Event-B Course

12. Synchronizing Processes on a Tree Network

Jean-Raymond Abrial

September-October-November 2011

- Learning a few more modeling conventions
- Learning more about abstraction
- Learning how to formalize an interesting structure: a tree
- Study a more complicated problem in distributed computing
- Example studied in the following book:
 - W.H.J. Feijen and A.J.M. van Gasteren.
 - On a Method of Multi-programming Springer Verlag 1999.

- Define the informal requirements

- Define the refinement strategy

- Construct the various more and more concrete models

We have a fixed set of processes forming a tree

ENV-1

- All processes are supposed to execute for ever the same code

- But processes must remain synchronized

- For this, we assign a counter to each process

Each process has a counter, which is a natural number

ENV-2

- The counter of a process represents its "phase"

- The difference between any two counters is not greater than 1

- Each process is thus at most one phase ahead of the others

The difference between any two counters is at most equal to 1

- Reading the counters

Each process can read the counters of its immediate neighbors only

FUN-2

- Modifying the counters

The counter of a process can be modified by this process only

- Construct an abstract initial model dealing with FUN-1 and FUN-3
- Improve the design to (partially) take care of FUN-2
- Improve the design to better take care of FUN-2
- Simplify the final design to obtain an efficient implementation

The difference between any two counters is at most equal to 1

FUN-1

Each process can read the counters of its immediate neighbors only

FUN-2

The counter of a process can be modified by this process only

- We simplify the situation: we forget about the tree

- We just define the counters and express the main property: FUN-1

The difference between any two counters is at most equal to 1

FUN-1

- The initial model is always far more abstract than the final system

Other requirements are probably not fulfilled

The difference between any two counters is at most equal to 1

set: P

 $axm0_1: finite(P)$

variable: c

inv0_1: $c \in P \to \mathbb{N}$

inv0_2: $\forall x, y \cdot c(x) \leq c(y) + 1$

We have:

$$-1 \le c(x) - c(y) \le 1$$

$$-1 \le c(y) - c(x) \le 1$$

that is

$$|c(x) - c(y)| \le 1$$

```
\begin{array}{c} \mathsf{init} \\ c \ := \ P \times \{0\} \end{array}
```

```
ascending any n where n \in P \forall m \cdot c(n) \leq c(m) then c(n) := c(n) + 1 end
```

- A process counter is incremented only when \leq to all other counters
- Notice the non-determinacy

Modified invariant inv0_2

```
egin{aligned} c &\in P 
ightarrow \mathbb{N} \ orall x, y \cdot c(x) \leq c(y) + 1 \ n \in P \ orall m \cdot c(n) \leq c(m) \ dash (c 
ightleftharrow \{n \mapsto c(n) + 1\})(x) \leq (c 
ightleftharrow \{n \mapsto c(n) + 1\})(y) + 1 \end{aligned}
```

- We perform then an easy proof by cases: $\left\{ egin{array}{l} x=n,y=n \ x
eq n,y=n \ x=n,y
eq n \ x
eq n,y
eq n \ x
eq n$

- Initialisation and invariant establishment

- Liveness: a forgotten requirement

Once started, the system must work for ever

```
ascending any \ n \ where \ n \in P \ orall m \cdot c(n) \leq c(m) then c(n) := c(n) + 1 end
```

- Requirement FUN-2 is not fulfilled:

Each node can read the counters of its immediate neighbors only

- We introduce a special process *r*

- We suppose that the counter of r is always minimal

$$\forall m \cdot c(r) \leq c(m)$$

- This is a new invariant (for the moment)

- We simplify the guard

```
(abstract-)ascending any \ n \ where \ n \in P \ orall m \cdot c(n) \leq c(m) then c(n) := c(n) + 1 end
```

```
(concrete-)ascending egin{align*} \mathbf{any} & n & \mathbf{where} \\ & n \in P \\ & c(n) = c(r) \\ & \mathbf{then} \\ & c(n) := c(n) + 1 \\ & \mathbf{end} \\ \end{bmatrix}
```

- We have then to prove guard strengthening

$$c \in P o \mathbb{N}$$
 inv0_1
 $\forall x, y \cdot c(x) \leq c(y) + 1$ inv0_2
 $\forall m \cdot c(r) \leq c(m)$ new invariant
 $c(r) \leq c(m)$ Guards of concrete event ascending
 $c(r) = c(r)$ event ascending
 $c(r) = c(r)$ Guards of abstract event ascending

```
ascending \begin{array}{c} \text{any } n \text{ where} \\ n \in P \\ c(n) = c(r) \\ \text{then} \\ c(n) := c(n) + 1 \\ \text{end} \end{array}
```

$$\forall m \cdot c(r) \leq c(m)$$

- 1. We have to prove that the new invariant is preserved by the event
- 2. The guard of the event still does not fulfill requirement FUN-2

Each node can read the counters of its immediate neighbors only

FUN-2

- Problem 1 solved in this refinement, problem 2 solved later

- A tree has got a root r and a parent function f
- This is not sufficient to defined a tree (but enough for the moment)

- We define the root r of the tree

- And the parent function f (defined everywhere except at the root)

carrier set: P

constants: r, f

 $axm1_1: r \in P$

axm1_2: $f \in P \setminus \{r\} \rightarrow P$

- We define a weaker invariant

- The counter of the parent of each node m is \leq than that of m

inv1_1:
$$\forall m \cdot m \neq r \Rightarrow c(f(m)) \leq c(m)$$

- The minimality of the counter at the root can be proved:

thm1_1:
$$\forall m \cdot c(r) \leq c(m)$$

inv1_1: $\forall m \cdot m \neq r \Rightarrow c(f(m)) \leq c(m)$

thm1_1: $\forall m \cdot c(r) \leq c(m)$

- Adding a guard

```
ascending \begin{array}{l} \text{any } n \text{ where} \\ n \in P \\ c(r) = c(n) \\ \forall \, m \cdot m \, \in \, f^{-1}[\{n\}] \, \Rightarrow \, c(n) < c(m) \\ \text{then} \\ c(n) := c(n) + 1 \\ \text{end} \end{array}
```

- This will allow us to prove **inv1**_1 easily (again, a proof by cases)

```
inv1_1: \forall m \cdot m \neq r \Rightarrow c(f(m)) \leq c(m)
```


$$\forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) < c(m)$$

_

inv0_1:
$$c \in P o \mathbb{N}$$

inv0_2:
$$\forall x, y \cdot c(x) \leq c(y) + 1$$

$$axm1_1: r \in P$$

axm1_2:
$$f \in P \setminus \{r\} \rightarrow P$$

inv1_1:
$$\forall m \cdot m \neq r \Rightarrow c(f(m)) \leq c(m)$$

thm1_1:
$$\forall m \cdot c(r) \leq c(m)$$

- Properties and invariants are not sufficient to prove thm1_1

- The set S is made of cycles or infinite chains

- The set S is made of cycles or infinite chains

$$\forall x \cdot (x \in S \Rightarrow \exists y \cdot (y \in S \land x \mapsto y \in f))$$

- The set S is made of cycles or infinite chains

$$\forall x \cdot (x \in S \Rightarrow \exists y \cdot (y \in S \land x \mapsto y \in f))$$

$$S \subseteq f^{-1}[S]$$

- The root (axm1_1)
- The parent function (axm1_2)
- There are no cycles and no infinite chains (axm1_3)

 $\mathsf{axm1}_{-}1: r \in P$

 $\mathsf{axm1}_{ extsf{-}2}\colon \ f \in P \setminus \{r\} o P$

 $\mathsf{axm1}_{\mathtt{-}3}: \ \forall \, S \cdot S \subseteq f^{-1}[S] \ \Rightarrow \ S = \varnothing$

 $\mathsf{axm1}_{-}1: r \in P$

 $\mathsf{axm1}_2: \quad f \in P \setminus \{r\} o P$

 $\mathsf{axm1}_{\scriptscriptstyle{-}}3: \quad \forall \, S \cdot S \subseteq f^{-1}[S] \ \Rightarrow \ S = \varnothing$

thm1_2: $\forall T \cdot r \in T \land f^{-1}[T] \subseteq T \Rightarrow P \subseteq T$

DEMO

 $axm1_1: r \in P$

Root

 $\mathsf{axm1}_2: \quad f \in P \setminus \{r\} o P$ Parent function

thm1_2: $\forall T \cdot r \in T \land f^{-1}[T] \subseteq T \Rightarrow P \subseteq T$

DEMO

thm1_1:
$$\forall m \cdot c(r) \leq c(m)$$

```
ascending \begin{array}{l} \text{any } n \text{ where} \\ n \in P \\ c(r) = c(n) \\ \forall \, m \cdot m \, \in \, f^{-1}[\{n\}] \, \Rightarrow \, c(n) < c(m) \\ \text{then} \\ c(n) := c(n) + 1 \\ \text{end} \end{array}
```

- The third guard is correct (n uses its children counters only)
- The second guard is not correct (n uses the root counter)

Still a Problem

```
ascending \begin{array}{l} \text{any } n \text{ where} \\ n \in P \\ c(r) = c(n) \\ \forall \, m \cdot m \, \in \, f^{-1}[\{n\}] \, \Rightarrow \, c(n) < c(m) \\ \text{then} \\ c(n) := c(n) + 1 \\ \text{end} \end{array}
```

- The second guard is not correct: n uses the root counter c(r)

- We want to replace the guard c(r) = c(n) in event "ascending"

- Processes must be aware when this situation does occur

We add a second counter d at each node

- The second counter d has properties which are similar to those of c

carrier set: P

constants: r, f

variables: c, d

Invariant inv2_2 is as inv0_2

inv2_1: $d \in P \rightarrow \mathbb{N}$

inv2_2: $\forall x, y \cdot d(x) \leq d(y) + 1$

```
ascending \begin{array}{l} \text{any } n \text{ where} \\ n \in P \\ c(r) = c(n) \\ \forall \, m \cdot m \, \in \, f^{-1}[\{n\}] \, \Rightarrow \, c(n) < c(m) \\ \text{then} \\ c(n) := c(n) + 1 \\ \text{end} \end{array}
```

```
descending n where n \in P \forall m \cdot d(n) \leq d(m) then d(n) := d(n) + 1 end
```

- Proof of the preservation of **inv2_2** by event "descending" is easy

inv2_2:
$$\forall x, y \cdot d(x) \leq d(y) + 1$$

- It is similar to that of the preservation of inv0_2 by event "ascending"

- We extend the invariant of counter d

- We establish the relationship between both counters $oldsymbol{c}$ and $oldsymbol{d}$
- This will allow us to refine event ascending
- We construct the descending wave (by refining event descending)
- Remark: this is the most difficult refinement

inv3_1:
$$\forall m \cdot m \neq r \Rightarrow d(m) \leq d(f(m))$$

inv3_2:
$$d(r) \le c(r)$$

thm3_1:
$$\forall m \cdot d(m) \leq d(r)$$

- thm3_1 can be proved by using the tree Induction (axm1_3)
- inv3_1 and thm3_1 have to be compared to inv1_1 and thm1_1

inv1_1:
$$\forall m \cdot m \neq r \Rightarrow c(f(m)) \leq c(m)$$

thm1_1:
$$\forall m \cdot c(r) \leq c(m)$$

```
(abstract-)ascending egin{align*} & \textbf{any } n \ \textbf{where} \\ & n \in P \\ & c(n) = c(r) \\ & \cdots \\ & \textbf{then} \\ & c(n) := c(n) + 1 \\ & \textbf{end} \\ \end{bmatrix}
```

```
(concrete-)ascending egin{align*} \mathbf{any} \ n \ \mathbf{where} \\ n \in P \\ \mathbf{c(n)} = \mathbf{d(n)} \\ \cdots \\ \mathbf{then} \\ c(n) := c(n) + 1 \\ \mathbf{end} \\ \end{bmatrix}
```

concrete guard according to thm3_1 invariant inv3_2 according to thm1_1 abstract guard

```
egin{aligned} & oldsymbol{c(n)} = oldsymbol{d(n)} \ & d(n) \leq d(r) \ & d(r) \leq c(r) \ & c(r) \leq c(n) \ & \vdash \ & c(n) = c(r) \end{aligned}
```

- We have reached our goal: event ascending indeed fulfills FUN-2

```
(abstract-)descending egin{array}{ccc} & \mathbf{any} & n & \mathbf{where} \\ & n \in P \\ & orall m \cdot d(n) \leq d(m) \\ & \mathbf{then} \\ & d(n) := d(n) + 1 \\ & \mathbf{end} \end{array}
```

```
egin{array}{ll} (	ext{concrete-}) 	ext{descending\_1} \ & 	ext{any } n & 	ext{where} \ & n \in P \setminus \{r\} \ & d(n) 
eq d(f(n)) \ & 	ext{then} \ & d(n) := d(n) + 1 \ & 	ext{end} \end{array}
```

Guard strengthening:

$$n \in P \setminus \{r\} \ d(n)
eq d(f(n)) \ \Rightarrow \ d(n) \le d(m)$$

- In order to prove guard strengthening, we need the theorems:

thm3_2: $\forall n \cdot n \neq r \Rightarrow d(f(n)) \in d(n) ... d(n) + 1$

thm3_3: $\forall n \cdot d(r) \in d(n) ... d(n) + 1$

```
(abstract-)descending egin{array}{c} 	ext{any } n 	ext{ where} \ n \in P \ orall m \cdot d(n) \leq d(m) \ 	ext{then} \ d(n) := d(n) + 1 \ 	ext{end} \end{array}
```

```
(concrete-)descending_2 when d(r) 
eq c(r) then d(r) := d(r) + 1 end
```

- Here we need a witness for n: the root r is the obvious choice

Guard strengthening

$$egin{aligned} d(r)
eq c(r) \ m \in P \ \Rightarrow \ d(r) &\leq d(m) \end{aligned}$$

- In order to prove guard strengthening, we need the theorem

thm3_4:
$$\forall n \cdot c(r) \in d(n) \ ... \ d(n) + 1$$

- In order to prove the previous theorem

thm3_4:
$$\forall n \cdot c(r) \in d(n) \dots d(n) + 1$$

- We need the following additional invariant

inv3_3:
$$\forall n \cdot c(n) \in d(n) \dots d(n) + 1$$

- We have thus to prove that this invariant is preserved by the three events: ascending, descending_1, and descending_2.

inv3_1: $\forall m \cdot m \neq r \Rightarrow d(m) \leq d(f(m))$

inv3_2: $d(r) \leq c(r)$

inv3_3: $\forall n \cdot c(n) \in d(n) ... d(n) + 1$

thm3_1: $\forall m \cdot d(m) \leq d(r)$

thm3_2: $\forall n \cdot n \neq r \Rightarrow d(f(n)) \in d(n) ... d(n) + 1$

thm3_3: $\forall n \cdot d(r) \in d(n) ... d(n) + 1$

thm3_4: $\forall n \cdot c(r) \in d(n) \ldots d(n) + 1$

```
ascending \begin{array}{l} \text{any } n \text{ where} \\ n \in P \\ c(n) = d(n) \\ \forall m \cdot (\ m \in f^{-1}[\{n\}] \ \Rightarrow \ c(n) \neq c(m)\ ) \\ \text{then} \\ c(n) := c(n) + 1 \\ \text{end} \end{array}
```

```
\mathsf{descending}_{-1} \mathsf{any}\ n\ \mathsf{where} n\in P\setminus \{r\} d(n) 
eq d(f(n)) \mathsf{then} d(n) := d(n) + 1 \mathsf{end}
```

```
descending_2  \frac{d(r)}{d(r)} \neq c(r)  then  d(r) := d(r) + 1  end
```


_

-

-

-

-

- We replace the counters by their parities
- we add the constant *parity*

carrier set: P

constants: r, f, parity

axm4_1: $parity \in \mathbb{N} \rightarrow \{0,1\}$

 $axm4_2: parity(0) = 0$

axm4_2: $\forall x. parity(x+1) = 1 - parity(x)$

thm4_1: $\forall x,y.x \in y..y+1 \Rightarrow (parity(x)=parity(y) \Leftrightarrow x=y)$

- We replace c and d by p and q

variables: p, q

inv4_1:
$$p \in P \to \{0, 1\}$$

inv4_2:
$$q \in P \to \{0, 1\}$$

inv4_3:
$$\forall n . p(n) = parity(c(n))$$

inv4_4:
$$\forall n. q(n) = parity(d(n))$$

```
ascending \begin{array}{l} \text{any } n \text{ where} \\ n \in P \\ p(n) = q(n) \\ \forall m \cdot (\ m \in f^{-1}[\{n\}] \ \Rightarrow \ p(m) \neq p(n) \ ) \\ \text{then} \\ p(n) := 1 - p(n) \\ \text{end} \end{array}
```

```
\begin{array}{c} \mathsf{descending\_1} \\ & \mathsf{any} \ n \ \mathsf{where} \\ & n \in P \setminus \{r\} \\ & q(n) \neq q(f(n)) \\ & \mathsf{then} \\ & q(n) \vcentcolon= 1 - q(n) \\ & \mathsf{end} \end{array}
```

```
\begin{array}{c} \mathsf{descending}\_2\\ \mathsf{when}\\ p(r) \neq q(r)\\ \mathsf{then}\\ q(r) := 1 - q(r)\\ \mathsf{end} \end{array}
```