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Purpose of this Lecture

- To present a formal approach for developing sequential programs

- To present a large number of examples:
- array programs
- pointer programs

- numerical programs



Introduction to Sequential Program Development

- A typical sequential program is made of :
- a number of MULTIPLE ASSIGNMENTS (:=)
- scheduled by means of some :
- CONDITIONAL operators (if)
- ITERATIVE operators (while)
- SEQUENTIAL operators ()



An Example

while 37 #m do
if g(+1) >« then
j:=3+1
elsif kK =3 then
k,7:-=k+1,7+1
else
k,j,g:=k+1,j+1,swap(g,k +1,j + 1)
end
end ;
p:=k




Statements for a Pidgin Programming Language 4

while condition do statement end

if condition then statement else statement end

If condition then statement elsif ... else statement end

statement ; statement

variable list := expression list



An Event Approach (1)

- Separating completely in the design:
- the individual assignments

- from their scheduling

- This approach favors:
- the distribution of computation

- over its centralization



An Event Approach (2)

- Each assignment is formalized by a guarded event made of:
- A firing condition: the guard,

- An action: the multiple assignment.

- These events are scheduled implicitly.



while 7 #m do
if g(y+1) >« then
j:=3+1
elsif £k =3 then
k., =k+1,7+1
else
k,j,g:=k+1,j+ 1,swap(g,k +1,j + 1)
end
end ;
p:=k

when

Jj 7 m
g(g+1)>=
then
J:=3+1
end




while 73 #m do
if g(y+ 1) >« then
j:=3+1
elsif £k = 3 then
k,7:=k+1,7+4+1
else
k,j,g:=k+1,j+1,swap(g,k +1,j + 1)
end
end ;
p:=k

when
j#m
g(j+1) <=z
k=3
then
k., =k+1,7+1
end




while 73 #m do
if g(y+ 1) >« then
jg:=J3+1
elsif £k = 3 then
k., =k+1,7+1
else
k,j,g:=k+1,j+1,swap (g,k +1,j + 1)
end
end ;
p:=k

when

J#m

g(g+1) < x

k#J
then

ig,j,g :=k+ 1,5+ 1,swap (g,k + 1,5 + 1)
en




while 73 #m do

if g(7+1) > x then
ji=3+1

elsif £ =3 then
k,7:=k+1,7 +1

else
lz,j,g==k+1,j+1,swap(g,k+1,:i+1)

en

end ;
p:=k
when
J=m
then
p:=
end




The Various Events of our Program

when when
) ] £ m
™m .
';(?+1)>w g(']—l—.l)gaj
then k=7
i1 then | |
enjd J k,7:=k+1,7+1
end
when
] #£F=m wh.en
gg+1) <=z j=m
k # 3 then
then p:=k
k,7,g := ... end
end




Composing a Program from Events

- We have just decomposed a program into separate events

- Our approach will consists in doing the reverse operation

- We shall construct the events first

- And then compose our program from these events



Principles of the Event Approach 9

Specification Phase ° initial event: Specification
YR
® o ®
Design Phase e new events: Refinements
o [ [
Composing Phase N 4
° final event: Program



Using Event Systems for Developing Sequential Programs 10

- Sequential Programs are usually specified by means of:
- A pre-condition

- and a post-condition

- It is expressed by means of a Hoare-triple

{Pre} P {Post}



Encoding a Hoare triple in Event-B

11

{Pre} P {Post}

- The parameters are constants.

- The pre-conditions are the axioms of these constants.

- The results are variables.

- The post-conditions are the guards of an event with a skip action.



Example 1: The search Program

12




Example 1: The search Program

13

- We are given (Pre-condition)



Example 1: The search Program

14

- We are given (Pre-condition)
- a natural number n: n € N
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- We are given (Pre-condition)
- a natural number n: n € N
- n IS positive: 0 < n



Example 1: The search Program 16
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- a natural number n: n € N
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Example 1: The search Program 17
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- a natural number n: n € N
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- a value v known to be in the array: v € ran(f)



Example 1: The search Program 18

- We are given (Pre-condition)
- a natural number n: n € N
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- We are looking for (Post-condition)
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Example 1: The search Program 20

- We are given (Pre-condition)
- a natural number n: n € N
- n IS positive: 0 < n
-an array f of n elements builtonasetS: fe1..n—S
- a value v known to be in the array: v € ran(f)

- We are looking for (Post-condition)
- an index r in the domain of the array: » € dom(f)
- such that f(r) = v



Example 1: The search Program 21

- We are given (Pre-condition)
- a natural number n: n € N
- n IS positive: 0 < n
-an array f of n elements builtonasetS: fe1..n—S
- a value v known to be in the array: v € ran(f)

- We are looking for (Post-condition)
- an index r in the domain of the array: » € dom(f)
- such that f(r) = v

( )

n €N

0<n r € dom(f)
< fel.n—>S  search {f(r)zv }
\vEran(f) )



Encoding the Hoare-triple in an Event System

22

| search { 7, & dom(f)

.n— S

| v € ran(f)

O3
MMAM

%

/

}



Encoding the Hoare-triple in an Event System

( n E N )
0<n r € dom(f)
< felt.n—S o search {f('r):v }
| v € ran(f) )
axm0.1:n € N
constants: n axm0.2:0 < n
sets: S f
v axm03: fc1..n— S
axmO0 4: v € ran(f)




Encoding the Hoare-triple in an Event System

L search {"J;(i)dgg<f>}

ran(f)

axmO01:n € N

constants: n axm0 2:0<n
sets: S f
v axm03: fc1..n— S

axmO0 4: v € ran(f)

final
when
. c1..
variables: r inv0 1: r ¢ N Init ;"( ) = o
r:c N T v
' then

skip
end




Introducing an additional anticipated Event

25

progress
status
anticipated
then
r: €N
end

- This event modifies » non-deterministically



Refinement: the State

26

We introduce more invariants

for the result r

invl_1:

invl 2:

r € 1..n

v & fl1..r —1]

- This can be illustrated in the following figure:

1 r

-1r

t unsuccessful

unknown




Refinement: the Events

progress

status final

convergent when
init when f(r) =v
roi= f(r) #v then

then skip
r:=17r-+1 end

end

- The event progress is now made convergent

- We thus propose a variant:

varianti: n —r




To be Proved (as usual)

28

- Events search and init refine their abstractions

- The exhibited variant is a natural number

- "New" event progress decreases the variant

- The system is deadlock free



Constructing the Final Program

29

We are using some Merging Rules to build the final program

init

.

progress
when
f(r) #v
then
r:i=7r-+1
end

final
when
f(r)=v
then
skip
end




Merging Rule M_WHILE 30

when
when when P
P P then
-Q while @Q do
then then ~ S M.-WHILE
S T end;
end end T
end

- Side Conditions:

- P must be invariant under S

- The first event introduced at one level below the second one.
- The resulting level is that of the second event

- Special Case: If P is missing the resulting "event" has no guard



Merging Rule M _IF

when
when when thP
P P en
Q _‘Q |f Q then
then then 7 IS M_IF
S T € ‘;?
end end end
end

- Side Conditions:
- The two events introduced at the same refinement level
- The resulting level is the same

- Special Case: If P is missing the resulting "event" has no guard



Applying Rule M_WHILE (special case)

32

progress
when
f(r) #v
then
r:=r-+1
end

final
when
f(r)=v
then
skip
end

progress_final

r:=r—+1
end

while f(r) # v do




Final Rule M INIT

33

- Once we have obtained an “event” without guard

- We add to it the event init by sequential composition

- We then obtain the final “program”



Applying Rule M _INIT

34

init

T .

(mn €N
O0<n

\

fel.n— S
v € ran(f)

progress final

r:=7r-+1
end

while f(r) # v do

search_program
r .= 1;
while f(r) # v do
r:=r—+1
end

{

r € dom( f)
f(r) =w

}



Example 2: The Very Classical Binary Search

35

- Almost the same specification as in Example 1

- It will show the usage of more merging rules



Binary Search

36

- We are given (Pre-condition)



Binary Search

37

- We are given (Pre-condition)

- a natural number n: n € N



Binary Search

38

- We are given (Pre-condition)
- a natural numbern: n € N

- n IS positive: 0<n



Binary Search 39
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Binary Search 40
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Binary Search 41
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Binary Search 42
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Binary Search 43

- We are given (Pre-condition)
- a natural number n: n € N
- n IS positive: 0<n
- asorted array f of n elementsbuiltonasetN: f € 1..n—N

- a value v known to be in the array: v € ran(f)

- We are looking for (Post-condition)
- an index r in the domain of the array: » € dom( f)
- such that f(r) = v



Binary Search: Encoding of the pre-condition

44

constants:

n

j:
(%

axm01: n € N
axm02: fcl.n—N
axm0 3: v € ran(f)
thm01: n>1

axm0 4: Vi,j-




Binary Search: Encoding of the post-condition

45

variables: r

inv01: » € N

final
when
. rel..n
INit
. f(r)=wv
r:€N then
skip
end
- We have also an anticipated event:
progress
status
anticipated
then
r:€ N
end




First Refinement: the State

46

- We introduce two new variables p and q

variables:

T
p
q

- The current situation is illustrated in the following figure:

p-1

inviil: pei1..n

invi2: g € 1..n

invi3: » € p..qg

invi4: v € flp..q]

variantl: g—»p
q+1 n




First Refinement: the Events

init

D =
q:=mn
r:c€l..n

inc
refines
progress
status
convergent
when

f('r)<’v
p =r+1

r:er+1..q

end

dec

refines

progress

status

convergent

when

v < f(r)

q:=7r—1
r:ep..r—1

end

The following figure illustrates the situation encountered by events inc (left) and dec (right)

q+1

q+1

p r-l«——— q




Proofs

48

- Proofs of inc

- Feasibility of inc

- Proofs and feasibility for dec (similar to those for inc)

- Proofs for final (obvious)

- Proofs of non-divergence of inc and dec (variant: g — p)

- Proof of dealock freeness (easy)



Second Refinement

49

- At the previous stage, inc and dec were non-deterministic

- r was chosen arbitrarily within the interval p .. g

- We now remove the non-determinacy in inc and dec

- r is chosen to be the middle of the interval p .. g



Reducing non-determincy

50

- r is chosen in the “middle” of the intervals » +1..q or p..r — 1.

init

?1 +mn)/2

inc
when

f(r) <w

then

p:=r—+1

r:=(r+1+4+q)/2

end

dec
when

v < f(r)

then
q:

r =

end

r—1

(p+r—1)/2

final
when
f(r)=v
then
skip
end




Merging Rule M_IF

o1

when

then

end

when

then

end

when

then
if (Q then

else

end
end

M_IF




Merging Events inc and dec by means of Rule M IF

92

when
flr) #wv
v < f(r)
then
q:=7r—1
s:=(p+r—1)/2
end

Inc_dec
when

F(r) # v

then

if f(s) < v then

p,r:=r+1,(r+14+q)/2

else

gri=r—1,(p+r—1)/2

end
end

final
when
f(r)=v
then
skip
end




Merging Rule M_WHILE

when
when when P
P P then
Q -Q while Q@ do
then then ~ S M_WHILE
S T end;
end end T
end

- Side Conditions:
- P must be invariant under S
- The first event must have been introduced at one

refinement step below the second one.

- Special Case: If P is missing the resulting "event" has no guard



Merging Events inc _dec and bin _search with Rule M_WHILE

o4

inc_dec
when

f(r) #v
then

if f(r) <wv then
p,r:=r+1,(r+1+gq)/2

else
q,vr:=r—1,(p+r—1)/2
end
end
final
when
f(r)=v
then
skip

inc_dec_final
while f(r) #v do
if f(r) <v then
p,r:i=r+1,(r+1+q)/2
else

q,vr:=r—1,(p+r—1)/2
end
end
init
pP,q:=1,n
r:=(14+mn)/2




Merging Events inc dec bin search and init with Rule M_INIT 55

inc_dec_final
while f(r) #v do
if f(r) <wv then
p,r:=r+1,(r+1+4q)/2
else
qg,7:=r—1,(p+r—1)/2
end
end

init
pP,q:=1,n
ri=(14+n)/2

bin_search_program
p,q,T = 1,n, (1 =+ n)/z;
while f(r) #Zv do
if f(r) <v then
pyr:=r+1,(r+1+q)/2
else
qgr:=r—1,(p+r—1)/2
end
end




Example 3: Array Partitioning

56

- Given a numerical array f with n distinct elements

- Given a number x

- We construct another numerical array g with some constraints.



Array Partitioning: More Constraints

- g has the same elements as f

- there exists a number k in 0 .. n such that elements of g are:
- not greater than x ininterval 1 .. k

- greaterthan xz ininterval k +1 .. n

1 <z k k+1 > x




Example

58

- Let the array f be the following:

- Let x be equal to 5

- The result g can be the following with k being set to 5




Array Partitioning: first special case

59

- Let the array f be the following:

- Let x be equalto 0

- The result g can be the following with & being set to 0




Array Partitioning: second special case

60

- Let the array f be the following:

- Let  be equal to 10

- The result g can be the following with k£ being set to 8




Initial Model

61

constants: n
f
x

axm01: n € N
axm02: fel..n—N

axm0 3: <N

variables: k Invo.1: k& € N ini’;c € N
g inv02: g € NN g:€No N
final
W*I‘Ceg o n progress
c1 m N status
g Sk anticipated
ran (g) = ran (f) then
Vm-mel..k = gim) <cx k:c N
Vm-mek+1..n = glm) >x :ENHN
then engd'
skip
end




First Refinement

62

Introducing a new variable 3 ranging from 0 to n

Current situation: array g is partitioned from 1 to 3

E|k+1 >z 3| 3+1

?

n

Invariant

k<

Vi-(lel. k= gl)<z)

Vi-(lek+1..7 = gl) > z)




Array Partitioning : First Refinement: the State

63

constants: n, f,x

variables: k,g,3

invii: 3 € 0..n
invi 2: k<
invi3: VIi.-(lel..k = g(l) <x)

invid: Vi-(lek+1..57 = g(l)>z)




Partitioning with 5




Partitioning with 5
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Partitioning with 5




Partitioning with 5




Array Partitioning : Refining Existing Events (1)

64

Init
g,7,k:=f,0,0

partition
when
1 =n
then
skip
end




Array Partitioning : New event

65

k+1 >=x 7

J+1

progress_1
when
J#N
g(j+1) >
then
?

end




Array Partitioning : New event

66

k+1 >=x 7

J+1

progress_1
when
JF#EN
g +1) >
then
j:i=7+1
end




Partitioning with 5




Partitioning with 5




Array Partitioning : New Event

67

progress_2
when
J#mn
gj+1) <=
k=y
then
?

end




Array Partitioning : New Event

68

progress_2
when
J#Fmn
gj+1) <=
k=y
then
k.7 =k+1,7+1
end




Array Partitioning : New Event

69

k+1 >=x 7

J+1

progress_3
when
JF#mn
gj+1) <=
k#J

then
?

end




Array Partitioning : New Event

70

1 <z k|lk+1 >z jlj4+1 2

progress_3
when
JF#n
gyg+1) <=
k#j
then
k,j,g:=k+1,j+ 1,swap (g,k + 1,5 + 1)
end

swap (g, k,j) = g<{k—g()} < {7—g(k)}



Partitioning with 5




Partitioning with 5




Array Partitioning : Final Merging (1) 71

Putting together progress_2 and progress_3

progress 2
when
JFmn
g(j+1) <=
k=)
then
k., =k+1,7+1
end

progress 3
when
JFmn
gy +1) <=
k#J
then
kajag =k + 19j _|_ 17
swap (g, k + 1,5 + 1)
end




Merging Rule (2)

72

when

then

end

when

then

end

when

then
if (Q then

else

end
end

M_IF




Array Partitioning : Final Merging (2)

/3

Applying Rule M_IF to progress_2 and progress_3

progress_23
when
J#n
gg+1) <=z
then
if Kk = 37 then
k,7:=k+1,7+1
else
k,j,g:=k+1,j+ 1,swap (g,k + 1,5 + 1)
end
end




Array Partitioning : Final Merging (3)

74

Putting together progress_1 and progress_23

progress_1
when
JF#En
g(j+1) >z
then
ji=3+1
end

progress_23

when
J#mN
gj+1) <=
then
if Kk = 3 then
k,7:=k+1,734+1
else

k,73,9 : =k+1,5 + 1,
swap (g,k+ 1,7 + 1)
end
end




Merging Rule (3) 75
when when
p P
when - Q thc_an
p then if g) then
thg L 11? then eisif R then M ELSIF
S else elsc.l;
end U
end U
end end

end




Array Partitioning : Final Merging (4)

/6

Applying M_ELSIF to progress_1 and progress 23

partition
when
1=n
then
skip
end

progress_123
when 3 # n then
ifg(y +1) > « then
g:i=J3+1
elsif £ = 3 then
k,g:=k+1,7+1
else
k,j,g:=k+ 1,5+ 1,swap (g,k +1,j + 1)
end
end




Merging Rule M_WHILE (special case)

77

when
then

end

when

then
skip
end

while Q@ do
S
end

M _WHILE




Array Partitioning : Final Merging (6)

Applying M WHILE4 to partition and progress 123

progress_123_partition
while 7 # n do

if g( +1) > « then
Init ji=7+1
g =1Ff elsif £k = j then
j:=0 k,j:=k+1,5+1
k:=0 else
k,j,g:=k+1,j+1,swap (g,k + 1,5 + 1)
end

end




Array Partitioning : Final Program

Applying Rule M_INIT to init and progress_123_partition yields

partition_program
g,k,3:=1,0,0]; init
while 3 # m do

ifg(s + 1) > = then

7:=73+1 progress _1
elsif £k = 3 then

k,g:=k+1,7+1 progress 2
else

kajag = k‘l'laj‘l'la

swap (g, k + 1,7 + 1) progress_3

end
end




Array Partitioning: Concluding Remarks

80

- The complete development requires 18 proofs.

- Among which 6 were interactive



Example 4: Array Sorting

81

e Given:

— A numerical array f

e Resultis:

— Another numerical array g

e Such that:
— g has the same elements as f

— g is sorted in ascending order



Sorting




Sorting Initial State

82

axm01: 0<n

axm02: fel..n—N

constants: n
f
variables: g

inv01: g € NN




Sorting Initial Events 83
final
when
gel.n—N progress
ran (g) = ran (f) status
L Vi,7- 1€1..n—1 . .
Init Citl..n anticipated
g:€ NN é . then
: : g:€E NN
g(i) < g(J) end
then
skip

end




Sorting : First Refinement

84

Introducing a new variable k ranging form 1 to n.

Current situation: array g is sorted from1to k — 1

1 sorted and < k—1 | k




Array Sorting First Refinement: the State

85

variables:

g
k

l

invl 1:

invl _2:

invl _3:

invl 4:

invl 5:

gel..n— N

ran(g) = ran(f)

kecl..n

Vi,7:- 1€1..k—1
1€1+1..n
=
g(i) < g(7)

[l eN




Array Sorting First Refinement: the Events

final
Init when
g:=1F k=mn
k:=1 then
[:€N skip
end
progress
status
convergent
when prog
k#n status
lek..n anticipated
g(l) = min(glk..n]) then
then l:.€ N
g =g<L{ng(l)}<L{l — g(k)} end
k:=k+1
l:€N
end




Sorting







Sorting




Sorting




Sorting




Sorting




Sorting




Sorting




Sorting




Second Refinement: the state

87

- Introducing the variable j

variables: g inv21: jek..n
f inv22: lck..j
J inv2.3: g(I) = min(glk .. j])

- Invariant inv2_3 can be illustrated on the next diagram:

1 sorted and smaller £ —1 k  g(l) is the minimum j




Second Refinement: the events (1)

- Next are the refinements of the abstract events.

- final
INit . when
g:=f k=n
k:=1
l:=1 then
L 1 skip
J: end
progress
when
k#n
j=mn
then
g:=g<t{k—gl)}<{l— g(k)}
k:=k+1
1:=k+1
l:=k+1
end




Second Refinement: the events (2)

89

prog
refines
prog
status
convergent
when
k#n
J#Fmn
g(l) <g(G+1)
then
j:i=3+1
end

prog2

refines
prog
status
convergent
when
k#n
JF#Fn
g(j +1) <g()
then
j:=3+1
l:=7+1
end




Sorting




Sorting




Sorting




Sorting




Sorting




Sorting




Sorting




Sorting




Sorting







Sorting




Sorting




Sorting
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Sorting
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Sorting




Sorting




Sorting




Sorting




Sorting




Sorting




Sorting




Sorting




Sorting




Sorting




Sorting










Sorting




Sorting




Sorting




Sorting




Sorting




Sorting: Merging (1)

90

Applying M _IF to progr1 and progr2

progr_12
when
k<mn
J<n
then
if g(1) < g(j+1) then
j:=73+1
else
li=3+1,3+1
end
end




Merging progr and progr 12 91

progr progr 12
when when
k<n k<n
]1=n 1 <n
then then
k:=k+1 if g(1) <g(3+1) then
1:=k+1 7:=7+1
l:=k+1 else
g := swap (g, k, 1) pli=34+1,73+1
end end
end




Sorting : Merging (2)
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Applying Rule M_WHILE to progr and progr_12

progr_progr_12
when
k<n
then
while 7 < n do
if g(1) < g(j+1) then

J:=3+1
else
jvl::j"l_laj_l_l
end
end;

k,j,l,g:=k+1,k+1,k+ 1,swap (g, k, 1)
end




Merging sort and progr _progr 12
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sort
when
k=mn
then
skip
end

invl_3:

progr_progr_12
when
k<n
then
while 3 < n do
if g(1) < g(j+1) then

J:=3+1
else
pli=3+1,7+1
end
end;

k,j,l,g:=k+1,k+ 1,k + 1,swap (g, k, 1)
end

kel..n



Sorting : Merging (3)
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Applying Rule M_WHILE to sort and progr_progr 12

sort_progr_progr_12
while £ < n do
while 3 < n do
if h(l) < h(y+1) then

J:=7+1
else
7 l:=73+1,7+1
end
end;

k,j,l,g:=k+1,k+ 1,k + 1,swap (g, k, 1)
end




Merging init and sort progr progr 12

95

sort_progr_progr_12
while £ < n do
while 7 < n do
it g(1) < g(s +1) then

J:=3+1
else
jal::j_l_laj‘l_l
end
end;

k,j,l,g:=k+1,k+1,k+ 1,swap (g, k, 1)
end




Final Program: Applying Rule M_INIT 96
sort_program
begin
g,k,3,0:=f,1,1,1; init
while £ < n do
while 7 < n do
it g(1) < g(j +1) then
7:=7+1 progr 1
else
7, l:=974+1,79+1 progr_2
end
end;
k,j,l,g:=k+1,k+ 1,k + 1,swap (g,k,l) | progr

end

end




Sorting: Concluding Remarks

97

- The overall development requires 28 proofs.

- Among which 7 were interactive



Example 5: In Place Reversing of an Array

98

sets: S
constants: n, f
variables: g

axm01: n € N

axm02: 0<n

axm03: fel.n— S
inv01: g € N S




In Place Reversing of an Array: Example

99

Here is an array

Here is the reverse array

An element which was at index zisnow atindex 8 — 7 + 1



In Place Reversing of an Array: Events

100

init
g . €N S

final
when
gel. n—S
Vk-kel..n = glk)=f(n—k+1)
then
skip
end

progress
status
anticipated
then
g eN& S
end




In Place Reversing of an Array: Refinement

101

- We introduce two additional variables z and 3, bothin1 .. n

- Initially 2 is equal to 1 and 3 is equal to n

- Here is the current situation:

1

reversed

1

unchanged

J

reversed

n

- A new event is going to exchange elements in z and 3.




Refinement: the New State

102

variables: ¢
i

J

invi_1:
invl_2:
inv1_3:
invl_4:
inv1_5:
invl_6:
invl_7:

inv1l_8:

geEl..n—> S

tel..n

JE€EL1..n

t+73=mn+1

1<Jj+1

Vk-kel..i—1 = gk)=f(n—k+1)
VkE-kei..j7 = glk)= f(k)

Vk-kej+1..n = glk)=f(n—k+1)




Refinement: the Events

103

final
Init when
1:=1 71 <1
ji=n then
g:=1f skip
end
progress
status
convergent
when
1< 3
then
g:=9g<F {t—g0)} < {1—90@)}
7:= 1 —|—
Jgi=7—1
end




Final Program 104

- All this leads to the following final program:

reverse_program
iajag = 19”7 f;
while = < 3 do
,7,9:=t1+ 1,7 — l,swap(g,i,j)
end




Example 6: Reversing a Linear Chain 105

- So far, all our examples were dealing with arrays.

- This new example deals with pointers

- We want to reverse a linear chain

- A linear chain is made of nodes

- The nodes are pointing to each other by means of pointers

- To simplify, the nodes have no information fields



A Linear Chain 106

- Here is a linear chain:

- The first node of the chain is denoted by f

- The last node is a special node denoted by [

- We suppose that f and [ are distinct

- The nodes of the chain atakenin a set S



Formalizing the Linear Chain 107

axm0_1: d C S

axm0_2: f € d

sets: S axmO0 3: l € d

constants: d, f.l,c axmO0 4: f#£l

axm05: c € d\{l} —»d\{f}
axm06: VI'-TCc[lT] == T=09




Reversing the Chain 108

- Given the following initial chain




Initial Model: the Events

109

inv0 1:

reS«S

init
r:e S« S

Feverse
rTi=C

1




First Refinement 110

We introduce two additional chains a and b and a pointer p

- Node p starts both chains

- Main invariant: aUb 1l = ¢!



Initial and Final Situation 111

- At the beginning, p is equal to f, a is empty, and b is equal to c:




Progressing 112

a
f |« «—~ | p | = — oo = |
b
a
f |+« ... « —~ | p | = — | 1




First Refinement: the State 113

variables:

N S Q S

invi1: p € d

invi2: a € (cl(c™H)[{p}] U {p}) \ {f} =~ cl(c™")[{p}]
invi3: b € (cl(c)[{ip}] U {r}) \ U} = cl(c)[{p}]

invi4: c=alUb




First Refinement: the Events

114

progress
when
p € dom(b)
then
p := b(p)
a(b(p)) :=p
b:={p}t<b
end

reverse
when
b=0
then
T ‘= Qa
end

INit
r:€cS+<S
a,b,p:=39,c, f




Second Refinement: the State (1) 115

- We introduce a new constant ntl
- We replace the chain b by the chain bn

- And we introduce a new pointer q

[(F ]« [a e e[ J-oCa ... >z - [1 ] [nl]

bn



Second Refinement: the State (1)

116

- Here is the new state:

constants: f.l,c, nal
axm21: ni € S
axm22: nil & d
variables: r,a,bn,p,q
inv21: bn =bU {l — nil}
inv2 2: g = bn(p)




Second Refinement: the Events

117

progress
when

then

end

q 7+ nil

p:=49q

a(q) :=p

q := bn(q)

bn := {p} < bn

reverse
when
qg = nal
then
T — a
end

init
r:€e S« S

a,bn := g,c U {l — nil}

p,q := f,c(f)




Third Refinement

118

- The previous situation with two chains a and bn

a
f |« ~ [ p nal
bn
- The new situation with a single chain d
f |« ...+ | p nil




Third Refinement: the State

119

carrier set: S
constants: f.l,c

variables: r,p,q.d

inv3 1:

inv3d 2:

d e S+ 85

d = ({f}<9bn) < a




Third Refinement: the Events

120

progress

when reverse
q 7+ nil when

then qg = nal
p:=q then
d(q) :=p r:=d& {nil}
q := d(q) end

end

init
r:€esS+S

d:={f}<(cU {l — nil}
P, q := f,c(f)




Merging

121

reverse_program

Dyq,d := fac(f)a{f}€ (CU {l I_>n7:l});
while g # nil do

p:=gq

d(q) :==p

g := d(q)
end;

r:=dp {nil}




Example 7: Integer Square root 122

- The squaring function is defined on all natural numbers

- And it is injective

- Therefore the inverse function, the square root function, exists

- But is is not defined for all natural number

- We want to make it total



Integer Square Root 123

- The integer square root of n by defect is a number r such that

r? <mn < (r+1)%



Integer Square Root (cont’d) 124

- The integer square root of 17, is 4 since we have
4% < 17 < 52

- The integer square root of 16, is 4 since we have
4% < 16 < 52

- The integer square root of 15, is 3 since we have

32 < 15 < 42



Integer Square Root: Initial State and Events

125

constants: n axmO0_1: n € N
variables: r inv0_1: r € N
final
when progress
9 status
. r<«<n . .
INit — 9 anticipated
r:€ N n < (r+1) then
the:_ r: €N
SKIp end
end



First Refinement

126

variables:

init

.

r inv1l 1: r2 <n
progress
final status
when convergent
n < (r+1)>32 when
then (r+1)2<n
skip then
end r:=17r-4+1
end




Program after First Refinement 127

square root _program
r := 0;
while (r +1)%2 <n do
r:=7r-+1
end




Second Refinement 128

- We do not want to compute (r + 1)2 at each step

- We observe the following
(r+1)+1)7% = (r+1)?+ (2r + 3)
2(r+1)+3 = (2r+3) +2

- We introduce two numbers a and b such that

a = (r+1)3

b = 2r+3



Second Refinement: State and Events 129

constants: n inv21: a= (r+1)>?
variables: 7r,a,b inv2 2: b=2r+3
progress
final when
init when a<n
r:—0 n <a then
a:— 1 then r:=r—+1
b:— 3 skip a:=a-+b
end b:=b-+4 2
end




Program after Second Refinement 130

We obtain the following program:

square root program
r,a,b:= 0,1, 3;
while a < n do
r,a,b:=r+1,a+ b,b + 2
end




Example 8: Inverse of an Injective Numerical Function 131

- Same problem as in previous example but more general

- We are given a total numerical function f

- The function f is supposed to be strictly increasing

- Hence it is injective

- We want to compute its inverse by defect

- We shall borrow ideas form the binary search development



Inverse of an Injective Numerical Function: the State 132

1

J

constants: = t
=

! f

variables: r inv0_1: r € N




Inverse of an Injective Numerical Function: the Events 133

final
when
f(r) < n
n < f(r+1)
then
skip
end

init
r:€N

progress
status
anticipated
then
r: €N
end




First Refinement 134

- We are supposedly given two constant numbers a and b such that

fla) < n < f(b+1)

- We are thus certain that our result is within the interval a .. b

- We try to make this interval narrower

- We introduce a constant g in a .. b and such that

fir)y < n < f(g+1)



First Refinement: the State 135

axm1 1: a € N

axm1_2: b € N
constants: f,n,a,b

axm1_3: fla) < n

axml4: n < f(b+1)

invi_1; q

c
invl_2: r <
variables: r,p,q

q
invl 3: f(r) < n

invid: n < f(g+1)




First Refinement: the Events (1)

ini

SR

final
when
T =4q
then
skip
end

dec
refines
progress
status
convergent
any x where

inc
refines
progress
status
convergent
any = where




What we Have to Prove 137

- Event init refines its abstraction

- Event inverse refines its abstraction

- Events inc and dec refine skip

- Events inc and dec decrease a variant

- The system is deadlock-free



Second Refinement: the Events 138

- We reduce the non-determinacy

dec 1gle
when when
r£q r £ q
n< f((r+1+4q)/2) f((r+1+4q)/2) <n
with with
r=(r+1+4q)/2 r=(r+1+4q)/2
then then
q:=(r+14+q)/2—-1 r:=((r+1+4q)/2
end end




Second Refinement: A Useful Theorem 139

- In order to prove this refinement the following theorem can be useful:




Final Program

140

iInverse_program
r,q := a, b;
while » # g do
if n < f((r+ 1+ q)/2) then
qg:=(r+14+q)/2 -1
else
r:=(r+1+q)/2
end
end




Genericity 141

- The development made in this example is generic

- We can consider that the constants f, a, and b are parameters

- By instantiating them we obtain some new programs almost for free

- But we have to prove the properties of the instantiated constants:
In our case we have to prove:
-axm0_1: f is a total function
-axm0_2: f is increasing
-axm1 3andaxm1 4: f(a) < n < f(b+1)



First Instantiation (1) 142

- f is Iinstantiated to the squaring function
- a and b are instantiated to 0 and n since we have
0° < n < (n+1)?

- We shall obtain an integer square root program



First Instantiation (2) 143

square root program
r,q := 0,n;
while » # g do
if n < ((r+1+q)/2)? then
q:=(r+1+q)/2 -1
else
r:=(r+1+gq)/2
end
end;

r:=op




Second Instantiation (1) 144

- f is instantiated to the function which “multiply by m”

- a and b are instantiated to 0 and n since we have

mx0 < n < mx(n+1)

- We shall obtain an integer division program: n/m



Second Instantiation (2) 145

Integer_division_program
r,q := 0, n;
while » # g do
if n<mx (r+1+q)/2) then
qg:=(r+14+q)/2 -1
else
r:=(r+14+q)/2
end
end;

r:=op




