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- This mathematical structure formalizes the notion of reachabllity

- A discrete transition process, which:

- either terminates

- or eventually reaches certain states

- Is formalized by means of well-founded traces
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- From any point in the graph

- You always reach a red point after a FINITE travel
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For all  in p there exists a y in p related to x by relation r

Ve-x €p = (y-y€Ep N c—>y€Eer)
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- For every non-empty subset p then
- there exists a point x of p such that

- forall z in p, & is NOT related to z

Vp: p#O
=
Jx-x€p N (Vz-z€p = xx—>2&71)

- Can we prove it with the Rodin Platform?

- Can we explain what the computer has done?
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p#Y = dx-xe€p AN Vz-z2€Ep = x—2&r1)
~ contraposition
—dx-zx€p N (Vz-z€Ep =>xc—=2&r) > p=0
Aag de Morgan
(Ve-z€p = ~(Vz-z2€p > xz—2¢r)) = p=0
= de Morgan
Ve-x€p = (z-zEPp AN x+—2€ET) = p=09
<~ set theory

pCripl = p=o
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If for any «
if under the assumption that Q(y) holds for all y s.t. © — y € » then
you can prove a property Q(x)

then

Q(z) holds for all zin S

Ve-(Vy-z—yer = Qy)) = Qx)
—
Vz-z€ S = Q(z)
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Ve .- (Vy-z—yer = Q) = Q)
—
Vz-ze€ S = Q(z)

- And now we quantify over g (previous is 2nd order over Q)

Vg Ve-Vy-x—y€E€r = yeq) = xE€q
-
Vz-z€ S8 = z€q
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Vg Ve-Vy-z—yeEr = yeq) = x €q
-
Vz-z€ S = z€E€q

- The final touch

Vg- Vz-r[{z}| Cq = T €q
—
S Cgq

- Can we prove it with the Rodin Platform?
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2. Fixpoint
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- This mathematical concept is used to formalize recursion
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- We are given a set function f

f € P(S) — P(S5)

- We would like to construct a subset fix(f) of S such that:

fix(f) = f(fize(f))

- Proposal

fix(f) = inter({s|f(s) C s})
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- Additional needed constraint: f is monotone

Va,b-a Cb = f(a) C f(b)

—
fix(f) = F(fiz(f))

- fix(f) is the least fixpoint

Vt-t = f(t) = fix(f) Ct

- Can we prove them with the Rodin Platform?
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- This mathematical concept formalizes the notion of a

transition system achievement
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rt = rUr?u...Ur"U...

- Let us compose =T with r

rtsr = (rUTT?UBuU...UTU .
= ryr Url;r U ... U r5r U ...
= 2 urdu...u "ty ..,

Hence we have



Naive Approach at the Irreflexive Transitive Closure » T 101

rt = rUr?u...Ur"U...

- Let us compose =T with r

rtsr = (rUTT?UBuU...UTU .
= ryr Url;r U ... U r5r U ...
= 2 urdu...u "ty ..,

Hence we have ... a fixpoint equation

rt = rU (rT;7r)
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- 77 is thus a fixpoint of the function f € (S < S) — (S <+ S) where

Vs-s€S S = f(s)=ruJ(s;r)



Mathematical Definition of the Irreflexive Transitive Closure 105

- 77 is thus a fixpoint of the function f € (S < S) — (S <+ S) where
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- 77 is thus a fixpoint of the function f € (S < S) — (S <+ S) where

Vs-s€S S = f(s)=ruJ(s;r)

rt = fiz(f)

Exercise: Prove that the function f is indeed monotone
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- Can we prove them with Rodin?
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r"’;r+ C rt

Vb-rb]Cb = rT[b]Cb

rt=r U (r;rh)

r iswf = rT iswf

- Can we prove them with Rodin?

rt=rU(rt;r)

(=l = ()




4. Graph
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- Used a lot in networking
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- A graph is simply formalized as a binary relation = built on set S

rNid=g

rir Cr

reS«< S

r IS symmetric

r IS asymmetric

r IS antisymmetric
r is reflexive

r is irreflexive

r 1S transitive



Translations into First Order Predicates 111

rNr-1 C i

id C r

rNid=Y

rir Cr

Ve,y-x € SANyeS=(r—yeEr<sy—xecr)
Ve,y-x—yer=y—x&r

Ve, y-x—yYyEr Ny—TcE€Er—=x =1y
Ve-x€S=xTx—xTCr

Ve, y - c—YyYEr=x+#+y

Ve,y,z-x—yEr\Ny—z€Er=>x—>2zE€r

Set-theoretic statements are far more readable than predicate calculus

statements



Formalizing Strong Connectivity 112

- A strongly connected graph r is one where:

every node can be reached from any other node

- Formal definition

r*=8Sx S

- Equivalent definition (more convenient for proofs)

Vs-s#2 ANr[ls]Cs = SCs
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Strongly connected graph Strongly connected graph
g built on M h built on N

The resulting graph on built on MV/N is strongly connected



5. Tree
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- It is a very common data structure in Informatics
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- A tree is a special case of well-founded relation

- We are given a special point t: the top of the tree

- The well-founded relation relation r becomes a total function f

feS\{t}—-S
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-Definition

feS\{t}—-S

Vz.sC f7ls] = s=0

- The Induction Principle becomes

Vg- tE€gq
Ve-x#t N f(x) Eq = x € q)
=
Vz-2z €Eq
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- The Induction Principle becomes

Vg- te€gq
Ve-xz#t N f(x) Eq = x € q)
=
Vz-z €q

- Can we prove it with the Rodin Platform?
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- The pros:
- all proofs done with the Rodin Platform

- all proofs done "easily"

- The cons:
- theorems cannot be reused easily

- they have to be instantiated manually

- What next:

- mathematical extensions



