VIII. Development of Electronic Circuits (October 2008)

1 Introduction

In this chapter, a simple methodology supporting the progressive proved development of synchronous
electronic circuits is presented. A typical circuit is shown on figure 1

il

i2) p2 Dc

\ ol
L/

DC D__oz

Fig. 1. A Typical Circuit

This circuit is made of the following components: two input wires ¢1 and 2 carrying boolean values,
two output wires ol and o2 carrying boolean values, various gates (here three and-gates and two not-
gates), and a register p2 containing a boolean value. We would like to develop such circuits in a systematic
fashion.

1.1 Synchronous Circuits

A synchronous circuit is viewed as a box which has a certain state, let us call this state cir_state. Some
input lines are entering into the box, and some output lines are emerging out of it. Input and output lines
are supposed to carry boolean values.All this is indicated on figure 2.

input . output
cir_state

Fig. 2. A Circuit as a Box with some Input and Output Wires

As a sufficient abstraction, we can say that the circuit is synchronized by a clock, which pulses regularly
between two alternative positions, low and high, as indicated on figure 3.

high

low

Fig. 3. A Clock

This abstraction of the clock is interpreted in the following way: (1) when the clock is low, cir_state
and the output line are supposed to be idle, only the input line may change, and conversely (2) when
the clock is high, the input lines is supposed to stay idle whereas cir_state may be modified as well
as the output line. From now on, we consider that the circuit state cir_state and the output wire output
together form the circuit, whereas the input line constitutes its environment. Note that the environment
may also comprise a state, which we call env_state.

1.2 Coupling the Circuit with its Environment

With this view of circuit and environment in mind, the notion of clock can be made more abstract by
simply saying that it gives us two alternative ways of observing the closed system made of the circuit and
its environment.

We can thus consider that we have two modes of observation: one, env, corresponds to observing
the environment independently from the circuit, and another one, cir, consisting in observing the circuit
independently from the environment. Such modes alternate for ever. From now on, we shall follow that
view and forget about the clock. This has the consequence that we shall never develop a circuit in isolation,
but always together with its environment. Such a coupling is shown on figure 4.

environment circuit
- T —
input output
S env_state EE— cir_state

Fig. 4. A Circuit and its Environment

1.3 Dynamic View of the Coupling

Suppose cir_state is formalized by means of a number of boolean variables c. The various dynamic
evolutions of the circuit can be formalized by means of a number of events defined as follows:

cir_event i
when
mode = cir
GC_i(input, c)
then
mode = env
¢, output :| PC_i(input, ¢, ¢, output’)
end

Likewise, the environment is formalized by means of a number of variables e. The various dynamic
evolutions of the environment can be formalized by means of a number of events defined as follows:

env_event_j
when
mode = env
GE_j(output,e)
then
mode := cir
e,input :| PE_j(output, e, e’ input’)
end

As can be seen, there is an important distinction to be made between the way the ¢nput line and
environment variables e are modified when the mode is env, and the output line and circuit variables
¢ are modified when the mode is cir. The modification of the environment may follow some specific
rules but in no case is it influenced by the circuit variables (it may be influenced by the output however).
Conversely, the modification in the circuit may depend on the ¢nput line and on the circuit variables ¢ but
not on the environment variables e however.

Also notice that, in an abstract view of our circuit and environment, the status of the input and output
lines and of c and e are not necessarily represented by boolean values (which will probably be the case in
a refined implementation). For instance, in an abstract specification, variables e and ¢ can very well carry
the entire history of what has happened since the interaction between the circuit and its environment has
started.

1.4 Static View of the Coupling

So far we have only envisaged a very operational (although abstract) view of our circuit and environment:
we have just described how these entities behave dynamically while time is passing, but we have not
at all explained why they should behave like this. Another completely independent approach is one by
which a static view is presented by means of some conditions C' and D describing the way these entities
are permanently related to each others. These conditions express the way the circuit is coupled with its
environment.

mode = env = C(e, input, ¢, output)

mode = cir = D(e,input, c, output)

Condition C' states what the circuit should establish (for the environment) provided it behaves in a
situation where D holds. Conversely, condition D states what the environment should establish (for the
circuit) provided it behaves in a situation where C' holds.

1.5 Consistency Conditions

Nothing guarantees however that the dynamics envisaged above and the statics we have just described are
coherent: this is something that has to be proved rigorously. It can be stated as follows:

C'(e, input, ¢, output) D(e, input, c, output)
GE_j(output,e) GC_i(input, c)
PE_j(output,e, e input’) PC_i(input, ¢, ¢, output’)
= =

D(€,input’, ¢, output)) C(e,input, ¢, output’)

Informally, this means that when mode is env and the static condition C holds, then D must hold after
any accepted modifications ¢’ and input’ made by the environment. Likewise, when mode is cir and the
static condition D holds, then C' must hold after any accepted modifications ¢’ and output’ made by the
circuit.

1.6 A Warning

Note that this formulation corresponds to what we must obtain towards the end of a formal development
where there should exist a very clear distinction between the circuit and the environment. During the de-
velopment however, such a distinction is not necessarily as strict. For instance, we might allow for the
possibility of the environment to access the previous input and even to access the state of the circuit.
Likewise, we accept to have the circuit accessing its previous output and even the entire state of the
environment. What must still be clearly followed however, even in an abstraction, is the limitation of
modification: the environment modifies the input and its state only, whereas the circuit modifies its state
and the output only.

One of the objective of the design of a circuit is precisely that of making the circuit and environment
communicating eventually through the input and output lines only. For this, we have to localize their
respective states.

1.7 Final Construction of the Circuit

A final refinement situation is obtained when the following conditions hold:

the circuit variables must all be boolean,

the inputs must be boolean,

the outputs must be boolean,

the circuit must be deadlock free,

the circuit must be internally deterministic: this concerns circuit variables and outputs,
the circuit must be externally deterministic: circuit guards are mutually exclusive,

the environment does not access the circuit variables except the output

the circuit does not access the environment variables except the input.

NN R L

Note that the environment might be still externally as well as internally non-deterministic. As a result, a
circuit event has the following shape:

cir_event_i

when
mode = cir
GC_i(input, c)

then
mode := env
¢ := C_i(input, c)
output := O_i(input, c)

end

We are going to prove now that each circuit event can be refined in such a way that they all have the same
action on the circuit state and output. Here is one of these refinement:

cir_event _i
when
mode = cir
GC_i(input, c)
then
mode := env
Y
¢ := bool ((GC_i(input,c) A C_i(input,c) = TRUE) \/)

oV
output := bool ((GC_i(input, ¢) N O_i(input,c) = TRUE) \/>

end

Notice our usage of the operator "bool" transforming a predicate into a boolean expression. It is defined
by means of the following equivalence:

P = FE =TRUE
E =Dbool(P) & <—|P = E:FALSE>

The refinement proof is now straightforward. It amounts to proving the following concerning variable ¢
(the proof to be done concerning output is similar and thus not shown):

GC_i(input, ¢)
}_

ooV
C_i(input,c) = bool ((Gc_i(input,c) A C_i(input,c) = TRUE) \/)

According to the definition of operator bool this reduces to proving two statements. Here is the first of
them:

GC_i(input, c)

oV
<(GC_i(input, ¢) N C_i(input,c) = TRUE) \/)
C_i(input,c) = TRUE

Thanks to the mutual exclusion of the guards (that is GC_i(input, c) = - GC_j(input, c) when i # j),
this first statement reduces to the following which holds trivially:

GC_i(input, c)
C_i(input,c) = TRUE
l_

C_i(input,c¢) = TRUE

Here is now the second statement:

GC_i(input, c)
oV
- ((GC_i(input, ¢) N C_i(input,c) = TRUE) \/)
N
C_i(input,c) = FALSE

By applying de Morgan law to remove the external negation, this second statement is equivalent to the
following:

GC_i(input, c)
.—:.GC_Z'(input,c) Vv C_i(input,c) = FALSE

C_i(input, c) = FALSE

that is the following which holds trivially:
GC_i(input, c)
.C:';i(input, ¢) = FALSE

C_i(input, c) = FALSE

Since the circuit events are deadlock free (disjunction of guards holds under condition mode = cir) and
have identical actions, they can all be merged into a single event as follows:

cir_event
when
mode = cir
then
mode := env

ooV
¢ := bool (Gc_i(input, ¢) N C_i(input,c) = TRUE \/>

oV
output := bool (GC_i(input, ¢) N O_i(input,c) = TRUE \/)

end

Notice that when C;(input, c) is syntactically equal to TRUE then C;(input,c) = TRUE can be re-
moved, and when C;(input, c) is syntactically equal to FALSE then GC_i(input, c) A C;(input,c) =
TRUE can be removed. We have similar simplifications for O_i(input, ¢). This last event is our circuit.
From this, the circuit can be drawn in a systematic fashion.

1.8 A Very Small Illustrating Example

Suppose we end up a development with the following circuit events:

envi
when
mode = env
input_1 = TRUE
input_2 = TRUE
then
mode := cir
output := TRUE
end

env2
when
mode = env
input_1 = TRUE
imput_2 = FALSE
then
mode := cir
output := TRUE
end

env3
when
mode = env
input_1 = FALSE
input_2 = TRUE
then
mode = cir
output := TRUE
end

env4
when
mode = env
input_1 = FALSE
input_2 = FALSE
then
mode = cir
output := FALSE
end

Clearly, these events are internally as well as externally deterministic and also deadlockfree. By applying
the merging rule presented in the previous section, we obtain the following for the assignment of variable
output:

input_1 = TRUE A input_2 = TRUE A TRUE = TRUE) V
input_1 = TRUE A input_2 = FALSE A TRUE = TRUE) V
input_1 = FALSE A input_2 = TRUE A TRUE = TRUE) Vv

(
bool E
(input_1 = FALSE A input_2 = FALSE A FALSE = TRUE)

reducing as expected to:
bool(input_1 = TRUE V input_2 = TRUE)

As a result, these events can be merged into the following unique event:

or_gate
when
mode = env
then
mode = cir
output := bool (input_1 = TRUE V input_2 = TRUE)
end

2 A First Example

As the previous discussion may appear to be rather dry, we shall now illustrate our approach by describing
a little example of circuit specification and design.

2.1 Informal Specification

The circuit we propose to study is a well-known benchmark that has been analyzed in different contexts:
it is called the Single Pulser (Pulser for short). Here is a first informal specification taken from [1]:

We have a debounced push-button, on (true) in the down position, off (false) in the up position.
Devise a circuit to sense the depression of the button and assert an output signal for one clock
pulse. The system should not allow additional assertions of the output until after the operator has
released the button.

Here is another related specification [1], which is given under the form of three properties concerning the
input I and the output O of the circuit:

1. Whenever there is a rising edge at I, O becomes true some time later.

2. Whenever O is true it becomes false in the next time distance and it remains false at least until
the next rising edge on I.

3. Whenever there is a rising edge, and assuming that the output pulse doesn’t happen immedi-
ately, there are no more rising edges until that pulse happens (There can’t be two rising edges on
I without a pulse on O between them).

A subjective impression after reading these specifications is that they are rather difficult to understand. I'd
prefer to plunge the circuit to specify within a possible environment as follows:

1. We have a button that can be depressed and released by an operator. The button is connected
to the input of the circuit.

2. We have a lamp that is able to be lit and subsequently turned down. The lamp is connected to
the output of the circuit.

3. The circuit, situated between the button and the lamp, must make the lamp always flashing as
many times as the button is depressed and subsequently released.

A schematic representation of this closed system is shown on figure 5.

Note that the scenario we have described can be observed by an external witness: we can count the
number of times the button is depressed by the operator and also the number of times the lamp flashes and
we can compare these numbers. For example, figure 6 shows two wave diagrams: the first one represents a
succession of depressions of the button followed by subsequent releases, while the second shows various
corresponding flashes of the lamp:

As can be seen, the flash can be situated just after a button depression, or in between a depression and
a subsequent release, or else just after a release.

lamp
button

S I

input output
PULSER

Fig. 5. A Pulser and its Environment

—_— — released

button

depressed

lamp —| |_| —| flashes

Fig. 6. Relationship Between the Button Depression and the Lamp Flash

2.2 Initial Model

The State. Before defining the state, we must formalize the set M ODFE and its two values env and cir:

axm0_1: MODE = {enwv,cir}
sets: MODE constants: env, cir

axm0_2: env # cir

Rather than representing directly the environment by the concrete input line and the circuit by the
concrete output line (and probably some concrete internal state), we consider an abstraction where the
environment is represented by two natural numbers, push and pop, denoting respectively the number of
times the button is depressed and the number of times it is released (since the system has started). This
yields the following invariants, stating quite naturally that push is at least as pop and at most one more
than pop:

inv0_1: mode € MODE

inv0_2: push € N
variables: mode
push inv0_3: pop € N
pop

inv0_4: pop < push

inv0_5: push < pop+1

The abstract circuit is represented by a single variable flash denoting the number of times the lamp
flashes. We have then the following properties showing the coupling between the abstract environment
and the abstract circuit: push is at least as flash and at most one more than flash. In other words, you
push the button then the lamp later flashes (the lamp being turned down when the circuit is started):

inv0_6: flash € N

variables: ..., flash inv0_7: flash < push

inv0_8: push < flash + 1

The Events. Besides the initialization event, the dynamics of the environment is straightforward: we have
three events corresponding respectively to pushing the button (event env1), releasing it (event env2) and
finally doing nothing (event env3). Clearly, we can depress the button only when pop is equal to push,
and we can release it when push is different from pop (it is then one more than pop according to invariants
inv0_4 and inv0_5), finally we can do nothing in all circumstances:

envi env2
init when when env3

mode — enw mode = env mode = env when
push : 0 pop = push push # pop mode = env

o : 0 then then then
?lgs.h -0 mode = cir mode = cir mode = cir

T push := push + 1 pop := pop + 1 end
end end

The dynamics of the abstract circuit is a little more complicated . There are two events corresponding to
flashing the lamp (event cir1) or doing nothing (event cir2). We can flash the lamp when push is different
from flash:

cirt
when
mode = cir
push # flash
then
mode := env
flash := flash + 1
end

The circumstances in which the circuit does nothing need to be studied carefully. When the button is
depressed, the flash of the lamp can be done either immediately (case 1) or later as indicated in figure 7
(case 2 and 3).The latest time for the flash occurrence is just after the user releases the button (case 3).
As a consequence, the circuit can do nothing in three different circumstances denoted A, B and C in the
figure 8.

Conditions A, B, and C can be formalized more rigorously as follows:

10

] 1 |

Case 1 Case 2 Case 1

Fig. 7. The Various Cases Where the Circuit does Nothing

Case 1 Case 2 Case 3

Fig. 8. The Various Conditions Where the Circuit does Nothing

Condition A: push =pop A push = flash
Condition B: push # pop A push # flash

Condition C: push # pop A push = flash

The guard of the "do-nothing" event of the circuit corresponds to the disjunction of these conditions,
namely:

AV BV C < push#pop V push = flash

cir2
when
mode = cir
push # pop V push = flash
then
mode := env
end

Proofs. The proof of consistency between the static properties and the events requires introducing the
following additional invariant:

inv0_9: mode = env = flash = push V flash = pop

11

It may seem at first glance that the disjunction flash = push V flash = pop is always true (even when
mode = cir). In fact, it is almost always the case, except when the flash occurs at the latest as indicated
in figure 9.

!

Fig. 9. The special case where flash = push V flash = pop does not hold

Then just after the occurrence of event env2 (releasing the button) we have mode = cir and push =
pop = flash + 1, thus clearly flash = push V flash = pop does not hold.
2.3 Refining the Circuit by Diminishing its Non-determinacy

In this section, we shall present a first way of refining our circuit. This corresponds to removing some of
its possible non-deterministic behaviors. Let us reconsider the two events of our circuit:

Clrv1vhen cir2
mode = cir Whnell(l)de = cir
thfr?Sh 7 Jlash push # pop V push = flash
mode = env th‘:llode o
flash := flash + 1 4 =
end en

The guards, clearly, may overlap when push # flash and push # pop hold simultaneously. This
occurs when we are in between a depression and a release (push # pop) and when the flash has not yet
occurred (push # flash): in this situation, it is possible for the circuit to either flash the lamp or do
nothing.

We can see that there are two different ways of making this system of events deterministic: (1) by
replacing the guard of Cir2 by push = flash, or (2) by adding the guard push = pop to that of the event
cirl. In both cases we are strengthening the guards. The net effect, in both cases, is to make each guard
the negation of the other: the circuit has become deterministic indeed. The first solution, which we call
PULSER1, corresponds to flashing the lamp as early as possible. It is illustrated on figure 10.

orl_PULSER cir2_PULSERT
mode = cir Wh:”:;de = cir
thf:Sh # flash push = flash
mode := env th‘:zlode — enw
englash = flash +1 end

12

button released

button depressed

.

Fig. 10. The flash occurs as early as possible

In this case, the following invariant can be proved:

invl_pulserl: pop # push A mode = env = flash # pop

When the button is depressed (pop # push) and the mode is environment (mode = enw) then the flash
has occurred, thus the number of flashes is one more than the number of pops, or alternatively the flash
number is equal to the push number (flash = push).

The second solution, which we call PULSER2, corresponds to flashing the lamp as late as possible. It
is illustrated on figure 11.

cirl_PULSER2
when
mode = cir
push = pop A push # flash
then

cir2_ PULSER2
when
mode = cir
push # pop V push = flash

mode := env thigode — enw
flash := flash + 1 end

end

button released

button depressed

!

Fig. 11. The flash occurs as late as possible

In this case, the following invariant can be proved:

13

invl_pulser2: pop # push = flash # push

When the button is depressed (pop # push) then the number of flashes is one less than the number of
pushes (flash # push) or alternatively the flash number is equal to the pop number (flash = pop).

2.4 Refining the Circuits by Changing the Data Space

The two circuits PULSER1 and PULSER2 we have obtained, although now completely deterministic,
are still rather abstract. We would like to converge now towards some “real” circuits. In particular, the
input and output wires should be defined, and the abstract variables push, pop, and flash should be
abandoned. The purpose of this section is to show how refinement allows one to change our data space.

We have two new variables input and output, which corresponds to the input and output lines respec-
tively. These variables are boolean.

variables: mode inv2_1: input € BOOL
input
output inv2_2: output € BOOL

The variable input is an environment variables: it is modified by both events env1 and env2. The
abstract variable push is supposed to denote the number of times the variable input moves from FALSE
to TRUE. Likewise the abstract variable pop is supposed to denote the number of times the variable input
moves from TRUE to FALSE. This leads to the following new events env1 and env2:

envi env2
when when env3
mode = env mode = env when
input = FALSE input = TRUE mode = env
then then then
mode = cir mode = cir mode = cir
input := TRUE input := FALSE end
end end

For these events to be correct refinements of their abstract counterparts, each concrete guard must imply
the corresponding abstract guard. Here is a copy of the abstractions:

(abstract-)env1 (abstract-)env2

when when (abstract-)env3
mode = env mode = env when
pop = push pop # push mode = env

then then then
mode := cir mode := cir mode := cir
push := push + 1 pop :=pop + 1 end

end end

14

The correct refinement thus clearly involves proving the following relationship between the concrete
environment space and the abstract one:

inv2_3: input = TRUE < pop # push

Let us now turn to the implementation of the abstract circuit PULSER1. We have the following abstract
circuit events:

(abstract-)cirl_PULSER1 (abstract-)cir2 PULSER
mode = cir Whne;;de = cir
th(]::lwh # flash push = flash
mode = env th(:llo de ‘= enw
englash = flash + 1 end

The abstract circuit variable flash has to disappear. It counts the number of time the concrete variable
output moves from FALSE to TRUE. For this, the guard of the concrete event cirl must check that the
abstract variable push has just been modified by the environment. As we know, this is when the input
line input moves from FALSE to TRUE. Clearly, we can access the actual value of input, but certainly
not its previous value. We have no choice then but to introduce a register, reg, internal to our circuit, and
whose role is to store the previous value of input. We also have an equality between reg and input when
mode = env holds (invi2_5):

inv2_4: reg € BOOL
variables: mode, input, output, reg
invi2_S5: mode = env = reg = input

This leads to the following implementation of the events cir1 and cir2 for PULSER1:

cirl_PULSER1 cir2_PULSERT1
when when
mode = cir mode = cir
input = TRUE A reg = FALSE input = FALSE VvV reg = TRUE
then then
mode := env mode := env
output := TRUE output := FALSE
reg := input reg := input
end end

The concrete guards must imply the abstract ones.. All this leads to the following properties to be main-
tained:

15

inv2_ PULSERI1_6: mode = cir = (@

input = TRUE A reg = FALSE)

push # flash

We have a similar implementation of the events cir1 and cir2 for PULSER2:

cirl_PULSER2
when
mode = cir
input = FALSE A reg = TRUE
then
mode := env
output := TRUE
reg 1= input
end

cir2_PULSER2
when
mode = cir
input = TRUE V reg = FALSE
then
mode := env
output := FALSE
reg := input
end

And we have to ensure the following additional invariant:

inv2_ PULSER2_6: mode = cir = <<:>

input = FALSE A reg = TRUE)

push # flash A push = pop

2.5 Building the Final Circuits

Our next design step is to depart from the closed system and consider the circuit PULSER1 and PULSER2

in isolation. Here is a copy of the PULSER1 events:

cirt_PULSERT1
when
mode = cir
input = TRUE A reg = FALSE
then
mode := env
output := TRUE
reg := tnput
end

cir2_PULSERT
when
mode = cir
input = FALSE V reg = TRUE
then
mode := env
output := FALSE
reg = input
end

Applying the technique developed in section 1.7, we obtain:

16

PULSERH1
when
mode = cir
then
mode = env
output := bool((input = TRUE A reg = FALSE A TRUE = TRUE) Vv
(... A FALSE = TRUE))
reg = bool(input = TRUE A (input = TRUE A reg = FALSE) Vv
input = TRUE A (input = FALSE V reg = TRUE))
end

which reduces to the following:

PULSER1

when
mode = cir

then
mode 1= env
output := bool(input = TRUE A reg = FALSE)
reg := bool(input = TRUE)

end

We have eventually constructed our little circuit PULSER1 as shown on figure 12.

input
reg SO0—

} output

Fig. 12. The circuit PULSER1

17

We can construct the following circuit PULSER2 in a similar fashion:

cirl_PULSER2

when

mode = cir

input = FALSE A reg = TRUE
then

mode := env
output := TRUE
reg := input

cir2_ PULSER2
when
mode = cir
input = TRUE V reg = FALSE
then
mode := env
output := FALSE
reg := input

end

end

Applying the technique developed in section 1.7, we obtain:

PULSER2
when

then

reg

end

mode = cir

mode := env
output := bool((input = FALSE A reg = TRUE A TRUE = TRUE) Vv

(... A FALSE = TRUE))
:= bool(input = TRUE A (input = FALSE A reg = TRUE) Vv
input = TRUE A (input = TRUE V reg = FALSE))

input

reg

which reduces to:

output

o

Fig. 13. The circuit PULSER2

18

PULSER2

when
mode = cir

then
mode 1= env
output := bool(input = FALSE A reg = TRUE)
reg := bool(input = TRUE)

end

This lead to the circuit of figure 13.

3 Second Example: the Arbiter

3.1. Informal Specification

This simple circuit is called the (binary) Arbiter. It has two boolean input lines called i_1 and i_2 and
two boolean output lines called o_1 and o_2. This is indicated on figure 14.
il o_1
i2 ARBITER 0.2
Fig. 14. The Arbiter
The circuit has two boolean inputs i1 and 2 and two boolean outputs o1 and 02 FUN-1

When input 7_s is valued to TRUE, this means that a certain user_z, associated by construction with the
line 7_1, has required (asked for) the usage of a certain shared resource (the specific resource in question

as well as the nature of the users do not play any réle in this system).

A TRUE input means a user (associated with that input) is asking for a certain resource

FUN-2

When the circuit, used with input i_: valued to TRUE, reacts with the output o_i valued to TRUE, this
means that the circuit has indeed granted the resource to user_i. Of course, an output o_i can only be

valued to TRUE when the corresponding input i_: is TRUE.

The circuit reacts positively to a request by setting the corresponding output to TRUE

FUN-3

19

Conversely, the circuit should react as soon as it can. But this reaction is constrained by the fact that the
circuit can only grant the resource to at most one user at a time.

The circuit can react positively to one request only at a time (mutual exclusion) FUN-4

Notice that each winning user is supposed to immediately release the resource so that it can ask for it
again immediately after getting it.

Each user frees the resource immediately FUN-5

‘We have a number of additional constraints:

— No requiring user can be indefinitely denied the right to obtain the resource (this could be the case,
should the other user always requires the resource again immediately after getting it). Notice that in
this example, we shall make this constraint more precise by asking that a requiring user should not
wait for more than one clock pulse before being served. In other words, a new requesting user, if not
served at the next circuit reaction, must necessarily be served at the one that follows the next.

A requesting user cannot be postponed indefinitely FUN-6

— We suppose that a requiring user shall not give up requiring the resource without being served (this is
just a simplification that could have been relaxed).

A user asking for a resource comtinues to ask for it as long as it is not served FUN-7

— Finally, we require that the circuit correctly reacts to the void case where no user is asking for the
resource: in that case, the resource must not then be granted to any user.

The resource cannot be granted without a user asking for it FUN-8

We do not know whether it is possible to build such a circuit. We do not know either whether such a
circuit, supposedly constructed, is free from any deadlock in some situations.

3.1 Initial Model

The State. In the formal specification, we shall abstract from the boolean input and output lines as
described in the previous section. We consider that in the environment, we can count the numbers r1
and r2 of requests made by each user and the corresponding numbers a1 and a2 of acknowledgements
made by the circuit. The constraint of the informal specification imposes the following straightforward
permanent invariant where it is stated that the number of requests is at most one more than the number of
acknowledgements (inv0_5 to inv(_8):

20

rl € N

inv0_1: inv0_ 5: al <rl

variables: 11
r2
al
a2

inv0_2: 2 €¢ N inv0_6: r1<al—+1

inv0_3: a1l € N inv0_7: a2 <1r2

inv0 4: a2 € N inv) 8: r2<a2+1

We have not yet stated however that no user must wait indefinitely. For this, we introduce two boolean
variables in the circuit: pl and p2. When, say, pi is TRUE it means that user_i now waits for the resource.
Clearly, p1 and p2 cannot be both equal to TRUE simultaneously (inv011) because that would mean that
the circuit has not reacted immediately. In fact, when mode is env, pi = FALSE is equivalent to ri = ai:
no request is pending for user_: (inv0_12 and inv0_13):

inv0_9: pl € BOOL

inv0_10: p2 € BOOL

variables: pl

i inv0_11: pl = FALSE V p2 = FALSE

inv0_12: mode = env = (rl =al & pl = FALSE)

inv0_13: mode = env = (r2=a2 & p2 = FALSE)

Events. The various environment events correspond to new requests being posted either individually
(env1 and env2) or simultaneously env3, or to the environment doing nothing (envO0).

env3
envi env2 when
when when mode = env env0
mode = env mode = env rl =al when
rl =al r2 =a2 r2 =a2 mode = env
then then then then
mode = cir mode := cir mode := cir mode := cir
rl:=r1+1 r2:=r2+1 rl:=r1+1 end
end end r2:=r2+1
end

The events of the circuit are very simple. In case a request is pending (in events Cir1 and Cir2), the event
increments the acknowledgement counter and set the corresponding variables, say pl for event cirl, to
FALSE. Notice that it can be the case already. It does so, however, provided the other user has not itself
required the resource for more than one clock pulse: hence the guard p2 = FALSE. When no request is
made (in event Cir0), the event does nothing except setting pl and p2 to FALSE:

21

cirl cir2 :

when when C|r0h
mode = cir mode = cir w end .
rl # al r2 # a2 mloie I ar
p2 = FALSE pl = FALSE ”2 - “2

then then thgn -
mode := env mode = env de =
al :=al +1 a2 == a2 +1 ”’io‘_e 'F;Eg%
pl := FALSE p2 := FALSE p2 o FALSE
P2 := bool(r2 # a2) pl :=bool(rl # al) enﬁ T

end end

Proving Deadlock Freedom. Nothing guarantees, of course, that the circuit events are not stuck because
their guards do not hold. We have thus to prove the following, stating that while in the cir mode, the
disjunction of the guards of the circuit always holds:

rl #al A p2=FALSE V
thm0_1: mode =cir = | r2# a2 N pl =FALSE Vv
rl=al A r2=a2

For proving this, it is necessary to add the following invariants:

inv0_14: mode = cir = (rl =al = pl = FALSE)

inv0_15: mode = cir = (r2 =a2 = p2 = FALSE)

Note that the circuit is still non-deterministic: this is the case when both users are just requiring the
resource simultaneously (thus pl = FALSE and p2 = FALSE hold simultaneously). In this case, both
events Cirl and cCir2 can be fired.

3.2 First Refinement: Generating Binary Ooutputs from the Circuit

The State. In the previous section, the circuit events Cir1 and cCir2 incremented directly the acknowledge-
ment counters al and a2. These counters both formed the abstract outputs of our circuit. We shall now
postpone this incrementation and have the circuit only generating an offset (that is a O or a 1), the proper
incrementation itself being done by the environment on two slightly time-shifted counters, say b1 and b2.
But we want the circuit to produce boolean values only. For this, we introduce a constant function b_2_01
transforming a boolean value into a numeric value.

axml_1: b 2 01 € BOOL — {0,1}

constants: b_2_ 01 axml_2: b 2 01(TRUE) = 1

axml_3: b 2 01(FALSE) = 0

22

This refinement introduces thus four variables typed as follows:

invl_1: b1 € N

invl_2: ol € BOOL

variables: b1, 01,52, 02

invl_3: 2 € N

invl_ 4: 02 € BOOL

The “gluing” invariant that holds between the abstract counters al and a2 and the new concrete variables
we have just introduced is the following:

invl_5: mode = cir = al =01
invl_6: mode = cir = a2 = b2
invl_7: mode = env = al = b1 +b_2_01(ol)
invl_8: mode = env = a2 =102+ b_2_01(02)

The last two statements indicate that, while we are observing the environment (just after the reaction of
the circuit), the abstract counters ai are already incremented (by the abstract circuit) while the concrete
counters b: are not. In fact, they will be incremented in the environment thanks to the contents of the
output oi. On the other hand, the first two statements indicate that while observing the circuit, the abstract

and concrete counters are now “in phase”.

The Events. The environment events are all modified in a straightforward way:

envi
when
mode = env

r1 = bl +b_2_01(o1)

then
mode = cir
rl:=r1+1

bl := bl +b_2_01(ol)
b2 := b2+ b_2_01(02)
end

env2
when
mode = env
r2="02+40b_2_01(02)
then
mode = cir
r2:=r2+1
bl := bl +b_2_01(01)
b2 := b2+ b_2_01(02)
end

The circuit events are modified accordingly:

23

env3
when
mode = env
rl =bl4b_2 01(ol)
r2="502+b_2 01(02)

then
mode := cir
rl:=r1+1
r2:=r2+1

bl := bl +b_2_01(01)
b2 := b2+ b_2_01(02)
end

cirl
when
mode = cir
rl #£ bl
p2 = FALSE
then
mode 1= env
ol := TRUE
02 := FALSE
pl := FALSE
p2 := bool(r2 # b2)
end

cir2 cir0

when when
mode = cir mode = cir
r2 #£ b2 rl =101
pl = FALSE r2 =02

then then
mode 1= env mode 1= env
ol := FALSE ol := FALSE
02 := TRUE 02 := FALSE
pl := bool(rl # bl) pl := FALSE
p2 := FALSE p2 := FALSE

end end

3.3 Second Refinement

The State. The environment event are now accessing environment variables only (r1, 2, b1, and b2)
together with the outputs of the circuit (ol and 02). But, the circuit events still access the environment

variables (r1, 2, b1, and b2). In this refinement, we introduce proper inputs 1 and i2 to the circuit.

The inputs to the circuit, rather than being the number r; of requests and the number b; of acknowl-
edgements could very well be only their difference which is at most 1, as we know from invariants invQ_5

to inv0_8. For this, we introduce two new binary variables 7; and is:

variables:

i1,42

inv2_1: i1 € BOOL

inv2_2: 2 ¢ BOOL

The invariants relating i1 and 2 to r1, 2, b1, and b2 are straightforward:

inv2_2: mode = cir = (il = FALSE < rl =b1)

inv2_3: mode = cir = (i2 =FALSE & r2 = b2)

The modification of the environment events are very simple:

envi
when

mode = env
rl=0bl+b_2 01(ol)

then
mode := cir
rl:=r1+1

b1 := bl +b_2_01(ol)
b2 := b2 +b_2_01(02)
il := TRUE

end

i2 := bool(r2 # b2 + b_2_01(02))

env2

when
mode = env
r2="02+b_2 01(02)

then
mode := cir
r2:=r2+1

bl := bl +b_2_01(ol)
b2 := b2 + b_2_01(02)
il :=bool(rl # bl + b_1_01(ol))
12 := TRUE
end

24

env3

when
mode = env
rl =51+ b_2_01(ol)
r2 =02+ b_2_01(02)
then
mode = cir
rl:=r1+1
r2:=r2+1
bl :=bl+b_2_01(ol)
b2 := b2 + b_2_01(02)

env0
when

then

mode = env

mode 1= cir

bl := bl +b_2_01(ol)

b2 := b2+ b_2_01(02)

i1 :=bool(rl # bl + b_1_01(ol))
i2 := bool(rl # b2 + b_1_01(02))

i1 := TRUE end
12 := TRUE
end
Here are the new circuit events:
cirl cir2 cir0
when when when
mode = cir mode = cir mode = cir
i1 = TRUE 12 = TRUE 11 = FALSE
p2 = FALSE pl = FALSE 12 = FALSE
then then then
mode := env mode := env mode := env
ol := TRUE ol := FALSE ol := FALSE
02 := FALSE 02 := TRUE 02 := FALSE
pl := FALSE pl =il pl := FALSE
p2 =12 p2 := FALSE p2 := FALSE
end end end

3.4 Third Refinement: Reducing Non-determinacy of the Circuit

The State. The circuit we have obtained in the previous section is now complete and simple, but still
non-deterministic: when i1 and 2 are both equal to TRUE with pl and p2 both equal to FALSE, the
circuit can choose to set ol or 02 to TRUE. In other words, both events cir1 and cir2 are enabled. In order
to make the circuit completely deterministic, we decide that, in this case, ol say, will be the winner. In
fact, we remove variables pl1.

The Events. The environment events remain the same whereas the circuit events are modified as follows:

cirl cir2 cir0

when when when
mode = cir mode = cir mode = cir
11 = TRUE 12 = TRUE 11 = FALSE
p2 = FALSE - (11 = TRUE A p2 = FALSE) 12 = FALSE

then then then
mode := env mode := env mode := env
ol := TRUE ol := FALSE ol := FALSE
02 := FALSE 02 := TRUE 02 := FALSE
p2 =12 p2 := FALSE p2 := FALSE

end end end

25

The circuit events are now clearly internally as well as externally deterministic.

Revisiting Deadlock Freedom. The interesting and fundamental last statement to prove is that the events
of the circuit are deadlock free. For this, we have to prove that, under the hypothesis mode = cir, the
disjunction of the guards of the circuit events are true (the interactive proof of this statement is easy),

namely:

il = TRUE A p2 =FALSE) Vv
thm3_1: mode =cir = | i2=TRUE A - (il = TRUE A p2 =FALSE) Vv
11 = FALSE A i2 = FALSE

3.5 Fourth Refinement: Building the Final Circuit

The circuit and environment now fulfill all the final conditions stated in section 1.7. As a result, we can

construct our final circuit in a systematic fashion:

arbiter
when
mode = cir
then
mode := env
ol :=bool ((il = TRUE A p2 = FALSE A TRUE = TRUE) Vv
(... A FALSE = TRUE) Vv
(... A FALSE = TRUE))
02 :=bool ((... A FALSE = TRUE) Vv
(12=TRUE A —(il = TRUE A p2 =FALSE) A TRUE = TRUE) Vv
(... AN FALSE = TRUE))
p2:=Dbool ((il = TRUE A p2 =FALSE A i2=TRUE) Vv
(... A FALSE = TRUE) Vv
(... A FALSE = TRUE))

end

This can be simplified as follows:

arbiter
when
mode = cir
then
mode := env
ol :=bool (il = TRUE A p2 =FALSE)
02 :=bool (i2 =TRUE A = (i1 =TRUE A p2=FALSE))
p2:=Dbool (il = TRUE A p2 =FALSE A i2 =TRUE)
end

This leads to the circuit of figure 15.

26

il

ol

i2

4

)

\/

p2 >c

Fig. 15. The Arbiter

Third Example: A Special Road Traffic Light

The example we develop in this section is one where a complete (but still simple) system is considered
with a circuit aimed at controlling a physical environment by reacting appropriately. In this example, we
also experiment with the idea of connecting various circuits together.

4.1

Informal Specification

One intends to install a traffic light at the crossing between a main road and a small road. The idea is
to have these lights behaving in such a way that the traffic on the main road is somehow given a certain
advantage over that on the small road. The corresponding policy is explained (and commented) in the
following informally stated rules:

Rule 1

Rule 2

Rule 3

Rule 4

Rule 5

When the light controlling the main road is green, it only turns orange (and subsequently red) when
some cars are present on the small road (the presence of such cars is detected by appropriate sensors).
As a consequence, when no cars are present on the small road, the traffic on the main road is not
disturbed.

This potential loss of priority on the main road is however only possible provided that road has al-
ready kept the priority for at least a certain (long) fixed delay. In other words, within that delay, the
main road keeps the priority even if there are cars waiting on the small road. As a consequence, when
there are frequently coming cars on the small road, the traffic on the main road is still rather smoothly
flowing.

On the other hand, the small road, when given priority, keeps it is as long as there are cars willing to
cross the main road.

This keeping of the priority by the small road is however only possible provided a (long) delay (the
same delay as for the main road) has not passed. When the delay is over, the priority systematically
returns to the main road even is there are still some cars present on the small road. As a consequence,
when there is a big amount of cars on the small road, these cars cannot block the main road for too
long a period of time.

As already alluded above, a green light does not turn red immediately. An orange color appears as

usual for a (small) amount of time before the light definitely turns red. This sequential behavior is the
same on the lights of both roads.

27

Rule 6 As usual, the safety of the drivers is ensured by the fact that the light, when green or orange on one
road, is exactly red on the other one, and vice-versa. Safety is also ensured, of course, provided the
drivers obey the law of not trespassing a red light (but this is another matter, not under the responsi-
bility of the circuit!).

4.2 A Separation of Concern Approach

By reading the previous informal requirements, it appears that there are apparently rwo separate questions
in this problem: (1) one is dealing with the modification of the priority from the main to the small road and
vice-versa (this corresponds to Rule 1 to Rule 4 above), and (2) another one is dealing with the realization
of that change of priority in a way that is meaningful to drivers (this corresponds to Rule 5 and Rule 6):
this concerns the modification of the colors of each light (from successively, say, green to orange, then to
red, and then to green again, etc), and the obvious non-contradiction between the lights governing each
road (no two green lights at the same time, etc).

It seems that these two questions are rather “orthogonal” in that a modification in the road priority
policy should not affect the proper behaviors of the lights, and vice-versa. Clearly, a modification in the
light classical behavior is not something that one would reasonably envisage as it is rather universal. On
the other hand, a modification in the priority policy is a possibility that could not be rejected a priori. In
that case, we would like to have the circuit built in such a way that this modification could be done in an
easy way (sub-circuit replacement).

One should also notice that the first of these two questions deals with the essential function of this
system, namely to alternate the priority between two roads in an unbalanced way. On the other hand, the
second question rather deals with the safety and possible progress of the users. In other words, we must
ensure that drivers: (i) are always in a safe situation provided they obey the usual conventions indicated
by the colors of the lights, and (ii) are also not blocked indefinitely (everybody has once experienced a
situation where, for instance, both lights are red!).

Our initial idea is thus to make the design of two distinct circuits, which will be eventually connected.
One is the Priority circuit, and the other is the Light circuit. The Priority circuit delivers a signal to the
Light circuit telling that the priority has to be changed from one road to the other. In this way, the latter
can translate this “priority” information in terms of a corresponding “traffic light” information.

4.3 The Priority Circuit: Initial Model

The State. The simplest Priority circuit we can think of is one with two boolean inputs, car and clk:
car corresponds to the information elaborated by the car sensors disposed on the small road and clk is
an alarm coming from an external “timer” saying that the long delay is over. The priority circuit has two
boolean outputs, chg and prt. chg yields the information concerning a change in the priority, whereas prt
yields the priority in use. All this is indicated on figure 16.

This timer sends an alarm on the boolean entry clk when (and as long as) the long delay described
above is over.The circuit “decides” to possibly change the priority depending on three factors: (1) the
actual priority (main road or small road), stored in the circuit, (2) the presence of cars on the small road,
and (3) the state of the alarm coming from the timer. The Priority circuit has an internal register, prt,
holding the actual priority. The output chg is used externally to reset the external timer. The overall
picture is indicated on figure 17.

The variables of the priority circuit are declared as follows:

28

clk chg

PRIORITY

car prt
Fig. 16. The priority Circuit
TIMER
clk chg
car PRIORITY prt

Fig. 17. Connection of the Priority Circuit with the Timer Circuit

inv0_1: car € BOOL

inv0_2: clk € BOOL
variables: car, clk, chg, prt

inv0_3: chg € BOOL

inv0_4: prt € BOOL

We have the following conventions: (1) car valued to TRUE means that some cars are waiting on the
small road, (2) clk valued to TRUE means that the long delay is over, and (3) chg valued to TRUE
means that the priority has to change. Variable prt is valued FALSE (priority on main road) or TRUE
(priority on small road).

Events. The events of the Priority circuit elaborate priority changes. We have two such events, called
main_to_small and small_to_main. Their guards formally state under which circumstances the priority
can change. This is explained in what follows:

1. Event main_to_small can be fired when the priority is on main road (prt = FALSE), when some car
are present on the small road (car = TRUE) and when the long delay has passed (clk = TRUE):
this corresponds to Rule 1 and Rule 2 above.

2. Event small_to_main_ can be fired when the priority is on small road (prt = TRUE), and when no

cars are present on the small road (car = FALSE) or when the long delay has passed (clk = TRUE):
this corresponds to Rule 3 and Rule 4.

In both cases, the priority changes (chg := TRUE) and variable prt is modified accordingly. Here are the
events:

29

magégﬁmml small_to_main
mode = o Whrgtl)de = cir
prt = FALSE e E’RUE
o IRUE D FALSE V clk = TRUE
= car = clk =

theclllk - e then
mode ‘= env mode 1= env
prt :ZERUE prt := FALSE
chg := TRUE chg := TRUE

end end

Another series of events corresponds to the circuit doing nothing except resetting the chg output to FALSE
(no change). This occurs in two circumstances:

1. Event do_nothing_1 can be fired when the priority is on main road (prt = FALSE) and when there

are no cars on the small road (car = FALSE) or the delay has not passed yet (clk = FALSE): this
corresponds to Rule 1 and Rule 2 above.

2. Event do_nothing_2 can be fired when the priority is on small road (prt = TRUE), when there are
cars present on the small road (car = TRUE), and when the delay has not passed yet (clk = FALSE):
this corresponds to Rule 3 and Rule 4.

Here are these events:

do_nothing_1 do_tothing_2
when
when =ci
mode = cir mOd—e EégE
prt = FALSE e — TRUE
thglclw" = FALSE V clk = FALSE clk = FALSE
then
mode := env mode ‘= env
en(clhg := FALSE chg := FALSE
end

The unique environment event is the following:

envi
when
mode = env
then
mode = cir
car :€ BOOL
clk :€ BOOL
end

Notice that this event is not very realistic as car may come and then disappear in a rather random way. In
section ??, we shall make this event more realistic by splitting it.

30

Deadlock Freedom The Priority circuit is deadlock free as stated in this theorem:

prt = FALSE A car = TRUE A c¢lk = TRUE
thmo0 1: mode — cir — | Pt = TRUE A (car = FALSE Vv clk = TRUE)
- prt = FALSE A (car = FALSE V clk = FALSE)
prt = TRUE A car = TRUE A clk = FALSE

4.4 The final Priority Circuit

The priority circuit fulfills the condition of section 1.7. Notice that events do_nothing_1 and do_nothing_2
do not mention variable prt: in fact, we could consider that they both have the action prt := prt. With
this in mind, the circuit generation goes as follows:

priority
when
mode = cir
then
mode := env
(prt = FALSE A car = TRUE A ¢lk = TRUE A TRUE = TRUE) Vv
prt := bool ((prt = FALSE A (car = FALSE V clk = FALSE) A prt = TRUE) V >
(prt = TRUE A car = TRUE A clk = FALSE A prt = TRUE)

(prt = FALSE A car = TRUE A clk = TRUE A TRUE = TRUE) V
ho = bool | (Prt=TRUE A (car = FALSE V clk = TRUE) A TRUE = TRUE) v
€hg = DOOL L ([A FALSE = TRUE) V

(... A FALSE = TRUE))

end

This reduces trivially to the following:

priority
when
mode = cir
then
mode 1= env
¢ — bool (prt = FALSE A car = TRUE A clk = TRUE) Vv
prt:=DO0t{ (prt = TRUE A car = TRUE A clk = FALSE)

chg := bool (

end

(prt = FALSE A car = TRUE A c¢lk = TRUE) Vv
(prt = TRUE A (car = FALSE V clk = TRUE))

This circuit can be further transformed in the following equivalent fashion:

31

priority
when
mode = cir
then
mode := env
car = TRUE A clk = TRUE) V
(prt = TRUE A = <Ecar — FALSE A prt = TRUE%) v
prt := bool

_ (car = TRUE A clk = TRUE) Vv
(prt = FALSE A ((car — FALSE A prt = TRUE)

ha = bool (car = TRUE A clk =TRUE) V
chg :=boo (car = FALSE A prt = TRUE)
end

It is easy to figure out that these two events are equivalent. Hint: (1) do a proof by cases, (prt = TRUE,
then prt = FALSE) to prove the equivalence concerning the assignment to prt, and (2) do a proof by
cases (car = TRUE, then car = FALSE) to prove the equivalence concerning the assignment to chg.
The last event is interesting because it contains three times the following fragment, which can thus be
computed only once:

car = TRUE A clk =TRUE V
car = FALSE A prt = TRUE

In this last version we notice also several occurrences of predicates of the form:
(PANQ) V (-PAR)

This will be economically represented by an IF gate, considered to be an atomic one. Such a gate is
pictorially represented on figure 18.

Fig.18. An IF Gate

Equipped with such an IF gate, we can draw our Priority circuit as indicated in figure 19.

32

clk
chg

rt
DC) prt P

)

car

Fig. 19. The Priority Circuit

5 The Light Circuit

We now connect our Priority circuit to the Light circuit as is shown in the diagram below. The Light
circuit delivers the various colors of both traffic lights. This is indicate on figure 20.

TIMER [<€—

clk chg

Y

car PRIORITY prt

LIGHT

+

grn_ MR org MR red MR grn_SR org SR red SR

Fig. 20. The Priority Circuit Connected to the Light Circuit

5.1 An Abstraction: the Upper Circuit

We start with a simplified circuit whose role is to ensure the sequencing of a single traffic light, that of the
main road.It is shown on figure 21.

We shall extend later that circuit to handle two synchronous traffic lights. The circuit has a single
boolean entry prt which, when valued to TRUE, indicates that a the light appearance should give priority

33

prt

UPPER

grn org rdl rd2

Fig. 21. The Upper Light Circuit

to the small road. It has four boolean outputs called grn, org, rdl, and rd2. The reason for decomposing
the red color into two colors is one of symmetry. Exactly one of them at a time is valued to TRUE. This
can be formalized as follows:

variables: prt, grn,org,rdl,rd2
inv0_1: prt € BOOL
inv0_2: grn = TRUE V org = TRUE V rdl = TRUE V rd2 = TRUE
inv0_3: grn = TRUE = org = FALSE A rdl = FALSE A rd2 = FALSE
inv0_4: org = TRUE = rdl = FALSE A rd2 = FALSE
inv0_5: rdl = TRUE = rd2 = FALSE
inv0 _6: mode € MODFE

The events of the circuit are straightforward

34

g”:v_lfgﬁ "9 org_to_rd1
mode = cir Wh;:(l)de = cir
g;;::TTP}L{%% org = TRUE
then then
mode = env mode := env
grn = FALSE org := FALSE
orq :— TRUE rdl := TRUE
end 9 end

rd1_to rd2

when
mode = cir
prt = FALSE
rdl = TRUE

then
mode 1= env
rdl := FALSE
rd2 := TRUE

end

rd2_to_grn
when
mode = cir
rd2 = TRUE
then
mode := env
grn := TRUE
rd2 := FALSE
end

We have two “do-nothing” events in the circuit and also an environment event assigning prt in a non-
deterministic way. These are as follows:

grn_to_nth rd1_to_nth

when when en&ﬁi\f
mode = cir mode = cir de —
grn = TRUE rdl = TRUE thg" €=env
prt = FALSE prt = TRUE de = ci

then then mi 'e E OCZOT I
mode := env mode := env ﬁr €

end end en

5.2 A Refinement: Adding the Lower Circuit

We refine the circuit by having now 6 outputs corresponding the the light appearance of both traffic lights.
First those of the main road: grn_M R, org_M R, and red_M R. Then those of the small road: grn_SR,
org_SR, and red_SR.

variables: prt, grn,org,rdl, rd2
grn_MR,org_MR,red_MR

grn_SR,org_SR,red_SR

The final colors are related to the variables of the initial model in a straightforward way:

invl_1: grn_MR = grn

invl_2: org_ MR = org

invl 3: red MR =TRUE < (rdl = TRUE V rd2 = TRUE)
invl_4: grn_SR = rdl

invl_5: org_SR = rd2

invl_ 6: red SR=TRUE & (grn=TRUE V org = TRUE)

35

We can prove the following safety theorems:

thm1_1: red_ MR = TRUE & (¢grn_SR=TRUE V org_SR = TRUE)

thm1_2: red_SR = TRUE & (grn_MR =TRUE V org_MR = TRUE)

Next are the refinements of the events:

grn_to_org

when
mode = cir
prt = TRUE
grn = TRUE

then
mode := env
grn := FALSE
org := TRUE

grn_M R := FALSE
org_MR := TRUE
end

org_to_rd1

when
mode = cir
org = TRUE

then
mode := env
org := FALSE
rdl := TRUE

org_MR := FALSE

red_MR := TRUE

grn_SR := TRUE

red_SR := FALSE
end

rd1_to_rd2

when
mode = cir
prt = FALSE
rdl = TRUE

then
mode := env
rdl := FALSE
rd2 := TRUE

org_SR := TRUE
grn_SR := FALSE
end

The various circuit events can be unified as usual:

rd2_to_grn

when
mode = cir
rd2 = TRUE

then
mode := env
grn := TRUE
rd2 := FALSE

grn_MR := TRUE

red_MR = FALSE

org_SR := FALSE

red_SR := TRUE
end

light
when
mode = cir
then
mode 1= env
grn := bool(rd2 = TRUE V (prt = FALSE A grn = TRUE))
org := bool(prt = TRUE A grn = TRUE)
rdl := bool(org = TRUE V (prt = TRUE A rdl = TRUE))
rd2 := bool(prt = FALSE A rdl = TRUE)
grn_MR := bool(rd2 = TRUE V (prt = FALSE A grn = TRUE))
org_MR :=bool(prt = TRUE A grn = TRUE)
red_MR :=bool(org = TRUE V (prt = TRUE A rdl = TRUE) VvV
(prt = FALSE A rdl = TRUE))
grn_SR :=bool(org = TRUE V (prt = TRUE A rdl = TRUE))
org_SR :=bool(prt = FALSE A rdl = TRUE)
red_SR :=bool(rd2 = TRUE Vv (prt = FALSE A grn = TRUE) v
(prt = TRUE A grn = TRUE))
end

The final Light circuit is shown on figure 22.

prt LD

grn \:D— org —:D——

Y

grn_ MR red_SR org MR grn_SR red_MR org_SR

Fig. 22. The Light Circuit

References

1. T. Kropf. Formal Hardware Verification: Methods and Systems in Comparison. LNCS State-of-the-art Survey
Springer. 1991

37

