Event-B Course

9. Sequential Program Development
Jean-Raymond Abrial

September-October-November 2011

Purpose of this Lecture

- To present a formal approach for developing sequential programs

- To present a large number of examples:
- array programs
- pointer programs

- numerical programs

Introduction to Sequential Program Development

- A typical sequential program is made of :
- a number of MULTIPLE ASSIGNMENTS (:=)
- scheduled by means of some :
- CONDITIONAL operators (if)
- ITERATIVE operators (while)
- SEQUENTIAL operators ()

An Example

while 37 #m do
if g(+1) >« then
j:=3+1
elsif kK =3 then
k,7:-=k+1,7+1
else
k,j,g:=k+1,j+1,swap(g,k +1,j + 1)
end
end ;
p:=k

Statements for a Pidgin Programming Language 4

while condition do statement end

if condition then statement else statement end

If condition then statement elsif ... else statement end

statement ; statement

variable list := expression list

An Event Approach (1)

- Separating completely in the design:
- the individual assignments

- from their scheduling

- This approach favors:
- the distribution of computation

- over its centralization

An Event Approach (2)

- Each assignment is formalized by a guarded event made of:
- A firing condition: the guard,

- An action: the multiple assignment.

- These events are scheduled implicitly.

while 7 #m do
if g(y+1) >« then
j:=3+1
elsif £k =3 then
k., =k+1,7+1
else
k,j,g:=k+1,j+ 1,swap(g,k +1,j + 1)
end
end ;
p:=k

when

Jj 7 m
g(g+1)>=
then
J:=3+1
end

while 73 #m do
if g(y+ 1) >« then
j:=3+1
elsif £k = 3 then
k,7:=k+1,7+4+1
else
k,j,g:=k+1,j+1,swap(g,k +1,j + 1)
end
end ;
p:=k

when
j#m
g(j+1) <=z
k=3
then
k., =k+1,7+1
end

while 73 #m do
if g(y+ 1) >« then
jg:=J3+1
elsif £k = 3 then
k., =k+1,7+1
else
k,j,g:=k+1,j+1,swap (g,k +1,j + 1)
end
end ;
p:=k

when

J#m

g(g+1) < x

k#J
then

ig,j,g :=k+ 1,5+ 1,swap (g,k + 1,5 + 1)
en

while 73 #m do

if g(7+1) > x then
ji=3+1

elsif £ =3 then
k,7:=k+1,7 +1

else
lz,j,g==k+1,j+1,swap(g,k+1,:i+1)

en

end ;
p:=k
when
J=m
then
p:=
end

The Various Events of our Program

when when
)] £ m
™m .
';(?+1)>w g(']—l—.l)gaj
then k=7
i1 then | |
enjd J k,7:=k+1,7+1
end
when
] #£F=m wh.en
gg+1) <=z j=m
k # 3 then
then p:=k
k,7,g := ... end
end

Composing a Program from Events

- We have just decomposed a program into separate events

- Our approach will consists in doing the reverse operation

- We shall construct the events first

- And then compose our program from these events

Principles of the Event Approach 9

Specification Phase ° initial event: Specification
YR
® o ®
Design Phase e new events: Refinements
o [[
Composing Phase N 4
° final event: Program

Using Event Systems for Developing Sequential Programs 10

- Sequential Programs are usually specified by means of:
- A pre-condition

- and a post-condition

- It is expressed by means of a Hoare-triple

{Pre} P {Post}

Encoding a Hoare triple in Event-B

11

{Pre} P {Post}

- The parameters are constants.

- The pre-conditions are the axioms of these constants.

- The results are variables.

- The post-conditions are the guards of an event with a skip action.

Example 1: The search Program

12

Example 1: The search Program

13

- We are given (Pre-condition)

Example 1: The search Program

14

- We are given (Pre-condition)
- a natural number n: n € N

Example 1: The search Program

15

- We are given (Pre-condition)
- a natural number n: n € N
- n IS positive: 0 < n

Example 1: The search Program 16

- We are given (Pre-condition)
- a natural number n: n € N
- n IS positive: 0 < n
-an array f of n elements builtonasetS: fe1..n—S

Example 1: The search Program 17

- We are given (Pre-condition)
- a natural number n: n € N
- n IS positive: 0 < n
-an array f of n elements builtonasetS: fe1..n—S
- a value v known to be in the array: v € ran(f)

Example 1: The search Program 18

- We are given (Pre-condition)
- a natural number n: n € N
- n IS positive: 0 < n
-an array f of n elements builtonasetS: fe1..n—S
- a value v known to be in the array: v € ran(f)

- We are looking for (Post-condition)

Example 1: The search Program 19

- We are given (Pre-condition)
- a natural number n: n € N
- n IS positive: 0 < n
-an array f of n elements builtonasetS: fe1..n—S
- a value v known to be in the array: v € ran(f)

- We are looking for (Post-condition)
- an index r in the domain of the array: » € dom(f)

Example 1: The search Program 20

- We are given (Pre-condition)
- a natural number n: n € N
- n IS positive: 0 < n
-an array f of n elements builtonasetS: fe1..n—S
- a value v known to be in the array: v € ran(f)

- We are looking for (Post-condition)
- an index r in the domain of the array: » € dom(f)
- such that f(r) = v

Example 1: The search Program 21

- We are given (Pre-condition)
- a natural number n: n € N
- n IS positive: 0 < n
-an array f of n elements builtonasetS: fe1..n—S
- a value v known to be in the array: v € ran(f)

- We are looking for (Post-condition)
- an index r in the domain of the array: » € dom(f)
- such that f(r) = v

()

n €N

0<n r € dom(f)
< fel.n—>S search {f(r)zv }
\vEran(f))

Encoding the Hoare-triple in an Event System

22

| search { 7, & dom(f)

.n— S

| v € ran(f)

O3
MMAM

%

/

}

Encoding the Hoare-triple in an Event System

(n E N)
0<n r € dom(f)
< felt.n—S o search {f('r):v }
| v € ran(f))
axm0.1:n € N
constants: n axm0.2:0 < n
sets: S f
v axm03: fc1..n— S
axmO0 4: v € ran(f)

Encoding the Hoare-triple in an Event System

L search {"J;(i)dgg<f>}

ran(f)

axmO01:n € N

constants: n axm0 2:0<n
sets: S f
v axm03: fc1..n— S

axmO0 4: v € ran(f)

final
when
. c1..
variables: r inv0 1: r ¢ N Init ;"() = o
r:c N T v
' then

skip
end

Introducing an additional anticipated Event

25

progress
status
anticipated
then
r: €N
end

- This event modifies » non-deterministically

Refinement: the State

26

We introduce more invariants

for the result r

invl_1:

invl 2:

r € 1..n

v & fl1..r —1]

- This can be illustrated in the following figure:

1 r

-1r

t unsuccessful

unknown

Refinement: the Events

progress

status final

convergent when
init when f(r) =v
roi= f(r) #v then

then skip
r:=17r-+1 end

end

- The event progress is now made convergent

- We thus propose a variant:

varianti: n —r

To be Proved (as usual)

28

- Events search and init refine their abstractions

- The exhibited variant is a natural number

- "New" event progress decreases the variant

- The system is deadlock free

Constructing the Final Program

29

We are using some Merging Rules to build the final program

init

.

progress
when
f(r) #v
then
r:i=7r-+1
end

final
when
f(r)=v
then
skip
end

Merging Rule M_WHILE 30

when
when when P
P P then
-Q while @Q do
then then ~ S M.-WHILE
S T end;
end end T
end

- Side Conditions:

- P must be invariant under S

- The first event introduced at one level below the second one.
- The resulting level is that of the second event

- Special Case: If P is missing the resulting "event" has no guard

Merging Rule M _IF

when
when when thP
P P en
Q _‘Q |f Q then
then then 7 IS M_IF
S T € ‘;?
end end end
end

- Side Conditions:
- The two events introduced at the same refinement level
- The resulting level is the same

- Special Case: If P is missing the resulting "event" has no guard

Applying Rule M_WHILE (special case)

32

progress
when
f(r) #v
then
r:=r-+1
end

final
when
f(r)=v
then
skip
end

progress_final

r:=r—+1
end

while f(r) # v do

Final Rule M INIT

33

- Once we have obtained an “event” without guard

- We add to it the event init by sequential composition

- We then obtain the final “program”

Applying Rule M _INIT

34

init

T .

(mn €N
O0<n

\

fel.n— S
v € ran(f)

progress final

r:=7r-+1
end

while f(r) # v do

search_program
r .= 1;
while f(r) # v do
r:=r—+1
end

{

r € dom(f)
f(r) =w

}

Example 2: The Very Classical Binary Search

35

- Almost the same specification as in Example 1

- It will show the usage of more merging rules

Binary Search

36

- We are given (Pre-condition)

Binary Search

37

- We are given (Pre-condition)

- a natural number n: n € N

Binary Search

38

- We are given (Pre-condition)
- a natural numbern: n € N

- n IS positive: 0<n

Binary Search 39

- We are given (Pre-condition)
- a natural numbern: n € N
- n IS positive: 0<n

- asorted array f of n elementsbuiltonasetN: f € 1..n—N

Binary Search 40

- We are given (Pre-condition)
- a natural number n: n € N
- n IS positive: 0<n
- asorted array f of n elementsbuiltonasetN: f € 1..n—N

- a value v known to be in the array: v € ran(f)

Binary Search 41

- We are given (Pre-condition)
- a natural number n: n € N
- n IS positive: 0<n
- asorted array f of n elementsbuiltonasetN: f € 1..n—N

- a value v known to be in the array: v € ran(f)

- We are looking for (Post-condition)

Binary Search 42

- We are given (Pre-condition)
- a natural number n: n € N
- n IS positive: 0<n
- asorted array f of n elementsbuiltonasetN: f € 1..n—N

- a value v known to be in the array: v € ran(f)

- We are looking for (Post-condition)

- an index r in the domain of the array: » € dom(f)

Binary Search 43

- We are given (Pre-condition)
- a natural number n: n € N
- n IS positive: 0<n
- asorted array f of n elementsbuiltonasetN: f € 1..n—N

- a value v known to be in the array: v € ran(f)

- We are looking for (Post-condition)
- an index r in the domain of the array: » € dom(f)
- such that f(r) = v

Binary Search: Encoding of the pre-condition

44

constants:

n

j:
(%

axm01: n € N
axm02: fcl.n—N
axm0 3: v € ran(f)
thm01: n>1

axm0 4: Vi,j-

Binary Search: Encoding of the post-condition

45

variables: r

inv01: » € N

final
when
. rel..n
INit
. f(r)=wv
r:€N then
skip
end
- We have also an anticipated event:
progress
status
anticipated
then
r:€ N
end

First Refinement: the State

46

- We introduce two new variables p and q

variables:

T
p
q

- The current situation is illustrated in the following figure:

p-1

inviil: pei1..n

invi2: g € 1..n

invi3: » € p..qg

invi4: v € flp..q]

variantl: g—»p
q+1 n

First Refinement: the Events

init

D =
q:=mn
r:c€l..n

inc
refines
progress
status
convergent
when

f('r)<’v
p =r+1

r:er+1..q

end

dec

refines

progress

status

convergent

when

v < f(r)

q:=7r—1
r:ep..r—1

end

The following figure illustrates the situation encountered by events inc (left) and dec (right)

q+1

q+1

p r-l«——— q

Proofs

48

- Proofs of inc

- Feasibility of inc

- Proofs and feasibility for dec (similar to those for inc)

- Proofs for final (obvious)

- Proofs of non-divergence of inc and dec (variant: g — p)

- Proof of dealock freeness (easy)

Second Refinement

49

- At the previous stage, inc and dec were non-deterministic

- r was chosen arbitrarily within the interval p .. g

- We now remove the non-determinacy in inc and dec

- r is chosen to be the middle of the interval p .. g

Reducing non-determincy

50

- r is chosen in the “middle” of the intervals » +1..q or p..r — 1.

init

?1 +mn)/2

inc
when

f(r) <w

then

p:=r—+1

r:=(r+1+4+q)/2

end

dec
when

v < f(r)

then
q:

r =

end

r—1

(p+r—1)/2

final
when
f(r)=v
then
skip
end

Merging Rule M_IF

o1

when

then

end

when

then

end

when

then
if (Q then

else

end
end

M_IF

Merging Events inc and dec by means of Rule M IF

92

when
flr) #wv
v < f(r)
then
q:=7r—1
s:=(p+r—1)/2
end

Inc_dec
when

F(r) # v

then

if f(s) < v then

p,r:=r+1,(r+14+q)/2

else

gri=r—1,(p+r—1)/2

end
end

final
when
f(r)=v
then
skip
end

Merging Rule M_WHILE

when
when when P
P P then
Q -Q while Q@ do
then then ~ S M_WHILE
S T end;
end end T
end

- Side Conditions:
- P must be invariant under S
- The first event must have been introduced at one

refinement step below the second one.

- Special Case: If P is missing the resulting "event" has no guard

Merging Events inc _dec and bin _search with Rule M_WHILE

o4

inc_dec
when

f(r) #v
then

if f(r) <wv then
p,r:=r+1,(r+1+gq)/2

else
q,vr:=r—1,(p+r—1)/2
end
end
final
when
f(r)=v
then
skip

inc_dec_final
while f(r) #v do
if f(r) <v then
p,r:i=r+1,(r+1+q)/2
else

q,vr:=r—1,(p+r—1)/2
end
end
init
pP,q:=1,n
r:=(14+mn)/2

Merging Events inc dec bin search and init with Rule M_INIT 55

inc_dec_final
while f(r) #v do
if f(r) <wv then
p,r:=r+1,(r+1+4q)/2
else
qg,7:=r—1,(p+r—1)/2
end
end

init
pP,q:=1,n
ri=(14+n)/2

bin_search_program
p,q,T = 1,n, (1 =+ n)/z;
while f(r) #Zv do
if f(r) <v then
pyr:=r+1,(r+1+q)/2
else
qgr:=r—1,(p+r—1)/2
end
end

Example 3: Array Partitioning

56

- Given a numerical array f with n distinct elements

- Given a number x

- We construct another numerical array g with some constraints.

Array Partitioning: More Constraints

- g has the same elements as f

- there exists a number k in 0 .. n such that elements of g are:
- not greater than x ininterval 1 .. k

- greaterthan xz ininterval k +1 .. n

1 <z k k+1 > x

Example

58

- Let the array f be the following:

- Let x be equal to 5

- The result g can be the following with k being set to 5

Array Partitioning: first special case

59

- Let the array f be the following:

- Let x be equalto 0

- The result g can be the following with & being set to 0

Array Partitioning: second special case

60

- Let the array f be the following:

- Let be equal to 10

- The result g can be the following with k£ being set to 8

Initial Model

61

constants: n
f
x

axm01: n € N
axm02: fel..n—N

axm0 3: <N

variables: k Invo.1: k& € N ini’;c € N
g inv02: g € NN g:€No N
final
W*I‘Ceg o n progress
c1 m N status
g Sk anticipated
ran (g) = ran (f) then
Vm-mel..k = gim) <cx k:c N
Vm-mek+1..n = glm) >x :ENHN
then engd'
skip
end

First Refinement

62

Introducing a new variable 3 ranging from 0 to n

Current situation: array g is partitioned from 1 to 3

E|k+1 >z 3| 3+1

?

n

Invariant

k<

Vi-(lel. k= gl)<z)

Vi-(lek+1..7 = gl) > z)

Array Partitioning : First Refinement: the State

63

constants: n, f,x

variables: k,g,3

invii: 3 € 0..n
invi 2: k<
invi3: VIi.-(lel..k = g(l) <x)

invid: Vi-(lek+1..57 = g(l)>z)

Partitioning with 5

Partitioning with 5

Partitioning with 5

Partitioning with 5

Partitioning with 5

Partitioning with 5

Partitioning with 5

Partitioning with 5

Partitioning with 5

Array Partitioning : Refining Existing Events (1)

64

Init
g,7,k:=f,0,0

partition
when
1 =n
then
skip
end

Array Partitioning : New event

65

k+1 >=x 7

J+1

progress_1
when
J#N
g(j+1) >
then
?

end

Array Partitioning : New event

66

k+1 >=x 7

J+1

progress_1
when
JF#EN
g +1) >
then
j:i=7+1
end

Partitioning with 5

Partitioning with 5

Array Partitioning : New Event

67

progress_2
when
J#mn
gj+1) <=
k=y
then
?

end

Array Partitioning : New Event

68

progress_2
when
J#Fmn
gj+1) <=
k=y
then
k.7 =k+1,7+1
end

Array Partitioning : New Event

69

k+1 >=x 7

J+1

progress_3
when
JF#mn
gj+1) <=
k#J

then
?

end

Array Partitioning : New Event

70

1 <z k|lk+1 >z jlj4+1 2

progress_3
when
JF#n
gyg+1) <=
k#j
then
k,j,g:=k+1,j+ 1,swap (g,k + 1,5 + 1)
end

swap (g, k,j) = g<{k—g()} < {7—g(k)}

Partitioning with 5

Partitioning with 5

Array Partitioning : Final Merging (1) 71

Putting together progress_2 and progress_3

progress 2
when
JFmn
g(j+1) <=
k=)
then
k., =k+1,7+1
end

progress 3
when
JFmn
gy +1) <=
k#J
then
kajag =k + 19j _|_ 17
swap (g, k + 1,5 + 1)
end

Merging Rule (2)

72

when

then

end

when

then

end

when

then
if (Q then

else

end
end

M_IF

Array Partitioning : Final Merging (2)

/3

Applying Rule M_IF to progress_2 and progress_3

progress_23
when
J#n
gg+1) <=z
then
if Kk = 37 then
k,7:=k+1,7+1
else
k,j,g:=k+1,j+ 1,swap (g,k + 1,5 + 1)
end
end

Array Partitioning : Final Merging (3)

74

Putting together progress_1 and progress_23

progress_1
when
JF#En
g(j+1) >z
then
ji=3+1
end

progress_23

when
J#mN
gj+1) <=
then
if Kk = 3 then
k,7:=k+1,734+1
else

k,73,9 : =k+1,5 + 1,
swap (g,k+ 1,7 + 1)
end
end

Merging Rule (3) 75
when when
p P
when - Q thc_an
p then if g) then
thg L 11? then eisif R then M ELSIF
S else elsc.l;
end U
end U
end end

end

Array Partitioning : Final Merging (4)

/6

Applying M_ELSIF to progress_1 and progress 23

partition
when
1=n
then
skip
end

progress_123
when 3 # n then
ifg(y +1) > « then
g:i=J3+1
elsif £ = 3 then
k,g:=k+1,7+1
else
k,j,g:=k+ 1,5+ 1,swap (g,k +1,j + 1)
end
end

Merging Rule M_WHILE (special case)

77

when
then

end

when

then
skip
end

while Q@ do
S
end

M _WHILE

Array Partitioning : Final Merging (6)

Applying M WHILE4 to partition and progress 123

progress_123_partition
while 7 # n do

if g(+1) > « then
Init ji=7+1
g =1Ff elsif £k = j then
j:=0 k,j:=k+1,5+1
k:=0 else
k,j,g:=k+1,j+1,swap (g,k + 1,5 + 1)
end

end

Array Partitioning : Final Program

Applying Rule M_INIT to init and progress_123_partition yields

partition_program
g,k,3:=1,0,0]; init
while 3 # m do

ifg(s + 1) > = then

7:=73+1 progress _1
elsif £k = 3 then

k,g:=k+1,7+1 progress 2
else

kajag = k‘l'laj‘l'la

swap (g, k + 1,7 + 1) progress_3

end
end

Array Partitioning: Concluding Remarks

80

- The complete development requires 18 proofs.

- Among which 6 were interactive

Example 4: Array Sorting

81

e Given:

— A numerical array f

e Resultis:

— Another numerical array g

e Such that:
— g has the same elements as f

— g is sorted in ascending order

Sorting

Sorting Initial State

82

axm01: 0<n

axm02: fel..n—N

constants: n
f
variables: g

inv01: g € NN

Sorting Initial Events 83
final
when
gel.n—N progress
ran (g) = ran (f) status
L Vi,7- 1€1..n—1 . .
Init Citl..n anticipated
g:€ NN é . then
: : g:€E NN
g(i) < g(J) end
then
skip

end

Sorting : First Refinement

84

Introducing a new variable k ranging form 1 to n.

Current situation: array g is sorted from1to k — 1

1 sorted and < k—1 | k

Array Sorting First Refinement: the State

85

variables:

g
k

l

invl 1:

invl _2:

invl _3:

invl 4:

invl 5:

gel..n— N

ran(g) = ran(f)

kecl..n

Vi,7:- 1€1..k—1
1€1+1..n
=
g(i) < g(7)

[l eN

Array Sorting First Refinement: the Events

final
Init when
g:=1F k=mn
k:=1 then
[:€N skip
end
progress
status
convergent
when prog
k#n status
lek..n anticipated
g(l) = min(glk..n]) then
then l:.€ N
g =g<L{ng(l)}<L{l — g(k)} end
k:=k+1
l:€N
end

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Second Refinement: the state

87

- Introducing the variable j

variables: g inv21: jek..n
f inv22: lck..j
J inv2.3: g(I) = min(glk .. j])

- Invariant inv2_3 can be illustrated on the next diagram:

1 sorted and smaller £ —1 k g(l) is the minimum j

Second Refinement: the events (1)

- Next are the refinements of the abstract events.

- final
INit . when
g:=f k=n
k:=1
l:=1 then
L 1 skip
J: end
progress
when
k#n
j=mn
then
g:=g<t{k—gl)}<{l— g(k)}
k:=k+1
1:=k+1
l:=k+1
end

Second Refinement: the events (2)

89

prog
refines
prog
status
convergent
when
k#n
J#Fmn
g(l) <g(G+1)
then
j:i=3+1
end

prog2

refines
prog
status
convergent
when
k#n
JF#Fn
g(j +1) <g()
then
j:=3+1
l:=7+1
end

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting

Sorting: Merging (1)

90

Applying M _IF to progr1 and progr2

progr_12
when
k<mn
J<n
then
if g(1) < g(j+1) then
j:=73+1
else
li=3+1,3+1
end
end

Merging progr and progr 12 91

progr progr 12
when when
k<n k<n
]1=n 1 <n
then then
k:=k+1 if g(1) <g(3+1) then
1:=k+1 7:=7+1
l:=k+1 else
g := swap (g, k, 1) pli=34+1,73+1
end end
end

Sorting : Merging (2)

92

Applying Rule M_WHILE to progr and progr_12

progr_progr_12
when
k<n
then
while 7 < n do
if g(1) < g(j+1) then

J:=3+1
else
jvl::j"l_laj_l_l
end
end;

k,j,l,g:=k+1,k+1,k+ 1,swap (g, k, 1)
end

Merging sort and progr _progr 12

93

sort
when
k=mn
then
skip
end

invl_3:

progr_progr_12
when
k<n
then
while 3 < n do
if g(1) < g(j+1) then

J:=3+1
else
pli=3+1,7+1
end
end;

k,j,l,g:=k+1,k+ 1,k + 1,swap (g, k, 1)
end

kel..n

Sorting : Merging (3)

94

Applying Rule M_WHILE to sort and progr_progr 12

sort_progr_progr_12
while £ < n do
while 3 < n do
if h(l) < h(y+1) then

J:=7+1
else
7 l:=73+1,7+1
end
end;

k,j,l,g:=k+1,k+ 1,k + 1,swap (g, k, 1)
end

Merging init and sort progr progr 12

95

sort_progr_progr_12
while £ < n do
while 7 < n do
it g(1) < g(s +1) then

J:=3+1
else
jal::j_l_laj‘l_l
end
end;

k,j,l,g:=k+1,k+1,k+ 1,swap (g, k, 1)
end

Final Program: Applying Rule M_INIT 96
sort_program
begin
g,k,3,0:=f,1,1,1; init
while £ < n do
while 7 < n do
it g(1) < g(j +1) then
7:=7+1 progr 1
else
7, l:=974+1,79+1 progr_2
end
end;
k,j,l,g:=k+1,k+ 1,k + 1,swap (g,k,l) | progr

end

end

Sorting: Concluding Remarks

97

- The overall development requires 28 proofs.

- Among which 7 were interactive

Example 5: In Place Reversing of an Array

98

sets: S
constants: n, f
variables: g

axm01: n € N

axm02: 0<n

axm03: fel.n— S
inv01: g € N S

In Place Reversing of an Array: Example

99

Here is an array

Here is the reverse array

An element which was at index zisnow atindex 8 — 7 + 1

In Place Reversing of an Array: Events

100

init
g . €N S

final
when
gel. n—S
Vk-kel..n = glk)=f(n—k+1)
then
skip
end

progress
status
anticipated
then
g eN& S
end

In Place Reversing of an Array: Refinement

101

- We introduce two additional variables z and 3, bothin1 .. n

- Initially 2 is equal to 1 and 3 is equal to n

- Here is the current situation:

1

reversed

1

unchanged

J

reversed

n

- A new event is going to exchange elements in z and 3.

Refinement: the New State

102

variables: ¢
i

J

invi_1:
invl_2:
inv1_3:
invl_4:
inv1_5:
invl_6:
invl_7:

inv1l_8:

geEl..n—> S

tel..n

JE€EL1..n

t+73=mn+1

1<Jj+1

Vk-kel..i—1 = gk)=f(n—k+1)
VkE-kei..j7 = glk)= f(k)

Vk-kej+1..n = glk)=f(n—k+1)

Refinement: the Events

103

final
Init when
1:=1 71 <1
ji=n then
g:=1f skip
end
progress
status
convergent
when
1< 3
then
g:=9g<F {t—g0)} < {1—90@)}
7:= 1 —|—
Jgi=7—1
end

Final Program 104

- All this leads to the following final program:

reverse_program
iajag = 19”7 f;
while = < 3 do
,7,9:=t1+ 1,7 — l,swap(g,i,j)
end

Example 6: Reversing a Linear Chain 105

- So far, all our examples were dealing with arrays.

- This new example deals with pointers

- We want to reverse a linear chain

- A linear chain is made of nodes

- The nodes are pointing to each other by means of pointers

- To simplify, the nodes have no information fields

A Linear Chain 106

- Here is a linear chain:

- The first node of the chain is denoted by f

- The last node is a special node denoted by [

- We suppose that f and [are distinct

- The nodes of the chain atakenin a set S

Formalizing the Linear Chain 107

axm0_1: d C S

axm0_2: f € d

sets: S axmO0 3: l € d

constants: d, f.l,c axmO0 4: f#£l

axm05: c € d\{l} —»d\{f}
axm06: VI'-TCc[lT] == T=09

Reversing the Chain 108

- Given the following initial chain

Initial Model: the Events

109

inv0 1:

reS«S

init
r:e S« S

Feverse
rTi=C

1

First Refinement 110

We introduce two additional chains a and b and a pointer p

- Node p starts both chains

- Main invariant: aUb 1l = ¢!

Initial and Final Situation 111

- At the beginning, p is equal to f, a is empty, and b is equal to c:

Progressing 112

a
f |« «—~ | p | = — oo = |
b
a
f |+« ... « —~ | p | = — | 1

First Refinement: the State 113

variables:

N S Q S

invi1: p € d

invi2: a € (cl(c™H)[{p}] U {p}) \ {f} =~ cl(c™")[{p}]
invi3: b € (cl(c)[{ip}] U {r}) \ U} = cl(c)[{p}]

invi4: c=alUb

First Refinement: the Events

114

progress
when
p € dom(b)
then
p := b(p)
a(b(p)) :=p
b:={p}t<b
end

reverse
when
b=0
then
T ‘= Qa
end

INit
r:€cS+<S
a,b,p:=39,c, f

Second Refinement: the State (1) 115

- We introduce a new constant ntl
- We replace the chain b by the chain bn

- And we introduce a new pointer q

[(F]« [a e e[J-oCa ... >z - [1] [nl]

bn

Second Refinement: the State (1)

116

- Here is the new state:

constants: f.l,c, nal
axm21: ni € S
axm22: nil & d
variables: r,a,bn,p,q
inv21: bn =bU {l — nil}
inv2 2: g = bn(p)

Second Refinement: the Events

117

progress
when

then

end

q 7+ nil

p:=49q

a(q) :=p

q := bn(q)

bn := {p} < bn

reverse
when
qg = nal
then
T — a
end

init
r:€e S« S

a,bn := g,c U {l — nil}

p,q := f,c(f)

Third Refinement

118

- The previous situation with two chains a and bn

a
f |« ~ [p nal
bn
- The new situation with a single chain d
f |« ...+ | p nil

Third Refinement: the State

119

carrier set: S
constants: f.l,c

variables: r,p,q.d

inv3 1:

inv3d 2:

d e S+ 85

d = ({f}<9bn) < a

Third Refinement: the Events

120

progress

when reverse
q 7+ nil when

then qg = nal
p:=q then
d(q) :=p r:=d& {nil}
q := d(q) end

end

init
r:€esS+S

d:={f}<(cU {l — nil}
P, q := f,c(f)

Merging

121

reverse_program

Dyq,d := fac(f)a{f}€ (CU {l I_>n7:l});
while g # nil do

p:=gq

d(q) :==p

g := d(q)
end;

r:=dp {nil}

Example 7: Integer Square root 122

- The squaring function is defined on all natural numbers

- And it is injective

- Therefore the inverse function, the square root function, exists

- But is is not defined for all natural number

- We want to make it total

Integer Square Root 123

- The integer square root of n by defect is a number r such that

r? <mn < (r+1)%

Integer Square Root (cont’d) 124

- The integer square root of 17, is 4 since we have
4% < 17 < 52

- The integer square root of 16, is 4 since we have
4% < 16 < 52

- The integer square root of 15, is 3 since we have

32 < 15 < 42

Integer Square Root: Initial State and Events

125

constants: n axmO0_1: n € N
variables: r inv0_1: r € N
final
when progress
9 status
. r<«<n . .
INit — 9 anticipated
r:€ N n < (r+1) then
the:_ r: €N
SKIp end
end

First Refinement

126

variables:

init

.

r inv1l 1: r2 <n
progress
final status
when convergent
n < (r+1)>32 when
then (r+1)2<n
skip then
end r:=17r-4+1
end

Program after First Refinement 127

square root _program
r := 0;
while (r +1)%2 <n do
r:=7r-+1
end

Second Refinement 128

- We do not want to compute (r + 1)2 at each step

- We observe the following
(r+1)+1)7% = (r+1)?+ (2r + 3)
2(r+1)+3 = (2r+3) +2

- We introduce two numbers a and b such that

a = (r+1)3

b = 2r+3

Second Refinement: State and Events 129

constants: n inv21: a= (r+1)>?
variables: 7r,a,b inv2 2: b=2r+3
progress
final when
init when a<n
r:—0 n <a then
a:— 1 then r:=r—+1
b:— 3 skip a:=a-+b
end b:=b-+4 2
end

Program after Second Refinement 130

We obtain the following program:

square root program
r,a,b:= 0,1, 3;
while a < n do
r,a,b:=r+1,a+ b,b + 2
end

Example 8: Inverse of an Injective Numerical Function 131

- Same problem as in previous example but more general

- We are given a total numerical function f

- The function f is supposed to be strictly increasing

- Hence it is injective

- We want to compute its inverse by defect

- We shall borrow ideas form the binary search development

Inverse of an Injective Numerical Function: the State 132

1

J

constants: = t
=

! f

variables: r inv0_1: r € N

Inverse of an Injective Numerical Function: the Events 133

final
when
f(r) < n
n < f(r+1)
then
skip
end

init
r:€N

progress
status
anticipated
then
r: €N
end

First Refinement 134

- We are supposedly given two constant numbers a and b such that

fla) < n < f(b+1)

- We are thus certain that our result is within the interval a .. b

- We try to make this interval narrower

- We introduce a constant g in a .. b and such that

fir)y < n < f(g+1)

First Refinement: the State 135

axm1 1: a € N

axm1_2: b € N
constants: f,n,a,b

axm1_3: fla) < n

axml4: n < f(b+1)

invi_1; q

c
invl_2: r <
variables: r,p,q

q
invl 3: f(r) < n

invid: n < f(g+1)

First Refinement: the Events (1)

ini

SR

final
when
T =4q
then
skip
end

dec
refines
progress
status
convergent
any x where

inc
refines
progress
status
convergent
any = where

What we Have to Prove 137

- Event init refines its abstraction

- Event inverse refines its abstraction

- Events inc and dec refine skip

- Events inc and dec decrease a variant

- The system is deadlock-free

Second Refinement: the Events 138

- We reduce the non-determinacy

dec 1gle
when when
r£q r £ q
n< f((r+1+4q)/2) f((r+1+4q)/2) <n
with with
r=(r+1+4q)/2 r=(r+1+4q)/2
then then
q:=(r+14+q)/2—-1 r:=((r+1+4q)/2
end end

Second Refinement: A Useful Theorem 139

- In order to prove this refinement the following theorem can be useful:

Final Program

140

iInverse_program
r,q := a, b;
while » # g do
if n < f((r+ 1+ q)/2) then
qg:=(r+14+q)/2 -1
else
r:=(r+1+q)/2
end
end

Genericity 141

- The development made in this example is generic

- We can consider that the constants f, a, and b are parameters

- By instantiating them we obtain some new programs almost for free

- But we have to prove the properties of the instantiated constants:
In our case we have to prove:
-axm0_1: f is a total function
-axm0_2: f is increasing
-axm1 3andaxm1 4: f(a) < n < f(b+1)

First Instantiation (1) 142

- f is Iinstantiated to the squaring function
- a and b are instantiated to 0 and n since we have
0° < n < (n+1)?

- We shall obtain an integer square root program

First Instantiation (2) 143

square root program
r,q := 0,n;
while » # g do
if n < ((r+1+q)/2)? then
q:=(r+1+q)/2 -1
else
r:=(r+1+gq)/2
end
end;

r:=op

Second Instantiation (1) 144

- f is instantiated to the function which “multiply by m”

- a and b are instantiated to 0 and n since we have

mx0 < n < mx(n+1)

- We shall obtain an integer division program: n/m

Second Instantiation (2) 145

Integer_division_program
r,q := 0, n;
while » # g do
if n<mx (r+1+q)/2) then
qg:=(r+14+q)/2 -1
else
r:=(r+14+q)/2
end
end;

r:=op

