
Event-B Course

7. Routing Algorithm for Mobile Agent

Jean-Raymond Abrial

September-October-November 2011

Purpose of this Lecture 1

- No more learning about refinement and abstraction (practicing)

- No more learning about modeling conventions (practicing)

- Re-using dynamically the small tree theory we already developed

- Study a practical problem in distributed computing communication

- The example comes from the following paper:

L. Moreau. Distributed Directory Service and Message Routing for

Mobile Agent. Science of Computer Programming 2001.

1

The Abstract Communication Situation with a Mobile Agent 2

- A mobile agent M is supposed to travel between sites

- Some fixed agents at sites want to send messages to M

- In an abstract world:

- the moves of M are instantaneous

- the traveling of messages between sites takes no time

- the knowledge of the moves of M is also instantaneous

- Thus fixed agents always send messages where M is

2

Initial Situation 3

ba

d c

3

M moves from c to d 4

ba

d c

b

c

a

d

4

M moves from d to a 5

ba

d c

bb

cc

a

d

a

d

5

M moves from a to c 6

ba

d c

bb

cc

a

d

d

a b

a

d

c

6

M moves from c to b 7

d

a b

c

ba

d c

bb

cc

a

d

a

d

d

a b

c

7

A More Concrete Situation 8

- The moves of M are still instantaneous

- The traveling of messages between sites still takes no time

- The knowledge of the moves of M is not instantaneous any more

8

A More Concrete Situation (cont’d) 9

- When M moves from site x to site y then

- Agents of x and y knows it immediately

- Agents of other sites are not aware of the move

- They still sent their messages where they believe M is

- A message arriving at a site which M has left can be forwarded

9

Initial Situation 10

ba

d c

10

M moves from c to d 11

ba

d c c

ba

d

11

M moves from d to a 12

ba

d c

b

cc

b a

d

a

d

12

M moves from a to c 13

ba

d c

b

cc

b a

d

a

d

d

a b

c

13

M moves from c to b 14

ba

d c

b

cc

b a

d

a

d

d

a b

c

b

cd

a

14

Showing the Structural Modifications 15

ba ba

d cd

a b

cd c

a

d

b

c

a

d

b

c

15

Showing the Tree Structure 16

d

c

ba

d

c

a b

a

d

c

b

c

a b

b

c

a

d

d

16

A Tree of Communications 17

- The mobile M is at the root of a tree

17

Modification of the Tree 18

18

Comparing the two Situations 19

m

n

p

n

m

p

n

m

p

qq q

The mobile M remains at the root of a tree (to be proved however)

19

Initial Model: the Constants 20

sets: S
M

constant: il

axm0 1: il ∈ S

- Constant il denotes the initial location of the Mobile

20

Initial Model: the Variables (1) 21

variables: l
c
p

inv0 1: l ∈ S

inv0 2: c ∈ S \ {l}→ S

inv0 3: p ∈ M 7→ S

- Variable l denotes the actual location of the Mobile

- Variable c denotes the dynamic channel structure

- Variable p denotes the position of each message

21

Initial Model: the State (2) 22

This invariant states that the channel structure is a tree with:

- root: l

- parent function: c

inv0 4: ∀U · U ⊆ c−1[U] ⇒ U = ∅

22

Initial Model: the Events (1) 23

init
l := il
c := (S \ {il})× {il}
p := ∅

rcv agt
any s where

s 6= l
then

l := s
c := ({s}�− c) ∪ {l 7→ s}

end

- This event describes the move of the Mobile from l to s

- The move of the mobile from l to s is supposed to be instantaneous

23

Initial Model: the Events (2) 24

- Node s sends a message to the Mobile

- This message is stored locally

snd msg
any s,m where
s ∈ S
m /∈ dom(p)

then
p(m) := s

end

24

Initial Model: the Events (3) 25

- Messages are either delivered or forwarded

dlv msg
any m where
m ∈ dom(p)
p(m) = l

then
p := {m} �− p

end

fwd msg
any m where
m ∈ dom(p)
p(m) 6= l

then
p(m) := c(p(m))

end

- When delivered, a message is removed

25

A More Concrete Situation 26

- The moves of M are not completely instantaneous any more

- The traveling of messages between sites still takes no time

- The knowledge of the moves of M is not instantaneous any more

26

When M Departs from Site l 27

- Agents of l do not know where M is going

- Agents of other sites are not aware of the move

- Messages at l cannot be forwarded until l knows where M is

- Messages at other sites can be forwarded (in general)

27

When M Arrives at its destination s (coming from l) 28

- It sends a “service message” to l to inform it about its new position

- Once l has received the “service message” it can forward

again communication messages which were pending

- From now on, we have to distinguish:

- communication messages (still instantaneous)

- service messages (which take some time)

28

Initial Situation 29

ba

d c

29

M moves from c to d 30

ba

d c

b

cd

a

M sends a service message to c: "I am now in d"

Site c suspend sending com. msg. until it knows where M is

30

M moves from d to a 31

ba

d c

b

c

b

c

a

dd

a

M sends a service message to d: "I am now in a"

Site d suspend sending com. msg. until it knows where M is

31

M moves from a to c 32

ba

d c

b

c

b

c

a

dd

a

d

a b

c

M sends a service message to a: "I am now in c"

Site a suspend sending com. msg. until it knows where M is

32

M moves from c to b 33

ba

d c

b

c

b

c

a

dd

a

d

a b b

c c

a

d

M sends a service message to c: "I am now in b"

Site c suspend sending com. msg. until it knows where M is

33

No Service Message has Arrived yet 34

ba

d c

34

Service Message from a to d Arrives 35

b

cd

a

c

ba

d

Site d believes M is in a. It now forwards pending com. msg. to a

35

Service Message from c to a Arrives 36

b

c

b

c

a

dd

a

c

ba

d

Site a believes M is in c. It now forwards pending com. msg. to c

36

Service Message from b to c Arrives 37

b

c

b

c

a

dd

a

a

d

b

c

ba

d

c

Site c believes M is in b. It now forwards pending com. msg. to b

37

Service Message from d to c Arrives. FAILURE 38

b

c

b

c

a

dd

a

a

d

b

c

b

a

d

a

d

b

cc

Site c believes M is in d. It now forwards pending com. msg. to d

The tree structure is destroyed: we have a CYCLE.

38

Analysis of Failure and “magic” Solution 39

- The failure comes from the two srv. msg. arriving in the same place

- We must preclude this to happen

- We shall suppose that we have the following “magic” behavior

- When M sends a service message to site x

- It is able to remove all other pending service messages

whose destination is also x

39

Initial Situation 40

ba

d c

40

M moves from c to d 41

ba

d c

b

cd

a

M sends a service message to c: "I am now in d"

Site c suspend forwarding com. msg. until it believes where M is

41

M moves from d to a 42

ba

d c

b

c

b

c

a

dd

a

M sends a service message to d: "I am now in a"

Site d suspend forwarding com. msg. until it believes where M is

42

M moves from a to c 43

ba

d c

b

c

b

c

a

dd

a

d

a b

c

M sends a service message to a: "I am now in c"

Site a suspend forwarding com. msg. until it believes where M is

43

M moves from c to b 44

ba

d c

b

c

b

c

a

dd

a

d

a b b

c c

a

d

M sends a service message to c: "I am now in b"

M “magically” removes the other service message arriving to c

44

First Refinement: the State (1) 45

variables: l, p, d, a, da

inv1 1: d ∈ S \ {l} 7→ S

inv1 2: a ∈ S \ {l} 7→ S

inv1 3: c = d �− a

inv1 4: dom(a) = da \ {l}

- Variable d denotes the new dynamic tree structure

- Variable a denotes the service message channel.

- inv1 3 denotes the link between c and the concrete d and a

- Variable da denotes the set of sites expecting a service message

- Such nodes cannot forward a message

45

More about the Service Channel a 46

inv1 2: a ∈ S \ {l} 7→ S

- s1 7→ s2 in a means a message from s2 (new site) to s1 (old site)

- At most one service message is in transit to site s1 (a is a function)

- This magic behavior is fundamental

46

First Refinement: the Events (1) 47

dlv msg
any m where
m ∈ dom(p)
p(m) /∈ da
p(m) = l

then
p := {m} �− p

end

fwd msg
any m where
m ∈ dom(p)
p(m) /∈ da
p(m) 6= l

then
p(m) := d(p(m))

end

- The guards are now local

- We can later data-refine da with a local boolean variable

47

First Refinement: the Events (3) 48

leave agt
when

l /∈ da
then

da := da ∪ {l}
end

rcv agt
any s where

s 6= l
l ∈ da

then
l := s
a := ({s} �− a) �− {l 7→ s}
d := {s} �− d
da := da \ {s}

end

- Event leave agt is a new event where the set da is extended.
- In event rcv agt, the new site location s is removed from da.
- A previous service message to l is removed.
- When l is in da, it means that the mobileM is in transit

48

First Refinement: the Events (2) 49

rcv srv
any s where
s ∈ dom(a)
s 6= l

then
d(s) := a(s)
a := {s} �− a
da := da \ {s}

end

- This is a new event

- It corresponds to the arrival of the service message

49

Second Refinement: Implementing the “magic” srv. channel 50

- Magic behavior when sending a new service message to x:

- Pending service messages to x are removed

- The mobile M travels with a logical clock

- Each site has a last time counter

- This counter records the “time” of the last visit of M

50

Implementing the “magic” service channel (cont’d) 51

- When M arrives at a site y

- it increments its logical clock

- it stores its incremented clock in the last time counter of y

- it sends a new service message to its previous location x

- The srv. msg. from y to x is stamped with the new clock value

- When a service message arrives at a site x, it is accepted

- only if its stamp value is greater than the time counter of x

- the last time counter takes the value of the stamp

51

Initial Situation 52

00

0 1

52

M moves from c to d 53

00

0 1 12

0 00

2

53

M moves from d to a 54

00

0 1 12

0 00 3

1

0

2
2

3

2

54

M moves from a to c 55

00

0 1 12

0 00 3

1

0

4

2

2

3 0

2

3

2

3

2

4

55

M moves from c to b 56

00

0 1 12

0 00 3

1

0

4

2

2

3 0 5

42

3

2

3

2

3

2

4 3 4 5

2

56

No Service Message has yet Arrived 57

53

2 4
2

3 4 5

57

Service Message from a to d Arrives 58

53

2 4
2

3 4 5

2

4 5

53

3 4

- It is accepted

58

Service Message from c to a Arrives 59

53

2 4
2

3 4 5

2

4 5

53

3 4

54

3 4
2

5

- It is accepted

59

Service Message from b to c Arrives 60

53

2 4
2

3 4 5

2

4 5

53

3 4

54

3 4
2

5

5

5
2

3

4

- It is accepted

60

Service Message from d to c Arrives. NO FAILURE 61

53

2 4
2

3 4 5

2

4 5

53

3 4

54

3 4
2

5

5

5
2

3

4 5

5

4

3

- It is rejected

61

Structure of the New Service Channel 62

- Suppose:

- s1 has emitted a service msg. to s at time 3

- s2 has emitted a service msg. to s at time 5

- s3 has emitted a service msg. to s at time 9

- This will be “recorded” in the refined service channel as follows:

s 7→ {3 7→ s1, 5 7→ s2, 9 7→ s3}

- In the abstract service channel we had: s 7→ s3

62

Second Refinement: the State 63

variables: l, p, d, da,
k, t, b

inv2 1: k ∈ N

inv2 2: t ∈ S→ N

inv2 3: b ∈ S→ (N 7→ S)

- Variable k is the clock taken by the Mobile when it travels

- Variable t denotes the time of the last visit of the Mobile to a site

- Variable b is the new service channel, it data-refines variable a

63

Connecting the Abstract a and the Concrete b (1) 64

- An abstract service message is the most recent concrete one

inv2 4: ∀s ·


s ∈ dom(a)
⇒
dom(b(s)) 6= ∅
a(s) = b(s)(max(dom(b(s))))



64

Connecting the Abstract a and the Concrete b (2) 65

inv2 5: ∀s ·


s ∈ S
dom(b(s)) 6= ∅
t(s) < max(dom(b(s)))
⇒
s ∈ dom(a)



- This technical invariant will help us proving guard strengthening

for event rcv srv

65

More Invariants Between k and t 66

inv2 6: ∀s · (s ∈ S ∧ dom(b(s)) 6= ∅ ⇒ max(dom(b(s))) ≤ k)

inv2 7: t(l) = k

inv2 8: ∀s · (s ∈ S \ {l} ⇒ t(s) ≤ k)

66

The Key Invariant 67

- The only service message stamp to a site s which is strictly greater

than the time of last visit to that site s is the maximum one.

inv2 9: ∀ s, n ·


s ∈ S
n ∈ dom(b(s))
t(s) < n
⇒
n = max(dom(b(s)))



67

Second Refinement: the Events (1) 68

- Sending the service message with the time stamp k + 1

(abstract-)rcv agt
any s where
s ∈ S \ {l}
l ∈ da

then
l := s
a(l) := s
d := {s} �− d
da := da \ {s}

end

(concrete-)rcv agt
any s where
s ∈ S \ {l}
l ∈ da

then
l := s
t(s) := k + 1
k := k + 1
b(l)(k + 1) := s
d := {s} �− d
da := da \ {s}

end

68

Second Refinement: the Events (2) 69

(abstract-)rcv srv
any s where
s ∈ dom(a)
s 6= l

then
d(s) := a(s)
a := {s} �− a
da := da \ {s}

end

(concrete-)rcv srv
any s, n where
s ∈ S
n ∈ dom(b(s))
t(s) < n

then
d(s) := b(s)(n)
t(s) := n
da := da \ {s}

end
∀s ·

s ∈ S
dom(b(s)) 6= ∅
t(s) < max(dom(b(s)))
⇒
s ∈ dom(a)


∀ s, n ·

s ∈ S
n ∈ dom(b(s))
t(s) < n
⇒
n = max(dom(b(s)))


69

Summary of Proofs 70

Initial Model 11 0

1st Reft. 23 2

2nd Reft. 70 7

Total 104 9

70

