Event-B Course

12. Synchronizing Processes on a Tree Network
Jean-Raymond Abrial

September-October-November 2011

Purpose of this Lecture

- Learning a few more modeling conventions

- Learning more about abstraction

- Learning how to formalize an interesting structure: a tree

- Study a more complicated problem in distributed computing

- Example studied in the following book:

W.H.J. Feijen and A.J.M. van Gasteren.
On a Method of Multi-programming Springer Verlag 1999.

Outline of Example

- Define the informal requirements

- Define the refinement strategy

- Construct the various more and more concrete models

Requirements (1)

We have a fixed set of processes forming a tree

ENV-1

Requirements (2)

- All processes are supposed to execute for ever the same code

- But processes must remain synchronized

- For this, we assign a counter to each process

Each process has a counter, which is a natural
number

ENV-2

Being More Precise

- The counter of a process represents its “phase”

- The difference between any two counters is not greater than 1

- Each process is thus at most one phase ahead of the others

Requirements (3)

The difference between any two counters is at
most equal to 1

FUN-1

Requirements (4)

- Reading the counters

Each process can read the counters of its

Immediate neighbors only FUN-2
- Modifying the counters
The counter of a process can be modified by
this process only FUN-3

Refinement Strategy

- Construct an abstract initial model dealing with FUN-1 and FUN-3

- Improve the design to (partially) take care of FUN-2

- Improve the design to better take care of FUN-2

- Simplify the final design to obtain an efficient implementation

The difference between any two counters is at

most equal to 1 FUN-1
Each process can read the counters of its
Immediate neighbors only FUN-2
The counter of a process can be modified by
this process only FUN-3

Initial Model: the State 9

- We simplify the situation: we forget about the tree

- We just define the counters and express the main property: FUN-1

The difference between any two counters is at
most equal to 1 FUN-1

- The initial model is always far more abstract than the final system

- Other requirements are probably not fulfilled

Abstract Situation

10

The difference between any two counters is at
most equal to 1

FUN-1

Initial Model: the State

11

set:

P axm0 1: finite(P)

variable:

C

inv01: ¢ € P— N

inv0 2: Vz,y-c(x) <c(y)+1

We have:

that is

—1<c(z) —c(y) <1

—1<c(y) —c(z) <1

e(z) —c(y)| <1

Initial Model: the Events 12

ascending
any n where
n € P
Vm - c(n) < c(m)
then
c(n) :=c(n)+1
end

init
c := P x {0}

- A process counter is incremented only when < to all other counters

- Notice the non-determinacy

Proof of inv0 2 Preservation by Event ascending

13

c € P—+N inv0_1
Ve,y-c(x) <c(y) +1 inv0 2
n € P Guards of event
Vm-c(n) < c(m) ascending

l_

Ve,y-ct+{n—cn)+1})(x) <(cgt+{nr—cn)+1}(y) +1

i

Modified invariant inv0 2

Proof (cont'd)

c € P—>N

Va,y - e(x) < cy) + 1

n € P

|_‘v’m-c(n) < ¢(m)

(cF{n—=c(n) +1})(z) < (c<F{n—c(n) +1})(y) +1

)
T=Nn,Yy=nmn

rT+n,y=mn
T=n,Yy #£n
TFEN,YFEN

- We perform then an easy proof by cases: -

\

Other Verication Conditions to be Proved

15

- Initialisation and invariant establishment

- Liveness: a forgotten requirement

Once started, the system must work for ever

FUN-4

Problem with the Current Event

16

ascending
any n where
n € P
Vm - c(n) < c(m)
then
c(n) :(=c(n) +1
end

- Requirement FUN-2 is not fulfilled:

Each node can read the counters of its
iImmediate neighbors only

FUN-2

First Refinement: Solving the problem (partially only)

17

- We introduce a special process r

- We suppose that the counter of r is always minimal

Vm - c(r) < ¢(m)

- This is a new invariant (for the moment)

First Refinement: Proposal for the Event Refinement

18

- We simplify the guard

(abstract-)ascending
any n where
n € P
vVm - c(n) < c¢(m)
then
c(n) :=c(n)+1
end

(concrete-)ascending
any n where
neP
c(n) = c(r)
then
c(n) :=c(n)+1
end

- We have then to prove guard strengthening

Guard Strengthening

19

c € P—->N
Va,y-c(r) < c(y) +1
Vm - |c(r)| < c(m)

n € P

c(n) = c(r)

I_
n € P
Vm-|c(n)|l < c(m)

inv0_1
inv0 2

new invariant
Guards of concrete
event ascending

Guards of abstract
event ascending

Pending Problems

20

ascending
any n where

n P

thecr(ln) = c(r) Vm - ¢c(r) < c¢(m)

c(n) :=c(n)+1
end

1. We have to prove that the new invariant is preserved by the event

2. The guard of the event still does not fulfill requirement FUN-2

Each node can read the counters of its
iImmediate neighbors only

FUN-2

- Problem 1 solved in this refinement, problem 2 solved later

First Refinement: Let us First Define the Tree 21

e *

" \Q

Ao
N

sths

- A tree has got a root r and a parent function f

- This is not sufficient to defined a tree (but enough for the moment)

First Refinement: Defining (Part of) the Tree

22

- We define the root r of the tree

- And the parent function f (defined everywhere except at the root)

carrier set:

constants:

P

r, f

axml11: » € P

axm12: f € P\{r} —> P

Achieving Minimal Counter at the Root

23

- We define a weaker invariant

- The counter of the parent of each node m is < than that of m

invi 1: Vm-m #r = c(f(m)) < c(m)

- The minimality of the counter at the root can be proved:

thm11: Vm:.c(r) < c(m)

Observing the Invariant and Theorem

24

A
1

.
AN

CA T

o

invl_ 1 :

thm1 1 :

vm-m #r = c(f(m)) < c(m)

Vm - c(r) < c(m)

A Better Version of Event ascending

25

- Adding a guard

ascending
any n where
n € P

c(r) = c(n)
Vm-m € f~i1{n}] = c(n) < c(m)
then

c(n) :=c(n)+1
end

- This will allow us to prove inv1_1 easily (again, a proof by cases)

invi1: Vm-m#r = c(f(m)) < c(m)

The Set of Children of Node n

26

5

£y (2 (2

vm-m € f7{n}] = c(n) < c(m)

Initial situation

27

A
1

o 4
of

| Ym - (m € f[{n}] = c(n) < c(m))

.
N

 c(r) = c(n)

- the guards: <

Progress

28

- the guards: <

A
1

AT
of

.
N

c(r) = c(n)

| Vm - (m € fTH{n}] = c(n) <c(m))

Progress

29

- the guards: <

A
1

AT
o

.
N

c(r) = c(n)

| Vm - (m € fTH{n}] = c(n) <c(m))

Progress

30

- the guards: <

A
1

CA T
o

.
N

c(r) = c(n)

| Vm - (m € fTH{n}] = c(n) <c(m))

Progress

31

- the guards: <

A
(2,

CA T
o

.
VAN

c(r) = c(n)

| Vm - (m € fTH{n}] = c(n) <c(m))

Progress

32

- the guards: <

A
(2,

SN 4
o

.
AN

c(r) = c(n)

| Vm - (m € fTH{n}] = c(n) <c(m))

Progress

33

- the guards: <

A
(2,

SN 4
o

.
VAN

c(r) = c(n)

| Vm - (m € fTH{n}] = c(n) <c(m))

Progress

34

- the guards: <

A
(2,

SN 4
o

.
VAN

c(r) = c(n)

| Vm - (m € fTH{n}] = c(n) <c(m))

Progress

35

- the guards: <

A
(2,

CA T
o

.
AN

c(r) = c(n)

| Vm - (m € fTH{n}] = c(n) <c(m))

Progress

36

- the guards: <

A
©

AT
o

.
AN

c(r) = c(n)

| Vm - (m € fTH{n}] = c(n) <c(m))

Progress

37

- the guards: <

A
©

AT
o

.
VAN

c(r) = c(n)

| Vm - (m € fTH{n}] = c(n) <c(m))

Progress

38

- the guards: <

A
©

AT
o

.
VAN

c(r) = c(n)

| Vm - (m € fTH{n}] = c(n) <c(m))

Progress

39

- the guards: <

A
©

AT
o

.
VAN

c(r) = c(n)

| Vm - (m € fTH{n}] = c(n) <c(m))

Before Going to Next Refinement, we Must Prove thm1 1 40

inv01: ¢ € P—N

inv0 2: Vaz,y-c(x) <c(y)+1

axml11: r» €¢ P

axm12: f € P\{r} > P

invi1: Vm-m#r = c(f(m)) <c(m)

thm1 1: Vm - c(r) < c¢(m)

- Properties and invariants are not sufficient to prove thm1 1

Problems with the parent Function: Cycles and Infinite Chains
41

Characterizing Cycles or Infinite Chains in a set S

42

- The set § is made of cycles or infinite chains

S

Characterizing Cycles or Infinite Chains in a set S

43

- The set § is made of cycles or infinite chains

S

Ve- (€8S = 3y-(yES Ax—yeEF))

Characterizing Cycles or Infinite Chains in a set S

44

- The set § is made of cycles or infinite chains

S

Ve- (€8S = 3y-(yES Ax—yeEF))

S C f1s

Characterizing Trees

- The root (axm1 1)
- The parent function (axm1_2)

- There are no cycles and no infinite chains (axm1_3)

axmll: » € P
axml2: f € P\{r} > P

axml3: VS.-SC f7lS] = S=0

A Useful Theorem: Tree Induction

46

axml 1 :

axml 2 :

axml 3 :

thml 2 :

r € P
f e P\{r} > P
VS.SCf s = S=0

VT .-reT AN f7UT|CT = PCT

DEMO

A Tree

47

axml 1 :

axml 2 :

thml 2 :

r € P Root

f e P\{r} - P Parent function

VT -reT N fUT|CT = PCT

Proving thm1_1

48

DEMO

thm1 1 :

Vm - c(r) < c¢(m)

Back to the Problem with First Refinement

49

ascending
any n where
n P
c(r) = ¢(n)
Vm-m € f7{n}] = c(n) < c(m)
then
c(n) :(=c(n) +1
end

- The third guard is correct (n uses its children counters only)

- The second guard is not correct (n uses the root counter)

Still a Problem

50

ascending
any n where
n P
c(r) = ¢(n)
Vvm-m € f7{n}] = c(n) < c(m)
then
c(n) :(=c(n) +1
end

- The second guard is not correct: n uses the root counter ¢(r)

Second Refinement

o1

- We want to replace the guard ¢(r) = ¢(n) in event "ascending"
@\@

N
N

- Processes must be aware when this situation does occur

Introducing a Second Counter at each Node 52

We add a second counter d at each node

- The second counter d has properties which are similar to those of c

Second Refinement: the State

53

carrier set: P

Invariant inv2_2

constants: r, f is as inv0 2

variables: c,d

inv21: d € P — N

inv22: Va,y-d(x) <d(y)+1

Second Refinement: the Events

o4

ascending
any n where
n € P
c(r) = c(n)
Vm-m € f7'{n}] = c(n) < c(m)
then
c(n):=c(n) +1
end

descending
any n where
n € P
Vm -d(n) < d(m)
then
d(n):=d(n)+1
end

- Proof of the preservation of inv2_2 by event "descending"” is easy

inv2 2: Vz,y-d(z) <d(y)+1

- It is similar to that of the preservation of inv0_2 by event "ascending”

Third Refinement: Tasks 55

- We extend the invariant of counter d

- We establish the relationship between both counters ¢ and d

- This will allow us to refine event ascending

- We construct the descending wave (by refining event descending)

- Remark: this is the most difficult refinement

Third Refinement: Part of the State

inv3 1: Vm.-m #r = d(m) <d(f(m))
inv3 2: d(r) < ¢(r)

thm3.1: Vm .d(m) < d(r)

- thm3_1 can be proved by using the tree Induction (axm1_3)

- inv3_1 and thm3_1 have to be compared to inv1_1 and thm1_1

invli 1: Vm-m #r = c(f(m)) < c¢(m)

thm1 1: Vm.c(r) < ce(m)

Refining Event ascending:

Guard Strengthening

o7

(abstract-)ascending
any n where
n € P

c(n) = c(r)
then

c(n) :=c(n) +1
end

(concrete-)ascending
any n where
neP
c(n) = d(n)

then

c(n) :=c(n) +1
end

concrete guard
according to thm3_1
iInvariant inv3_2
according to thm1 _1

abstract guard

- We have reached our goal: event ascending indeed fulfills FUN-2

Refining Event descending (First Case)

58

(abstract-)descending
any n where
n € P
Vm - d(n) < d(m)
then
dn) :=d(n)+1
end

(concrete-)descending 1
any n where
n € P\ {r}
d(n) # d(f(n))
then
dn) :=d(n)+1
end

Guard strengthening:

ne P\{r}
d(n) # d(f(n))

—
d(n) < d(m)

Additional Theorems Needed

59

- In order to prove guard strengthening, we need the theorems:

thm3 2: Vn.-n#r = d(f(n)) € d(n)..d(n)+1)
thm3 3: Vn-d(r) € d(n)..d(n)+1

Refining Event descending (Second Case)

60

(abstract-)descending
any n where
n € P
Vm - d(n) < d(m)
then
dn) :=d(n)+1
end

(concrete-)descending 2
when
d(r) # c(r)
then
d(r) :=d(r) + 1
end

- Here we need a witness for n: the root » is the obvious choice

Guard strengthening

d(r) # c(r)
meEe P

—

d(r) < d(m)

Additional Theorem Needed

- In order to prove guard strengthening,we need the theorem

thm34: Vn-.c(r) €dn)..dn)+1

Additional Invariant Needed

62

- In order to prove the previous theorem

thm34: Vn:.c(r) € d(n)..d(n)+1

- We need the following additional invariant

inv33: Vn-:-c(n) € dn)..d(n) +1

- We have thus to prove that this invariant is preserved by the

three events: ascending, descending_1, and descending_2.

Summary of Third Refinement: the State

63

inv3 1:

inv3 2:

inv3_3:

thm3 1:

thm3 2:

thm3_3:

thm3 4:

vm-m #r = d(m) < d(f(m))

d(r) < c(r)

Vn-c(n) € d(n)..d(n)+ 1

vm - d(m) < d(r)

Vn.n#r = d(f(n)) € d(n)..d(n)+1
Vn-d(r) € d(n)..d(n)+1

Vn-c(r) € d(n)..d(n)+1

Summary of Third Refinement: the Events

64

ascending
any n where
ne€P
c(n) = d(n)

then
c(n) :(=c(n) +1
end

vm - (m € f7{n}] = c(n) # c(m))

descending_1
any n where
n e P\{r}
d(n) # d(f(n))
then
dn) :=d(n)+1
end

descending_2
when

d(r) # c(r)

then
d(r):=d(r) +1
end

Fourth Refinement: the State

75

- We replace the counters by their parities

- we add the constant parity

carrierset: P

constants: r, f, parity

axmé4 1: parity € N— {0,1}
axmé4 2: parity(0) =0

axmé4 2: Vx.parity(x + 1) =1 — parity(x)

An Important Theorem about Parities 76

thm4 1:

Ve,y.x €y..y+ 1= (parity(x) = parity(y) & = = y)

Fourth Refinement: the State

77

- We replace c and d by p and q

variables: p,q

inv4d 1:

inv4 2:

inv4 _3:

inv4 4:

pe P — {0,1}
q e P— {0,1}
Vn.p(n) = parity(c(n))

Vn.q(n) = parity(d(n))

Fourth Refinement: the Events

/8

ascending
any n where
neP

p(n) = q(n)

then

_p(n) =1 p(n)

vm - (m € f~'{n}] = p(m) # p(n))

descending_1
any n where
n € P\{rj}
g(n) # q(f(n))
then
g(n) :=1—gq(n)
end

descending_2
when

p(r) # q(r)

then

en%I("“) =1—q(r)

