
Hypervisor: Requirement Document (Version 3)

Jean-Raymond Abrial and Rustan Leino

No Institute Given

1 Requirement Document

1.1 A single system memory handling

- SM-0: An operating system (OS) makes use of some number of cores (CPUs),
uses some memory, and communicates with some number of devices and timers.

Note: The devices may include a disk that the OS uses to implement a virtual memory.
Though the state of such disks and other devices are part of the state of the OS, it is not
part of the state of the memory of the OS.

- SM-1: The amount of memory accessible to an OS is determined at boot time, and
is addressed as pages from 0 onwards. The addresses of these pages are called interme-
diate physical addresses (IPAs).

- SM-2: An OS has access to a number of per-core hardware registers, including the
Translation Look-aside Buffer (MMU-TLB).

- SM-3: The MMU-TLB is an associative memory. It contains pairs of the following
form: "Virtual Address - IPA"

Note: There are four ways that an OS can produce an IPA:

(0) Running in kernel mode on a core, the OS can issue instructions that address an
IPA directly.

(1) Running in user mode on a core, the OS can produce a virtual address, which is
translated via the MMU-TLB into an IPA.

(2) Running in user mode on a core, the OS can produce a virtual address which is
not translated via the MMU-TLB (because the pair virtual address -IPA is not present
in the MMU-TLB), however the IPA is produced by walking on the page table of the
OS, the MMU-TLB is updated by entering the new pair and evicting an old one that is
present in the MMU-TLB.

(3) Running in user mode on a core, the OS can produce a virtual address which is
not translated via the MMU-TLB (because the pair virtual-address - IPA is not present
in the MMU-TLB), the IPA is not produced either by walking on the page table of the
OS because the corresponding virtual page is not in the memory, however the page is in
the disk memory from which it can be loaded in the central memory by evicting a page
in the memory, the page table is then updated and the MMU-TLB as well. The behavior
described in this case, is called a first-level page fault.



- SM-5: If the OS tries to access its memory through a non-existing IPA, then it
crashes.

1.2 A single system Interrupt handling

Note: The following requirements are not independent (there are some redundan-
cies): this is done on purpose.

- SI-0: We consider uni-processor systems.

- SI-1: An OS can be interrupted by some devices that are connected to the CPU
running the OS.

- SI-2: Each interrupt has a priority attached to it. The priority is a natural number.

- SI-3: An interrupt can be in one of the following state: inactive, pending, or active.
The sate of an interrupt is managed by the hardware.

- SI-4: An inactive interrupt is one that has not happened since it was last treated.

- SI-5: A pending interrupt is one that has happened but is not treated yet because
its priority is not greater than those of the active interrupts. When an interrupt occurs, it
is made pending by the hardware.

- SI-6: An active interrupt is one that has happened and is either treated by the CPU
or preempted by an interrupt of higher priority. Only active interrupts can be executed
by the OS.

- SI-7: A pending interrupt with a high enough priority results in the hardware send-
ing a signal to the concerned core of the OS. The OS acknowledges this signal and then
the hardware makes the interrupt active.

- SI-8: Among the active interrupts, the one that is executed by the corresponding
Interrupt Service Routine (ISR) is the one with the highest priority.

- SI-9: A running interrupt can be preempted by a new pending interrupt with a pri-
ority that is higher than that of the running interrupt. The preempted interrupt remains
active although it is not running any more. It will be resumed once the preempting in-
terrupt will be treated.

- SI-10: Once the ISR has treated an active interrupt, it sends an End Of Interrupt
(EOI) signal to the hardware, which then makes the interrupt inactive.

- SI-11: The OS can mask (and unmask) some interrupts. This concerns the pend-
ing or inactive interrupts. An interrupt that is masked becomes inactive if pending. A
masked interrupt cannot become pending or active until it is unmasked.

1.3 Multiple systems



- MS-0: From an abstract point of view, we imagine we have several OSs sitting
next to each other, executing independently.

- MS-1: Each such OS is as defined above for a single system.

1.4 Hypervisor

- HV-0: The role of the hypervisor is to simulate on a single machine (possibly with
several cores) the behavior of independent operating systems, here known as guest OSs.

- HV-1: The number of guests is fixed and is determined at boot time.

- HV-2: A guest OS is not aware that it is being executed under the hypervisor.

- HV-3: Guests are really independent: A guest cannot inspect or influence the be-
havior of other guests, not even know of their presence. Except: The guest may detect
different performance characteristics than on a non-hypervisor machine.

- HV-4: It is the responsibility of the hypervisor to schedule the guests (see section
1.6).

- HV-5: The hypervisor itself should not take the control of its hardware perma-
nently. That is, it should do some scheduling of guests.

1.5 Hypervisor memory handling

- HM-0: The hypervisor controls a physical memory, into which it embeds the mem-
ory of its guests.

- HM-1: The hypervisor has a data structure called the SLAT (second-level address
translation), which keeps track of, for each guest, a one-to-one mapping between the
guest’s IPAs and the physical addresses (PAs).

- HM-2: The size and contents of the SLAT associated with each guest is determined
at boot time.

- HM-3: The SLAT of each guest is made available through a base address (BA).

- HM-4: When a guest provides an IPA, the hardware attempts to map that IPA to a
PA by consulting the SLAT associated with this guest.

- HM-5: If the previous process fails (that is, if the SLAT does not contain an entry
for that IPA for the requesting guest), then a second-level page fault occurs.

- HM-6: The hypervisor traps second-level page faults. Upon such a page fault,
the hypervisor will refuse the IPA request and will report this failure back to the guest
(which may result in a "blue screen" on the guest). This corresponds to what has been
described in requirement VM-7 for a single OS.



- HM-7: The SLAT of each guest is structured as a tree of pages with a root and two
levels.

- HM-8: An IPA is a 32 bits word made of three parts: the level 1 part is made of the
10 upper bits of the IPA, the level 2 part is made of 10 intermediate bits, and the level 3
part is made of the 12 lower bits.

- HM-9: The level 1 bits of an IPA address the root page of the SLAT. This root
page is itself pointed to by the base address of the SLAT (see HM-3). The root page is
made of 1024 words. The contents of the word of this root page point to 1024 words
level 2 pages.

- HM-10: A level 2 page is a word page of size 1024. The level 2 bits of an IPA
address a word in a level 2 page. The contents of the word of this level 2 page point to
1024 words level 3 pages.

- HM-11: A level 3 page is a byte page of size 4096. The level 3 bits of an IPA
address a byte in a level 3 page. A level 3 page of a SLAT is part of the memory of the
guest associated with that SLAT.

- HM-12: The hypervisor is provided with a SLAT-TLB mapping some of the guest
IPAs to the corresponding PAs. The SLAT-TLB is a short-circuit avoiding to always
walk through the three level pages of the SLAT.

- HM-13: Once the hypervisor has walked through a SLAT in order to map an IPA
to a PA, this pair is entered into the SLAT-TLB to be reused directly if another usage
of that pair is needed. In doing so, a pair of the SLAT-TLB is evicted in order to make
room for the new one.

1.6 Hypervisor scheduling

- HS-0: The hypervisor runs on a system providing several cores (CPUs).

- HS-1: Each core is provided with a physical MMU-TLB and a physical SLAT-
TLB.

- HS-2: Each core has a physical base register containing the base address of a SLAT
(see HM-3).

- HS-3: The number of guest controlled by the scheduler might be greater than the
number of cores.

- HS-4: A guest that is not assigned to a core is said to be a sleeping guest.

- HS-5: The hypervisor regularly schedules a sleeping guest to a core. The guest
currently running on the core is made sleeping. When scheduling, the MMU-TLB and
the SLAT-TLB of that core are flushed.

- HS-6: When a guest is scheduled to a core, the base register of that core is updated
with the base address of the SLAT of the scheduled guest (see requirement HM-3).



1.7 Hypervisor interrupt handling

- HI-0: The interrupt system of the hypervisor is virtualizing the interrupts of the
individual guests when a physical interrupt occurs.

- HI-1: The guests will still believe that they are working on their individual ma-
chines with their own interrupts.

- HI-2: At boot time, an injective connection is established between each physical
interrupt and a pair made of a guest and an interrupt of that guest.

- HI-3: Each physical interrupt is thus connected to a single virtual interrupt belong-
ing to a guest.

- HI-4: When a physical interrupt occurs, it is made pending by the hardware, then
made active when acknowledged by the hypervisor. After that, the hypervisor makes the
corresponding virtual interrupt pending for the corresponding guest as if it were issued
directly by the device connected to that guest.

- HI-5: When the scheduling of a guest occurs, its virtual core is attached to a phys-
ical core of the hypervisor.

- HI-6: An active physical interrupt is made effectively available to its guest as a
virtual interrupt if that guest has been scheduled to a physical core. The pending virtual
interrupt is then possibly taken into account by the guest as explained above in section
1.2. The state of the physical interrupt remains active.

- HI-7: An active physical interrupt remains active while the concerned guest is not
scheduled to a physical core.

- HI-8: Once a virtual interrupt has been treated by its guest, an EOI signal is sent
by the guest and the virtual interrupt is made inactive together with the corresponding
physical interrupt.

- HI-9: Masking and unmasking of a virtual interrupt by a guest is made available
to the hypervisor so that the corresponding physical interrupt can be masked (and made
inactive if pending) or unmasked if already masked.


