
Event-B Course

1. Introduction

Jean-Raymond Abrial

September-October-November 2011

Purpose of the Course (1) 1

- To show that software (and systems) can be correct by construction

- Insights about modeling and formal reasoning using Event-B

- To show that this can be made practical with the Rodin Platform

1

Purpose of the Course (2) 2

- To illustrate this approach with many examples:

- a small sequential program

- controlling cars on a bridge

- a mechanical press controller

- a file transfer protocol

2

Purpose of the Course (3) 3

- More examples:

- a mobile phone routing algorithm

- more sequential programs

- some hardware developments

- an access control system

- . . .

3

What you Will Learn (1) 4

- Writing a requirement document (more explanations later)

- Modeling versus programming (more explanations later)

- Abstraction and refinement (more explanations later)

4

What you Will Learn (2) 5

- Some mathematical techniques used for reasoning

- The practice of proving as a means to construct programs

- The usage of the Rodin Platform

5

Scheduling of the Course 6

Lectures: Monday (10:10 to 12:00) and Wednesday (13:00 to 14:50)

Practices: Tuesday (18:40 to 20:30)

17 lectures:

September: 5, 7, 14, 19, 21, 26, 28

October: 10, 12, 17, 19, 24, 26, 31

November: 2, 7, 9

9 Practices:

September: 6, 13, 20, 27

October: 11, 18, 25

November: 1, 8
6

Provisional Schedule for the 17 Lectures 7

- 1. Introduction (September 5, 7)

- 2. Cars on a Bridge (September 14, 19, 21)

- 3. Mechanical Press (September 26, 28)

- 4. File Transfer Protocol (October 10)

- 5. Math Refresher (October 12, 17)

- 6. Mobile Phone Routing (October 19)

- 7. Hardware Development (October 24, 26)

- 8. Access Control System (October 31, November 2)

- 9. Hypervisor Development (November 7, 9)

7

Provisional Schedule for the 9 Practices 8

- 1. Writing a Requirement Document (September 6)

- 2. Introducing the Rodin Platform (September 13)

- 3. Developing a small Motor Controller (September 20)

- 4. Practicing Interactive Proofs (September 27, October 11, 18)

- 5. Another Formal Development (October 25)

- 6. Developing a Business Protocol (November 1, 8)

8

Material to be Distributed 9

For lectures:

- slides

- text

For practices:

- text of exercises

- corrected exercises (one week later)

- Rodin Platform development files

9

Outline of this Introductory Lecture 10

1. About formal methods in general

2. About requirements

3. About modeling

4. A light introduction to Event-B

5. Presentation of a small example

10

1. About formal methods in general

11

Formal Methods: a Great Confusion 11

- What are they used for?

- When are they to be used?

- Is UML a formal method?

- Are formal methods needed when doing OO programming?

- What is their definition?

12

Purpose of Formal Methods 12

- Helping people in doing the following transformation:

Method

Formal
software requirements running code

- It does not seem to be different from ordinary programming

13

Purpose of Formal Methods 13

- Helping people in doing the following transformation:

Method

Formal
software requirements running code

- It does not seem to be different from ordinary programming

- It can be generalized to:

system requirements

Method

Formal
running system

14

Preliminary Definitions and Categories 14

- Determining whether a program has certain wishful properties.

- The checked properties will become clearer in subsequent slides

- Different kinds of formal methods (according to this definition)

- Type checking

- Abstract interpretation

- Model checking

- Theorem proving

15

Type Checking (1) 15

- The properties to be checked are properties of program variables

- Controlling low level properties of variables

- A type defines:

- a set of values to be assigned to a variable

- the operations that can be performed on a variable

- the way a program variable will be stored in the memory

16

Type Checking (2) 16

- Type checking controls that:

- value assignments to a variable is correct

- the variable is used in authorized operations only

- It is done automatically by compilers

17

Abstract Interpretation (1) 17

- The property to be checked is the absence of run-time errors

- Typical run-time detected:

- Division by zero

- Array bound overflow

- Arithmetic overflow (floating point)

18

Abstract Interpretation (2) 18

- The analysis is performed by abstracting the program variables

- Executing the resulting abstraction rather than the program itself

- Once the property is defined, it is an automatic technique

19

Model Checking 19

- Models to be studied usually denote finite state machines

- Properties to be checked:

- Reachability

- Deadlock freeness

- Once the property is defined, it is an automatic technique

20

Theorem Proving: Model Construction (1) 20

- Properties to be checked are any of the above

- But more abstract properties can also be checked (more later)

- This is the approach developed in this course

21

Theorem Proving: Model Construction (2) 21

- One constructs models by successive refinements

- The properties to be proved are parts of the models

- The most refined model is automatically translated into a program

22

Comparison (1) 22

Type Model
Proving

cost

Theorem
CheckingChecking

Static
Analysis

P R O G R A M S M O D E L S

1 2 3 4

23

Comparison (2) 23

Nature Properties

type checking programs defined within the program

abstract interpretation programs defined after writing program

model checking models defined after writing model

theorem proving models defined within the model

24

Why Using Formal Methods with Proofs? 24

- When the risk is too high (e.g. in embedded systems).

- When the verifications of other approaches are not sufficient

- When people question their industrial development process.

- Decision of using formal methods is always strategic.

25

How about other Engineering Disciplines? 25

26

How about other Engineering Disciplines? 26

27

How about other Engineering Disciplines? 27

28

Other Disciplines 28

- Some mature disciplines:

- Avionics,

- Civil Engineering,

- Mechanical Constructions,

- Ship building,

- . . .

29

Other Disciplines 29

- Some mature disciplines:

- Avionics,

- Civil Engineering,

- Mechanical Constructions,

- Ship building,

- . . .

- Does there exist methods similar to formal methods ?

30

Other Disciplines 30

- Some mature disciplines:

- Avionics,

- Civil Engineering,

- Mechanical Constructions,

- Ship building,

- . . .

- Does there exist methods similar to formal methods ?

- Yes

31

Other Disciplines 31

- Some mature disciplines:

- Avionics,

- Civil Engineering,

- Mechanical Constructions,

- Ship building,

- . . .

- Does there exist methods similar to formal methods ?

- Yes, Blueprints

32

Blueprints 32

33

Architect Blueprint 33

34

What is a Blue Print? 34

- An abstract representation of the system we want to build

- The basis is lacking (you cannot “drive” the blue print of a car)

- Allows to reason about the system during its design, NOT AFTER

- Example: constructing a freeway or a bridge

35

What is a Blue Print? 35

- An abstract representation of the system we want to build

- The basis is lacking (you cannot “drive” the blue print of a car)

- Allows to reason about the system during its design, NOT AFTER

- Example: constructing a freeway or a bridge

- Is it important? (according to professionals)

36

What is a Blue Print? 36

- An abstract representation of the system we want to build

- The basis is lacking (you cannot “drive” the blue print of a car)

- Allows to reason about the system during its design, NOT AFTER

- Example: constructing a freeway or a bridge

- Is it important? (according to professionals) YES

37

Reasoning about the Intended System? 37

- Defining and calculating its behavior (what it does)

- Incorporating constraints (what it must not do)

- Defining architecture

- Based on some underlying theories

- strength of materials,

- fluid mechanics,

- gravitation,

- etc.

38

Techniques of “Blue Printing” 38

- Using pre-defined conventions (often computerized these days)

- Conventions should help facilitate reasoning

- Adding details on more accurate versions

- Postponing choices by having some open options

- Decomposing one blue print into several

- Reusing “old” blue prints (with slight changes)

39

2. About requirements

40

Requirement Document Outline 39

- Place of requirement document in the system life cycle

- Difficulties and weak point

- Characterizing the requirement document

- Proposing some structuring rules

41

The Classical Development Cycle 40

1. Feasibility Study 4. Coding

2. Requirement Analysis 5. Test

3. Technical Specification 6. Documentation

4. Design 7. Maintenance

42

Difficulties and Weak Points 41

- Ensuring relative consistency between the phases

- Formal Methods could help (in the later phases)

- But still a problem in the earlier phases

- Weakest part: the requirement document

43

About the Requirement Document 42

- Importance of this document (due to its position in the life cycle)

- Obtaining a good requirement document is not easy:

- missing points

- too specific (over-specified)

- Industrial requirement document are usually difficult to exploit

44

About the Requirement Document (cont’d) 43

- Hence very often necessary to rewrite it

- It will cost a significant amount of time and money (but well spent)

- The famous specification change syndrome might disappear

45

Some Structuring Rules 44

- Two separate texts in the same document:

- explanatory text: the why

- reference text: the what

- Reference text (what) and explanatory text (why) defined together

- The reference text eventually becomes the official document

- Must be signed by concerned parties

46

The Reference Text (1) 45

- Contains the properties of the future system

- Contains the assumptions about its environment

- The properties must hold for the system to be correct

- This must be the case if the assumptions hold

47

The Reference Text (2) 46

- It is made of short labeled English statements

- Should be easy to read (different font) and easy to extract (boxed)

- The problem of the traceability

48

An Example of Requirement Document (1) 47

- We show the embedding of the Explanations and the References

- Explanation:

- The function of this system is to control cars on a narrow bridge.

- This bridge is supposed to link the mainland to a small island.

49

Kinds of Requirements (labels) 48

- There are two kinds of requirements:

- the equipment (environment) labeled EQP,

- the function of the system, labeled FUN.

50

An Example of Requirement Document (2) 49

- Reference:

The system is controlling cars on a bridge
between the mainland and an island FUN-1

- Explanation: This can be illustrated as follows

Bridge MainlandIsland

51

An Example of Requirements Document (3) 50

- Explanation: The controller is equipped with two traffic lights.

- Reference:

The system has two traffic lights with two
colors: green and red EQP-1

52

An Example of Requirements Document (4) 51

- Explanation:

- One of the traffic lights is situated on the mainland.

- The other one on the island.

- This can be illustrated as follows:

Bridge MainlandIsland

53

An Example of Requirements Document (5) 52

- Reference:

The traffic lights control the entrance to the
bridge at both ends of it EQP-2

- Explanation: Drivers are supposed to obey the traffic light

- Reference:

Cars are not supposed to pass on a red traffic
light, only on a green one EQP-3

54

An Example of Requirements Document (6) 53

- Explanation:

- There are also four car sensors

- These sensors are situated at both ends of the bridge.

- They are supposed to detect the presence of cars

- Reference:

The system is equipped with four car sensors
each with two states: on or off EQP-4

55

An Example of Requirements Document (7) 54

- Reference:

The sensors are used to detect the presence
of cars entering or leaving the bridge EQP-5

- Explanation: The pieces of equipment can be illustrated as follows:

Bridge MainlandIsland

56

An Example of Requirements Document (8) 55

- Explanation: This system has two main constraints:

- the number of cars on the bridge and the island is limited

- the bridge is one way.

57

An Example of Requirements Document (9) 56

- Reference:

The number of cars on the bridge and the island
is limited FUN-2

The bridge is one way or the other, not both at the
same time FUN-3

58

Summary of the References (1) 57

The system is controlling cars on a bridge
between the mainland and an island FUN-1

The number of cars on the bridge and the island
is limited FUN-2

The bridge is one way or the other, not both at the
same time FUN-3

59

Summary of the References (2) 58

The system has two traffic lights with two
colors: green and red EQP-1

The traffic lights control the entrance to the
bridge at both ends of it EQP-2

Cars are not supposed to pass on a red traffic
light, only on a green one EQP-3

60

Summary of the References (3) 59

The system is equipped with four car sensors
each with two states: on or off EQP-4

The sensors are used to detect the presence
of cars entering or leaving the bridge EQP-5

61

3. About modeling

62

Back to the Questions about Formal Methods 60

- What are they used for?

- When are they to be used?

- Is UML a formal method?

- Are formal methods needed when doing OO programming?

- What is their definition?

63

Definitions of Formal Methods Used in this Course 61

- Formal methods are techniques for building and studying blue prints

- Such blue prints should be ADAPTED TO OUR DISCIPLINE

- Our discipline: design of hardware and software SYSTEMS

- These blue prints are now called models

- Reminder:

- Models allow to reason about a FUTURE system

- The basis is lacking (hence you cannot “execute” a model)

64

Reminders About Blue Prints (Models) 62

- Models allow to reason about a FUTURE system

- The basis is lacking (hence you cannot “execute” a model)

- Using pre-defined conventions

- Conventions should help facilitate reasoning (more to come)

65

Conventions for Model Writing and Reasoning 63

- Using ordinary discrete mathematical conventions

- Classical Logic (Predicate Calculus)

- Basic Set Theory (sets, relations and functions)

- Such conventions will be reviewed in subsequent lectures

66

Systems we are Interested to Develop (1) 64

- a “classical” piece of software

- an electronic circuit

- a file transfer protocol

- an airline booking system

- a PC operating system

67

Systems we are Interested to Develop (2) 65

- a nuclear plant controller

- a Smart-Card electronic purse

- a launch vehicle flight controller

- a driverless train controller

- a mechanical press controller

- etc.

68

Characterizing such Systems (1) 66

- They are made of many parts

- They interact with a possibly hostile environment

- They involve several executing agents

69

Characterizing such Systems (2) 67

- They require a high degree of correctness

- There construction spreads over several years

- Their specifications are subjected to many changes

70

Characterizing such Systems (3) 68

- These systems operate in a discrete fashion

- Their dynamical behavior can be abstracted by:

- A succession of steady states

- Intermixed with sudden jumps

71

Characterizing such Systems (4) 69

- The possible number of state changes are enormous

- Usually such systems never halt

- They are called DISCRETE TRANSITION SYSTEMS

72

Reasoning about Discrete Transition Systems 70

- Test reasoning (a vast majority): VERIFICATION

- Blue Print reasoning (a very few): CORRECT CONSTRUCTION

73

Test Reasoning: VERIFICATION 71

- Based on laboratory execution

- Obvious incompleteness

- The oracle is usually missing

- Properties to be checked are chosen a posteriori

- Re-adapting and re-shaping after testing

- Reveals an immature technology

74

Blue Print Reasoning: CORRECT CONSTRUCTION 72

- Based on a formal model: the “blue print”

- Gradually describing the system with the needed precision

- Relevant Properties are chosen a priori

- Serious thinking made on the model, not on the final system

- Reasoning is validated by proofs

- Reveals a mature technology

75

Blue Print Reasoning: Outcome of Proving 73

- The proof succeeds

- The proof fails but refutes the statement to prove

- the model is erroneous: it has to be modified

- The proof fails but is probably provable

- the model is badly structured: it has to be reorganized

- The proof fails and is probably not provable nor refutable

- the model is too poor: it has to be enriched

76

Price of Interactive Proofs in Industrial Projects 74

77

Price of Interactive Proofs in Industrial Projects 75

- n: number of lines of generated code

78

Price of Interactive Proofs in Industrial Projects 76

- n: number of lines of generated code

- f : proof factor. Typical values are 2 or 3.

n/f is the number of proofs generated

79

Price of Interactive Proofs in Industrial Projects 77

- n: number of lines of generated code

- f : proof factor. Typical values are 2 or 3.

n/f is the number of proofs generated

- x: percentage of interactive proofs. Typical values are 2, 5, 10.

n.x/100.f is the number of interactive proofs generated

80

Price of Interactive Proofs in Industrial Projects 78

- n: number of lines of generated code

- f : proof factor. Typical values are 2 or 3.

n/f is the number of proofs generated

- x: percentage of interactive proofs. Typical values are 2, 5, 10.

n.x/100.f is the number of interactive proofs generated

- p: number of interactive proofs per man-day. Typical value is 20.

n.x/100.f.p is the number of man-day for the interactive proofs

81

Price of Interactive Proofs in Industrial Projects 79

- n: number of lines of generated code

- f : proof factor. Typical values are 2 or 3.

n/f is the number of proofs generated

- x: percentage of interactive proofs. Typical values are 2, 5, 10.

n.x/100.f is the number of interactive proofs generated

- p: number of interactive proofs per man-day. Typical value is 20.

n.x/100.f.p is the number of man-day for the interactive proofs

- m: number of man-months to perform the interactive proofs.

n.x/100.f.p.20 is the number of man-month for proving

82

Price of Interactive Proofs in Industrial Projects (cont’d) 80

- m = n.x/100.f.p.20 is the number of man-months needed for proving

n 100, 000 100, 000 100, 000

f 2 2 2

x 2.5% 5% 10%

p 20 20 20

m 3.12 6.25 12.5

This shows the importance to prove as many automatic proofs as we can

83

About Formal Proofs in Industry (Some Figures) 81

- Rules of Thumb:

n lines of final code implies n/3 proofs

95% of proofs discharged automatically

5% of proofs discharged interactively

350 interactive proofs per man-month

- 60,000 lines of final code ; 20,000 proofs ; 1,000 int. proofs

- 1,000 interactive proofs ; 1000/350 ' 3 man-months

- Far less expensive than heavy testing

84

4. A Light Introduction to Event-B

85

Model Developments with Event-B 82

- Event-B is not a programming language (even very abstract)

- Event-B is a notation used for developing mathematical models

- Mathematical models of discrete transition systems

- http://www.event-b.org

86

Model Developments with Event-B (cont’d) 83

- Such models, once finished, can be used to eventually construct:

- sequential programs,

- distributed programs,

- concurrent programs,

- electronic circuits,

- large systems involving a possibly fragile environment,

- . . .

- The underlined statement is an important case.

- In this lecture, we shall construct a small sequential programs.

87

Main Influences 84

Action Systems developed by the Finnish school (Turku):

R.J.R. Back and R. Kurki-Suonio

Decentralization of Process Nets with Centralized Control.

2nd ACM SIGACT-SIGOPS Symposium

Principles of Distributed Computing (1983)

M.J. Butler

Stepwise Refinement of Communicating Systems.

Science of Computer Programming (1996)

88

The State of a Model 85

- A discrete model is first made of a state

- The state is represented by some constants and variables

- Constants are linked by some axioms

- Variables are linked by some invariants

- Axioms and invariants are written using set-theoretic expressions

89

The Events of a Model (Transitions) 86

- A discrete model is also made of a number of events

- An event is made of a guard and an action

- The guard denotes the enabling condition of the event

- The action denotes the way the state is modified by the event

- Guards and actions are written using set-theoretic expressions

90

A Model Schematic View 87

Events

Variables

invariants

guards

actions

Constants

axioms

(Machines) (Contexts)

Dynamic Parts Static Parts

91

Operational Interpretation 88

- An event execution is supposed to take no time

- Thus, no two events can occur simultaneously

- When all events have false guards, the discrete system stops

- When some events have true guards, one of them is chosen

non-deterministically and its action modifies the state

- The previous phase is repeated (if possible)

92

Operational Interpretation 89

Initialize;
while (some events have true guards) {

Choose one such event;
Modify the state accordingly;

}

93

Comments on the Operational Interpretation 90

- Stopping is not necessary: a discrete system may run for ever

- This interpretation is just given here for informal understanding

- The meaning of such a discrete system will be given by the

proofs which can be performed on it.

94

Being more Precise: Machines and Contexts 91

- A model is made of several components

- A component is either a machine or a context:

ContextMachine

variables

events

theorems

invariants

theorems

axioms

constants

carrier sets

95

Machines and Contexts (cont’d) 92

- Contexts contain the static structure of a discrete system

(constants and axioms)

- Machines contain the dynamic structure of a discrete system

(variables, invariants, and events)

- Machines see contexts

- Contexts can be extended

- Machines can be refined

96

Relationship Between Machines and Contexts 93

refines

sees

sees

Machine

Machine

Context

Context

extends

refines extends

97

5. Presentation of a Small Example

98

Requirements 94

We are given a non-empty finite array of natural
numbers FUN-1

We like to find the maximum of the range of this
array FUN-2

99

Requirements for a First Small Example 95

We are given a non-empty finite array of natural
numbers FUN-1

We like to find the maximum of the range of this
array FUN-2

We want to find that 10 is the greatest element of this array

9 3 8 3 510

100

Development Strategy 96

- First, we show an initial model specifying the problem

- Later, we refine our model to produce an algorithm.

- In the initial model, we have:

- a context where the constant array is defined

- a machine where the maximum is "computed"

101

Initial Model: the Context as presented in the slides 97

- Constant n denotes the size of the non-empty array,

- Constant f denotes the array,

- Constant M denotes a natural number.

constants: n
f
M

0 < n

f ∈ 1 .. n→ 0 .. M

ran(f) 6= ∅

- Mind the inference typing

102

Initial Model: the Context as presented in the slides 98

- Constant n denotes the size of the non-empty array,

- Constant f denotes the array,

- Constant M denotes a natural number.

constants: n
f
M

axm0 1: 0 < n

axm0 2: f ∈ 1 .. n→ 0 .. M

thm0 1: ran(f) 6= ∅

- Mind the inference typing

103

The Context as presented in the tool 99

Context

theorems

axioms

constants

sets

Notice that we have no set

context
maxi ctx 0

constants
n
f
M

axioms

axm1 : 0 < n

axm2 : f ∈ 1..n→ 0 .. M

thm1 : ran(f) 6= ∅

end

104

Math Refresher: Total Function and Range 100

- We are given two sets S and T

S T

105

Math Refresher: Total Function and Range 101

- Here is a total function f from S to T : f ∈ S→ T

S T

f

106

Math Refresher: Total Function and Range 102

- Here is the range of f

S T

f

107

D E M O (showing a context)

108

Context Structure 103

context
< context identifier >

sets
< set identifier >
. . .

constants
< constant identifier >
. . .

axioms
< label >: < predicate >
. . .

end

109

Explaining Context Sections 104

- "sets" lists various sets, which define pairwise disjoint types

- "constants" lists the different constants introduced in the context

- "axioms" defines the properties of the constants

110

Initial Model: the Machine as presented in the slides 105

- Variable m denotes the result.

variable: m inv0 1: m ∈ N

- Next are the two events:

INIT
begin
m := 0

end

maximum
begin
m := max(ran(f))

end

- Event maximum presents the final intended result (in one shot)

111

Machine Example as presented in the tool 106

Machine

variables

invariants

theorems

events

machine
maxi 0

sees
ctx 0

variables
i

invariants

inv1 : i ∈ 1 .. n

events
. . .

end

112

Machine (and Context) Example as presented in the tool 107

machine
maxi 0

sees
maxi ctx 0

variables
m

invariants

inv1 : m ∈ N

events
. . .

end

context
maxi ctx 0

sets
D

constants
n
f
v

axioms

axm1 : 0 < n

axm2 : f ∈ 1..n→ 0 .. M

thm1 : ran(f) 6= ∅

end

113

D E M O (showing a machine)

114

Machine Structure 108

machine
< machine identifier >

sees
< context identifier >
. . .

variables
< variable identifier >
. . .

invariants
< label >: < predicate >
. . .

events
. . .

variant
< variant >

end

115

Explaining Machine Sections 109

- "variables" lists the state variables of the machine

- "invariants" states the properties of the variables

- "events" defines the dynamics of the transition system (next slides)

- "variant" is explained later

116

Event 110

- An event defines a transition of our discrete system

- An event is made of a Guard G and an Action A

- G defines the enabling conditions of the transition

- A defines a parallel assignment of the variables

117

Kind of Events 111

begin
A

end

No guard

when
G

then
A

end

Simple guard

any x where
G(x)

then
A(x)

end

Quantified guard

118

Kind of Events 112

begin
A

end

No guard

when
G

then
A

end

Simple guard

any x where
G(x)

then
A(x)

end

Quantified guard

Our event (so far) have no guards

INIT
begin
m := 0

end

maximum
begin
m := max(ran(f))

end

119

Summary 113

constants: n
f
M

variable: m

INIT
begin
m := 0

end

axm0 1: 0 < n

axm0 2: f ∈ 1 .. n→ 0 .. M

thm0 1: ran(f) 6= ∅

inv0 1: m ∈ N

maximum
begin
m := max(ran(f))

end

120

Our Task is not Completed 114

- We have to perform some proofs:

- thm0 1 holds

- Invariant inv0 1 is established by event "INIT"

- Invariant inv0 1 is maintained by event "maximum"

- Expression "max(ran(f))" is well-defined

121

Summary of what is to be Proved 115

- Stated theorems

- Invariant maintenance

- Well-definedness

122

D E M O (showing proof obligations)

123

The Rodin Platform Kernel Tools 116

Generator
Proof Obligation ProverStatic Checker

Model

Proofs

124

Automatic and Interactive Modes for the Prover 117

Prover ProofProof Obligation

Prover ProofProof Obligation

Human Intervention

125

Refinement: the New Variables 118

- We introduce two new variables in our model

- Variables p and q denote two indices in the domain of f .

variables: m
p
q

inv1 1: p ∈ 1 .. n

inv1 2: q ∈ 1 .. n

126

Initial, Intermediate, and Final Situations 119

The maximum is always

"between" p and q

q

9 3 8 3 510

p q

p q

9 3 8 3 510

9 3 8 3 510

p

127

Refinement: the Main Invariant 120

- Interval p .. q is never empty (inv1 3)

- The maximum is always in the image of p .. q under f (inv1 4)

variables: m
p
q

inv1 1: p ∈ 1 .. n

inv1 2: q ∈ 1 .. n

inv1 3: p ≤ q

inv1 4: max(ran(f)) ∈ f [p .. q]

- inv1 4 is the main invariant

128

Math Refresher: Image 121

- B is the image of A under f : B = f [A]

S T

f

A

B

129

Refinement: Initial and Final Events 122

INIT
begin
m := 0
p := 1
q := n

end

maximum
when
p = q

then
m := f(p)

end

130

Refinement: two New Events 123

INIT
begin
m := 0
p := 1
q := n

end

maximum
when
p = q

then
m := f(p)

end

increment
when
p < q
f(p) ≤ f(q)

then
p := p + 1

end

decrement
when
p < q
f(q) < f(p)

then
q := q − 1

end

131

Trace 124

9 3 8 310 5

9 3 8 310 5

9 3 8 310 5

8<9 (decrement)

3<9 (decrement)

9<10 (increment)

3<10 (increment)

9 3 8 3 510

5<9 (decrement)

9 3 8 310 5

9 3 8 310 5

132

Abstract and Concrete Traces 125

dec dec dec inc inc maxiINIT

INIT maxi

133

Old Events must Refine their Abstractions 126

dec dec dec inc inc maxiINIT

INIT maxi

134

How about New Events? 127

INIT maxi

dec dec dec inc inc maxiINIT

 ? ? ? ? ?

135

New Events refine "skip" 128

INIT maxi

dec dec dec inc inc maxiINIT

skip skip skip skip skip

136

To be Proved 129

- Invariant maintenance

- Event refinement

- guard strengthening

- concrete action simulates the abstract one

- Well-definedness

137

Pathologies which Must be Avoided on the Concrete Trace 130

- Early deadlock

dec dec dec maxiINIT

138

Pathologies which Must be Avoided on the Concrete Trace 131

- Early deadlock

dec dec dec maxiINIT

- Divergence

dec dec dec maxiINIT

139

To be Proved (more) 132

- Invariant maintenance

- Event refinement

- guard strengthening

- concrete action simulates the abstract one

- Well-definedness

- Trace refinement

- Disjunction of guards must hold (no early deadlock)

- New events must be convergent (must decrease a variant)

140

Towards the Final Construction 133

INIT
begin
m := 0
p := 1
q := n

end

maximum
when
p = q

then
m := f(p)

end

increment
when
p 6= q
f(p) ≤ f(q)

then
p := p + 1

end

decrement
when
p 6= q
f(q) < f(p)

then
q := q − 1

end

141

Statements for a Pidgin Programming Language 134

while condition do statement end

if condition then statement else statement end

statement ; statement

variable list := expression list

142

IF Merging Rule 135

when
P
Q

then
S

end

when
P
¬Q
then

T
end

;

when
P

then
if Q then

S
else

T
end

end

M IF

- The two events must have been introduced at the same step

143

Applying Rule M IF 136

decrement
when

p 6= q
f(q) < f(p)

then
q := q − 1

end

increment
when

p 6= q
f(p) ≤ f(q)

then
p := p + 1

end

decrement increment
when

p 6= q
then

if f(q) < f(p) then
q := q − 1

else
p := p + 1

end
end

144

WHILE Merging Rule (special case) 137

when
Q

then
S

end

when
¬Q
then

T
end

;

while Q do
S

end;
T

M WHILE

- The first event must have been introduced at one

refinement step below the second one.

145

Applying Rule M WHILE (special case) 138

decrement increment
when
p 6= q

then
if f(q) < f(p) then
q := q − 1

else
p := p + 1

end
end

maximum
when
p = q

then
m := f(p)

end

decrement increment maximum
while p 6= q do

if f(q) < f(p) then
q := q − 1

else
p := p + 1

end
end;
m := f(p)

146

WHILE Merging Rule (general case) 139

when
P
Q

then
S

end

when
P
¬Q
then

T
end

;

when
P

then
while Q do

S
end;
T

end

M WHILE

- P must be invariant under S

- The first event must have been introduced at one

refinement step below the second one.

147

Final Rule M INIT 140

- Once we have obtained an “event” without guard

- We add to it the event init by sequential composition

- We then obtain the final “program”

148

The Program: Putting the Events Together 141

m, p, q := 0, 1, n; INIT
while p < q do

if f(q) < f(p) then
q := q − 1 decrement

else
p := p + 1 increment

end
end;
m := f(p) maximum

INIT
begin
m := 0
p := 1
q := n

end

decrement
when
p < q
f(q) < f(p)

then
q := q − 1

end

increment
when
p < q
f(p) ≤ f(q)

then
p := p + 1

end

maximum
when
p = q

then
m := f(p)

end

149

Exercise 142

- Modify the development to search for the minimum of the array

m, p, q := 0, 1, n; INIT
while p < q do

if f(p) > f(q) then
p := p + 1 increment

else
q := q − 1 decrement

end
end;
m := f(p) maximum

150

Conclusion (1) : Some Guidelines for Development 143

- Write the requirement document

- Propose a refinement strategy

- Develop the model by successive refinements and proofs

- Perform some animation (if useful)

151

Conclusion (2): Importance of Refinement 144

- Refinement allows us to build models gradually

- We build an ordered sequence of more precise models

- Each model is a refinement of the one preceding it

- A useful analogy: looking through a microscope

- Spatial (more variables) as well as temporal (more events)

extensions

152

