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Purpose of this Lecture 1

- To introduce another example: the file transfer protocol

- To present a number of additional mathematical conventions

- To slighly enlarge the usage of the Proof Obligation Rules

- Example studied in many places, in particular in the following book

- L. Lamport Specifying Systems: The TLA+ Language and Tools

for Hardware and Software Engineers Addison-Wesley 1999
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Requirement Document (1) 2

- A file is to be transfered from a Sender to a Receiver

- On the Sender’s side the file is called f

- On the Receiver’s side the file is called g

- At the beginning of the protocol, g is supposed to be empty

- At the end of the protocol, g should be equal to f
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Requirement Document (2) 3

The protocol ensures the copy of a file from
one site to another one FUN-1

The file is supposed to be made of a sequence
of items FUN-2

The file is sent piece by piece between
the two sites FUN-3
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Modeling Approach 4

- Our approach at modeling is one of an external observer

- The observer “sees” the state space first from very far away

- He then approaches the future system and sees more details

- As he approaches he also sees more things happening
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Refinement Strategy 5

- Initial model: The file is transmitted in one shot (FUN1 and FUN2)

- First refinement: The file is transmitted gradually (FUN3)

- Second refinement: The two agents are separated

- Third refinement: Towards an implementation
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The Sender and the Receiver: a First View 6
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File transfer. The constant part of the state: n and f 7
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The Initial State: Constant Part 8

sets: D

constants: n
f

axm0 1: 0 < n

axm0 2: f ∈ 1 .. n→D

- The carrier set D makes this development generic
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The Initial State: Dynamic Part 9

variables: g
b

inv0 1: g ∈ 1 .. n 7→D

inv0 2: b = FALSE ⇒ g = ∅

inv0 3: b = TRUE ⇒ g = f

b = TRUE means protocol is finished
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Reminder of Mathematical Conventions (1) 10

x ∈ S set membership operator

N set of natural numbers: {0, 1, 2, 3, . . .}

a .. b
interval from a to b: {a, a + 1, . . . , b}

(empty when b < a)

a 7→ b pair constructing operator

S × T Cartesian product operator

S ⊆ T set inclusion operator

P(S) power set operator
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Reminder of Mathematical Conventions (2) 11

S↔ T set of binary relations from S to T

S→ T set of total functions from S to T

S 7→ T set of partial functions from S to T

dom(r) domain of a relation r

ran(r) range of a relation r
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A Binary Relation r from a Set A to a Set B 12
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A Partial Function F from a Set A to a Set B 13
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F = {a1 7→ b2, a3 7→ b4, a5 7→ b2, a7 7→ b6}

dom (F ) = {a1, a3, a5, a7}

ran (F ) = {b2, b4, b6}
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A Total Function F from a Set A to a Set B 14
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File Transfer Protocol Events: init and final 15

init
g := ∅
b := FALSE

final
when
b = FALSE

then
g := f
b := TRUE

end
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Summary of the File Transfer Protocol Initial Model 16

sets: D constants: n
f

axm0 1: 0 < n

axm0 2: f ∈ 1 .. n→D

variables: g
b

inv0 1: g ∈ 1 .. n 7→D

inv0 2: b = FALSE ⇒ g = ∅

inv0 3: b = TRUE ⇒ g = f

init
g := ∅
b := FALSE

final
when
b = FALSE

then
g := f
b := TRUE

end
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What is to be Proved 17

- Event init establishes invariants inv0 1 to inv0 3 (Rule INV)

- Event final preserves invariants inv0 1 to inv0 3 (Rule INV)

inv0 1: g ∈ 1 .. n 7→D

inv0 2: b = FALSE ⇒ g = ∅

inv0 3: b = TRUE ⇒ g = f

init
g := ∅
b := FALSE

final
when

b = FALSE
then

g := f
b := TRUE

end
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Invariant Establishment Proof Rule 18

- For the init event in the initial model

Properties
` INV

Modified Invariant
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Proof of Event init (1) 19

- Applying Rule INV to invariant inv0 1

init
g := ∅
b := FALSE

inv0 1: g ∈ 1 .. n 7→D

axm0 1
axm0 2
`

modified inv0 1

0 < n
f ∈ 1 .. n→D
`
∅ ∈ 1 .. n 7→D

inv0 1 / INV
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Proof of Event init (2) 20

- Applying Rule INV to invariant inv0 2

init
g := ∅
b := FALSE

inv0 2: b = FALSE ⇒ g = ∅

axm0 1
axm0 2
`

modified inv0 2

0 < n
f ∈ 1 .. n→D
`
FALSE = FALSE ⇒ ∅ = ∅

inv0 2 / INV
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Proof of Event init (3) 21

- Applying Rule INV to invariant inv0 3

init
g := ∅
b := FALSE

inv0 3: b = TRUE ⇒ g = f

axm0 1
axm0 2
`

modified inv0 3

0 < n
f ∈ 1 .. n→D
`
FALSE = TRUE ⇒ ∅ = f

inv0 3 / INV
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Invariant Preservation Proof Rule 22

- For other events in the initial model

Properties
Invariants
Guards of the event INV
`

Modified Invariant
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Proof of Event final (1) 23

- Applying Rule INV

final
when

b = FALSE
then

g := f
b := TRUE

end

axm0 1
axm0 2
inv0 1
. . .
grd
`

modified inv0 1

0 < n
f ∈ 1 .. n→D
g ∈ 1 .. n 7→D
. . .
b = FALSE
`
f ∈ 1 .. n 7→D

final / inv0 1 / INV
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Proof of Event final (2) 24

- Applying Rule INV

final
when
b = FALSE

then
g := f
b := TRUE

end

axm0 1
axm0 2
inv0 2
. . .
grd
`

modified inv0 2

0 < n
f ∈ 1 .. n→D
b = FALSE ⇒ g = ∅
. . .
b = FALSE
`
TRUE = FALSE ⇒ f = ∅

final / inv0 2 / INV
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Proof of Event final (3) 25

- Applying Rule INV

final
when
b = FALSE

then
g := f
b := TRUE

end

axm0 1
axm0 2
inv0 3
. . .
grd
`

modified inv0 3

0 < n
f ∈ 1 .. n→D
b = TRUE ⇒ g = f
. . .
b = FALSE
`
TRUE = TRUE ⇒ f = f

final / inv0 3 / INV
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Refinement Strategy 26

- Initial model: The file is transmitted in one shot (FUN1 and FUN2)

- First refinement: The file is transmitted gradually (FUN3)

- Second refinement: The two agents are separated

- Third refinement: Towards an implementation
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First Refinement 27

- The observer comes closer to the future system

- So far he was just seeing the beginning and the end

- Now the observer will see some intermediate moves

- He sees the file being gradually transfered from Sender to Receiver

- But he still has a partial view

27



What the Observer has Seen so far 28
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What the Observer will now See 29
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File transfer. Event receive 30
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- The new variable r lies within the interval 1 .. n+1

- The new variable h is equal to f restricted to its r − 1 first values
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First Refinement of the Protocol Model: the State 31

- Introducing additional variables h and r

- Variable g disappears

variables: b
h
r

inv1 1: r ∈ 1 .. n + 1

inv1 2: h = (1 .. r − 1) � f

inv1 3: b = TRUE ⇒ r = n + 1

- h is defined to be the domain restriction of f to 1 .. r − 1
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More Mathematical Conventions: Restrictions 32

s � r domain restriction operator

s �− r domain subtraction operator

r � t range restriction operator

r �− t range subtraction operator
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The Domain Restriction Operator 33
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The Domain Subtraction Operator 34
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The Range Restriction Operator 35
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The Range Subtraction Operator 36
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The Events 37

init
h := ∅
r := 1
b := FALSE

receive
when
r ≤ n

then
h := h ∪ {r 7→ f(r)}
r := r + 1

end

final
when
r = n + 1
b = FALSE

then
b := TRUE

end
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What is to be Proved 38

- Event init refines its abstraction

- Event final refines its abstraction

- Event receive refines skip

- Event receive does not diverge

- Relative deadlock freeness
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First Pathology: Divergence 39
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More to be Proved: No Divergence 40

- No divergence of new event receive (rules NAT and VAR)

variant1: n + 1− r

- This variant must be decreased by the new event:

receive
when
r ≤ n

then
h := h ∪ {r 7→ f(r)}
r := r + 1

end
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Refinement Rules: Non-divergence of New Events 41

- For new events only

Properties of the constants
Abstract invariants
Concrete invariants
Concrete guards of a new event NAT
`

Variant ∈ N
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No Divergence 42

- Applying rule NAT

. . .
inv1 1
. . .
`
variant belongs to N

. . .
r ∈ 1 .. n + 1
. . .
`
n + 1− r ∈ N
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Non-divergence of New Events 43

- For new events only

Properties of the constants
Abstract invariants
Concrete invariants
Concrete guards of a new event VAR
`

Modified variant < Variant
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No Divergence 44

- Applying rule VAR

receive
when
r ≤ n

then
h := h ∪ {r 7→ f(r)}
r := r + 1

end

. . .
`
variant is decreased

. . .
`
n + 1− (r + 1) < n + 1− r
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Second Pathology: Early Deadlock 45

init
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final

final
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Refinement Rules: Relative Deadlock Freeness 46

- Global proof rule

Properties of the constants
Abstract invariants
Concrete invariants
Disjunction of abstract guards DLF
`

Disjunction of concrete guards
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The Abstract and Concrete Events 47

- Abstract Events

final
when
b = FALSE

then
g := f
b := TRUE

end

- Concrete Events

receive
when
r ≤ n

then
h := h ∪ {r 7→ f(r)}
r := r + 1

end

final
when
b = FALSE
r = n + 1

then
b := TRUE

end
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More to be Proved: No Early Deadlock 48

- Applying rule DLF

. . .
inv1 1
disj. of abs. guards
`
disj. of conc. guards

. . .
r ∈ 1 .. n + 1
b = FALSE
`
r ≤ n ∨ (b = FALSE ∧ r = n + 1)
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Summary of First Refinement: the State and Events 49

variables: b
h
r

inv1 1: r ∈ 1 .. n + 1

inv1 2: h = (1 .. r − 1)� f

inv1 3: b = TRUE ⇒ r = n + 1

variant1: n + 1− r

init
b := FALSE
h := ∅
r := 1

receive
when
r ≤ n

then
h := h ∪ {r 7→ f(r)}
r := r + 1

end

final
when
b = FALSE
r = n + 1

then
b := TRUE

end

- This model is not satisfactory: event receive accesses file f
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Development Approach 50

- Initial model: The file is transmitted in one shot (FUN1 and FUN2)

- First refinement: The file is transmitted gradually (FUN3)

- Second refinement: The two agents are separated

- Third refinement: Towards an implementation
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What the Observer could see of the Initial Model 51
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What the Observer could see of first Refinement 52
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What the Observer will now See 53
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A More Accurate Version (1) 54
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A More Accurate Version (2) 55
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Initial Situation 56
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Send 57
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Receive 58

a

b

c c c

b b

aa

f f f

s

n

s

n

d d d

a a

h

r

r

a

hh

r

n

s

58



Send 59
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Receive 60

a

b

c c

b

a

f f

d d

hh

b

a

r

a

b

b

r

n sn s

60



Send 61
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Receive 62
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Sender and Receiver 63
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Second Refinement: the State 64

- We introduce an additional variable s, and a data item d

variables: b
h
r
s
d

inv2 1: s ≤ n + 1

inv2 2: s ∈ r .. r + 1

inv2 3: s = r + 1 ⇒ d = f(r)
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Second Refinement: the Events 65

init
b := FALSE
h := ∅
r := 1
s := 1
d :∈ D

send
when
s = r
s 6= n + 1

then
d := f(s)
s := s + 1

end

receive
when
s = r + 1

then
h := h ∪ {r 7→ d}
r := r + 1

end

final
when
b = FALSE
r = n + 1

then
b := TRUE

end
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What is to be Proved 66

- Event init refines its abstraction

- Event final refines its abstraction

- Event receive refines its abstraction

- Event send refines skip

- Event send does not diverge

- Relative deadlock freeness
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Refinement Strategy 67

- Initial model: The file is transmitted in one shot (FUN1 and FUN2)

- First refinement: The file is transmitted gradually (FUN3)

- Second refinement: The two agents are separated

- Third refinement: Towards an implementation
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Some Ideas for a Third Refinement? 68

send
when
s = r
s 6= n + 1

then
d := f(s)
s := s + 1

end

receive
when
s = r + 1

then
h := h ∪ {r 7→ d}
r := r + 1

end

inv2 2: s ∈ r .. r + 1
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Some Ideas for a Third Refinement? 69

send
when
s = r
s 6= n + 1

then
d := f(s)
s := s + 1

end

receive
when
s = r + 1

then
h := h ∪ {r 7→ d}
r := r + 1

end

inv2 2: s ∈ r .. r + 1

- In order to compare r and s, it is sufficient to compare their parities
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Third Refinement: Sending Parities (1) 70
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Third Refinement: Sending Parities (2) 71
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About Parities 72

axm3 1: parity ∈ N→{0, 1}

axm3 2: parity(0) = 0

axm3 3: ∀x · x ∈ N ⇒ parity(x + 1) = 1− parity(x)

thm3 1: ∀x, y · x ∈ N
y ∈ N
x ∈ y .. y + 1
parity(x) = parity(y)
⇒
x = y

72



Third Refinement: the State 73

variables: b
h
r
s
d
p
q

inv3 1: p = parity(s)

inv3 2: q = parity(r)
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Third Refinement: the Events 74

init
b := FALSE
h := ∅
r := 1
s := 1
d :∈ D
p := 1
q := 1

final
when
b = FALSE
r = n + 1

then
b := TRUE

end

send
when
p = q
s 6= n + 1

then
d := f(s)
s := s + 1
p := 1− p

end

receive
when
p 6= q

then
h := h ∪ {r 7→ d}
r := r + 1
q := 1− q

end
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Third Refinement: Proofs 75

- The proofs are left as exercises
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Summary of Proofs with the Tool 76

Total Interactive

Initial Model 6 0

1st Refinement 13 0

2nd Refinement 15 0

3rd Refinement 8 5

Total 42 5
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What we Have Learned in this Lecture 77

- More mathematical conventions

- How to write a model

- What kind of things we have to prove

- How the proof can help finding invariants

- Many things can be done by tools

- A small theory of parities
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Gradual Observation of the Intended System 78
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Reminder of Mathematical Conventions (1) 79

x ∈ S Set membership operator

N set of Natural Numbers: {0, 1, 2, 3, . . .}

a .. b
Interval from a to b: {a, a + 1, . . . , b}

(empty when b < a)

a 7→ b pair constructing operator

S × T Cartesian product operator

S ⊆ T set inclusion operator

P(S) power set operator
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Reminder of Mathematical Conventions (2) 80

S↔ T Set of binary relations from S to T

S→ T Set of total functions from S to T

S 7→ T Set of partial functions from S to T

dom(r) Domain of a relation r

ran(r) Range of a relation r
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Reminder of Mathematical Conventions (3) 81

s � r domain restriction operator

s �− r domain subtraction operator

r � t range restriction operator

r �− t range subtraction operator
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A Binary Relation r from a Set A to a Set B 82
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A Partial Function F from a Set A to a Set B 83

A B

a3
a2

a6

a7

b1

F

b3

b4

b5

b6

b2

a5

a1

a4

F = {a1 7→ b2, a3 7→ b4, a5 7→ b2, a7 7→ b6}
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A Total Function F from a Set A to a Set B 84
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The Domain Restriction Operator 85
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The Domain Subtraction Operator 86

A B

a3
a2

a6
a7

b1

F

b3

b4

b5

b6

b2

a5

a1

a4

{a3, a7} �− F

86



The Range Restriction Operator 87
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The Range Subtraction Operator 88
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Structure of a Model 89

- List of Sets (identifiers)

- List of Constants (identifiers)

- List of Axioms (predicates built on sets and constants)

- List of Variables (identifiers)

- List of Invariants (predicates built on sets, constants, and variables)

- List of Events
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Summary of the File Transfer Protocol Initial Model 90

sets: D constants: n
f

axm0 1: 0 < n

axm0 2: f ∈ 1 .. n→D

variables: g
b

inv0 1: g ∈ 1 .. n 7→D

inv0 2: b = FALSE ⇒ g = ∅

inv0 3: b = TRUE ⇒ g = f

init
g := ∅
b := FALSE

final
when
b = FALSE

then
g := f
b := TRUE

end
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Summary of First Refinement: the State and Events 91

variables: b
h
r

inv1 1: r ∈ 1 .. n + 1

inv1 2: h = (1 .. r − 1) � f

inv1 3: b = TRUE ⇒ r = n + 1

thm1 1: b = TRUE ⇒ h = g

variant1: n + 1− r

init
b := FALSE
h := ∅
r := 1

receive
when
r ≤ n

then
h := h ∪ {r 7→ f(r)}
r := r + 1

end

final
when
b = FALSE
r = n + 1

then
b := TRUE

end

- Variable g has disappeared: it is not satisfactory
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Introducing Anticipated Events 92

- We want to keep the variable g in the first refinement

- That seems impossible since event receive has to refine skip

- For this, we introduce the notion of anticipated event

- Such an event will be later proved to be conveergent
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Initial Model with an anticipated event 93

sets: D constants: n
f

axm0 1: 0 < n

axm0 2: f ∈ 1 .. n→D

variables: g inv0 1: g ∈ 1 .. n 7→D

init
g := ∅

receive
status

anticipated
when
g 6= f

then
g :∈ 1 .. n 7→D

end

final
when
g = f

then
skip

end

- Event receive is highly non-deterministic.

- Notice the event final

- Variable b is not useful anymore
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First Refinement 94

variables: g
r

inv1 1: r ∈ 1 .. n + 1

inv1 2: g = (1 .. r − 1)� f

variant1: n + 1− r

init
g := ∅
r := 1

receive
status

convergent
when

r 6= n + 1
then

g(r) := f(r)
r := r + 1

end

final
when

r = n + 1
then

skip
end

Note: the event receive works now with variable g

94


