
Event-B Course

11. Formal Development of a Security Protocol

(the Needham-Schroeder protocol)

Jean-Raymond Abrial

September-October-November 2011



Outline 1

- Requirement Document

- Refinement Strategy

- Initial Model

- Refinement

1



Requirement Document (1) 2

- The Needham-Schroeder Protocol is a security protocol

- R.M. Needham and M.D. Schroeder Using encryption for

authentication in large networks of computers. CACM 21 (1978)

- Its role is to allow two agents to communicate on a network

This protocol involves two agents situated on the ENV-1
sites of a network

-The Needham-Schroeder Protocol is an authentication protocol:

- At the end, the two agents must be sure to speak to each other.

2



Requirement Document (2) 3

- There is a standard attack to this protocol

- The authentication property cannot always be guaranteed

- This attack was discovered by Lowe

- G. Lowe A Breaking and fixing the Needham-Schroeder public-key

protocol using FDR. TACAS 1996 LNCS vol.1055 (1996)

- More on this later

3



Requirement Document (3) 4

- One of the agents is called the initiator.

- The other agent is called the recipient.

An execution of the protocol involves two agents: ENV-2
the initiator and the recipient

- The initiator starts the communication with the recipient.

An initiator of the protocol wants to speak ENV-3
to a recipient

4



Requirement Document (4) 5

- Many executions of the protocol can occur simultaneously

- Agents use nonces to identify executions of the protocol

- Nonces are guaranteed to be unique

Agents use unique nonces to identify specific ENV-4
executions of the protocol

- An initiator and a recipient nonce are used by an execution

A protocol execution is identified by two nonces ENV-5

5



Requirement Document (5) 6

- Agents communicate by means of messages sent on the network

- The network is supposed to be unsecure

- Bad agents are able to do the following:

- copy messages between sites

- remove messages

- modify messages they can read

- create messages

- ...

Bad agents can corrupt the execution of a protocol ENV-6

6



Requirement Document (6) 7

- In spite of bad agents, we want to ensure an important property

- At the end of the execution of the protocol, we want to be sure that:

- the initiator will speak to the recipient

- the recipient will speak to the initiator.

- This property is called mutual authentication.

The protocol must ensure mutual authentication FUN-1
between initiators and recipients

- This is the main property of this protocol

7



Requirement Document (7) 8

- In order to ensure mutual authentication, agents use encryption

Encrypted messages are used for the ENV-7
communication between agents

8



Requirement Document (8) 9

- Each agent A has two keys:

- a public key KA (known by all agents) to encrypt messages

- a secret key K−1A (known by A only) to decrypt messages

Encryption is ensured by means of public keys ENV-8

Decryption is ensured by means of secret keys

- An agent I can send an encrypted message to another agent R

- If the message is encrypted with KR, then only R can decrypt it.

9



Requirement Document (9): the Protocol 10

- An agent I sent a message to an agent R with public key KR

- This message contains the name of I and a new nonce NI

- R decrypts the previous message with secret key K−1R

- R replies to I by sending a message with public key KI

- This message contains the nonce NI and a new nonce NR

- I decrypts the previous message with secret key K−1I

- I replies to R by sending a message with public key KR

- The previous message contains the nonce NR

1. I → R : {I,NI}KR

2. R→ I : {NI, NR}KI FUN-2
3. I → R : {NR}KR

10



Mutual Authentication (1) 11

1. I → R : {I,NI}KR
2. R→ I : {NI, NR}KI

FUN-2
3. I → R : {NR}KR

- This protocol seems to guarantee authentication for I.

- At step 2, I receives the message {NI, NR}KI

- This message contains the nonce NI

- Nonce NI was sent by I to R only since encrypted with key KR

- Nonces are guaranteed to be unique.

- Hence the message {NI, NR}KI
was certainly sent by R.

11



Mutual Authentication (2) 12

1. I → R : {I,NI}KR
2. R→ I : {NI, NR}KI

FUN-2
3. I → R : {NR}KR

- This protocol seems to guarantee authentication for R.

- At step 3, R receives the message {NR}KR

- This message contains the nonce NR

- Nonce NR was sent by R to I only since encrypted with key KI

- Nonces are guaranteed to be unique.

- Hence the message {NR}KR
was certainly sent by I.

12



Attacking the Protocol (Discovered by Lowe) (1) 13

- An initiator I sends the message {I,NI}KA
to a recipient A

- A happens to be an attacker.

- A decrypts this message and forward it to another recipient R.

- R is misled, it believes to have received a message from I.

- R sends back a message to I as in the normal protocol.

- The initiator I believes to have received a reply from A.

- Therefore I sends to A the acknowledgment message.

- And now A decrypts this message and forward it to R.

13



Attacking the Protocol (2) 14

1. I → A : {I,NI}KA
2. A→ R : {I,NI}KR
3. R→ I : {NI, NR}KI
4. I → A : {NR}KA
5. A→ R : {NR}KR

- At the end, A knows nonces NI and NR (step 1 and step 4)

- R also knows nonces NI and NR (step 2 and step 5).

- Further messages can then be sent to R by A.

- In such messages, the pair N I-N R is a justification.

- R believes such messages come from I

14



Attacking the Protocol (3) 15

- Suppose R is a bank

- A could send the following message to R:

{N I,N R, "Transfer some of my money into A’s account"}KR

- R, the banks, believes that this message comes from I

- Then R may perform the money transfer from I to A !!!

15



Correcting the Protocol 16

- Here is, again, the faulty protocol:

1. I → R : {I,NI}KR
2. R→ I : {NI, NR}KI

FUN-2
3. I → R : {NR}KR

- Lowe proposed the following corrected protocol:

1. I → R : {I,NI}KR
2. R→ I : {NI, NR, R}KI

FUN-2
3. I → R : {NR}KR

I may check that the message comes from R

16



Replaying the Attack 17

1. I → A : {I,NI}KA
2. A→ R : {I,NI}KR
3. R→ I : {NI, NR, R}KI

- At step 3, I may figure out that the message does not come from A

-I would expect the following message: {NI, NR, A}KI

- At this point, I may stop the execution of the protocol

17



A Proposal for the Formalization (1) 18

- In order to simplify the formalization, we do the following

- We suppose that there is no attacker

- We suppose instead that the initiator I makes a mistake

- I does not send the msg to R, it sends it to an agent S

1. I → R : {I,NI}KS
2. S → I : {NI, NS}KI

FUN-3
3. I → R : {NR}KS

- It is possible that S is the same as R

18



A Proposal for the Formalization (2) 19

- The corrected protocol:

1. I → R : {I,NI}KS
2. S → I : {NI, NS, S}KI

FUN-3
if S = R then 3. I → R : {NR}KR

- If S is not the same as R then the protocol is stopped

- Step 3 is never executed.

19



Refinement Strategy: Two Separate Developments 20

- Protocol without mistake and no attacker

- Protocol with mistake and no attacker

- In each case:

- Initial model without messages

- Refinement with messages

20



Protocol without mistake

21



Initial Model: Sets, Constants, and Axioms 21

- Introducing a set of Agents AGT and a set of Nonces NNC

sets: AGT
NNC

constants: Initiator
Recipient

axm 1: partition(AGT, Initiator,Recipient)

These elements take account of assumptions ENV 1 and ENV 2.

This protocol involves two agents situated on the ENV-1
sites of a network

An execution of the protocol involves two agents: ENV-2
the initiator and the recipient

22



Initial Model: Variables and Invariants (1) 22

- Introducing the set of used nonces nnc.

- For simplification, it is partitioned: nni and nnr

variables: nnc
nni
nnr

inv0 1: nnc ⊆ NNC

inv0 2: partition(nnc, nni, nnr)

These elements take partially account of assumption ENV 4.

Agents use unique nonces to identify specific ENV-4
executions of the protocol

23



Initial Model: Variables and Invariants (2) 23

- Introducing what is recorded with an initiator ni in the initiator site:

- the corresponding initiator: i1(ni)

- the corresponding recipient: i2(ni)

- the corresponding recipient nonce: i3(ni)

variables: i1
i2
i3

inv0 3: i1 ∈ nni→ Initiator

inv0 4: i2 ∈ nni→Recipient

inv0 5: i3 ∈ nni 7� nnr

- i3 is only partial. Why?

24



Initial Model: Variables and Invariants (3) 24

- Introducing what is recorded with a recipient nr in the recipient site:

- the corresponding recipient: r1(nr)

- the corresponding initiator: r2(nr)

- the corresponding recipient nonce: r3(nr)

variables: r1
r2
r3

inv0 6: r1 ∈ nnr→Recipient

inv0 7: r2 ∈ nnr→ Initiator

inv0 8: r3 ∈ nnr � nni

25



Initial Model: Variables and Invariants (4) 25

- The previous elements take account of ENV 4 and ENV 5.

Agents use unique nonces to identify specific ENV-4
executions of the protocol

A protocol execution is identified by two nonces ENV-5

26



Initial Model: Events (1) 26

We follow the protocol (without sending messages)

1. I → R : {I,NI}KR

2. R→ I : {NI, NR}KI FUN-2
3. I → R : {NR}KR

Event P1 corresponds to step 1 of the protocol

P1
any ni, i, r where

ni /∈ ncc
i ∈ Initiator
r ∈ Recipient

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1 := i1 ∪ {ni 7→ i}
i2 := i2 ∪ {ni 7→ r}

end

The initiator records some data in step 1

27



Initial Model: Events (2) 27

1. I → R : {I,NI}KR

2. R→ I : {NI, NR}KI FUN-2
3. I → R : {NR}KR

Event P2 corresponds to step 2.

P2
any ni, i, r, nr where

ni ∈ nni \ ran(r3)
i = i1(ni)
r = i2(ni)
nr /∈ ncc

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ i}
r3 := r3 ∪ {nr 7→ ni}

end

The recipients records some data in step 2

28



Initial Model: Events (3) 28

1. I → R : {I,NI}KR

2. R→ I : {NI, NR}KI FUN-2
3. I → R : {NR}KR

Event P3 corresponds to an initiator receiving the message sent in step 2

P3
any ni, nr where

nr 7→ ni ∈ r3
ni /∈ dom(i3)

then
i3 := i3 ∪ {ni 7→ nr}

end

The initiator finalizes his records

29



Cheating 29

P2
any ni, i, r, nr where
ni ∈ nni \ ran(r3)
i = i1(ni)
r = i2(ni)
nr /∈ ncc

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ i}
r3 := r3 ∪ {nr 7→ ni}

end

P3
any ni, nr where
nr 7→ ni ∈ r3
ni /∈ dom(i3)

then
i3 := i3 ∪ {ni 7→ nr}

end

In P2, the recipient is cheating (accessing Initiator’s state)

In P3, the initiator is cheating (accessing recipient’s state)

30



Formalizing Mutual Authentication (1) 30

The protocol must ensure mutual authentication FUN-1
between initiators and recipients

- i3 and r3 are converse of each other (inv0 9)

- Initiator with ri and recipient with nr share the same nonces.

inv0 9: i3−1 ⊆ r3

We have no equality: i3 is completed (in P3) after r3 (in P2).

31



Formalizing Mutual Authentication (2) 31

- If nr 7→ ni ∈ r3 and nr 7→ r ∈ r1, that is:

ni 7→ r ∈ r3−1 ; r1

- r believes that he will speak to the initiator associated with ni

- So, we must be sure that the pair ni 7→ r belongs to i2

- r is then sure to speak to the initiator that wants to speak to him

inv0 10: r3−1 ; r1 ⊆ i2

- This invariant is maintained by our three events

32



Formalizing Mutual Authentication (3) 32

- If ni 7→ nr ∈ i3 and ni 7→ i ∈ i1, that is:

nr 7→ i ∈ i3−1 ; i1

- i believes that he will speak to the recipient associated with nr

- So, we must be sure that the pair nr 7→ i belongs to r2

- i is then sure to speak to the recipient that speaks to him

thm0 1: i3−1 ; i1 ⊆ r2

- The statement is thm0 1 in fact a theorem

- It is easily proved thanks to the following invariant and i3−1 ⊆ r3:

inv0 11: r3 ; i1 = r2

33



Proofs 33

- There are 30 proof obligations.

- All discharged automatically by the prover of the Rodin Platform

34



Refinement: Set 34

- Introducing the encrypted messages and removing the cheating.

- An agent will not be able to look at the state of other agents

sets: MSG

35



Refinement: Variables and Invariants (1) 35

variables: msg
msg1
msg2
msg3
crypto

1. I → R : {I,NI}KR

2. R→ I : {NI, NR}KI FUN-2
3. I → R : {NR}KR

- msg is the set of messages circulating so far in the network.

- msg is partitioned into three sets msg1, msg2, and msg3.

- crypto records the agent owning the key encrypting each message.

inv1 1: msg ⊆ MSG

inv1 2: partition(msg,msg1,msg2,msg3)

inv1 3: crypto ∈ msg→AGT

36



Refinement: Variables and Invariants (2) 36

variables: m1 ini
m1 nni

1. I → R : {I,NI}KR

2. R→ I : {NI, NR}KI FUN-2
3. I → R : {NR}KR

inv1 4: m1 ini ∈ msg1→ Initiator

inv1 5: m1 nni ∈ msg1�� nni

inv1 6: m1 nni−1 ; crypto = i2

inv1 7: m1 nni−1 ;m1 ini = i1

inv0 3: i1 ∈ nni→ Initiator

inv0 4: i2 ∈ nni→Recipient

37



Refinement: Variables and Invariants (3) 37

variables: m2 nni
m2 nnr

1. I → R : {I,NI}KR

2. R→ I : {NI, NR}KI FUN-2
3. I → R : {NR}KR

inv1 8: m2 nnr ∈ msg2�� nnr

inv1 9: m2 nni ∈ msg2→ nni

inv1 10: ∀m ·m ∈ msg2 ⇒ m2 nnr(m) 7→ m2 nni(m) ∈ r3

inv0 8: r3 ∈ nnr � nni

38



Refinement: Variables and Invariants (4) 38

variables: m3 nnr

inv1 11: m3 nnr ∈ msg3→ nnr

39



Refinement: Events (1) 39

P1
any ni, i, r,m1 where

ni /∈ ncc
i ∈ Initiator
r ∈ Recipient
m1 /∈ msg

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1 := i1 ∪ {ni 7→ i}
i2 := i2 ∪ {ni 7→ r}
msg := msg ∪ {m1}
msg1 := msg1 ∪ {m1}
crypto(m1) := crypto ∪ {m1 7→ r}
m1 nni := m1 nni ∪ {m1 7→ ni}
m1 ini := m1 ini ∪ {m1 7→ i}

end

(abstract-)P1
any ni, i, r where

ni /∈ ncc
i ∈ Initiator
r ∈ Recipient

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1 := i1 ∪ {ni 7→ i}
i2 := i2 ∪ {ni 7→ r}

end

40



Refinement: Events (2) 40

P2
any m1, r, nr,m2 where

m1 ∈ msg1
m1 nni(m1) /∈ ran(r3)
nr /∈ ncc
r = crypto(m1)
m2 /∈ msg

with
ni = m1 nni(m1)
i = m ini(m1)

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ m1 ini(m1)}
r3 := r3 ∪ {nr 7→ m1 nni(m1)}
msg := msg ∪ {m2}
msg2 := msg2 ∪ {m2}
m2 nni(m2) := m1 nni(m1)
m2 nnr(m2) := nr
crypto(m2) := m1 ini(m1)

end

(abstract-)P2
any ni, i, r, nr where

ni ∈ nni \ ran(r3)
i = i1(ni)
r = i2(ni)
nr /∈ ncc

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ i}
r3 := r3 ∪ {nr 7→ ni}

end

41



Refinement: Events (3) 41

P3
any m2 where

m2 ∈ msg2
m2 nni(m2) /∈ dom(i3)
i1(m2 nni(m2)) = crypto(m2)

with
ni = m2 nni(m2)
nr = m2 nnr(m2)

then
i3 := i3 ∪ {m2 nni(m2) 7→ m2 nnr(m2)}

end

(abstract-)P3
any ni, nr where

nr 7→ ni ∈ r3
ni /∈ dom(i3)

then
i3 := i3 ∪ {ni 7→ nr}

end

42



Proofs 42

- There are 49 proof obligations.

- All discharged automatically by the prover of the Rodin Platform

43



Protocol with mistake

44



Introduction 43

- The initiator i records the recipient r it wants to speak to (in i2).

- But the initiator i send m1 with the public key of any agent s.

- s might be identical to r but not necessarily.

- This mistake of the initiator will break invariant inv1 6

m1 nni−1 ; crypto = i2

- It says that the key used in m1 is that of the recipient (in i2).

- To detect the mistake, the recipient sends its name

45



The Protocol with Mistake 44

1. I → R : {I,NI}KS
2. S → I : {NI, NS, S}KI

FUN-3
if S = R then 3. I → R : {NR}KR

- If S is not the same as R then the protocol is stopped

- Step 3 is never executed.

46



Set, Constants and Axiom 45

sets: AGT
NNC

constants: Initiator
Recipient

axm 1: partition(AGT, Initiator,Recipient)

47



Variables and Invariants (1) 46

variables: nnc
nni
nnr

inv2 1: nnc ⊆ NNC

inv2 2: partition(nnc, nni, nnr)

Same as in previous case

inv0 1: nnc ⊆ NNC

inv0 2: partition(nnc, nni, nnr)

48



Variables and Invariants (2) 47

variables: i1
i2
i3

inv2 3: i1 ∈ nni→ Initiator

inv2 4: i2 ∈ nni→Recipient

inv2 5: i3 ∈ nni 7� nnr

- Same as in previous case

inv0 3: i1 ∈ nni→ Initiator

inv0 4: i2 ∈ nni→Recipient

inv0 5: i3 ∈ nni 7� nnr

49



Variables and Invariants (3) 48

- Variable r3 is now a partial injection only.

- Variable r4 is new. It records what the recipient "believes"

- Of course, it can be erroneous .

- Variable r3 is the corrected connection (r3 updated by new event P4).

variables: r1
r2
r3
r4

inv2 6: r1 ∈ nnr→Recipient

inv2 7: r2 ∈ nnr→ Initiator

inv2 8: r3 ∈ nnr 7� nni

inv2 9: r4 ∈ nnr � nni

- Invariants of previous case:

inv0 6: r1 ∈ nnr→Recipient

inv0 7: r2 ∈ nnr→ Initiator

inv0 8: r3 ∈ nnr � nni

50



Authentication Invariants 49

inv2 10: r3 ⊆ i3−1

inv2 11: r3−1 ; r1 ⊆ i2

inv2 12: i3−1 ; i1 ⊆ r2

inv2 13: r4 ; i1 = r2

inv2 14: i3−1 ⊆ r4

inv0 9: i3−1 ⊆ r3

inv0 10: r3−1 ; r1 ⊆ i2

thm0 1: i3−1 ; i1 ⊆ r2

inv0 11: r3 ; i1 = r2

- The authentication conditions are identical

51



Events (1) 50

- Q1 event of this case (with mistake)

- P1 event of previous case (without mistake)

Q1
any ni, i, r where
ni /∈ ncc
i ∈ Initiator
r ∈ Recipient

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1(ni) := i
i2(ni) := r

end

P1
any ni, i, r where
ni /∈ ncc
i ∈ Initiator
r ∈ Recipient

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1(ni) := i
i2(ni) := r

end

These are identical
52



Events (2) 51

Q2
any ni, i, r, nr where
ni ∈ nni \ ran(r4)
i = i1(ni)
r ∈ Recipient
nr /∈ ncc

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ i}
r4 := r4 ∪ {nr 7→ ni}

end

P2
any ni, i, r, nr where
ni ∈ nni \ ran(r3)
i = i1(ni)
r = i2(ni)
nr /∈ ncc

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ i}
r3 := r3 ∪ {nr 7→ ni}

end

We see the "mistake" in Q2. Any recipient r can accept this event.

53



Events (3) 52

Q3
any ni, nr where

nr 7→ ni ∈ r4
ni /∈ dom(i3)
i2(ni) = r1(nr)

then
i3 := i3 ∪ {ni 7→ nr}

end

P3
any ni, nr where
nr 7→ ni ∈ r3
ni /∈ dom(i3)

then
i3 := i3 ∪ {ni 7→ nr}

end

The additional guard ensures that the recipient in the initiator (i2(ni))

is correct (r1(nr))

54



Events (4) 53

Q4
any ni, nr where
ni 7→ nr ∈ i3
nr /∈ dom(r3)
i2(ni) = r1(nr)

then
r3 := r3 ∪ {nr 7→ ni}

end

Updating the recipient information

55



Proofs 54

- There are 49 proof obligations.

- All discharged automatically by the prover of the Rodin Platform

56



Refinement: The state (1) 55

As previously

variables: msg
msg1
msg2
msg3
crypto

inv3 1: msg ⊆ MSG

inv3 2: partition(msg,msg1,msg2,msg3)

inv3 3: crypto ∈ msg→AGT

- Invariants of previous case:

inv1 1: msg ⊆ MSG

inv1 2: partition(msg,msg1,msg2,msg3)

inv1 3: crypto ∈ msg→AGT

57



Refinement: The state (2) 56

variables: m1 ini
m1 nni

inv3 4: m1 ini ∈ msg1→ Initiator

inv3 5: m1 nni ∈ msg1�� nni

inv3 7: m1 nni−1 ;m1 ini = i1

Invariants of previous case:

inv1 4: m1 ini ∈ msg1→ Initiator

inv1 5: m1 nni ∈ msg1�� nni

inv1 6: m1 nni−1 ; crypto = i2

inv1 7: m1 nni−1 ;m1 ini = i1

- Invariant inv1 6 has disappeared

- The message is not sent necessarily to the recorded recipient

58



Refinement: The state (3) 57

- A new "field", m2 rcv, is added in the message

- r4 replaces r3

variables: m2 nnr
m2 nni
m2 rcv

inv3 8: m2 nni ∈ msg2→ ran(r4)

inv3 9: m2 nnr ∈ msg2�� nnr

inv3 10: m2 nnr = m2 nni ; r4−1

inv3 11: m2 rcv ∈ msg2→Recipient

- Invariants of previous case:

inv1 8: m2 nni ∈ msg2→ ran(r3)

inv1 9: m2 nnr ∈ msg2�� nnr

inv1 10: m2 nnr = m2 nni ; r3−1

59



Refinement: The state (3) 58

variables: m3 nnr

inv3 12: m3 nnr ∈ msg3→ nnr

60



Refinement: Events (1) 59

Q1
any ni, i, r,m1, s where

ni /∈ ncc
p ∈ Initiator
q ∈ Recipient
m1 /∈ msg
s ∈ Recipient

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1 := i1 ∪ {ni 7→ i}
i2 := i2 ∪ {ni 7→ r}
msg := msg ∪ {m1}
msg1 := msg1 ∪ {m1}
crypto := crypto ∪ {m1 7→ s}
m1 nni := m1 nni ∪ {m1 7→ ni}
m1 ini := m1 ini ∪ {m1 7→ i}

end

P1
any ni, i, r,m1 where

ni /∈ ncc
i ∈ Initiator
r ∈ Recipient
m1 /∈ msg

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1 := i1 ∪ {ni 7→ i}
i2 := i2 ∪ {ni 7→ r}
msg := msg ∪ {m1}
msg1 := msg1 ∪ {m1}
crypto(m1) := crypto ∪ {m1 7→ r}
m1 nni := m1 nni ∪ {m1 7→ ni}
m1 ini := m1 ini ∪ {m1 7→ i}

end

- In Q1, we can see the potential mistake

- The message can be sent to any recipient, not necessarily r

61



Refinement: Events (2) 60

Q2
any m1, r, nr,m2 where

m1 ∈ msg1
m1 nni(m1) /∈ ran(r4)
nr /∈ ncc
r = crypto(m1)
m2 /∈ msg

with
ni = m1 nni(m1)
i = m ini(m1)

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ q}
r2 := r2 ∪ {nr 7→ m1 ini(m1)}
r4 := r4 ∪ {nr 7→ m1 nni(m1)}
msg := msg ∪ {m2}
msg2 := msg2 ∪ {m2}
m2 nni(m2) := m1 nni(m1)
m2 nnr(m2) := nr
crypto(m2) := m1 ini(m1)
m2 rcv(m2) := r

end

P2
any m1, r, nr,m2 where

m1 ∈ msg1
m1 nni(m1) /∈ ran(r3)
nr /∈ ncc
r = crypto(m1)
m2 /∈ msg

with
ni = m1 nni(m1)
i = m ini(m1)

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ m1 ini(m1)}
r3 := r3 ∪ {nr 7→ m1 nni(m1)}
msg := msg ∪ {m2}
msg2 := msg2 ∪ {m2}
m2 nni(m2) := m1 nni(m1)
m2 nnr(m2) := nr
crypto(m2) := m1 ini(m1)

end

- r4 replaces r3

- A new field in the message is updated

62



Refinement: Events (3) 61

Q3
any m2,m3 where

m2 ∈ msg2
m2 nni(m2) /∈ dom(i3)
i1(m2 nni(m2)) = crypto(m2)
m2 rcv(m2) = i2(m2 nni(m2))
m3 /∈ msg

with
ni = m2 nni(m2)
nr = m2 nnr(m2)

then
i3 := i3 ∪ {m2 nni(m2) 7→ m2 nnr(m2)}
msg := msg ∪ {m3}
msg3 := msg3 ∪ {m3}
m3 nnr := m3 nnr ∪ {m3 7→ m2 nnr(m2)}
crypto := crypto ∪ {m3 7→ m2 rcv(m2)}

end

P3
any m2 where

m2 ∈ msg2
m2 nni(m2) /∈ dom(i3)
i1(m2 nni(m2)) = crypto(m2)

with
ni = m2 nni(m2)
nr = m2 nnr(m2)

then
i3 := i3 ∪ {m2 nni(m2) 7→ m2 nnr(m2)}

end

The fundamental guard for checking the name of the recipient

63



Refinement: Events (4) 62

Q4
any m3 where
m3 ∈ msg3
m3 nnr(m3) /∈ dom(r3)
r1(m3 nnr(m3)) = crypto(m3)

with
ni = r4(m3 nni(m3))
nr = m3 nnr(m3)

then
r3 := r3 ∪ {m3 nnr(m3) 7→ r4(m3 nnr(m3))}

end

- Updating r3

64



Proofs 63

- There are 93 proof obligations.

- Discharged automatically except 11 of them done interactively (easy)

65


