Event-B Course

6. (cont'd) Mathematics with the Rodin Platform

Jean-Raymond Abrial

September-October-November 2011

- Some important mathematical concepts in Computer Science

- Some important mathematical concepts in Computer Science
 - Well-founded sets and relations

- Some important mathematical concepts in Computer Science
 - Well-founded sets and relations
 - Fixpoint

- Some important mathematical concepts in Computer Science
 - Well-founded sets and relations
 - Fixpoint
 - Transitive closure

- Some important mathematical concepts in Computer Science
 - Well-founded sets and relations
 - Fixpoint
 - Transitive closure
 - Graph

- Some important mathematical concepts in Computer Science
 - Well-founded sets and relations
 - Fixpoint
 - Transitive closure
 - Graph
 - Tree

- Some important mathematical concepts in Computer Science
 - Well-founded sets and relations
 - Fixpoint
 - Transitive closure
 - Graph
 - Tree

- Conclusion

1. Well-founded sets and relations

- This mathematical structure formalizes the notion of reachability

- This mathematical structure formalizes the notion of reachability

- A discrete transition process, which:

- This mathematical structure formalizes the notion of reachability
- A discrete transition process, which:
 - either terminates

- This mathematical structure formalizes the notion of reachability
- A discrete transition process, which:
 - either terminates
 - or eventually reaches certain states

- This mathematical structure formalizes the notion of reachability
- A discrete transition process, which:
 - either terminates
 - or eventually reaches certain states
- is formalized by means of well-founded traces

- From any point in the graph

- From any point in the graph
- You always reach a red point after a FINITE travel

- An infinite chain

- An infinite chain

For all x in p

$$\forall x \cdot x \in p \Rightarrow$$

For all x in p there exists a y in p

$$\forall x \cdot x \in p \Rightarrow (\exists y \cdot y \in p \land$$

For all x in p there exists a y in p related to x by relation r

$$\forall x \cdot x \in p \implies (\exists y \cdot y \in p \land x \mapsto y \in r)$$

For all x in p there exists a y in p related to x by relation r

$$\forall x \cdot x \in p \implies (\exists y \cdot y \in p \land x \mapsto y \in r)$$

For all x in p there exists a y in p related to x by relation r

$$\forall x \cdot x \in p \implies (\exists y \cdot y \in p \land x \mapsto y \in r)$$

$$p \subseteq r^{-1}[p]$$

- ... unless it is the empty set

- ... unless it is the empty set

$$\forall p \cdot p \subseteq r^{-1}[p] \Rightarrow p = \varnothing$$

- ... unless it is the empty set

$$\forall p \cdot p \subseteq r^{-1}[p] \Rightarrow p = \varnothing$$

- Every non-empty subset p has at least one r-maximal element x

- Every non-empty subset p has at least one r-maximal element x

- Every non-empty subset p has at least one r-maximal element x

- Thus, forall z in p, x is NOT related to z

- For every non-empty subset $oldsymbol{p}$ then

_

_

$$\forall p \cdot p \neq \varnothing \Rightarrow$$

- For every non-empty subset p then
 - there exists a point x of p such that

_

$$\forall p \cdot p \neq \varnothing$$
 \Rightarrow
 $\exists x \cdot x \in p \land$

- For every non-empty subset $oldsymbol{p}$ then
 - there exists a point x of p such that
 - forall z in p,

$$\forall p \cdot p \neq \varnothing$$
 \Rightarrow
 $\exists x \cdot x \in p \land (\forall z \cdot z \in p \Rightarrow$

- For every non-empty subset p then
 - there exists a point x of p such that
 - forall z in p, x is NOT related to z

$$egin{array}{ll} orall p \cdot & p
eq arnothing \\ \Rightarrow & \\ \exists x \cdot x \in p \ \land \ (orall z \cdot z \in p \ \Rightarrow \ x \mapsto z
otin r) \end{array}$$

- For every non-empty subset p then
 - there exists a point x of p such that
 - forall z in p, x is NOT related to z

$$egin{array}{ll} orall p \cdot & p
eq arnothing \\ \Rightarrow & \\ \exists x \cdot x \in p \ \land \ (orall z \cdot z \in p \ \Rightarrow \ x \mapsto z
otin r) \end{array}$$

- Can we prove it with the Rodin Platform?

- For every non-empty subset p then
 - there exists a point x of p such that
 - forall z in p, x is NOT related to z

$$egin{array}{ll} orall p \cdot & p
eq arnothing \\ \Rightarrow & \\ \exists x \cdot x \in p \ \land \ (orall z \cdot z \in p \ \Rightarrow \ x \mapsto z
otin r) \end{array}$$

- Can we prove it with the Rodin Platform?
- Can we explain what the computer has done?

$$p \neq \varnothing \Rightarrow \exists x \cdot x \in p \land (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r)$$

$$p \neq \varnothing \Rightarrow \exists x \cdot x \in p \land (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r)$$

contraposition

$$p \neq \varnothing \Rightarrow \exists x \cdot x \in p \land (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r)$$

contraposition

$$\neg \exists x \cdot x \in p \land (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r) \Rightarrow p = \emptyset$$

$$p \neq \varnothing \Rightarrow \exists x \cdot x \in p \land (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r)$$

contraposition

$$\neg \exists x \cdot x \in p \land (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r) \Rightarrow p = \emptyset$$

 \Leftrightarrow

$$p \neq \varnothing \Rightarrow \exists x \cdot x \in p \land (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r)$$

contraposition

$$\neg \exists x \cdot x \in p \land (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r) \Rightarrow p = \emptyset$$

 \Leftrightarrow

$$(\forall x \cdot x \in p \Rightarrow \neg (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r)) \Rightarrow p = \emptyset$$

$$p \neq \varnothing \Rightarrow \exists x \cdot x \in p \land (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r)$$

contraposition

$$\neg \exists x \cdot x \in p \land (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r) \Rightarrow p = \emptyset$$

 \Leftrightarrow

de Morgan

$$(\forall x \cdot x \in p \Rightarrow \neg (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r)) \Rightarrow p = \emptyset$$

 \Leftrightarrow

$$p \neq \varnothing \Rightarrow \exists x \cdot x \in p \land (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r)$$

contraposition

$$\neg \exists x \cdot x \in p \land (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r) \Rightarrow p = \emptyset$$

 \Leftrightarrow

de Morgan

$$(\forall x \cdot x \in p \Rightarrow \neg (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r)) \Rightarrow p = \emptyset$$

 \Leftrightarrow

$$(\forall x \cdot x \in p \Rightarrow (\exists z \cdot z \in p \land x \mapsto z \in r)) \Rightarrow p = \emptyset$$

$$p \neq \varnothing \Rightarrow \exists x \cdot x \in p \land (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r)$$

contraposition

$$\neg \exists x \cdot x \in p \land (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r) \Rightarrow p = \emptyset$$

 \Leftrightarrow

de Morgan

$$(\forall x \cdot x \in p \Rightarrow \neg (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r)) \Rightarrow p = \emptyset$$

 \Leftrightarrow

de Morgan

$$(\forall x \cdot x \in p \Rightarrow (\exists z \cdot z \in p \land x \mapsto z \in r)) \Rightarrow p = \emptyset$$

 \Leftrightarrow

set theory

$$p \neq \varnothing \Rightarrow \exists x \cdot x \in p \land (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r)$$

contraposition

$$\neg \exists x \cdot x \in p \land (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r) \Rightarrow p = \emptyset$$

 \Leftrightarrow

de Morgan

$$(\forall x \cdot x \in p \Rightarrow \neg (\forall z \cdot z \in p \Rightarrow x \mapsto z \notin r)) \Rightarrow p = \emptyset$$

 \Leftrightarrow

de Morgan

$$(\forall x \cdot x \in p \Rightarrow (\exists z \cdot z \in p \land x \mapsto z \in r)) \Rightarrow p = \emptyset$$

 \Leftrightarrow

set theory

$$p \subseteq r^{-1}[p] \Rightarrow p = \emptyset$$

then

orall x .

if under the assumption that Q(y) holds for all y s.t. $x \mapsto y \in r$ then

then

if under the assumption that Q(y) holds for all y s.t. $x\mapsto y\in r$ then you can prove a property Q(x)

then

$$\forall x \cdot (\forall y \cdot x \mapsto y \in r \Rightarrow Q(y)) \Rightarrow Q(x)$$

if under the assumption that Q(y) holds for all y s.t. $x\mapsto y\in r$ then you can prove a property Q(x)

then

Q(z) holds for all z in S

$$\forall x \cdot (\forall y \cdot x \mapsto y \in r \Rightarrow Q(y)) \Rightarrow Q(x)$$

$$\Rightarrow$$

$$\forall z \cdot z \in S \Rightarrow Q(z)$$

- We replace the predicate $Q(_{\scriptscriptstyle -})$ by the set q

$$\forall x \cdot (\forall y \cdot x \mapsto y \in r \Rightarrow Q(y)) \Rightarrow Q(x)$$

 \Rightarrow
 $\forall z \cdot z \in S \Rightarrow Q(z)$

- We replace the predicate $Q(_{\scriptscriptstyle -})$ by the set q

$$\forall x \cdot (\forall y \cdot x \mapsto y \in r \Rightarrow y \in q) \Rightarrow x \in q$$

$$\Rightarrow$$

$$\forall z \cdot z \in S \Rightarrow z \in q$$

- And now we quantify over q (previous is 2nd order over Q)

$$\begin{array}{cccc} \forall q \cdot & \forall x \cdot (\forall y \cdot x \mapsto y \in r \implies y \in q) \implies x \in q \\ & \Rightarrow \\ & \forall z \cdot z \in S \implies z \in q \end{array}$$

- The final touch

$$\forall q \cdot \forall x \cdot r[\{x\}] \subseteq q \Rightarrow x \in q$$
 \Rightarrow
 $S \subseteq q$

- The final touch

$$\forall q \cdot \forall x \cdot r[\{x\}] \subseteq q \Rightarrow x \in q$$
 \Rightarrow
 $S \subseteq q$

- Can we prove it with the Rodin Platform?

2. Fixpoint

- This mathematical concept is used to formalize recursion

- We are given a set function $oldsymbol{f}$

$$f\in \mathbb{P}(S) o \mathbb{P}(S)$$

- We are given a set function f

$$f\in \mathbb{P}(S) o \mathbb{P}(S)$$

- We would like to construct a subset fix(f) of S such that:

$$fix(f) = f(fix(f))$$

- We are given a set function f

$$f\in \mathbb{P}(S) o \mathbb{P}(S)$$

- We would like to construct a subset fix(f) of S such that:

$$fix(f) = f(fix(f))$$

- Proposal

$$fix(f) = inter(\{s|f(s) \subseteq s\})$$

$$\forall s \cdot f(s) \subseteq s \Rightarrow fix(f) \subseteq s$$

$$\forall s \cdot f(s) \subseteq s \implies fix(f) \subseteq s$$

- fix(f) is the greatest lower bound of the set $\{s|f(s)\subseteq s\}$

$$\forall s \cdot f(s) \subseteq s \implies fix(f) \subseteq s$$

- fix(f) is the greatest lower bound of the set $\{s|f(s)\subseteq s\}$

$$\forall v \cdot (\forall s \cdot f(s) \subseteq s \ \Rightarrow \ v \subseteq s) \ \Rightarrow \ v \subseteq fix(f)$$

$$\forall s \cdot f(s) \subseteq s \implies fix(f) \subseteq s$$

- fix(f) is the greatest lower bound of the set $\{s|f(s)\subseteq s\}$

$$\forall v \cdot (\forall s \cdot f(s) \subseteq s \implies v \subseteq s) \implies v \subseteq fix(f)$$

- Can we prove them with the Rodin Platform?

$$egin{aligned} orall a,b\cdot a \subseteq b \ \Rightarrow \ f(a) \subseteq f(b) \ \Rightarrow \ fix(f) = f(fix(f)) \end{aligned}$$

$$egin{aligned} orall a,b\cdot a \subseteq b \ \Rightarrow \ f(a) \subseteq f(b) \ \Rightarrow \ fix(f) = f(fix(f)) \end{aligned}$$

- fix(f) is the least fixpoint

$$egin{aligned} orall a,b\cdot a \subseteq b \ \Rightarrow \ f(a) \subseteq f(b) \ \Rightarrow \ fix(f) = f(fix(f)) \end{aligned}$$

- fix(f) is the least fixpoint

$$\forall t \cdot t = f(t) \implies fix(f) \subseteq t$$

$$egin{aligned} orall a,b\cdot a \subseteq b \ \Rightarrow \ f(a) \subseteq f(b) \ \Rightarrow \ fix(f) = f(fix(f)) \end{aligned}$$

- fix(f) is the least fixpoint

$$\forall t \cdot t = f(t) \implies fix(f) \subseteq t$$

- Can we prove them with the Rodin Platform?

3. Transitive Closure

 This mathematical concept formalizes the notion of a transition system achievement - We are given a relation r built on a set S:

$$r \in S \leftrightarrow S$$

- We are given a relation r built on a set S:

$$r \in S \leftrightarrow S$$

- The irreflexive transitive closure r^+ of r is "defined" as follows:

- We are given a relation r built on a set S:

$$r \in S \leftrightarrow S$$

- The irreflexive transitive closure r^+ of r is "defined" as follows:

$$r^+ = r \cup r^2 \cup \ldots \cup r^n \cup \ldots$$

$$r^+ = r \cup r^2 \cup \ldots \cup r^n \cup \ldots$$

$$r^+ = r \cup r^2 \cup \ldots \cup r^n \cup \ldots$$

- Let us compose $oldsymbol{r}^+$ with $oldsymbol{r}$

$$r^+ = r \cup r^2 \cup \ldots \cup r^n \cup \ldots$$

$$r^+ \, ; r = (r \cup r^2 \cup r^3 \cup \ldots \cup r^n \cup \ldots) \, ; r$$

$$r^+ = r \cup r^2 \cup \ldots \cup r^n \cup \ldots$$

- Let us compose $oldsymbol{r}^+$ with $oldsymbol{r}$

$$r^+; r = (r \cup r^2 \cup r^3 \cup \ldots \cup r^n \cup \ldots); r$$

= $r; r \cup r^2; r \cup \ldots \cup r^n; r \cup \ldots$

$$r^+ = r \cup r^2 \cup \ldots \cup r^n \cup \ldots$$

$$r^+; r = (r \cup r^2 \cup r^3 \cup \ldots \cup r^n \cup \ldots); r$$

= $r; r \cup r^2; r \cup \ldots \cup r^n; r \cup \ldots$
= $r^2 \cup r^3 \cup \ldots \cup r^{n+1} \cup \ldots$

$$r^+ = r \cup r^2 \cup \ldots \cup r^n \cup \ldots$$

$$r^+; r = (r \cup r^2 \cup r^3 \cup \ldots \cup r^n \cup \ldots); r$$

= $r; r \cup r^2; r \cup \ldots \cup r^n; r \cup \ldots$
= $r^2 \cup r^3 \cup \ldots \cup r^{n+1} \cup \ldots$

Hence we have

$$r^+ = r \cup r^2 \cup \ldots \cup r^n \cup \ldots$$

$$r^+; r = (r \cup r^2 \cup r^3 \cup \ldots \cup r^n \cup \ldots); r$$

= $r; r \cup r^2; r \cup \ldots \cup r^n; r \cup \ldots$
= $r^2 \cup r^3 \cup \ldots \cup r^{n+1} \cup \ldots$

Hence we have ... a fixpoint equation

$$r^+ = r \cup (r^+;r)$$

- r^+ is thus a fixpoint of the function $f \in (S \mathop{\leftrightarrow} S) \mathop{ o} (S \mathop{\leftrightarrow} S)$ where

- r^+ is thus a fixpoint of the function $f \in (S \mathop{\leftrightarrow} S) \mathop{ o} (S \mathop{\leftrightarrow} S)$ where

$$\forall s \cdot s \in S \leftrightarrow S \implies f(s) = r \cup (s; r)$$

- r^+ is thus a fixpoint of the function $f \in (S \mathop{\leftrightarrow} S) \mathop{ o} (S \mathop{\leftrightarrow} S)$ where

$$\forall s \cdot s \in S \leftrightarrow S \implies f(s) = r \cup (s; r)$$

$$r^+ \,=\, fix(f)$$

- r^+ is thus a fixpoint of the function $f \in (S \mathop{\leftrightarrow} S) \mathop{ o} (S \mathop{\leftrightarrow} S)$ where

$$\forall s \cdot s \in S \leftrightarrow S \implies f(s) = r \cup (s; r)$$

$$r^+ = fix(f)$$

Exercise: Prove that the function f is indeed monotone

$$r \subseteq r^+$$

$$r^+;r\subseteq r^+$$

$$egin{array}{ll} orall s & r \subseteq s \ s & ; r \subseteq s \ \Rightarrow \ r^+ \subseteq s \end{array}$$

- Can we prove them with Rodin?

$$r^+ \, ; r^+ \, \subset \, r^+$$

$$\forall b \cdot r[b] \subseteq b \implies r^+[b] \subseteq b$$

$$r^+ = r \cup (r\,;r^+)$$

$$r^+ = r \cup (r^+\,;r)$$

$$r$$
 is wf \Rightarrow r^+ is wf

$$(r^{-1})^+ = (r^+)^{-1}$$

- Can we prove them with Rodin?

4. Graph

- Used a lot in networking

- A graph is simply formalized as a binary relation $m{r}$ built on set S

$$r \in S \leftrightarrow S$$

$$r = r^{-1}$$

r is symmetric

$$r \cap r^{-1} = \emptyset$$

r is asymmetric

$$r \cap r^{-1} \subseteq \mathrm{id}$$

 $r \cap r^{-1} \subseteq \mathrm{id}$ r is antisymmetric

$$\mathrm{id} \ \subseteq \ r$$

r is reflexive

$$r \cap \mathrm{id} = \varnothing$$

r is irreflexive

$$r;r\subseteq r$$

r is transitive

$$\begin{array}{lll} r = r^{-1} & \forall x, y \cdot x \in S \wedge y \in S \Rightarrow (x \mapsto y \in r \Leftrightarrow y \mapsto x \in r) \\ r \cap r^{-1} = \varnothing & \forall x, y \cdot x \mapsto y \in r \Rightarrow y \mapsto x \notin r \\ r \cap r^{-1} \subseteq \operatorname{id} & \forall x, y \cdot x \mapsto y \in r \wedge y \mapsto x \in r \Rightarrow x = y \\ \operatorname{id} \subseteq r & \forall x \cdot x \in S \Rightarrow x \mapsto x \in r \\ r \cap \operatorname{id} = \varnothing & \forall x, y \cdot x \mapsto y \in r \Rightarrow x \neq y \\ r; r \subseteq r & \forall x, y, z \cdot x \mapsto y \in r \wedge y \mapsto z \in r \Rightarrow x \mapsto z \in r \end{array}$$

Set-theoretic statements are far more readable than predicate calculus statements

- A strongly connected graph r is one where:

every node can be reached from any other node

- Formal definition

$$r^{\star} = S \times S$$

- Equivalent definition (more convenient for proofs)

$$\forall s \cdot s \neq \varnothing \ \land \ r[s] \subseteq s \ \Rightarrow \ S \subseteq s$$

Strongly connected graph g built on M

Strongly connected graph h built on N

The resulting graph on built on MVN is strongly connected

5. Tree

- It is a very common data structure in Informatics

- We are given a special point t: the top of the tree

- We are given a special point t: the top of the tree

- The well-founded relation relation r becomes a total function f

- We are given a special point t: the top of the tree

- The well-founded relation relation r becomes a total function f

$$f \in S \setminus \{t\} o S$$

-Definition

$$f \in S \setminus \{t\} \to S$$

$$\forall z \cdot s \subseteq f^{-1}[s] \implies s = \varnothing$$

- The Induction Principle becomes

$$egin{array}{ll} orall q \cdot & t \in q \ & (orall x \cdot x
eq t \ \land \ f(x) \in q \ \Rightarrow \ x \in q) \ \Rightarrow \ & orall z \cdot z \in q \end{array}$$

- The Induction Principle becomes

$$egin{array}{ll} orall q \cdot & t \in q \ & (orall x \cdot x
eq t \ \wedge \ f(x) \in q \ \Rightarrow \ x \in q) \ \Rightarrow \ & orall z \cdot z \in q \end{array}$$

- Can we prove it with the Rodin Platform?

122

- The pros:

- The pros:
 - all proofs done with the Rodin Platform

- The pros:
 - all proofs done with the Rodin Platform
 - all proofs done "easily"

- The pros:
 - all proofs done with the Rodin Platform
 - all proofs done "easily"

- The cons:

- The pros:
 - all proofs done with the Rodin Platform
 - all proofs done "easily"
- The cons:
 - theorems cannot be reused easily

- The pros:

- all proofs done with the Rodin Platform
- all proofs done "easily"

- The cons:

- theorems cannot be reused easily
- they have to be instantiated manually

- The pros:
 - all proofs done with the Rodin Platform
 - all proofs done "easily"
- The cons:
 - theorems cannot be reused easily
 - they have to be instantiated manually

- What next:

- The pros:

- all proofs done with the Rodin Platform
- all proofs done "easily"
- The cons:
 - theorems cannot be reused easily
 - they have to be instantiated manually
- What next:
 - mathematical extensions