Event-B Course

10. An Access Control System
Jean-Raymond Abrial

September-October-November 2011

Purpose of this Lecture

- To study again a complete system (like Car or Press)

- To encounter some interesting data structure

- To exercise ourselves in the human reasoning while making

the formal development

- To see an example of decomposition of formal models

The System: Requirement Document (1)

- To control the accesses of persons to locations of a workspace.

The system concerns people and locations FUN-1

- It is based on permanent authorization given to people

People are permanently assigned the right

. . FUN-2
to access certain locations only

The System: Requirement Document (2)

- We want to be sure that people which are present in a

location are authorized to do so

A person which is in a location must be
authorized to be there

FUN-3

- This requirement is the main purpose of this system

The System: Requirement Document (3)

- People are identified by means of magnetic cards

Each person receives a personal magnetic card EQP-1
- For entering into a location people put their card in the
fence of a card reader
Each entrance and exit of a location is equipped EQP-2

with a card reader

The System: Requirement Document (4)

- Card readers are equipped with two lamps: one green and one red

- When a person puts his card in the fence, then one lamp is lit

- When the green lamp is lit, it means the person is accepted

- When the red lamp is lit, it means the person is not accepted

Each card reader has two lamps: one green light
and one red light.

EQP-3

The System: Requirement Document (5)

Each lamp has two status

Each light can be “on” of “off”. EQP-4

Each door is equipped with a turnstile which works one way only

Locations communicate via one-way turnstiles EQP-5

Card Reader and Turnstile

Turnstyle

C

red (on/off)
green (on/off)

fence

Reader

BASIC
EQUIPMENT

The System: Requirement Document (6) 8

When nobody is willing to move from one location to another, the

corresponding turnstile is blocked

Turnstiles are normally blocked FUN-4

In order to change location, a person first put his card in the fence of

the corresponding card reader

A person willing to pass through a turnstile

puts its card in the fence of the card reader FUN-5

Access Protocol (after introducing card in reader)

- If access is permitted ¢

- Passing, or 30 sec elapsed

- If access is refused {

(- green light is turned on

| - turnstile is unblocked for 30 sec

(- green light is turned off

| - turnstile is blocked again

[- red light is turned on for 2 sec

| - turnstile stays blocked

More Functional Requirements (1)

10

If the person is accepted, the green light is lit

for 2 seconds and the turnstile remains blocked

and the turnstile is unblocked for at most FUN-6
30 seconds.
If the person is not accepted, the red light is it FUN-7

More Functional Requirements (2)

11

As soon as an accepted person has gone

turned off and the turnstile is blocked again.

through an unblocked turnstile, the green light is FUN-8
turned off and the turnstile is blocked again.

If nobody goes through an unblocked turnstile

during the 30 seconds period, the green light is FUN-9

Problems to be Solved During the Design (1) 12

- Many problems have not been solved in the requirements

- Sharing of control between Hardware and Software
- A computer in each card reader?
- A unique centralized computer?

- A mixed situation with some “intelligence” in the card reader?

Problems to be Solved During the Design (2) 13

- Precise behavior of the equipment
- Does the turnstile block itself after lamps are turned off?
- Or does the turnstile wait for an order to do so?
- Does the lamp system of each card reader have a local clock?

- Is the fence obstructed after inserting a card into it?

- Answering these questions is important

- It will allow us to define the precise spec of the equipment we buy

Problems to be Solved During the Design (3)

14

- Tackling safety questions
- The Requirement Document says nothing on this
- Is it important or not?
- If it is important, what are the precise safety questions?

- Should we extend the Requirement Document?

Problems to be Solved During the Design (4)

15

- Synchronization problems
- Requirements say nothing about the precise timing
- Synchronization between the lamps and the turnstile
- Which one comes first?

- Is it important to know that?

Problems to be Solved During the Design (5) 16

- Functioning at the limits
- Again, it is not treated in the Requirements
- Introducing several cards successively into green card reader?
- Introducing the same card quickly into different card readers?

- Strange behavior of people must not be excluded

Refinement Strategy

17

-Intitial model: Persons and locations

- 1st refinement: Communicatons between locations

- 2nd refinement: Doors

- 3rd refinement:; Card readers

- 4th refinement: Lights and turnstile

- Decomposition

Initial Model: the state 18

- We introduce:

- The two carrier sets of persons, P, and locations, L

- The constant authorization, aut, as a relation between P and L

- The variable, sit, denoting where a person is

Initial Model: the state (cont'd)

19

- A person cannot be in two locations at a time

- Therefore sit is a function from P to L

- Is it a partial or a total function? Would be nice to have it total

- We introduce a special constant “location”, out, for outside

- Everyone is authorized to be in out

- the variable, sit, is therefore a total function

Initial Model

axm0.1: aut € P+ L
carrier sets: P, L
axm0. 2: out € L
constants: aut, out

axm0 3: P x {out} C aut

inv0 1: sit ¢ P— L
variables: sit

inv0 2: sit C aut

Initial Model: the events

21

init
sit .= P x {out}

- It is still very abstract

pass
any p,l where
p— 1l € aut
sit(p) # 1
then
sit(p) = 1
end

- We do not know how people go from one location to another

Example 22
persons = {pl, p2, p3}
Sets locations = {1, 12, 13, out }
pl 12, out
Authorizations p2 11, 13, out
p3 12, 13, out
Correct scenario
pl | out pl | I2 pl | I2 pl | out pl | out
p2 | out |—| p2 |out |— | p2 |11 |—|p2|I1 p2 | 11
p3 | out p3 | out p3 | out p3 | out p3 | 13

What we Have to Prove

23

- init establishes the invariant (easy)

- pass maintains the invariant (easy)

- Deadlock freeness

Proving Deadlock Freeness

24

Axioms of constants

Invariant

|_
Disjunction of Guards

- This cannot be proved

aut € P+ L
out € L

P x {out} C aut
sit € P— L

sit C aut

|_

[p—l € aut
! <sz't<p>;éz)

- We know that each person has the authorization to be in out

- We have to say now that each person also has the authorization

to be in a location different from out

Adding a Property

25

axm0.4: Vp-

/pEP

=1 p— 1l € aut
\ [#= out

What Remains to be Proved for Deadlock Freeness 26

P # @ dg-(q € P)
P x {out} C aut P x {out} C aut

(p € P) (p € P)

— —
v = p— 1l € aut vp: =8 p— 1l € aut

\ [#= out) [#= out)
- -

p— 1l € aut [p—1l € aut

3p”‘<sz’t<p>;éz) op! (smp);éz)

-Wereplace P#= @ by dg-(q € P)

Deadlock Freeness Proof (1) 27

Jdg-(q € P) g € P
P x {out} C aut P x {out} C aut
(p € P \ (p e P \
— —
v = p— 1l € aut vp: =8 p— 1l € aut
\ [#= out) [#= out)
= =
[p—=l € aut [p—1l € aut
op! <sz't<p>;éz) op! (smp);éz)

- We eliminate the first existential quantification.

Deadlock Freeness Proof (2)

28

g € P
P x {out} C aut g € P
(p € P \ P x {out} C aut
=
VP p— 1l € aut Ell.(;];olute aUt)
Kal.(l#out)) -
= =y p— 1l € aut
le.(pr—ﬂéaut) by sit(p) #= 1
’ sit(p) 7

- We instantiate the quantified variable p with q

|

Deadlock Freeness Proof (3)

q € P g € P
P x {out} C aut P x{out} C aut
EIl-(ql_MECLUt) q— 1l € aut
[#= out [#= out
- =
pr—=1l € aut p—1 € aut
3.1 (sit(p);ﬁl) Elp’l'(sit(p)?él)

- We eliminate the first existential quantification

- We envisage two cases:

First case: sit(q) = [

30

sit(q) 7 1

q € P

P x {out} C aut
q— 1l € aut

[#= out

|_

[p—l € aut
S (sz't<p>7sz)

- We propose ¢ and [as withesses

sit(q) 7 1

q € P

P x {out} C aut
q— 1l € aut

[#= out

|_

q—1l € aut

sit(q) 7 1

Second case: sit(q) =1

31

sit(q) = sit(q) =1
q € P q € P
P x {out} C aut P x {out} C aut
q— 1 € aut q— 1l € aut
[#= out [#= out
= =
E'pl.(pl—MEaut) q — out € aut
’ sit(p) = 1 sit(q) #= out

- We propose ¢ and out as witnesses

Second case: sit(q) = [(cont’d)

32

sit(q) =1

q € P

P x {out} C aut
q— 1l € aut

[#= out

|_

q— out & aut

sit(q) #= out

- We apply equality

q € P

P x {out} C aut
q— 1l € aut

[#= out

|_

qg+— out € aut

[#= out

First Refinement 33

- We introduce the communication between the locations

- This is done by means of a binary relation, com, built on locations

- com IS irreflexive: a location does not communicate with itself

Reminder: Some Classical Relations

34

Given a relation r defined on a set S:

r 1S reflexive:
r i1s irreflexive:
r IS symmetric:
r IS transitive:

r IS anti-symmetric:

r € S« S

id(dom(r)) C r

r N id(S) =9

First Refinement: the State

35

carrier sets: P, L
constants: aut, out, com

variables: sit

axml1: com € L+ L

axml 2: com N id(L) = @

First Refinement: the Events

36

init
sit .= P x {out}

pass
any p,l where
p— 1l € aut
sit(p) — 1l € com
then
sit(p) = 1
end

What we Have to Prove

37

- Event init refines its abstraction (easy)
- Event pass refines its abstraction (easy)
- Guard strengthening

- Refinement of B-A predicate

- Deadlock freeness

Proving Refinement

38

(abstract-)pass
any p,l where
p— 1l € aut
sit(p) 7
then
sit(p) = 1
end

(concrete-)pass
any p,l where
p— 1l € aut
sit(p) — 1l € com
then
sit(p) = 1
end

axmi 1:

axm1i 2:

com € L+ L

com N id(L) = &

Proof Obligation: no more deadlock in concrete space

39

Axioms of constants

Invariant

Gluing Invariant
Abstract Guard

|_
Concrete Guard

aut € P+ L
out € L

P x {out} C aut
sit € P— L

sit C aut

[p— 1l € aut
! (sz'zxp);éz)
l_

[p—l € aut
3D, (37jt(p)l—>l € com

|

No More Deadlock in Concrete Space: Counter-example 40

P = {p}
L = {out,l}
aut = {p— out,p— [}

com = {out — [}

- In abstract space, p can go from out to [and vice-versa

- In concrete space, p can go from out to [and remains blocked in [

- This is because [does not communicate with out

Adding a Safety Requirement

41

No person must remain blocked in a location

SAF-1

- In abstract space we have (axm0_4)

/pEP \
=

vp: Ell-(le c aut)
\ [#= out)

- And we already proved (this is deadlock freeness in abstraction)

p— 1l € aut
dp, 1 - :
P (sztp@o)#z))

No more deadlock in concrete space (1)

42

- We have then just to prove

[p—l € aut
3D, (sz’tp(p)l—>l € com

- This could be re-written as follows

p— 1l € aut

dp, [- Elm-(pl_)m € sit
m+— 1 € com

- This is equivalent to

p—m € sit
dp,m - =Y p— 1l € aut
[—m € com™

|
|

)

No more deadlock in concrete space (2)

43

p—m € sit
dp,m - =Y p— 1 € aut
[—m € com™

- That is
(aut; com™1) N sit # @
- It is sufficient to prove

sit C (aut; com™1)

)

No more deadlock in concrete space (3)

44

sit C (aut; com™1)

- This can be developed as follows

(p|—>m€87jt \
—

vp,m: p+— 1l € aut
31 - 1
\ /

[l—m € com™

- that is

Vp-3l-(p—1l€aut N sit(p) — 1€ com)

- p is authorized to go in a certain [communicating with sit(p)

No more deadlock in concrete space (4) 45

- For proving this

sit C aut;com_l

- It is sufficient to prove (since sit C aut according to inv0_2)

aut C aut;com_l

- That Is

Vp,l-(p—~l€aut = dm-(p—me€aut N l—m € com))

A More Precise Safety Requirement

46

Vp,l-(p—~l€aut = dm-(p—me€aut N l—m € com))

This can be translated in English as follows:

Any person authorized to be in a location must
also be authorized to go in another location
which communicates with the first one.

SAF-2

L2

P1, P3

out

P2 1

Example 47
11 |13 11 | out

pl | 12 p2 | out 11 | out 12 | I3 pl | 11 p2 | out

pl | out | p3 | I2 13 | 12 12 | out pl | I3 p3 | 11

p2 | I1 p3 | I3 out | I1 13 | 11 pl | out | p3 | I3

p2 | 13 p3 | out out | 12 I3 | out p2 | 11 p3 | out
out | I3 out | I1

aut aut;com_l

com com ™1

- Opening a door between 12 and out

- Authorizing p2 to go to 12

L2 P p3

P1, P2, P3

out

P2 1

Solution 48
11 |13 11 | out
ol [12 [p2 [out || 1T |out]| 12 |13 pL | 1L 1 p2 | 13
pl | out | p3 | I2 12 | out 12 | out pL | 12 p2 | out
p2 |11 | p3 | 13 3 | 12 3 |11 pi 3| p3 :1
p2 | 12 p3 | out out | |1 I3 | out p2 |01Ut Pg |2
p2 | 13 out | I2 out | I1 P p3 | 13
out | I3 out | I2 p2 | 12 p3 | out
aut _ _1
com com ™1 aut; com

A More Adequate Requirement

49

- Moving to another location is not sufficient

- We want people being able to reach “outside”

- For this, we introduce an “exit” sign in each location (except out)

- the constant ex:it is defined everywhere except at out

- exit IS a function which must be compatible with com

- Every person must be entitled to follow exit

Extensions of the constants

50

carrier sets: P, L
constants: aut, out, com, exit

variables: sit

axmi1 3 :

axmil 4 :

axmil5:

exit € L \ {out} — L
exit C com

aut & {out} C aut;exit™!

The Final Safety Condition

o1

Any person authorized to be in a location which is
not “outside” must also be authorized to be in
another location communicating with the former
and leading towards outside.

SAF-3

Extensions of the constants 52

aut & {out} C aut; exit™!

[p— 1€ aut \
[#= out

=

\dm-(p—=mcaut N l—mcexit))

Vp,l-

[p+— 1 € aut \
[#= out

=

\ p — exit(l) € aut)

Vp,l-

- Every person p authorized to be in [(except out) must be authorized

to go in exit(l). Is it sufficient?

Being More Precise

53

- Being able to follow the exit sign is not sufficient

- We must be sure that following the exit sign does not put us

In a cycle

/‘\

exit

N

Characterizing a Cycle 54

- Suppose that we have a set s of locations forming a cycle with exit

- It means that for any [in s then exit(l) is also in s
Vi-(l € s = exit(l) € s)
Vi-(l € s = 1| € exit™1[s])
s C exit—1[s]

- We want to preclude cycles, therefore the only set with that

property must be the empty set

Formalizing the non-cyclicity

(s C L \

axm1 6: vs.| oS exit]
6 N

s=o

- Note that this property is equivalent to the following

(tC L)
out € t

Vi | exit—1[t] C ¢
=—

\LCt)

Structure of exit 56

- Prop. axm1_3 to axm1_6 characterize a tree spanning the graph

com

out

exit

<
7 N 7
N

—

- From any location one can reach out by following the ex:t sign

Proving Deadlock Freeness

57

dp,l-(p—1 € aut N sit(p) =1)

=

dp,l-(p—1 € aut N sit(p) — 1 € com)

- Still a problem

- From the inside, people can always go outside

- BUT from outside, people must be able to

go inside!l!

axm1_7 : ‘v’p-(pEPiEll-(

p— 1 C aut
[#= out

out — | € com

)

Comparison

58

(peP)
—

axmi.7: K3 5 (Pl Caut
\ out — [€ com)
/p e P \
=

axm074- vp Ell p |—>l & aut

\ [#= out)

Second Refinement: Doors

59

- Introducing the doors

- Each door has a location of origin and a location of destination

- Doors must be compatible with the communication

- Each door is assigned to the person who attempts to use it.

- A door could be temporarily green or red

- Each door is equipped with a local clock

Door Assigned to a Person: Injective Function dap 60

- From the moment a person p is accepted by a door d (event accept)
- To the moment where either:

- the person passes through the door

- the 30 sec time has passed (event off green)
- The door d is uniquely assigned to the person p

- We do not want two doors being assigned to the same person

- We do not want two persons being assigned the same door

Second Refinement: the State (1)

61

carriersets: P, L, D
constants: aut, out, com, exit, org, dst

variables: sit, dap, grn,red

axm2 1 : org € D— L

axm2 2 : dst € D — L

axm2 3 : com = (org~1:dst)

Second Refinement: the State (2)

62

inv2 1 :

inv2 2 .

inv2 3 :

inv2 4 :

inv2 5 ;

inv2 6 :

inv2 7 :

dap € P+ D
(dap ; org) C sit
(dap ; dst) C aut
grn C D

red C D

grn = ran(dap)

grm N red = I

Second Refinement: the Events (1)

63

accept
any p,d where
p e P
d € D
d ¢ grn U red
sit(p) = org(d)
p — dst(d) € aut
p & dom (dap)
then
dap(p) = d
grn = grn U {d}
end

refuse
any p,d where
p P
d e D
d & grn U red
= (sit(p) = org(d)
p — dst(d) € aut
p & dom (dap))
then
red := red U {d}
end

Second Refinement: the Events (2)

64

off_grn

any d where
d € grn

then
dap
agrn .

end

dap & {d}
grn \ {d}

off red

any d where
d € red
then

red := red \ {d}
end

Second Refinement: the Events (3)

65

(abstract-)pass
any p,l where

(concrete-)pass
any d where

p— 1l € aut d € grn
sit(p) — 1 € com then
then sit(dap~1(d)) = dst(d)
sit(p) ‘=1 dap = dap B> {d}
end grn = grn \ {d}
end
- Witness for refinement:
(p = dap~1(d)

\

[=

dst(d)

Second Refinement: Synchronization

accept refuse
Ve N\ 3
pass off_grn off_red

- This diagram shows how the present events are synchronized

- This is done through their guards

Status of Proofs

67

- Event pass refines its abstraction: success

- New events refine skip: success

- Deadlock freeness: success

- New events cannot take control for ever: failure

The Blocking Scenarios

68

- Events accept, refuse, off_grn, off red can take control for ever

- People with authorization always change mind at the last

moment and then retry

- People without authorization always retry

Solutions

69

- Detecting people with bad behavior and taking their card

(like in a cash dispenser)

- Not possible because then people cannot leave the location

- Accepting the (low) risk

- The risk is well understood and accepted by everyone concerned

Third Refinement: Introducing Card Readers

- Variables mCard and mAckn denote the channels between the

card readers and the controller

mCard

Card Readers Controller

—-

mAckn

- A card reader involved with a person is physically blocked until

it receives an acknowledgment (DECISION)

Third Refinement: the state (1)

/1

carriersets: P, L., D
constants: aut, out,com, org, dst

variables: sit,dap, grn, red
BLR, mCard, mAckn

inv3_1 : BLR C D
inv3 2 : mCard € D+ P

inv3 3 : mAckn C D

Third Refinement: the state (2)

72

inv3 4 :

inv3 5 :

inv3 6 :

dom (mCard) U grn U red U mAckn = BLR
dom (mCard) N (grm U red U mAckn) = &

mAckn N (grn U red) = &

Sets dom (mCard), grn, red, mAckn partition the set BLR

Third Refinement: Events (1)

/3

CARD
any p,d where
p &P
d € D\ BLR
then
BLR = BLR U {d}
mCard := mCard U {d+— p}
end

- This is a physical event

- It corresponds to a person p putting his card in the fence of

the unblocked card reader of door d

Third Refinement: Events (2)

74

accept
any p,d where
d— p e mCard
sit(p) = org(d)
p — dst(d) € aut
p ¢ dom (dap)
then
dap(p) = d
grn = grn U {d}
mCard = {d} 9mCard
end

refuse
any p,d where
d+— p e mCard
= (sit(p) = org(d)
p — dst(d) € aut
p ¢ dom (dap))
then
red := red U {d}
mCard = {d} <mCard
end

Third Refinement: Events (3)

off_grn
any d where
d € grn
then
dap = dap B {d}
grn = grn \ {d}
mAckn = mAckn U {d}
end

off red
any d where
d € red
then
red := red \ {d}
mAckn = mAckn U {d}
end

Third Refinement: Events (4)

/6

pass
any d where
d € grn
then
sit(dap~1(d)) = dst(d)
dap = dap B> {d}
grn = grn \ {d}
mAckn := mAckn U {d}
end

Third Refinement: Events (5)

77

ACKN
any d where
d € mAckn
then
BLR := BLR\ {d}
mAckn = mAckn \ {d}
end

Synchronization

/8

CARD
v N\
accept refuse
v N\ 3
pass off_grn off_red
N\ 3 v

ACKN

Fourth Refinement: Lights and Turnstile

79

Card Readers

mCard

mAckn

Lights

mOffred

ST
mOffgrn

mRefuse

MA cccept

Turnstyles

mPass

Controller

Fourth Refinement: the Green Chain (1)

80

constants:

variables:

carriersets: P,L,D

aut, out, com,
exit,org, dst

sit,dap, BLR,
mCard, mAckn,
GRN,mAccept,
mOff grn,

mPass

inv4d 1 :

inv4d 2 :

inv4 3 :

invd 4 ;

GRN C D
mAccept C D
mPass C D

mOff grn C D

Fourth Refinement: the Green Chain (2)

81

inv4g 5 :

inv4 6 ;

invd 7 :

inv4 8 :

mAccept U mPass U mOff_grn = grn
mAccept N (mPass U mOff grn) = &
mPass N mOff grn = O

GRN C mAccept

Fourth Refinement: the Red Chain (1)

82

constants:

variables:

carriersets: P, L, D

aut, out, com,
exit,org, dst

sit,dap, BLR,
mCard, mAckn,
GRN,mAccept,
mOff grn,
mPass, RED,
mOf f red,

mRefuse

inv4d 9 :

inv4 10 :

inv4g 11 :

RED C D
mRefuse C D

mOffred C D

Fourth Refinement: the Red Chain (2)

83

inv4d 12 :

invd 13 :

inv4 14 .

mRefuse U mOff_red
mRefuse N mOff_red

RED C mRefuse

red

Fourth Refinement: the final state

84

mCard
>
Card Readers
mAckn
BLR
mOffred
ST
mOffgrn
Lights mRefuse
GRN RED MA cccept
mPass
Turnstyles >

aut, out, com
exit, org, dst

Controller

st dap

Events (1)

85

accept
any p,d where
d— p e mCard
sit(p) = org(d)
p — dst(d) € aut
p ¢ dom (dap)
then
dap(p) = d
mCard = mCard\ {d — p}
mAccept := mAccept U {d}
end

Events (2)

86

ACCEPT
any d where
d € mAccept
then
GRN = GRN U {d}
end

Events (3)

87

PASS

any d where
d € GRN

then
GRN = GRN \ {d}
mPass := mPass U {d}
mAccept := mAccept \ {d}

end

Events (4)

88

pass
any d where
d € mPass
then
sit(dap~1(d)) = dst(d)
dap = dap B> {d}
mAckn = mAckn U {d}
mPass := mPass \ {d}
end

Events (5)

89

OFF_GRN

any d where
d € GRN

then
GRN = GRN \ {d}
mOff grn = mOff grn U {d}
mAccept := mAccept \ {d}

end

Events (6)

90

off_grn
any d where
d € mOff_grn
then
dap = dap B {d}
mAckn = mAckn U {d}
mOff grn = mOff grn\ {d}
end

Events (7)

91

refuse
any p,d where
d,p € mCard
= (sit(p) = org(d)
p — dst(d) € aut
p ¢ dom (dap))
then
red := red U {d}
mCard = mCard\ {d — p}
mRefuse .= mRefuse U {d}
end

Events (8)

92

REFUSE
any d where
d € mRefuse
then
RED = RED U {d}
end

Events (9)

93

OFF_RED
any d where
de RED
then
RED := RED\ {d}
mOff red == mOff red U {d}
mRefuse :== mRefuse \ {d}
end

Events (10)

94

off_red
any d where
d € mOff_red
then
mAckn = mAckn U {d}
mOff red == mOff red\ {d}
end

Synchronization

95

e
PASS

1

pass

N\

CARD
4

accept

1
ACCEPT

\
OFF_GRN

l
off_grn

1
ACKN

N\

refuse

1
REFUSE

1
OFF RED

l
off_red

'l

Fourth Refinement: the final state

96

mCard
>
Card Readers
mAckn
BLR
mOffred
ST
mOffgrn
Lights mRefuse
GRN RED MA cccept
mPass
Turnstyles >

aut, out, com
exit, org, dst

Controller

st dap

Hardware Model 97
carriersets: D, P
: : _ invH1: BLR C D
internal variables: géi invH2: RED C D
RED’ invH3: GRN C D
invH4: mCard C D+ P
. InVHS: mAckn C D
external variables: mCard, : _
Ack iInvVH6: mAccept C D
mAc n’t invH.7: mPass C D
mPczep ’ iInVH8: mRefuse C D
ERZfZ’SG invH9 : mOff grm C D
mOFf grn invH 10 : mOff red C D

mOf f red

Software Model

carriersets: D,L,P

constants: aut, out,
org, dst

internal variables: sit
dap,

external variables: mCard,
mAckn,
mAccept,
mPass,
mRefuse,
mOff_grn
mO f f_red

axmS 1: aut € P+ L
axmS 2: out € L
axmS 3. org € D— L
axmS4: dst € D— L
invG1: sit C P— L
invS2: dap C P+ D
invS3: mCard C D+ P
invS4: mAckn C D
invS 5: mAccept C D
invS 6: mPass C D
invS.7: mRefuse C D
invS8: mOffgrn C D
iINnvS9: mOffred C D

CARD

mCard

B rcv_card

mA ccept
RCV_ACCEPT = accept
mRefuse .
RCV_REFUSE —= refuse
ACCEPT REFUSE
‘ mOff_red
OFF_RED » rcv_off red
mOff_grn
OFF_GRN p— rcv_off_grn
mPass
PASS > [CV_pass
mAckn
RCV_PASS —= pass
\/
mAckn
RCV_OFF_ GRN —= off_grn
mAckn Y
RCV_OFF RED —= off red

/

ACKN

HARDWARE

SOFTWARE

Conclusion (1)

99

- Functional Requirements: 9

- Safety Requirements: 3

- Equipment Requirements: 5

- Constants: 6

- Variables: 12 (2 Software, 3 Hardware, 7 channels)

- Axioms: 13

Conclusion (2) 100

- Invariants: 29

- Events: 12 (5 Software, 7 Hardware)

- Refinements: 4

- Design Decisions: 4
- Possible Card Readers obstruction
- Automatic physical blocking of Card Readers
- Automatic physical blocking of Doors

- Setting up of clocks on Doors

- Proofs: 103 (1easy interactive)

