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Wavelet-Based Image Texture Classification
Using Local Energy Histograms

Yongsheng Dong and Jinwen Ma

Abstract—In this letter, we propose an efficient one-nearest-
neighbor classifier of texture via the contrast of local energy
histograms of all the wavelet subbands between an input texture
patch and each sample texture patch in a given training set. In
particular, the contrast is realized with a discrepancy measure
which is just a sum of symmetrized Kullback–Leibler divergences
between the input and sample local energy histograms on all the
wavelet subbands. It is demonstrated by various experiments that
our proposed method obtains a satisfactory texture classification
accuracy in comparison with several current state-of-the-art
texture classification approaches.

Index Terms—Energy histogram, one-nearest-neighbor classi-
fier, symmetrized Kullback–Leibler divergence (SKLD), texture
classification, wavelet transform.

I. INTRODUCTION

T EXTURE classification plays an important role in com-
puter vision with a wide variety of applications. During

the last three decades, numerous methods have been proposed
for image texture classification or retrieval. These methods can
be broadly divided into four categories [1], namely structural
methods, statistical methods, model-based methods and filter-
based methods. As a special subcategory of filter-based methods
[1]–[13], wavelet-based multiresolution methods have recently
received extensive interest in the literature, which can be consid-
ered to follow two major streams: model-based methods [3]–[7]
and feature-based methods [1], [8]–[12].

The distribution characteristic of wavelet subband coeffi-
cients has played an important role on texture classification in
recent years [1]–[7]. The used models include the Characteristic
Generalized Gaussian Density (CGGD) model [3], the Bit-plane
Probability (BP) model [5], [6], the Refined Histogram (RH)
[4], the Generalized Gamma Density (G D) model [7], and so
on. The wavelet coefficients are generally modeled under the
independence assumption that disregards the intercoefficient
dependencies. Thus, the valuable local information that those
dependent coefficients in a given neighborhood own together
will be neglected.
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In the feature-based methods, the total energy of each high-
pass wavelet subband is a commonly used statistical feature for
texture classification [11], [12]. Moreover, the local energy fea-
tures in each high-pass subband is also extracted and used to per-
form texture classification [1]. However, all the above wavelet-
based methods ignore the low-pass subband in performing tex-
ture classification.

To utilize the local energy feature distributions of high-pass
and low-pass wavelet subbands for texture classification, we
here propose a special local energy histogram (LEH) to describe
the distribution of the coefficients in each wavelet subband. In
this way, we define a new discrepancy measure between two im-
ages by summing up all the symmetrized Kullback–Leibler di-
vergences between two LEHs on the corresponding subbands.
According to this discrepancy measure, a one-nearest-neighbor
classifier is then built for supervised texture classification. It
is demonstrated by the experiments that our proposed method
has a satisfactory classification performance in comparison with
several current state-of-the-art texture classification approaches.

The rest of this letter is organized as follows. Section II
presents our proposed texture classification method. Its experi-
mental results and comparisons are given in Section III. Finally,
we conclude briefly in Section IV.

II. PROPOSED TEXTURE CLASSIFICATION METHOD

A. Local Energy Feature Extraction in Wavelet Domain

For an L-level wavelet decomposition, we obtain high-
pass subbands and one low-pass subband

. Then we extract the local (Norm-1) energy features on
neighborhoods in each subband. Typically, in the -th

high-pass subband of size at the -th scale, the local
energy features can be defined by

(1)

where and is the wavelet
coefficient at location in the subband. The local energy
features in the low-pass subband, denoted by for clarity,
are also extracted in the same manner according to (1).

Note that all the above local energy features are non-nega-
tive. On the other hand, the average amplitude of the local en-
ergy values increases almost exponentially with the scale . To
make a uniform measure for those local energy features at dif-
ferent scales, we regularize by multiplying the factor
to them. For the low-pass subband, we multiply the factor
to due to that the average amplitude of the local energy
feature values in the low-pass subband is much higher than that
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in each high-pass subband. For simplicity, the local energy fea-
tures in the following will be considered as the regularized local
energy features without explanation.

B. Local Energy Histogram (LEH)

1) Definition: Given a particular wavelet subband with
local energy features , there certainly ex-
ists an positive integer such that the maximum

. Let , where
and , which is called the bin-width

index. Note that . It follows that, given
any , there must exist an positive integer
such that . Then we define a local energy histogram
(LEH) as a discrete function , where

is the number of the local energy features appearing in .
Note that the defined local energy histogram is a normalized
one, which can be used to model the probability density func-
tion of the local energy features. Hence, we characterize by

, which is referred as the LEH signature.
2) Discrepancy Measure: Once the LEH signature

in each wavelet subband is obtained for every
texture image in a given dataset, classification requires the com-
parison of LEHs for similarity. Without the loss of generality,
we assume that all the LEH signatures have the same length. Be-
cause we can use a big enough number such that for any tex-
ture image in the considered dataset, the maximum local energy
value in all the subbands is strictly less than . Note that we
use the same bin-width index fixed previously for all subbands
in our experiments. To avoid for some and then pre-
vent the divide by zero problems in the following discrepancy
measure, we subtract from , where
and is a sufficiently small positive real number such as

. That is, we let if , but
. It follows that .

For the sake of clarity, the LEH signature
in the following will represent without
explanation. A well-known discrepancy measure between two
probability distributions is the symmetrized Kullback–Leibler
divergence (SKLD) [4]. So, we define the SKLD between two
LEHs and by

(2)

where and are the LEH signatures of and , respec-
tively.

Given two images and , we can obtain wavelet
subbands and ,
respectively, after having implemented an L-level wavelet trans-
form on them, and then define the discrepancy measure between
the two images by

(3)

where , and is the
SKLD between the two LEHs and corresponding to the
subbands and , respectively for . As

Fig. 1. Sixteen of the 80 Brodatz texture images.

essentially measures the discrepancy between the subbands
and , we refer to it as a subband distance. It is clear that
is the summation of all the subband distances. Note that

we can also utilize the summation of all the high-pass subband
distances, i.e., , to define the discrepancy measure between
two images, which is equivalent to performing texture classifi-
cation using only all the high-pass subbands. In the next section,
we will demonstrate the importance of the low-pass subband to
classification performance by comparing with .

C. One-Nearest-Neighbor Classifier

With the above discrepancy measure , we will utilize the
one-nearest-neighbor classifier as our default classifier for its
good performance. It follows that, given a training sample set
and a test sample, we will compare the input test sample with
all the training samples via the discrepancy measure and assign
the class label of the closest training sample to it. In fact, it
has been found by the experiments that, with the discrepancy
measure , the one-nearest-neighbor classifier performs con-
siderably better than the minimum distance classifier and the

-nearest-neighbor classifier with for supervised texture
classification.

III. EXPERIMENTAL RESULTS

In this section, various experiments are carried out to demon-
strate our proposed texture classification method, being com-
pared with several current state-of-the-art texture classification
approaches under different image texture environments.

In the experiments, the 3-level wavelet transform with the
Daubechies 1 (db1) filter bank is used to decompose each
sample patch. We also considered the range of the level from
1 to 4 in our experiments. The results showed that 3-level
wavelet transform gives the best results. As for the selection
of the parameter , the experiments show that is
big enough, that is, for any texture image in our datasets, the
maximum local energy value in all the subbands is strictly less
than . Therefore, we shall use in all the following
experiments. As a matter of fact, the results will be almost the
same if we select a larger integer number .

A. Classification Performance

We first evaluate our texture classification method on a typical
set of 80 grey 640 640 images (denoted by Set-1, and 16 of
the 80 images are shown in Fig. 1) from the Brodatz texture
database [14], which was also used in [17].

In the experiments on Set-1, each image is divided into 16
160 160 nonoverlapping patches, and thus there are totally
1280 samples available. We select training samples from
each of 80 classes and let the other samples for test with

. The partitions are furthermore obtained randomly
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Fig. 2. Sketches of the average classification accuracy rates of LEH�TD �� �
�� and LEH�HD �� � ��with respect to the bin-width index when the number
of training samples is 8.

and the average classification accuracy rate (ACAR) is com-
puted over the experimental results on ten random splits of the
training and test sets for each value of .

For simplicity, we refer to our proposed method using the
discrepancy measure as LEH TD, and to the one-nearest-
neighbor classifier based on the LEH and the discrepancy mea-
sure [see (3)] as LEH HD. Fig. 2 plots the ACARs of
LEH TD and LEH HD with respect to the bin-width index

using the neighborhood size 2 2 (i.e.,
) for the local energy features in the case of . Note

that the error bars are also shown in Fig. 2 and the following fig-
ures where each error bar is a distance of one standard deviation
above or below the average classification accuracy rate. From
Fig. 2, we can see that the ACARs of LEH TD and LEH HD
decrease with the bin-width index, , and LEH TD outper-
forms LEH HD by 5.00%–6.00%, which implies the discrep-
ancy measure performs much better than in each case
of the bin-width index. In these two approaches, we can also see
that the difference between the ACARs of and
cases is 5.00%–6.50%, which implies the bin-width index
plays an important role to classification performance. Note that
as decreases from 3 to 0, the improvement on ACAR is in-
significant. The main reason is that, as becomes smaller, our
LEHs can capture more details about the distribution of the local
energy features, and thus, the ACAR increases. However, we
only have more details on the peaks of the distribution when it
is too small (e.g., ), which is actually unnecessary. In such
a case, the recognition performance cannot be significantly im-
proved. Therefore, in the following experiments, we shall only
use the bin-width index to demonstrate our method.

We then investigate the sensitivity of the low-pass subband
to classification performance when the neighborhood sizes are
2 2, 3 3 and 4 4 (that is, , 3, and 4). Figs. 3(a),
(b) and (c) plot the ACARs (with error bars) of LEH TD and
LEH HD with respect to the number of training samples
for the three neighborhood sizes, respectively. As can be seen,
the ACARs of LEH TD and LEH HD increase monotonically
with the number of training samples no matter what the neigh-
borhood size is. We can also see that LEH TD outperforms
LEH HD by 4.00%–6.00% at each value of in each case of
the neighborhood size, which implies the discrepancy measure

Fig. 3. Classification performances of LEH�TD and LEH�HD with respect
to the number of training samples using the three neighborhood sizes: (a)� � �;
(b) � � �; (c) � � �.

Fig. 4. Comparative classification performance with respect to the number of
training samples.

performs better than . Therefore, the low-pass subband
of one texture image plays an essential role in distinguishing
different texture classes.

We finally compare our proposed texture classification
method, LEH TD, with the bit-plane probability (BP) sig-
nature based method [5], which is referred as BP Method.
Fig. 4 shows the ACAR sketches of the two methods with
respect to the number of training samples, . It can be
clearly seen from Fig. 4 that the ACARs of LEH TD with the
three neighborhood sizes and BP Method increase monoton-
ically with the number of training samples. We also see that
LEH TD performs slightly better than LEH TD

, LEH TD and LEH TD by about
1.00%, and outperforms BP Method by about 6.00%–8.00%
for each value of , which implies that the optimal selection
of the neighborhood size is . Moveover, we compare
LEH TD with the Gaussian mixture model based
method with the basis system [17] (known as GMM Method)
in the case of . The ACARs of GMM Method and
LEH TD are 93.44% and 96.25%, respectively. That
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TABLE I
THE ACARS (%) AND TTC (IN SECONDS) OF THE THREE METHODS

is, LEH TD outperforms GMM Method by 2.81%.
All the values of standard deviation of LEH TD with the
three neighborhood sizes at each value of are about 0.90%,
which are slightly less than the average value of standard devi-
ation of BP Method, 1.48%. In other words, the variation of the
classification accuracy rates of LEH TD for different number
of training samples is small, which affirms the robustness of
our proposed LEH TD.

B. Comparisons With the Other Existing Methods

In this subsection, we firstly test LEH TD on
the Brodatz dataset [14] of 111 640 640 texture images (de-
noted by Set-2), and compare with BP Method and the indepen-
dent component analysis (ICA) signature based method (known
as ICA Method) [16]. Each texture image is divided into 25
128 128 non-overlapping patches. Then, we select 10 training
patches from each class and put the remaining patches into the
test set. The experiment is repeated over ten random splits of
the training and test sets. The ACARs of LEH TD ,
BP Method, and ICA Method are 85.80%, 74.90%, and 80.7%,
respectively. We can see that LEH TD clearly outper-
forms the state-of-the-art BP Method and ICA Method on the
entire Brodatz dataset.

To provide further justification of our proposed LEH TD
, we also compare LEH TD with two

current methods based on the completed local binary pattern
(CLBP), denoted by CLBP_S and CLBP_S/M/C as in [18],
on the Vistex dataset [15] of 30 512 512 texture images. We
leave more details and developments about the local binary
pattern in [18] and [19]. Our experimental setting is the same
as that used in [3]. The experiment is repeated over ten random
splits of the training and test sets. All the experiments are
implemented on a workstation with Intel(R) Core(TM) i5 CPU
(3.2 GHz) in Matlab environment. Table I reports the ACARs
and time for texture classification (TTC) of these methods. As
can be seen, our proposed LEH TD outperforms
CLBP_S by 2.83% though CLBP_S/M/C performs better
than LEH TD by 2.79%. The ACARs of the three
methods are all higher than that of the characteristic generalized
Gaussian density based method [3], i.e., 88.1%. As far as the
TTC is concerned, LEH TD is slightly faster than
CLBP_S/M/C. Therefore, our proposed LEH TD is
very competitive to the current state-of-the-art CLBP_S and
CLBP_S/M/C approaches.

IV. CONCLUSION

We have investigated the supervised texture classification
problem by contrasting the local energy histograms of all the
wavelet subbands between an input texture patch and each

sample texture patch in a given training set. The contrast is
conducted with a discrepancy measure defined as a sum of
the symmetrized Kullback–Leibler divergences between the
input and sample local energy histograms on all the wavelet
subbands, and then the one-nearest-neighbor classifier is built.
The various experiments have shown that our proposed method
has a satisfactory classification performance as compared with
the current state-of-the-art approaches.
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