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Abstract— From the Bayesian Ying-Yang (BYY) harmony
learning theory, a harmony function has been developed for
finite mixtures with a novel property that its maximization can
make model selection automatically during parameter learning.
In this paper, we make a theoretical analysis on the harmony
function and prove that the global maximization of the harmony
function leads to the automated model selection property when
there is no or weak overlap between the actual components in
the sample data. Moreover, it is proved that the estimates of
the parameters through maximizing the harmony function are
generally biased, but the deviation error is dominated by the
average overlap measure between the actual components in the
mixture.

I. INTRODUCTION

Finite mixtures have been adopted extensively as prob-
abilistic models in a wide variety of practical situations
where data can be viewed as arising from two or more
populations linearly mixed in certain proportions. Among
finite mixture models, Gaussian mixture is widely used.
Theoretically, great effort has been made on finite mixture
analysis and modeling as well as the efficient applications for
clustering analysis with a sample data set [1]. Although there
are various statistical or unsupervised competitive learning
methods to do such a task, e.g., the EM algorithm [2] for
maximum likelihood and the self-organizing network [3] for
hyperellipsoidal clustering, it is usually assumed that the
number k of components in the sample data set is pre-known.
However, in many cases this key information is not available
and the selection of an appropriate number of components
must be made jointly with the estimation of the parameters,
which results in a rather difficult task [4].

Since the number of components is just a scale of finite
mixture model, the selection of number of components for
the finite mixture modeling is generally referred to as the
model selection. Thus, the mixture modeling here is actually
a compound problem of parameter learning and model se-
lection. Typically, this modeling problem is solved via some
statistical criterion to choose a best number k∗ of components
in the mixture in a range of possible values of k in help
of the maximum likelihood or EM estimates. As a matter
of fact, there have been several selection criteria proposed,
and among them, Akaike’s information criterion (AIC) [5],
Bayesian inference criterion (BIC) [6], and minimum mes-
sage length (MML) criterion [7] may be best well-known.
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However, all these existing model selection criteria have their
limitations and often result in a wrong result. Moreover, the
process of evaluating a model selection criterion or validity
index incurs a large computational cost since we need to
repeat the entire parameter estimation process with a large
number of different values of k.

In the middle of 1990s, there appeared some stochastic ap-
proaches that use stochastic simulations to infer the mixture
model. The two representative approaches are the methods of
reversible jump Markov chain Monte Carlo (RJMCMC) [8]
and Dirichlet processes [9], respectively. But these stochastic
simulation methods generally require a large number of
samples with different sampling methods, not just a set of
sample data. On the other hand, these methods are also
time-consuming in the practical applications. Recently, this
compound modeling problem was tried to be solved through
the maximum likelihood learning process embedded with the
variational Bayesian principle [10] or the minimum message
length criterion [11].

The Bayesian Ying-Yang (BYY) harmony learning system
and theory, proposed in [12] and systematically summarized
in [13]-[15], acts as a general statistical learning framework
not only for understanding several existing major learning
approaches but also for tackling the learning problem on a
set of finite samples with a new learning mechanism that
makes model selection implemented automatically during
parameter learning via a new class of model selection criteria.
Specifically, the BYY harmony learning can be applied to
this compound mixture modeling problem via maximizing
a harmony function defined on the finite mixture model
in help of a BI-architecture of the BYY system under the
harmony learning principle. Actually, Ma et al. [16]-[18]
have already implemented the maximization of the harmony
function by some gradient and iterative learning algorithms
for Gaussian mixtures. It has been demonstrated by the
simulation experiments that when k is set to be larger
than the true number of Gaussians in the sample data, the
true number of Gaussians can be automatically selected for
the sample data set, with the mixing proportions of the
extra Gaussians attenuating to zero. That is, these BYY
learning algorithms own a good property of automated model
selection (ASM) during the parameter learning. Moreover,
from the point of view of penalizing the Shannon entropy of
the mixing proportions on maximum likelihood estimation
(MLE), Ma and Wang [19] also constructed an entropy-
penalized MLE iterative algorithm that also has the AMS
property for Gaussian mixtures.

In the current paper, we make a theoretical analysis
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on the AMS property of the BYY harmony function on
the finite mixtures. In Section II, we introduce the BYY
harmony learning theory and the harmony function on the
finite mixtures. We then make an asymptotic analysis on the
harmony function and prove that the global maximization
of the harmony function leads to the AMS property if the
average overlap measure between the actual components in
the sample data is zero or becomes weak in Section III. We
further analyze the deviation error of the maximum harmony
estimates to the true parameters in Section IV. Finally, we
conclude briefly in Section V.

II. BYY HARMONY LEARNING AND THE HARMONY

FUNCTION

A BYY system describes each observation x ∈ X ⊂ Rn

and its corresponding inner representation y ∈ Y ⊂ Rm via
the two types of Bayesian decomposition of the joint density
p(x, y) = p(x)p(y|x) and q(x, y) = q(x|y)q(y), called Yang
machine and Ying machine, respectively. Here, y is limited
to an integer variable, i.e., y ∈ Y = {1, 2, · · · , k} ⊂ R with
m = 1. Given a data set Dx = {xt}N

t=1, the task of learning
on a BYY system consists of specifying all the aspects of
p(y|x), p(x), q(x|y), q(y) with a harmony learning principle
implemented by maximizing the functional

H(p||q) =
∫

p(y|x)p(x) ln [q(x|y)q(y)]dxdy − ln zq, (1)

where zq is a regularization term. Refer to [14] for details.
If both p(y|x) and q(x|y) are parametric, i.e., from a

family of probability densities with a parameter θ, the BYY
system is called to have a Bi-directional Architecture ( or
BI-Architecture for short). For the finite mixture modeling,
we utilize the following specific BI-architecture of the BYY
system: q(j) = αj with αj ≥ 0 and

∑k
j=1 αj = 1. Also, we

ignore the regularization term zq (i.e., set zq = 1) and let
p(x) be the empirical density p0(x) = 1

N

∑N
t=1 δ(x − xt),

where x ∈ X = Rn and δ(·) is a kind of kernel function
(e.g., Gaussian function). Moreover, the BI-architecture is
constructed with the following parametric form:

p(j|x) = p(y = j|x) =
αjq(x|θj)
q(x|Θk)

, (2)

q(x|Θk) =
k∑

j=1

αjq(x|θj), (3)

where q(x|θj) = q(x|y = j) with θj consisting of all its
parameters and Θk = {αj, θj}k

j=1. Substituting these com-
ponent densities into Eq.(1) and letting the kernel functions
tend to the delta functions, we have

H(p||q) = J(Θk)

=
1
N

N∑
t=1

k∑
j=1

αjq(xt|θj)∑k
i=1 αiq(xt|θi)

ln [αjq(xt|θj)]. (4)

That is, H(p||q) becomes a harmony function J(Θk) on
the parameters Θk, i.e., the parameters of the finite mixture
model q(x, Θk) =

∑k
j=1 αjq(x|θj) for the observation x.

Thus, the harmony learning on this BI-architecture of the
BYY system reduces to the finite mixture modeling on a
sample data set Dx.

Typically, we can let q(x|θj) be a Gaussian probability
density function (pdf) given by

q(x|θj) = q(x|mj , Σj)

=
1

(2π)
n
2 |Σj | 12

e−
1
2 (x−mj)

T Σ−1
j (x−mj), (5)

where mj is the mean vector and Σj is the covariance matrix
which is assumed to be positive definite. In this case, the
BI-architecture of the BYY system contains the Gaussian
mixture model q(x, Θk) =

∑k
j=1 αjq(x|mj , Σj) which tries

to model the underlying or true Gaussian mixture pdf of the
sample data in Dx.

Under the BYY harmony learning principle [14], the
maximization of J(Θk) should have the ability of AMS on
the finite mixtures since it requires the least complexity of
model structure. Indeed, the AMS property was demonstrated
well via the gradient-type and iterative BYY learning algo-
rithms [16]-[18] in the Gaussian mixture setting. However,
this AMS property has not been proved mathematically.
In the following, we try to analyze the harmony function
asymptotically and prove this outstanding property.

III. ASYMPTOTIC PROPERTIES OF THE HARMONY

FUNCTION FOR AUTOMATED MODEL SECTION

A. Decomposition of the Harmony Function

We revisit the harmony function given in Eq.(4). In fact,
it can be easily decomposed into two terms as follows.

J(Θk) =
1
N

N∑
t=1

k∑
j=1

p(j|xt) ln [αjq(xt|θj)]

=
1
N

N∑
t=1

k∑
j=1

p(j|xt) ln p(j|xt)

+
1
N

N∑
t=1

ln q(xt|Θk)

=
1
N

N∑
t=1

ln q(xt|Θk) − 1
N

N∑
t=1

I(xt|Θk), (6)

where

I(xt|Θk) = −
k∑

j=1

p(j|xt) ln p(j|xt). (7)

Clearly, the first term, i.e., 1
N

∑N
t=1 ln q(xt|Θk), is just

the log likelihood function on the finite mixture model with
the sample data set Dx. The second term is a sum of the
entropies of the posterior probabilities of the samples to k
components.

As for the first term, i.e., the log likelihood function,
there have been many investigations on its maximization
that leads to the well-known maximum likelihood (ML)
estimates of the parameters in the finite mixture. The EM
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algorithm [2] is recognized as an efficient way to get the
ML estimates, especially in the case of Gaussian mixture.
However, the maximization of the log likelihood function,
i.e., the maximum likelihood criterion, is incapable of model
selection on the finite mixture. In fact, if we let Mk denote
the class of all possible k-component mixtures built from a
certain type of probability density functions (pdf’s) (e.g., the
pdf’s of Gaussian mixtures):

q(x|Θk) =
k∑

j=1

q(x|θj), (8)

it can be easily found that Mk ⊂ Mk+1. Thus, the
maximized (log) likelihood is a nondecreasing function of
k and the maximum likelihood criterion cannot detect the
number of the components for a sample data set. That is, it
has no ability to make model selection on the finite mixture.

In contrast, the second term of the harmony function must
has the ability of model selection on the finite mixture if
the harmony function really does. In fact, Roberts et al.
[20] showed that the maximization of this part leads to the
maximum certainty data partitioning that can allocate an
appropriate number of clusters in the sample data. If each
component in the mixture corresponds to a cluster in the
sample data, this maximum certainty criterion can allocate
an appropriate number k of components for the sample
data. That is, it has the ability of model selection for the
finite mixture model and we can use it as a model selection
criterion on the finite mixture modeling. But its maximization
may not lead to a result of AMS. As an illustration, it
can always reach the maximum value 0 when we set one
mixing proportion to be one and the others zeros. Therefore,
its maximization cannot make model selection on the finite
mixture.

However, since the harmony function combines these two
terms together, the maximization of the harmony function
may be able to make model selection on the finite mixture,
which will be proved in the following subsections.

B. The AMS Property of the Harmony Function in the Well-
Separated Case

To get rid of the randomness of the sample data, we
consider the harmony function asymptotically. That is, we
let N → ∞. According to probability theory, we have

H(Θk) = lim
N→∞

J(Θk) = H1(Θk) + H2(Θk), (9)

where

H1(Θk) =
∫

q(x|Θ∗
k∗) ln q(x|Θk)dµ; (10)

H2(Θk) = −
∫

I(x|Θk)q(x|Θ∗
k∗ )dµ, (11)

where µ is the appropriate underlying measure on Rn, and
Θ∗

k∗ = {α∗
j , θ

∗
j }k∗

j=1 denotes the set of the parameters in
the finite mixture pdf where the sample data come from.
Specifically, k∗ is the number of the actual components and
Θ∗

k∗ is the set of true parameters of the actual finite mixture

pdf for the sample data. Here, we always assume that these
actual components are different.

For convenience of analysis, we assume that all the com-
ponents in the finite mixture have the same functional form
(like Gaussian mixture). Moreover, the finite mixtures we
consider are discriminant. That is, in the cases that all the
components are different, q(x|Θk) = q(x|Θ′

k′) if and only
if Θk = Θ′

k′ with k′ = k or Θk ⊂ Θ′
k′ with k < k′ and the

mixing proportions of the other k′ − k extra components in
Θ′

k′ being zero (i.e., these components have no contribution
to the finite mixture pdf.).

In the finite mixture model, the components may be
well-separated in some special cases, i.e., each posterior
probability p(j|x) at a sample x is either 1 or 0. That is,
each sample x is clearly belongs to one component. In this
case, it is clear that p(j|x) ln p(j|x) = 0 for all x ∈ Rn. We
now investigate the AMS property of the harmony function
with the components in the true (or actual) finite mixture
being well-separated and have the following theorem.

Theorem 1. Suppose that the finite mixtures q(x|Θk) are
discriminant. If the components in the true finite mixture
q(x|Θ∗

k∗) are well-separated, the asymptotic harmony func-
tion H(Θk) is globally maximized if and only if Θk = Θ∗

k∗

with k = k∗ or Θ∗
k∗ ⊂ Θk with k > k∗ and the mixing

proportions of the other k−k∗ extra components in Θk being
zeros.

Proof: According to the information theory, we have

H1(Θk) ≤ H1(Θ∗
k∗); (12)

H2(Θk) ≤ 0. (13)

Because the components in the true finite mixture q(x|Θ∗
k∗)

are well-separated, i.e., the posterior probability p(j|x) at
the parameters Θ∗

k∗ are either 1 or 0, we thus have that
H2(Θ∗

k∗) = 0. Therefore, H(Θk) is really globally maxi-
mized at Θ∗

k∗ .
On the other hand, suppose that H(Θk) is globally max-

imized. According to Eqs.(12)&(13), we must have that
H1(Θk) = H1(Θ∗

k∗) and H2(Θk) = 0. From H1(Θk) =
H1(Θ∗

k∗), we further have q(x|Θk) = q(x|Θ∗
k∗). Based

on the discrimination of the finite mixtures, we consider
the possible expressions for the parameters set Θk in the
following three cases:

(i). Θk = Θ∗
k∗ with k = k∗;

(ii). Θ∗
k∗ ⊂ Θk with k > k∗ and the mixing proportions

of the other k − k∗ extra components in Θk being zeros;
(iii). k > k∗ and there appears at least one repeating

component parameter representation θj = θj′ in Θk with
αj > 0, αj′ > 0. In such a case, there are posterior
probabilities p(j|x) and p(j′|x) being neither 1 nor 0 in a
region with a positive measure. Thus, H2(Θk) < 0, which
is contrary to H2(Θk) = 0. Thus, this case cannot happen
for the global maximum of H(Θk).

Summing up the above the results, we have completed the
proof. Q. E. D.

By Theorem 1, we have actually proved that the global
maximization of the harmony function leads to the AMS
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property on the finite mixture model in the well-separated
case if we let k > k∗ and cancel the components with
negligible mixing proportions. That is, in this case, if the
model scale is actually defined by the number of positive
mixing proportions in a finite mixture model, it will be equal
to k∗ via globally maximizing the harmony function. Thus,
the true model scale can be correctly detected through the
global maximization of the harmony function in this case.
Moreover, in this special case, the global harmony maximum
estimates of the parameters in the actual finite mixture is just
those in Θ∗

k∗ , i.e., these maximum harmony estimates are
unbiased.

From the above proof, we can also see that the global
maximization of the asymptotic log likelihood function
H1(Θk) should also have the model selection property if we
neglect the repeating component parameter representations
if possible. Indeed, we can find such a phenomenon in the
EM algorithm that some mixing proportions tend to zero in
the case of k > k∗. However, it does not always happen.
The reason is that the EM algorithm is conducted on a finite
sample data set. In this situation, the complicated structure
of the finite mixture tends to give a higher value of the log
likelihood. But if we consider H2(Θk) together, the situation
may be changed considerably. Actually, it decreases greatly
if there are a larger number of positive mixing proportions
remained, even for a finite sample data set. That is, it is a
strong penalty term for the model scale of the finite mixture.
Therefore, the two terms in the harmony function play
together to make AMS in the finite mixture more efficiently.

C. The AMS Property of the Harmony Function in the Weak-
Separated Case

We further investigate the AMS property of the asymptotic
harmony function in the weak-separated case where the
average overlap among the actual components is low. That is,
the actual components are overlapped in a weak mode such
that most of the posterior probabilities are still either 1 or 0,
or near 1 or 0, while the others remain within the interval
(0,1). For mathematical analysis, we introduce the average
overlap measure of the finite mixture which was defined in
[21], [22].

We consider the posterior probabilities on the finite mix-
ture at the true parameters Θ∗

k∗ :

p(j|x) =
α∗

jq(x|θ∗j )∑k∗
i=1 α∗

i q(x|θ∗i )
, (14)

for j = 1, · · · , k∗. We let

γij(x) = (δij − p(i|x))p(j|x), (15)

for i, j = 1, · · · , k∗, where δij is the Kronecker function.
Then, we define a group of quantities on the overlap of
component densities as follows:

eij(Θ∗
k∗) =

∫
|γij(x)|q(x|Θ∗

k∗ )dµ, (16)

for i, j = 1, · · · , k∗, where eij(Θ∗
k∗) ≤ 1 since |γij(x)| ≤ 1.

We consider the worst case and define the average overlap
measure of the finite mixture by

e(Θ∗
k∗) = max

i,j
eij(Θ∗

k∗). (17)

In fact, for i �= j, eij(Θ∗
k∗) can be considered as a measure

of the average overlap between the densities of components i
and j in the finite mixture. In fact, when q(x|θ∗i ) and q(x|θ∗j )
have a high overlap at a point x, p(i|x)p(j|x) takes a large
value; otherwise, p(i|x)p(j|x) takes a small value. When
they are well separated at x, p(i|x)p(j|x) becomes zero.
Thus, the product p(i|x)p(j|x) represents a degree of overlap
between q(x|θ∗i ) and q(x|θ∗j ) at x in the mixture, and the
above eij(Θ∗

k∗) is an average overlap measure between the
densities of components i and j in the mixture. On the other
hand, eii(Θ∗

k∗) =
∑

j �=i eij(Θ∗
k∗) which can be considered

as the sum of the average overlap measures from component
i to all the other components.

It can be easily found that in the well-separated case
discussed above, each γij(x) = 0 for all x ∈ Rn. Thus, the
average overlap e(Θ∗

k∗) = 0. In the following, we try to prove
that the AMS property of the asymptotic harmony function
still holds in the weak-separated case where the average over-
lap measure is very small. Actually, for the finite mixtures
of densities from exponential families (including Gaussian
densities), the average overlap e(Θ∗

k∗) can be reduced to
zero as an infinitesimal under some regular conditions [22].
We now give the variation of H2(Θ∗

k∗) with the average
overlap measure e(Θ∗

k∗) considering as an infinitesimal by
the following theorem.

Theorem 2. Suppose that e(Θ∗
k∗) tends to zero as an

infinitesimal, we have

H2(Θ∗
k∗) ≥ −ν − O(e(Θ∗

k∗)), (18)

where ν is a small positive number and O(u) denotes the
same order infinitesimal of an infinitesimal u.

Proof: According to Eq.(11), we have

|H2(Θ∗
k∗)| =

∫
I(x|Θ∗

k∗)q(x|Θ∗
k∗)dµ

=
k∗∑

j=1

∫
|p(j|x) ln p(j|x)|q(x|Θ∗

k∗)dµ.(19)

Since p(j|x) ∈ [0, 1], we consider it in two intervals [0, ρ]
and (ρ, 1], where ρ is a small positive number. Because
limx→0+ x ln x = 0, we can select ρ to be small enough
to make |x ln x| ≤ ν/k∗. On the other hand, it can be
easily verified that there exists a positive number T such
that |x ln x| ≤ T |x(1 − x)| in the interval (ρ, 1]. If we let
R1 and R2 denote the regions of x for p(j|x) in [0, ρ] and
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(ρ, 1], respectively, we have∫
|p(j|x) ln p(j|x)|q(x|Θ∗

k∗)dµ

=
∫
R1

+
∫
R2

|p(j|x) ln p(j|x)|q(x|Θ∗
k∗)dµ

=
∫
R1

|p(j|x) ln p(j|x)|q(x|Θ∗
k∗)dµ

+
∫
R2

|p(j|x) ln p(j|x)|q(x|Θ∗
k∗)dµ

≤
∫
R1

(ν/k∗)q(x|Θ∗
k∗)dµ

+T

∫
R2

|p(j|x)(1 − p(j|x))|q(x|Θ∗
k∗ )dµ

≤
∫

ν

k∗ q(x|Θ∗
k∗)dµ

+T

∫
|p(j|x)(1 − p(j|x))|q(x|Θ∗

k∗ )dx

=
ν

k∗ + Tejj(Θ∗
k∗)

=
ν

k∗ + O(e(Θ∗
k∗)). (20)

Substituting the above inequalities for j = 1, · · · , k∗ into
Eq.(19) and via |H2(Θ∗

k∗)| = −H2(Θ∗
k∗), we finally have

H2(Θ∗
k∗) ≥ −ν − O(e(Θ∗

k∗)). (21)

The proof is completed.
Q. E. D.

According to Theorem 2, we further have

H(Θ∗
k∗) ≥ H1(Θ∗

k∗) − [ν + O(e(Θ∗
k∗))], (22)

which means that H(Θ∗
k∗) is close to the upper bound of the

asymptotic harmony function H(Θk), i.e., H1(Θ∗
k∗), when

the average overlap measure between the actual components
is very small (considering that ν is a very small number).
However, Θ∗

k∗ may not be the global maximum of the
asymptotic harmony function. Although H1(Θk) is globally
maximized at Θ∗

k∗ , H2(Θk) may be globally maximized at
some point nearby Θ∗

k∗ . As a result, the global maximum of
the asymptotic harmony function may has some deviation
from Θ∗

k∗ . Clearly, this deviation is very small and the
model scale of the finite mixture keeps k∗. Otherwise, the
asymptotic harmony function will be decreased considerably
and cannot be globally maximized. Therefore, in a similar
way, the global maximization of the asymptotic harmony
function also lead to the AMS property in the weak-separated
case.

IV. ANALYSIS OF DEVIATION ERROR OF THE MAXIMUM

HARMONY ESTIMATES

In addition to the AMS property, it is also valuable to
obtain good estimates of the parameters in the actual finite
mixture via the global maximization of the harmony function.
According to the previous analysis, the global maximum
harmony estimates are unbiased in the well-separated cases.
However, they may be biased in the overlap situation. In

this section, we further analyze the deviation error of the
maximum harmony estimates to the true parameters in the
Gaussian mixture setting with help of the iterative learning
algorithm constructed in [16].

A. The Iterative Learning Algorithm for Gaussian Mixtures
with Automated Model Selection

We begin to introduce the iterative learning algorithm for
maximizing the harmony function given in Eq.(4) where
q(x|θi) = q(x|mi, Σi) is a Gaussian pdf given in Eq.(5).

Since
∑k

j=1 αj = 1, we introduce the Lagrange multiplier
λ and compose the Lagrange function

L(Θk, λ) = J(Θk) + λ(1 −
k∑

j=1

αj). (23)

By matrix differentiation, we can get the following set of
equations:

∂L

∂αj
=

1
N

N∑
t=1

1
αj

hj(t) − λ, (24)

∂L

∂mj
=

1
N

N∑
t=1

hj(t)Σ−1
j (xt − mj) (25)

∂L

∂Σj
=

1
2N

N∑
t=1

hj(t)Mj(t) (26)

∂L

∂λ
=

k∑
i=1

αi − 1 (27)

where

hj(t) = pj(t) +
k∑

i=1

pj(t)(δij − pi(t)) ln [αiq(xt|mi, Σi)]

Mj(t) = Σ−1
j (xt − mj)(xt − mj)T Σ−1

j − Σ−1
j

for j = 1, · · · , k, and pj(t) = p(j|xt) for short. By setting
these derivatives to be zero, we have the following iterative
(or fixed-point) learning algorithm:

α̂j =
∑N

t=1 hj(t)∑k
i=1

∑N
t=1 hi(t)

, (λ =
1
N

k∑
i=1

N∑
t=1

hi(t)) (28)

m̂j =
1∑N

t=1 hj(t)

N∑
t=1

hj(t)xt, (29)

Σ̂j =
1∑N

t=1 hj(t)

N∑
t=1

hj(t)(xt − m̂j)(xt − m̂j)T . (30)

It is clear that this iterative learning algorithm is similar
to the EM algorithm for Gaussian mixtures [2]. However,
it differs from the EM algorithm at hj(t), which introduces
certain rewarding and penalizing mechanism on the mixing
proportions so that it preserves the AMS property. In fact,
it was demonstrated by the simulation experiments in [16]
that this iterative learning algorithm converges efficiently on
a set of sample data from a Gaussian mixture for both AMS
and parameter estimation. For convenience of deviation error
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analysis, we assume that this iterative learning algorithm is
linearly convergent to the maximum point of the harmony
function in the Gaussian mixture setting.

B. The Deviation Error of the Maximum Harmony Estimates
to the True Parameters

We consider the iterative learning algorithm asymptotically
to check whether the maximum harmony estimates are bi-
ased. That is, we let N tend to the infinity, i.e., N → ∞,
and the iterative learning algorithm iterates at Θk = Θ∗

k∗ . We
then check whether the update Θ̂k is just Θ∗

k∗ . If it is, the
iterative learning algorithm is stable or has converged and
the maximum harmony estimates are unbiased. Otherwise,
the iterative learning algorithm will converge to some other
point and the corresponding maximum harmony estimates
are biased from the true parameters.

According to the definition of hj(t), we have at Θk = Θ∗
k∗

lim
N→∞

1
N

N∑
t=1

hj(t)

=
∫

p(j|x)q(x|Θ∗
k∗ )dµ

+
k∗∑
i=1

∫
γij(x) ln [α∗

i q(x|m∗
i , Σ

∗
i )]dµ

= α∗
j +

k∗∑
i=1

∫
γij(x) ln [α∗

i q(x|m∗
i , Σ

∗
i )]dµ. (31)

According to the main theorem in [21] under ceratin
regular conditions for Gaussian mixtures, we can easily have

k∗∑
i=1

∫
γij(x) ln [α∗

i q(x|m∗
i , Σ

∗
i )]dµ = o(e0.5−ε(Θ∗

k∗)), (32)

where ε is a small positive constant, and o(u) denotes a
higher-order infinitesimal of an infinitesimal u. Thus, we
have

lim
N→∞

1
N

N∑
t=1

hj(t) = α∗
j + o(e0.5−ε(Θ∗

k∗). (33)

Summing up these results for j = 1, · · · , k∗, we also have

lim
N→∞

1
N

k∗∑
j=1

N∑
t=1

hj(t) = 1 + o(e0.5−ε(Θ∗
k∗)). (34)

Substituting these results into Eq.(28) with N → ∞, we
have

α̂j =
α∗

j + o(e0.5−ε(Θ∗
k∗)

1 + o(e0.5−ε(Θ∗
k∗)

= α∗
j + o(e0.5−ε(Θ∗

k∗)). (35)

That is,

|α̂j − α∗
j | = o(e0.5−ε(Θ∗

k∗)). (36)

In the same way, we can also prove

‖ m̂j − m∗
j ‖ = o(e0.5−ε(Θ∗

k∗)); (37)

‖ Σ̂j − Σ∗
j ‖ = o(e0.5−ε(Θ∗

k∗)), (38)

where ‖ · ‖ is the Euclidean norm.
Summing up the above results, we finally have

‖ Θ̂k∗ − Θ∗
k∗ ‖= o(e0.5−ε(Θ∗

k∗)). (39)

If the iterative learning algorithm is executed from the
true parameters Θ∗

k∗ and finally converge to the maximum
harmony estimates Θh

k∗ with a linear convergence rate r(0 <
r < 1), we can easily have an upper bound of the deviation
error between Θ∗

k∗ and Θh
k∗ by

‖ Θh
k∗ − Θ∗

k∗ ‖ ≤ 1
1 − r

‖ Θ̂k∗ − Θ∗
k∗ ‖

= o(e0.5−ε(Θ∗
k∗)). (40)

From these results, we can find that in the overlap case
the fixed-point condition for maximizing the harmony func-
tion cannot be satisfied at the true parameters and thus
the maximum harmony estimates are biased. However, the
deviation error of the maximum harmony estimates to the
true parameters is dominated by the average overlap measure
between the components in the actual mixture. That is, as the
actual components tend to be well-separated, the maximum
harmony estimates tend to the true parameters in the actual
Gaussian mixture.

C. Simulation Results on the Deviation Error

Finally, we carry out some simulation experiments to
demonstrate the above analysis results on the deviation error
between the maximum harmony estimates (obtained from
the iterative learning algorithm) and the true parameters. We
also compare the maximum harmony estimates with the ML
estimates obtained from the EM algorithm.

As shown in Fig. 1, we use seven sets of sample data
drawn from a mixture of three or four bivariate Gaussian
distributions (i.e., n = 2). Actually, each data set is generated
with different degree of overlap among the clusters and with
equal or unequal mixing proportions. Below is a detailed
description.

(i). The clusters in S1 and S2 have equal number of
samples, while those in the other five data sets have different
numbers of samples;

(ii). The clusters in S1,S3 and S6 are separated, but those
in each of the other four data sets are overlapped at certain
degree;

(iii). The clusters in S1 and S2 are spherical in shape,
but those in the other five data sets are elliptic in shape. In
particular, the clusters in S5 and S6 are rather flat;

(iv). The sample size of the first five data sets is larger as
compared with that of S6 and S7.

We conduct the iterative learning algorithm and the EM
algorithm on these seven sample data sets. In each case,
we compute the deviation error (i.e., the mean square error)
between the converged values of parameters and the true
values for the both algorithms. All the results are listed in
Table I.

It can be seen from Table I that the maximum harmony es-
timates (from the iterative learning algorithm) have a greater
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Fig. 1. Seven sets of sample data used in the experiments. (a). Set S1;
(b). Set S2; (c). Set S3; (d). Set S4; (e). Set S5; (f). Set S6; (g). Set S7.

TABLE I

THE DEVIATION ERRORS OF THE ESTIMATED PARAMETERS BY THE

ITERATIVE LEARNING AND EM ALGORITHMS ON THE SEVEN DATA SETS.

S Iterative Learning Algorithm EM Algorithm
S1 0.014631 0.011799
S2 0.023206 0.019434
S3 0.0201193 0.015840
S4 0.022816 0.015928
S5 0.049643 0.015928
S6 0.009069 0.008623
S7 0.029247 0.024167

deviation error than the maximum likelihood estimates (from
the EM algorithm) do. It can be also seen that the deviation
error of the maximum harmony estimates become larger as
the overlap among the actual Gaussians becomes stronger.
Therefore, these simulation results really substantiate our
theoretical result.

V. CONCLUSIONS

We have presented a theoretical analysis on the harmony
function developed from the Bayesian Ying-Yang (BYY)
harmony learning theory for the automated model selection
(AMS) property on the finite mixture modeling. After briefly
introducing the harmony function, we first prove that the
global maximization of the harmony function leads to the
AMS property in the well-separated case of finite mix-
tures. With help of the average overlap measure, this AMS
property is further proved in the weak-separated case of
finite mixtures. Furthermore, we prove that the maximum
harmony estimates are biased, but the deviation error is
dominated by the average overlap measure between the actual
components in the mixture, which is further demonstrated by
the simulation results.
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