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- Well-founded sets and relations
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Motivation for Well-founded Sets and Relations 14

- This mathematical structure formalizes the notion of reachability

- A discrete transition process, which:

- either terminates

- or eventually reaches certain states

- is formalized by means of well-founded traces
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A Well-founded Relation 21

- From any point in the graph

- You always reach a red point after a FINITE travel
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- A cycle

- An infinite chain
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x

p

For all x in p

∀x · x ∈ p ⇒
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x

y
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Set p Containing a Cycle or an Infinite Chain 33

x

r
y

p

For all x in p there exists a y in p related to x by relation r

∀x · x ∈ p ⇒ (∃y · y ∈ p ∧ x 7→ y ∈ r)

p ⊆ r−1[p]
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Definition of a Well-founded Relation 38

- A well-founded relation does not contain such a set p . . .

- . . . unless it is the empty set

∀p · p ⊆ r−1[p] ⇒ p = ∅
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p

x

- Thus, forall z in p, x is NOT related to z
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- For every non-empty subset p then

- there exists a point x of p such that

- forall z in p,

∀p · p 6= ∅
⇒
∃x · x ∈ p ∧ (∀z · z ∈ p ⇒

46



Another Definition 46

- For every non-empty subset p then

- there exists a point x of p such that

- forall z in p, x is NOT related to z

∀p · p 6= ∅
⇒
∃x · x ∈ p ∧ (∀z · z ∈ p ⇒ x 7→ z /∈ r)

47



Another Definition 47

- For every non-empty subset p then

- there exists a point x of p such that

- forall z in p, x is NOT related to z

∀p · p 6= ∅
⇒
∃x · x ∈ p ∧ (∀z · z ∈ p ⇒ x 7→ z /∈ r)

- Can we prove it with the Rodin Platform?

48



Another Definition 48

- For every non-empty subset p then

- there exists a point x of p such that

- forall z in p, x is NOT related to z

∀p · p 6= ∅
⇒
∃x · x ∈ p ∧ (∀z · z ∈ p ⇒ x 7→ z /∈ r)

- Can we prove it with the Rodin Platform?

- Can we explain what the computer has done?
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⇔ contraposition
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⇔ de Morgan
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⇔ de Morgan
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Manual Proof 58

p 6= ∅ ⇒ ∃x · x ∈ p ∧ (∀z · z ∈ p ⇒ x 7→ z /∈ r)

⇔ contraposition

¬∃x · x ∈ p ∧ (∀z · z ∈ p ⇒ x 7→ z /∈ r) ⇒ p = ∅

⇔ de Morgan

(∀x · x ∈ p ⇒ ¬ (∀z · z ∈ p ⇒ x 7→ z /∈ r)) ⇒ p = ∅

⇔ de Morgan

(∀x · x ∈ p ⇒ (∃z · z ∈ p ∧ x 7→ z ∈ r)) ⇒ p = ∅

⇔ set theory

p ⊆ r−1[p] ⇒ p = ∅
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If for any x

then

∀x ·
⇒
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Induction Principle: for Proving Properties of w.f. Sets 61

If for any x

if under the assumption that Q(y) holds for all y s.t. x 7→ y ∈ r then

then

∀x · (∀y · x 7→ y ∈ r ⇒ Q(y)) ⇒
⇒
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Induction Principle: for Proving Properties of w.f. Sets 62

If for any x

if under the assumption that Q(y) holds for all y s.t. x 7→ y ∈ r then

you can prove a property Q(x)

then

∀x · (∀y · x 7→ y ∈ r ⇒ Q(y)) ⇒ Q(x)
⇒
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Induction Principle: for Proving Properties of w.f. Sets 63

If for any x

if under the assumption that Q(y) holds for all y s.t. x 7→ y ∈ r then

you can prove a property Q(x)

then

Q(z) holds for all z in S

∀x · (∀y · x 7→ y ∈ r ⇒ Q(y)) ⇒ Q(x)
⇒
∀z · z ∈ S ⇒ Q(z)
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- We replace the predicate Q( ) by the set q
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∀x · (∀y · x 7→ y ∈ r ⇒ Q(y)) ⇒ Q(x)
⇒
∀z · z ∈ S ⇒ Q(z)

- We replace the predicate Q( ) by the set q

∀x · (∀y · x 7→ y ∈ r ⇒ y ∈ q) ⇒ x ∈ q
⇒
∀z · z ∈ S ⇒ z ∈ q
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Induction Principle: for Proving Properties of w.f. Sets 67

∀x · (∀y · x 7→ y ∈ r ⇒ Q(y)) ⇒ Q(x)
⇒
∀z · z ∈ S ⇒ Q(z)

- And now we quantify over q (previous is 2nd order over Q)

∀q · ∀x · (∀y · x 7→ y ∈ r ⇒ y ∈ q) ⇒ x ∈ q
⇒
∀z · z ∈ S ⇒ z ∈ q
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Induction Principle: for Proving Properties of w.f. Sets 68

∀q · ∀x · (∀y · x 7→ y ∈ r ⇒ y ∈ q) ⇒ x ∈ q
⇒
∀z · z ∈ S ⇒ z ∈ q
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∀q · ∀x · (∀y · x 7→ y ∈ r ⇒ y ∈ q) ⇒ x ∈ q
⇒
∀z · z ∈ S ⇒ z ∈ q

- The final touch

∀q · ∀x · r[{x}] ⊆ q ⇒ x ∈ q
⇒
S ⊆ q
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Induction Principle: for Proving Properties of w.f. Sets 70

∀q · ∀x · (∀y · x 7→ y ∈ r ⇒ y ∈ q) ⇒ x ∈ q
⇒
∀z · z ∈ S ⇒ z ∈ q

- The final touch

∀q · ∀x · r[{x}] ⊆ q ⇒ x ∈ q
⇒
S ⊆ q

- Can we prove it with the Rodin Platform?
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r[{x}]
q

x
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Induction Principle: Informal Explanation 72

r[{x}]
q

x

x

q
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Motivation for Fixpoint 73

- This mathematical concept is used to formalize recursion
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Definition 77

- We are given a set function f

f ∈ P(S)→ P(S)

- We would like to construct a subset fix(f) of S such that:

fix(f) = f(fix(f))

- Proposal

fix(f) = inter({s|f(s) ⊆ s})
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- fix(f) is a lower bound of the set {s|f(s) ⊆ s}

∀s · f(s) ⊆ s ⇒ fix(f) ⊆ s

- fix(f) is the greatest lower bound of the set {s|f(s) ⊆ s}

∀v · (∀s · f(s) ⊆ s ⇒ v ⊆ s) ⇒ v ⊆ fix(f)
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Two Useful Lemmas 83

- fix(f) is a lower bound of the set {s|f(s) ⊆ s}

∀s · f(s) ⊆ s ⇒ fix(f) ⊆ s

- fix(f) is the greatest lower bound of the set {s|f(s) ⊆ s}

∀v · (∀s · f(s) ⊆ s ⇒ v ⊆ s) ⇒ v ⊆ fix(f)

- Can we prove them with the Rodin Platform?
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The Main Results (Knaster-Tarski) 88

- Additional needed constraint: f is monotone

∀a, b · a ⊆ b ⇒ f(a) ⊆ f(b)
⇒
fix(f) = f(fix(f))

- fix(f) is the least fixpoint

∀t · t = f(t) ⇒ fix(f) ⊆ t
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The Main Results (Knaster-Tarski) 89

- Additional needed constraint: f is monotone

∀a, b · a ⊆ b ⇒ f(a) ⊆ f(b)
⇒
fix(f) = f(fix(f))

- fix(f) is the least fixpoint

∀t · t = f(t) ⇒ fix(f) ⊆ t

- Can we prove them with the Rodin Platform?
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Motivation for Transitive Closure 90

- This mathematical concept formalizes the notion of a

transition system achievement
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Naive Approach at the Irreflexive Transitive Closure r+ 94

- We are given a relation r built on a set S:

r ∈ S↔ S

- The irreflexive transitive closure r+ of r is "defined" as follows:

r+ = r ∪ r2 ∪ . . . ∪ rn ∪ . . .
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= r ; r ∪ r2 ; r ∪ . . . ∪ rn ; r ∪ . . .
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Naive Approach at the Irreflexive Transitive Closure r+ 99

r+ = r ∪ r2 ∪ . . . ∪ rn ∪ . . .

- Let us compose r+ with r

r+ ; r = (r ∪ r2 ∪ r3 ∪ . . . ∪ rn ∪ . . .) ; r
= r ; r ∪ r2 ; r ∪ . . . ∪ rn ; r ∪ . . .
= r2 ∪ r3 ∪ . . . ∪ rn+1 ∪ . . .
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Naive Approach at the Irreflexive Transitive Closure r+ 100

r+ = r ∪ r2 ∪ . . . ∪ rn ∪ . . .

- Let us compose r+ with r

r+ ; r = (r ∪ r2 ∪ r3 ∪ . . . ∪ rn ∪ . . .) ; r
= r ; r ∪ r2 ; r ∪ . . . ∪ rn ; r ∪ . . .
= r2 ∪ r3 ∪ . . . ∪ rn+1 ∪ . . .

Hence we have
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Naive Approach at the Irreflexive Transitive Closure r+ 101

r+ = r ∪ r2 ∪ . . . ∪ rn ∪ . . .

- Let us compose r+ with r

r+ ; r = (r ∪ r2 ∪ r3 ∪ . . . ∪ rn ∪ . . .) ; r
= r ; r ∪ r2 ; r ∪ . . . ∪ rn ; r ∪ . . .
= r2 ∪ r3 ∪ . . . ∪ rn+1 ∪ . . .

Hence we have . . . a fixpoint equation

r+ = r ∪ (r+ ; r)
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Mathematical Definition of the Irreflexive Transitive Closure 104

- r+ is thus a fixpoint of the function f ∈ (S↔S)→(S↔S) where

∀s · s ∈ S↔ S ⇒ f(s) = r ∪ (s ; r)
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Mathematical Definition of the Irreflexive Transitive Closure 105

- r+ is thus a fixpoint of the function f ∈ (S↔S)→(S↔S) where

∀s · s ∈ S↔ S ⇒ f(s) = r ∪ (s ; r)

r+ = fix(f)
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Mathematical Definition of the Irreflexive Transitive Closure 106

- r+ is thus a fixpoint of the function f ∈ (S↔S)→(S↔S) where

∀s · s ∈ S↔ S ⇒ f(s) = r ∪ (s ; r)

r+ = fix(f)

Exercise: Prove that the function f is indeed monotone
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Main Results 107

r ⊆ r+

r+ ; r ⊆ r+

∀s · r ⊆ s
s ; r ⊆ s
⇒
r+ ⊆ s

- Can we prove them with Rodin?
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More Results 108

r+ ; r+ ⊆ r+ ∀b · r[b] ⊆ b ⇒ r+[b] ⊆ b

r+ = r ∪ (r ; r+) r+ = r ∪ (r+ ; r)

r is wf ⇒ r+ is wf (r−1)+ = (r+)−1

- Can we prove them with Rodin?
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4. Graph

112



Motivation for Graph 109

- Used a lot in networking

113



Some Classical Results 110

- A graph is simply formalized as a binary relation r built on set S

r ∈ S↔ S

r = r−1 r is symmetric

r ∩ r−1 = ∅ r is asymmetric

r ∩ r−1 ⊆ id r is antisymmetric

id ⊆ r r is reflexive

r ∩ id = ∅ r is irreflexive

r; r ⊆ r r is transitive
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Translations into First Order Predicates 111

r = r−1 ∀x, y · x ∈ S ∧ y ∈ S ⇒ (x 7→ y ∈ r ⇔ y 7→ x ∈ r)

r ∩ r−1 = ∅ ∀x, y · x 7→ y ∈ r ⇒ y 7→ x /∈ r

r ∩ r−1 ⊆ id ∀x, y · x 7→ y ∈ r ∧ y 7→ x ∈ r ⇒ x = y

id ⊆ r ∀x · x ∈ S ⇒ x 7→ x ∈ r

r ∩ id = ∅ ∀x, y · x 7→ y ∈ r ⇒ x 6= y

r; r ⊆ r ∀x, y, z · x 7→ y ∈ r ∧ y 7→ z ∈ r ⇒ x 7→ z ∈ r

Set-theoretic statements are far more readable than predicate calculus
statements
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Formalizing Strong Connectivity 112

- A strongly connected graph r is one where:

every node can be reached from any other node

- Formal definition

r? = S × S

- Equivalent definition (more convenient for proofs)

∀s · s 6= ∅ ∧ r[s] ⊆ s ⇒ S ⊆ s
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An Interesting Theorem about Strong Connectivity 113

d

Strongly connected graph Strongly connected graph

c
a

b

g  built on M h  built on N

M N

The resulting graph on built on M\/N is strongly connected
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5. Tree
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Motivation for Tree 114

- It is a very common data structure in Informatics
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Special Case: a Tree 115
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Special Case: a Tree 116

- A tree is a special case of well-founded relation
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Special Case: a Tree 117

- A tree is a special case of well-founded relation

- We are given a special point t: the top of the tree
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Special Case: a Tree 118

- A tree is a special case of well-founded relation

- We are given a special point t: the top of the tree

- The well-founded relation relation r becomes a total function f
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Special Case: a Tree 119

- A tree is a special case of well-founded relation

- We are given a special point t: the top of the tree

- The well-founded relation relation r becomes a total function f

f ∈ S \ {t}→ S

t

f

124



Special Case: a Tree 120

-Definition

f ∈ S \ {t}→ S

∀z · s ⊆ f−1[s] ⇒ s = ∅

- The Induction Principle becomes

∀q · t ∈ q
(∀x · x 6= t ∧ f(x) ∈ q ⇒ x ∈ q)
⇒
∀z · z ∈ q
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Special Case: a Tree 121

- The Induction Principle becomes

∀q · t ∈ q
(∀x · x 6= t ∧ f(x) ∈ q ⇒ x ∈ q)
⇒
∀z · z ∈ q

- Can we prove it with the Rodin Platform?
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Conclusion 130

- The pros:

- all proofs done with the Rodin Platform

- all proofs done "easily"

- The cons:

- theorems cannot be reused easily

- they have to be instantiated manually

- What next:

- mathematical extensions
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