
IV. A Simple File Transfer Protocol (October 2008)

The example introduced in this chapter is quite different from the previous one, where the program
was supposed to control an external situation (cars on a bridge or mechanical press). Here we present a,
so-called, protocol to be used on a computer network by two agents. This is the very classical two-phase
handshake protocol. This example has been presented in many places. A very nice presentation is the one
given in the book by L. Lamport [1].

This example will allow us to extend our usage of the mathematical language with such constructs as
partial and total functions, domain and range of functions, and function restrictions. We shall also extend
our logical language by introducing universally quantified formulas and corresponding inference rules.

1 Requirements

The purpose of the protocol is to transfer a sequential file from one agent, the sender, to another one, the
receiver. The transmitted file should be equal to the original file.

The protocol ensures the copy of a file from one site to another one FUN-1

The sequential file, as its name indicates, is made of a number of items disposed in a an ordered fashion.

The file is supposed to be made of a sequence of items FUN-2

These agents are supposed to reside on different sites, so that the transfer is not made by a simple copy of
the file, it is rather realized gradually by two distinct programs exchanging various kinds of messages on
the network.

The file is send piece by piece between the two sites FUN-3

Such programs are working on different machines: the overall protocol is indeed a distributed program.

2 Refinement Strategy

We are not going to model right away the final protocol, this would be too complicated and error prone.
The refinement strategy we are going to adopt is explained now.

In the initial model (section 3), the idea is to present the final result of the protocol which one can
observe when the protocol is finished. At this initial stage, the two participants in the protocol - the sender
and the receiver - are not supposed to reside on different sites. This is a technique which we shall always
use when modelling protocols. This initial model is important because it tells us exactly what the protocol
is supposed to achieve without telling us how.

1

In the first refinement (section 4), we shall separate the sender and the receiver. Moreover, the file will be
transmitted piece by piece between them, not in one shot as in the initial model. However, this separation
of the sender and the receiver will not be complete: we suppose that the receiver can "see" what remains to
be transmitted in the sender’s site and is able to take "directly" the next item from the sender and add it to
its own file. At this stage, we explain the essence of the algorithm but we do not see yet the details of the
distributed behavior as performed on each site. This kind of refinement is very important in the modelling
of a protocol: we simplify our task by allowing separate participants to "cheat" by looking directly into
other participants private memories.

In the next refinement (section 5), the receiver is not cheating any more: it is not able to access directly
the sender’s site. In fact, the sender will send messages that the receiver will read. The receiver then re-
sponds to these messages by returning some acknowledgment messages to the sender. The fine details of
the distributed algorithm are revealed in full. What is important here is that the messages between the par-
ticipants can be seen as a means of implementing the previous abstraction where the receiver could have
a direct access to the contents of the sender’s memory. Again, this is a technique that we shall frequently
use in protocol modelling.

In the last refinement (section 6), we shall optimize what is sent between the two participants. The
protocol is not modified any more, it is made just more efficient.

3 Protocol Initial Model

What we are going to develop here is not directly the distributed program in question. We are rather
going to construct a model of its distributed execution. In the context of this model, the file to transfer is
formalized by means of a finite sequence f . The file f is supposed to “reside” at the sender’s site. At the
end of this protocol execution, we want the file f to be copied without loss nor duplication at the receiver’s
site on a file named g supposed to be empty initially. This is illustrated on Figure 1 below.

a

b

c

RECEIVER

g

a

b

c

f

SENDER

a

b

c

RECEIVER

g

f

SENDER

INITIAL SITUATION FINAL SITUATION

Fig. 1. Initial and Final Situations

2

3.1 The State

The context is made of a set D, which is called a carrier set. This set represents the data that are stored in
the file. The only implicit property that we assume concerning carrier sets is that they are not empty. The
presence of this set makes our development generic. It means that the set D could be instantiated later
to a particular set. Furthermore, we have two constants. First the constant n, which is a positive natural
number, and second the constant f , which is a total function from the interval 1 .. n to the set D. This is
the way we formalize finite sequences. These properties are written below as axm0_1 and axm0_2.

sets: D
constants: n

f

axm0_1: 0 < n

axm0_2: f ∈ 1 .. n→D

We have a variable, g, which is a partial function from the interval 1 .. n to the set D. It is written below
in invariant inv0_1. We have also a boolean variable b stating when the protocol is finished (b = TRUE).
As we shall see below in section 3.3, variable g is empty when the protocol is not finished whereas equal
to f when the protocol is finished. This is formalised in invariants inv0_2 and inv0_3

variables: g
b

inv0_1: g ∈ 1 .. n 7→D

inv0_2: b = FALSE ⇒ g = ∅

inv0_3: b = TRUE ⇒ g = f

3.2 Reminder of Mathematical Notations

In the previous sections we have used some mathematical concepts such as intervals, partial functions,
and total functions. We recall here a few notations and definitions concerning such concepts and similar
ones.

Given two natural numbers a and b, the interval between a and b is the set of natural numbers x where
a ≤ x and x ≤ b. It is denoted by the construct a .. b. Note that when b is smaller than a, the interval a .. b
is empty.

x ∈ S set membership operator

N set of natural numbers: {0, 1, 2, 3, . . .}

a .. b interval from a to b: {a, a + 1, . . . , b} (empty when b < a)

Given two sets S and T , and two elements a and b belonging to S and T respectively, the ordered pair
made of a and b in that order is denoted by the construct a 7→ b. The set of all such ordered pairs made
out of S and T is called the Cartesian product of S and T . It is denoted by the construct S × T .

Given a set T , the fact that a set S is a subset of T , is denoted by the predicate S ⊆ T . The set of all
subsets of a set S is called the power set of S. It is denoted by the construct P(S).

3

a 7→ b pair constructing operator

S × T Cartesian product operator: the set of all pairs from S to T

S ⊆ T set inclusion operator

P(S) power set operator: set of all subsets of a given set S

Given two sets S and T , the power set of their Cartesian product is called the set of binary relations
built on S and T . It is denoted by P(S×T), usually abbreviated by the construct S↔T . A binary relation
is thus a set of pairs. It can be empty. In this case it is denoted by the empty set ∅.

Given a binary relation r built on two sets S and T (thus r belongs to the set S ↔ T), the domain of r
is the subset of S whose elements x are such that there exists an element y belonging to T such that the
pair x 7→ y belongs to r. It is denoted by the construct dom(r).

Symmetrically, the range of r is the subset of T whose elements y are such that there exists an element
x of S such that the pair x 7→ y belongs to r. It is denoted by the construct ran(r).

S ↔ T set of binary relations from S to T

dom(r) domain of a relation r

ran(r) range of a relation r

Next is an illustration of a binary relation r between sets S and T :

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

r
S T

Given two sets S and T , a partial function f from S to T is a binary relation from S to T where any
two pairs x 7→ y and x 7→ z belonging to f are such that y is equal to z. The set of all partial functions
from S to T is denoted by the construct S 7→ T .

4

Given two sets S and T , a total function f from S to T is a partial function from S to T whose domain
is exactly S. The set of all total functions from S to T is denoted by the construct S → T .

S 7→ T set of partial functions from S to T

S → T set of total functions from S to T

Next is an illustration of a partial function f from set S to set T , where the domain of f is the set
{a1, a3, a5, a7} and its range is the the set {b2, b4, b6}:

a3
a2

a6
a7

b1

f

b3

b4

b5

b6

b2

a5

a1

a4

S T

Next is an illustration of a total function f from set S to set T . As can be seen, the domain of f is now
exactly S:

a2

b1

f

b3

b4

b5

b6

b2

a1

a4
a3

a5

a6

a7

S T

3.3 The Events

Coming back to our example, let us now define the events of our first model. Initially, g is empty. This is
indicated in the special event init below. The very global transfer action of the protocol can be abstracted
by means of a single event called final:

5

init
g := ∅
b := FALSE

final
when

b = FALSE
then

g := f
b := TRUE

end

Event final does not exist by itself. In other words, it is not part of the protocol: it is just a temporal
snapshot that we would like hopefully to observe. In the reality, the transfer of the file f is not done in
one shot, it is made gradually. But, at this very initial stage of our approach, we are not interested in this.
In other words, as an abstraction, and regardless of what will happen in the details of the distributed
execution of the protocol, its final action must result in the possibility to observe that the file f has indeed
been copied into the file g.

At this point, it should be noted that we are not committed to any particular protocol: this model is thus,
in a sense, the most general one corresponding to a given class of protocols, namely that of file transfers.
Some more sophisticated specifications could have been proposed, in which the file might have only been
partially transfered (this case will be studied in chapter 6), but such an extension is not studied in the
present example.

3.4 Proofs

Let us now turn our attention to the proofs. At this stage, the only proofs which are to be considered are
invariant proofs and the deadlock freeness proof. Here are the proof obligations concerning the estab-
lishment of invariants inv0_1 and inv0_2 by the initialization event init. Here is the first proof obligation
concerning the establishment of invariant inv0_1 by event init:

axm0_1
axm0_2
`

modified inv0_1

0 < n
f ∈ 1 .. n→D
`
∅ ∈ 1 .. n 7→D

init / inv0_1 / INV

The corresponding proof will be done by using informal arguments only: clearly the empty function
is a partial function from 1 .. n to D. For proofs involving set theoretic constructs, we shall not provide
specific inference rules as we have done in chapter 2 for propositional logic and equality, we shall instead
use a "generic" inference rule named SET, which we shall justify informally each time. Here are now the
proof obligations concerning the establishment of invariant inv0_2 and inv0_3 by event init:

axm0_1
axm0_2
`

modified inv0_2

0 < n
f ∈ 1 .. n→D
`
FALSE = FALSE ⇒ ∅ = ∅

init / inv0_2 / INV

6

axm0_1
axm0_2
`

modified inv0_3

0 < n
f ∈ 1 .. n→D
`
FALSE = TRUE ⇒ ∅ = f

init / inv0_3 / INV

The corresponding proofs can be done easily. Here is the proof obligation concerning the preservation of
invariant inv0_1 by event final:

axm0_1
axm0_2
inv0_1
inv0_2
inv0_3
guard
`

modified inv0_1

0 < n
f ∈ 1 .. n→D
g ∈ 1 .. n 7→D
b = FALSE ⇒ g = ∅
b = TRUE ⇒ g = f
b = FALSE
`
f ∈ 1 .. n 7→D

final / inv0_1 / INV

After applying MON, the proof goes as indicated below. A total function from one set to another is indeed
a partial function built on the same sets.

f ∈ 1 .. n→D
`
f ∈ 1 .. n 7→D

SET

Here are the proof obligations concerning the preservation of invariant inv0_2 and inv0_3 by event final:

axm0_2
axm0_3
inv0_1
inv0_2
inv0_3
guard
`

modified inv0_2

0 < n
f ∈ 1 .. n→D
g ∈ 1 .. n 7→D
b = FALSE ⇒ g = ∅
b = TRUE ⇒ g = f
b = FALSE
`
TRUE = FALSE ⇒ g = ∅

final / inv0_2 / INV

axm0_2
axm0_3
inv0_1
inv0_2
inv0_3
guard
`

modified inv0_3

0 < n
f ∈ 1 .. n→D
g ∈ 1 .. n 7→D
b = FALSE ⇒ g = ∅
b = TRUE ⇒ g = f
b = FALSE
`
TRUE = TRUE ⇒ f = f

final / inv0_3 / INV

7

The corresponding proofs can be done easily using inference rules introduced in chapter 2.

4 Protocol First Refinement

4.1 Informal Presentation

We are now going to refine the file transfer done in one shot by the previous abstract event final acting
“magically” on the receiver’s side. For this, we have an additional concrete event named receive cor-
responding to an intermediate phase of the protocol. It aims at transferring the file piece by piece. Of
course, the abstract event final should not disappear: it will have a concrete counterpart in which the same
observation as in the abstraction can be done.

On Figure 2 below, you can see on top what could have been observed in the abstraction, namely the init
event followed by the final event. On the bottom, you can see what we can observe during this refinement.
We can say that the observer is now opening eyes more often than in the abstraction. It is possible to
observe a number of occurrences of the event receive in between that of event init and that of event final.

init receive receive receive

init final

final

Fig. 2. Initial Abstraction and First Refinement Observations

We change the variable g to another one, h, which is modified by event receive. In fact, this event will
gradually copy the file f from the sender’s side to the receiver’s side. For this it will use an index r which
is progressing as indicated in Figure 3 below.

receive receive receive

b

a

b

c

f

n

1r

a

b

c

b

a

f

n

1

rc

b

a

f

a

r

n

1

c

b

a

f

a

r

c

n

1

h h h h

Fig. 3. A Trace of the First Refinement Behavior

8

As can be seen, event receive is adding an element to file h by copying the rth element of file f to file
h. It will be interesting to see what event final does now (wait until section 4.4).

4.2 The State

We enlarge our state by adding to it a variable r which is a natural number. This variable is initialized to
1. It will serve as an index on the file f : it is thus within the interval 1 .. n + 1 as indicated in invariant
inv1_1 below. We also replace the variable g by another one named h. Variable h is exactly equal to the
constant f with domain restricted to the interval 1 .. r − 1 (see next section). This is written by means
of the following construct: (1 .. r − 1) � f . In other words, in (1 .. r − 1) � f we are considering only
those pairs x 7→ y of f where x is in the set 1 .. r − 1. This is recorded in invariant inv1_2. Finally, we
have to establish the connection between the concrete variable h and the abstract variable g: at the end of
the protocol (when b is TRUE) then r must be equal to n + 1. This is stated in invariant inv1_3. It is then
easy to prove theorem thm1_1 stating that g is equal to h when b is equal to TRUE.

variables: b
h
r

inv1_1: r ∈ 1 .. n + 1

inv1_2: h = (1 .. r − 1) � f

inv1_3: b = TRUE ⇒ r = n + 1

thm1_1: b = TRUE ⇒ g = h

4.3 More Mathematical Symbols

In the previous section we have introduced operator � for restricting the domain of a relation. In this
section we introduce more restriction operators.

Given a relation r form S to T and a subset s of S, expression s � r denotes the relation r with only
those pairs whose first element is in s. It is called a domain restriction.

Given a relation r form S to T and a subset s of S, expression s �− r denotes the relation r with only
those pairs whose first element is not in s. It is called domain subtraction.

Given a relation r form S to T and a subset t of T , expression r � t denotes the relation r with only
those pairs whose second element is in t. It is called a range restriction.

Given a relation r form S to T and a subset s of S, expression r �− t denotes the relation r with only
those pairs whose second element is not in t. It is called range subtraction.

s � r domain restriction operator

s �− r domain subtraction operator

r � t range restriction operator

r �− t range subtraction operator

9

Next is an illustration where the dotted lines correspond to {a3, a7}� f .

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

f
TS

Next is an illustration where the dotted lines correspond to {a3, a7}�− f .

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

S T
f

Next is an illustration where the dotted lines correspond to f � {b2, b4}.

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

S
f

T

Next is an illustration where the dotted lines correspond to f �− {b2, b4}.

10

a3
a2

a6
a7

b1

b3

b4

b5

b6

b2

a5

a1

a4

f
S T

4.4 The Events

Coming back to our example, let us now define the events of this refinement. The initializing event init set
b to FALSE as in the abstraction, h to the empty set and r to 1. Event receive is adding an element to file
h by copying the rth element of file f into h, it also increment r, and event final does nothing (just setting
b to TRUE as in the abstraction)! This seems strange, but we shall prove that it refines its abstraction. In
fact, it just acts now as a witness: when its guard is true, that is when condition r = n + 1 holds and b is
FALSE, then file g must be equal to file f as stipulated in its abstraction.

init
b := FALSE
h := ∅
r := 1

receive
status

convergent
when

r ≤ n
then

h := h ∪ {r 7→ f(r)}
r := r + 1

end

final
when

r = n + 1
b = FALSE

then
b := TRUE

end

Notice the status of event receive: it is convergent meaning that we have to prove that it cannot "keep
control" for ever. For proving this, we have to exhibit a numerical variant and prove that event receive
decreases it. This will be done in section 4.6.

4.5 Refinement Proofs

The proof for the initializing event init is simple. Here is the proof obligation for the establishment of
invariant inv1_1:

axm0_1
axm0_2
`

modified inv1_1

0 < n
f ∈ 1 .. n→D
`
1 ∈ 1 .. n + 1

init / inv1_1 / INV

11

The proof is done easily by transforming the goal 1 ∈ 1 .. n + 1 into 1 ≤ 1 ∧ 1 ≤ n + 1. Then we
apply inference rule AND_R followed by simple arithmetic calculations. Here is now the proof obligation
for the establishment of invariant inv1_2:

axm0_1
axm0_2
`

modified inv1_2

0 < n
f ∈ 1 .. n→D
`
∅ = (1 .. 1− 1) � f

init / inv1_2 / INV

For proving this, we first transform the interval 1 .. 1 − 1 into 1 .. 0, which is empty. Then we notice
that the expression ∅ � f denotes the empty set. We finally apply inference rule EQL. Finally, proving
inv1_3 is trivial.

More interesting are the refinement proofs for event final. First, we have to apply the proof obligation
rule GRD, which is obvious since the guard of the concrete version, namely r = n+1, is clearly stronger
than that of the abstraction which is missing (thus always true). Applying now rule INV to invariant inv1_1
leads to the proof of the following sequent, whose proof is obvious according to inference rules MON and
then HYP (since the goal r ∈ 1 .. n + 1 is also an hypothesis):

. . .
inv1_1
. . .
guard of final
. . .
`

modified inv1_1

. . .
r ∈ 1 .. n + 1
. . .
r = n + 1
. . .
`
r ∈ 1 .. n + 1

final / inv1_1 / INV

Likewise, invariant inv1_2 is trivially proved using inference rules MON and HYP:

. . .
inv1_2
. . .
guard of final
. . .
`

modified inv1_2

. . .
h = (1 .. r − 1) � f
. . .
r = n + 1
. . .
`
h = (1 .. r − 1) � f

final / inv1_2 / INV

The preservation of invariant inv1_3 by event final requires proving the following which is obvious:

. . .
guard of final
. . .
`

modified inv1_3

. . .
r = n + 1
. . .
`
TRUE = TRUE ⇒ r = n + 1

final / inv1_3 / INV

12

The preservation of invariant inv1_1 by event receive requires proving:

. . .
inv1_1
. . .
guard of receive
`

modified inv1_1

. . .
r ∈ 1 .. n + 1
. . .
r ≤ n
`
r + 1 ∈ 1 .. n + 1

receive / inv1_1 / INV

Here is the proof after applying MON:

r ∈ 1 .. n + 1
r ≤ n
`
r + 1 ∈ 1 .. n + 1

ARI

1 ≤ r ∧ r ≤ n + 1
r ≤ n
`
1 ≤ r + 1 ∧
r + 1 ≤ n + 1

AND_L

1 ≤ r
r ≤ n + 1
r ≤ n
`
1 ≤ r + 1 ∧
r + 1 ≤ n + 1

AND_R · · ·

. . .



1 ≤ r
r ≤ n + 1
r ≤ n
`
1 ≤ r + 1

MON
1 ≤ r
`
1 ≤ r + 1

ARI
1 < r + 1
`
1 ≤ r + 1

ARI

1 ≤ r
r ≤ n + 1
r ≤ n
`
r + 1 ≤ n + 1

MON
r ≤ n
`
r + 1 ≤ n + 1

ARI
r ≤ n
`
r ≤ n

HYP

The preservation of invariant inv1_2 by event receive requires proving:

. . .
inv1_1
inv1_2
. . .
guard of receive
`

mod. inv1_2

. . .
r ∈ 1 .. n + 1
h = (1 .. r − 1) � f
. . .
r ≤ n
`
h ∪ {r 7→ f(r)} = (1 .. r + 1− 1) � f

receive / inv1_2 / INV_REF

Here is the proof after applying MON:

13

f ∈ 1 .. n→D
r ∈ 1 .. n + 1
h = (1 .. r − 1) � f
r ≤ n
`
h ∪ {r 7→ f(r)} = (1 .. r + 1− 1) � f

ARI

f ∈ 1 .. n→D
1 ≤ r
h = (1 .. r − 1) � f
r ≤ n
`
h ∪ {r 7→ f(r)} = (1 .. r) � f

EQ_LR . . .

. . .

f ∈ 1 .. n→D
1 ≤ r
r ≤ n
`
(1 .. r − 1) � f ∪ {r 7→ f(r)} = (1 .. r) � f

SET

The last sequent is discharged by noticing that adding the mini-function {r 7→ f(r)} (where r is in the
domain of f) to the function f restricted to the interval 1 .. r− 1 yields exactly f restricted to the interval
1 .. r. The preservation of invariant inv1_3 by event receive requires proving:

. . .
inv1_3
guard of receive
`

modified inv1_3

. . .
b = TRUE ⇒ r = n + 1
r ≤ n
`
b = TRUE ⇒ r + 1 = n + 1

receive / inv1_3 / INV_REF

The proof goes as follows after applying MON:

b = TRUE ⇒ r = n + 1
r ≤ n
`
b = TRUE ⇒ r + 1 = n + 1

IMP_R

b = TRUE ⇒ r = n + 1
r ≤ n
b = TRUE
`
r + 1 = n + 1

IMP_L . . .

. . .

r = n + 1
r ≤ n
b = TRUE
`
r + 1 = n + 1

EQL_LR

n + 1 ≤ n
b = TRUE
`
r + 1 = n + 1

ARI

⊥
b = TRUE
`
r + 1 = n + 1

FALSE_L

4.6 Convergence Proof of Event receive

We have to prove that the new event receive converges. For this, we have to exhibit a variant, that is a
non-negative expression which is decreased by event receive. The most obvious variant is the following:

variant1: n + 1− r

14

Proving that this variant is decreased is easy. We have to apply proof obligation rules NAT (the variant de-
notes a natural number) and VAR (the variant is decreased by event receive). The proof of the decreasing
of this variant is extremely important because it shows that the concrete “execution” of event final might
be eventually reachable. In other words, it shows that our initial goal stated in the abstract version of final
might be reachable in the concrete version despite the new event receive. We have written “might be” on
purpose, because what we have proved is that event receive cannot be executed for ever. But it might stop
in a position where event final cannot be enabled because its guard would not be true. It is precisely the
purpose of the next section to prove that this cannot happen.

4.7 Proving Relative Deadlock Freeness

We are now going to prove that this system never deadlocks (as was the case for the abstraction). Applying
rule DLF, it is easy to prove that the disjunction of the guards of events receive and final is always true.
Applying the rule leads to the following after some simplifications:

r ∈ 1 .. n + 1
`
r ≤ n ∨ r = n + 1

As can be seen, the “execution” is the following: init, followed by one or more “executions” of event
received, followed by a single “execution” of event final.

5 Protocol Second Refinement

The previous refinement is not satisfactory as the event receive, supposedly “executed” by the receiver,
has a direct access to the file f which is supposed to be situated at the sender site. We want to have a more
distributed execution of this protocol. Our observer is now opening eyes more frequently and he can see
that another event, send, occurs before each occurrence of event receive. On Figure 4 you can see first
what the observer could see at previous stages and, in the bottom, what he can see now.

init receive receive receive

init

receivesendreceivesendreceivesendinit

final

final

final

Fig. 4. A Trace of the Second Refinement Behavior

15

5.1 The State and the Events

The sender has a local counter, s, which records the index of the next item to be sent to the receiver
(initially, s is set to 1). When a transmission does occur, the data item d, which is equal to f(s), is sent
to the receiver, the counter s is incremented, and the new value of s is also sent together with d to the
receiver (event send). Notice that the sender does not immediately send the next item. It waits until it
receives an acknowledgement from the receiver. This acknowledgement, as we shall see, is the counter r.

When the receiver receives a pair “index-item”, it compares the received counter with r and accepts the
item if the counter it receives is different from r (event receive). In this case, r is incremented and then
sent as an acknowledgment. When the sender receives a number r which is equal to its own counter s, it
considers this to be an acknowledgement and proceeds with the next item, and so on.

The sender and the receiver are thus connected by means of two channels as indicated on Figure 5: the
data channel and the acknowledgement channel.

Data Channel

Ack. Channel

ReceiverSender

Fig. 5. The Channels

Invariant inv2_1 and inv2_2 below correspond to the main properties of s. It states that the value of the
counter s is at most one more than that of the counter r. It remains now for us to formalize the channels.
For the moment (in this refinement) the data channel contains the counter s of the sender and also the data
item d. As the counter s has already been formalized, we only have to define the invariants corresponding
to d. This is done in invariants inv2_3 which states that the transmitted data d is exactly the rth element of
the input file f when s is different from r (that is when s is equal to r + 1 according to invariant inv2_2).
The Acknowledgment channel just contains the counter r of the receiver.

variables: b
h
s
r
d

inv2_1: s ≤ n + 1

inv2_2: s ∈ r .. r + 1

inv2_3: s = r + 1 ⇒ d = f(r)

Next are the various events. They encode the informal behavior of the protocol as described above:

16

init
b := FALSE
h := ∅
s := 1
r := 1
d :∈ D

send
when

s = r
r 6= n + 1

then
d := f(s)
s := s + 1

end

receive
when

s = r + 1
then

h := h ∪ {r 7→ d}
r := r + 1

end

final
when

b = FALSE
r = n + 1

then
b := TRUE

end

Notice our usage of the non-deterministic assignment d :∈ D in event init. Non-deterministic assignment
will be explained in greater details in section 1.8 of chapter 5. One has just to understand for now that d
is assigned any value pertaining to the set D.

5.2 Proofs

All proofs are left as exercises to the reader. We encourage you to only take weaker invariants than those
proposed in the previous section. More precisely, first drop invariant inv2_2 and replace invariant inv2_1
by a weaker one such as s ∈ N, so that you will be able to see exactly where you need them. Remember
that you will have to prove in turn that:

– event init establishes the invariants,
– event receive and final correctly refine their more abstract versions,
– event send refines the implicit event skip,
– event send converges: for this, you will have to exhibit a variant expression,
– taken together, events never deadlock.

Also do not forget that for variables that are the same as those in the abstraction, here b, h, and r, you will
have to prove that the actions done on them by old events receive and final are identical.

6 Protocol Third Refinement

In this refinement, we shall give the final implementation of the two-phase handshake protocol. The idea is
to observe that it is not necessary to transmit the entire counters s and r on the data and acknowledgment
channels. This is so for three reasons: (1) the only tests made on both sites are equality tests (s = r or
s 6= r, as can be seen in the events defined at the end of section 5.1), (2) the only modifications of the
counters are simple incrementations (again, this can be seen in the events defined in the section 5.1), and
(3) the difference between s and r is at most 1 (look at invariant inv2_2). As a consequence, these equality
tests can be performed on the parities of these pointers only. These are thus the quantities we are going to
transfer between the sites.

6.1 The State

Here are a few obvious definitions concerning the parities of natural numbers. The parity of 0 is 0 and the
parity of x + 1 is 1− parity(x):

17

constants: . . .
parity

axm3_1: parity ∈ N→{0, 1}

axm3_2: parity(0) = 0

axm3_3: ∀x · x ∈ N ⇒ parity(x + 1) = 1− parity(x)

Notice that in axm3_3, we see for the first time a predicate logic formula, which is introduced by the
quantifier ∀ (to be read "forall").

It is then easy to prove the following result (in section ??), which we are going to exploit. It says that
the comparison of two natural numbers is identical to the comparison of their parities when the difference
between these two numbers is at most one:

thm3_1: ∀x, y · x ∈ N
y ∈ N
x ∈ y .. y + 1
parity(x) = parity(y)
⇒
x = y

This is a theorem, i.e. a consequence to be proved of what has been said elsewhere, namely properties
of constants and invariants. We now refine the state and introduce two new variables p and q defined to be
the parities of s and r respectively:

variables: . . .
p
q

inv3_1: p = parity(s)

inv3_2: q = parity(r)

6.2 The Events

The refined events are as follows:

init
b := FALSE
h := ∅
s := 1
r := 1
p := 1
q := 1
d :∈ D

send
when

p = q
s 6= n + 1

then
d := f(s)
s := s + 1
p := 1− p

end

receive
when

p 6= q
then

h := h ∪ {r 7→ d}
r := r + 1
q := 1− q

end

final
when

b = FALSE
r = n + 1

then
b := TRUE

end

It can be seen that each counter s and r is now modified on one site only. So the only data transmitted
from one site to the other are d and p from the sender to the receiver and q from the receiver to the sender.
Again, all proofs are left as exercises to the reader.

18

6.3 Inference Rules for Universally Quantified Predicates

Before proving theorem thm3_1, we need clearly some inference rules dealing with universally quantified
formulas. As for elementary logic, we need two rules: one for universally quantified assumptions (left rule)
and one for a universally quantified goal (right rule). Here are these rules:

H, ∀x · P(x), P(E) ` Q

H, ∀x · P(x) ` Q
ALL_L

H ` P(x)

H ` ∀x · P(x)
ALL_R

(x not free in H)

The first rule (ALL_L) allows us to add another assumption when we have a universally quantified one.
This new assumption is obtained by instantiating the quantified variable x by any expression E in the
predicate P(x). The second rule (ALL_R) allows us to remove the "∀" quantifier appearing in the goal.
This can be done however only if the quantified variable (here x) does not appear free in the the set of
assumptions H: this requirement is called a side condition.

Equipped with the rule introduced in this section, we can now prove theorem thm3_1. The proof obli-
gation for this theorem consists in building a sequent with thm3_1 as a goal and all relevant axioms as
assumptions, yielding the following:

. . .
parity ∈ N→{0, 1}
parity(0) = 0
∀x · x ∈ N ⇒ parity(x + 1) = 1− parity(x)
`
∀x, y · x ∈ N

y ∈ N
x ∈ y .. y + 1
parity(x) = parity(y)
⇒
x = y

This proof is left to the reader.

7 Development Revisited

7.1 Motivation and the Introduction of Anticipated Events

In the development we have done so far, we were changing the file variable g of the initial model to
another file variable h in the first refinement. Moreover, in order to establish the relationship between both
variables (gluing invariants inv0_2 and inv0_3) we had to introduce the boolean variable b which is not
really a variable of the protocol. All this seems a bit artificial.

In fact, the reason why we had to change from variable g in the initial model to variable h in the first
refinement is purely technical. This is because the new event receive introduced in the first refinement
must refine skip (as each new event does). But this new event modifies h: it adds to h an item taken in f .
As a consequence, it cannot do that on g: h must be distinct from g.

In order to circumvent this difficulty, we introduce the concept of an anticipated event1. In the initial
model, we introduce the event receive as "anticipated". Its only action is to possibly modify the variable g

1 This concept was developed together with D. Cansell and D. Méry.

19

in a non-deterministic way. More generally, if a new anticipated event is introduced in a refinement (which
is not the case here), it needs not decrease a variant, it will do that only when it becomes convergent in a
further refinement. However, an anticipated event must not increment the current variant (if any).

In this new development, event receive becomes convergent in the first refinement. It is exactly as
event receive in the previous development except that it works now with variable g. By this, we avoid
introducing the artificial file variable h and the boolean variable b.

In the following section, we quickly present this technique applied to our current development. As you
will see, it is simpler than the previous one thanks to the introduction of an anticipated event in the initial
model.

7.2 Initial Model

variables: g inv0_1: g ∈ N↔D

init
g :∈ N↔D

final
when

g = f
then

skip
end

receive
status

anticipated
when

g 6= f
then

g :∈ N↔D
end

7.3 First Refinement

variables: g
r

inv1_1: r ∈ 1 .. n + 1

inv1_2: g = (1 .. r − 1) � f

variant1: n + 1− r

init
g := ∅
r := 1

receive
status

convergent
when

r ≤ n
then

g := g ∪ {r 7→ f(r)}
r := r + 1

end

final
when

r = n + 1
then

skip
end

20

7.4 Second Refinement

variables: g
s
r
d

inv2_1: s ≤ n + 1

inv2_2: s ∈ r .. r + 1

inv2_3: s = r + 1 ⇒ d = f(r)

variant2: r + 1− s

init
g := ∅
s := 1
r := 1
d :∈ D

send
status

convergent
when

s = r
r 6= n + 1

then
d := f(s)
s := s + 1

end

receive
when

s = r + 1
then

g := g ∪ {r 7→ d}
r := r + 1

end

final
when

r = n + 1
then

skip
end

7.5 Third Refinement

variables: . . .
p
q

inv3_1: p = parity(s)

inv3_2: q = parity(r)

init
g := ∅
s := 1
r := 1
p := 1
q := 1
d :∈ D

send
when

p = q
s 6= n + 1

then
d := f(s)
s := s + 1
p := 1− p

end

receive
when

p 6= q
then

g := g ∪ {r 7→ d}
r := r + 1
q := 1− q

end

final
when

r = n + 1
then

skip
end

References

1. L. Lamport Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers Addison-
Wesley 1999.

21

