
Event-B Course

12. Synchronizing Processes on a Tree Network

Jean-Raymond Abrial

September-October-November 2011

Purpose of this Lecture 1

- Learning a few more modeling conventions

- Learning more about abstraction

- Learning how to formalize an interesting structure: a tree

- Study a more complicated problem in distributed computing

- Example studied in the following book:

W.H.J. Feijen and A.J.M. van Gasteren.

On a Method of Multi-programming Springer Verlag 1999.

1

Outline of Example 2

- Define the informal requirements

- Define the refinement strategy

- Construct the various more and more concrete models

2

Requirements (1) 3

We have a fixed set of processes forming a tree ENV-1

3

Requirements (2) 4

- All processes are supposed to execute for ever the same code

- But processes must remain synchronized

- For this, we assign a counter to each process

Each process has a counter, which is a natural
number ENV-2

4

Being More Precise 5

- The counter of a process represents its “phase”

- The difference between any two counters is not greater than 1

- Each process is thus at most one phase ahead of the others

5

Requirements (3) 6

2

1

2

1

2

1 1

1 2

1

2

1

1

The difference between any two counters is at
most equal to 1 FUN-1

6

Requirements (4) 7

- Reading the counters

Each process can read the counters of its
immediate neighbors only FUN-2

- Modifying the counters

The counter of a process can be modified by
this process only FUN-3

7

Refinement Strategy 8

- Construct an abstract initial model dealing with FUN-1 and FUN-3

- Improve the design to (partially) take care of FUN-2

- Improve the design to better take care of FUN-2

- Simplify the final design to obtain an efficient implementation

The difference between any two counters is at
most equal to 1 FUN-1

Each process can read the counters of its
immediate neighbors only FUN-2

The counter of a process can be modified by
this process only FUN-3

8

Initial Model: the State 9

- We simplify the situation: we forget about the tree

- We just define the counters and express the main property: FUN-1

The difference between any two counters is at
most equal to 1 FUN-1

- The initial model is always far more abstract than the final system

- Other requirements are probably not fulfilled

9

Abstract Situation 10

2

1

2

1

2

1 1

1 2

1

2

1

1

The difference between any two counters is at
most equal to 1 FUN-1

10

Initial Model: the State 11

set: P axm0 1: finite(P)

variable: c
inv0 1: c ∈ P → N

inv0 2: ∀x, y · c(x) ≤ c(y) + 1

We have:
−1 ≤ c(x)− c(y) ≤ 1

−1 ≤ c(y)− c(x) ≤ 1

that is

|c(x)− c(y)| ≤ 1

11

Initial Model: the Events 12

init
c := P × {0}

ascending
any n where

n ∈ P
∀m · c(n) ≤ c(m)

then
c(n) := c(n) + 1

end

- A process counter is incremented only when≤ to all other counters

- Notice the non-determinacy

12

Proof of inv0 2 Preservation by Event ascending 13

c ∈ P → N inv0 1
∀x, y · c(x) ≤ c(y) + 1 inv0 2
n ∈ P Guards of event
∀m · c(n) ≤ c(m) ascending
`
∀x, y · c �− {n 7→ c(n) + 1})(x) ≤ (c �− {n 7→ c(n) + 1})(y) + 1

⇑

Modified invariant inv0 2

13

Proof (cont’d) 14

c ∈ P → N
∀x, y · c(x) ≤ c(y) + 1
n ∈ P
∀m · c(n) ≤ c(m)
`
(c�− {n 7→ c(n) + 1})(x) ≤ (c�− {n 7→ c(n) + 1})(y) + 1

- We perform then an easy proof by cases:


x = n, y = n
x 6= n, y = n
x = n, y 6= n
x 6= n, y 6= n

14

Other Verication Conditions to be Proved 15

- Initialisation and invariant establishment

- Liveness: a forgotten requirement

Once started, the system must work for ever FUN-4

15

Problem with the Current Event 16

ascending
any n where
n ∈ P
∀m · c(n) ≤ c(m)

then
c(n) := c(n) + 1

end

- Requirement FUN-2 is not fulfilled:

Each node can read the counters of its
immediate neighbors only FUN-2

16

First Refinement: Solving the problem (partially only) 17

- We introduce a special process r

- We suppose that the counter of r is always minimal

∀m · c(r) ≤ c(m)

- This is a new invariant (for the moment)

17

First Refinement: Proposal for the Event Refinement 18

- We simplify the guard

(abstract-)ascending
any n where

n ∈ P
∀m · c(n) ≤ c(m)

then
c(n) := c(n) + 1

end

(concrete-)ascending
any n where

n ∈ P
c(n) = c(r)

then
c(n) := c(n) + 1

end

- We have then to prove guard strengthening

18

Guard Strengthening 19

c ∈ P → N inv0 1
∀x, y · c(x) ≤ c(y) + 1 inv0 2
∀m · c(r) ≤ c(m) new invariant
n ∈ P Guards of concrete
c(n) = c(r) event ascending
`
n ∈ P Guards of abstract
∀m · c(n) ≤ c(m) event ascending

19

Pending Problems 20

ascending
any n where
n ∈ P
c(n) = c(r)

then
c(n) := c(n) + 1

end

∀m · c(r) ≤ c(m)

1. We have to prove that the new invariant is preserved by the event

2. The guard of the event still does not fulfill requirement FUN-2

Each node can read the counters of its
immediate neighbors only FUN-2

- Problem 1 solved in this refinement, problem 2 solved later

20

First Refinement: Let us First Define the Tree 21

f

r

- A tree has got a root r and a parent function f

- This is not sufficient to defined a tree (but enough for the moment)

21

First Refinement: Defining (Part of) the Tree 22

- We define the root r of the tree

- And the parent functionf (defined everywhere except at the root)

carrier set: P

constants: r, f

axm1 1: r ∈ P

axm1 2: f ∈ P \ {r} → P

22

Achieving Minimal Counter at the Root 23

- We define a weaker invariant

- The counter of the parent of each node m is≤ than that of m

inv1 1: ∀m ·m 6= r ⇒ c(f(m)) ≤ c(m)

- The minimality of the counter at the root can be proved:

thm1 1: ∀m · c(r) ≤ c(m)

23

Observing the Invariant and Theorem 24

1

1

2

1

1

2 1

2 2

2

2

2

2

inv1 1 : ∀m ·m 6= r ⇒ c(f(m)) ≤ c(m)

thm1 1 : ∀m · c(r) ≤ c(m)

24

A Better Version of Event ascending 25

- Adding a guard

ascending
any n where
n ∈ P
c(r) = c(n)

∀m ·m ∈ f−1[{n}] ⇒ c(n) < c(m)
then
c(n) := c(n) + 1

end

- This will allow us to prove inv1 1 easily (again, a proof by cases)

inv1 1 : ∀m ·m 6= r ⇒ c(f(m)) ≤ c(m)

25

The Set of Children of Node n 26

2 2 2

1n

f [{n}]−1

∀m ·m ∈ f−1[{n}] ⇒ c(n) < c(m)

26

Initial situation 27

1

1

1

1

1

1 1

1 1

1

1

1

1

- the guards:


c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(n) < c(m))

27

Progress 28

1

1

1

1

1

1 1

2 1

1

1

1

1

- the guards:


c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(n) < c(m))

28

Progress 29

1

1

2

1

1

1 1

2 1

2

2

1

1

- the guards:


c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(n) < c(m))

29

Progress 30

1

1

2

1

1

2 1

2 2

2

2

2

2

- the guards:


c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(n) < c(m))

30

Progress 31

1

1

2

1

1

2 2

2 2

2

2

2

2

- the guards:


c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(n) < c(m))

31

Progress 32

2

1

2

1

2

2 2

2 2

2

2

2

2

- the guards:


c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(n) < c(m))

32

Progress 33

2

2

2

1

2

2 2

2 2

2

2

2

2

- the guards:


c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(n) < c(m))

33

Progress 34

2

2

2

2

2

2 2

2 2

2

2

2

2

- the guards:


c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(n) < c(m))

34

Progress 35

2

2

2

2

2

2

3

3 3

3

3

3

3

- the guards:


c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(n) < c(m))

35

Progress 36

2

2

2

2

3

3

3

3 3

3

3

3

3

- the guards:


c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(n) < c(m))

36

Progress 37

3

2

2

3

3

3

3

3 3

3

3

3

3

- the guards:


c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(n) < c(m))

37

Progress 38

3

3

2

3

3

3

3

3 3

3

3

3

3

- the guards:


c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(n) < c(m))

38

Progress 39

3

3

3

3

3

3

3

3 3

3

3

3

3

- the guards:


c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(n) < c(m))

39

Before Going to Next Refinement, we Must Prove thm1 1 40

inv0 1: c ∈ P → N

inv0 2: ∀x, y · c(x) ≤ c(y) + 1

axm1 1: r ∈ P

axm1 2: f ∈ P \ {r} → P

inv1 1: ∀m ·m 6= r ⇒ c(f(m)) ≤ c(m)

thm1 1: ∀m · c(r) ≤ c(m)

- Properties and invariants are not sufficient to prove thm1 1

40

Problems with the parent Function: Cycles and Infinite Chains
41

r

f

41

Characterizing Cycles or Infinite Chains in a set S 42

- The set S is made of cycles or infinite chains

x f y

S

42

Characterizing Cycles or Infinite Chains in a set S 43

- The set S is made of cycles or infinite chains

x f y

S

∀x · (x ∈ S ⇒ ∃y · (y ∈ S ∧ x 7→ y ∈ f))

43

Characterizing Cycles or Infinite Chains in a set S 44

- The set S is made of cycles or infinite chains

x f y

S

∀x · (x ∈ S ⇒ ∃y · (y ∈ S ∧ x 7→ y ∈ f))

S ⊆ f−1[S]

44

Characterizing Trees 45

- The root (axm1 1)

- The parent function (axm1 2)

- There are no cycles and no infinite chains (axm1 3)

axm1 1 : r ∈ P

axm1 2 : f ∈ P \ {r} → P

axm1 3 : ∀S · S ⊆ f−1[S] ⇒ S = ∅

45

A Useful Theorem: Tree Induction 46

axm1 1 : r ∈ P

axm1 2 : f ∈ P \ {r} → P

axm1 3 : ∀S · S ⊆ f−1[S] ⇒ S = ∅

thm1 2 : ∀ T · r ∈ T ∧ f−1[T] ⊆ T ⇒ P ⊆ T

DEMO

46

A Tree 47

axm1 1 : r ∈ P Root

axm1 2 : f ∈ P \ {r} → P Parent function

thm1 2 : ∀ T · r ∈ T ∧ f−1[T] ⊆ T ⇒ P ⊆ T

47

Proving thm1 1 48

DEMO

thm1 1 : ∀m · c(r) ≤ c(m)

48

Back to the Problem with First Refinement 49

ascending
any n where
n ∈ P
c(r) = c(n)
∀m ·m ∈ f−1[{n}] ⇒ c(n) < c(m)

then
c(n) := c(n) + 1

end

- The third guard is correct (n uses its children counters only)

- The second guard is not correct (n uses the root counter)

49

Still a Problem 50

ascending
any n where
n ∈ P
c(r) = c(n)
∀m ·m ∈ f−1[{n}] ⇒ c(n) < c(m)

then
c(n) := c(n) + 1

end

- The second guard is not correct: n uses the root counter c(r)

50

Second Refinement 51

- We want to replace the guard c(r) = c(n) in event "ascending"

2

2

2

2

2

2 2

2 2

2

2

2

2

- Processes must be aware when this situation does occur
51

Introducing a Second Counter at each Node 52

We add a second counter d at each node

2 2

2

2

2 2

2 2

2

2

2

2

2

2

2

1 1

2

1

1

1 1

1111

- The second counter d has properties which are similar to those of c

52

Second Refinement: the State 53

carrier set: P

constants: r, f

variables: c, d

Invariant inv2 2
is as inv0 2

inv2 1: d ∈ P → N

inv2 2: ∀x, y · d(x) ≤ d(y) + 1

53

Second Refinement: the Events 54

ascending
any n where

n ∈ P
c(r) = c(n)
∀m ·m ∈ f−1[{n}] ⇒ c(n) < c(m)

then
c(n) := c(n) + 1

end

descending
any n where

n ∈ P
∀m · d(n) ≤ d(m)

then
d(n) := d(n) + 1

end

- Proof of the preservation of inv2 2 by event "descending" is easy

inv2 2: ∀x, y · d(x) ≤ d(y) + 1

- It is similar to that of the preservation of inv0 2 by event "ascending"

54

Third Refinement: Tasks 55

- We extend the invariant of counter d

- We establish the relationship between both counters c and d

- This will allow us to refine event ascending

- We construct the descending wave (by refining event descending)

- Remark: this is the most difficult refinement

55

Third Refinement: Part of the State 56

inv3 1: ∀m ·m 6= r ⇒ d(m) ≤ d(f(m))

inv3 2: d(r) ≤ c(r)

thm3 1: ∀m · d(m) ≤ d(r)

- thm3 1 can be proved by using the tree Induction (axm1 3)

- inv3 1 and thm3 1 have to be compared to inv1 1 and thm1 1

inv1 1: ∀m ·m 6= r ⇒ c(f(m)) ≤ c(m)

thm1 1: ∀m · c(r) ≤ c(m)

56

Refining Event ascending: Guard Strengthening 57

(abstract-)ascending
any n where

n ∈ P
c(n) = c(r)
...

then
c(n) := c(n) + 1

end

(concrete-)ascending
any n where

n ∈ P
c(n) = d(n)
...

then
c(n) := c(n) + 1

end

concrete guard
according to thm3 1
invariant inv3 2
according to thm1 1

abstract guard

c(n) = d(n)
d(n) ≤ d(r)
d(r) ≤ c(r)
c(r) ≤ c(n)
`
c(n) = c(r)

- We have reached our goal: event ascending indeed fulfills FUN-2

57

Refining Event descending (First Case) 58

(abstract-)descending
any n where
n ∈ P
∀m · d(n) ≤ d(m)

then
d(n) := d(n) + 1

end

(concrete-)descending 1
any n where
n ∈ P \ {r}
d(n) 6= d(f(n))

then
d(n) := d(n) + 1

end

Guard strengthening:

n ∈ P \ {r}
d(n) 6= d(f(n))
⇒
d(n) ≤ d(m)

58

Additional Theorems Needed 59

- In order to prove guard strengthening, we need the theorems:

thm3 2: ∀n · n 6= r ⇒ d(f(n)) ∈ d(n) .. d(n) + 1)

thm3 3: ∀n · d(r) ∈ d(n) .. d(n) + 1

59

Refining Event descending (Second Case) 60

(abstract-)descending
any n where
n ∈ P
∀m · d(n) ≤ d(m)

then
d(n) := d(n) + 1

end

(concrete-)descending 2
when
d(r) 6= c(r)

then
d(r) := d(r) + 1

end

- Here we need a witness for n: the root r is the obvious choice

Guard strengthening

d(r) 6= c(r)
m ∈ P
⇒
d(r) ≤ d(m)

60

Additional Theorem Needed 61

- In order to prove guard strengthening,we need the theorem

thm3 4: ∀n · c(r) ∈ d(n) .. d(n) + 1

61

Additional Invariant Needed 62

- In order to prove the previous theorem

thm3 4: ∀n · c(r) ∈ d(n) .. d(n) + 1

- We need the following additional invariant

inv3 3: ∀n · c(n) ∈ d(n) .. d(n) + 1

- We have thus to prove that this invariant is preserved by the

three events: ascending, descending 1, and descending 2.

62

Summary of Third Refinement: the State 63

inv3 1: ∀m ·m 6= r ⇒ d(m) ≤ d(f(m))

inv3 2: d(r) ≤ c(r)

inv3 3: ∀n · c(n) ∈ d(n) .. d(n) + 1

thm3 1: ∀m · d(m) ≤ d(r)

thm3 2: ∀n · n 6= r ⇒ d(f(n)) ∈ d(n) .. d(n) + 1

thm3 3: ∀n · d(r) ∈ d(n) .. d(n) + 1

thm3 4: ∀n · c(r) ∈ d(n) .. d(n) + 1

63

Summary of Third Refinement: the Events 64

ascending
any n where
n ∈ P
c(n) = d(n)
∀m ·

(
m ∈ f−1[{n}] ⇒ c(n) 6= c(m)

)
then
c(n) := c(n) + 1

end

descending 1
any n where
n ∈ P \ {r}
d(n) 6= d(f(n))

then
d(n) := d(n) + 1

end

descending 2
when
d(r) 6= c(r)

then
d(r) := d(r) + 1

end

64

Progress 65

2 2

2

2

2 2

2 2

2

2

2

2

2

2

1

1 1

1

1

1

1 1

1111

65

Progress 66

2 2

2

2

2 2

2 2

2

2

2

2

2

2

2

1 1

2

1

1

1 1

1111

66

Progress 67

2 2

2

2

2 2

2 2

2

2

2

2

2

2

2

1 1

2

2

1

1 1

2222

67

Progress 68

2 2

2

2

2 2

2 2

2

2

2

2

2

2

2

2 2

2

2

2

1 1

2222

68

Progress 69

2 2

2

2

2 2

2 2

2

2

2

2

2

2

2

2 2

2

2

2

2 2

2222

69

Progress 70

2 3

2

2

3 2

3 3

3

3

2

3

2

2

2

2 2

2

2

2

2 2

2222

70

Progress 71

2 3

2

2

3 3

3 3

3

3

3

3

2

2

2

2 2

2

2

2

2 2

2222

71

Progress 72

3 3

2

3

3 3

3 3

3

3

3

3

2

2

2

2 2

2

2

2

2 2

2222

72

Progress 73

3 3

2

3

3 3

3 3

3

3

3

3

3

2

2

2 2

2

2

2

2 2

2222

73

Progress 74

3 3

3

3

3 3

3 3

3

3

3

3

3

2

2

2 2

2

2

2

2 2

2222

74

Fourth Refinement: the State 75

- We replace the counters by their parities

- we add the constant parity

carrier set: P

constants: r, f, parity

axm4 1: parity ∈ N→{0, 1}

axm4 2: parity(0) = 0

axm4 2: ∀x . parity(x + 1) = 1− parity(x)

75

An Important Theorem about Parities 76

thm4 1: ∀x, y . x ∈ y .. y + 1⇒ (parity(x) = parity(y) ⇔ x = y)

76

Fourth Refinement: the State 77

- We replace c and d by p and q

variables: p, q

inv4 1: p ∈ P →{0, 1}

inv4 2: q ∈ P →{0, 1}

inv4 3: ∀n . p(n) = parity(c(n))

inv4 4: ∀n . q(n) = parity(d(n))

77

Fourth Refinement: the Events 78

ascending
any n where
n ∈ P
p(n) = q(n)
∀m · (m ∈ f−1[{n}] ⇒ p(m) 6= p(n))

then
p(n) := 1− p(n)

end

descending 1
any n where
n ∈ P \ {r}
q(n) 6= q(f(n))

then
q(n) := 1− q(n)

end

descending 2
when
p(r) 6= q(r)

then
q(r) := 1− q(r)

end

78

