XII. Routing Algorithm for a Mobile Agent (October 2008)

The purpose of the example developed in this chapter is to present an interesting routing algorithm
for sending messages to a mobile phone. In this example, we shall again encounter a tree structure as
in the previous chapter (Synchronizing Processes on a Tree Structured Network), but this time the tree
structure will be modified dynamically. We shall also encounter another example (besides the Bounded
Re-transmission Protocol in chapter 6) where the usage of clocks will play a fundamental role. This
example is taken from [1].

1 Informal Description of the Problem

A, so-called, mobile agent M is supposed to travel between various sites. Fixed agents situated in the sites
in question want to establish some communications with it. To simplify matters, such communications are
supposed to be unidirectional: they take the practical form of messages sent from the fixed agents to M.

1.1 Abstract Informal Specification.

In an ideal abstract world, the moves of the mobile agent M from one site to another are instantaneous.
Likewise, the knowledge by the fixed agents of the exact position of M is also supposed to be instanta-
neous. In that case, the fixed agents follow the mobile agent M by sending messages where it currently
is. Notice that such messages are (for the moment) received immediately by M. This is illustrated on
figure 1 where the mobile agent M (represented by a black square) originally situated at site ¢, moves
then successively to sites d, a, ¢, and b. The arrow indicates where each fixed agent are sending messages:
they just follow M since they immediately know where it is.

ae b a e b ag<—9e b

de—»g ¢ d B<—o c d

ae b ae—»HD
do&c do/ c

Fig. 1. First Abstraction: The Fixed Agents Always Know where the Mobile Agent is

1.2 First Informal Refinement.

In a more realistic concrete world, the moves of M from one site to another are still instantaneous, but the
only site to know where M is, is the site that M has just left. The other sites are not aware of the move,
they continue thus to send messages to the site where they still believe that M resides. Then it is quite
possible that some messages arrive at a destination which is not currently that of M. As a consequence,
each site, besides sending its own messages, is thus also in charge of possibly forwarding the messages
received while M is not present any more locally. It is quite possible that several such intermediate
transmissions take place before a message eventually reaches M. This is illustrated on figure 2.

ae b ae b all b
de—»g c dg=—9 ¢ d

a b ae b

d c d c

Fig. 2. First Refinement: Fixed Agents do not Know the Exact Position of the Mobile Agent

As can be seen, when M reaches a new site, that site destroys the previous knowledge it has concerning
the location of M. For instance, in the third snapshot, where M has just moved to site a coming from site
d, the link between a and c that existed in the previous situation is removed. Similarly, when M leaves a
site, that site re-actualizes its knowledge by storing the new location of M (again, supposed to be known
instantaneously). For instance, in the fourth snapshot above, where M has just moved from « to ¢, a new
link between a and c is established.

Intuitively for the moment, we can figure out that the communication channels are dynamically modi-
fied while maintaining a tree structure whose root is the actual site of M. This is illustrated on figure 3
where we have reordered the sites to show more clearly the tree structure. Each site is then indirectly con-
nected to the site of M and there exists no cycles that might put some forwarded messages in an endless
loop.

1.3 Second Informal Refinement: a Problem.

In a still more realistic world, the moves of M between sites are not instantaneous anymore. In fact, when
M leaves a site, it does not know necessarily where it is going. Only when M arrives at its destination, is
it able to send a service message to its previous site in order to inform it of its present location. Of course,
the service message in question does not itself travel instantaneously. Communication messages are thus
still forwarded from sites to sites, but that forwarding might be suspended in some sites, which M has
left in the past, until such sites receive service messages informing them of the “present” location of M
(present, however, when the service message was sent, maybe not any more when it is received).

c g | :
/I\ /3\. - a{’ RE S

Fig. 3. The Tree Structure

We have no control over the relative speed of the service messages: some of them can reach their des-
tination quite quickly, while some others might take more time (but we suppose that they will eventually
arrive at their destination). On figure 4, we have put some dashed lines to indicate that the corresponding
service messages have not yet arrived: notice that service messages following the dashed lines circulate
in a direction which is the opposite of that followed by the communication messages that will be estab-
lished upon reception of the service message. In fact, when a service message arrives at its destination,
the corresponding dashed line is transformed in a “plain” line going in the opposite direction.

ae b ae b all b
de—pg ¢ dil-------- >0 C dl ------- >0 C
ae b ae b
AN AR !

dl ------- =M c d! ————— Q!c

Fig. 4. Second Refinement: The Mobile Agent sends a Service Message with its new Position

On figure 4, we have shown a series of snapshots where all service messages are pending. Notice that
the situation pictured in the last snapshot contains a potential problem. This is because site c is expected to
receive two service messages, one from d and another one from b. As a matter of fact, a site might expect
as many service messages as there has been past visits of that site by the mobile agent M.

On figure 5, we show various snapshots corresponding to the arrival of some service messages. The last
snapshot shows a situation were all service messages have reached their destination except the ones, sm1
and sm2 supposed to reach site ¢ form d and b respectively.

If the service message sm1 between d and c is very late (arriving after the service message sm?2 between
b and c although sent before sm?2), then, upon arrival, sm1 may have the disastrous effect of: (1) isolating
completely site b, and (2) forming a cycle within which communication messages may circulate for ever.
This is illustrated figure 6 where the two snapshots shows the arrival of service message sm2 followed by
that of service message sm1.

a?\\ - b ao\\ - b ' - b
I N - sm2
d‘ ------- »! c de------- J c de------- »! c

Fig. 5. Service Messages Messages sm2 from b to ¢ and sm1 from d to ¢ have not yet arrived

ae Hb ae Hb

Fig. 6. Arrival of Service Message sm2 before sm1

This failure is due to the fact that site c is mislead by service message sm1 from site d. In fact, message
sm1 should have been discarded by site b when sending service message sm2 to c. But how can site b
know about the existence of such a pending service message sm1 whose destination is also c?

1.4 Third Informal Refinement: the Solution.

0e 0 0e 0 im 0
3
y
Do »im 1 2Wme 1 20 ymel
3 0 3 5
1Y ~ "
30 4 304 s
2‘2 4 2 Lz’! 4

Fig. 7. Introducing the clock

The purpose of the distributed routing algorithm presented here and developed by L. Moreau in [1] is
precisely to solve the potential problem we discovered in previous section. The idea is to have the mobile
agent M travelling with a logical clock which is incremented each time it arrives to a new site. Upon
arrival in a site, the value of the logical clock is stored (after being incremented). It thus records the time
of the last visit of the mobile M to this site. When M sends its service message to its previous site, it

stamps that message with the new time (the one that has just been incremented and recorded in the new
site). This is illustrated on figure 7 where the local time stored in each site can be seen next to each of
them. The stamp value on the service messages are shown next to the middle of the corresponding arrow
(they are all equal as expected to the value of the clock stored at the origin of the message).

As a consequence, a new service message is stamped with a value that is certainly greater than that
recorded in its destination. When the service message arrives, it is filtered: if the stamp is smaller than or
equal to the local time of the destination then it is discarded because it is clearly a late service message.
If the stamp of a service message is greater than the local time, then the message is accepted and, simul-
taneously, the local clock of the site is updated with the value of the stamp travelling with the service
message. Thanks to this, the message could not be used a second time (in case of misbehavior of the
network). Figure 8 shows the series of situations corresponding to the arrival of the service messages. We
have decorated these situations with the clocks and the stamps.

3 o\ - 5 3 o\ - 5 40 - 5
3 415 415 5
TR .y i
2 ‘""z""' 4 3e-y-red 3e-saed
4 o 5 40 Hs5
3 e------- -0 5 3 5

2
Fig. 8.

As can be seen, the last service message is discarded because its stamp value, 2, is smaller than the
local clock, 5, at destination. We have reversed from the potential failure presented earlier. This is due to
the presence of the clock and stamps, and of the particular adopted strategy.

The system we have described seems to work, at least according to our informal explanations. But it is
certainly important to develop it formally so as to be sure that it behaves in a correct fashion. This is the
purpose of the coming sections.

2 Initial Model

Now, we have enough information to start the formal construction of this routing protocol. The first ques-
tion that we must ask ourself with an example such as this one (and many others) is that concerning the
level of description we have to start from. It is out of the question to start from the final solution, because
then nothing really can be proved. We must start from an abstract enough level, which must be pretty ob-
vious (and where no technical difficulties exist yet, in particular those dealing with time and distances), so
that the proposed solution can be proved to indeed solve the problem that has been informally described.

In the present case, we are going to start from the second abstract informal level described in section
1.2, where the exact position of the mobile is only known by its previous site. This level is quite simple:

the communication channels, as we have said informally, form a tree structure (an invariant that owes to
be proved, of course), the moves of the mobile are timeless, and finally the knowledge concerning the new
location of the mobile is instantaneously communicated to its previous site (no service message thus).
Further refinements will introduce more realistic constraints.

2.1 The State

We have two carrier sets .S and M: the set S denotes the set of sites and M the set of communication
messages. To have a carrier set representing the set of communication messages is really a useful abstrac-
tion since we are not interested in the contents of these messages: we can then suppose that they are all
distinct. Initially the mobile is at some initial location denoted by the constant il (axm0_1):

sets: S

% constant: 4/ axmQ_1: il € S

We have three variables in our initial model: [/, ¢, and p. The variable [denotes the actual location of
the mobile agent (inv0_1). The variable ¢ denotes the dynamically changing communication channels
between sites: it is a total function from sites to sites (inv0_2). Notice that this function is obviously not
meaningful at /. Finally the variable p denotes the pool of messages that are waiting to be forwarded on
each site: clearly a given message is at most in one site at a time, so that p is a partial function from
messages to sites (inv0_3). Formally:

inv0_1: [¢ S

variables: [, ¢, p inv0_2: ¢c € S\{l}—=S5

inv0 3: pe M+ S

It remains now for us to formalize the tree structure of the communication channels. The root of the
tree is [and the parent function is the function c. We shall use exactly the same formulation as the one
introduced in chapter 9 (section 7.7), namely inv0_4:

inv0.4: VI - TCf YT =T=0

We can see the difference with the previous chapter: in this one, this statement is an invariant, not an
axiom.

2.2 The Events

We have four events besides event init which shows that all nodes are pointing to the initial position of the
mobile M. Event rcv_agt corresponds to the mobile moving instantaneously from the site / to another one
(different from [). Event sSnd_msg corresponds to a new communication message m sent from one site
s to the mobile. Event fwd_msg corresponds to a communication message m being forwarded from one
site s to another one by means of the corresponding channel (note that this transfer is also instantaneous
for the moment). And finally event dlv_msg corresponds to a communication message m being delivered
to the mobile. Here are these events:

rcv_agt snd_msg
init any s where any s, m where
] il se S\ {l} ses
T . th e M\d
¢ = (S\ {1}) x {il} e g € M\ dom(p)
pi=2 c:=({s}gc)U{l— s} p(m) :=s
end end
fwd_msg dlv_msg
any m where any m where
m € dom(p) m € dom(p)
p(m) #1 p(m) =1
then then
p(m) := c(p(m)) p:={m}<p
end end

2.3 The Proofs

The only interesting proof at this level is that of the preservation of invariant invQ_4 by event rcv_agt.
Here is what we have to prove:

vI'- TCS
Invariant inv0_4 T Cc YT
=
T=0
Guard of rcv_agt se S\ {l}
= -
T TCS
Modified Invariant inv0_4 TC({s}<€c)U{l— s} T
=
T=0

We can remove the universal quantification in the consequent of this implication by using rules ALL_R
and IMP_R. The proof proceeds then as follows:

NT. TCS TCS
T CcT] T C 7T
= =
T=02 ALL L T=0 SET
LAY A
7 C({sy<e)U{lm s) T T C({s}ge)U{lm s})T]
T'=9o T=o

rcs
Tl oo
se S\ {l

TS: @l o Teg S\{} »
;Eg S\{ } — | TSst<quil—sh(T]
TC({s}<c)U{l— s} T '_T C e T
T Cc1T] o
}_
T=0g

The key of this proof is the following lemma whose proof is sketched below.

se S\ {1}
}_T C({s}<c)u{lm s} T

T Cc 1 T]

Consider two cases successively s ¢ T and s € T'. In the first case, T' C ({s} < ¢) U {l — s})71
reduces t0 T C (¢! & {s})[T], hence T' C ¢~ [T7]. In the second case, T C ({s} < c) U {l > s})~!
reduces to T C (¢! & {s})[T] U {I} which contradicts s € T since s ¢ (¢~ & {s})[T] and s # L.

7]
[T]

3 First Refinement

In this first refinement, we are more concrete. The movements of the mobile will not be instantaneous any
more, it will be made in two steps: first the mobile leaves the site [(new event leave_agt), and then the
mobile arrives at a new site s different from [(old event rcv_agt).

In that second case, the knowledge by the previous site | of the new position s of the mobile will not be
instantaneous any more as was the case in the initial model. In fact, as we said in section 1.3, the mobile
will send a service message to its previous site s, in order for that site to update its forward pointer to the
new site of the mobile. But during the travelling delay of the mobile and then the transmission delay of the
service message, site s cannot transmit any forward message because it does not know where the agent is.
Site s only knows that it is expecting a service message. The site corresponding to the previous position
of the mobile M will eventually receive the service message (new event rCvV_Srv).

3.1 The State

Clearly, the channel structure in this new refined model is not in phase with that of the previous model
where it was modified when the mobile agent arrived at its new destination: this was done by event
rcv_agt (in the previous model, we had no travelling time and no transmission of a service message).
In this refinement, we have thus to add a new variable, d, denoting this new channel structure (invl_1),
which will only be updated as a consequence of the new event rcv_srv.

We have a new variable, a, denoting the service channel containing the service messages mentioned in
the informal description. It is a partial function from sites to sites (invl_2), more precisely, from the site

where the mobile was before moving to the site where it currently is. This function contains the future of
the communication channel. We shall make precise in what follows the reason why a is such a function,
which is far from being obvious a priori: we shall see that, in this abstraction, this channel has a rather
magic behavior.

The next invariant, invl_3, establishes the connection between the abstract communication channel
c and its concrete counterpart d. It says that the abstract channel ¢ corresponds to the concrete one, d,
overridden by the service channel a, where we have removed a potential link from [corresponding to a
service message still travelling to /. Formally:

variables: [invl_1: d e S\{i}+S
p
d invl 22 a€ S+ S5
a
da invl 3: c=d< ({i{}<a)

We introduce another variable da which is a subset of sites (invl_4). Variable da records the sites at
which the current forwarding direction for information messages is not meaningful any more. This is
because the mobile has left these sites while none of them has received yet the expected service message.
For these reasons, the sites of da cannot forward any messages. It is claimed in the next invariant (inv1l_5)
that the domain of the acknowledgment message a extended with the singleton {I} is equal to the set da
also extended with the singleton {1}:

invl_4: da C S

invl_5: dom(a) U{l} = daU {i}

Invariant invl_5 might seem a bit strange: why not having just dom(a) = da? This is due to two reasons,
which are the following:

1. Sometimes variable ! does not denote the site where M is. More precisely, when M is travelling
from [, then [might not be yet in the domain of a (the service message to [has not yet been issued)
whereas, as we shall see in event leave_agt, [is in da because site [must not forward any message
since it does know where M is. So, in that case, we have dom(a) U {I} = da and we have | € da
and might have [¢ dom(a).

2. Conversely, when the travelling M just arrives at its new destination s (which will become thus the
new [), then the new [is removed from da since the new [is now the new site of M, hence the new [
should not forward messages anymore but delivers them directly to M. But, at the same time, a late
service message to the new [might still be travelling, hence we might have the new [being still a
member of dom(a). So, in that case, we have dom(a) = da U {l} and we have [¢ da and might
have [€ dom/(a).

3.2 The Events

The various concrete events are very close to their abstraction. As event snd_msg does not change, we
have not copied it in what follows. Here are the first ones:

div_msg fwd_msg

init any m where any m where
l:=1l m € dom(p) m € dom(p)
pi=9 , p(m) ¢ da p(m) ¢ da
d:= (S\ {1}) x {il} p(m) =1 p(m) #1
a:=9 then then
da =@ p:={m}<4p p(m) = d(p(m))

end end

Event fwd_msg has a stronger guard than its abstraction. More precisely, a message m whose site is p(m)
can only be forwarded if this site is not in da, since then the destination is not known, and also different
from [, since then it can be delivered directly by event dlv_msg.

We have a new event called leave_agt. It corresponds to the mobile leaving its site [. Of course, it can
only happen when [is not in da since otherwise the mobile would have been already in transit. As can be
seen, site [is now expecting a service message (assignment da := da U {l}).

rcv_agt rcv_srv
any s where a?ly s where
leave_agt se S\ {i} s € dom(a)
When l (S da l # s
1 ¢ da then then
then l:=s -
da := da U {l} a(l) := s Z(S: {_5 GSL
end d:={s}<ad da = da\ {s}
da :=da\ {s} end
end

Event rcv_agt has a very interesting behavior. We note that when putting a new message {! — s} in the
service channel a (this message goes from the new site s of the mobile to its previous site [), we magically
remove the previous pair (if any) whose first component was [(this corresponds to the assignment a(l) :=
s). In other words, we clean the channel by removing pending service messages to [, which might have
not been delivered yet at /. In this way, there is at most one service message pointing to a given site, and
there is thus no risk of having a pending message arriving late (that is, after a more recent one) and having
the kind of bad effect we have described in section 1.3. Of course, this is quite magic for the moment.
What we only wanted to express at this level is the intended behavior of the channel. It will remain, of

course, for us to implement this magic behavior, which is another matter: this will be the business of the
next refinement.

Finally, we have a new event, rcv_srv, corresponding to the reception by a site s of a service message
informing s of the new location a(s) of the mobile at the time this service message was sent. Notice that
after we have just said, the move from s to a(s) is indeed the most recent move done by the mobile from s

since all other pending service messages to s have been discarded by event rcv_agt. The communication
channel is updated and the service message removed from the service channel.

3.3 The Proofs
The proofs are left to the reader

10

4 Second Refinement

In the next refinement, we shall implement the magic service channel of the previous abstraction. This is
the heart of the development.

4.1 The State

We now have a clock & travelling with the agent (inv2_1). We also have in each site a variable, ¢, recording
the time of the last visit of the mobile in the corresponding site (inv2_2). Formally:

variables: inv2 1: £k € N

b
f inv2. 2: t € S—N

The new service channel b replacing a has now a structure far richer than its abstraction. It may contain
several stamped messages to the same site s. It is formalized as indicated in the following example:

s— {3+ 51,5 52,9 s3,...}

It means that there has been a message s — s1 emitted at time 3, a message s — s2 emitted at time 5, a
message s — s3 emitted at time 9, etc. The channel b is thus typed as follows:

inv23 be S—-N+JS)

Next comes the invariant inv2_4 connecting the abstract service channel ¢ and the concrete one b: the
service message to s in the abstract channel a corresponds, among all service messages to s in the concrete
channel b, to the one with the greatest time (the most recent one):

inv2_ 4: Vs- sedom(a)

When the time of the last visit ¢(s) of the recipient s of a service message is strictly smaller than the
maximum time of the pending service messages for that recipient, that is max(dom(b(s))), then the
recipient s in question is indeed expecting a real message as in the abstraction. This is formalized in the
following invariant inv2_5:

inv2_5: Vs- se S
dom(b(s)) # @
t(s) < max(dom(b(s)))
=
s € dom(a)

11

But the problem, of course, is that, a priori, the recipient does not know that it is indeed receiving the
maximum in question. This difficulty will be circumvented below in the last invariant inv2_9. Invariant
inv2_5 allows us to prove the guard strengthening of event rcv_srv, with the help of invariant inv2_9
below.

We now have three more invariants concerned with the time of the last visit ¢ and the clock k: (1) the
times in the pending service messages are never bigger than the clock (inv2_6), (2) the time of the last
visit is equal to the clock at the site of the Mobile (inv2_7), and (3) in other sites, the time of the last visit
is at most equal to the clock (inv2_8):

inv2_6: Vs-seS A dom(b(s)) # @ = max(dom(b(s))) <k
inv2 7: t(l)=k

inv2_8: Vs-seS\{l} = t(s) <k

Now comes at last the key invariant inv2_9. When the recipient s of a service message receives a message
with a time n that is strictly greater than its own time of the last visit ¢(s) then it can be absolutely
certain that it is indeed receiving the message with the greatest time, therefore the same message as in the
abstraction according to invariant inv2_4.

inv2 9: Vsn- ses
n € dom(b(s))
t(s) <n
=
n = max(dom(b(s)))

This invariant is far from being completely intuitive. The informal explanation is a follows. If several
service messages are expected at a site s, then it means that the mobile has visited s several times. And
on each such visit it has updated the time of last visit of s with the most recent value of the clock. Upon
leaving site s it has sent to s (when arriving at its new location) a service message with a stamp value
which is one more than that of the time of last visit of s. So, during its last visit to s, which has certainly
taken place after the sending (not necessarily the receiving) of the previous service messages to s, the
updated value of the time of last visit of s is then certainly greater than that of the stamp of any pending
service messages to s. As a consequence, when the mobile leaves s again for the last time, it sends (upon
arrival at its new location) yet another service message, which is then the only one with a stamp greater
than the value of the time of the last visit at s. All this, clearly, needs confirmation from a formal proof.
Thanks to this invariant, we can implement the magic abstract channel a with the concrete channel b.

4.2 The Events

Here is first the last version of event init:

12

init

=1l

p=9
d:=(S\{l}) x
b:=S5x {o}
da =@
k:=1

t: =35

(abstract-)rcv_agt
any s where

se S\ {1}

(abstract-)rcv_srv
any s where
s € dom(a)
l#s
then
d(s) = a(s)
a:={s}<ga
da :=da\ {s}
end

Next comes event rcv_agt together with its previous abstract version:

(concrete-)rcv_agt

any s where
se S\ {l}
l eda

then
l:=s
t(s):=k+1
k=k+1
b(l)(k+1):=s
d:={s}<ad
da :=da\ {s}

end

Notice the incrementation of the clock & and the storing of it in #(s). And now we propose event rCv_Srv,
again together with its previous abstract version:

(concrete-)rcv_srv
any s,n where
ses
n € dom(b(s))
t(s) <n
then
d(s) :=0b(s)(n)
t(s) :=n
da :=da\ {s}
end

We again copy below inv2_5 and inv2_9 in order to show how part of guard strengthening, namely
s € dom(a), can be proved:

inv2 5: Vs-

seS

dom(b(s)) # @

t(s) < max(dom(b(s)))
=

s € dom(a)

inv2_9: Vs, n-

ses

n € dom(b(s))
t(s) <n

=

n = max(dom(b(s)))

13

In fact, putting together inv2_9 and inv2_5, we easily obtain the following theorem:

thm2_1: Vs,n- se€S
n € dom(b(s))
t(s) <n
=
s € dom(a)

The second part of guard strengthening, namely [# s, can be proved according to inv2_7, inv2_6 and
again inv2_9. The proof is by contradiction: we suppose [= s and derive a contradiction.

Note that, to simplify matters, we do not clean the channel b in event rcv_srv. As a matter of fact,
it is not necessary. Since the abstract channel was cleaned (the refinement is correct), this means that
the message will not be accepted another time. This is because of the updating of the time of last visit
(t(s) := n). This gives us a cleaning effect.

4.3 The Proofs

Proofs are left to the reader.

5 Third Refinement: Data Refinement

In this refinement, we transform the set da into a boolean function. In fact we then localize this information
in each site.

5.1 The State

We introduce the variable dab (inv3_1) replacing abstract variables da. Invariants inv3_2 defines the
boolean function as the characteristic function of the corresponding set.

. inv3_1: dab € S— BOOL
variables:

dab

inv3_2: Vz-z €S = (z €da < dab(z) = TRUE)

5.2 The Events

The events are now refined in a straightforward way as follows (note how the function dab is initialized):

init
l:=il
p=9
d = (S\ {1}) x {il}
b:=S5 x {o}
dab := S x {FALSE}
k=1
t:=95x{0} < {il—1}

14

rcv_agt
any s where rcv_srv
se S\ {i} any s,n where
leave_agt dab(l) = TRUE ses
when then n € dom(b(s))
dab(l) = FALSE l:=s t(s) <n
then t(s):=k+1 then
dab(l) := TRUE E=k+1 d(s) :=b(s)(n)
end bl)(k+1):=s t(s) :=n
d:={s}<ad dab(s) := FALSE
dab(s) := FALSE end
end
div_msg fwd_msg
any m where any m where
m € dom(p) m € dom(p)
dab(p(m)) = FALSE dab(p(m)) = FALSE
p(m) =1 p(m) #1
then then
pi={m}<p p(m) = d(p(m))
end end

5.3 The Proofs

Proofs are left to the reader.

6 Fourth Refinement
There is one more refinement where we implement the effective migration of the forwarded communica-

tion messages. We leave it as an exercise to the reader to develop this refinement.

References
1. L. Moreau. Distributed Directory Service and Message Routers for Mobile Agent. Science of Computer Program-

ming 39(2-3):249-272, 2001.

15

