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Requirement Document (1) 2

- The Needham-Schroeder Protocol is a security protocol

- R.M. Needham and M.D. Schroeder Using encryption for

authentication in large networks of computers. CACM 21 (1978)

- Its role is to allow two agents to communicate on a network

This protocol involves two agents situated on the ENV-1
sites of a network

-The Needham-Schroeder Protocol is an authentication protocol:

- At the end, the two agents must be sure to speak to each other.
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Requirement Document (2) 3

- There is a standard attack to this protocol

- The authentication property cannot always be guaranteed

- This attack was discovered by Lowe

- G. Lowe A Breaking and fixing the Needham-Schroeder public-key

protocol using FDR. TACAS 1996 LNCS vol.1055 (1996)

- More on this later
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Requirement Document (3) 4

- One of the agents is called the initiator.

- The other agent is called the recipient.

An execution of the protocol involves two agents: ENV-2
the initiator and the recipient

- The initiator starts the communication with the recipient.

An initiator of the protocol wants to speak ENV-3
to a recipient
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Requirement Document (4) 5

- Many executions of the protocol can occur simultaneously

- Agents use nonces to identify executions of the protocol

- Nonces are guaranteed to be unique

Agents use unique nonces to identify specific ENV-4
executions of the protocol

- An initiator and a recipient nonce are used by an execution

A protocol execution is identified by two nonces ENV-5
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Requirement Document (5) 6

- Agents communicate by means of messages sent on the network

- The network is supposed to be unsecure

- Bad agents are able to do the following:

- copy messages between sites

- remove messages

- modify messages they can read

- create messages

- ...

Bad agents can corrupt the execution of a protocol ENV-6
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Requirement Document (6) 7

- In spite of bad agents, we want to ensure an important property

- At the end of the execution of the protocol, we want to be sure that:

- the initiator will speak to the recipient

- the recipient will speak to the initiator.

- This property is called mutual authentication.

The protocol must ensure mutual authentication FUN-1
between initiators and recipients

- This is the main property of this protocol
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Requirement Document (7) 8

- In order to ensure mutual authentication, agents use encryption

Encrypted messages are used for the ENV-7
communication between agents
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Requirement Document (8) 9

- Each agent A has two keys:

- a public key KA (known by all agents) to encrypt messages

- a secret key K−1A (known by A only) to decrypt messages

Encryption is ensured by means of public keys ENV-8

Decryption is ensured by means of secret keys

- An agent I can send an encrypted message to another agent R

- If the message is encrypted with KR, then only R can decrypt it.
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Requirement Document (9): the Protocol 10

- An agent I sent a message to an agent R with public key KR

- This message contains the name of I and a new nonce NI

- R decrypts the previous message with secret key K−1R

- R replies to I by sending a message with public key KI

- This message contains the nonce NI and a new nonce NR

- I decrypts the previous message with secret key K−1I

- I replies to R by sending a message with public key KR

- The previous message contains the nonce NR

1. I → R : {I,NI}KR

2. R→ I : {NI, NR}KI FUN-2
3. I → R : {NR}KR
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Mutual Authentication (1) 11

1. I → R : {I,NI}KR
2. R→ I : {NI, NR}KI

FUN-2
3. I → R : {NR}KR

- This protocol seems to guarantee authentication for I.

- At step 2, I receives the message {NI, NR}KI

- This message contains the nonce NI

- Nonce NI was sent by I to R only since encrypted with key KR

- Nonces are guaranteed to be unique.

- Hence the message {NI, NR}KI
was certainly sent by R.
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Mutual Authentication (2) 12

1. I → R : {I,NI}KR
2. R→ I : {NI, NR}KI

FUN-2
3. I → R : {NR}KR

- This protocol seems to guarantee authentication for R.

- At step 3, R receives the message {NR}KR

- This message contains the nonce NR

- Nonce NR was sent by R to I only since encrypted with key KI

- Nonces are guaranteed to be unique.

- Hence the message {NR}KR
was certainly sent by I.
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Attacking the Protocol (Discovered by Lowe) (1) 13

- An initiator I sends the message {I,NI}KA
to a recipient A

- A happens to be an attacker.

- A decrypts this message and forward it to another recipient R.

- R is misled, it believes to have received a message from I.

- R sends back a message to I as in the normal protocol.

- The initiator I believes to have received a reply from A.

- Therefore I sends to A the acknowledgment message.

- And now A decrypts this message and forward it to R.
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Attacking the Protocol (2) 14

1. I → A : {I,NI}KA
2. A→ R : {I,NI}KR
3. R→ I : {NI, NR}KI
4. I → A : {NR}KA
5. A→ R : {NR}KR

- At the end, A knows nonces NI and NR (step 1 and step 4)

- R also knows nonces NI and NR (step 2 and step 5).

- Further messages can then be sent to R by A.

- In such messages, the pair N I-N R is a justification.

- R believes such messages come from I
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Attacking the Protocol (3) 15

- Suppose R is a bank

- A could send the following message to R:

{N I,N R, "Transfer some of my money into A’s account"}KR

- R, the banks, believes that this message comes from I

- Then R may perform the money transfer from I to A !!!
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Correcting the Protocol 16

- Here is, again, the faulty protocol:

1. I → R : {I,NI}KR
2. R→ I : {NI, NR}KI

FUN-2
3. I → R : {NR}KR

- Lowe proposed the following corrected protocol:

1. I → R : {I,NI}KR
2. R→ I : {NI, NR, R}KI

FUN-2
3. I → R : {NR}KR

I may check that the message comes from R
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Replaying the Attack 17

1. I → A : {I,NI}KA
2. A→ R : {I,NI}KR
3. R→ I : {NI, NR, R}KI

- At step 3, I may figure out that the message does not come from A

-I would expect the following message: {NI, NR, A}KI

- At this point, I may stop the execution of the protocol
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A Proposal for the Formalization (1) 18

- In order to simplify the formalization, we do the following

- We suppose that there is no attacker

- We suppose instead that the initiator I makes a mistake

- I does not send the msg to R, it sends it to an agent S

1. I → R : {I,NI}KS
2. S → I : {NI, NS}KI

FUN-3
3. I → R : {NR}KS

- It is possible that S is the same as R
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A Proposal for the Formalization (2) 19

- The corrected protocol:

1. I → R : {I,NI}KS
2. S → I : {NI, NS, S}KI

FUN-3
if S = R then 3. I → R : {NR}KR

- If S is not the same as R then the protocol is stopped

- Step 3 is never executed.
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Refinement Strategy: Two Separate Developments 20

- Protocol without mistake and no attacker

- Protocol with mistake and no attacker

- In each case:

- Initial model without messages

- Refinement with messages
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Protocol without mistake
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Initial Model: Sets, Constants, and Axioms 21

- Introducing a set of Agents AGT and a set of Nonces NNC

sets: AGT
NNC

constants: Initiator
Recipient

axm 1: partition(AGT, Initiator,Recipient)

These elements take account of assumptions ENV 1 and ENV 2.

This protocol involves two agents situated on the ENV-1
sites of a network

An execution of the protocol involves two agents: ENV-2
the initiator and the recipient
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Initial Model: Variables and Invariants (1) 22

- Introducing the set of used nonces nnc.

- For simplification, it is partitioned: nni and nnr

variables: nnc
nni
nnr

inv0 1: nnc ⊆ NNC

inv0 2: partition(nnc, nni, nnr)

These elements take partially account of assumption ENV 4.

Agents use unique nonces to identify specific ENV-4
executions of the protocol

23



Initial Model: Variables and Invariants (2) 23

- Introducing what is recorded with an initiator ni in the initiator site:

- the corresponding initiator: i1(ni)

- the corresponding recipient: i2(ni)

- the corresponding recipient nonce: i3(ni)

variables: i1
i2
i3

inv0 3: i1 ∈ nni→ Initiator

inv0 4: i2 ∈ nni→Recipient

inv0 5: i3 ∈ nni 7� nnr

- i3 is only partial. Why?
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Initial Model: Variables and Invariants (3) 24

- Introducing what is recorded with a recipient nr in the recipient site:

- the corresponding recipient: r1(nr)

- the corresponding initiator: r2(nr)

- the corresponding recipient nonce: r3(nr)

variables: r1
r2
r3

inv0 6: r1 ∈ nnr→Recipient

inv0 7: r2 ∈ nnr→ Initiator

inv0 8: r3 ∈ nnr � nni
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Initial Model: Variables and Invariants (4) 25

- The previous elements take account of ENV 4 and ENV 5.

Agents use unique nonces to identify specific ENV-4
executions of the protocol

A protocol execution is identified by two nonces ENV-5
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Initial Model: Events (1) 26

We follow the protocol (without sending messages)

1. I → R : {I,NI}KR

2. R→ I : {NI, NR}KI FUN-2
3. I → R : {NR}KR

Event P1 corresponds to step 1 of the protocol

P1
any ni, i, r where

ni /∈ ncc
i ∈ Initiator
r ∈ Recipient

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1 := i1 ∪ {ni 7→ i}
i2 := i2 ∪ {ni 7→ r}

end

The initiator records some data in step 1
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Initial Model: Events (2) 27

1. I → R : {I,NI}KR

2. R→ I : {NI, NR}KI FUN-2
3. I → R : {NR}KR

Event P2 corresponds to step 2.

P2
any ni, i, r, nr where

ni ∈ nni \ ran(r3)
i = i1(ni)
r = i2(ni)
nr /∈ ncc

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ i}
r3 := r3 ∪ {nr 7→ ni}

end

The recipients records some data in step 2
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Initial Model: Events (3) 28

1. I → R : {I,NI}KR

2. R→ I : {NI, NR}KI FUN-2
3. I → R : {NR}KR

Event P3 corresponds to an initiator receiving the message sent in step 2

P3
any ni, nr where

nr 7→ ni ∈ r3
ni /∈ dom(i3)

then
i3 := i3 ∪ {ni 7→ nr}

end

The initiator finalizes his records
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Cheating 29

P2
any ni, i, r, nr where
ni ∈ nni \ ran(r3)
i = i1(ni)
r = i2(ni)
nr /∈ ncc

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ i}
r3 := r3 ∪ {nr 7→ ni}

end

P3
any ni, nr where
nr 7→ ni ∈ r3
ni /∈ dom(i3)

then
i3 := i3 ∪ {ni 7→ nr}

end

In P2, the recipient is cheating (accessing Initiator’s state)

In P3, the initiator is cheating (accessing recipient’s state)
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Formalizing Mutual Authentication (1) 30

The protocol must ensure mutual authentication FUN-1
between initiators and recipients

- i3 and r3 are converse of each other (inv0 9)

- Initiator with ri and recipient with nr share the same nonces.

inv0 9: i3−1 ⊆ r3

We have no equality: i3 is completed (in P3) after r3 (in P2).
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Formalizing Mutual Authentication (2) 31

- If nr 7→ ni ∈ r3 and nr 7→ r ∈ r1, that is:

ni 7→ r ∈ r3−1 ; r1

- r believes that he will speak to the initiator associated with ni

- So, we must be sure that the pair ni 7→ r belongs to i2

- r is then sure to speak to the initiator that wants to speak to him

inv0 10: r3−1 ; r1 ⊆ i2

- This invariant is maintained by our three events

32



Formalizing Mutual Authentication (3) 32

- If ni 7→ nr ∈ i3 and ni 7→ i ∈ i1, that is:

nr 7→ i ∈ i3−1 ; i1

- i believes that he will speak to the recipient associated with nr

- So, we must be sure that the pair nr 7→ i belongs to r2

- i is then sure to speak to the recipient that speaks to him

thm0 1: i3−1 ; i1 ⊆ r2

- The statement is thm0 1 in fact a theorem

- It is easily proved thanks to the following invariant and i3−1 ⊆ r3:

inv0 11: r3 ; i1 = r2
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Proofs 33

- There are 30 proof obligations.

- All discharged automatically by the prover of the Rodin Platform
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Refinement: Set 34

- Introducing the encrypted messages and removing the cheating.

- An agent will not be able to look at the state of other agents

sets: MSG
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Refinement: Variables and Invariants (1) 35

variables: msg
msg1
msg2
msg3
crypto

1. I → R : {I,NI}KR

2. R→ I : {NI, NR}KI FUN-2
3. I → R : {NR}KR

- msg is the set of messages circulating so far in the network.

- msg is partitioned into three sets msg1, msg2, and msg3.

- crypto records the agent owning the key encrypting each message.

inv1 1: msg ⊆ MSG

inv1 2: partition(msg,msg1,msg2,msg3)

inv1 3: crypto ∈ msg→AGT
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Refinement: Variables and Invariants (2) 36

variables: m1 ini
m1 nni

1. I → R : {I,NI}KR

2. R→ I : {NI, NR}KI FUN-2
3. I → R : {NR}KR

inv1 4: m1 ini ∈ msg1→ Initiator

inv1 5: m1 nni ∈ msg1�� nni

inv1 6: m1 nni−1 ; crypto = i2

inv1 7: m1 nni−1 ;m1 ini = i1

inv0 3: i1 ∈ nni→ Initiator

inv0 4: i2 ∈ nni→Recipient
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Refinement: Variables and Invariants (3) 37

variables: m2 nni
m2 nnr

1. I → R : {I,NI}KR

2. R→ I : {NI, NR}KI FUN-2
3. I → R : {NR}KR

inv1 8: m2 nnr ∈ msg2�� nnr

inv1 9: m2 nni ∈ msg2→ nni

inv1 10: ∀m ·m ∈ msg2 ⇒ m2 nnr(m) 7→ m2 nni(m) ∈ r3

inv0 8: r3 ∈ nnr � nni
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Refinement: Variables and Invariants (4) 38

variables: m3 nnr

inv1 11: m3 nnr ∈ msg3→ nnr

39



Refinement: Events (1) 39

P1
any ni, i, r,m1 where

ni /∈ ncc
i ∈ Initiator
r ∈ Recipient
m1 /∈ msg

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1 := i1 ∪ {ni 7→ i}
i2 := i2 ∪ {ni 7→ r}
msg := msg ∪ {m1}
msg1 := msg1 ∪ {m1}
crypto(m1) := crypto ∪ {m1 7→ r}
m1 nni := m1 nni ∪ {m1 7→ ni}
m1 ini := m1 ini ∪ {m1 7→ i}

end

(abstract-)P1
any ni, i, r where

ni /∈ ncc
i ∈ Initiator
r ∈ Recipient

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1 := i1 ∪ {ni 7→ i}
i2 := i2 ∪ {ni 7→ r}

end
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Refinement: Events (2) 40

P2
any m1, r, nr,m2 where

m1 ∈ msg1
m1 nni(m1) /∈ ran(r3)
nr /∈ ncc
r = crypto(m1)
m2 /∈ msg

with
ni = m1 nni(m1)
i = m ini(m1)

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ m1 ini(m1)}
r3 := r3 ∪ {nr 7→ m1 nni(m1)}
msg := msg ∪ {m2}
msg2 := msg2 ∪ {m2}
m2 nni(m2) := m1 nni(m1)
m2 nnr(m2) := nr
crypto(m2) := m1 ini(m1)

end

(abstract-)P2
any ni, i, r, nr where

ni ∈ nni \ ran(r3)
i = i1(ni)
r = i2(ni)
nr /∈ ncc

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ i}
r3 := r3 ∪ {nr 7→ ni}

end
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Refinement: Events (3) 41

P3
any m2 where

m2 ∈ msg2
m2 nni(m2) /∈ dom(i3)
i1(m2 nni(m2)) = crypto(m2)

with
ni = m2 nni(m2)
nr = m2 nnr(m2)

then
i3 := i3 ∪ {m2 nni(m2) 7→ m2 nnr(m2)}

end

(abstract-)P3
any ni, nr where

nr 7→ ni ∈ r3
ni /∈ dom(i3)

then
i3 := i3 ∪ {ni 7→ nr}

end
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Proofs 42

- There are 49 proof obligations.

- All discharged automatically by the prover of the Rodin Platform
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Protocol with mistake
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Introduction 43

- The initiator i records the recipient r it wants to speak to (in i2).

- But the initiator i send m1 with the public key of any agent s.

- s might be identical to r but not necessarily.

- This mistake of the initiator will break invariant inv1 6

m1 nni−1 ; crypto = i2

- It says that the key used in m1 is that of the recipient (in i2).

- To detect the mistake, the recipient sends its name
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The Protocol with Mistake 44

1. I → R : {I,NI}KS
2. S → I : {NI, NS, S}KI

FUN-3
if S = R then 3. I → R : {NR}KR

- If S is not the same as R then the protocol is stopped

- Step 3 is never executed.
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Set, Constants and Axiom 45

sets: AGT
NNC

constants: Initiator
Recipient

axm 1: partition(AGT, Initiator,Recipient)
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Variables and Invariants (1) 46

variables: nnc
nni
nnr

inv2 1: nnc ⊆ NNC

inv2 2: partition(nnc, nni, nnr)

Same as in previous case

inv0 1: nnc ⊆ NNC

inv0 2: partition(nnc, nni, nnr)
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Variables and Invariants (2) 47

variables: i1
i2
i3

inv2 3: i1 ∈ nni→ Initiator

inv2 4: i2 ∈ nni→Recipient

inv2 5: i3 ∈ nni 7� nnr

- Same as in previous case

inv0 3: i1 ∈ nni→ Initiator

inv0 4: i2 ∈ nni→Recipient

inv0 5: i3 ∈ nni 7� nnr
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Variables and Invariants (3) 48

- Variable r3 is now a partial injection only.

- Variable r4 is new. It records what the recipient "believes"

- Of course, it can be erroneous .

- Variable r3 is the corrected connection (r3 updated by new event P4).

variables: r1
r2
r3
r4

inv2 6: r1 ∈ nnr→Recipient

inv2 7: r2 ∈ nnr→ Initiator

inv2 8: r3 ∈ nnr 7� nni

inv2 9: r4 ∈ nnr � nni

- Invariants of previous case:

inv0 6: r1 ∈ nnr→Recipient

inv0 7: r2 ∈ nnr→ Initiator

inv0 8: r3 ∈ nnr � nni
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Authentication Invariants 49

inv2 10: r3 ⊆ i3−1

inv2 11: r3−1 ; r1 ⊆ i2

inv2 12: i3−1 ; i1 ⊆ r2

inv2 13: r4 ; i1 = r2

inv2 14: i3−1 ⊆ r4

inv0 9: i3−1 ⊆ r3

inv0 10: r3−1 ; r1 ⊆ i2

thm0 1: i3−1 ; i1 ⊆ r2

inv0 11: r3 ; i1 = r2

- The authentication conditions are identical
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Events (1) 50

- Q1 event of this case (with mistake)

- P1 event of previous case (without mistake)

Q1
any ni, i, r where
ni /∈ ncc
i ∈ Initiator
r ∈ Recipient

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1(ni) := i
i2(ni) := r

end

P1
any ni, i, r where
ni /∈ ncc
i ∈ Initiator
r ∈ Recipient

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1(ni) := i
i2(ni) := r

end

These are identical
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Events (2) 51

Q2
any ni, i, r, nr where
ni ∈ nni \ ran(r4)
i = i1(ni)
r ∈ Recipient
nr /∈ ncc

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ i}
r4 := r4 ∪ {nr 7→ ni}

end

P2
any ni, i, r, nr where
ni ∈ nni \ ran(r3)
i = i1(ni)
r = i2(ni)
nr /∈ ncc

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ i}
r3 := r3 ∪ {nr 7→ ni}

end

We see the "mistake" in Q2. Any recipient r can accept this event.
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Events (3) 52

Q3
any ni, nr where

nr 7→ ni ∈ r4
ni /∈ dom(i3)
i2(ni) = r1(nr)

then
i3 := i3 ∪ {ni 7→ nr}

end

P3
any ni, nr where
nr 7→ ni ∈ r3
ni /∈ dom(i3)

then
i3 := i3 ∪ {ni 7→ nr}

end

The additional guard ensures that the recipient in the initiator (i2(ni))

is correct (r1(nr))
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Events (4) 53

Q4
any ni, nr where
ni 7→ nr ∈ i3
nr /∈ dom(r3)
i2(ni) = r1(nr)

then
r3 := r3 ∪ {nr 7→ ni}

end

Updating the recipient information
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Proofs 54

- There are 49 proof obligations.

- All discharged automatically by the prover of the Rodin Platform
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Refinement: The state (1) 55

As previously

variables: msg
msg1
msg2
msg3
crypto

inv3 1: msg ⊆ MSG

inv3 2: partition(msg,msg1,msg2,msg3)

inv3 3: crypto ∈ msg→AGT

- Invariants of previous case:

inv1 1: msg ⊆ MSG

inv1 2: partition(msg,msg1,msg2,msg3)

inv1 3: crypto ∈ msg→AGT
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Refinement: The state (2) 56

variables: m1 ini
m1 nni

inv3 4: m1 ini ∈ msg1→ Initiator

inv3 5: m1 nni ∈ msg1�� nni

inv3 7: m1 nni−1 ;m1 ini = i1

Invariants of previous case:

inv1 4: m1 ini ∈ msg1→ Initiator

inv1 5: m1 nni ∈ msg1�� nni

inv1 6: m1 nni−1 ; crypto = i2

inv1 7: m1 nni−1 ;m1 ini = i1

- Invariant inv1 6 has disappeared

- The message is not sent necessarily to the recorded recipient
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Refinement: The state (3) 57

- A new "field", m2 rcv, is added in the message

- r4 replaces r3

variables: m2 nnr
m2 nni
m2 rcv

inv3 8: m2 nni ∈ msg2→ ran(r4)

inv3 9: m2 nnr ∈ msg2�� nnr

inv3 10: m2 nnr = m2 nni ; r4−1

inv3 11: m2 rcv ∈ msg2→Recipient

- Invariants of previous case:

inv1 8: m2 nni ∈ msg2→ ran(r3)

inv1 9: m2 nnr ∈ msg2�� nnr

inv1 10: m2 nnr = m2 nni ; r3−1
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Refinement: The state (3) 58

variables: m3 nnr

inv3 12: m3 nnr ∈ msg3→ nnr

60



Refinement: Events (1) 59

Q1
any ni, i, r,m1, s where

ni /∈ ncc
p ∈ Initiator
q ∈ Recipient
m1 /∈ msg
s ∈ Recipient

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1 := i1 ∪ {ni 7→ i}
i2 := i2 ∪ {ni 7→ r}
msg := msg ∪ {m1}
msg1 := msg1 ∪ {m1}
crypto := crypto ∪ {m1 7→ s}
m1 nni := m1 nni ∪ {m1 7→ ni}
m1 ini := m1 ini ∪ {m1 7→ i}

end

P1
any ni, i, r,m1 where

ni /∈ ncc
i ∈ Initiator
r ∈ Recipient
m1 /∈ msg

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1 := i1 ∪ {ni 7→ i}
i2 := i2 ∪ {ni 7→ r}
msg := msg ∪ {m1}
msg1 := msg1 ∪ {m1}
crypto(m1) := crypto ∪ {m1 7→ r}
m1 nni := m1 nni ∪ {m1 7→ ni}
m1 ini := m1 ini ∪ {m1 7→ i}

end

- In Q1, we can see the potential mistake

- The message can be sent to any recipient, not necessarily r
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Refinement: Events (2) 60

Q2
any m1, r, nr,m2 where

m1 ∈ msg1
m1 nni(m1) /∈ ran(r4)
nr /∈ ncc
r = crypto(m1)
m2 /∈ msg

with
ni = m1 nni(m1)
i = m ini(m1)

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ q}
r2 := r2 ∪ {nr 7→ m1 ini(m1)}
r4 := r4 ∪ {nr 7→ m1 nni(m1)}
msg := msg ∪ {m2}
msg2 := msg2 ∪ {m2}
m2 nni(m2) := m1 nni(m1)
m2 nnr(m2) := nr
crypto(m2) := m1 ini(m1)
m2 rcv(m2) := r

end

P2
any m1, r, nr,m2 where

m1 ∈ msg1
m1 nni(m1) /∈ ran(r3)
nr /∈ ncc
r = crypto(m1)
m2 /∈ msg

with
ni = m1 nni(m1)
i = m ini(m1)

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ m1 ini(m1)}
r3 := r3 ∪ {nr 7→ m1 nni(m1)}
msg := msg ∪ {m2}
msg2 := msg2 ∪ {m2}
m2 nni(m2) := m1 nni(m1)
m2 nnr(m2) := nr
crypto(m2) := m1 ini(m1)

end

- r4 replaces r3

- A new field in the message is updated
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Refinement: Events (3) 61

Q3
any m2,m3 where

m2 ∈ msg2
m2 nni(m2) /∈ dom(i3)
i1(m2 nni(m2)) = crypto(m2)
m2 rcv(m2) = i2(m2 nni(m2))
m3 /∈ msg

with
ni = m2 nni(m2)
nr = m2 nnr(m2)

then
i3 := i3 ∪ {m2 nni(m2) 7→ m2 nnr(m2)}
msg := msg ∪ {m3}
msg3 := msg3 ∪ {m3}
m3 nnr := m3 nnr ∪ {m3 7→ m2 nnr(m2)}
crypto := crypto ∪ {m3 7→ m2 rcv(m2)}

end

P3
any m2 where

m2 ∈ msg2
m2 nni(m2) /∈ dom(i3)
i1(m2 nni(m2)) = crypto(m2)

with
ni = m2 nni(m2)
nr = m2 nnr(m2)

then
i3 := i3 ∪ {m2 nni(m2) 7→ m2 nnr(m2)}

end

The fundamental guard for checking the name of the recipient
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Refinement: Events (4) 62

Q4
any m3 where
m3 ∈ msg3
m3 nnr(m3) /∈ dom(r3)
r1(m3 nnr(m3)) = crypto(m3)

with
ni = r4(m3 nni(m3))
nr = m3 nnr(m3)

then
r3 := r3 ∪ {m3 nnr(m3) 7→ r4(m3 nnr(m3))}

end

- Updating r3
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Proofs 63

- There are 93 proof obligations.

- Discharged automatically except 11 of them done interactively (easy)
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