
The Event-B Mathematical Language

Christophe Métayer (ClearSy)

Laurent Voisin (ETH Zurich)

October 26, 2007

Contents

1 Introduction 1

2 Language Lexicon 2
2.1 Whitespace . 2
2.2 Identifiers . 2
2.3 Integer Literals . 3
2.4 Predicate symbols . 4
2.5 Expression symbols . 5

3 Language Syntax 7
3.1 Notation . 7
3.2 Predicates . 7

3.2.1 A first attempt . 7
3.2.2 Associativity of operators 8
3.2.3 Priority of operators . 9
3.2.4 Final syntax for predicates 10

3.3 Expressions . 11
3.3.1 Some Fine Points . 11
3.3.2 A First Attempt . 13
3.3.3 Operator Groups . 14
3.3.4 Priority of Operator Groups 16
3.3.5 Associativity of operators 16
3.3.6 Final syntax for expressions 18

4 Static Checking 21
4.1 Abstract Syntax . 21
4.2 Well-formedness . 22
4.3 Type Checking . 26

4.3.1 Typing Concepts . 26
4.3.2 Specification of Type Check 27
4.3.3 Examples . 35

5 Dynamic Checking 40
5.1 Predicate Well-Definedness . 40
5.2 Expression Well-Definedness . 40

i

1 Introduction

This document presents the technical aspects of the kernel mathematical lan-
guage of event-B. Beyond the pure syntax of the language, it also describes its
lexical structure and various checks (both static and dynamic) that can be done
on formulas on the language.

The main design principle of the language is to have intuitive priorities
for operators and to use a minimal set of parenthesis (except when needed
to resolve common ambiguities). So, the emphasis is really on having formulas
unambiguous and easy to read.

The first chapter describes the lexicon used by the language, then chapter
two describes its (concrete) syntax. Chapter three introduces the notion of well-
formed and well-typed formula (static checks). Finally, chapter four gives the
well-definedness conditions for a formula (dynamic check).

Revision History

Date Contents

2005/05/31 Initial revision (Rodin Deliverable D7).

2006/05/24 Added min and max unary operators.

2007/10/26 Minor corrections in the text.

1

2 Language Lexicon

This chapter describes the lexicon of the mathematical language, that is the
way that terminal tokens of the language grammar are built from a stream of
characters.

Here, we assume that the input stream is made of Unicode characters, as
defined in the Unicode standard 4.0 [4]. As we use only characters of the Basic
Multilingual Plane, all characters are designated by their code points, that is an
uppercase letter ‘U’ followed by a plus sign and an integer value (made of four
hexadecimal digits). For instance, the classical space character is designated by
U+0020.

Each token is formed by considering the longest sequence of characters that
matches one of the definition below.

2.1 Whitespace

Whitespace characters are used to separate tokens or to improve the legibility
of the formula. They are otherwise ignored during lexical analysis.

The whitespace characters of the mathematical language are the Unicode
4.0 space characters:

U+0020 U+00A0 U+1680 U+180E U+2000 U+2001
U+2002 U+2003 U+2004 U+2005 U+2006 U+2007
U+2008 U+2009 U+200A U+200B U+2028 U+2029
U+202F U+205F U+3000

together with the following control characters (these are the same as in the Java
Language):

U+0009 U+000A U+000B U+000C U+000D
U+001C U+001D U+001E U+001F

2.2 Identifiers

The identifiers of the mathematical language are defined in the same way as in
the Unicode standard [4, par. 5.15]. This definition is not repeated here. Basi-
cally, an identifier is a sequence of characters that enjoy some special property,
like referring to a letter or a digit.

Some identifiers are reserved for the mathematical language, where a prede-
fined meaning is assigned to them. These reserved keywords are the following

2

identifiers made of ASCII letters and digits:

BOOL FALSE TRUE
bool card dom finite id
inter max min mod pred
prj1 prj2 ran succ union

together with those other identifiers that use non-ASCII characters:

Token Code points Token name

N U+2115 set of natural numbers
N1 U+2115 U+0031 set of positive numbers
P U+2119 powerset
P1 U+2119 U+0031 set of non-empty subsets
Z U+2124 set of integers

2.3 Integer Literals

Integer literals consists of a non-empty sequence of ASCII decimal digits:

U+0030 U+0031 U+0032 U+0033 U+0034
U+0035 U+0036 U+0037 U+0038 U+0039

Note: There are two ways to tokenize integer literals: either signed or un-
signed. The first case as the advantage that it corresponds to classical usage
in mathematics. For instance, the string −1 is thought as representing a num-
ber, not a unary minus operator followed by a number. But, as we use the
same character to designate both unary and binary minus, this causes prob-
lems: the lexical analysis is no longer context-free, but depends on the syntax
of the language.

There are basically two solutions to this problem. One, taken in some func-
tional languages in the ML family and in the Z notation, is to use different
characters to represent the unary and binary minus operator. However, this
comes against mathematical tradition and is thus rejected. The second solution
is to consider that integer literals are unsigned. This second solution has been
chosen here.

3

2.4 Predicate symbols

The tokens used in the pure predicate calculus are:

Token Code point Token name

(U+0028 left parenthesis
) U+0029 right parenthesis
⇔ U+21D4 logical equivalence
⇒ U+21D2 logical implication
∧ U+2227 logical and
∨ U+2228 logical or
¬ U+00AC not sign
> U+22A4 true predicate
⊥ U+22A5 false predicate
∀ U+2200 for all
∃ U+2203 there exists
, U+002C comma
· U+00B7 middle dot

The symbolic tokens used to build predicates from expressions are:

Token Code point Token name

= U+003D equals sign
6= U+2260 not equal to
< U+003C less-than sign
≤ U+2264 less than or equal to
> U+003E greater-than sign
≥ U+2265 greater than or equal to
∈ U+2208 element of
/∈ U+2209 not an element of
⊂ U+2282 subset of
6⊂ U+2284 not a subset of
⊆ U+2286 subset of or equal to
6⊆ U+2288 neither a subset of nor equal to

4

2.5 Expression symbols

The following symbolic tokens are used to build sets of relations (or functions):

Token Code point Token name

↔ U+2194 relation
←↔ U+E100 total relation
↔→ U+E101 surjective relation
↔↔ U+E102 total surjective relation
7→ U+21F8 partial function
→ U+2192 total function
7� U+2914 partial injection

� U+21A3 total injection
7� U+2900 partial surjection

� U+21A0 total surjection
�� U+2916 bijection

The following symbolic tokens are used for manipulating sets:

Token Code point Token name

{ U+007B left curly bracket
} U+007D right curly bracket
7→ U+21A6 maplet
∅ U+2205 empty set
∩ U+2229 intersection
∪ U+222A union
\ U+2216 set minus
× U+00D7 cartesian product

The following symbolic tokens are used for manipulating relations and func-
tions:

Token Code point Token name

[U+005B left square bracket
] U+005D right square bracket
7→ U+21A6 maplet
C− U+E103 relation overriding
◦ U+2218 backward composition
; U+003B forward composition
⊗ U+2297 direct product
‖ U+2225 parallel product
−1 U+223C tilde operator
C U+25C1 domain restriction
C− U+2A64 domain subtraction
B U+25B7 range restriction
B− U+2A65 range subtraction

5

The following symbolic tokens are used in quantified expressions:

Token Code point Token name

λ U+03BB lambda⋂
U+22C2 n-ary intersection⋃
U+22C3 n-ary union

| U+2223 such that

The following symbolic tokens are used in arithmetic expressions:

Token Code point Token name

.. U+2025 upto operator
+ U+002B plus sign
− U+2212 minus sign
∗ U+2217 asterisk operator
÷ U+00F7 division sign̂ U+005E exponentiation sign

6

3 Language Syntax

This chapter describes the syntax of the mathematical language, giving the
rationale behind the design decisions made.

We first present the notation we use to describe the syntax of the mathe-
matical language. Then, we present the syntax of predicates and of expressions.
In each case, we first present a simple ambiguous grammar, then we tackle with
associativity and priorities of operators, giving a rationale for each choice made.
Finally, we give a complete and non-ambiguous syntax.

3.1 Notation

In this document, we use an Extended Backus-Naur Form (EBNF) to describe
syntax. In that notation, non-terminals are surrounded by angle brackets and
terminals surrounded by single quotes. The other symbols are meta-symbols:

• Symbol ::= defines the non-terminal appearing on its left in terms of the
syntax on its right.

• Parenthesis (and) are used for grouping.

• A vertical bar | denotes alternation.

• Square brackets [and] surround an optional part.

• Curly brackets { and } surround a part that can be repeated zero or more
times.

3.2 Predicates

The point here is to define a grammar which is quite similar to the one used
commonly when writing mathematical formulae but that should also be non-
ambiguous to the (human) reader.

3.2.1 A first attempt

The grammar commonly used for predicates can loosely be defined as follows:

〈predicate〉 ::= ‘(’ 〈predicate〉 ‘)’
| 〈predicate〉 ‘⇔’ 〈predicate〉
| 〈predicate〉 ‘⇒’ 〈predicate〉
| 〈predicate〉 ‘∧’ 〈predicate〉

7

| 〈predicate〉 ‘∨’ 〈predicate〉
| ‘¬’ 〈predicate〉
| ‘>’
| ‘⊥’
| ‘∀’ 〈ident-list〉 ‘·’ 〈predicate〉
| ‘∃’ 〈ident-list〉 ‘·’ 〈predicate〉
| ‘finite’ ‘(’ 〈expression〉 ‘)’
| 〈expression〉 ‘=’ 〈expression〉
| 〈expression〉 ‘∈’ 〈expression〉
| 〈expression〉 ‘≤’ 〈expression〉
| . . .

〈ident-list〉 ::= 〈ident-list〉 ‘,’ 〈ident〉
| 〈ident〉

The ellipsis which appears at the end of the 〈predicate〉 production rule
means that there are still more alternatives combining two expressions into a
predicate. All those alternatives are not really relevant at this point of the doc-
ument, but will be fully listed in the final syntax (see section 3.2.4 on page 10).

3.2.2 Associativity of operators

In this document, we use the term associativity with somewhat two different Caution
meanings. In a mathematical context, when we write that an operator, say ◦, is
associative, we mean that it has a special mathematical property, namely that
(x ◦ y) ◦ z has the same value as x ◦ (y ◦ z). In a syntactical context, we say that
an operator is left-associative when formula x ◦ y ◦ z (without any parenthesis)
is parsed as if it would have been written (x ◦ y) ◦ z. To avoid any ambiguity,
we will always write associative in the algebraic sense when we refer to the first
meaning, the bare word associative always having the syntactical meaning.

Getting back to our predicate grammar defined above, we see that it is
somewhat ambiguous. A first point is that it doesn’t specify how one should
parse formulae containing twice the same binary predicate operator without any
parenthesis such as

P ⇒Q⇒R

P ∧Q ∧R

To solve that ambiguity, one specifies that each binary operator has a prop-
erty called associativity. The associativities defined for the event-B language
are the following:

Operator Associativity

⇔ none

⇒ none

∧ left

∨ left

8

As a consequence, formula P ⇒ Q⇒ R is considered as ill-formed and not
part of the event-B language, whereas formula P ∧Q∧R will be parsed as if it
actually were written as (P ∧Q) ∧R.

The rationale for these associativities is quite simple. Operator ∧ is associa-
tive in the algebraic sense, so formulae (P ∧Q) ∧ R and P ∧ (Q ∧ R) have the
same meaning. Hence, one can pick up either left or right associativity for this
operator. We arbitrarily chose left associativity as it is the most commonly used
to our knowledge. The same rationale explains the choice of left associativity
for operator ∨.

On the other hand, operator ⇒ is not associative in the algebraic sense
(P ⇒ Q)⇒ R is not the same as P ⇒ (Q⇒ R) (just suppose that predicates
P , Q and R are all ⊥). As a consequence, we keep it non associative in the
language, rather than choosing an arbitrary associativity.

The case of operator ⇔ is somewhat special. This operator is indeed as-
sociative in the algebraic sense. However, mathematicians often write formula
P ⇔ Q⇔ R when they actually mean (P ⇔ Q) ∧ (Q⇔ R). Hence, we chose
to make that operator non associative in the event-B language to avoid any
ambiguity.

Finally, for the operators that build a predicate from two expressions (such
as =, ∈, etc.), the grammar given above doesn’t allow formulae like x = y = z,
so those operator can not be associative.

3.2.3 Priority of operators

Another source of ambiguity is the case where formulae contain two different
predicate operators without any parenthesis such as

P ⇒Q⇔R

P ∧Q ∨R

¬P ∧Q

∀x·P ∨Q

This kind of ambiguity is generally resolved by defining priorities among
operators which define how much binding power each operator has. We will
use that mechanism here, retaining the most commonly used priorities. But,
with the addition that we want to forbid cases where those priorities are not so
well-accepted.

For instance, some people expect operators ‘∧’ and ‘∨’ to have the same
priority, while others expect operator ‘∧’ to have higher priority. So when faced
with formula P ∨Q ∧R, some people read it as (P ∨Q) ∧R while others read
it as P ∨ (Q∧R), which is quite different (just replace P and Q by > and R by
⊥ to convince yourself).

To solve that ambiguity, we decided that operators ‘∧’ and ‘∨’ indeed have
the same priority, but that one cannot mix them together without using paren-
thesis. So, P∧Q∨R is considered ill-formed. One should write either (P∧Q)∨R
or P ∧ (Q ∨R).

The priorities defined for the event-B language are the following (from lower

9

to higher priority)

∀x·P and ∃x·P (mixing allowed)

P ⇒Q and P ⇔Q (mixing not allowed)

P ∧Q and P ∨Q (mixing not allowed)

¬P

We choose to give quantified predicates the lowest priority in order to ease
their reading when embedded in long formulae. The main consequence of this
choice is that the scope of the variables introduced by a quantifier is the longest
sub-formula. For instance, in formula (∀x·P ⇒Q)⇒R, the scope of variable x
extends until predicate Q as can be easily seen by looking at matching paren-
thesis.

The following formulae show some examples of how those priorities are used
to replace parenthesis in some common cases:

P ∧Q⇒R is parsed as (P ∧Q)⇒R

∀x·∃y ·P is parsed as ∀x·(∃y ·P)

∀x·P ⇒Q is parsed as ∀x·(P ⇒Q)

∀x·P ∧Q is parsed as ∀x·(P ∧Q)

∀x·¬P is parsed as ∀x·(¬P)

¬P ⇒Q is parsed as (¬P)⇒Q

¬P ∧Q is parsed as (¬P) ∧Q

One should notice the difference with classical B [1] where ∀x·P ⇒ Q is
parsed as (∀x·P)⇒Q whereas, again, it is parsed here as ∀x·(P ⇒Q).

3.2.4 Final syntax for predicates

As a result, we obtain the following non ambiguous grammar for predicates:

〈predicate〉 ::= { 〈quantifier〉 } 〈unquantified-predicate〉

〈quantifier〉 ::= ‘∀’ 〈ident-list〉 ‘·’
| ‘∃’ 〈ident-list〉 ‘·’

〈ident-list〉 ::= 〈ident〉 { ‘,’ 〈ident〉 }

〈unquantified-predicate〉 ::= 〈simple-predicate〉 [‘⇒’ 〈simple-predicate〉]
| 〈simple-predicate〉 [‘⇔’ 〈simple-predicate〉]

〈simple-predicate〉 ::= 〈literal-predicate〉 { ‘∧’ 〈literal-predicate〉 }
| 〈literal-predicate〉 { ‘∨’ 〈literal-predicate〉 }

〈literal-predicate〉 ::= { ‘¬’ } 〈atomic-predicate〉

10

〈atomic-predicate〉 ::= ‘⊥’
| ‘>’
| ‘finite’ ‘(’ 〈expression〉 ‘)’
| 〈pair-expression〉 〈relop〉 〈pair-expression〉
| ‘(’ 〈predicate〉 ‘)’

〈relop〉 ::= ‘=’ | ‘6=’
| ‘∈’ | ‘/∈’ | ‘⊂’ | ‘6⊂’ | ‘⊆’ | ‘6⊆’
| ‘<’ | ‘≤’ | ‘>’ | ‘≥’

Please note that for relational predicates, we are using ¡pair-expression¿
instead of ¡expression¿. That change will only allow expressions without quan-
tifiers on each side of the relational operator. As a consequence, when one wants
to use a quantified expression on either side, one will have to surround it with
parenthesis. For instance, predicate λx·x ∈ Z | x = id(Z) is not well-formed,
one must write instead (λx·x ∈ Z | x) = id(Z).

3.3 Expressions

The design principle for the syntax of expressions is the same as that of pred-
icates, namely to enhance readability. To fulfill this goal, we use the same
techniques: minimize the need for parenthesis where they are not really needed
and prevent mixing operators when such a mix would be ambiguous.

3.3.1 Some Fine Points

Before presenting a first attempt of the syntax of expressions, we shall study
some fine points about pairs, set comprehension, lambda abstraction, quantified
expressions, and first and second projections.

Pair Construction. Pairs of expressions are constructed using the maplet
operator ‘ 7→’. Contrary to classical B [1], it is not possible to use a comma
anymore. This change is due to the ambiguity of using commas for two different
purposes in classical B: as a pair constructor and as a separator. For instance, set
{1, 2} can be seen as either a set containing the pair (1, 2) or as a set containing
the two elements 1 and 2. That was very confusing.

In event-B, a comma is always a separator and a maplet is a pair constructor.
Below are some examples showing the consequences of this new approach:

Classical-B Event-B

x, y ∈ S x 7→ y ∈ S

x, y = z, t x 7→ y = z 7→ t

f(x, y) f(x 7→ y)

The last example is particularly blatant of the confusion between separator
and pair constructor in classical B. When looking at formula f(x, y), one has
the impression that function f takes two separate arguments. But, this is not
always true. For instance, variable x could hide a non scalar value. For instance,

11

suppose that x = a 7→ b, then the function application could be rewritten as
either f(a 7→ b, y) or even as f(a, b, y). In that latter case, function f now
appears to take three arguments. This is clearly not satisfactory. In fact,
function f only takes one argument, which can happen to be a pair. In that
latter case, one should use a pair constructor to create that pair, that is use a
maplet operator.

Set Comprehension. There are now two forms of set comprehension. The
most general one is {x · P (x) | E(x)} which describes the set whose elements
are E(x), for all x such that P (x) holds. For instance, the set of all even natural
numbers can be written as {x · x ∈ N | 2 ∗ x}.

The second form {E | P} is just a short-hand for the first-one, which allows
to write things more compactly. The difference from the first form is that
the variables that are bound by the construct are not listed explicitly. They
are inferred from the expression part. Continuing with our previous example,
the set of all even natural numbers can then be written more compactly as
{2 ∗x | x ∈ N}, which corresponds more to the classical mathematical notation.

The rule for determining the variables which are bound by this second form
is to take all variables that occur free in E. Thus, if we denote by x the list of the
variables that occur free in E, then the second form is equivalent to {x · P | E}.

Lambda Abstraction. For lambda abstraction, classical B [1] uses the form
(λx · P | E) where x is a list of variables, P a predicate and E an expression.
This notation is fine when x is reduced to only one variable. For instance,
expression (λx · x ∈ N | x + 1) denotes the classical succesor function on
natural numbers. It is equal by definition to the set {x · x ∈ N | x + 1}.

But things get more complicated when x represents more than one variable.
For instance, what is the meaning of expression (λa, b · P | E). In classical B,
the latter expression is defined as being the set {a, b · P | a 7→ b 7→ E}. This is
clearly unsatisfactory for event-B, as it turns out that, in the former expression,
the comma that appears between a and b is not only a separator between two
variables, but also a hidden pair constructor, as one can see when writing the
equivalent set comprehension.

The crux of the matter is that the list of variables x introduced above, is
much more than a simple list. Indeed, it describes the structure of the domain of
the function defined by the lambda abstraction. For instance, when one writes,
in classical B, the expression (λa, b · P | E), one means that the domain of
that function is A×B (where A and B are the types of bound variables a and
b). Hence, the use of a comma is not appropriate here, as advocated in the
paragraph above about Pair Construction.

The cure is easy, just say that x is not a list of variables, but a pattern that
specifies the structure of the domain of the lambda abstraction. The example
above is then to be written as (λa 7→ b · P | E). Moreover, this can be
generalized to arbitrary domain structure by allowing arbitrary patterns after
the lambda operator. The only constraints are that those patterns should be
constructed out of distinct variables, pair constructors and parenthesis. The
definition of the lambda abstraction (λx · P | E) becomes {X · P | x 7→ E}
where X is the list of the variables that occur in x.

12

Other Quantified Expressions. The other quantified expressions are the
quantified union and intersection. In this paragraph, we shall only consider
quantified intersection, but everything will also apply to quantified union, mu-
tatis mutandis.

A quantified intersection expression has the form (
⋂

x · P | E) where x is a
list of variables, P a predicate and E an expression. It’s defined as being a short
form for the equivalent expression inter({x · P | E}) which mixes generalized
intersection and set comprehension. But, as we have seen above, we also have a
short form for writing set comprehension. The question then arises whether we
could also define a short form for generalized intersection. The answer is yes.
We then have a second form which is (

⋂
E | P) and which is defined has being

equal to inter({E | P}).

Projections. In classical B [1], the first and second projection operators take
two sets as arguments, like for instance in the expression prj1(A,B). In that
expression, arguments A and B are used for two different purposes. On the one
end, they allow to infer the type associated to the instantiated operator. On
the other hand, they define the domain of the instantiated operator, which is
A×B.

This approach seems unnecessarily restrictive, as it puts a strong constraint
on the domain of the operator, namely that it must be a cartesian product.
So, in event-B, these operators become unary and take a relation as argument.
The argument is then their domain. The upgrade path from classical B is quite
straightforward, just replace prj1(A,B) by prj1(A×B).

3.3.2 A First Attempt

An ambiguous grammar for event-B expressions can loosely be defined as follows:

〈expression〉 ::= 〈expression〉 〈binary-operator〉 〈expression〉
| 〈unary-operator〉 〈expression〉
| 〈expression〉 ‘−1’
| 〈expression〉 ‘[’ 〈expression〉 ‘]’
| 〈expression〉 ‘(’ 〈expression〉 ‘)’
| ‘λ’ 〈ident-pattern〉 ‘·’ 〈predicate〉 ‘|’ 〈expression〉
| 〈quantifier〉 〈ident-list〉 ‘·’ 〈predicate〉 ‘|’ 〈expression〉
| 〈quantifier〉 〈expression〉 ‘|’ 〈predicate〉
| ‘{’ 〈ident-list〉 ‘·’ 〈predicate〉 ‘|’ 〈expression〉 ‘}’
| ‘{’ 〈expression〉 ‘|’ 〈predicate〉 ‘}’
| ‘bool’ ‘(’ 〈predicate〉 ‘)’
| ‘{’ [〈expression-list〉] ‘}’
| ‘(’ 〈expression〉 ‘)’
| ‘∅’
| ‘Z’ | ‘N’ | ‘N1’
| ‘BOOL’ | ‘TRUE’ | ‘FALSE’
| 〈ident〉
| 〈integer-literal〉

13

〈binary-operator〉 ::= ‘7→’ | ‘↔’ | ‘←↔’ | ‘↔→’ | ‘↔↔’ | ‘ 7→’ | ‘→’ | ‘ 7�’ | ‘�’ | ‘ 7�’
| ‘�’ | ‘��’ | ‘∪’ | ‘∩’ | ‘\’ | ‘×’ | ‘⊗’ | ‘‖’ | ‘◦’ | ‘;’ | ‘C−’ |
‘C’ | ‘C−’ | ‘B’ | ‘B−’ | ‘..’ | ‘+’ | ‘−’ | ‘∗’ | ‘÷’ | ‘mod’ | ‘̂’

〈unary-operator〉 ::= ‘−’ | ‘card’ | ‘P’ | ‘P1’ | ‘union’ | ‘inter’ | ‘dom’ | ‘ran’ |
‘prj1’ | ‘prj2’ | ‘id’ | ‘min’ | ‘max’

〈quantifier〉 ::= ‘
⋃

’ | ‘
⋂

’

〈ident-pattern〉 ::= 〈ident-pattern〉 ‘7→’ 〈ident-pattern〉
| ‘(’ 〈ident-pattern〉 ‘)’
| 〈ident〉

〈expression-list〉 ::= 〈expression-list〉 ‘,’ 〈expression〉
| 〈expression〉

As can be seen, there are many expression operators in the event-B language.
So, we’ll need to take a divide and conquer approach: to make things easier to
grasp, we will first try to group all those operators into some categories.

3.3.3 Operator Groups

Basically, there are several kinds of expressions. The most important ones are
shown in Figure 3.1. This figure reads as follows: there are three top-level kinds
of expressions: sets, pairs and scalars. Relations and sets of relations are some
special kinds of set. For instance, a relation between a set A and a set B is
a subset of A × B. The set of all relations between A and B is the set of all
subsets of A × B. Integers and booleans are also some special kind of scalar
expression.

expression

set

relation set of relations

pair scalar

integer boolean

Figure 3.1: Kinds of expressions

We now define groups of similar expression operators (see Table 3.1 on the
following page). The groups are defined by considering the shape of the operator
(binary, unary, quantified, etc.) but also the kind of operator arguments and
result. For each group, we will give one operator which will be used in the sequel
as a distinguished representative of its group.

When examining that table, we can remark an interesting point: the oper-
ators that belong to the last three groups have the special property of being

14

Group Description Repr.

Quantification
operators

Given a list of quantified identifiers,
a predicate and an expression, these
operators produce a new expression.

λx·P | E

Pair constructor Given two expressions, it produces a
pair. E 7→ F

Set of relations
constructors

Given two sets, these operators pro-
duce a set of relations. S 7→ T

Binary set
operators

Given two sets, these operators pro-
duce a new set. S ∪ T

Interval constructor Given two integers, this operator
produces a set. i .. j

Arithmetic
operators

Given one or two integers, these op-
erators produce a new integer. i + j

Relational and
functional image

Given a relation and an expression,
these operators produce a new ex-
pression.

r[s]

Unary relation
operator

Given a relation, this operator pro-
duces a new relation. r−1

Tightly bound
unary operators

Given an expression, these operators
produce another expression. P(S)

Predicate
conversion

Given a predicate, this operator pro-
duces a new boolean expression. bool(P)

Set enumeration
and comprehension

Given a list of expressions, or a list
of quantified variables, a predicate
and an expression, this operator pro-
duces a set.

{. . .}

Table 3.1: Groups of similar expression operators

15

bounded: when one encounters such an operator, one can find easily where the
expression involving that operator starts and where it ends: unary and ‘bool’
operators are always followed by a formula enclosed within parenthesis; set enu-
merations and comprehensions are enclosed within curly brackets. This is also
the case of atomic expressions like integer and boolean literals or identifiers.

On the other hand, the operators of the other groups are not bounded by
themselves, so one needs to define priorities and associativity laws for them in
order to resolve potential ambiguities. We will first start by defining priorities
between groups, then we will refine each group separately.

3.3.4 Priority of Operator Groups

We arbitrarily choose to define relative priorities such that groups of opera-
tors are sorted by increasing priority in table 3.1 on the previous page. As a
consequence, quantification operators have the lowest priority.

That order has been chosen because it reduces the number of needed paren-
thesis when writing most common expressions. Here are a few example to
illustrate this. Each expression is stated twice, first without parenthesis, then
fully parenthesized:

A ∪ B 7→ C is parsed as (A ∪ B) 7→ C

a + b 7→ c is parsed as (a + b) 7→ c

a .. b ∪ C is parsed as (a .. b) ∪ C

a + b .. c is parsed as (a + b) .. c

r−1 ∪ s is parsed as (r−1) ∪ s

r−1(s) is parsed as (r−1)(s)

Also, we give the lowest priority to quantification operators so that, when
embedded in a formula, they have to be written surrounded by parenthesis.
This is consistent with the choice made for quantified predicates. An example
formula is

(λx·x ∈ Z | x + 1)−1(3) = 2

3.3.5 Associativity of operators

Now, that priorities of groups have been defined, we will resolve remaining
ambiguities separately for each group, defining how operators of each group can
be mixed.

Quantification Operators. In this group, there is not much room for ambi-
guity, as when we encounter two quantification operators, it comes right from
their syntax that the second one will be embedded in the first one. The only op-
tion left is whether the second quantified expression should be enclosed within
parenthesis or not. We decide not to enforce parenthesis in this case. As a
consequence, formula ⋂

x · x ⊆ Z | λy ·y = x | y ∪ {0}

16

is parsed as ⋂
x · x ⊆ Z | (λy ·y = x | y ∪ {0}) .

Pair Constructor. This group contains only the maplet operator, so we only
have to define an associativity property for that operator. Although the maplet
operator is not associative in the algebraic sense, it is very common usage to
parse it as left-associative, so we shall keep that property. Then, an expression
of the form a 7→ b 7→ c will be parsed as (a 7→ b) 7→ c.

Set of Relations Constructors. No operator in this group is associative
in the algebraic sense. However, we decide to parse them as right-associative.
That choice is justified by the fact that we will parse function application as
left-associative (this will be stated when we reach the Relational and functional
image paragraph on the following page). As a consequence, one can write
f(a)(b) when one actually means (f(a))(b). Then, to be consistent, one should
also be able to describe properties of function f without parenthesis, so formula
f ∈ A 7→B 7→ C should be parsed as f ∈ A 7→ (B 7→ C).

Binary Set Operators. This group contains various operators which are
more or less compatible each with the other. So, let’s first see how one can
safely mix these operators in a formula, from a mathematical point of view.
Table 3.2 on the next page shows operator compatibility. We write a cross at
the intersection of a row and a column if the two operators are compatible in
the following sense: operator oprow is compatible with operator opcol if and only
if the following equality holds

(A oprow B) opcol C = A oprow (B opcol C).

For instance, the cross at the intersection of row two and column three tells us
that (A ∩ B) \ C = A ∩ (B \ C) and the cross at the intersection of row nine
and column seven tells us that (A C r)⊗ s = A C (r ⊗ s).

We can see that the shape is quite irregular and that there are not so many
cases where operators are compatible. So, to have an unambiguous language,
we should stick to that compatibility relation and forbid any unparenthesized
combination of incompatible operators. When two operators are compatible,
we parse them as left-associative. Otherwise, one needs to use parenthesis to
resolve ambiguities. For instance, formula S ∪ T ∪ U is parsed as (S ∪ T) ∪ U ,
while formula S ∪ T ∩ U is ill-formed and is rejected. One has to make precise
the meaning of that last formula, writing either (S ∪ T) ∩ U or S ∪ (T ∩ U).

There is only one case where we want to allow the combination of two incom-
patible operators: we parse the cartesian product operator as left-associative.
This exception to the above rule is justified by the fact that we want to be
consistent with the left-associativity we have given to the maplet operator.
Then, one can write a 7→ b 7→ c ∈ A × B × C when one actually means
(a 7→ b) 7→ c ∈ (A×B)× C.

Interval Constructor. This group contains only one operator: ‘..’. There is
no point in having this operator used twice in the same formula (which would
give the nonsensical formula a .. b .. c). So, this operator is parsed as non-
associative.

17

∪ ∩ \ × ◦ ; ⊗ ‖ C− C C− B B−
∪ ×
∩ × × × ×
\
×
◦ ×
; × × ×
⊗
‖
C− ×
C × × × × × ×
C− × × × × × ×
B

B−

Table 3.2: Compatibility of binary set operators

Arithmetic Operators. For these operators, we choose to retain the Ada
language specification for defining priorities and associativity: operators ‘+’ and
‘−’ both have the same priority and are parsed as left-associative, operators ‘∗’,
‘÷’ and ‘mod’ have higher priority and are also parsed as left-associative. Note
that this choice is different from the one made for instance in the C language,
where there is a special priority for unary ‘−’. We did not retain that last point
as it can lead to valid but hard to read expressions like a + − − − − b which
means a + b.

Finally, the exponentiation operator has the least priority and is parsed as
non-associative.

Relational and Functional Image. We choose to make these operations
left-associative, although they are not associative in the algebraic sense. This
follows common usage and is indeed important to have easy to read formulas.
If these operators were not associative, one would have to write quite intricate
formulas just to express successive function application: ((f(a))(b))(c). With
the left-associativity we’ve added, this becomes f(a)(b)(c).

Unary Relation Operator. This group contains only one operator ‘−1’,
which can be repeated, obviously, so that r−1−1 is parsed as (r−1)−1.

3.3.6 Final syntax for expressions

As a result, we obtain the following non ambiguous grammar for expressions. An
important point is that non-terminals are named after the group of the top-level
operators appearing in their production rule. This can be somewhat misleading
as, for instance, 〈pair-expression〉 can be derived as formula Z, which is clearly
not a pair. This naming policy was chosen not to leave any information (just

18

numbering non-terminals 1, 2,. . . would miss some structural property of the
grammar).

〈expression〉 ::= ‘λ’ 〈ident-pattern〉 ‘·’ 〈predicate〉 ‘|’ 〈expression〉
| ‘

⋃
’ 〈ident-list〉 ‘·’ 〈predicate〉 ‘|’ 〈expression〉

| ‘
⋃

’ 〈expression〉 ‘|’ 〈predicate〉
| ‘

⋂
’ 〈ident-list〉 ‘·’ 〈predicate〉 ‘|’ 〈expression〉

| ‘
⋂

’ 〈expression〉 ‘|’ 〈predicate〉
| 〈pair-expression〉

〈ident-pattern〉 ::= 〈ident-pattern〉 { ‘7→’ 〈ident-pattern〉 }
| ‘(’ 〈ident-pattern〉 ‘)’
| 〈ident〉

〈pair-expression〉 ::= 〈relation-set-expr〉 { ‘7→’ 〈relation-set-expr〉 }

〈relation-set-expr〉 ::= 〈set-expr〉 { 〈relational-set-op〉 〈set-expr〉 }

〈relational-set-op〉 ::= ‘↔’ | ‘←↔’ | ‘↔→’ | ‘↔↔’
| ‘ 7→’ | ‘→’ | ‘ 7�’ | ‘�’ | ‘ 7�’ | ‘�’ | ‘��’

〈set-expr〉 ::= 〈interval-expr〉 { ‘∪’ 〈interval-expr〉 }
| 〈interval-expr〉 { ‘×’ 〈interval-expr〉 }
| 〈interval-expr〉 { ‘C−’ 〈interval-expr〉 }
| 〈interval-expr〉 { ‘◦’ 〈interval-expr〉 }
| 〈interval-expr〉 ‘‖’ 〈interval-expr〉
| [〈domain-modifier〉] 〈relation-expr〉

〈domain-modifier〉 ::= 〈interval-expr〉 (‘C’ | ‘C−’)

〈relation-expr〉 ::= 〈interval-expr〉 ‘⊗’ 〈interval-expr〉
| 〈interval-expr〉 { ‘;’ 〈interval-expr〉 }

[〈range-modifier〉]
| 〈interval-expr〉 { ‘∩’ 〈interval-expr〉 }

[‘\’ 〈interval-expr〉 | 〈range-modifier〉]

〈range-modifier〉 ::= (‘B’ | ‘B−’) 〈interval-expr〉

〈interval-expr〉 ::= 〈arithmetic-expr〉 [‘..’ 〈arithmetic-expr〉]

〈arithmetic-expr〉 ::= [‘−’] 〈term〉 { (‘+’ | ‘−’) 〈term〉 }

〈term〉 ::= 〈factor〉 { (‘∗’ | ‘÷’ | ‘mod’) 〈factor〉 }

〈factor〉 ::= 〈image〉 [‘̂’ 〈image〉]

〈image〉 ::= 〈primary〉 { ‘[’ 〈expression〉 ‘]’ | ‘(’ 〈expression〉 ‘)’ }

〈primary〉 ::= 〈simple-expr〉 { ‘−1’ }

19

〈simple-expr〉 ::= ‘bool’ ‘(’ 〈predicate〉 ‘)’
| 〈unary-op〉 ‘(’ 〈expression〉 ‘)’
| ‘(’ 〈expression〉 ‘)’
| ‘{’ 〈ident-list〉 ‘·’ 〈predicate〉 ‘|’ 〈expression〉 ‘}’
| ‘{’ 〈expression〉 ‘|’ 〈predicate〉 ‘}’
| ‘{’ [〈expression〉 { ‘,’ 〈expression〉 }] ‘}’
| ‘Z’ | ‘N’ | ‘N1’ | ‘BOOL’ | ‘TRUE’ | ‘FALSE’ | ‘∅’
| 〈ident〉
| 〈integer-literal〉

〈unary-op〉 ::= ‘card’ | ‘P’ | ‘P1’ | ‘union’ | ‘inter’ | ‘dom’ | ‘ran’ | ‘prj1’
| ‘prj2’ | ‘id’ | ‘min’ | ‘max’

20

4 Static Checking

This chapter describes how mathematical formulae (predicates and expressions)
are to be statically checked for being meaningful. We first describe an abstract
syntax for formulae. Then, we state the static checks that are to be done, based
on that abstract syntax:

• well-formedness,

• type-check.

4.1 Abstract Syntax

In this section, we specify an abstract syntax for mathematical formulae. This
abstract syntax is based on the concrete syntax described in Section 3.2.4 on
page 10 and Section 3.3.6 on page 18. The difference is that the abstract syntax
only conserves the essence of the concrete syntax. So, all concrete matter like
priorities and tokens do not appear anymore.

The abstract syntax is described using production rules. Each rule has its
own label. It is made of a left-hand part which denotes some kind of formula
(predicate, expression, identifier list, expression list) and a right hand part which
denotes a list of sub-formulae together with some attributes. To distinguish an
attribute from a sub-formulae, we enclose the former within square brackets.
Moreover, to make rules short, we use single letters, possibly subscripted, to
denote formulae: a P denotes a predicate, E an expression, L a list of identifiers,
I an identifier, M a list of expressions, and Q a pattern for lambda abstraction.

The production rules for predicates are:

pred-bin: P ::= P1 P2 [pred-binop]
pred-una: P ::= P1

pred-quant: P ::= L1 P1 [pred-quant]
pred-lit: P ::= [pred-lit]

pred-simp: P ::= E1

pred-rel: P ::= E1 E2 [pred-relop]

where

pred-binop ∈ {land, lor, limp, leqv}
pred-quant ∈ {forall, exists}
pred-lit ∈ {btrue,bfalse}

pred-relop ∈
{

equal,notequal, lt, le, gt, ge,
in,notin, subset,notsubset, subseteq,notsubseteq

}
.

21

The production rules for lists of identifiers and identifiers are:

ident-list: L ::= I1 I2 . . . In

ident: I ::= [name]

where
1 ≤ n
name is a string of characters.

The production rules for expressions are:

expr-bin: E ::= E1 E2 [expr-binop]
expr-una: E ::= E1 [expr-unop]

expr-lambda: E ::= Q1 P1 E1

expr-quant1: E ::= L1 P1 E1 [expr-quant]
expr-quant2: E ::= E1 P1 [expr-quant]

expr-bool: E ::= P1

expr-eset: E ::= M1

expr-ident: E ::= I1

expr-atom: E ::= [expr-lit]
expr-int: E ::= [int-lit]

pattern: Q ::= Q1 Q2

pattern-ident: Q ::= I1

expr-list: M ::= E1 E2 . . . En

where

expr-binop ∈



funimage, relimage,mapsto,
rel, trel, srel, strel,
pfun, tfun,pinj, tinj,psur, tsur, tbij,
bunion,binter, setminus, cprod,dprod,pprod,
bcomp, fcomp, ovl,domres,domsub, ranres, ransub,
upto,plus,minus,mul,div,mod, expn


expr-unop ∈

{
uminus, converse, card,pow,pow1,
union, inter,dom, ran,prj1,prj2, id,min,max

}
expr-quant ∈ {qunion, qinter, cset}
expr-lit ∈ {integer,natural,natural1,bool, true, false, emptyset}
int-lit is an integer number.

4.2 Well-formedness

Each occurrence of an identifier in a formula (that is a predicate or an expres-
sion) can be either free or bound. Intuitively, a free occurrence of an identifier
refers to a declaration of that identifier in a scope outside of the formula, while a
bound occurrence corresponds to a local declaration introduced by a quantifier
in the formula itself.

For a formula to be considered well-formed, we ask that, beyond being syn-
tactically correct, it also satisfies the two following conditions:

1. Any identifier that occurs in the formula, should have only free occurrences
or bound occurrences, but not both.

22

2. Any identifier that occurs bound in the formula, should be bound in ex-
actly one place (i.e., by only one quantifier).

These conditions have been coined so that any occurrence of an identifier in
a formula always denotes exactly the same data. This is a big win in formula
legibility.

For instance, the following formula is ill-formed (it doesn’t satisfy the first
condition)

(λx·x ∈ Z | x + 1) (x) = x + 1

it should be written

(λy ·y ∈ Z | y + 1) (x) = x + 1 .

And the following formula is also ill-formed (failing to satisfy the second
condition)

(λx·x ∈ Z | x + 1) = (λx·x ∈ Z | x + 1)

it should be written

(λx·x ∈ Z | x + 1) = (λy ·y ∈ Z | y + 1) .

The rest of this section formalizes these well-formedness conditions using an
attribute grammar formalism on the abstract syntax of formulae. For that, we
add three attributes to the nodes of the abstract syntax tree:

• Attribute bound is synthesized and contains the set of identifiers that occur
bound in the formula rooted at the current node.

• Attribute free is synthesized and contains the set of identifiers that occur
free in the formula rooted at the current node.

• Attribute wff is synthesized and contains a boolean value which is TRUE
if and only if the formula rooted at the current node is well-formed.

The value of these three attributes are given by the following set of equations
on the production rules of the abstract syntax:

pred-bin: P ::= P1 P2 [pred-binop]
P.bound = P1.bound ∪ P2.bound

P.free = P1.free ∪ P2.free

P.wff = bool


P1.wff = TRUE

∧ P2.wff = TRUE
∧ P1.free ∩ P2.bound = ∅
∧ P1.bound ∩ P2.free = ∅
∧ P1.bound ∩ P2.bound = ∅


pred-una: P ::= P1

P.bound = P1.bound
P.free = P1.free
P.wff = P1.wff

23

pred-quant: P ::= L1 P1 [pred-quant]
P.bound = P1.bound ∪ L1.free

P.free = P1.free \ L1.free

P.wff = bool

 L1.wff = TRUE
∧ P1.wff = TRUE
∧ P1.bound ∩ L1.free = ∅


pred-lit: P ::= [pred-lit]

P.bound = ∅
P.free = ∅
P.wff = TRUE

pred-simp: P ::= E1

P.bound = E1.bound
P.free = E1.free
P.wff = E1.wff

pred-rel: P ::= E1 E2 [pred-relop]
P.bound = E1.bound ∪ E2.bound

P.free = E1.free ∪ E2.free

P.wff = bool


E1.wff = TRUE

∧ E2.wff = TRUE
∧ E1.free ∩ E2.bound = ∅
∧ E1.bound ∩ E2.free = ∅
∧ E1.bound ∩ E2.bound = ∅


ident-list: L ::= I1 I2 . . . In

L.bound = ∅
L.free = {k ·k ∈ 1 .. n | Ik.name}
L.wff = bool(∀i, j ·i ∈ 1 .. n ∧ j ∈ 1 .. n ∧ i 6= j⇒ Ii.name 6= Ij .name)

expr-bin: E ::= E1 E2 [expr-binop]
E.bound = E1.bound ∪ E2.bound

E.free = E1.free ∪ E2.free

E.wff = bool


E1.wff = TRUE

∧ E2.wff = TRUE
∧ E1.free ∩ E2.bound = ∅
∧ E1.bound ∩ E2.free = ∅
∧ E1.bound ∩ E2.bound = ∅


expr-una: E ::= E1 [expr-unop]

E.bound = E1.bound
E.free = E1.free
E.wff = E1.wff

expr-lambda: E ::= Q1 P1 E1

24

E.bound = P1.bound ∪ E1.bound ∪ Q1.free
E.free = (P1.free ∪ E1.free) \Q1.free

E.wff = bool



Q1.wff = TRUE
∧ P1.wff = TRUE
∧ E1.wff = TRUE
∧ P1.free ∩ E1.bound = ∅
∧ P1.bound ∩ E1.free = ∅
∧ P1.bound ∩ E1.bound = ∅
∧ P1.bound ∩ Q1.free = ∅
∧ E1.bound ∩ Q1.free = ∅


expr-quant1: E ::= L1 P1 E1 [expr-quant]

E.bound = P1.bound ∪ E1.bound ∪ L1.free
E.free = (P1.free ∪ E1.free) \ L1.free

E.wff = bool



L1.wff = TRUE
∧ P1.wff = TRUE
∧ E1.wff = TRUE
∧ P1.free ∩ E1.bound = ∅
∧ P1.bound ∩ E1.free = ∅
∧ P1.bound ∩ E1.bound = ∅
∧ P1.bound ∩ L1.free = ∅
∧ E1.bound ∩ L1.free = ∅


expr-quant2: E ::= E1 P1 [expr-quant]

E.bound = P1.bound ∪ E1.bound ∪ E1.free
E.free = P1.free \ E1.free

E.wff = bool


E1.wff = TRUE

∧ P1.wff = TRUE
∧ P1.bound ∩ E1.bound = ∅
∧ P1.bound ∩ E1.free = ∅


expr-bool: E ::= P1

E.bound = P1.bound
E.free = P1.free
E.wff = P1.wff

expr-eset: E ::= M
E.bound = M.bound

E.free = M.free
E.wff = M.wff

expr-ident: E ::= I1

E.bound = ∅
E.free = {I1.name}
E.wff = TRUE

expr-atom: E ::= [expr-lit]
E.bound = ∅

E.free = ∅
E.wff = TRUE

25

expr-int: E ::= [int-lit]
E.bound = ∅

E.free = ∅
E.wff = TRUE

pattern: Q ::= Q1 Q2

Q.bound = ∅
Q.free = Q1.free ∪ Q2.free
Q.wff = TRUE

pattern-ident: Q ::= I1

Q.bound = ∅
Q.free = {I1.name}
Q.wff = TRUE

expr-list: M ::= E1 E2 . . . En

M.bound = (
⋃

k ·k ∈ 1 .. n | Ek.bound)
M.free = (

⋃
k ·k ∈ 1 .. n | Ek.free)

M.wff = bool


(∀k ·k ∈ 1 .. n⇒ Ek.wff = TRUE)

∧
(
∀i, j ·i ∈ 1 .. n ∧ j ∈ 1 .. n ∧ i 6= j
⇒Ei.bound ∩ Ej .bound = ∅

)
∧

(
∀i, j ·i ∈ 1 .. n ∧ j ∈ 1 .. n ∧ i 6= j
⇒Ei.bound ∩ Ej .free = ∅

)


4.3 Type Checking

Type checking consists of checking, statically, that a formula is meaningful in
a certain context. For that, we associate a type with each expression that
occurs in a formula. This type is the set of all values that the expression can
take. Then, we check that the formula abides by some type checking rules.
Those rules enforce that the operators used can be meaningful. Unfortunately,
type checking, as it is a static check, cannot by itself prove that a formula is
meaningful. For some operators, like integer division, we will also need to check
some additional dynamic constraints (e.g., that the denominator is not zero).
This will be specified in the well-definedness dynamic checks (see chapter 5 on
page 40).

The result of type checking is twofold. Firstly, it says whether a given
formula is well-typed (that is abides by the type checking rules). Secondly,
it computes an enriched context that associates a type with every identifier
occurring free in the formula.

In the sequel of this section, we shall first specify more formally concepts such
as type, type variable, typing environment and typing equation. Then, we shall
specify type checking using an attribute grammar formalism as was done for
well-formedness. Finally, we give some illustrating examples of type-checking.

4.3.1 Typing Concepts

As said previously, a type denotes the set of values that an expression can take.
Moreover, we want this set to be derived statically, based on the form of the

26

expression and the context in which it appears. As a consequence, a type can
take one of the three following forms:

• a basic set, that is a predefined set (Z or BOOL) or a carrier set provided
by the user (i.e., an identifier);

• a power set of another type, such as P(Z);

• a cartesian product of two types, such as Z× BOOL.

A type variable is a meta-variable that can denote any type. In the sequel,
we shall use lowercase Greek letters (α, β, γ, . . .) to denote type variables.

A typing environment represents the context in which a formula is to be
type checked. A typing environment is a partial function from the set of all
identifiers to the set of all possible types. For instance, the typing environment

{‘a’ 7→ Z, ‘b’ 7→ P(Z× BOOL), ‘c’ 7→ α}

says that identifier ‘a’ has type Z, identifier ‘b’ has type P(Z × BOOL) (i.e.,
is a relation between integers and booleans) and identifier ‘c’ is typed by type
variable α.

If an identifier i has been defined as a carrier set, then it will appear in the
typing environment as the pair i 7→ P(i).

A typing equation is a pair of types. In the sequel, we will write typing
equations as τ1 ≡ τ2, instead of the more classical pair τ1 7→ τ2. This is mere
syntactical sugar to enhance legibility.

A typing equation is said to be satisfiable if, and only if, there exists an
assignment to the type variables it contains such that, when replacing these
type variables by their value, the two components of the pair are equal (i.e.,
denote the same type). For instance, typing equation α × BOOL ≡ Z × β is
satisfiable (take Z for α and BOOL for β). In contrast, type equation P(α) ≡ Z
and Z ≡ ‘S’ are unsatisfiable (in the last sentence, remember that ‘S’ denotes a
carrier set).

Similarly, a typing equation is said to be uniquely satisfiable if, and only if,
there exists a unique assignment of type variables that satisfies it. For instance,
α ≡ Z is uniquely satisfiable (the only assignment that satisfies it is to take
Z for α), while the type equation α ≡ β, although satisfiable, is not uniquely
satisfiable (to satisfy it, we only need that α and β are assigned the same type,
but that type is arbitrary).

These two notions of satisfiability are extended to sets of type equations,
with the additional proviso, that the satisfying assignment of type variables
is done globally for all type equations in the set. For instance, the set {α ≡
Z, β ≡ BOOL} is (uniquely) satisfiable, while the set {α ≡ Z, α ≡ BOOL} is
not satisfiable, although each equation, taken separately, is satisfiable.

4.3.2 Specification of Type Check

The abstract grammar of expressions is extended with the following attributes:

• Attribute ityvars (resp. styvars) is inherited (resp. synthesized) and con-
tains the set of type variables that have been used so far.

27

• Attribute ityenv (resp. styenv) is inherited (resp. synthesized) and con-
tains the current typing environment.

• Attribute ityeqs (resp. styeqs) is inherited (resp. synthesized) and contains
the set of typing equations that have been collected so far.

• Attribute type is synthesized and contains a type.

These attributes are added to all non-terminals, except type which is not
defined for predicates (there is no type associated with a predicate) nor list of
identifiers.

Type checking then consists of initializing the attribute grammar by giving
values to inherited attributes of the root R of the tree and then evaluating
the attribute grammar. Type check succeeds iff, after evaluation, the set of
typing equations R.styeqs is uniquely satisfiable. Moreover, in case of success,
the resulting typing environment is R.styenv, where all type variables have been
replaced by the values that satisfy the latter set of typing equations.

Initialization of the attribute grammar consists of the following three equa-
tions (where R denotes the root of the tree):

R.ityvars = ∅
R.ityenv = initial typing environment
R.ityeqs = ∅

Please note that the initial typing environment must not contain any type
variable.

The rest of this section describes the equations for each production rule of
the attribute grammar. In some places, we use a shortcut to denote some set of
equations. The notation

A.inherited = B.synthesized

means
A.ityvars = B.styvars
A.ityenv = B.styenv
A.ityeqs = B.styeqs

We also use the term fresh type variable to denote a type variable which
doesn’t occur in attribute ityvars of the left hand side of a production rule. For
instance, in the equations of production rule pred-rel, α denotes a type variable
such that α /∈ P.ityvars.

The set of equations of the attribute grammar is:

pred-bin: P ::= P1 P2 [pred-binop]
P1.inherited = P.inherited
P2.inherited = P1.synthesized

P.synthesized = P2.synthesized

pred-una: P ::= P1

P1.inherited = P.inherited
P.synthesized = P1.synthesized

28

pred-quant: P ::= L1 P1 [pred-quant]
L1.inherited = P.inherited
P1.inherited = L1.synthesized

P.synthesized = P1.synthesized

pred-lit: P ::= [pred-lit]
P.synthesized = P.inherited

pred-simp: P ::= E1

Let α be a fresh type variable in
E1.ityvars = P.ityvars ∪ {α}
E1.ityenv = P.ityenv
E1.ityeqs = P.ityeqs
P.styvars = E1.styvars
P.styenv = E1.styenv
P.styeqs = E1.styeqs ∪ {E1.type ≡ P(α)}

pred-rel: P ::= E1 E2 [pred-relop]
Let α be a fresh type variable in

E1.ityvars = P.ityvars ∪ {α}
E1.ityenv = P.ityenv
E1.ityeqs = P.ityeqs

E2.inherited = E1.synthesized
P.styvars = E2.styvars
P.styenv = E2.styenv
P.styeqs = E2.styeqs ∪ E

where E is defined in the following table.

P.pred-relop E

equal, notequal

{
E1.type ≡ α
E2.type ≡ α

}
lt, le, gt, ge

{
E1.type ≡ Z
E2.type ≡ Z

}
in, notin

{
E1.type ≡ α
E2.type ≡ P(α)

}
subset, notsubset,

subseteq, notsubseteq

{
E1.type ≡ P(α)
E2.type ≡ P(α)

}

ident-list: L ::= I1 I2 . . . In

I1.inherited = L.inherited
I2.inherited = I1.synthesized

...
In.inherited = In−1.synthesized

L.synthesized = In.synthesized

29

ident: I ::= [name]
if I.name ∈ dom(I.ityenv) then

I.synthesized = I.inherited
I.type = I.ityenv(I.name)

else let α be a fresh type variable in
I.styvars = I.ityvars ∪ {α}
I.styenv = I.ityenv ∪ {I.name 7→ α}
I.styeqs = I.ityeqs

I.type = α

expr-bin: E ::= E1 E2 [expr-binop]
Let α, β, γ and δ be distinct fresh type variables in

E1.ityvars = E.ityvars ∪ {α, β, γ, δ}
E1.ityenv = E.ityenv
E1.ityeqs = E.ityeqs

E2.inherited = E1.synthesized
E.styvars = E2.styvars
E.styenv = E2.styenv
E.styeqs = E2.styeqs ∪ E

E.type = τ
where E and τ are defined in Table 4.1 on the next page.

expr-una: E ::= E1 [expr-unop]
Let α and β be distinct fresh type variables in

E1.ityvars = E.ityvars ∪ {α, β}
E1.ityenv = E.ityenv
E1.ityeqs = E.ityeqs
E.styvars = E1.styvars
E.styenv = E1.styenv
E.styeqs = E1.styeqs ∪ E

E.type = τ
where E and τ are defined in Table 4.2 on page 32.

expr-lambda: E ::= Q1 P1 E1

Q1.inherited = E.inherited
P1.inherited = Q1.synthesized
E1.inherited = P1.synthesized

E.synthesized = E1.synthesized
E.type = P(Q1.type× E1.type)

30

E.expr-binop E τ

funimage

{
E1.type ≡ P(α× β)
E2.type ≡ α

}
β

relimage

{
E1.type ≡ P(α× β)
E2.type ≡ P(α)

}
P(β)

mapsto ∅ E1.type× E2.type

rel, trel, srel, strel, pfun,
tfun, pinj, tinj, psur, tsur,

tbij

{
E1.type ≡ P(α)
E2.type ≡ P(β)

}
P(P(α× β))

bunion, binter, setminus

{
E1.type ≡ P(α)
E2.type ≡ P(α)

}
P(α)

cprod

{
E1.type ≡ P(α)
E2.type ≡ P(β)

}
P(α× β)

dprod

{
E1.type ≡ P(α× β)
E2.type ≡ P(α× γ)

}
P(α× (β × γ))

pprod

{
E1.type ≡ P(α× γ)
E2.type ≡ P(β × δ)

}
P((α× β)× (γ × δ))

bcomp

{
E1.type ≡ P(β × γ)
E2.type ≡ P(α× β)

}
P(α× γ)

fcomp

{
E1.type ≡ P(α× β)
E2.type ≡ P(β × γ)

}
P(α× γ)

ovl

{
E1.type ≡ P(α× β)
E2.type ≡ P(α× β)

}
P(α× β)

domres, domsub

{
E1.type ≡ P(α)
E2.type ≡ P(α× β)

}
P(α× β)

ranres, ransub

{
E1.type ≡ P(α× β)
E2.type ≡ P(β)

}
P(α× β)

upto

{
E1.type ≡ Z
E2.type ≡ Z

}
P(Z)

plus, minus, mul, div,
mod, expn

{
E1.type ≡ Z
E2.type ≡ Z

}
Z

Table 4.1: Typing equations and resulting type for binary expressions.

31

E.expr-unop E τ

uminus
{

E1.type ≡ Z
}

Z

converse
{

E1.type ≡ P(α× β)
}

P(β × α)

card
{

E1.type ≡ P(α)
}

Z

pow, pow1
{

E1.type ≡ P(α)
}

P(P(α))

union, inter
{

E1.type ≡ P(P(α))
}

P(α)

dom
{

E1.type ≡ P(α× β)
}

P(α)

ran
{

E1.type ≡ P(α× β)
}

P(β)

prj1
{

E1.type ≡ P(α× β)
}

P(α× β × α)

prj2
{

E1.type ≡ P(α× β)
}

P(α× β × β)

id
{

E1.type ≡ P(α)
}

P(α× α)

min, max
{

E1.type ≡ P(Z)
}

Z

Table 4.2: Typing equations and resulting type for unary expressions.

32

expr-quant1: E ::= L1 P1 E1 [expr-quant]
Let α be a fresh type variable in

L1.ityvars = E.ityvars ∪ {α}
L1.ityenv = E.ityenv
L1.ityeqs = E.ityeqs

P1.inherited = L1.synthesized
E1.inherited = P1.synthesized

E.styvars = E1.styvars
E.styenv = E1.styenv
E.styeqs = E1.styeqs ∪ E

E.type = τ
where E and τ are defined in the following table.

E.expr-quant E τ

qunion, qinter
{

E1.type ≡ P(α)
}

P(α)

cset ∅ P(E1.type)

expr-quant2: E ::= E1 P1 [expr-quant]
Let α be a fresh type variable in

E1.ityvars = E.ityvars ∪ {α}
E1.ityenv = E.ityenv
E1.ityeqs = E.ityeqs

P1.inherited = E1.synthesized
E.styvars = P1.styvars
E.styenv = P1.styenv
E.styeqs = P1.styeqs ∪ E

E.type = τ
where E and τ are defined in the following table.

E.expr-quant E τ

qunion, qinter
{

E1.type ≡ P(α)
}

P(α)

cset ∅ P(E1.type)

expr-bool: E ::= P1

P1.inherited = E.inherited
E.synthesized = P1.synthesized

E.type = BOOL

expr-eset: E ::= M
M.inherited = E.inherited

E.synthesized = M.synthesized
E.type = P(M.type)

33

expr-ident: E ::= I1

I1.inherited = E.inherited
E.synthesized = I1.synthesized

E.type = I1.type

expr-atom: E ::= [expr-lit]
Let α be a fresh type variable in

E.styvars = E.ityvars ∪ {α}
E.styenv = E.ityenv
E.styeqs = E.ityeqs

E.type = τ
where τ is defined in the following table.

E.expr-lit τ

integer, natural, natural1 P(Z)

bool P(BOOL)

true, false BOOL

emptyset P(α)

expr-int: E ::= [int-lit]
E.synthesized = E.inherited

E.type = Z

pattern: Q ::= Q1 Q2

Q1.inherited = Q.inherited
Q2.inherited = Q1.synthesized

Q.synthesized = Q2.synthesized
Q.type = Q1.type×Q2.type

pattern-ident: Q ::= I1

I1.inherited = Q.inherited
Q.synthesized = I1.synthesized

Q.type = I1.type

34

expr-list: M ::= E1 E2 . . . En

E1.inherited = M.inherited
E2.inherited = E1.synthesized

...
En.inherited = En−1.synthesized

M.styvars = En.ityvars
M.styenv = En.ityenv

M.styeqs = En.ityeqs ∪


E1.type ≡ E2.type
E2.type ≡ E3.type

...
En−1.type ≡ En.type


M.type = En.type

4.3.3 Examples

In this subsection, we present a few examples of the type-checking algorithm in
action on various formulae.

Formula x ∈ Z ∧ 1 ≤ x. Figure 4.1 shows the dataflow for the type-checking
of this formula. Each step of the type-checking algorithm is shown as a circled
number, with edges relating them. The numbers appearing on the left of a node
corresponds to the computation of inherited attributes, numbers on the right to
the computation of synthesized attributes.

pred-bin
[land]

pred-rel
[in]

expr-ident

ident
[x]

expr-lit
[integer]

pred-rel
[le]

expr-int
[1]

expr-ident

ident
[x]

1

2

3

4 5

6 7 8

9 10

11 12 13

14 15

16

17

18

Figure 4.1: Type-check of formula x ∈ Z ∧ 1 ≤ x.

Assuming that the typing environment is initially empty, the initial compu-
tation at step 1 is:

1:

∣∣∣∣∣∣
ityvars = ∅
ityenv = ∅
ityeqs = ∅

35

Then, we process down the tree, adding a type variable at the ∈ operator:

2:

∣∣∣∣∣∣
ityvars = ∅
ityenv = ∅
ityeqs = ∅

3, 4:

∣∣∣∣∣∣
ityvars = {α}
ityenv = ∅
ityeqs = ∅

Examining the first occurrence of variable x, we find that it is not present in
the environment, so we create a new type variable for it. This is then propagated
in the tree:

5, 6:

∣∣∣∣∣∣∣∣
styvars = {α, β}
styenv = {x 7→ β}
styeqs = ∅
type = β

7:

∣∣∣∣∣∣
ityvars = {α, β}
ityenv = {x 7→ β}
ityeqs = ∅

8:

∣∣∣∣∣∣∣∣
styvars = {α, β}
styenv = {x 7→ β}
styeqs = ∅
type = P(Z)

We now reach the ∈ operator again, where we add our first type equations
and propagate the attribute values:

9:

∣∣∣∣∣∣∣∣
styvars = {α, β}
styenv = {x 7→ β}

styeqs =
{

β ≡ α,
P(Z) ≡ P(α)

} 10, 11:

∣∣∣∣∣∣∣∣
ityvars = {α, β, γ}
ityenv = {x 7→ β}

ityeqs =
{

β ≡ α,
P(Z) ≡ P(α)

}
Continuing our traversal of the tree, we get:

12:

∣∣∣∣∣∣∣∣∣∣
styvars = {α, β, γ}
styenv = {x 7→ β}

styeqs =
{

β ≡ α,
P(Z) ≡ P(α)

}
type = Z

13, 14:

∣∣∣∣∣∣∣∣
ityvars = {α, β, γ}
ityenv = {x 7→ β}

ityeqs =
{

β ≡ α,
P(Z) ≡ P(α)

}

We now reach the second occurrence of variable x and, now, it is present in
the typing environment, so we just read its type from there, and propagate it:

15, 16:

∣∣∣∣∣∣∣∣∣∣
styvars = {α, β, γ}
styenv = {x 7→ β}

styeqs =
{

β ≡ α,
P(Z) ≡ P(α)

}
type = β

Reaching operator ≤, we add two new typing equations and propagate them
to the root:

17, 18:

∣∣∣∣∣∣∣∣∣∣∣∣

styvars = {α, β, γ}
styenv = {x 7→ β}

styeqs =


β ≡ α,
P(Z) ≡ P(α)
Z ≡ Z
β ≡ Z


In the end, we obtain a system of four typing equations with two type vari-

ables. This system is uniquely satisfiable by taking α = Z and β = Z. Hence,
the formula type checks. Moreover, its resulting typing environment is {x 7→ Z}.

36

pred-rel
[equal]

expr-lit
[emptyset]

expr-lit
[emptyset]

1

2 3 4 5

6

Figure 4.2: Type-check of formula ∅ = ∅.

Formula ∅ = ∅. The type-checking dataflow for this formula is given in
Figure 4.2.

The attribute values computed by the algorithm are (supposing that the
initial typing environment is empty):

1:

∣∣∣∣∣∣
ityvars = ∅
ityenv = ∅
ityeqs = ∅

2:

∣∣∣∣∣∣
ityvars = {α}
ityenv = ∅
ityeqs = ∅

3:

∣∣∣∣∣∣∣∣
styvars = {α, β}
styenv = ∅
styeqs = ∅
type = β

4:

∣∣∣∣∣∣
ityvars = {α, β}
ityenv = ∅
ityeqs = ∅

5:

∣∣∣∣∣∣∣∣
styvars = {α, β, γ}
styenv = ∅
styeqs = ∅
type = γ

6:

∣∣∣∣∣∣∣∣
styvars = {α, β, γ}
styenv = ∅

styeqs =
{

β ≡ α,
γ ≡ α

}
In the end, we obtain a system of two typing equations with three typing

variables. This system is satisfiable, but not uniquely. Hence formula ∅ = ∅
does not type-check.

Formula x ⊆ S ∧ ∅ ⊂ x. The type-checking dataflow for this formula is
given in Figure 4.3.

pred-bin
[land]

pred-rel
[subseteq]

expr-ident

ident
[x]

expr-ident

ident
[S]

pred-rel
[subset]

expr-int
[emptyset]

expr-ident

ident
[x]

1

2

3

4 5

6 7

8 9

10

11 12

13 14 15

16 17

18

19

20

Figure 4.3: Type-check of formula x ⊆ S ∧ ∅ ⊂ x.

Here, we assume that variable S denotes a given set. Thus, our initial
typing environment is {S 7→ P(S)}. The attribute values computed by the

37

type-checking algorithm are:

1, 2:

∣∣∣∣∣∣
ityvars = ∅
ityenv = {S 7→ P(S)}
ityeqs = ∅

3, 4:

∣∣∣∣∣∣
ityvars = {α}
ityenv = {S 7→ P(S)}
ityeqs = ∅

5, 6:

∣∣∣∣∣∣∣∣∣∣
styvars = {α, β}

styenv =
{

S 7→ P(S),
x 7→ β

}
styeqs = ∅
type = β

7, 8:

∣∣∣∣∣∣∣∣
ityvars = {α, β}

ityenv =
{

S 7→ P(S),
x 7→ β

}
ityeqs = ∅

9, 10:

∣∣∣∣∣∣∣∣∣∣
styvars = {α, β}

styenv =
{

S 7→ P(S),
x 7→ β

}
styeqs = ∅
type = P(S)

11:

∣∣∣∣∣∣∣∣∣∣
styvars = {α, β}

styenv =
{

S 7→ P(S),
x 7→ β

}
styeqs =

{
β ≡ P(α),
P(S) ≡ P(α)

}

12:

∣∣∣∣∣∣∣∣∣∣
ityvars = {α, β}

ityenv =
{

S 7→ P(S),
x 7→ β

}
ityeqs =

{
β ≡ P(α),
P(S) ≡ P(α)

} 13:

∣∣∣∣∣∣∣∣∣∣
ityvars = {α, β, γ}

ityenv =
{

S 7→ P(S),
x 7→ β

}
ityeqs =

{
β ≡ P(α),
P(S) ≡ P(α)

}

14:

∣∣∣∣∣∣∣∣∣∣∣∣

styvars = {α, β, γ, δ}

styenv =
{

S 7→ P(S),
x 7→ β

}
styeqs =

{
β ≡ P(α),
P(S) ≡ P(α)

}
type = P(δ)

15, 16:

∣∣∣∣∣∣∣∣∣∣
ityvars = {α, β, γ, δ}

ityenv =
{

S 7→ P(S),
x 7→ β

}
ityeqs =

{
β ≡ P(α),
P(S) ≡ P(α)

}

17, 18:

∣∣∣∣∣∣∣∣∣∣∣∣

styvars = {α, β, γ, δ}

styenv =
{

S 7→ P(S),
x 7→ β

}
styeqs =

{
β ≡ P(α),
P(S) ≡ P(α)

}
type = β

19, 20:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

styvars = {α, β, γ, δ}

styenv =
{

S 7→ P(S),
x 7→ β

}

styeqs =


β ≡ P(α),
P(S) ≡ P(α),
P(δ) ≡ P(γ),
β ≡ P(γ)


In the end, we obtain a system of four typing equations with four typing

variables. This system is uniquely satisfiable taking α = γ = δ = S and
β = P(S). Hence formula x ⊆ S ∧ ∅ ⊂ x type-checks and the resulting typing
environment is {S 7→ P(S), x 7→ P(S)}.

Formula x = TRUE. The type-checking dataflow for this formula is given in
Figure 4.4 on the following page.

Assuming that initially x denotes an integer (non empty initial typing envi-
ronment), we obtain the following values for attributes:

1:

∣∣∣∣∣∣
ityvars = ∅
ityenv = {x 7→ Z}
ityeqs = ∅

2, 3:

∣∣∣∣∣∣
ityvars = {α}
ityenv = {x 7→ Z}
ityeqs = ∅

38

pred-rel
[equal]

expr-ident

ident
[x]

expr-lit
[true]

1

2

3 4

5 6 7

8

Figure 4.4: Type-check of formula x = TRUE.

4, 5:

∣∣∣∣∣∣∣∣
styvars = {α}
styenv = {x 7→ Z}
styeqs = ∅
type = Z

6:

∣∣∣∣∣∣
ityvars = {α}
ityenv = {x 7→ Z}
ityeqs = ∅

7:

∣∣∣∣∣∣∣∣
styvars = {α}
styenv = {x 7→ Z}
styeqs = ∅
type = BOOL

8:

∣∣∣∣∣∣∣∣
styvars = {α}
styenv = {x 7→ Z}

styeqs =
{

Z ≡ α
BOOL ≡ α

}
In the end, we obtain a system of two typing equations with one typing

variable. This system is not satisfiable, therefore the formula does not type-
check (remember that we initially assumed that variable x denotes an integer).
If the initial typing environment would have been empty, then the formula would
type-check.

39

5 Dynamic Checking

Static checks are not enough to ensure that a formula is meaningful. For in-
stance, expression x÷y passes all the static checks described above, nevertheless
it is meaningless if y is zero. The aim of dynamic checking [2, 3] is to detect these
kind of meaningless formulas. This is done by generating (and then proving)
some well-definedness lemma.

The rest of this chapter specifies how to produce these well-definedness lem-
mas. This is done by specifying a WD operator that takes a formula as argument
and the result of which is the well-definedness lemma of that formula.

5.1 Predicate Well-Definedness

Table 5.1 on the next page specifies the WD operator for predicates. In that
table, letters P and Q denote arbitrary predicates, letters E and F denote
expressions, and letter L denotes a list of identifiers.

5.2 Expression Well-Definedness

Tables 5.2 on page 42 and 5.3 on page 43 specify the WD operator for expres-
sions. In these tables, letter P denotes an arbitrary predicate, letters E and F
denote expressions, letter Q denotes a lambda pattern, letter L denotes a list
of identifiers, letter I denotes an identifier, letter n denotes a literal integer.
We also denote by FE the list of the free variables that appear in expression E
(that is E.free) and by FQ the list of the free variables that appear in pattern
Q. Finally, letter x denotes a fresh variable (that is a variable that does not
occur free in the formula for which we compute the well-definedness lemma).

40

Predicate WD Lemma

P ∧Q P ⇒Q WD(P) ∧ (P ⇒WD(Q))

P ∨Q WD(P) ∧ (P ∨WD(Q))

P ⇔Q WD(P) ∧WD(Q)

¬P WD(P)

∀L·P ∃L·P ∀L·WD(P)

> ⊥ >

finite(E) WD(E)

E = F E 6= F
E ∈ F E /∈ F
E ⊂ F E 6⊂ F
E ⊆ F E 6⊆ F

WD(E) ∧WD(F)

Table 5.1: WD lemmas for predicates.

41

Expression WD Lemma

F (E)
WD(F) ∧WD(E) ∧ E ∈ dom(F)
∧ F−1; ({E}C F) ⊆ id(ran(F))

E[F] E 7→ F
E↔ F E←↔ F
E↔→ F E↔↔ F
E 7→ F E→ F
E 7� F E � F
E 7� F E � F
E �� F E ∪ F
E ∩ F E \ F
E × F E ⊗ F
E ‖ F E ◦ F
E ; F E C− F
E C F E C− F
E B F E B− F
E .. F E + F
E − F E ∗ F

WD(E) ∧WD(F)

E ÷ F E mod F WD(E) ∧WD(F) ∧ F 6= 0

E ̂ F WD(E) ∧ 0 ≤ E ∧WD(F) ∧ 0 ≤ F

−E E−1

P(E) P1(E)
dom(E) ran(E)
prj1(E) prj2(E)
id(E) union(E)

WD(E)

card(E) WD(E) ∧ finite(E)

inter(E) WD(E) ∧ E 6= ∅

min(E) WD(E) ∧ E 6= ∅ ∧ (∃b·∀x·x ∈ E⇒ b ≤ x)

max(E) WD(E) ∧ E 6= ∅ ∧ (∃b·∀x·x ∈ E⇒ x ≤ b)

Table 5.2: WD lemmas for binary and unary expressions.

42

Expression WD Lemma

λQ · P | E ∀FQ · WD(P) ∧ (P ⇒WD(E))

⋃
L · P | E
{L · P | E} ∀L · WD(P) ∧ (P ⇒WD(E))

⋃
E | P
{E | P} ∀FE · WD(P) ∧ (P ⇒WD(E))

⋂
L · P | E (∀L · WD(P) ∧ (P ⇒WD(E)))

∧ (∃L · P)

⋂
E | P (∀FE · WD(P) ∧ (P ⇒WD(E)))

∧ (∃FE · P)

bool(P) WD(P)

{E1, E2, . . . , En} WD(E1) ∧WD(E2) ∧ · · · ∧WD(En)

I Z
N N1

BOOL TRUE
FALSE ∅

n

>

Table 5.3: WD lemmas for other expressions.

43

Bibliography

[1] Abrial, J.-R. (1996). The B-Book. Assigning Programs to Meanings. Cam-
bridge University Press.

[2] Abrial, J.-R and Mussat, L. (2002). On Using Conditional Definitions in
Formal Theories. In D. Bert et al. (Eds), ZB2002: Formal Specification and
Development in Z and B, LNCS 2272, pp. 242–269, Springer-Verlag.

[3] Burdy, L. (2000). Traitement des expressions dépourvues de sens de la
théorie des ensembles. Application à la méthode B. Thèse de doctorat. Con-
servatoire National des Arts et Métiers.

[4] The Unicode Consortium (2003). The Unicode Standard 4.0. Addison-
Wesley.

44

	Introduction
	Language Lexicon
	Whitespace
	Identifiers
	Integer Literals
	Predicate symbols
	Expression symbols

	Language Syntax
	Notation
	Predicates
	A first attempt
	Associativity of operators
	Priority of operators
	Final syntax for predicates

	Expressions
	Some Fine Points
	A First Attempt
	Operator Groups
	Priority of Operator Groups
	Associativity of operators
	Final syntax for expressions

	Static Checking
	Abstract Syntax
	Well-formedness
	Type Checking
	Typing Concepts
	Specification of Type Check
	Examples

	Dynamic Checking
	Predicate Well-Definedness
	Expression Well-Definedness

