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Purpose of this Presentation

- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus

- A quick review of First Order Predicate Calculus

- Refresher on Set Theory

- Formalising Data Structures (list, tree, graph)



Foundation for Deductive and Formal Proofs

- Reason: We want to understand how proofs can be mechanized

- Topics:

- Concepts of Sequent and Inference Rule

- Backward and Forward Reasoning

- Basic Inference Rules



Sequent

- Sequent is the generic name for “something we want to prove”

- We shall be more precise later



Inference Rule

- An inference rule is a tool to perform a formal proof

- It is denoted by:

- A is a (possibly empty) collection of sequents: the antecedents

- C'Is a sequent: the consequent

The proofs of each sequent of A
together give you
a proof of sequent C




Foundation for Deductive (and formal) Proofs

- Concepts of Sequent and Inference Rule

- Backward and Forward Reasoning

- Basic Inference Rules



Backward and Forward Reasoning 6

A

Given an inference rule with antecedents A and consequent

Al

Forward reasoning: 4 |

Proofs of each sequent in A give you a proof of the consequent C

Backward reasoning: 4 1
In order to get a proof of C, it is sufficient to have proofs of each

sequentin A

Proofs are usually done using backward reasoning



“Executing” the Proof of a Sequent S (backward reasoning)

- We are given:

- a collection 7 of inference rules of the form &

- a sequent container K, containining S initially

WHILE K Is not empty

CHOOSE a rule % In 7 whose consequent C'is in K;

REPLACE C' in K by the antecedents A (if any)

This proof method is said to be goal oriented
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Proof of S1 10
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Proof of S1

11
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Proof of S1
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Proof of S1 13
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Proof of S1

14
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Proof of S1

15
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Recording the Proof of Sequent S1 16
Mgy 1258 135223 5% 4 55550 16 17
S1
r3
N\

S2 S3 54
r1 IS r2

' 3
S5 S6 S7
r4 ré r7

- The proof is a tree

- We have shown here a depth-first strategy



Alternate Representation of the Proof Tree

17

- A vertical representation of the proof tree:
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Proof of S1 18
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Proof of S1
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Proof of S1

20
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Proof of S1

21
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Proof of S1

22
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Proof of S1

23
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Proof of S1

24
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Proof of S1
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Other Representations of the Proof(1)

26
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Other Representations of the Proof (2)

27
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Foundation for Deductive (and formal) Proofs

28

- Concepts of Sequent and Inference Rule

- Backward and Forward Reasoning

- Basic Inference Rules




More on Sequent

29

- We supposedly have a Predicate Language (not defined yet)

- A sequent is denoted by:

HE G

- H is a (possibly empty) collection of predicates: the hypotheses

- G Is a predicate: the goal

Under the hypotheses of collection H, prove the goal G




Basic Inference Rules of Mathematical Reasoning 30

- HYPOTHESIS: If the goal belongs to the hypotheses of a sequent,

then the sequent is proved,

- MONOTONICITY: Once a sequent is proved, any sequent with the

same goal and more hypotheses is also proved,

- CUT: If you succeed in proving P under H, then P can be added to

the collection H for proving a goal G.



Basic Inference Rules

31

H P - P

HYP

H P - Q

P H P - Q

CUT

H - Q

MON



Purpose of this Presentation

32

- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus

- A quick review of First Order Predicate Calculus

- Refresher on Set Theory

- Formalising Data Structures (list, tree, graph)



Basic Constructs of Propositional Calculus

33

- Given predicates P and @), we can construct:

- CONJUNCTION: P AQ

- IMPLICATION: P = Q

- NEGATION: - P



Syntax

34

Predicate ::=

Predicate AN Predicate
Predicate = Predicate
- Predicate

- This syntax is ambiguous



More on Syntax

35

- Pairs of matching parentheses can be added freely.

- Operator A is left associative.

-S0, PAQAR istoberead (P AQ)AR.

- Operator = is not associative: P = @Q = R is not allowed.
- Write explicitely (P = Q) = R or P = (Q = R) .

- Operators have precedence in this decreasing order: =, A, = .



Extensions: Truth, Falsity, Disjunction and Equivalence 36

-TRUTH: T

- FALSITY: L

- DISUUNCTION: P Vv Q

-EQUIVALENCE: P & Q



Syntax

Predicate ::= Predicate N Predicate
Predicate = Predicate
— Predicate
1
T
Predicate VvV Predicate
Predicate < Predicate




More on Syntax

38

- Pairs of matching parentheses can be added freely.

- Operators A and V are left associative.

- Operator = and < are not associative.

- Precedence decreasing order: =, A and V , = and <.



More on Syntax (cont’'d)

39

- The mixingof A and V without parentheses is not allowed.

- You have to write either PA(QV R) or (PAQ)V R

- The mixing of = and < without parentheses is not allowed.

- You have to write either P = (Q<R) or (P = Q)&R



Propositional Calculus Rules of Inference

40

FALSE L

H, L - P

H -Q + P

NOT L
H -P F Q

H P, Q F R
AND L

H, PAQ + R

H+ P HF =P

H - L

FALSE R

H P - 1

H - P

NOT R

H P HF Q

H - PAQ

AND R

HP - R HQF R

H PVvQ + R

ORL

H, =P + Q

H P,Q F R
IMP L

H P, P=Q + R

H+- PVQ

ORR

H, P F Q

H - P=Q

IMP R




Derived Rule: Proof by Cases

41

H, Q@ + P H, = Q

= P

H - P

CASE

We assume the antecedents (if any) and prove the consequent.

2

H - P |CUT {

H F QV-Q

OR R

H,-Q F —-@Q | HYP

HQV-Q F P

OR L

HQ + P

\

ant.

H,ﬂQ P

ant.




Derived Rule: Proof by Contradiction (1) 42
CTL
H P +F Q

Proof of rule CT_L:

H P, Q + @ | HYP

H, P - Q@ |CASE/ HP-Q + —-P |[MON ...
H, P, -Q + Q |CUT
HP-Q —-P + Q |[NOTL ...

H-@Q + —P | antecedent

H,P,-Q,-Q - P

HYP




Derived Rule: Proof by Contradiction (2)

43

Proof of rule CT_R:

CASE ¢

H, -P F L

H+ P

CTR

H P - P |HYP

H, -P - P |CUT /¢

H-P - L

antecedent

H-P 1L - P

FALSE L




Rewriting Rules

44

Predicate Rewritten
T - 1
P < Q (P = Q) N (Q = P)




45

CLASSICAL RESULTS (1)
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CLASSICAL RESULTS (2)

46

excluded middle PV —-P
idempotence pv P e P

P NP & P
absorbtion gllz X g; C 113 2 113
truth (P& T) & P
falsity (P& 1) & P




CLASSICAL RESULTS (3)

47

S A
— A\ &> — V -
de Morgan “PAQ <« (P= -Q)
(P = Q) & (PA-Q)
(P=0Q) <« (-Q = —P)
contraposition (P = Q) < (-Q = P)
(P = Q) & (@ = —P)
double negation P << P




48

CLASSICAL RESULTS (4)
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Purpose of this Presentation

49

- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus

- A quick review of First Order Predicate Calculus

- Refresher on Set Theory

- Formalising Data Structures (list, tree, graph)



Syntax of our Predicate Language so far

50

predicate ::= _L
-
- predicate
predicate N predicate
predicate V predicate
predicate =- predicate
predicate < predicate

- The letter P, Q, etc. we have used are generic variables

- Each of them stands for a predicate

- All our proofs were thus also generic (able to be instantiated)



Refining our Language: Predicate Calculus

o1

predicate

variable

var _list

erpression ::

1
T

- predicate

predicate N\ predicate
predicate V predicate
predicate = predicate
predicate < predicate
Vvar_list - predicate

variable
eTrPpression —> exrpression

rdenti fier

variable
variable,var _list




On Predicates and Expressions

92

e A Predicate is a formal text that can be PROVED

e An Expression DENOTES AN OBJECT.

e A Predicate denotes NOTHING.

e An Expression CANNOT BE PROVED

e Predicates and Expressions are INCOMPATIBLE.



Inference Rules for Predicate Calculus

53

H, Vx-P(x), P(E) - Q

ALL_L
H, x-P(x) F Q
where E is an expression
H I P(x)
ALL R
H - Vx:P(x)

- In rule ALL R, variable x is not free in H



Extending the language: Existential Quantification

54

predicate

variable

var_list

exrpression ::

1

T

- predicate

predicate N predicate
predicate V predicate
predicate = predicate
predicate & predicate
VYvar list - predicate
Jvar_list - predicate

variable
erpression —» erpression

rdenti frer

variable
variable, var list




Rules of Inference for Existential Quantification

55

H, PX) F Q
XST L
H, Ix-P(x) F Q
- In rule XST _L, variable x is not free in H
H ~ P(E)
XST.R

H F dx-P(x)

where E is an expression



Comparing the Quantification Rules

56

H  Vx.P(x)

H, 3x-P(x) - Q

H, vx.-P(x), P(E) ~ Q ALL L H ~ P(E) ¥ST R
H vx-P(x) ~ Q ) H ~ 3Ix-P(x) .
H+~P H, P -
x) ALL R ) @ XST.L




Example of Predicate Calculus Proof

o7

Ve - (Jy - Pry) = Qx

Ve (Jy-Poy) = Qu ALL R Ve (Jy-Poy) = Qu
= ALL R =y CUT...
Ve - (Vy - Pry = Q) IMP R 0
(
Ve - (Jy - Poy) = Qo V- (Y- Pry) = Qu
=y XSTR |  Foo HYP
Ely * Paz,y Px,y
<
V$(E|yPa:y) = Qq gw.(ay'Pw,y) = Qq
z.y ALLL | P,
7Y Fay IMPL | 3y-P,, HYP
Q -
’ Q-
\




An Interesting Derived Rule 58
- Replacing an existential goal by a simpler one
H F dx-Q H Q@ F P CUT XST
H - 3z.P (x fin F)
Proof of CUT _XST
HEF dx-Q antecedent
HEF dz-P CUT [
H dz-Q + dx- P XST L H @ - P

XSTR




CLASSICAL RESULTS (1)

59

Ve -Vy-P & Vy-Vx-P

commutativity Jx-Jy-P < Jy-3Jz-P
s V- (PANQ) & Vx:P Vo - Q
distributivity 3z - (PVQ) & 3Jz-P V 3z-Q

associativity

if x notfreein P

PV Vr-Q << Vx-(PVQ)
PAdx-Q < dx-(PAQ)
P=Vr-Q & Ve -(P=Q)




CLASSICAL RESULTS (2)

60

de Morgan laws

- Ve-P < dx-- P
—de-P & V- P
-V (P=Q) < dxz-(PA-Q)
~3z-(PAQ) <& Va-(P=-Q)

monotonicity

Ve-(P=Q) = (Vx-P = Vz-Q)
Ve-(P=Q) = (Jx-P = dz-Q)

equivalence

Ve- (P < Q) = (Vx-P & Vz-Q)
Ve-(P < Q) = (Fz-P & Fz-Q)




Summary of Logical Operators

61

PAQ

P Vv Q

Vx -

dx -




Refining our Language: Equality

62

predicate

variable

var_list

exrpression ::

1

T

- predicate

predicate N\ predicate
predicate V predicate
predicate = predicate
predicate < predicate
Vvar_list - predicate
dJvar_list - predicate
ETPressiton — erpression




Equality Rules of Inference 63
H(F), E=F + P(F) 0 LR H(E), E=F + P(E) 0 RL
H(E), E=F + P(E) H(F), E=F + P(F)

—— EQL




Classical Results for Equality

64

symmetry
transitivity

pair

F =F & F =F
EFE=F N F =G = FE =

F—F =G—-H = FEF =G

One-point rules

if « notfreein E
Vx-x=F = P(x)) & P(FE)

(xz-x=FEF N P(x)) < P(F)




Purpose of this Presentation

65

- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus

- A quick review of First Order Predicate Calculus

- A refresher on Set Theory

- Formalising Data Structures (list, tree, graph)



Refining our Language: Set Theory (1)

66

predicate ::

1
-

- predicate

predicate N predicate
predicate V predicate
predicate = predicate
predicate < predicate

Y var_list - predicate

3 var_list - predicate
ETPTression — erPpression
erpression € exrpression




Refining our Language: Set Theory (2)

67

exrpression

variable

var_list

set

:— wvariable
erpression —r exrpression

::= wdentifier

::= wvartable
variable, var _list

;:= set X set
P(set)
{ var_list - predicate | expression }

- When expression is the same as var list, the last construct

can be written

{ var list | predicate }



Set Theory Outline

68

- Basis

- Basic operators

- Extensions
- Elementary operators
- Generalization of elementary operators
- Binary relation operators

- Function operators



Set Theory: Membership 69

- Set theory deals with a new predicate: the membership predicate

EecsS

- where FE is an expression and S’ is a set



Set Theory: Basic Constructs

70

There are three basic constructs in set theory:

Cartesian product

S xT

Power set

P(S)

Comprehension 1

{z-2€S A P|F)}

Comprehension 2

{x|xeS N P}

where S and T are sets, @ is a variable and P is a predicate.



Cartesian Product

/1

al

SXT

bl




Power Set

72

a3

P(S)

01010



Set Comprehension

/3

Subset of S



Basic Set Operator Memberships (Axioms)

74

These axioms are defined by equivalences.

Left Part

Right Part

E—FeSxT

EeS N FeT

S € P(T)

Ve-(x€S =>xeT)

Ec{x-z€S N P|F}

de-x€e S N P N E=F

Ec{x|xeS N P(x)}

EcS A P(E)




Set Inclusion and Extensionality Axiom

75

Left Part Right Part
SCT S e P(T)
S=T SCT N TCS

The first rule is just a syntactic extension

The second rule is the Extensionality Axiom



Elementary Set Operators

/6

Union SuT
Intersection SNT
Difference S\T
Extension {a, ,b}
Empty set %)




Union, Difference, Intersection

77

Union

| nter section

Difference




Elementary Set Operator Memberships

/8

EeSuT EcsS EecT
EeSNT EcS EeT
EecS\T EcsS Eg¢T
E € {a,...,b} E=a vV E=b

Eco




Summary of Basic and Elementary Operators

79

S X T SuUT
P(S) SNT
{z|xzeS AP} | S\T
SCT {a,...,b}
S=T %)




Generalizations of Elementary Operators

80

Generalized Union

union (.S)

Union Quantifier

Jx-(xeS NP |T)

Generalized Intersection

inter (S)

Intersection Quantifier

Nx-(xeS NP |T)




Generalized Union

S union(S)

al

a3

a4

ad

ab
al




Generalized Intersection

82

Inter (S)

a3

al




Generalizations of Elementary Operator Memberships 83

E € union (S) ds-(se€S N E€s)

EecUz-(zeSANP|T) | Ix-(zeSANPANEeT)

E € inter(S) Vs-(se€S = E€s)

Eenx-(xeSANP|T) |[Vex-(ze€S NP = FEcT)

Well-definedness condition for case 3: S #*= &

Well-definedness condition forcase 4: dax-(x € S AN P)



Summary of Generalizations of Elementary Operators 84

union (.S)

Jx-(xeS NP |T)

inter (S)

Nz-(xeS NP |T)




Binary Relation Operators (1)

85

Binary relations ST

Domain dom ()
Range ran (1)

Converse r1




A Binary Relation r from a Set A to a Set B

A B
I
al bl
a2— a3 V - b2
<\ ?
34- 4 ) b3
5 <_

a7 . b5
b6

r € A< B



Domain of Binary Relation »

A B
r
al b1
a2— a3 > - b2
<\ ?
a4 4 b3
5 <_

26 b4
) a7 1 b5
b6

dom(r) = {al,a3,a5,a7}



Range of Binary Relation r

A B
r
al b1
a2— a3 > - b2
<\ ?
a4 4 b3
5 <_

26 b4
) a7 1 b5
b6

ran(r) = {bl,b2,b4,b6}



Converse of Binary Relation r 89

A B
r
al bl
a2 a V 4 >
<\ ?
o4 4 b3
5 <__

6 b4
a7 . b5
b6

r~1 = {bl + a3,b2 — al,b2 > a5,b2 > a7,b4 > a3,b6 — a7}



Binary Relation Operator Memberships (1)

90

Left Part Right Part
re ST rCSxT
E € dom (r) Jy- (Ew—vy € 1)
F € ran(r) dx-(x— F € r)
EwFer? F—Ecr




Binary Relation Operators (2)

91

Partial surjective binary relations S» T
Total binary relations S« T
Total surjective binary relations S «» T




A Partial Surjective Relation

92

A B
I
al bl
e a3 — - b2
=~ »
a4
a7 b5
b6

r € A<» B




A Total Relation

93

A B
r
al bl
a2 ~
s\
& v,? b3
ab >
a7 . b5
b6

r € A« B




A Total Surjective Relation

94

A B
r
al 4 /
a2 3 V e
2 \‘
a5 ,v’
6 4’\ | T—u_ b4
a7 ~{— b5

r € A«» B




Binary Relation Operator Memberships (2)

95

Left Part Right Part
reS<+»T reS<T ANran(r) =T
reS«T reS«<T Ndom(r)=T

reS«T

reSsT ANreS«T




Binary Relation Operators (3)

96

Domain restriction S<r
Range restriction r>T
Domain subtraction Sd4r
Range subtraction reT




The Domain Restriction Operator

97

{a3, a7} < F



The Range Restriction Operator

98

F > {b2,b4}



The Domain Restriction Operator

99

{a3, a7} 9 F



The Range Restriction Operator 100

F & {b2,b4}



Binary Relation Operator Memberships (3) 101

Left Part Right Part

E—F € S«r EFEeS N E—=Fcr

E—F ¢ rp>T EFE—Fer N FeT

E—F € S4r E¢S N E—~Fer

E—F crpT E—Fer N FegT




Binary Relation Operators (4)

102

Image r{w]
Composition P.q
Overriding P < q
|dentity id (S)




Image of {a, b} under r 103

S T

@\r/ /ﬂ"l

— N
;. U

rl{a,b}] = {m,n,p}




Forward Composition 104
C F /‘T\
S

\




The Overriding Operator 105

f<+g




Special Case 106

- Fo x>y

F<+{x|->Vy}




The Identity Relation 107

S S
al \ / al
a2 a2
a3 a3

a4 a4



Binary Relation Operator Memberships (4) 108

F € r[w] dJx-(zr€e€w N x—F€Er)

E—Fe(p;q) dz-(E—x€p N z— F€q)

E— Fep<gqg (dom(q¢) <9 p) U ¢

E— Feid F=F




Binary Relation Operators (5)

109

Direct Product P ®q
First Projection Pr1
Second Projection Prjo

Parallel Product

pllq




Binary Relation Operator Memberships (5) 110

EFE—(F—G)EpRq

E—Fep N E—Gegq

(E— F) — G € prj

(E— F)— G € prj

(BE—G)—~ (F—H)ep|q

E—Fep N G— H€q




Summary of Binary Relation Operators

111

ST S<ar | rlw] Pri1
dom (r) r [>T P.q Pri2
ran () S4r << q id (S)
r—1 rel | p®gq pllg




Classical Results with Relation Operators

112

dom(r—1)
(S <r)~1

|
H
ab)
-
~
=3
~—

I
=3
L
V
0

(p;q)~ ' = q1;p1

(P;5q);r = q;(p;T)

(p; q)lw] = q[p[w]]

p;(quUr) = (p;q) U (p;T)

rla Ub] =

rla]l U r[b]



More classical Results

113

Given arelation r suchthatr € S < S

rNid =9

rir Cr

r IS symmetric

r IS asymmetric

r Is antisymmetric
r is reflexive

r Is irreflexive

r IS transitive



Translations into First Order Predicates 114

Given a relation » suchthatr € S < S

r =71 Ve,y -t € SANyeS=(r—yecrsy—xe€r)
rNr =90 Vey-z—y€r=y—xgr

rNr 1t Cid Ve, y-c—yErAy—ce€r=xc=uy

id C r Ve-x€S=x—>xET

rNid=go Ve, y-x—y€Eer—=x#y

rir Cr Ve,y,z-x—yYyEr\Ny—z€Er—=>x—>2z€r

Set-theoretic statements are far more readable than predicate calculus statements



Function Operators (1)
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Partial functions S T
Total functions S —>T
Partial injections S+ T
Total injections S — T




A Partial Function F from a Set A to a Set B 116

F ¢ A+~ B



A Total Function F from a Set A to a Set B 117

A B
F
al bl
» b2
a4 > b3
6 \ b4
a7 / b5 ~

F ¢ A— B



A Partial Injection F from a Set A to a Set B
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A B
F
al b3
a3 b2
a.4' \
6 — \ b5

Fe A—+ B

— b6




A Total Injection F from a Set A to a Set B

119

\

b3

b2

b5

g

FFeA— B

— b6




Function Operator Memberships (1)
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Left Part Right Part

feS+-T feSoT N (F1;f) =id(ran(f))
fesS—->T feS+-»T AN s=dom(f)
fesS—+T feS+-»T AN f7leTHsS

fesS—-mT

feS—»T

AN fleTw S




Some Explanations 121

- The predicate:
fhircid
- can be successively translated to:
Ve,y,z-x—yef ANc—zef =>y=z
- This is done as follows by applying various rewriting rules:
ftircid
Vy,z-y—=z€e€(f1;f) = y— z€id
Vy,z2-y—2€(f1f) =>y==2
Vy,z-Bz-y—zecf I ANz—zef) = y==z

Vy,z-(Jx-z—yef Nax—zef) = y==z

Ve,y,z-x—yef Ner—zef =>y=z



Function Operators (2)

122

Partial surjections S T
Total surjections S —» T
Bijections S —»T




A Partial Surjection F from a Set A to a Set B 123

A B
F
al
a3 b2
ad ><
ab — \
- — b6

FFecAw»B



A Total Surjection F from a Set A to a Set B 124

FeA—->B



A Bijection F from a Set A to a Set B
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a3

b2

Nr\m
b5

\J

— b6

FFeA—»B




Function Operator Memberships (2) 126

Left Part Right Part

feS+T fesS+-T AN T=ran(f)

feS—->T feS—-T AN T =ran(f)

fes—»T fesSs—-T N feS—~»T




Summary of Function Operators
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S T S T
S —T S =T
S —+T ST




Summary of all Set-theoretic Operators (40)

128

SxT S\T r1 r[w] id {x|xeS N P}
pS) | oo | 237 | piq | BT | {z-xeS A P|E}
scT | $&71 | i1 pea| $i7 | Aab..n)
SuT :';r:"(g) priji PR q gi% union
SNT %) prij> |l g S T inter N




Applying a Function 129

Given a partial function f, we have

Left Part Right Part

F = f(E) E—F c f

Well-definedness condition: FE € dom (f)



Purpose of this Presentation 130

- Foundation for deductive and formal proofs

- A quick review of Propositional Calculus

- A quick review of First Order Predicate Calculus

- A refresher on Set Theory

- Formalising Data Structures (list, tree, graph)




Infinite List (1)

131

- Defining an infinite list built on a set V/

- We have a point f of V' (the beginning of the list)

- We have a bijective function n from Vo V \ {f}.

S on

O () () r

This can be formalized as follows:

axm 1 :

axm 2 :

fev

neV—»VA\{f}




Infinite List (2) 132

- However, axm 1 and axm 2 are not sufficient

- We must say that there are:
- no cycles

- no backward infinite chains

f
O n»@ > an®, () = o 0 o
o o 0 O () ) () = o o o




Infinite List (3): Cycles and Backward Infinite Chains 133

- Suppose a set S is made of a cycle or an infinite BACKWARD chain

- Each point « in S is related to a point y in S by the relation n 1.

Ve-x €S = (dy-y€ S A azl—>y€n_1)

S C nlS]

- But as the empty set enjoys this property, we have thus:

axm3: VS-SCnl[S] = S=0




Summary of Axioms for infinite List 134

axm1l: feV
axm2: neV--V\{f}

axm3: VS:-SCnl[S] = S=09




Towards an Induction Rule for Infinite Lists 135

- From axm_3

axm3: VS:-SCnl[S] = S=09

- We can deduce the following theorem (hint: instantiate S with V' \ T')

thml: VIT-feT AnT|CT = V=T

- By unfolding n[T'] C T, we obtain:

thm2: VI'-feT AN Ve-xzeT=n(x)eT) == V=T




Induction Rule for Infinite Lists 136

- Proving that each element «x in the list has a property P(x).
Ve-x €V = P(x)
-Thesame asproving: V ={xz|x € V A P(x)}

- For this, we instantiate T' with { x | x € V A P(x)} in thm 2:

thm2: VI'-feT AN Ve-ze€eT=>n(x)eT) = V=T

- This requires proving successively:

P(f)
Ve-x € VAP(x)=>n(x) e VAP(nNn))



Example: the Natural Numbers (1) 137

sSucc

> an®, > e ©® 3= o0 0 o

axm1l: feV
axm2: neV-»>V\{f}

Translating these axioms to the set of Natural Numbers, N, we obtain:

axml: O0€EN
axm 2: succ € N—»N\ {0}

This corresponds to the four first Peano Axioms



Example: the Natural Numbers (2) 138

sSucc

> an®, > e ©® 3= o0 0 o

thm2: VI'-feT AN Ve-xze€eT=n(zx)eT) = V=T

Translating this to the natural numbers, we obtain the fifth Peano axiom.

VI'-0€T AN Ve:z€eT=x+1€T) = N=T




Finite List 139

) - !
O s ® s ® O s ®

- Here are the axioms of finite lists

axml: feV

axm2: eV

axm3: neV\{l}—»V\{f}
axm4: VS-SCn[S] = S=0

- Notice that axiom axm_4 is not symmetric with regard to both directions on the list.

- But this can be proved in a systematic manner.



Example of Finite List: Interval 140

A classical example is a numerical interval a .. b (with a < b).

b
=) =) r an®,

SUcc

It is easy to prove the following:

(a..b—1)<dsucc € (a..b)\ {b} > (a..b)\ {a}



Infinite Tree 141

- Infinite trees generalise infinite lists.

O—> o 0 o

-The beginning f of the list is replaced by the top % of the tree.

-The function p replaces n~! of the infinite list



Axioms for Infinite Trees 142

axml: teV
axm2: peV\{t}->V

axm3: VS-SCp 1S = S=0

We define an induction rule which generalise that of infinite lists.

thm1l: VI-teT A p l[TI|CT = V=T




Induction Rule for Infinite Trees

143

thm1: VI -teT A p ' [T|CT = V=T

thm_1 can be further unfolded to the following equivalent one:

thm_2: VT -

teT

Ve-x e V\{t} Nplx) eT = €T
=

V=T




Proof of Unfolding 144

p~'T] C T

&

Ve.-x €Ep l[T] = €T

&

Ve-(dy-ye€T ANx—y€p) => €T
&

Ve:-(Jy-yeT N x€dom(p) N y=p(x)) = x€T
<~
Ve-x €e V\{t} ANplx)eT = xeT

axm2: peV\{t}—»V




Finite Depth Trees 145

- Finite depth trees generalise finite lists.

O———0O >0 > O—0

- We still have a top point ¢ which was f in the list.
- But the last element [ of the list is now replaced by a set L.

- These are the so-called leafs of the tree.

A
|

A A
d b




Axioms for Finite Depth Trees 146

axm1l: teV
axm2: LCYV

axm3: peV\{t}»>V\L

axm4: VS-SCplS] = S=0

tO

/ :

!




Inductions for Finite Depth Trees 147

- As for finite lists, we have possible inductions in both directions.

thm1l: VI'-teT AplT|CT = V=T

thm4: VI'-LCT Ap[T|CT = V=T




A Very Useful, so-called, Galois Connection 148

Let a, b and c be three binary relations:

ac ST
beT «—U

ceSU

We have then the following theorem:

a;bC c & aC (b;F)_1



Irreflexive Transitive Closure 149

- We are given a relation » from a set S to itself
- The irreflexive transitive closure of » is denoted by cl(r).
- cl(r) is also a relation from S to S.
- The characteristic properties of cl(r) are the following:
1. Relation r is included in cl(r)
2. The forward composition of cl(r) with » is included in cl(r)

3. Relation cl(r) is the smallest relation dealing with 1 and 2




Axioms for Irreflexive Transitive Closure

150

axm_1 :

axm 2 :

axm. 3 :

axm 4 :

axm 5 :

r €SS
c(r) € S S
r C cl(r)

cl(r) ;7 C cl(r)

Vp- rCp A p;srCp = cl(r)Cp




Properties of the Irreflexive Transitive Closure 151

thm1: cl(r);cl(r) C cl(r)
thm 2: cl(r) =r Ur;cl(r)
thm3: cl(r)=rUclr);r
thmd: Vs-r[s]Cs = cl(r)[s] C s

thm 5: cl(r—1) =cl(r)~!




Strongly Connected Graph 152

- We are given a set V and a non-empty binary relation » from V' to itself
- The graph representing this relation is strongly connected

- if any two distinct points in V' are connected by a path built on r

ViY



Axioms for Strongly Connected Graph 153

axml: r € V&V

axm?2: V xV Ccl(r)

- Basic property

thm1l: VS-S#90 Ar[S|]CS = V=S

- This is an induction rule



