
Event-B Course

3. A Mechanical Press Controller

Jean-Raymond Abrial

September-October-November 2011



Outline 1

1. Informal presentation of the example

2. Presentation of some design patterns

3. Writing the requirement document

4. Proposing a refinement strategy

5. Development of the model using refinements and design patterns

1



1. Informal Presentation of the Example

2



Presentation of the Example 2

- A mechanical press controller

- Adapted from a real system

- The real system is coming from INRST:

Institut National de la Recherche sur la Sécurité du Travail

3



Mechanical Press Schema 3

B1 B4B3B2

BUTTONS

MOTOR

ROD

SLIDE

PART

TOOL

4



Basic Equipment 4

- A Vertical Slide with a tool at its lower extremity

- An electrical Rotating Motor

- A Rod connecting the motor to the slide.

- A Clutch engaging or disengaging the motor on the rod

- When the clutch is disengaged, the slide stops “immediately”

5



Basic Commands 5

- Button B1: start motor

- Button B2: stop motor

- Button B3: engage clutch

- Button B4: disengage clutch

6



Basic User Actions 6

- Action 1: Change the tool at the lower extremity of the slide

- Action 2: Put a part to be treated under the slide

- Action 3: Remove the part

7



First Schematic View 7

EQUIPMENTCOMMANDS

8



A Typical User Session 8

1. start the motor (button B1)

2. change the tool (action 1)

3. put a part (action 2),

4. engage the clutch (button B3): the press now works,

5. disengage the clutch (button B4): the press does not work,

6. remove the part (action 3),

7. repeat zero or more times steps 3 to 6,

8. repeat zero or more times steps 2 to 7,

9. stop the motor (button B2).

9



Danger: Necessity of a Controller 9

- step 2 (change the tool),

- step 3 (put a part),

- step 6 (remove the part) are all DANGEROUS

10



Second Schematic View 10

CONTROLLER EQUIPMENT

COMMANDS

11



More Elaborate Commands for Protecting the User 11

- Controlling the way the clutch is engaged or disengaged

- Protection by means of a Front Door

12



The Front Door 12

open closed

13



The Front Door: Behavior 13

- Initially, the door is open

- When the user presses button B3 to engage the clutch,

the door is first closed BEFORE engaging the clutch

- When the user presses button B4 to disengage the clutch,

the door is opened AFTER disengaging the clutch

- Notice: The door has no button.

14



Summary of Connections 14

B1

C O N T R O L L E R

B2 B3 B4

MR

CL

DR

MR CL DR

15



Initial Situation 15

16



Starting the Motor: Pressing Button B1 16

17



The Motor Works 17

18



The Motor Works 18

19



The Motor Works 19

20



Adding a Tool 20

21



The Motor Works 21

22



The Motor Works 22

23



Putting a Part 23

24



The Motor Works 24

25



The Motor Works 25

26



The Motor Works 26

27



The Motor Works 27

28



The Motor Works 28

29



The Motor Works 29

30



The Motor Works 30

31



The Motor Works 31

32



The Motor Works 32

33



The Motor Works 33

34



Engaging the Clutch: Pressing Button B3 34

35



The Press Works 35

36



The Press Works 36

37



The Press Works 37

38



The Press Works 38

39



The Press Works 39

40



The Press Works 40

41



The Press Works 41

42



The Press Works 42

43



The Press Works 43

44



The Press Works 44

45



The Press Works 45

46



The Press Works 46

47



The Press Works 47

48



The Press Works 48

49



The Press Works 49

50



The Press Works 50

51



The Press Works 51

52



The Press Works 52

53



Disengaging the Clutch: Pressing Button B4 53

54



The Motor Works 54

55



The Motor Works 55

56



The Motor Works 56

57



Removing the Part 57

58



The Motor Works 58

59



The Motor Works 59

60



Putting a Part 60

61



Engaging the Clutch: Pressing Button B3 61

62



The Press works 62

63



The Press works 63

64



The Press works 64

65



The Press works 65

66



The Press works 66

67



The Press works 67

68



The Press works 68

69



The Press works 69

70



The Press works 70

71



The Press works 71

72



The Press works 72

73



The Press works 73

74



The Press works 74

75



The Press works 75

76



The Press works 76

77



The Press works 77

78



The Press works 78

79



The Press works 79

80



Disengaging the Clutch: Pressing Button B4 80

81



The Motor Works 81

82



The Motor Works 82

83



The Motor Works 83

84



Removing the Part 84

85



The Motor Works 85

86



The Motor Works 86

87



Removing the Tool 87

88



Stopping Motor: Pressing Button B2 88

89



Final Situation 89

90



Overview 90

StopStart
Motor

Start Stop

Clutch

MOTOR

motor_actuator

motor_sensor

CLUTCH

clutch_actuator

clutch_sensor

DOOR

door_sensordoor_actuator

CONTROLLER

91



2. Presentation of some Design Patterns

92



Motivations 91

- A number of similar behaviors

- Some complex situations to handle

93



Similar Behavior (1) 92

- A specific action results eventually in having a specific reaction:

- Pushing button B1 results eventually in starting the motor

- Pushing button B4 results eventually in disengaging the clutch

- . . .

94



Similar Behavior (2) 93

- Correlating two pieces of equipment:

- When the clutch is engaged then the motor must work

- When the clutch is engaged then the door must be closed

95



Similar Behavior (3) 94

- Making an action dependent of another one:

- Engaging the clutch implies closing the door first

- Disengaging the clutch means opening the door afterwards

96



Motivation: Example of Some Complex Situation 95

- Here is a sequence of events:

(1) User pushes button B1 (start motor)

(1’) User does not remove his finger from button B1

(2) Controller sends the starting command to the motor

(3) Motor starts and sends feedback to the controller

(4) Controller is aware that the motor works

(5) User pushes button B2 (stop motor)

(6) Controller sends the stop command to the motor

(7) Motor stops and sends feedback to the controller

(8) Controller is aware that the motor does not work

(9) Controller must not send the starting command to the motor

97



Motivation: Example of Some Complex Situation 96

- Here is a sequence of events:

(1) User pushes button B1 (start motor)

(2) Controller sends the starting command to the motor

(3.1) Motor starts and sends feedback to the controller

(3.2) User pushes button B2 (stop motor)

- (3.1) and (3.2) may occur simultaneously

- If controller treats (3.1) before (3.2): motor is stopped

- If controller treats (3.2) before (3.1): motor is not stopped

98



Design Patterns in Formal Developments 97

- We want to build systems which are correct by construction

- We want to have more methods for doing so

- "Design pattern" is an Object Oriented concept

- We would like to borrow this concept for doing formal developments

- A preliminary tentative with reactive system developments

- Advantage: systematic developments and also refinement of proofs

99



A Personal View on Design Patterns 98

- This is an engineering concept

- It can be used outside OO

- The goal of each DP is to solve a certain category of problems

- But the design pattern has to be adapted to the problem at hand

- Is it compatible with formal developments?

- Let’s apply this approach to the design of reactive systems

100



A Wikipedia View on Design Patterns (1) 99

- A design pattern isn’t a finished design that can be transformed

into code

- It is a template for how to solve a problem that can be used in

many different situations

- Patterns originated as an architectural concept by Christopher

Alexander

- "Design Patterns: Elements of Reusable Object-Oriented Software"

published in 1994 (Gamma et al)

101



A Wikipedia View on Design Patterns (2) 100

- Design pattern can speed up the development process by providing

tested and proven development paradigms

- The documentation for a design pattern should contain enough

information about the problem that the pattern addresses, the

context in which it is used, and the suggested solution.

- Some feel that the need for patterns results from using computer

languages or techniques with insufficient abstraction

102



An Action Pattern 101

Action

103



Action and Reaction Patterns 102

Action Reaction

104



Action and Weak Reaction Patterns 103

- Sometimes, the reaction has not enough time to react

- Because the action moves too quickly

105



Action and Strong Reaction Patterns 104

- Sometimes, the reaction always follows the action

- They are both synchronized

106



Constructing Models of Actions and Reactions 105

- We built first a model of a weak reaction

- The strong reaction will be a refinement of the weak one

107



Model for weak action and reaction: the State 106

variables: a
r

pat0 1: a ∈ {0, 1}

pat0 2: r ∈ {0, 1}

- a denotes the action

- r denotes the reaction

108



Model for weak action and reaction: the State 107

variables: a
r
ca
cr

pat0 1: a ∈ {0, 1}

pat0 2: r ∈ {0, 1}

pat0 3: ca ∈ N

pat0 4: cr ∈ N

pat0 5: cr ≤ ca

- ca and cr denote how many times a and r are set to 1

- pat0 5 formalizes the weak reaction

109



Model for weak action and reaction: the Events (1) 108

a on
when
a = 0

then
a := 1
ca := ca + 1

end

a off
when
a = 1

then
a := 0

end

a = 0

a = 1

a = 0

110



Model for weak action and reaction: the Events (2) 109

r on
when
r = 0
a = 1

then
r := 1
cr := cr + 1

end

r off
when
r = 1
a = 0

then
r := 0

end

r = 0 r = 0

r = 1

a = 0

a = 1

111



Summary of Events 110

a on
when

a = 0
then

a := 1
ca := ca + 1

end

a off
when

a = 1
then

a := 0
end

r on
when

r = 0
a = 1

then
r := 1
cr := cr + 1

end

r off
when

r = 1
a = 0

then
r := 0

end

a_on a_off

r_offr_on

112



Summary of Weak Synchronization 111

variables: a,
r,
ca,
cr

pat0 1: a ∈ {0, 1}

pat0 2: r ∈ {0, 1}

pat0 3: ca ∈ N

pat0 4: cr ∈ N

pat0 5: cr ≤ ca

init
a := 0
r := 0
ca := 0
cr := 0

a on
when

a = 0
then

a := 1
ca := ca + 1

end

a off
when

a = 1
then

a := 0
end

r on
when

r = 0
a = 1

then
r := 1
cr := cr + 1

end

r off
when

r = 1
a = 0

then
r := 0

end

Nothing guarantees that the invariants are preserved

113



D E M 0 (Showing a Problem and Finding a
Solution)

114



Intuition Behind the new Invariant 112

pat0 6: r = 0 ∧ a = 1 ⇒ cr < ca

cr<ca

a=1

r=0

ca is incremented

115



Summary of the State of the weak Reaction 113

pat0 1: a ∈ {0, 1}

pat0 2: r ∈ {0, 1}

pat0 3: ca ∈ N

pat0 4: cr ∈ N

pat0 5: cr ≤ ca

pat0 6: r = 0 ∧ a = 1 ⇒ cr < ca

116



Summary of the Events of the weak Reaction 114

The counters have

been removed

init
a := 0
r := 0

a on
when
a = 0

then
a := 1

end

r on
when
r = 0
a = 1

then
r := 1

end

a off
when
a = 1

then
a := 0

end

r off
when
r = 1
a = 0

then
r := 0

end

117



Weak Synchronization of Events 115

a_on a_off

r_offr_on

118



Refinement: Strong action and reaction 116

- We add the following invariant

pat1 1: ca ≤ cr + 1

- Remember invariant pat0 5

pat0 5: cr ≤ ca We have thus: ca = cr ∨ ca = cr + 1

119



Summary (so far) of the Strong Sncchronization 117

pat1 1: ca ≤ cr + 1

a on
when

a = 0
then

a := 1
ca := ca + 1

end

a off
when

a = 1
then

a := 0
end

r on
when

r = 0
a = 1

then
r := 1
cr := cr + 1

end

r off
when

r = 1
a = 0

then
r := 0

end

Nothing guarantees that the invariant is preserved

120



D E M 0 (Showing Problems and Finding
Solutions)

121



Merging the two invariants 118

- Putting together these two invariants

pat1 2: a = 0 ⇒ ca = cr

pat1 3: a = 1 ∧ r = 1 ⇒ ca = cr

- leads to the following

pat1 4: a = 0 ∨ r = 1 ⇒ ca = cr

122



Simplifying the Invariants 119

pat0 5: cr ≤ ca

pat0 6: a = 1 ∧ r = 0 ⇒ cr < ca

pat1 1: ca ≤ cr + 1

pat1 4: a = 0 ∨ r = 1 ⇒ ca = cr

This can be simplified to

pat2 1: a = 1 ∧ r = 0 ⇒ ca = cr + 1

pat2 2: a = 0 ∨ r = 1 ⇒ ca = cr

123



Summary of the State for the Strong Reaction 120

pat0 1: a ∈ {0, 1}

pat0 2: r ∈ {0, 1}

pat0 3: ca ∈ N

pat0 4: cr ∈ N

pat2 1: a = 1 ∧ r = 0 ⇒ ca = cr + 1

pat2 2: a = 0 ∨ r = 1 ⇒ ca = cr

124



Intuition Behind the two Invariants 121

pat2 1: a = 1 ∧ r = 0 ⇒ ca = cr + 1

pat2 2: a = 0 ∨ r = 1 ⇒ ca = cr

a=0

r=0

a=1 r=1

ca = crca = crca = cr

ca is incremented cr is incremented

ca=cr+1

pat2_1pat2_2 pat2_2

125



Summary of the Events for the Strong Reaction 122

The counters have

been removed

init
a := 0
r := 0

a on
when
a = 0
r = 0

then
a := 1

end

r on
when
r = 0
a = 1

then
r := 1

end

a off
when
a = 1
r = 1

then
a := 0

end

r off
when
r = 1
a = 0

then
r := 0

end

126



Strong Synchronization of Events 123

a_on a_off

r_offr_on

127



What we Have Learned 124

- Proof failures helped us improving our models

- When an invariant preservation proof fails on an event,

there are two solutions:

- adding a new invariant

- strengthening the guard

- Modelling considerations helped us choosing one or the other

- At the end, we reached a stable situation (fixpoint)

128



3. Writing the Requirement Document

129



Requirements: Describing Equipment 125

The system has got the following pieces of
equipment: a Motor, a Clutch, and a Door EQP 1

Four Buttons are used to start and stop the
motor, and engage and disengage the clutch EQP 2

A Controller is supposed to manage this equipment EQP 3

130



Requirements: Connection Constraints 126

Buttons and Controller are weakly synchronized FUN 1

Controller are Equipment are strongly synchronized FUN 2

131

Leo
附注
and



Requirements: Relationship Between Motor and Clutch 127

When the clutch is engaged, the motor must work SAF 1

When the clutch is engaged, the door must be closed SAF 2

132



Requirements: Relationship Between Door and Clutch 128

When the clutch is engaged, the door cannot
be closed several times, ONLY ONCE FUN 3

When the door is closed, the clutch cannot
be disengaged several times, ONLY ONCE FUN 4

Opening and closing the door are not independent.
It must be synchronized with disengaging and
engaging the clutch

FUN 5

133



Overview 129

StopStart
Motor

Start Stop

Clutch

MOTOR

motor_actuator

motor_sensor

CLUTCH

clutch_actuator

clutch_sensor

DOOR

door_sensordoor_actuator

CONTROLLER

134



4. Proposing a Refinement Strategy

135



Refinement Strategy 130

- Initial model: Connecting the controller to the motor

- 1st refinement: Connecting the motor buttons to the controller

- 2nd refinement: Connecting the controller to the clutch

- 3rd refinement: Constraining the clutch and the motor

136



Refinement Strategy (cont’d) 131

- 4th refinement: Connecting the controller to the door

- 5th refinement: Constraining the clutch and the door

- 6th refinement: More constraints between clutch and door

- 7th refinement: Connecting the clutch buttons to the controller

137



5. Development of the Model using Refinements and

Design Patterns

138



Initial Model: Connecting the Controller to the Motor 132

Controller

Motor

Strong Reaction

Controller are Equipment are strongly synchronized FUN 2

139



Model for strong action and reaction: the Final Events 133

The counters have

been removed

init
a := 0
r := 0

a on
when
a = 0
r = 0

then
a := 1

end

r on
when
r = 0
a = 1

then
r := 1

end

a off
when
a = 1
r = 1

then
a := 0

end

r off
when
r = 1
a = 0

then
r := 0

end

140



Initial Model: the Context 134

set: STATUS
constants: stopped

working

axm0 1: STATUS = {stopped,working}

axm0 2: stopped 6= working

141



Initial Model: the State 135

variables: motor actuator
motor sensor

inv0 1: motor sensor ∈ STATUS

inv0 2: motor actuator ∈ STATUS

142



Initial Model: the Synchronization 136

MotorController

Action

motor_actuator

Strong Reaction

motor_sensor

143



Pattern Instantiation 137

- We instantiate the strong pattern as follows:

a ; motor actuator
r ; motor sensor
0 ; stopped
1 ; working

a on ; treat start motor
a off ; treat stop motor
r on ; Motor start
r off ; Motor stop

- Convention: Controller events start with "treat "

144



Initial Model: Initialization 138

init
a := 0
r := 0

init
motor actuator := stopped

motor sensor := stopped

145



Initial Model: Controller Events (1) 139

a on
when
a = 0
r = 0

then
a := 1

end

treat start motor
when

motor actuator = stopped

motor sensor = stopped
then

motor actuator := working
end

146



Initial Model: Environment Event (1) 140

r on
when
r = 0
a = 1

then
r := 1

end

Motor start
when

motor sensor = stopped

motor actuator = working
then

motor sensor := working
end

147



Initial Model: Controller Events (2) 141

a off
when
a = 1
r = 1

then
a := 0

end

treat stop motor
when

motor actuator = working

motor sensor = working
then

motor actuator := stopped
end

148



Initial Model: Environment Event (2) 142

r off
when
r = 1
a = 0

then
r := 0

end

Motor stop
when

motor sensor = working

motor actuator = stopped
then

motor sensor := stopped
end

149



Synchronization 143

a_on a_off

r_offr_on

Motor_start Motor_stop

treat_start_motor treat_stop_motor

150



Initial Model: Summary of the Events 144

- Environment

- motor start

- motor stop

- Controller

- treat start motor

- treat stop motor

151



1st Reft.: Connecting the Motor Buttons to the Controller 145

B2B1

Controller

Weak Reaction

Motor

Strong Reaction

Buttons and Controller are weakly synchronized FUN 1

152



Model for weak action and reaction: the Final Events 146

The counters have

been removed

init
a := 0
r := 0

a on
when
a = 0

then
a := 1

end

r on
when
r = 0
a = 1

then
r := 1

end

a off
when
a = 1

then
a := 0

end

r off
when
r = 1
a = 0

then
r := 0

end

153



First Refinement: the State 147

variables: . . .
start motor button
stop motor button
start motor impulse
stop motor impulse

inv1 1: stop motor button ∈ BOOL
inv1 2: start motor button ∈ BOOL
inv1 3: stop motor impulse ∈ BOOL
inv1 4: start motor impulse ∈ BOOL

154



First Refinement: the State 148

Button Button

Stop

start_motor_button stop_motor_button

start_motor_impulse stop_motor_impulse

Start

action action

CONTROLLER

weak reaction weak reaction

155



Pattern Instantiation 149

- We instantiate the pattern as follows:

a ; start motor button
r ; start motor impulse
0 ; FALSE
1 ; TRUE

a on ; push start motor button
a off ; release stop motor button
r on ; treat push start motor button
r off ; treat release start motor button

- We rename treat start motor as treat push start motor button

156



1st Refinement: Refinement of Initialization 150

init

a := 0
r := 0

init
motor actuator := stopped
motor sensor := stopped
start motor button := FALSE
start motor impulse := FALSE

157



First Refinement: New Environment Events (1) 151

a on
when
a = 0

then
a := 1

end

push start motor button
when

start motor button = FALSE
then

start motor button := TRUE
end

a off
when
a = 1

then
a := 0

end

release start motor button
when

start motor button = TRUE
then

start motor button := FALSE
end

158



First Refinement: Refining Controller Events (1) 152

r on

when
r = 0
a = 1

then
r := 1

end

treat push start motor button
refines

treat start motor
when

start motor impulse = FALSE

start motor button = TRUE
motor actuator = stopped
motor sensor = stopped

then
start motor impulse := TRUE
motor actuator := working

end

- This is the most important slide of the talk

- We can see how patterns can be superposed

159



a on
when

a = 0
r = 0

then
a := 1

end

treat start motor
when

motor actuator = stopped

motor sensor = stopped
then

motor actuator := working
end

r on
when

r = 0
a = 1

then
r := 1

end

treat push start motor button
when

start motor impulse = FALSE

start motor button = TRUE
motor actuator = stopped

motor sensor = stopped
then

start motor impulse := TRUE

motor actuator := working
end

160



Design Pattern Integration within a Development 153

 Refinement 1

Instantiated Pattern

Initial Model

refines

refines

 Refinement n

refines

161



First Refinement: New Controller Events (1) 154

r off
when
r = 1
a = 0

then
r := 0

end

treat release start motor button
when

start motor impulse = TRUE

start motor button = FALSE
then

start motor impulse := FALSE
end

162



Pattern Instantiation 155

- We instantiate the pattern as follows:

a ; stop motor button
r ; stop motor impulse
0 ; FALSE
1 ; TRUE

a on ; push stop motor button
a off ; release stop motor button
r on ; treat push stop motor button
r off ; treat release stop motor button

163



1st Refinement: More Refinement of Initialization 156

init

a := 0
r := 0

init
motor actuator := stopped
motor sensor := stopped
start motor button := FALSE
start motor impulse := FALSE
stop motor button := FALSE

stop motor impulse := FALSE

164



First Refinement: New Environment Events 157

a on
when
a = 0

then
a := 1

end

push stop motor button
when

stop motor button = FALSE
then

stop motor button := TRUE
end

a off
when
a = 1

then
a := 0

end

release stop motor button
when

stop motor button = TRUE
then

stop motor button := FALSE
end

165



First Refinement: Refining Controller Events (2) 158

r on

when
r = 0
a = 1

then
r := 1

end

treat push stop motor button
refines

treat stop motor
when

stop motor impulse = FALSE

stop motor button = TRUE
motor sensor = working
motor actuator = working

then
stop motor impulse := TRUE
motor actuator := stopped

end

166



First Refinement: New Controller Events (2) 159

r off
when
r = 1
a = 0

then
r := 0

end

treat release stop motor button
when

stop motor impulse = TRUE

stop motor button = FALSE
then

stop motor impulse := FALSE
end

167



Independent Synchronizations 160

push_start_motor_button release_start_motor_button

treat_release_start_motor_buttontreat_push_start_motor_button

168



Independent Synchronizations 161

push_start_motor_button release_start_motor_button

treat_release_start_motor_buttontreat_push_start_motor_button

treat_release_stop_motor_button

push_stop_motor_buttonrelease_stop_motor_button

treat_push_stop_motor_button

169



Independent Synchronizations 162

push_start_motor_button release_start_motor_button

treat_release_start_motor_buttontreat_push_start_motor_button

treat_release_stop_motor_button

push_stop_motor_buttonrelease_stop_motor_button

treat_push_stop_motor_button

Motor_start Motor_stop

treat_push_start_motor_button treat_push_stop_motor_button

170



Weak and Strong Reactions Together 163

Button Button

Stop

start_motor_button stop_motor_button

motor_actuator

motor_sensor

start_motor_impulse stop_motor_impulse

MOTOR

Start

action action

CONTROLLER

action

weak reaction weak reaction

strong reaction

171



Combined Synchronizations 164

treat_release_stop_motor_button

Motor_start

push_start_motor_button release_start_motor_button

Motor_stop

treat_release_start_motor_button

push_stop_motor_buttonrelease_stop_motor_button

treat_push_stop_motor_button

treat_push_start_motor_button

172



Problems with treat push start motor button 165

treat push start motor button
refines

treat start motor
when

start motor impulse = FALSE

start motor button = TRUE
motor actuator = stopped
motor sensor = stopped

then
start motor impulse := TRUE
motor actuator := working

end

- What happens when the following hold

¬ (motor actuator = stopped ∧ motor sensor = stopped)

- We need another event

173



Problems with treat push start motor button 166

treat push start motor button
refines

treat start motor
when

start motor impulse = FALSE

start motor button = TRUE
motor actuator = stopped
motor sensor = stopped

then
start motor impulse := TRUE
motor actuator := working

end

treat push start motor button false

when
start motor impulse = FALSE

start motor button = TRUE
¬ (motor actuator = stopped ∧

motor sensor = stopped)
then

start motor impulse := TRUE

end

- In the second case, the button has been pushed but the internal conditions are not met

- However, we need to record that the button has been pushed:

start motor impulse := TRUE

174



Problems with treat push stop motor button 167

treat push stop motor button
refines

treat stop motor
when

stop motor impulse = FALSE

stop motor button = TRUE
motor sensor = working
motor actuator = working

then
stop motor impulse := TRUE
motor actuator := stopped

end

treat push stop motor button false

when
stop motor impulse = FALSE

stop motor button = TRUE
¬ (motor sensor = working ∧

motor actuator = working)
then

stop motor impulse := TRUE

end

- In the second case, the button has been pushed but the internal conditions are not met

- However, we need to record that the button has been pushed:

stop motor impulse := TRUE

175



First Refinement: Summary of the Events (1) 168

- Environment

- motor start

- motor stop

- push start motor button

- release start motor button

- push stop motor button

- release stop motor button

176



First Refinement: Summary of the Events (2) 169

- Controller

- treat push start motor button

- treat push start motor button false

- treat push stop motor button

- treat push stop motor button false

- treat release start motor button

- treat release stop motor button

177



2nd Refinement: Connecting the Controller to the Clutch 170

Button
Start

Button
Stop

stop_motor_button

start_motor_impulse

stop_motor_impulse

CONTROLLER

MOTOR

motor_actuator

motor_sensor

start_motor_button

CLUTCH

clutch_actuator

clutch_sensor

178



2nd Refinement: Connecting the Controller to the Clutch 171

- We introduce the set in a new context:

CLUTCH = {engaged, disengaged}

- We copy the initial model where we instantiate:

motor ; clutch

STATUS ; CLUTCH

working ; engaged

stopped ; disengaged

179



Second Refinement: Summary of the Events (1) 172

- Environment

- motor start

- motor stop

- clutch start

- clutch stop

- push start motor button

- release start motor button

- push stop motor button

- release stop motor button

180



Second Refinement: Summary of the Events (2) 173

- Controller

- treat push start motor button

- treat push start motor button false

- treat push stop motor button

- treat push stop motor button false

- treat release start motor button

- treat release stop motor button

- treat start clutch

- treat stop clutch

181



Third Refinement: Constraining the Clutch and the Motor 174

- An additional safety constraint

When the clutch is engaged, the motor must work SAF 1

- For this we develop ANOTHER DESIGN PATTERN

- It is called: Weak synchronization of two Strong Reactions

182



Pattern: Weak Synchronization of Strong Reactions 175

motor works

clutch engaged

When the clutch is engaged

then

the motor must work

183



Pattern: Weak Synchronization of Strong Reactions 176

s=1

s=1 r=1=>

r=1

a r

sb

When the clutch is engaged

then

the motor must work

184



The Synchronization is Weak (1) 177

clutch

motor

clutch is disengaged

When the clutch is disengaged,

then

the motor can be started and stopped several times
185



The Synchronization is Weak (2) 178

motor

clutch

motor works

When the motor works,

then

the clutch can be engaged and disengaged several times
186



Putting the Two Together 179

187



Synchronizing the Reactions Without Touching them 180

a_on a_off

r_offr_on

b_on b_off

s_offs_on

188



The Initial State Situation 181

dbl0 1: a ∈ {0, 1}
dbl0 2: r ∈ {0, 1}
dbl0 3: ca ∈ N
dbl0 4: cr ∈ N
dbl0 5: a = 1 ∧ r = 0 ⇒ ca = cr + 1
dbl0 6: a = 0 ∨ r = 1 ⇒ ca = cr

dbl0 7: b ∈ {0, 1}
dbl0 8: s ∈ {0, 1}
dbl0 9: cb ∈ N
dbl0 10: cs ∈ N
dbl0 11: b = 1 ∧ s = 0 ⇒ cb = cs + 1
dbl0 12: b = 0 ∨ s = 1 ⇒ cb = cs

189



The Initial Event Situation (1) 182

a on
when
a = 0
r = 0

then
a := 1
ca := ca + 1

end

a off
when
a = 1
r = 1

then
a := 0

end

r on
when
r = 0
a = 1

then
r := 1
cr := cr + 1

end

r off
when
r = 1
a = 0

then
r := 0

end

190



The Initial Event Situation (2) 183

b on
when
b = 0
s = 0

then
b := 1
cb := cb + 1

end

b off
when
b = 1
s = 1

then
b := 0

end

s on
when
s = 0
b = 1

then
s := 1
cs := cs + 1

end

s off
when
s = 1
b = 0

then
s := 0

end

191



The Synchronizing Invariant 184

dbl1 1: s = 1 ⇒ r = 1

- It seems sufficient to add the following guards

s on
when
s = 0
b = 1
r = 1

then
s := 1
cs := cs + 1

end

r off
when
r = 1
a = 0
s = 0

then
r := 0

end

- But we do not want to touch these events
192



Introducing Additional Invariants to Remove the red guards 185

s on
when
s = 0
b = 1

r = 1
then
s := 1
cs := cs + 1

end

r off
when
r = 1
a = 0

s = 0
then
r := 0

end

- We introduce the following additional invariants

dbl1 2: b = 1 ⇒ r = 1

dbl1 3: a = 0 ⇒ s = 0

193



Maintaining Invariant dbl1 2 (1) 186

dbl1 2: b = 1 ⇒ r = 1

In order to maintain this invariant, we have to refine b on

b on
when
b = 0
s = 0

then
b := 1
cb := cb + 1

end

;

b on
when
b = 0
s = 0
r = 1

then
b := 1
cb := cb + 1

end

194



Maintaining (Contraposition of) Invariant dbl1 2 (2) 187

dbl1 2: b = 1 ⇒ r = 1 (r = 0 ⇒ b = 0)

In order to maintain this invariant, we have to refine r off

r off
when
r = 1
a = 0

then
r := 0

end

;

r off
when
r = 1
a = 0
b = 0

then
r := 0

end

- But, again, we do not want to touch this event
195



Introducing a new invariant to Remove the Red Guard 188

r off
when
r = 1
a = 0

b = 0
then
r := 0

end

- We introduce the following invariant

dbl1 4: a = 0 ⇒ b = 0

196

Leo
附注
这里的前件为什么没有选择
r = 1
而只用了
a = 0
这是一个问题



Maintaining Invariant dbl1 3 (1) 189

dbl1 3: a = 0 ⇒ s = 0

In order to maintain this invariant, we have to refine a off

a off
when
a = 1
r = 1

then
a := 0

end

;

a off
when
a = 1
r = 1
s = 0

then
a := 0

end

197



Maintaining (Contraposition of) Invariant dbl1 3 (2) 190

dbl1 3: a = 0 ⇒ s = 0 (s = 1 ⇒ a = 1)

In order to maintain this invariant, we have to refine s on

s on
when
s = 0
b = 1

then
s := 1
cs := cs + 1

end

;

s on
when
s = 0
b = 1
a = 1

then
s := 1
cs := cs + 1

end

- But, again, we do not want to touch this event
198



Introducing a new invariant to Remove the Red Guard 191

s on
when
s = 0
b = 1

a = 1
then
s := 1
cs := cs + 1

end

- We have to introduce the following invariant

b = 1 ⇒ a = 1

- Fortunately, this is dbl1 4 (a = 0 ⇒ b = 0) contraposed

199



Maintaining Invariant dbl1 4 (1) 192

dbl1 4: a = 0 ⇒ b = 0

In order to maintain this invariant, we have to refine a off again

a off
when
a = 1
r = 1
s = 0

then
a := 0

end

;

a off
when
a = 1
r = 1
s = 0
b = 0

then
a := 0

end

200



Maintaining (Contraposition of) Invariant dbl1 4 (2) 193

dbl1 4: a = 0 ⇒ b = 0 (b = 1 ⇒ a = 1)

In order to maintain this invariant, we have to refine b on again

b on
when
b = 0
s = 0
r = 1

then
b, cb := 1, cb + 1

end

;

b on
when
b = 0
s = 0
r = 1
a = 1

then
b, cb := 1, cb + 1

end

201



Summary of Refinement: Reactions have not been Touched 194

dbl1 1: s = 1 ⇒ r = 1
dbl1 2: b = 1 ⇒ r = 1
dbl1 3: a = 0 ⇒ s = 0
dbl1 4: a = 0 ⇒ b = 0

b on
when
b = 0
s = 0
r = 1
a = 1

then
b, cb := 1, cb + 1

end

a off
when
a = 1
r = 1
s = 0
b = 0

then
a := 0

end

202



Intuition about the Invariants 195

dbl1 1: s = 1 ⇒ r = 1
dbl1 2: b = 1 ⇒ r = 1
dbl1 3: a = 0 ⇒ s = 0 (s = 1 ⇒ a = 1)
dbl1 4: a = 0 ⇒ b = 0 (b = 1 ⇒ a = 1)

This can be put into a single invariant

dbl1 5: b = 1 ∨ s = 1 ⇒ a = 1 ∧ r = 1

with the following contraposed form

dbl1 6: a = 0 ∨ r = 0 ⇒ b = 0 ∧ s = 0

203



Intuition about the Invariants 196

a=0

 or

r=0

a=0

 or

r=0

a=0

 or

r=0

 or

b=1

s=1

 or

b=1

s=1

Reminder: - - - is the motor and - - - is the clutch

dbl1 5: b = 1 ∨ s = 1 ⇒ a = 1 ∧ r = 1

dbl1 6: a = 0 ∨ r = 0 ⇒ b = 0 ∧ s = 0

204



Looking at the Result 197

a on
when

a = 0
r = 0

then
a := 1

end

a off
when

a = 1
r = 1
s = 0
b = 0

then
a := 0

end

r on
when

r = 0
a = 1

then
r := 1

end

r off
when

r = 1
a = 0

then
r := 0

end

b on
when

b = 0
s = 0
r = 1
a = 1

then
b := 1

end

b off
when

b = 1
s = 1

then
b := 0

end

s on
when

s = 0
b = 1

then
s := 1

end

s off
when

s = 1
b = 0

then
s := 0

end

dbl1 1: s = 1 ⇒ r = 1 (r = 0 ⇒ s = 0)
dbl1 2: b = 1 ⇒ r = 1 (r = 0 ⇒ b = 0)
dbl1 3: a = 0 ⇒ s = 0 (s = 1 ⇒ a = 1)
dbl1 4: a = 0 ⇒ b = 0 (b = 1 ⇒ a = 1)

205



Weak Synchronization of Strong Reactions: the Problem 198

a_on a_off

r_offr_on

b_on b_off

s_offs_on

dbl1 1: s = 1 ⇒ r = 1 (r = 0 ⇒ s = 0)

206



Weak Synchronization of Strong Reactions: the Solution 199

b on
when

b = 0
s = 0
r = 1
a = 1

then
b := 1

end

a_on a_off

r_offr_on

b_on b_off

s_offs_on

a off
when

a = 1
r = 1
s = 0
b = 0

then
a := 0

end

207



Back to 3rd Reft.: Constraining the Clutch and the Motor 200

When the clutch is engaged, the motor must work SAF 1

inv3 1: clutch sensor = engaged
⇒
motor sensor = working

- This is an instance of the previous design pattern

208



Pattern Instantiation 201

- We instantiate the pattern as follows:

a ; motor actuator
r ; motor sensor
0 ; stopped
1 ; working

a on ; treat push start motor button
a off ; treat push stop motor button
r on ; Motor start
r off ; Motor stop

b ; clutch actuator
s ; clutch sensor
0 ; disengaged
1 ; engaged

b on ; treat start clutch
b off ; treat stop clutch
s on ; Clutch start
s off ; Clutch stop

209



Translating the pattern invariants (1) 202

dbl1 1: s = 1 ⇒ r = 1

dbl1 2: b = 1 ⇒ r = 1

clutch sensor = engaged
inv3 1: ⇒

motor sensor = working

clutch actuator = engaged
inv3 2: ⇒

motor sensor = working

210



Translating the pattern invariants (2) 203

dbl1 3: a = 0 ⇒ s = 0

dbl1 4: a = 0 ⇒ b = 0

motor actuator = stopped
inv3 3: ⇒

clutch sensor = disengaged

motor actuator = stopped
inv3 4: ⇒

clutch actuator = disengaged

211



Adapting the Events of the Pattern (1) 204

b on
when
b = 0
s = 0
r = 1
a = 1

then
b := 1

end

treat start clutch
when
clutch actuator = disengaged
clutch sensor = disengaged
motor sensor = working

motor actuator = working
then
clutch actuator := engaged

end

212



Adapting the events of the pattern (2) 205

a off
when

a = 1
r = 1
s = 0
b = 0

then
a := 0

end

treat push stop motor button
when
stop motor impulse = FALSE
stop motor button = TRUE
motor actuator = working
motor sensor = working
clutch sensor = disengaged

clutch actuator = disengaged
then
motor actuator := stopped
stop motor impulse := TRUE

end

213



Third Refinement: Summary of the Events (1) 206

- Environment (no new events)

- motor start

- motor stop

- clutch start

- clutch stop

- push start motor button

- release start motor button

- push stop motor button

- release stop motor button

214



Third Refinement: Summary of the Events (2) 207

- Controller (no new events)

- treat push start motor button

- treat push start motor button false

- treat push stop motor button

- treat push stop motor button false

- treat release start motor button

- treat release stop motor button

- treat start clutch

- treat stop clutch

215



Fourth Refinement: Connecting the Controller to the Door 208

Button
Start

Button
Stop

stop_motor_button

start_motor_impulse

stop_motor_impulse

CONTROLLER

MOTOR

motor_actuator

motor_sensor

start_motor_button

CLUTCH

clutch_actuator

clutch_sensor

DOOR

door_sensordoor_actuator

- We copy (after renaming "motor" to "door") what has been done

in the initial model
216



Fourth Refinement: Connecting the Controller to the Door 209

- We introduce the set in a new context:

DOOR = {open, closed}

- We copy the initial model where we instantiate:

motor ; door

STATUS ; DOOR

working ; closed

stopped ; open

217



Fourth Refinement: Summary of the Events (1) 210

- Environment

- motor start

- motor stop

- clutch start

- clutch stop

- door close

- door open

- push start motor button

- release start motor button

- push stop motor button

- release stop motor button

218



Fourth Refinement: Summary of the Events (2) 211

- Controller

- treat push start motor button

- treat push start motor button false

- treat push stop motor button

- treat push stop motor button false

- treat release start motor button

- treat release stop motor button

- treat start clutch

- treat stop clutch

- treat close door

- treat open door

219



Fifth Refinement: Constraining the Clutch and the Door 212

- An additional safety constraint

When the clutch is engaged, the door must
be closed SAF 2

- We copy (after renaming "motor" to "door") what has been done

in the third model:

When the clutch is engaged, the motor must work SAF 1

220



Fifth Reft.: Something was forgotten Concerning the Door 213

221



Fifth Reft.: Something was forgotten Concerning the Door 214

- Can you guess it?

222



Fifth Reft.: Something was forgotten Concerning the Door 215

- Can you guess it?

- When the motor is not working, we must allow users:

- to change the tool

- to replace the part to be treated

223



Fifth Reft.: Something was forgotten Concerning the Door 216

- Can you guess it?

- When the motor is not working, we must allow users:

- to change the tool

- to replace the part to be treated

- Hence the following additional requirement (which was forgotten)

When the motor is stopped, the door must be open SAF 3

224



Fifth Reft.: Something was forgotten Concerning the Door 217

- Can you guess it?

- When the motor is not working, we must allow users:

- to change the tool

- to replace the part to be treated

- Hence the following additional requirement (which was forgotten)

When the door is closed, the motor must work SAF 3’

- SAF 3’ is the contraposed form of SAF 3

225



Fifth Refinement: Taking Care of the New Constraint 218

- Additional safety constraint

When the door is closed, the motor must work SAF 3’

- We copy (after renaming "clutch" to "door") what has been done

in the third model:

When the clutch is engaged, the motor must work SAF 1

226



Fifth Reft.: Summary of the Safety Requirements 219

When the clutch is engaged, the motor must work SAF 1

When the clutch is engaged, the door must
be closed SAF 2

When the door is closed, the motor must work SAF 3’

- Requirement SAF 1 is now redundant: SAF 2 ∧ SAF 3’⇒ SAF 1

227



Possible New Refinement Strategy 220

- Initial model: Connecting the controller to the motor

- 1st refinement: Connecting the motor button to the controller

- 2nd refinement: Connecting the controller to the clutch

- 3rd (4th) refinement: Connecting the controller to the door

228



Possible New Refinement Strategy (cont’d) 221

- 4th (5th) refinement: Constraining the clutch and the door

Constraining the motor and the door

- 5th (6th) refinement: More constraints between clutch and door

- 6th (7th) refinement: Connecting the clutch button to the controller

229



Fifth Refinement: Summary of the Events (1) 222

- Environment (no new events)

- motor start

- motor stop

- clutch start

- clutch stop

- door close

- door open

- push start motor button

- release start motor button

- push stop motor button

- release stop motor button

230



Fifth Refinement: Summary of the Events (2) 223

- Controller (no new events)

- treat push start motor button

- treat push start motor button false

- treat push stop motor button

- treat push stop motor button false

- treat release start motor button

- treat release stop motor button

- treat start clutch

- treat stop clutch

- treat close door

- treat open door

231



Sixth Reft.: More Constraints between Clutch and Door 224

- Adding two functional constraints

When the clutch is disengaged, the door cannot
be closed several times, ONLY ONCE FUN 3

When the door is closed, the clutch cannot
be disengaged several times, ONLY ONCE FUN 4

232



Problem with the Weak Synchronization of Strong Reactions
225

clutch disengaged

door closed

- When the clutch is disengaged, the door cannot be closed

several times

233



Problem with the Weak Synchronization of Strong Reactions
226

door closed

clutch
disengaged

- When the door is closed, the clutch cannot be disengaged

several times

234



The Full Picture 227

door is closed

clutch is engaged

door is open

clutch is disengaged

235



Strong Synchronization of two Strong Reactions 228

counter ca

counter cr

counter cb

counter cs

What we want:
ca = cb ∨ ca = cb + 1

cr = cs ∨ cr = cs + 1

236



How about counters ca and cb? 229

ca=cbca=cb+1

237



In Search of a Solution 230

ca=cbca=cb+1

a=1 and b=0

b=0

a=1

238



In Search of a Solution 231

ca=cbca=cb+1

a=1 and b=0

b=0

a=1

a = 1 ∧ b = 0 ⇒ ca = cb + 1 ?

239



This Solution Does not Work 232

a=1 and b=0 a=1 and b=0

ca=cbca=cb+1

b=0

a=1 a=1

b=0

240



The Solution: an Additional Variable m 233

ca=cbca=cb+1

m = 0m = 0

m = 1

m = 1 ⇒ ca = cb + 1
m = 0 ⇒ ca = cb

241



The Events 234

m = 0m = 0

m = 1

a_on

b_on

a_off

242



The Modified Events 235

a on
when
a = 0
r = 0

then
a := 1
ca := ca + 1
m := 1

end

b on
when
r = 1
a = 1
b = 0
s = 0
m = 1

then
b := 1
cb := cb + 1
m := 0

end

243



How about counters cr and cs 236

m = 0m = 0

m = 1

cr=cscr=cs+1cr=cs

244



In Search of a Solution 237

m = 0m = 0

m = 1

cr=cscr=cs+1cr=cs

r=1 and s=0

s=0

r=1

s=0

245



In Search of a Solution 238

m = 0m = 0

m = 1

cr=cscr=cs+1cr=cs

r=1 and s=0

s=0

r=1

s=0

r = 1 ∧ s = 0 ⇒ cr = cs + 1 ?

246



This Solution Does not Work 239

m = 0

m = 1

cr=cscr=cs+1cr=cs

r=1 and

s=0

r=1

s=0

r=1 s=0and

s=0

r=1

m = 0s=0

247



The Solution 240

m = 0

cr=cscr=cs+1cr=cs

r=1 and

s=0

r=1

s=0

r=1 s=0and

s=0

r=1

m = 1

m = 1

b=1

b=0 m = 0

248



The Solution 241

m = 0

cr=cscr=cs+1cr=cs

r=1 and

s=0

r=1

s=0

r=1 s=0and

s=0

r=1

m = 1

m = 1

b=1

b=0 m = 0

r = 1 ∧ s = 0 ∧ (m = 1 ∨ b = 1) ⇒ cr = cs + 1

r = 0 ∨ s = 1 ∨ (m = 0 ∧ b = 0) ⇒ cr = cs

249



Summary of Refinement: the state 242

dbl2 1: m ∈ {0, 1}

dbl2 2: m = 1 ⇒ ca = cb + 1

dbl2 3: m = 0 ⇒ ca = cb

dbl2 4: r = 1 ∧ s = 0 ∧ (m = 1 ∨ b = 1) ⇒ cr = cs + 1

dbl2 5: r = 0 ∨ s = 1 ∨ (m = 0 ∧ b = 0) ⇒ cr = cs

250



Summary of Refinement: the state 243

dbl2 1: m ∈ {0, 1}

dbl2 2: m = 1 ⇒ ca = cb + 1

dbl2 3: m = 0 ⇒ ca = cb

dbl2 4: r = 1 ∧ s = 0 ∧ (m = 1 ∨ b = 1) ⇒ cr = cs + 1

dbl2 5: r = 0 ∨ s = 1 ∨ (m = 0 ∧ b = 0) ⇒ cr = cs

- The following theorems are easy to prove

thm2 1: ca = cb ∨ ca = cb + 1

thm2 2: cr = cs ∨ cr = cs + 1

251



More Invariant 244

dbl2 1: m ∈ {0, 1}

dbl2 2: m = 1 ⇒ ca = cb + 1

dbl2 3: m = 0 ⇒ ca = cb

dbl2 4: r = 1 ∧ s = 0 ∧ (m = 1 ∨ b = 1) ⇒ cr = cs + 1

dbl2 5: r = 0 ∨ s = 1 ∨ (m = 0 ∧ b = 0) ⇒ cr = cs

dbl2 6: a = 0 ⇒ m = 0

- The last new invariants was discovered while doing the proof

- It requires adding the guard m = 0 in event a off

- The proofs are now (almost) completely automatic

252



The Final Modified Events 245

a on
when
a = 0
r = 0

then
a := 1
ca := ca + 1
m := 1

end

b on
when
r = 1
a = 1
b = 0
s = 0
m = 1

then
b := 1
cb := cb + 1
m := 0

end

a off
when
a = 1
r = 1
b = 0
s = 0
m = 0

then
a := 0

end

253



Instantiation 246

door closed

clutch

engaged

treat_open_door

(a_off)

treat_close_door

(a_on)

treat_start_clutch (b_on)

254



Pattern Instantiation for the 6th Refinement 247

- We instantiate the pattern as follows:

a ; door actuator
r ; door sensor
0 ; open
1 ; closed

b ; clutch actuator
s ; clutch sensor
0 ; disengaged
1 ; engaged

a on ; treat close door
a off ; treat open door
b on ; treat start clutch

255



6th Refinement: Adapting the events of the pattern (2) 248

a on
when
a = 0
r = 0

then
a := 1
m := 1

end

treat close door
when
door actuator = open
door sensor = open
motor actuator = working
motor sensor = working

then
door actuator := closed
m := 1

end

256



6th Refinement: Adapting the events of the pattern (2) 249

b on
when

b = 0
s = 0
r = 1
a = 1
m = 1

then
b := 1
m := 0

end

treat start clutch
when
motor actuator = working
motor sensor = working
clutch actuator = disengaged
clutch sensor = disengaged
door sensor = closed
door actuator = closed
m = 1

then
clutch actuator := engaged
m := 0

end

257



6th Refinement: Adapting the events of the pattern (3) 250

a off
when
a = 1
r = 1
s = 0
b = 0
m = 0

then
a := 0

end

treat open door
when
door actuator = closed
door sensor = closed
clutch sensor = disengaged
clutch actuator = disengaged
m = 0

then
door actuator := open

end

258



The Complete Synchronization of Door and Clutch 251

treat_close_door

treat_start_clutch

treat_stop_clutch

push_stop_clutch_button (B4)

door_close

clutch_stop

treat_open_door

clutch_start

door_open

push_start_clutch_button (B3)

- treat close door is the result of depressing button B3

- treat stop clutch is the result of depressing button B4

- treat start clutch and treat open door are automatic
259



Sixth Refinement: Summary of the Events (1) 252

- Environment (no new events)

- motor start

- motor stop

- clutch start

- clutch stop

- door close

- door open

- push start motor button

- release start motor button

- push stop motor button

- release stop motor button

260



Sixth Refinement: Summary of the Events (2) 253

- Controller (no new events)

- treat push start motor button

- treat push start motor button false

- treat push stop motor button

- treat push stop motor button false

- treat release start motor button

- treat release stop motor button

- treat start clutch

- treat stop clutch

- treat close door

- treat open door

261



7th Reft.: Connecting the Controller to the Clutch Buttons 254

MOTOR

motor_actuator

motor_sensor

CLUTCH

clutch_actuator

clutch_sensor

DOOR

door_sensordoor_actuator

StopStart Start Stop

ClutchMotor

start_motor_impulse

stop_motor_impulse

start_clutch_impulse

stop_clutch_impulse

CONTROLLER

m

262



Reminder: Synchronizing Door and Clutch 255

- There are no door buttons

- The door must be closed before engaging the clutch

- The door must be opened after disengaging the clutch

- It is sufficient to connect:

- button B3 to the door (closing the door)

- button B4 to the clutch (disengaging the clutch)

263



Seventh Refinement: Summary of the Events (Environment) 256

- motor start

- motor stop

- clutch start

- clutch stop

- door close

- door open

- push start motor button

- release start motor button

- push stop motor button

- release stop motor button

- push start clutch button

- release start clutch button

- push stop clutch button

- release stop clutch button

264



Seventh Refinement: Summary of the Events (Controller) 257

- treat push start motor button

- treat push start motor button false

- treat push stop motor button

- treat push stop motor button false

- treat release start motor button

- treat release stop motor button

- treat start clutch

- treat stop clutch

- treat close door

- treat open door

- treat close door false

- treat stop clutch false

- treat release start clutch button

- treat release stop clutch button

265



Decomposing the Final Model: Environment 258

- The environment events

- The environment variables modified by environment events

- The sensor variables modified by environment events

- The actuator variables read by environment events

- The controller variables not seen by environment events

- No environment variables in this model

266



Decomposing the Final Model: Controller 259

- The controller events

- The controller variables modified by controller events

- The sensor variables read by controller events

- The actuator variables modified by controller events

- The environment variables not seen by controller events

- No environment variables in this model

267



Summary: Variables of the Last Refinement (1) 260

- 7 sensor variables:

- motor sensor

- clutch sensor

- door sensor

- start motor button

- stop motor button

- start clutch button

- stop clutch button

268



Summary: Variables of the Last Refinement (2) 261

- 3 actuator variables:

- motor actuator

- clutch actuator

- door actuator

- 5 controller variables (without the counter variables):

- start motor impulse

- stop motor impulse

- start clutch impulse

- stop clutch impulse

- m

269



Summary: Events of the Last Refinement 262

- 14 environment events,

- 14 controller events,

- 130 lines for environment events,

- 180 lines for controller events.

270



Summary: Usage of the Design Patterns 263

- 4 weak reactions: 4 buttons (B1, B2, B3, B4)

- 3 strong reactions: 3 devices (motor, clutch, door)

- 3 strong-weak reactions: motor-clutch, clutch-door, motor-door

- 1 strong-strong reaction: clutch-door

271



Summary: Number of Invariants 264

- Weak reaction: 6

- Strong reaction: 3

- Strong-weak reaction: 16

- Strong-strong reaction: 6

- Total: 31

- Press (typing): 15

- Total: 15

272



Summary: Number of Proof Obligations 265

- Weak reaction: 18

- Strong reaction: 12

- Strong-weak reaction: 60

- Strong-strong reaction: 29

- Total: 119

- Press: 0

- PO saving: 4x18 + 3x12 + 3x60 + 29 = 317

273



Summary: Proofs 266

- Design patterns: 119 (all automatic)

- Press: 0

274



Conclusion 267

- This design pattern approach is very fruitful

- It results in a very systematic formal development

- Many other patterns have to be developed

- More automation has to be provided (plug-in)

275


