to the t-statistic.
As mentioned before, the t-statistic method and its

variants are based on the t-test in statistics. However, the
t-test is a parametric testing method and requires samples
to follow the Gaussian distribution. Can we still use the
t-statistic to select related genes if the gene expression
does not follow a Gaussian distribution? From previous
studies as well as our investigation, generally the t-statistic
method still works, but it does not work as well as the
normality condition holds. In that case, the t-statistic can
loosely reflect how large is the difference in distributions
between different phenotypes.

Two problems arise when the normality condition is
violated. On the one hand, the order of genes in t-statistic
may not reflect their true capability of discriminating
phenotypes. For instance, suppose a gene A follows the
normal distribution and a gene B follows a uniform dis-
tribution within an interval. Then, gene A’s t-statistic value
can be larger than gene B's. Consequently gene A ranks
higher than gene B in related gene selection. This may
lead to a wrong order of genes. The key is that gene B's
p-value[9], which reflects the true discriminating capability
of gene B, should be calculated according to uniform dis-
tribution instead of normal distribution. Then, gene B may
rank higher than gene A according to their p-values. In
short, blindly applying t-statistic to gene expression data
that does not follow a Gaussian distribution may lead to
errors. On the other hand, if the normality condition is
violated, the t-statistic will not follow the t-distribution
any more. So we cannot get the p-value of a gene from the
t-distribution table, which means that we cannot use the
significance level to select the related genes. Therefore,
the users have to specify the related gene number directly,
which is difficult to them. As the theoretical analysis, the
normality condition limits the applicable area of the
t-statistic method and its variants.

To test whether gene expression data often follows
the Gaussian distribution in practice, we use the Skewness
and Kurtosis statistics[9] to conduct the normality test on
three well-known real data sets. They are Colon data set1),

1) Colon data, 40 tumor samples, 22 normal samples, 2000 genes, from http://www.molbio.princetion.edu/colondata.
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Breast data set2) and Leukemia data set 3). The null hy-
pothesis is that a gene satisfies the normality condition.
We choose a significant level 0.05. That is, the error rate
of mis-rejecting a gene that actually satisfies the normality
condition is smaller than 5%. The results are shown in
Table 1. As can be seen, nearly half of the genes’ null hy-
potheses are rejected. Even for those genes whose null
hypotheses are not rejected, they still may not follow the
Gaussian distribution. It is clear that the three data sets do
not satisfy the normality condition. In general, the gene
expression data may not satisfy the normality condition.
When the normality condition does not hold, we need a
better related gene selection method to substitute the
t-statistic method. The rank sum method is such a kind of
method.

(�) Rank sum gene selection method. To avoid the
normality condition, we introduce a rank sum method for
related gene selection based on the rank sum test theory[10]

in non-parametric statistics. The non-parametric statistical
methods have a distribution free property, so the normality
condition is not necessary for them. The theory of
non-parametric statistics also prove that the Pitman effi-
ciency of rank sum test is much higher than the t-test,
when the normality condition is violated[11]. For the gene
selection problem, a higher Pitman efficiency means that
the discrimination criterion of rank sum method is more
reliable in terms of reflecting the discriminating capability
of genes.

The general idea of rank sum method is that we
conduct rank sum test on each gene, then select the genes
whose null hypotheses are rejected, which means the
genes are highly related to the tumor factors. The idea of
rank sum test is that, instead of using the original observed
data, we can list the data in the value ascending order, and
assign each data item a “rank”, which is the place of the
item in the sorted list. Then, the ranks are used in the
analysis. Using the ranks instead of the original observed
data makes the rank sum method much less sensitive to
outliers and noises than the t-statistic method. An outlier
will change the t-statistic value greatly, but not much to
the ranks. A gene expression data set often has many out-
liers and noises. Thus, the rank sum method is expected to
be better than the t-statistic method for gene selection.

For different number of phenotypes, there are two
types of rank sum test: Wilcoxon rank sum test and

Kruskal-Wallis rank sum test. The former one is used to
solve the two phenotypes related gene selection problem,
and the latter one is for multi-phenotypes related gene
selection. In this paper, we focus on two phenotypes
problem. The major step of the Wilcoxon rank sum test is
described as follows.

(1) Building hypotheses. Build the hypotheses as:
null hypothesis H0: the distributions between different
phenotypes are the same; alternative hypothesis H1: the
distributions between different phenotypes are different.
The significance level threshold a is specified.

(2) Combining and ranking. Combine all observa-
tions from the two populations and rank them in value
ascending order. If some observations have tied values, we
assign each observation in a tie their average rank. For
instance, there are k observations having the same value.
They are ranked at the positions from n+1 to n+k, then

each of then will be assigned
1

2

k
n

+
+ as their ranks.

(3) Computing Wilcoxon statistics. Add all the
ranks associated with the observations from the smaller
group (with the sample size n1). This gives the Wilcoxon
statistics W. If the null hypothesis holds, the expectation

value of W should be 1 2
1

( 1)

2

n n
n

+ +
, where n2 is the

sample size of the other phenotype. Therefore, if the value
of W is greatly different from the expected value, then the
probability of null hypothesis is small. If the value of W is
out of a certain bound, the null hypothesis will be rejected.

(4) Testing. After computing the Wilcoxon statis-
tics, we can use the Wilcoxon rank sum distribution table
or a statistics toolkit, such as Matlab or SAS to get the
associated p-value. Then, we compare the p-value with the
specified significance level threshold. If the p-value is
smaller than the significance level α, the gene will be se-
lected.

Generally, for a multi-class gene selection problem
(more than two phenotypes), the Kruskal-Wallis rank sum
test can be used, which is an alternative to the F-statistic
method proposed by Ding[8]. We omit the details here.

(�) Tumor classification method. To verify the
effectiveness of rank sum gene selection method, we build
classifiers using support vector machines (SVM)[12]. As
indicated by the previous studies, SVM is one of the best

Table 1 The results on normality test on three real data sets

Colon cancer Breast cancer Leukemia

normal tumor normal tumor aLL AML

Total genes 2000 2000 5776 5776 7129 7129

Rejected genes 730 1483 2250 2474 4542 2558

2) Leukemia data, 47 acute lymphoblastic leukemia (ALL), 25 acute myeloid leukemia (AML), 7129 genes, from http://www.genome.wi.mit.edu/
MPR/data_set_ALL_AML.html.

3) Breast data, 13 normal samples, 14 tumor samples, 5776 genes, from http://genome-www.stanford.edu/sbcmp.
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classifiers for the gene expression data. Here we review
some basic ideas of SVM.

Figure 2 shows an example of SVM in a two dimen-
sion case. The hollow circles and the filled circles repre-
sent positive samples and negative samples, respectively,
while H is the classification boundary. H1 and H2 are two
lines parallel to H and pass through the samples which are
nearest to H. The distance between H1 and H2 is called the
margin. The optimal classification boundary is the line
which can not only separate all samples of different
classes correctly but also maximize the margin. When H is
the optimal classification boundary, the samples on H1 and
H2 are called support vectors. The process of building
SVM is just the process of finding the optimal classifica-
tion boundary.

For a general case, let us suppose the classification
boundary is 0x bω + = . After normalization, the prob-
lem becomes: for a linear separable sample set {( , ),i ix y

1, 2, , , , { 1}}d
i ii N x R y�= ∈ ∈ ± , with the constrain

( ) 1 0, 1, 2, ,i iy x b i N��ω + − = , we want to maximize

the margin 2/||w||. In order to do so, we minimize

21
( ) || ||

2
f w w= under the above constrain.

By utilizing the Lagrange multiplier technique, we
can convert the original problem into a dual problem. That

is, maximizing the objective function
1

( )
N

i

i

Q a a
=

= −∑

, 1

1
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2

N

i j i j i j

i j

a a y y x x
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1

0,
N

i i

i
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0, 1, 2, ,ia i N�� = . This becomes a quadratic optimiza-

tion problem, and has a unique solution. It can be solved
that the optimal classification boundary is

* *

1

( ) ( ( ) )
N

i i i

i

f x Sgn a y x x b
=

= +∑ . It is also easy to prove

Fig. 2. Support vector machines.

that only a small part of *
ia is not equal to zero. The

corresponding samples actually are support vectors. b* is a
threshold, which can be derived from the support vectors.

For the case of not linear separable, we can use some
non-linear mapping to transfer the original problem to a
linear separable problem in a high-dimensional feature
space, and find the optimal classification boundary in the
feature space. As we only use the inner products in the
original problem, we can perform the transformation by
replacing the inner product with a kernel function

( , )K x x ′ . After the transformation, the objective function

becomes
1 , 1

1
( ) ( , )

2

N N

i i j i j i j

i i j

Q a a a a y y K x x
= =

= −∑ ∑ and

the optimal classification boundary becomes ( )f x =

* *

1

Sgn( ( , ) )
N

i i i

i

a y K x x b
=

+∑ . There are some common

used kernel functions including: the polynomial kernel

( , ) [( ) 1]q
i iK x x xx= + , the radial basis function kernel

2

2

| |

( , )
ix x

S
iK x x e

−

−

= , and the sigmoid function kernel K

( , ) tanh( ( ) )i ix x v xx c= + .

For our tumor diagnosis task, the tumor diagnosis system
is constructed by SVM trained on the set of the related
genes selected by the rank sum method. And the trained
SVM is used to predict tumors on the testing data.

2 Experiments

(�) Evaluation of rank sum method. To evaluate
the effectiveness of the rank sum method for gene selec-
tion, we conduct tumor diagnosis experiments on two real
data sets: the colon data set and the leukemia data set,
using three kinds of SVM. The programs are implemented

with Matlab6.5 and lightSVM toolkit. The lightSVM
toolkit is free SVM software downloadable at http:
//svmlight.joachims.org. We firstly select the related genes
under some commonly used significance levels. The re-
sults are shown in Table 2.

After selecting related genes, we compare the accu-
racy of the SVM classifiers with and without gene selec-
tion. We use three kinds of SVM: linear SVM, cubic
polynomial SVM (3-poly SVM) and radial basis function
SVM (RBF SVM). To make the test more robust, we
conduct the 4-fold cross-validation experiments. In
particular, we randomly divide the colon data set that
includes 40 tumor samples and 22 normal samples into
4 folds: each fold contains 10 tumor samples and 5 or 6
normal samples. Similarly, we randomly divide the
leukemia data set with 47 ALL samples and 25 AML sam-
ples into 4 folds: each fold contains 18 samples�11 or 12
ALL samples and 6 or 7 AML samples. Then, we try our
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Table 2 Related gene numbers under different significance level

Original
� a =0.1 �a =0.05 �a =0.01 �a =0.001

Colon data 2000 210 109 34 8
Leukemia data 7129 1837 1425 844 398

experiment four times, each time we use three folds as the
training data set and one fold as the testing data. Finally,
we compute the average accuracy for the 4 results as our
evaluation result. We use the prediction accuracy as our
evaluation metric.

Furthermore, we make the lightSVM toolkit accept
all testing patterns. That is, no testing patterns are rejected
without labels. Also before plugging the data into

lightSVM , we normalize the original expression data such
that the mean is zero and the standard deviation is one.
The prediction results are shown in Table 3 and Table 4,
respectively.

From these tables, we can see that the effectiveness
of the related gene selection is significant: using the re-
lated genes selected by rank sum method improves the
accuracy dramatically. On the colon data, the best accu-
racy achieved by using the related genes is 98.3%, where
only one prediction error happens in the 4-fold cross-
validation experiment. On the leukemia data, the accuracy
of the related gene based method is even 100%. The ac-
curacy indicates that the tumor diagnosis based on rank
sum method is applicable.

From the result, it can also be seen that specifying
the significance level is critical to get a high accuracy. On
the one hand, a too large significance level will not filter

out all unrelated genes, which are noises to the classifier;
on the other hand, a too small significance level may filter
out some useful information, and the classifier also may
not achieve a high accuracy. From the results of the colon
data and leukemia data, we can see that 0.01 is a proper
significance level to get high accuracy, which can be ref-
erenced by other data sets.

(�) Comparison with t-statistic method. As ana-
lyzed theoretically in the previous section, if gene expres-
sion data does not follow the Gaussian distribution, the
rank sum method is more reasonable and reliable than the
t-statistic method for related gene selection. Here, we
conduct experiments to compare the rank sum method
with the t-statistic method. For comparison, we select the
same number of related genes as the rank sum method
does at different significance levels for t-statistic method.
All settings of this experiment are the same as those of the
evaluation experiment of rank sum method. The compari-
son results of prediction accuracy (averaged among 4-fold
cross validation and three kinds of SVM) are shown in
Table 5.

The results clearly show that the rank sum method is
consistently better than the t-statistic method. This concurs
with our theoretical analysis. The improvement in accu-
racy of the rank sum method against the t-statistic method

Table 3 The result on the colon data, a is significance level

Original(2000) a = 0.1(210) a = 0.05(109) a = 0.01(34) a = 0.001(8)
Linear SVM 56.4% 90.3% 90.3% 95.1% 88.8%
3-poly SVM 31.3% 61.3% 90.3% 95.1% 88.8%
RBF SVM 45.3% 87.2% 93.6% 98.3% 88.8%
Average 44.3% 79.6% 91.4% 96.2% 88.8%

Table 4 The result on the leukemia data, a is significance level

Original(7129) a =0.1(1837) a =0.05(1425) a =0.01(844) a =0.001(398)
Linear SVM 73.6% 94.4% 94.4% 100% 100%
3-poly SVM 55.6% 91.7% 91.7% 100% 95.8%
RBF SVM 52.8% 94.4% 100% 100% 100%
Average 60.7% 93.5% 95.4% 100% 98.6%

Table 5 Comparison of rank sum method and t-statistic method

Data set Method 210 genes 109 genes 34 genes 8 genes
Rank sum 79.6% 91.4% 96.2% 88.8%

Colon data
t-statistic 75.9% 90.3% 93.6% 88.8%

1837 genes 1425 genes 844 genes 398 genes
Rank sum 93.5% 95.4% 100% 98.6%

Leukemia data
t-statistic 92.6% 91.7% 95.4% 94.4%
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is about 1%�5%, except one case where only eight re-
lated genes are selected on the colon data with signifi-
cance level of 0.001. (The reason may be too few genes to
compare.) The improvement is non-trivial, considering the
t-statistic method also achieves accuracy above 90%. Ac-
cording to our normality test, both the colon data and leu-
kemia data have many genes violating the normality con-
dition. So the statistics theory guarantees that the rank
sum method outperforms the t-statistic method in these
two data sets.

3 Conclusions

We have investigated the related gene selection
problem for tumor diagnosis. The t-statistic method and its
variants are the state-of-the-art gene selection methods.
However, this kind of methods requires that the gene ex-
pression data follows the Gaussian distribution, which is
often violated in real data sets according to our investiga-
tion. In this paper, we propose the rank sum method for
related gene selection, which does not require the normal-
ity condition, and therefore can be applied to any gene
expression profiles. Moreover, we use SVM trained on the
identified related genes to construct the tumor diagnosis
system. The experiment results show that the rank sum
method and the tumor diagnosis system are effective. The
constructed tumor diagnosis system with the rank sum
method and SVM can reach an accuracy of 96.2% on the
colon data and 100% on the leukemia data. It is also
demonstrated by the experiment that the rank sum method
is more effective than previous t-statistic method. All the
results show that the rank sum method and the tumor di-
agnosis system is applicable in practice.
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