Event-B Course

6. Summary of Mathematical Notation and Proofs

Jean-Raymond Abrial

September-October-November 2011

- Foundation for deductive and formal proofs
- A quick review of Propositional Calculus
- A quick review of First Order Predicate Calculus
- Refresher on Set Theory
- Formalising Data Structures (list, tree, graph)

- Reason: We want to understand how proofs can be mechanized

- Topics:
 - Concepts of Sequent and Inference Rule
 - Backward and Forward Reasoning
 - Basic Inference Rules

- Sequent is the generic name for "something we want to prove"

- We shall be more precise later

- An inference rule is a tool to perform a formal proof
- It is denoted by:

$$\frac{A}{C}$$

- A is a (possibly empty) collection of sequents: the antecedents
- C is a sequent: the consequent

- Concepts of Sequent and Inference Rule

- Backward and Forward Reasoning

- Basic Inference Rules

Given an inference rule $\frac{A}{C}$ with antecedents A and consequent C

Forward reasoning:
$$\frac{A}{C} \downarrow$$

Proofs of each sequent in A give you a proof of the consequent C

Backward reasoning: $\frac{A}{C} \uparrow$

In order to get a proof of C, it is sufficient to have proofs of each sequent in A

Proofs are usually done using backward reasoning

- We are given:
 - a collection ${\mathcal T}$ of inference rules of the form $\frac{A}{C}$
 - a sequent container K, containing S initially

WHILE K is not empty

CHOOSE a rule $\frac{A}{C}$ in \mathcal{T} whose consequent C is in K;

REPLACE C in K by the antecedents A (if any)

This proof method is said to be goal oriented

$$\mathbf{r1}_{\overline{S2}} \quad \mathbf{r2}_{\overline{S4}}^{\underline{S7}} \quad \mathbf{r3}_{\overline{S1}}^{\underline{S2}} \quad \mathbf{S3}_{\overline{S1}}^{\underline{S4}} \quad \mathbf{r4}_{\overline{S5}} \quad \mathbf{r5}_{\overline{S3}}^{\underline{S5}} \quad \mathbf{r6}_{\overline{S6}} \quad \mathbf{r7}_{\overline{S7}}$$

$$S1$$
r3
 $\checkmark \downarrow \searrow$
 $S2$
 $S3$
 $S4$
?
?

$$\mathbf{r1}_{\overline{S2}} \quad \mathbf{r2}_{\overline{S4}}^{\underline{S7}} \quad \mathbf{r3}_{\overline{S1}}^{\underline{S2}} \quad \mathbf{S3}_{\overline{S1}}^{\underline{S4}} \quad \mathbf{r4}_{\overline{S5}} \quad \mathbf{r5}_{\overline{S3}}^{\underline{S5}} \quad \mathbf{r6}_{\overline{S6}} \quad \mathbf{r7}_{\overline{S7}}$$

$$\begin{array}{c} S1 \\ \mathbf{r3} \\ \checkmark \downarrow \checkmark \\ S2 \quad S3 \quad S4 \\ \mathbf{r1} \quad \mathbf{?} \quad \mathbf{?} \end{array}$$

$$\mathbf{r1}_{\overline{S2}} \quad \mathbf{r2}_{\overline{S4}}^{\underline{S7}} \quad \mathbf{r3}_{\overline{S1}}^{\underline{S2}} \quad \mathbf{S3}_{\overline{S1}}^{\underline{S4}} \quad \mathbf{r4}_{\overline{S5}} \quad \mathbf{r5}_{\overline{S3}}^{\underline{S5}} \quad \mathbf{r6}_{\overline{S6}} \quad \mathbf{r7}_{\overline{S7}}$$

$$S1$$
 $r3$
 $S2$
 $S3$
 $S4$
 $r1$
 $r5$
 $S5$
 $S6$
 $?$

$$\mathbf{r1}_{\overline{S2}} \quad \mathbf{r2}_{\overline{S4}}^{\underline{S7}} \quad \mathbf{r3}_{\overline{S1}}^{\underline{S2}} \quad \mathbf{S3}_{\overline{S1}}^{\underline{S4}} \quad \mathbf{r4}_{\overline{S5}} \quad \mathbf{r5}_{\overline{S3}}^{\underline{S5}} \quad \mathbf{r6}_{\overline{S6}} \quad \mathbf{r7}_{\overline{S7}}$$

$$\mathbf{r1}_{\overline{S2}} \quad \mathbf{r2}_{\overline{S4}}^{\underline{S7}} \quad \mathbf{r3}_{\overline{S1}}^{\underline{S2}} \quad \mathbf{S3}_{\overline{S1}}^{\underline{S4}} \quad \mathbf{r4}_{\overline{S5}} \quad \mathbf{r5}_{\overline{S3}}^{\underline{S5}} \quad \mathbf{r6}_{\overline{S6}} \quad \mathbf{r7}_{\overline{S7}}$$

$$S1$$
 $r3$
 $S2$
 $S3$
 $S4$
 $r1$
 $r5$
 $S5$
 $S6$
 $r4$
 $r6$

$$\mathbf{r1}_{\overline{S2}} \quad \mathbf{r2}_{\overline{S4}}^{\underline{S7}} \quad \mathbf{r3}_{\overline{S1}}^{\underline{S2}} \quad \mathbf{S3}_{\overline{S1}}^{\underline{S4}} \quad \mathbf{r4}_{\overline{S5}} \quad \mathbf{r5}_{\overline{S3}}^{\underline{S5}} \quad \mathbf{r6}_{\overline{S6}} \quad \mathbf{r7}_{\overline{S7}}$$

$$\mathbf{r1}_{\overline{S2}} \quad \mathbf{r2}_{\overline{S4}}^{\underline{S7}} \quad \mathbf{r3}_{\overline{S1}}^{\underline{S2}} \quad \mathbf{S3}_{\overline{S1}}^{\underline{S4}} \quad \mathbf{r4}_{\overline{S5}} \quad \mathbf{r5}_{\overline{S3}}^{\underline{S5}} \quad \mathbf{r6}_{\overline{S6}} \quad \mathbf{r7}_{\overline{S7}}$$

$$\mathbf{r1}_{\overline{S2}} \quad \mathbf{r2}_{\overline{S4}}^{S7} \quad \mathbf{r3}_{\overline{S4}}^{S2} \quad \mathbf{r3}_{\overline{S1}}^{S3} \quad \mathbf{r4}_{\overline{S5}} \quad \mathbf{r5}_{\overline{S3}}^{S5} \quad \mathbf{r6}_{\overline{S6}} \quad \mathbf{r7}_{\overline{S7}}$$

- The proof is a tree

- We have shown here a depth-first strategy

- A vertical representation of the proof tree:

S1	r3
S2	r1
S3	r5
S5	r4
S6	r6
S4	r2
S7	r7

$$\mathbf{r1}_{\overline{S2}} \quad \mathbf{r2}_{\overline{S4}}^{S7} \quad \mathbf{r3}_{\overline{S1}}^{S2} \quad \mathbf{r4}_{\overline{S5}} \quad \mathbf{r5}_{\overline{S3}}^{S5} \quad \mathbf{r6}_{\overline{S6}} \quad \mathbf{r7}_{\overline{S7}}$$

S1

$$r1_{\overline{S2}}$$

$$r2\frac{S7}{S4}$$

$$\mathbf{r1}_{\overline{S2}} \quad \mathbf{r2}_{\overline{S4}}^{\underline{S7}} \quad \mathbf{r3}_{\overline{S1}}^{\underline{S2}} \quad \mathbf{S3}_{\overline{S1}}^{\underline{S4}} \quad \mathbf{r4}_{\overline{S5}} \quad \mathbf{r5}_{\overline{S3}}^{\underline{S5}} \quad \mathbf{r6}_{\overline{S6}} \quad \mathbf{r7}_{\overline{S7}}$$

$$r4_{\overline{S5}}$$

$$\mathbf{r5} \frac{S5}{S3} \frac{S6}{S3}$$

$$r6_{\overline{S6}}$$

$$r7_{\overline{S7}}$$

$$S$$
4

$$r1_{\overline{S2}}$$

$$\mathbf{r2}\frac{S7}{S4}$$

$$\mathbf{r1}_{\overline{S2}} \quad \mathbf{r2}_{\overline{S4}}^{\underline{S7}} \quad \mathbf{r3}_{\overline{S1}}^{\underline{S2}} \quad \mathbf{S3}_{\overline{S1}}^{\underline{S4}} \quad \mathbf{r4}_{\overline{S5}} \quad \mathbf{r5}_{\overline{S3}}^{\underline{S5}} \quad \mathbf{r6}_{\overline{S6}} \quad \mathbf{r7}_{\overline{S7}}$$

$$r4_{\overline{S5}}$$

$$\mathbf{r5} \frac{S5}{S3} \frac{S6}{S3}$$

$$r6_{\overline{S6}}$$

$${
m r7}_{\overline{S7}}$$

$$\mathbf{r1}_{\overline{S2}} \quad \mathbf{r2}_{\overline{S4}}^{\underline{S7}} \quad \mathbf{r3}_{\overline{S1}}^{\underline{S2}} \quad \mathbf{S3}_{\overline{S1}}^{\underline{S4}} \quad \mathbf{r4}_{\overline{S5}} \quad \mathbf{r5}_{\overline{S3}}^{\underline{S5}} \quad \mathbf{r6}_{\overline{S6}} \quad \mathbf{r7}_{\overline{S7}}$$

$$r1_{\overline{S2}}$$
 r

$$\mathbf{r1}_{\overline{S2}} \quad \mathbf{r2}_{\overline{S4}}^{\underline{S7}} \quad \mathbf{r3}_{\overline{S1}}^{\underline{S2}} \quad \mathbf{S3}_{\overline{S1}}^{\underline{S4}} \quad \mathbf{r4}_{\overline{S5}} \quad \mathbf{r5}_{\overline{S3}}^{\underline{S5}} \quad \mathbf{r6}_{\overline{S6}} \quad \mathbf{r7}_{\overline{S7}}$$

$$r4_{\overline{S5}}$$

$$\mathbf{r5} \frac{S5}{S3} \frac{S6}{S3}$$

$$r6_{\overline{S6}}$$

$${
m r7}_{\overline{S7}}$$

$$\mathbf{r1}_{\overline{S2}} \quad \mathbf{r2}_{\overline{S4}}^{\underline{S7}} \quad \mathbf{r3}_{\overline{S1}}^{\underline{S2}} \quad \mathbf{S3}_{\overline{S4}} \quad \mathbf{r4}_{\overline{S5}} \quad \mathbf{r5}_{\overline{S3}}^{\underline{S5}} \quad \mathbf{r6}_{\overline{S6}} \quad \mathbf{r7}_{\overline{S7}}$$

$$\mathbf{r1}_{\overline{S2}} \quad \mathbf{r2}_{\overline{S4}}^{\underline{S7}} \quad \mathbf{r3}_{\overline{S1}}^{\underline{S2}} \quad \mathbf{S3}_{\overline{S1}}^{\underline{S4}} \quad \mathbf{r4}_{\overline{S5}} \quad \mathbf{r5}_{\overline{S3}}^{\underline{S5}} \quad \mathbf{r6}_{\overline{S6}} \quad \mathbf{r7}_{\overline{S7}}$$

$$\mathbf{r1}_{\overline{S2}} \quad \mathbf{r2}_{\overline{S4}}^{\underline{S7}} \quad \mathbf{r3}_{\overline{S1}}^{\underline{S2}} \quad \mathbf{S3}_{\overline{S1}}^{\underline{S4}} \quad \mathbf{r4}_{\overline{S5}} \quad \mathbf{r5}_{\overline{S3}}^{\underline{S5}} \quad \mathbf{r6}_{\overline{S6}} \quad \mathbf{r7}_{\overline{S7}}$$

- Concepts of Sequent and Inference Rule

- Backward and Forward Reasoning

- Basic Inference Rules

- We supposedly have a Predicate Language (not defined yet)

- A sequent is denoted by:

$$H \vdash G$$

- H is a (possibly empty) collection of predicates: the hypotheses

- G is a predicate: the goal

Under the hypotheses of collection H, prove the goal G

- HYPOTHESIS: If the goal belongs to the hypotheses of a sequent, then the sequent is proved,
- MONOTONICITY: Once a sequent is proved, any sequent with the same goal and more hypotheses is also proved,
- CUT: If you succeed in proving P under H, then P can be added to the collection H for proving a goal G.

$$oxed{\mathsf{H},\; P\;\; \vdash\;\; P}$$

HYP

MON

CUT

- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus

- A quick review of First Order Predicate Calculus

- Refresher on Set Theory

- Formalising Data Structures (list, tree, graph)

- Given predicates P and Q, we can construct:

- CONJUNCTION: $P \wedge Q$

- IMPLICATION: $P \Rightarrow Q$

- NEGATION: $\neg P$

```
Predicate ::= Predicate \land Predicate \\ Predicate \Rightarrow Predicate \\ \neg Predicate
```

- This syntax is ambiguous

- Pairs of matching parentheses can be added freely.
- Operator ∧ is left associative.
- So, $P \wedge Q \wedge R$ is to be read $(P \wedge Q) \wedge R$.
- Operator \Rightarrow is not associative: $P \Rightarrow Q \Rightarrow R$ is not allowed.
- Write explicitely $(P \Rightarrow Q) \Rightarrow R$ or $P \Rightarrow (Q \Rightarrow R)$.
- Operators have precedence in this decreasing order: \neg , \wedge , \Rightarrow .

- TRUTH: T

- FALSITY: ⊥

- DISJUNCTION: $P \lor Q$

- EQUIVALENCE: $P \Leftrightarrow Q$

```
egin{array}{lll} Predicate &::= & Predicate & & Predicate \ & Predicate & \Rightarrow & Predicate \ & \neg & Predicate \ & \bot & & \top \ & & \top & & & \\ & & Predicate & \lor & Predicate \ & Predicate & \Leftrightarrow & Predicate \ & & & & & & & & & \\ \hline \end{array}
```

- Pairs of matching parentheses can be added freely.

Operators ∧ and ∨ are left associative.

- Operator \Rightarrow and \Leftrightarrow are not associative.

- Precedence decreasing order: \neg , \wedge and \vee , \Rightarrow and \Leftrightarrow .

- The mixing of \land and \lor without parentheses is not allowed.
- You have to write either $P \wedge (Q \vee R)$ or $(P \wedge Q) \vee R$
- The mixing of \Rightarrow and \Leftrightarrow without parentheses is not allowed.
- You have to write either $P\Rightarrow (Q\Leftrightarrow R)$ or $(P\Rightarrow Q)\Leftrightarrow R$

$$H, \perp \vdash P$$
 FALSE_L

$$\begin{array}{c|ccccc} \mathsf{H}, \ \neg \ Q & \vdash & P \\ \hline \mathsf{H}, \ \neg \ P & \vdash & Q \end{array} \quad \mathbf{NOT_L}$$

$$\frac{\mathsf{H},\; P\; \vdash\; R}{\mathsf{H},\; P \lor Q\; \vdash\; R} \quad \mathbf{OR} \bot \mathbf{L}$$

$$\frac{\mathsf{H},\; P\;\;\vdash\;\;\bot}{\mathsf{H}\;\;\vdash\;\;\neg\,P}\;\;\mathbf{NOT}_{_}\mathbf{R}$$

$$\begin{array}{c|ccccc} \mathbf{H}, \ \neg P & \vdash & Q \\ \hline & \mathbf{H} & \vdash & P \lor Q \end{array} \quad \mathbf{OR} \underline{\ \mathbf{R}}$$

$$\begin{array}{c|ccccc} \mathsf{H}, \ P & \vdash & Q \\ \hline & \mathsf{H} & \vdash & P \Rightarrow Q \end{array} \quad \mathbf{IMP} \underline{\ \mathbf{R}}$$

$$\frac{\text{H, }Q \ \vdash \ P}{\text{H} \ \vdash \ P} \quad \textbf{CASE}$$

We assume the antecedents (if any) and prove the consequent.

$$\frac{ \text{H.} \neg Q \ \vdash \ \neg P }{ \text{H,} \ P \ \vdash \ Q } \ \textbf{CT_L}$$

Proof of rule CT_L:

$$\dots \qquad \mathsf{H}, P, \neg Q, \neg Q \quad \vdash \quad P \qquad \mathbf{HYP}$$

$$\frac{\mathsf{H},\,\neg\,P\;\;\vdash\;\;\bot}{\mathsf{H}\;\;\vdash\;\;P}\;\;\mathbf{CT}_{_}\mathbf{R}$$

Proof of rule **CT_R**:

Predicate	Rewritten
T	\neg \bot
$P \Leftrightarrow Q$	$(P \Rightarrow Q) \land (Q \Rightarrow P)$

commutativity	$egin{array}{lll} P ⅇ Q &\Leftrightarrow & Q ⅇ P \ P &\wedge Q &\Leftrightarrow & Q &\wedge P \ (P \Leftrightarrow Q) &\Leftrightarrow & (Q \Leftrightarrow P) \end{array}$
associativity	$egin{array}{lll} (P \lor Q) \lor R &\Leftrightarrow& P \lor (Q \lor R) \ (P \land Q) \land R &\Leftrightarrow& P \land (Q \land R) \ ((P \Leftrightarrow Q) \Leftrightarrow R) &\Leftrightarrow& (P \Leftrightarrow (Q \Leftrightarrow R)) \end{array}$
distributivity	$egin{array}{cccccccccccccccccccccccccccccccccccc$

excluded middle	$oldsymbol{P} \ ee \ eg oldsymbol{P}$
idempotence	$egin{array}{cccccccccccccccccccccccccccccccccccc$
absorbtion	$egin{array}{cccc} (P \ ee \ Q) \ \wedge \ P \ \Leftrightarrow \ P \ (P \ \wedge \ Q) \ ee \ P \ \Leftrightarrow \ P \end{array}$
truth	$(P \Leftrightarrow \top) \Leftrightarrow P$
falsity	$(P \Leftrightarrow \perp) \Leftrightarrow \neg P$

de Morgan	$ egin{array}{lll} egi$
contraposition	$(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P) \ (\neg P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow P) \ (P \Rightarrow \neg Q) \Leftrightarrow (Q \Rightarrow \neg P)$
double negation	$P \Leftrightarrow \neg \neg P$

transitivity	$(P \Rightarrow Q) \land (Q \Rightarrow R) \Rightarrow (P \Rightarrow R)$
monotonicity	$(P \Rightarrow Q) \Rightarrow ((P \land R) \Rightarrow (Q \land R))$ $(P \Rightarrow Q) \Rightarrow ((P \lor R) \Rightarrow (Q \lor R))$ $(P \Rightarrow Q) \Rightarrow ((R \Rightarrow P) \Rightarrow (R \Rightarrow Q))$ $(P \Rightarrow Q) \Rightarrow ((Q \Rightarrow R) \Rightarrow (P \Rightarrow R))$ $(P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P)$
equivalence	$(P \Leftrightarrow Q) \Rightarrow ((P \land R) \Leftrightarrow (Q \land R))$ $(P \Leftrightarrow Q) \Rightarrow ((P \lor R) \Leftrightarrow (Q \lor R))$ $(P \Leftrightarrow Q) \Rightarrow ((R \Rightarrow P) \Leftrightarrow (R \Rightarrow Q))$ $(P \Leftrightarrow Q) \Rightarrow ((P \Rightarrow R) \Leftrightarrow (Q \Rightarrow R))$ $(P \Leftrightarrow Q) \Rightarrow (\neg P \Leftrightarrow \neg Q)$

- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus

- A quick review of First Order Predicate Calculus

- Refresher on Set Theory

- Formalising Data Structures (list, tree, graph)

- The letter P, Q, etc. we have used are generic variables
- Each of them stands for a *predicate*

- All our proofs were thus also generic (able to be instantiated)

```
predicate ::= \bot
                    \neg predicate
                   predicate \land predicate
                   predicate \lor predicate
                   predicate \Rightarrow predicate
                   predicate \Leftrightarrow predicate
                   \forall var\_list \cdot predicate
expression ::= variable
                   expression \mapsto expression
variable ::= identifier
var\_list \qquad ::= \ variable
                   variable, var\_list
```

A Predicate is a formal text that can be PROVED

An Expression DENOTES AN OBJECT.

A Predicate denotes NOTHING.

An Expression CANNOT BE PROVED

Predicates and Expressions are INCOMPATIBLE.

$$\frac{\mathsf{H}, \ \forall \mathsf{x} \cdot \mathsf{P}(\mathsf{x}), \ \mathsf{P}(\mathsf{E}) \ \vdash \ \mathsf{Q}}{\mathsf{H}, \ \forall \mathsf{x} \cdot \mathsf{P}(\mathsf{x}) \ \vdash \ \mathsf{Q}} \quad \mathsf{ALL}_{\mathsf{L}}$$

where **E** is an expression

$$\frac{\mathbf{H} \vdash \mathbf{P}(\mathbf{x})}{\mathbf{H} \vdash \forall \mathbf{x} \cdot \mathbf{P}(\mathbf{x})} \quad \mathsf{ALL}_{\mathsf{R}}$$

- In rule ALL_R, variable x is not free in H

```
predicate ::= \bot
                    \neg predicate
                    predicate \land predicate
                    predicate \lor predicate
                    predicate \Rightarrow predicate
                    predicate \Leftrightarrow predicate
                    orall var\_list \cdot predicate
                    \exists var\_list \cdot predicate
expression ::= variable
                    expression \mapsto expression
variable ::= identifier
var\_list \qquad ::= \ variable
                    variable, var\_list
```

$$\frac{\mathbf{H}, \ \mathbf{P}(\mathbf{x}) \ \vdash \ \mathbf{Q}}{\mathbf{H}, \ \exists \mathbf{x} \cdot \mathbf{P}(\mathbf{x}) \ \vdash \ \mathbf{Q}} \quad \mathsf{XST_L}$$

- In rule XST_L, variable x is not free in H

$$\frac{\mathbf{H} \vdash \mathbf{P(E)}}{\mathbf{H} \vdash \exists \mathbf{x} \cdot \mathbf{P(x)}} \quad \mathsf{XST}_{\mathsf{R}}$$

where **E** is an expression

$$\frac{\mathsf{H}, \ \forall \mathsf{x} \cdot \mathsf{P}(\mathsf{x}), \ \mathsf{P}(\mathsf{E}) \ \vdash \ \mathsf{Q}}{\mathsf{H}, \ \forall \mathsf{x} \cdot \mathsf{P}(\mathsf{x}) \ \vdash \ \mathsf{Q}} \quad \mathsf{ALL_L}$$

$$\frac{\mathbf{H} \vdash \mathbf{P(E)}}{\mathbf{H} \vdash \exists \mathbf{x} \cdot \mathbf{P(x)}} \quad XST_R$$

$$\frac{\mathsf{H} \; \vdash \; \mathsf{P}(\mathsf{x})}{\mathsf{H} \; \vdash \; \forall \mathsf{x} \cdot \mathsf{P}(\mathsf{x})} \quad \mathsf{ALL}_{\mathsf{R}}$$

$$\frac{\mathsf{H},\;\mathsf{P}(\mathsf{x})\;\vdash\;\mathsf{Q}}{\mathsf{H},\;\exists\mathsf{x}\;\cdot\mathsf{P}(\mathsf{x})\;\vdash\;\mathsf{Q}}\qquad\mathsf{XST}_{\mathsf{L}}\mathsf{L}$$

$$\forall x \cdot (\exists y \cdot P_{x,y}) \Rightarrow Q_x \vdash \forall x \cdot (\forall y \cdot P_{x,y} \Rightarrow Q_x)$$

$$egin{array}{c|c} orall x \cdot (\exists y \cdot P_{x,y}) \
ightarrow Q_x \
ightarrow X \cdot (orall y \cdot P_{x,y} \
ightarrow Q_x) \end{array} egin{array}{c|c} \mathsf{ALL}_\mathsf{R} \ \mathsf{ALL}_\mathsf{R} \ \mathsf{IMP}_\mathsf{R} \end{array}$$

$$egin{array}{l} orall x \cdot (\exists y \cdot P_{x,y}) \; \Rightarrow \; Q_x \ P_{x,y} \ dash \ Q_x \end{array}$$

CUT ...

$$egin{array}{l} orall x \cdot (\exists y \cdot P_{x,y}) \; \Rightarrow \; Q_x \ P_{x,y} \ dash \ \exists y \cdot P_{x,y} \end{array}$$

$$egin{array}{c} orall x \cdot (\exists y \cdot P_{x,y}) \
ightarrow Q_x \
ightarrow P_{x,y} \
ightarrow Q_x \
ightarrow P_{x,y} \
ightarrow Q_x \
ightarrow P_{x,y} \
ightarrow P_{x,y} \
ightarrow Q_x \
ightarrow P_{x,y} \
ightarrow Q_x \
ightarrow P_{x,y} \
ightarrow Q_x \
ightarrow Q_x \
ightarrow P_{x,y} \
ightarrow Q_x \$$

HYP

$$egin{array}{l} orall x \cdot (\exists y \cdot P_{x,y}) \; \Rightarrow \; Q_x \ P_{x,y} \ \exists y \cdot P_{x,y} \ \vdash \ Q_x \end{array}$$

$$egin{array}{c} orall x \cdot (\exists y \cdot P_{x,y}) \ P_{x,y} \ \exists y \cdot P_{x,y} \ Q_x \end{array} egin{array}{c} \mathsf{ALL} \ \mathsf{IMP} \ \mathsf{L} \end{array} egin{array}{c} orall x \cdot (\exists y \cdot P_{x,y}) \ Q_x \ P_{x,y} \ \exists y \cdot P_{x,y} \ Q_x \end{array} egin{array}{c} \mathsf{Q}_x \ P_{x,y} \ \exists y \cdot P_{x,y} \ \mathsf{Q}_x \end{array}$$

HYP

- Replacing an existential goal by a simpler one

Proof of **CUT_XST**

commutativity	$egin{array}{lll} orall x \cdot orall y \cdot P & \Leftrightarrow & orall y \cdot orall x \cdot P \ \exists x \cdot \exists y \cdot P & \Leftrightarrow & \exists y \cdot \exists x \cdot P \end{array}$
distributivity	$egin{array}{lll} orall x \cdot (P \wedge Q) & \Leftrightarrow & orall x \cdot P & \wedge & orall x \cdot Q \ \exists x \cdot (P ee Q) & \Leftrightarrow & \exists x \cdot P & ee & \exists x \cdot Q \end{array}$
associativity	if x not free in P $P \ \lor \ \forall x \cdot Q \ \Leftrightarrow \ \ \forall x \cdot (P \lor Q) \\ P \ \land \ \exists x \cdot Q \ \Leftrightarrow \ \ \exists x \cdot (P \land Q) \\ P \ \Rightarrow \ \forall x \cdot Q \ \Leftrightarrow \ \ \forall x \cdot (P \Rightarrow Q)$

de Morgan laws	$ eg \forall x \cdot P \Leftrightarrow \exists x \cdot \neg P \\ eg \exists x \cdot P \Leftrightarrow \forall x \cdot \neg P \\ eg \forall x \cdot (P \Rightarrow Q) \Leftrightarrow \exists x \cdot (P \land \neg Q) \\ eg \exists x \cdot (P \land Q) \Leftrightarrow \forall x \cdot (P \Rightarrow \neg Q) $
monotonicity	$\forall x \cdot (P \Rightarrow Q) \Rightarrow (\forall x \cdot P \Rightarrow \forall x \cdot Q) \ \forall x \cdot (P \Rightarrow Q) \Rightarrow (\exists x \cdot P \Rightarrow \exists x \cdot Q)$
equivalence	$\forall x \cdot (P \Leftrightarrow Q) \Rightarrow (\forall x \cdot P \Leftrightarrow \forall x \cdot Q) \ \forall x \cdot (P \Leftrightarrow Q) \Rightarrow (\exists x \cdot P \Leftrightarrow \exists x \cdot Q)$

$P \wedge Q$	$\neg P$
$P \ \lor \ Q$	$orall x \cdot P$
$P\Rightarrow Q$	$\exists x \cdot P$

```
predicate ::= \bot
                     \neg predicate
                     predicate \land predicate
                     predicate \ \lor \ predicate
                     predicate \Rightarrow predicate
                     predicate \Leftrightarrow predicate
                     orall var\_list \cdot predicate
                     \exists var\_list \cdot predicate
                     expression = expression
expression ::= \cdots
variable :::
var\_list
```

$$\frac{\textbf{H(F)}, \ \textbf{E} = \textbf{F} \ \vdash \ \textbf{P(F)}}{\textbf{H(E)}, \ \textbf{E} = \textbf{F} \ \vdash \ \textbf{P(E)}} = \text{EQ_LR}$$

$$\frac{\textbf{H(E)},\ \textbf{E}=\textbf{F}\ \vdash\ \textbf{P(E)}}{\textbf{H(F)},\ \textbf{E}=\textbf{F}\ \vdash\ \textbf{P(F)}}$$

symmetry	$E \ = \ F \ \Leftrightarrow \ F \ = \ E$
transitivity	$egin{array}{cccccccccccccccccccccccccccccccccccc$
pair	$E\mapsto F\ =\ G\mapsto H\ \Rightarrow\ E\ =\ G\ \wedge\ F\ =\ H$
One-point rules	if x not free in E $(\forall x \cdot x = E \ \Rightarrow \ P(x)\) \ \Leftrightarrow \ P(E)$ $(\exists x \cdot x = E \ \land \ P(x)\) \ \Leftrightarrow \ P(E)$

- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus

- A quick review of First Order Predicate Calculus

- A refresher on Set Theory

- Formalising Data Structures (list, tree, graph)

```
predicate ::= \bot
                  \neg predicate
                  predicate \land predicate
                  predicate \lor predicate
                  predicate \Rightarrow predicate
                  predicate \Leftrightarrow predicate
                  orall var\_list \cdot predicate
                  \exists \ var\_list \cdot predicate
                  expression = expression
                  expression \in expression
```

```
expression ::= variable
                    expression \mapsto expression
variable ::= identifier
var\ list \qquad ::= \ variable
                    variable, var\_list
              ::= set \times set
set
                    \mathbb{P}(set)
                    \{ var\_list \cdot predicate \mid expression \}
```

- When expression is the same as var_list , the last construct can be written $\{var_list \mid predicate\}$

- Basis
- Basic operators
- Extensions
 - Elementary operators
 - Generalization of elementary operators
 - Binary relation operators
 - Function operators

- Set theory deals with a new predicate: the membership predicate

$$E \in S$$

- where $oldsymbol{E}$ is an expression and $oldsymbol{S}$ is a set

There are three basic constructs in set theory:

Cartesian product	S imes T
Power set	$\mathbb{P}(S)$
Comprehension 1	$\{x\cdotx\in S\;\wedge\;P\mid F\}$
Comprehension 2	$\{x\mid x\in S\;\wedge\; P\}$

where S and T are sets, x is a variable and P is a predicate.

These axioms are defined by equivalences.

Left Part	Right Part
$E\mapsto F\in S imes T$	$E \in S \ \wedge \ F \in T$
$S\in \mathbb{P}(T)$	$orall x \cdot (x \in S \Rightarrow x \in T)$
$E \in \{x \cdot x \in S \ \land \ P F\}$	$\exists x \cdot x \in S \ \land \ P \ \land \ E = F$
$E \in \{x \mid x \in S \ \land \ P(x)\}$	$E \in S \ \wedge \ P(E)$

Left Part	Right Part
$S\subseteq T$	$S\in \mathbb{P}(T)$
S=T	$S\subseteq T \ \wedge \ T\subseteq S$

The first rule is just a syntactic extension

The second rule is the Extensionality Axiom

Union	$S \cup T$
Intersection	$S\cap T$
Difference	$S \setminus T$
Extension	$\{a,\ldots,b\}$
Empty set	Ø

Intersection

$E \in S \cup T$	$E \in S \ \lor \ E \in T$
$E \in S \cap T$	$E \in S \ \land \ E \in T$
$E \in S \setminus T$	$E \in S \ \land \ E otin T$
$E \in \{a, \dots, b\}$	$E=a$ \lor \ldots \lor $E=b$
$E\inarnothing$	

$oldsymbol{S} imes oldsymbol{T}$	$S \cup T$
$\mathbb{P}(S)$	$S\cap T$
$\{x\mid x\in S\;\wedge\; P\}$	$S\setminus T$
$S\subseteq T$	$\{a,\ldots,b\}$
S=T	Ø

Generalized Union	union (S)
Union Quantifier	$\cup x \cdot (x \in S \land P \mid T)$
Generalized Intersection	inter(S)
Intersection Quantifier	$\cap x \cdot (x \in S \land P \mid T)$

$E \in union(S)$	$\exists s \cdot (s \in S \land E \in s)$
$E \in \bigcup x \cdot (x \in S \land P \mid T)$	$\exists x \cdot (x \in S \land P \land E \in T)$
$E \in inter(S)$	$\forall s \cdot (s \in S \Rightarrow E \in s)$
$E \in \cap x \cdot (x \in S \land P \mid T)$	$\forall x \cdot (x \in S \land P \Rightarrow E \in T)$

Well-definedness condition for case 3: $S \neq \emptyset$

Well-definedness condition for case 4: $\exists x \cdot (x \in S \land P)$

union (S)

$$\cup x \cdot (x \in S \land P \mid T)$$

inter(S)

$$\cap x \cdot (x \in S \land P \mid T)$$

Binary relations	$S \leftrightarrow T$
Domain	$dom\left(r ight)$
Range	$ran\left(r ight)$
Converse	r^{-1}

$$r \in A \leftrightarrow B$$

$$dom(r) = \{a1, a3, a5, a7\}$$

$$ran(r) = \{b1, b2, b4, b6\}$$

$$r^{-1} = \{b1 \mapsto a3, b2 \mapsto a1, b2 \mapsto a5, b2 \mapsto a7, b4 \mapsto a3, b6 \mapsto a7\}$$

Left Part	Right Part
$r \in S \leftrightarrow T$	$r \subseteq S \times T$
$E\in dom(r)$	$\exists y \cdot (E \mapsto y \in r)$
$F\in ran(r)$	$\exists x \cdot (x \mapsto F \in r)$
$E \mapsto F \in r^{-1}$	$F \mapsto E \in r$

Partial surjective binary relations	$S \leftrightarrow\!$
Total binary relations	$S \Leftrightarrow T$
Total surjective binary relations	$S \Leftrightarrow\!$

$$r \in A \Leftrightarrow B$$

$$r \in A \Leftrightarrow\!\!\!\!\!> B$$

Left Part	Right Part
$r \in S \leftrightarrow\!$	$r \in S \leftrightarrow T \wedge \operatorname{ran}(r) = T$
$r \in S \Leftrightarrow T$	$r \in S \leftrightarrow T \land dom(r) = T$
$r \in S \not \Leftrightarrow T$	$r \in S \Leftrightarrow\!$

Domain restriction	$S \lhd r$
Range restriction	$r \rhd T$
Domain subtraction	$S \lessdot r$
Range subtraction	$r \triangleright T$

$$\{a3,\ a7\} \lhd F$$

$$F \rhd \{b2,b4\}$$

$$\{a3, a7\} \lhd F$$

$$F
ho \{b2,b4\}$$

Left Part	Right Part
$E \mapsto F \in S \triangleleft r$	$E \in S \land E \mapsto F \in r$
$E \mapsto F \in r \triangleright T$	$E \mapsto F \in r \land F \in T$
$E \mapsto F \in S \triangleleft r$	$E \notin S \land E \mapsto F \in r$
$E \mapsto F \in r \triangleright T$	$E \mapsto F \in r \land F \notin T$

Image	r[w]
Composition	p ; q
Overriding	$p \Leftrightarrow q$
Identity	$id\left(S ight)$

$$r[\{a,b\}] = \{m,n,p\}$$

$F \in r[w]$	$\exists x \cdot (x \in w \land x \mapsto F \in r)$
$E \mapsto F \in (p;q)$	$\exists x \cdot (E \mapsto x \in p \land x \mapsto F \in q)$
$E \mapsto F \in p \Leftrightarrow q$	$(dom(q) \lessdot p) \ \cup \ q$
$E\mapsto F\inid$	F = E

Direct Product	$p\otimes q$
First Projection	prj ₁
Second Projection	prj ₂
Parallel Product	$p \parallel q$

$E \mapsto (F \mapsto G) \in p \otimes q$	$E \mapsto F \in p \land E \mapsto G \in q$
$(E \mapsto F) \mapsto G \in prj_1$	G = E
$(E\mapsto F)\mapsto G\in prj_2$	G = F
$(E \mapsto G) \mapsto (F \mapsto H) \in p \parallel q$	$E \mapsto F \in p \ \land \ G \mapsto H \in q$

$S \leftrightarrow T$	$S \lhd r$	r[w]	prj ₁
$dom\left(r ight)$	$r \rhd T$	p ; q	prj ₂
$ran\left(r ight)$	$S \lessdot r$	$p \Leftrightarrow q$	$id\left(S ight)$
r^{-1}	$r \triangleright T$	$p\otimes q$	$p \parallel q$

$$r^{-1-1} = r$$
 $dom(r^{-1}) = ran(r)$
 $(S \triangleleft r)^{-1} = r^{-1} \triangleright S$
 $(p;q)^{-1} = q^{-1}; p^{-1}$
 $(p;q); r = q; (p;r)$
 $(p;q)[w] = q[p[w]]$
 $p; (q \cup r) = (p;q) \cup (p;r)$
 $r[a \cup b] = r[a] \cup r[b]$

Given a relation r such that $r \in S \leftrightarrow S$

$$r = r^{-1}$$

r is symmetric

$$r \cap r^{-1} = \emptyset$$

r is asymmetric

$$r \cap r^{-1} \subseteq \mathrm{id}$$

r is antisymmetric

$$\mathrm{id} \ \subset \ r$$

r is reflexive

$$r \cap \mathrm{id} = \emptyset$$

r is irreflexive

$$r;r\subseteq r$$

r is transitive

Given a relation r such that $r \in S \leftrightarrow S$

$$\begin{array}{lll} r = r^{-1} & \forall x, y \cdot x \in S \wedge y \in S \Rightarrow (x \mapsto y \in r \Leftrightarrow y \mapsto x \in r) \\ r \cap r^{-1} = \varnothing & \forall x, y \cdot x \mapsto y \in r \Rightarrow y \mapsto x \notin r \\ r \cap r^{-1} \subseteq \operatorname{id} & \forall x, y \cdot x \mapsto y \in r \wedge y \mapsto x \in r \Rightarrow x = y \\ \operatorname{id} \subseteq r & \forall x \cdot x \in S \Rightarrow x \mapsto x \in r \\ r \cap \operatorname{id} = \varnothing & \forall x, y \cdot x \mapsto y \in r \Rightarrow x \neq y \\ r; r \subseteq r & \forall x, y, z \cdot x \mapsto y \in r \wedge y \mapsto z \in r \Rightarrow x \mapsto z \in r \end{array}$$

Set-theoretic statements are far more readable than predicate calculus statements

Partial functions	S o T
Total functions	S o T
Partial injections	S ightarrow T
Total injections	$oldsymbol{S} ightarrow oldsymbol{T}$

$$F \in A \rightarrow B$$

$$F \in A \rightarrow B$$

$$F \in A
ightarrow B$$

$$F \in A
ightarrow B$$

Left Part	Right Part		
$f \in S o T$	$f \in S \leftrightarrow T \wedge (f^{-1};f) = \operatorname{id}(\operatorname{ran}(f))$		
$f \in S o T$	$f \in S ightarrow T \ \land \ s = \mathrm{dom}(f)$		
$f \in S ightarrow T$	$f \in S ightarrow T \ \land \ f^{-1} \in T ightarrow S$		
$f \in S ightarrow T$	$f \in S o T \wedge f^{-1} \in T o S$		

- The predicate:

$$f^{-1}$$
; $f \subseteq id$

- can be successively translated to:

$$\forall x, y, z \cdot x \mapsto y \in f \land x \mapsto z \in f \Rightarrow y = z$$

- This is done as follows by applying various rewriting rules:

$$f^{-1} ; f \subseteq \operatorname{id}$$

$$\forall y, z \cdot y \mapsto z \in (f^{-1} ; f) \Rightarrow y \mapsto z \in \operatorname{id}$$

$$\forall y, z \cdot y \mapsto z \in (f^{-1} ; f) \Rightarrow y = z$$

$$\forall y, z \cdot (\exists x \cdot y \mapsto x \in f^{-1} \land x \mapsto z \in f) \Rightarrow y = z$$

$$\forall y, z \cdot (\exists x \cdot x \mapsto y \in f \land x \mapsto z \in f) \Rightarrow y = z$$

$$\forall x, y, z \cdot x \mapsto y \in f \land x \mapsto z \in f \Rightarrow y = z$$

Partial surjections	$S \twoheadrightarrow T$
Total surjections	S woheadrightarrow T
Bijections	S ightarrow T

$$F \in A \twoheadrightarrow B$$

$$F \in A woheadrightarrow B$$

$$F \in A
ightarrow B$$

Left Part	Right Part		
$f \in S \twoheadrightarrow T$	$f \in S ightarrow T \ \wedge \ T = \mathrm{ran}(f)$		
$f \in S woheadrightarrow T$	$f \in S o T \wedge T = \operatorname{ran}(f)$		
$f \in S ightarrow T$	$f \in S ightarrow T \wedge f \in S woheadrightarrow T$		

S other	$S \twoheadrightarrow T$
S o T	$oldsymbol{S} oo oldsymbol{T}$
$oldsymbol{S} ightarrow oldsymbol{T}$	S ightarrow T
$oldsymbol{S} ightarrow oldsymbol{T}$	

S imes T	$S\setminus T$	r^{-1}	r[w]	id	$\{x x\in S\;\wedge\; P\}$
$\mathbb{P}(S)$	$S \leftrightarrow T \ S \not \Leftrightarrow T$	$egin{array}{c} S \lhd r \ S \lhd r \end{array}$	p;q	$S o T \ S o T$	$\{x\cdot x\in S\ \wedge\ P\mid E\}$
$S\subseteq T$	$S \Leftrightarrow\!$	$egin{array}{c} r hd T \ r hd T \end{array}$	$p \Leftrightarrow q$	$egin{array}{c} S ightharpoonup T \ S ightharpoonup T \end{array}$	$\set{a,b,\ldots,n}$
$S \cup T$	$dom\left(r ight)$ ran $\left(r ight)$	prj ₁	$p\otimes q$	$egin{array}{c} S & o & T \ S & o & T \end{array}$	union U
$S\cap T$	Ø	prj ₂	$p \parallel q$	S ightarrow T	$ \text{inter} \cap $

Given a partial function f, we have

Left Part	Right Part
F=f(E)	$E\mapsto F\ \in\ f$

Well-definedness condition: $E \in \text{dom}(f)$

- Foundation for deductive and formal proofs
- A quick review of Propositional Calculus
- A quick review of First Order Predicate Calculus
- A refresher on Set Theory

- Formalising Data Structures (list, tree, graph)

- Defining an infinite list built on a set $oldsymbol{V}$
- We have a point f of V (the beginning of the list)
- We have a bijective function n from V to $V\setminus\{f\}$.

This can be formalized as follows:

 $ext{axm}_{-1}: \quad f \in V$

 $ext{axm}_2: \quad n \in V
ightharpoonup V \setminus \{f\}$

- However, axm_1 and axm_2 are not sufficient
- We must say that there are:
 - no cycles
 - no backward infinite chains

- Suppose a set S is made of a cycle or an infinite BACKWARD chain
- Each point x in S is related to a point y in S by the relation n^{-1} .

$$y < ---- x$$
 $\forall x \cdot x \in S \; \Rightarrow \; (\exists y \cdot y \in S \; \wedge \; x \mapsto y \in n^{-1})$ $S \; \subset \; n[S]$

- But as the empty set enjoys this property, we have thus:

$$ext{axm}_3: \quad orall S \cdot S \subseteq n[S] \ \Rightarrow \ S = arnothing$$

 $ext{axm}_{-1}: \quad f \in V$

 $ext{axm_2}: \quad n \in V
ightarrow V \setminus \{f\}$

 $\operatorname{axm}_{-3}: \quad \forall S \cdot S \subseteq n[S] \Rightarrow S = \emptyset$

- From axm_3

$$\operatorname{axm}_{-3}: \quad \forall S \cdot S \subseteq n[S] \Rightarrow S = \emptyset$$

- We can deduce the following theorem (hint: instantiate S with $V \setminus T$)

thm1:
$$\forall T \cdot f \in T \land n[T] \subseteq T \Rightarrow V = T$$

- By unfolding $n[T] \subseteq T$, we obtain:

$$ext{thm}_{-2}: \quad \forall T \cdot f \in T \ \land \ (\forall x \cdot x \in T \Rightarrow n(x) \in T) \ \Rightarrow \ V = T$$

- Proving that each element x in the list has a property P(x).

$$\forall x \cdot x \in V \Rightarrow P(x)$$

- The same as proving: $V = \{ x \mid x \in V \land P(x) \}$
- For this, we instantiate T with $\{x \mid x \in V \land P(x)\}$ in **thm_2**:

$$ext{thm}_-2: \quad orall T \cdot f \in T \ \land \ (orall x \cdot x \in T \Rightarrow n(x) \in T) \ \Rightarrow \ V = T$$

- This requires proving successively:

$$P(f)$$
 $orall x \cdot x \in V \wedge P(x) \Rightarrow n(x) \in V \wedge P(n(x))$

$$\operatorname{axm}_{-1}: \quad f \in V$$

$$ext{axm}_2: \quad n \in V
ightarrow V \setminus \{f\}$$

Translating these axioms to the set of Natural Numbers, N, we obtain:

$$axm_{-}1: 0 \in \mathbb{N}$$

$$ext{axm}_{-2}: \quad succ \in \mathbb{N}
ightarrow \mathbb{N} \setminus \{0\}$$

This corresponds to the four first Peano Axioms

$$ext{thm}_{-2}: \quad orall T \cdot f \in T \ \land \ (orall x \cdot x \in T \Rightarrow n(x) \in T) \ \Rightarrow \ V = T$$

Translating this to the natural numbers, we obtain the fifth Peano axiom.

$$\forall T \cdot 0 \in T \ \land \ (\forall x \cdot x \in T \Rightarrow x+1 \in T) \ \Rightarrow \ \mathbb{N} = T$$

Finite List

- Here are the axioms of finite lists

 $\operatorname{axm}_{-1}: f \in V$

 $\text{axm}_2: \quad l \in V$

 $ext{axm}_3: \quad n \in V \setminus \{l\}
ightarrow V \setminus \{f\}$

 $\operatorname{axm}_{-4}: \quad \forall S \cdot S \subseteq n[S] \Rightarrow S = \emptyset$

- Notice that axiom **axm_4** is not symmetric with regard to both directions on the list.
- But this can be proved in a systematic manner.

A classical example is a numerical interval $a \dots b$ (with $a \leq b$).

It is easy to prove the following:

$$a \in a ... b$$

$$b \in a ... b$$

$$(a\mathinner{\ldotp\ldotp} b-1) \lhd succ \;\in\; (a\mathinner{\ldotp\ldotp} b) \setminus \{b\}
ightarrow (a\mathinner{\ldotp\ldotp} b) \setminus \{a\}$$

- Infinite trees generalise infinite lists.

- -The beginning f of the list is replaced by the top t of the tree.
- -The function p replaces n^{-1} of the infinite list

$$\text{axm}_{-1}: t \in V$$

$$ext{axm_2}: \quad p \in V \setminus \{t\} o V$$

$$\operatorname{axm}_{3}: \quad \forall S \cdot S \subseteq p^{-1}[S] \Rightarrow S = \emptyset$$

We define an induction rule which generalise that of infinite lists.

thm_1:
$$\forall T \cdot t \in T \land p^{-1}[T] \subseteq T \Rightarrow V = T$$

thm_1:
$$\forall T \cdot t \in T \land p^{-1}[T] \subseteq T \Rightarrow V = T$$

thm_1 can be further unfolded to the following equivalent one:

thm_2:
$$\forall T\cdot t\in T$$
 $\forall x\cdot x\in V\setminus\{t\} \land p(x)\in T \Rightarrow x\in T$ \Rightarrow $V=T$

$$p^{-1}[T] \subseteq T$$
 \Leftrightarrow
 $\forall x \cdot x \in p^{-1}[T] \Rightarrow x \in T$
 \Leftrightarrow
 $\forall x \cdot (\exists y \cdot y \in T \land x \mapsto y \in p) \Rightarrow x \in T$
 \Leftrightarrow
 $\forall x \cdot (\exists y \cdot y \in T \land x \in \text{dom}(p) \land y = p(x)) \Rightarrow x \in T$
 \Leftrightarrow
 $\forall x \cdot x \in V \setminus \{t\} \land p(x) \in T \Rightarrow x \in T$

$$\operatorname{axm}_{2}: p \in V \setminus \{t\} \rightarrow V$$

- Finite depth trees generalise finite lists.

- We still have a top point t which was f in the list.
- But the last element *l* of the list is now replaced by a set *L*.
- These are the so-called leafs of the tree.

 $axm_1: t \in V$

 $\operatorname{axm}_{-2}: L \subseteq V$

 $ext{axm}_3: \quad p \in V \setminus \{t\} woheadrightarrow V \setminus L$

 $ext{axm}_4: \quad \forall S \cdot S \subseteq p^{-1}[S] \ \Rightarrow \ S = \varnothing$

- As for finite lists, we have possible inductions in both directions.

Let a, b and c be three binary relations:

$$a \in S \leftrightarrow T$$

$$b \in T \leftrightarrow U$$

$$c \in S \leftrightarrow U$$

We have then the following theorem:

$$a;b\subseteq c \ \Leftrightarrow \ a\subseteq (b;\overline{c^{-1}})^{-1}$$

- We are given a relation r from a set S to itself
- The irreflexive transitive closure of r is denoted by cl(r).
- cl(r) is also a relation from S to S.
- The characteristic properties of cl(r) are the following:
 - 1. Relation r is included in cl(r)
 - 2. The forward composition of cl(r) with r is included in cl(r)
 - 3. Relation cl(r) is the smallest relation dealing with 1 and 2

$$\text{axm}_{-1}: \quad r \in S \leftrightarrow S$$

$$\operatorname{axm}_{2}: \operatorname{cl}(r) \in S \leftrightarrow S$$

$$\operatorname{axm}_{-3}: r \subseteq \operatorname{cl}(r)$$

$$\operatorname{axm}_{4}: \operatorname{cl}(r); r \subseteq \operatorname{cl}(r)$$

$$\operatorname{axm}_{-5}: \quad \forall p \cdot r \subseteq p \quad \land \quad p \ ; r \subseteq p \quad \Rightarrow \quad \operatorname{cl}(r) \subseteq p$$

$$ext{thm}_{-1}: \quad \mathsf{cl}(r) \ ; \mathsf{cl}(r) \subseteq \mathsf{cl}(r)$$

$$ext{thm}_2: \quad \operatorname{cl}(r) = r \cup r \ ; \operatorname{cl}(r)$$

$$ext{thm}_3: \quad \operatorname{cl}(r) = r \cup \operatorname{cl}(r); r$$

thm_4:
$$\forall s \cdot r[s] \subseteq s \Rightarrow \operatorname{cl}(r)[s] \subseteq s$$

thm_5:
$$cl(r^{-1}) = cl(r)^{-1}$$

- We are given a set V and a non-empty binary relation r from V to itself
- The graph representing this relation is strongly connected
- if any two distinct points in V are connected by a path built on r

$$\text{axm}_{-1}: \quad r \in V \leftrightarrow V$$

$$\operatorname{axm}_{2}: V \times V \subseteq \operatorname{cl}(r)$$

- Basic property

$$ext{thm}_{-1}: \quad orall S \cdot S
eq arnothing \wedge r[S] \subseteq S \ \Rightarrow \ V = S$$

- This is an induction rule