
Event-B Course

10. An Access Control System

Jean-Raymond Abrial

September-October-November 2011

Purpose of this Lecture 1

- To study again a complete system (like Car or Press)

- To encounter some interesting data structure

- To exercise ourselves in the human reasoning while making

the formal development

- To see an example of decomposition of formal models

1

The System: Requirement Document (1) 2

- To control the accesses of persons to locations of a workspace.

The system concerns people and locations FUN-1

- It is based on permanent authorization given to people

People are permanently assigned the right
to access certain locations only FUN-2

2

The System: Requirement Document (2) 3

- We want to be sure that people which are present in a

location are authorized to do so

A person which is in a location must be
authorized to be there FUN-3

- This requirement is the main purpose of this system

3

The System: Requirement Document (3) 4

- People are identified by means of magnetic cards

Each person receives a personal magnetic card EQP-1

- For entering into a location people put their card in the

fence of a card reader

Each entrance and exit of a location is equipped
with a card reader EQP-2

4

The System: Requirement Document (4) 5

- Card readers are equipped with two lamps: one green and one red

- When a person puts his card in the fence, then one lamp is lit

- When the green lamp is lit, it means the person is accepted

- When the red lamp is lit, it means the person is not accepted

Each card reader has two lamps: one green light
and one red light. EQP-3

5

The System: Requirement Document (5) 6

Each lamp has two status

Each light can be “on” of “off”. EQP-4

Each door is equipped with a turnstile which works one way only

Locations communicate via one-way turnstiles EQP-5

6

Card Reader and Turnstile 7

red (on/off)

green (on/off)

fenceTurnstyle

Reader
EQUIPMENT

BASIC

7

The System: Requirement Document (6) 8

When nobody is willing to move from one location to another, the

corresponding turnstile is blocked

Turnstiles are normally blocked FUN-4

In order to change location, a person first put his card in the fence of

the corresponding card reader

A person willing to pass through a turnstile
puts its card in the fence of the card reader FUN-5

8

Access Protocol (after introducing card in reader) 9

- If access is permitted


- green light is turned on

- turnstile is unblocked for 30 sec

- Passing, or 30 sec elapsed


- green light is turned off

- turnstile is blocked again

- If access is refused


- red light is turned on for 2 sec

- turnstile stays blocked

9

More Functional Requirements (1) 10

If the person is accepted, the green light is lit
and the turnstile is unblocked for at most
30 seconds.

FUN-6

If the person is not accepted, the red light is lit
for 2 seconds and the turnstile remains blocked FUN-7

10

More Functional Requirements (2) 11

As soon as an accepted person has gone
through an unblocked turnstile, the green light is
turned off and the turnstile is blocked again.

FUN-8

If nobody goes through an unblocked turnstile
during the 30 seconds period, the green light is
turned off and the turnstile is blocked again.

FUN-9

11

Problems to be Solved During the Design (1) 12

- Many problems have not been solved in the requirements

- Sharing of control between Hardware and Software

- A computer in each card reader?

- A unique centralized computer?

- A mixed situation with some “intelligence” in the card reader?

12

Problems to be Solved During the Design (2) 13

- Precise behavior of the equipment

- Does the turnstile block itself after lamps are turned off?

- Or does the turnstile wait for an order to do so?

- Does the lamp system of each card reader have a local clock?

- Is the fence obstructed after inserting a card into it?

- Answering these questions is important

- It will allow us to define the precise spec of the equipment we buy

13

Problems to be Solved During the Design (3) 14

- Tackling safety questions

- The Requirement Document says nothing on this

- Is it important or not?

- If it is important, what are the precise safety questions?

- Should we extend the Requirement Document?

14

Problems to be Solved During the Design (4) 15

- Synchronization problems

- Requirements say nothing about the precise timing

- Synchronization between the lamps and the turnstile

- Which one comes first?

- Is it important to know that?

15

Problems to be Solved During the Design (5) 16

- Functioning at the limits

- Again, it is not treated in the Requirements

- Introducing several cards successively into green card reader?

- Introducing the same card quickly into different card readers?

- Strange behavior of people must not be excluded

16

Refinement Strategy 17

-Intitial model: Persons and locations

- 1st refinement: Communicatons between locations

- 2nd refinement: Doors

- 3rd refinement: Card readers

- 4th refinement: Lights and turnstile

- Decomposition

17

Initial Model: the state 18

- We introduce:

- The two carrier sets of persons, P , and locations, L

- The constant authorization, aut, as a relation between P and L

- The variable, sit, denoting where a person is

18

Initial Model: the state (cont’d) 19

- A person cannot be in two locations at a time

- Therefore sit is a function from P to L

- Is it a partial or a total function? Would be nice to have it total

- We introduce a special constant “location”, out, for outside

- Everyone is authorized to be in out

- the variable, sit, is therefore a total function

19

Initial Model 20

carrier sets: P,L

constants: aut, out

axm0 1: aut ∈ P ↔ L

axm0 2: out ∈ L

axm0 3: P × {out} ⊆ aut

variables: sit
inv0 1: sit ∈ P → L

inv0 2: sit ⊆ aut

20

Initial Model: the events 21

init
sit := P × {out}

pass
any p, l where

p 7→ l ∈ aut
sit(p) 6= l

then
sit(p) := l

end

- It is still very abstract

- We do not know how people go from one location to another

21

Example 22

Sets persons = { p1, p2, p3 }
locations = { l1, l2, l3, out }

Authorizations
p1 l2, out
p2 l1, l3, out
p3 l2, l3, out

Correct scenario

p1 out
p2 out
p3 out

→
p1 l2
p2 out
p3 out

→
p1 l2
p2 l1
p3 out

→
p1 out
p2 l1
p3 out

→
p1 out
p2 l1
p3 l3

22

What we Have to Prove 23

- init establishes the invariant (easy)

- pass maintains the invariant (easy)

- Deadlock freeness

23

Proving Deadlock Freeness 24

Axioms of constants

Invariant

`
Disjunction of Guards

aut ∈ P ↔ L
out ∈ L
P × {out} ⊆ aut
sit ∈ P → L
sit ⊆ aut
`

∃ p, l ·
 p 7→ l ∈ aut
sit(p) 6= l



- This cannot be proved

- We know that each person has the authorization to be in out

- We have to say now that each person also has the authorization

to be in a location different from out
24

Adding a Property 25

axm0 4: ∀p·


p ∈ P
⇒

∃ l·
 p 7→ l ∈ aut
l 6= out





25

What Remains to be Proved for Deadlock Freeness 26

P 6= ∅
P × {out} ⊆ aut

∀p·


p ∈ P
⇒

∃ l·
 p 7→ l ∈ aut
l 6= out




`

∃ p, l ·
 p 7→ l ∈ aut
sit(p) 6= l



∃q · (q ∈ P)
P × {out} ⊆ aut

∀p·


p ∈ P
⇒

∃ l·
 p 7→ l ∈ aut
l 6= out




`

∃ p, l ·
 p 7→ l ∈ aut
sit(p) 6= l



- We replace P 6= ∅ by ∃q · (q ∈ P)

26

Deadlock Freeness Proof (1) 27

∃q · (q ∈ P)
P × {out} ⊆ aut

∀p·


p ∈ P
⇒

∃ l·
 p 7→ l ∈ aut
l 6= out




`

∃ p, l ·
 p 7→ l ∈ aut
sit(p) 6= l



q ∈ P
P × {out} ⊆ aut

∀p·


p ∈ P
⇒

∃ l·
 p 7→ l ∈ aut
l 6= out




`

∃ p, l ·
 p 7→ l ∈ aut
sit(p) 6= l



- We eliminate the first existential quantification.

27

Deadlock Freeness Proof (2) 28

q ∈ P
P × {out} ⊆ aut

∀p·


p ∈ P
⇒

∃ l·
 p 7→ l ∈ aut
l 6= out




`

∃ p, l ·
 p 7→ l ∈ aut
sit(p) 6= l



q ∈ P
P × {out} ⊆ aut

∃ l·
 q 7→ l ∈ aut
l 6= out


`

∃ p, l ·
 p 7→ l ∈ aut
sit(p) 6= l



- We instantiate the quantified variable p with q

28

Deadlock Freeness Proof (3) 29

q ∈ P
P × {out} ⊆ aut

∃ l·
 q 7→ l ∈ aut
l 6= out


`

∃ p, l ·
 p 7→ l ∈ aut
sit(p) 6= l



q ∈ P
P × {out} ⊆ aut
q 7→ l ∈ aut
l 6= out
`

∃ p, l ·
 p 7→ l ∈ aut
sit(p) 6= l



- We eliminate the first existential quantification

- We envisage two cases:


sit(q) 6= l

sit(q) = l

29

First case: sit(q) 6= l 30

sit(q) 6= l
q ∈ P
P × {out} ⊆ aut
q 7→ l ∈ aut
l 6= out
`

∃ p, l ·
 p 7→ l ∈ aut
sit(p) 6= l



sit(q) 6= l
q ∈ P
P × {out} ⊆ aut
q 7→ l ∈ aut
l 6= out
`
q 7→ l ∈ aut
sit(q) 6= l

- We propose q and l as witnesses

30

Second case: sit(q) = l 31

sit(q) = l
q ∈ P
P × {out} ⊆ aut
q 7→ l ∈ aut
l 6= out
`

∃ p, l ·
 p 7→ l ∈ aut
sit(p) 6= l



sit(q) = l
q ∈ P
P × {out} ⊆ aut
q 7→ l ∈ aut
l 6= out
`
q 7→ out ∈ aut
sit(q) 6= out

- We propose q and out as witnesses

31

Second case: sit(q) = l (cont’d) 32

sit(q) = l
q ∈ P
P × {out} ⊆ aut
q 7→ l ∈ aut
l 6= out
`
q 7→ out ∈ aut
sit(q) 6= out

q ∈ P
P × {out} ⊆ aut
q 7→ l ∈ aut
l 6= out
`
q 7→ out ∈ aut
l 6= out

- We apply equality

32

First Refinement 33

- We introduce the communication between the locations

- This is done by means of a binary relation, com, built on locations

- com is irreflexive: a location does not communicate with itself

33

Reminder: Some Classical Relations 34

Given a relation r defined on a set S: r ∈ S↔ S

r is reflexive: id(dom(r)) ⊆ r

r is irreflexive: r ∩ id(S) = ∅

r is symmetric: r = r−1

r is transitive: r ; r ⊆ r

r is anti-symmetric: r ∩ r−1 ⊆ id(S)

34

First Refinement: the State 35

carrier sets: P,L

constants: aut, out, com

variables: sit

axm1 1: com ∈ L↔ L

axm1 2: com ∩ id(L) = ∅

35

First Refinement: the Events 36

init
sit := P × {out}

pass
any p, l where

p 7→ l ∈ aut
sit(p) 7→ l ∈ com

then
sit(p) := l

end

36

What we Have to Prove 37

- Event init refines its abstraction (easy)

- Event pass refines its abstraction (easy)

- Guard strengthening

- Refinement of B-A predicate

- Deadlock freeness

37

Proving Refinement 38

(abstract-)pass
any p, l where
p 7→ l ∈ aut
sit(p) 6= l

then
sit(p) := l

end

(concrete-)pass
any p, l where
p 7→ l ∈ aut
sit(p) 7→ l ∈ com

then
sit(p) := l

end

axm1 1: com ∈ L↔ L

axm1 2: com ∩ id(L) = ∅

38

Proof Obligation: no more deadlock in concrete space 39

Axioms of constants

Invariant

Gluing Invariant
Abstract Guard

`
Concrete Guard

aut ∈ P ↔ L
out ∈ L
P × {out} ⊆ aut
sit ∈ P → L
sit ⊆ aut

∃ p, l ·
 p 7→ l ∈ aut
sit(p) 6= l


`

∃ p, l ·
 p 7→ l ∈ aut
sit(p) 7→ l ∈ com



39

No More Deadlock in Concrete Space: Counter-example 40

P = {p}

L = {out, l}

aut = {p 7→ out, p 7→ l}

com = {out 7→ l}

- In abstract space, p can go from out to l and vice-versa

- In concrete space, p can go from out to l and remains blocked in l

- This is because l does not communicate with out

40

Adding a Safety Requirement 41

No person must remain blocked in a location SAF-1

- In abstract space we have (axm0 4)

∀ p ·


p ∈ P
⇒

∃l ·
 p 7→ l ∈ aut
l 6= out





- And we already proved (this is deadlock freeness in abstraction)

∃ p, l ·
 p 7→ l ∈ aut
sitp(p) 6= l)


41

No more deadlock in concrete space (1) 42

- We have then just to prove

∃ p, l ·
 p 7→ l ∈ aut
sitp(p) 7→ l ∈ com



- This could be re-written as follows

∃ p, l ·


p 7→ l ∈ aut

∃m ·
 p 7→ m ∈ sit
m 7→ l ∈ com




- This is equivalent to

∃ p,m ·


p 7→ m ∈ sit

∃ l ·
 p 7→ l ∈ aut

l 7→ m ∈ com−1




42

No more deadlock in concrete space (2) 43

∃ p,m ·


p 7→ m ∈ sit

∃ l ·
 p 7→ l ∈ aut

l 7→ m ∈ com−1




- That is

(aut; com−1) ∩ sit 6= ∅

- It is sufficient to prove

sit ⊆ (aut; com−1)

43

No more deadlock in concrete space (3) 44

sit ⊆ (aut; com−1)

- This can be developed as follows

∀p,m·


p 7→ m ∈ sit
⇒

∃ l ·
 p 7→ l ∈ aut

l 7→ m ∈ com−1





- that is

∀p · ∃ l · (p 7→ l ∈ aut ∧ sit(p) 7→ l ∈ com)

- p is authorized to go in a certain l communicating with sit(p)
44

No more deadlock in concrete space (4) 45

- For proving this

sit ⊆ aut; com−1

- It is sufficient to prove (since sit ⊆ aut according to inv0 2)

aut ⊆ aut; com−1

- That is

∀ p, l · (p 7→ l ∈ aut ⇒ ∃m · (p 7→ m ∈ aut ∧ l 7→ m ∈ com))

45

A More Precise Safety Requirement 46

∀ p, l · (p 7→ l ∈ aut ⇒ ∃m · (p 7→ m ∈ aut ∧ l 7→ m ∈ com))

This can be translated in English as follows:

Any person authorized to be in a location must
also be authorized to go in another location
which communicates with the first one.

SAF-2

46

L1

L3

out

P2, P3

P1, P2, P3

P2

P1, P3L2

47

Example 47

p1 l2 p2 out
p1 out p3 l2
p2 l1 p3 l3
p2 l3 p3 out

aut

l1 l3
l1 out
l3 l2
out l1
out l2
out l3

com

l1 out
l2 l3
l2 out
l3 l1
l3 out
out l1

com−1

p1 l1 p2 out
p1 l3 p3 l1
p1 out p3 l3
p2 l1 p3 out

aut; com−1

- Opening a door between l2 and out

- Authorizing p2 to go to l2

48

L1

L3

out

P2, P3

P1, P2, P3

P2

P1, P3L2

P2

49

Solution 48

p1 l2 p2 out
p1 out p3 l2
p2 l1 p3 l3
p2 l2 p3 out
p2 l3

aut

l1 l3
l1 out
l2 out
l3 l2
out l1
out l2
out l3

com

l1 out
l2 l3
l2 out
l3 l1
l3 out
out l1
out l2

com−1

p1 l1 p2 l3
p1 l2 p2 out
p1 l3 p3 l1
p1 out p3 l2
p2 l1 p3 l3
p2 l2 p3 out

aut; com−1

50

A More Adequate Requirement 49

- Moving to another location is not sufficient

- We want people being able to reach “outside”

- For this, we introduce an “exit” sign in each location (except out)

- the constant exit is defined everywhere except at out

- exit is a function which must be compatible with com

- Every person must be entitled to follow exit

51

Extensions of the constants 50

carrier sets: P,L

constants: aut, out, com, exit

variables: sit

axm1 3 : exit ∈ L \ {out}→ L

axm1 4 : exit ⊆ com

axm1 5 : aut�− {out} ⊆ aut ; exit−1

52

The Final Safety Condition 51

Any person authorized to be in a location which is
not “outside” must also be authorized to be in
another location communicating with the former
and leading towards outside.

SAF-3

53

Extensions of the constants 52

aut�− {out} ⊆ aut ; exit−1

∀ p, l ·


p 7→ l ∈ aut
l 6= out
⇒
∃m · (p 7→ m ∈ aut ∧ l 7→ m ∈ exit)



∀ p, l ·


p 7→ l ∈ aut
l 6= out
⇒
p 7→ exit(l) ∈ aut



- Every person p authorized to be in l (except out) must be authorized

to go in exit(l). Is it sufficient?

54

Being More Precise 53

- Being able to follow the exit sign is not sufficient

- We must be sure that following the exit sign does not put us

in a cycle

exit

55

Characterizing a Cycle 54

- Suppose that we have a set s of locations forming a cycle with exit

- It means that for any l in s then exit(l) is also in s

∀ l· (l ∈ s ⇒ exit(l) ∈ s)

∀ l· (l ∈ s ⇒ l ∈ exit−1[s])

s ⊆ exit−1[s]

- We want to preclude cycles, therefore the only set with that

property must be the empty set
56

Formalizing the non-cyclicity 55

axm1 6 : ∀s ·


s ⊆ L

s ⊆ exit−1[s]
⇒
s = ∅



- Note that this property is equivalent to the following

∀t ·



t ⊆ L
out ∈ t

exit−1[t] ⊆ t
⇒
L ⊆ t



57

Structure of exit 56

- Prop. axm1 3 to axm1 6 characterize a tree spanning the graph

com

out

exit

- From any location one can reach out by following the exit sign

58

Proving Deadlock Freeness 57

∃ p, l · (p 7→ l ∈ aut ∧ sit(p) 6= l)
⇒
∃ p, l · (p 7→ l ∈ aut ∧ sit(p) 7→ l ∈ com)

- Still a problem

- From the inside, people can always go outside

- BUT from outside, people must be able to go inside!!!

axm1 7 : ∀p ·

p ∈ P ⇒ ∃l ·


p 7→ l ⊆ aut
l 6= out
out 7→ l ∈ com




59

Comparison 58

axm1 7 : ∀p ·


p ∈ P
⇒

∃l ·
 p 7→ l ⊆ aut
out 7→ l ∈ com





axm0 4: ∀p·


p ∈ P
⇒

∃ l·
 p 7→ l ∈ aut
l 6= out





60

Second Refinement: Doors 59

- Introducing the doors

- Each door has a location of origin and a location of destination

- Doors must be compatible with the communication

- Each door is assigned to the person who attempts to use it.

- A door could be temporarily green or red

- Each door is equipped with a local clock

61

Door Assigned to a Person: Injective Function dap 60

- From the moment a person p is accepted by a door d (event accept)

- To the moment where either:

- the person passes through the door

- the 30 sec time has passed (event off green)

- The door d is uniquely assigned to the person p

- We do not want two doors being assigned to the same person

- We do not want two persons being assigned the same door

62

Second Refinement: the State (1) 61

carrier sets: P,L,D

constants: aut, out, com, exit, org, dst

variables: sit, dap, grn, red

axm2 1 : org ∈ D→ L

axm2 2 : dst ∈ D→ L

axm2 3 : com = (org−1 ; dst)

63

Second Refinement: the State (2) 62

inv2 1 : dap ∈ P 7�D

inv2 2 : (dap ; org) ⊆ sit

inv2 3 : (dap ; dst) ⊆ aut

inv2 4 : grn ⊆ D

inv2 5 : red ⊆ D

inv2 6 : grn = ran(dap)

inv2 7 : grn ∩ red = ∅

64

Second Refinement: the Events (1) 63

accept
any p, d where

p ∈ P
d ∈ D
d /∈ grn ∪ red
sit(p) = org(d)
p 7→ dst(d) ∈ aut
p /∈ dom (dap)

then
dap(p) := d
grn := grn ∪ {d}

end

refuse
any p, d where
p ∈ P
d ∈ D
d /∈ grn ∪ red

¬ (sit(p) = org(d)
p 7→ dst(d) ∈ aut
p /∈ dom (dap))

then
red := red ∪ {d}

end

65

Second Refinement: the Events (2) 64

off grn
any d where
d ∈ grn

then
dap := dap�− {d}
grn := grn \ {d}

end

off red
any d where
d ∈ red

then
red := red \ {d}

end

66

Second Refinement: the Events (3) 65

(abstract-)pass
any p, l where

p 7→ l ∈ aut
sit(p) 7→ l ∈ com

then
sit(p) := l

end

(concrete-)pass
any d where
d ∈ grn

then
sit(dap−1(d)) := dst(d)
dap := dap�− {d}
grn := grn \ {d}

end

- Witness for refinement:


p = dap−1(d)

l = dst(d)

67

Second Refinement: Synchronization 66

accept refuse

↙ ↘ ↓

pass off grn off red

- This diagram shows how the present events are synchronized

- This is done through their guards

68

Status of Proofs 67

- Event pass refines its abstraction: success

- New events refine skip: success

- Deadlock freeness: success

- New events cannot take control for ever: failure

69

The Blocking Scenarios 68

- Events accept, refuse, off grn, off red can take control for ever

- People with authorization always change mind at the last

moment and then retry

- People without authorization always retry

70

Solutions 69

- Detecting people with bad behavior and taking their card

(like in a cash dispenser)

- Not possible because then people cannot leave the location

- Accepting the (low) risk

- The risk is well understood and accepted by everyone concerned

71

Third Refinement: Introducing Card Readers 70

- Variables mCard and mAckn denote the channels between the

card readers and the controller

Card Readers Controller

mAckn

mCard

- A card reader involved with a person is physically blocked until

it receives an acknowledgment (DECISION)

72

Third Refinement: the state (1) 71

carrier sets: P,L,D

constants: aut, out, com, org, dst

variables: sit, dap, grn, red
BLR,mCard,mAckn

inv3 1 : BLR ⊆ D

inv3 2 : mCard ∈ D 7→ P

inv3 3 : mAckn ⊆ D

73

Third Refinement: the state (2) 72

inv3 4 : dom (mCard) ∪ grn ∪ red ∪ mAckn = BLR

inv3 5 : dom (mCard) ∩ (grn ∪ red ∪ mAckn) = ∅

inv3 6 : mAckn ∩ (grn ∪ red) = ∅

Sets dom (mCard), grn, red,mAckn partition the set BLR

74

Third Refinement: Events (1) 73

CARD
any p, d where
p ∈ P
d ∈ D \BLR

then
BLR := BLR ∪ {d}
mCard := mCard ∪ {d 7→ p}

end

- This is a physical event

- It corresponds to a person p putting his card in the fence of

the unblocked card reader of door d

75

Third Refinement: Events (2) 74

accept
any p, d where

d 7→ p ∈ mCard
sit(p) = org(d)
p 7→ dst(d) ∈ aut
p /∈ dom (dap)

then
dap(p) := d
grn := grn ∪ {d}
mCard := {d}�−mCard

end

refuse
any p, d where
d 7→ p ∈ mCard

¬ (sit(p) = org(d)
p 7→ dst(d) ∈ aut
p /∈ dom (dap))

then
red := red ∪ {d}
mCard := {d}�−mCard

end

76

Third Refinement: Events (3) 75

off grn
any d where
d ∈ grn

then
dap := dap�− {d}
grn := grn \ {d}
mAckn := mAckn ∪ {d}

end

off red
any d where
d ∈ red

then
red := red \ {d}
mAckn := mAckn ∪ {d}

end

77

Third Refinement: Events (4) 76

pass
any d where
d ∈ grn

then
sit(dap−1(d)) := dst(d)
dap := dap�− {d}
grn := grn \ {d}
mAckn := mAckn ∪ {d}

end

78

Third Refinement: Events (5) 77

ACKN
any d where
d ∈ mAckn

then
BLR := BLR \ {d}
mAckn := mAckn \ {d}

end

79

Synchronization 78

CARD

↙ ↘

accept refuse

↙ ↘ ↓

pass off grn off red

↘ ↓ ↙

ACKN

80

Fourth Refinement: Lights and Turnstile 79

Card Readers

Lights

Turnstyles

mAckn

mCard

mOffred

mOffgrn

mRefuse

mAcccept

mPass

Controller

81

Fourth Refinement: the Green Chain (1) 80

carrier sets: P,L,D

constants: aut, out, com,
exit, org, dst

variables: sit, dap,BLR,
mCard,mAckn,
GRN,mAccept,
mOff grn,
mPass

inv4 1 : GRN ⊆ D

inv4 2 : mAccept ⊆ D

inv4 3 : mPass ⊆ D

inv4 4 : mOff grn ⊆ D

82

Fourth Refinement: the Green Chain (2) 81

inv4 5 : mAccept ∪ mPass ∪ mOff grn = grn

inv4 6 : mAccept ∩ (mPass ∪ mOff grn) = ∅

inv4 7 : mPass ∩ mOff grn = ∅

inv4 8 : GRN ⊆ mAccept

83

Fourth Refinement: the Red Chain (1) 82

carrier sets: P,L,D

constants: aut, out, com,
exit, org, dst

variables: sit, dap,BLR,
mCard,mAckn,
GRN,mAccept,
mOff grn,
mPass,RED,
mOff red,
mRefuse

inv4 9 : RED ⊆ D

inv4 10 : mRefuse ⊆ D

inv4 11 : mOff red ⊆ D

84

Fourth Refinement: the Red Chain (2) 83

inv4 12 : mRefuse ∪ mOff red = red

inv4 13 : mRefuse ∩ mOff red = ∅

inv4 14 : RED ⊆ mRefuse

85

Fourth Refinement: the final state 84

Card Readers

Lights

Turnstyles

mAckn

mCard

mOffred

mOffgrn

mRefuse

mAcccept

mPass

Controller

aut, out, com

exit, org, dst

sit dapGRN RED

BLR

86

Events (1) 85

accept
any p, d where
d 7→ p ∈ mCard
sit(p) = org(d)
p 7→ dst(d) ∈ aut
p /∈ dom (dap)

then
dap(p) := d
mCard := mCard \ {d 7→ p}
mAccept := mAccept ∪ {d}

end

87

Events (2) 86

ACCEPT
any d where
d ∈ mAccept

then
GRN := GRN ∪ {d}

end

88

Events (3) 87

PASS
any d where
d ∈ GRN

then
GRN := GRN \ {d}
mPass := mPass ∪ {d}
mAccept := mAccept \ {d}

end

89

Events (4) 88

pass
any d where
d ∈ mPass

then
sit(dap−1(d)) := dst(d)
dap := dap�− {d}
mAckn := mAckn ∪ {d}
mPass := mPass \ {d}

end

90

Events (5) 89

OFF GRN
any d where
d ∈ GRN

then
GRN := GRN \ {d}
mOff grn := mOff grn ∪ {d}
mAccept := mAccept \ {d}

end

91

Events (6) 90

off grn
any d where
d ∈ mOff grn

then
dap := dap�− {d}
mAckn := mAckn ∪ {d}
mOff grn := mOff grn \ {d}

end

92

Events (7) 91

refuse
any p, d where
d, p ∈ mCard

¬ (sit(p) = org(d)
p 7→ dst(d) ∈ aut
p /∈ dom (dap))

then
red := red ∪ {d}
mCard := mCard \ {d 7→ p}
mRefuse := mRefuse ∪ {d}

end

93

Events (8) 92

REFUSE
any d where
d ∈ mRefuse

then
RED := RED ∪ {d}

end

94

Events (9) 93

OFF RED
any d where
d ∈ RED

then
RED := RED \ {d}
mOff red := mOff red ∪ {d}
mRefuse := mRefuse \ {d}

end

95

Events (10) 94

off red
any d where
d ∈ mOff red

then
mAckn := mAckn ∪ {d}
mOff red := mOff red \ {d}

end

96

Synchronization 95

CARD
↙ ↘

accept refuse
↓ ↓

ACCEPT REFUSE
↙ ↘ ↓

PASS OFF GRN OFF RED
↓ ↓ ↓

pass off grn off red
↘ ↓ ↙

ACKN

97

Fourth Refinement: the final state 96

Card Readers

Lights

Turnstyles

mAckn

mCard

mOffred

mOffgrn

mRefuse

mAcccept

mPass

Controller

aut, out, com

exit, org, dst

sit dapGRN RED

BLR

98

Hardware Model 97

carrier sets: D,P

internal variables: BLR
GRN,
RED

external variables: mCard,
mAckn,
mAccept,
mPass,
mRefuse,
mOff grn
mOff red

invH 1 : BLR ⊆ D
invH 2 : RED ⊆ D
invH 3 : GRN ⊆ D
invH 4 : mCard ⊆ D↔ P
invH 5 : mAckn ⊆ D
invH 6 : mAccept ⊆ D
invH 7 : mPass ⊆ D
invH 8 : mRefuse ⊆ D
invH 9 : mOff grn ⊆ D
invH 10 : mOff red ⊆ D

99

Software Model 98

carrier sets: D,L, P

constants: aut, out,
org, dst

internal variables: sit
dap,

external variables: mCard,
mAckn,
mAccept,
mPass,
mRefuse,
mOff grn
mOff red

axmS 1 : aut ∈ P ↔ L
axmS 2 : out ∈ L
axmS 3 : org ∈ D→ L
axmS 4 : dst ∈ D→ L

invS 1 : sit ⊆ P → L
invS 2 : dap ⊆ P 7→D
invS 3 : mCard ⊆ D↔ P
invS 4 : mAckn ⊆ D
invS 5 : mAccept ⊆ D
invS 6 : mPass ⊆ D
invS 7 : mRefuse ⊆ D
invS 8 : mOff grn ⊆ D
invS 9 : mOff red ⊆ D

100

refuse

rcv_pass

rcv_off_red

accept

REFUSE

rcv_off_grn

RCV_ACCEPT

RCV_REFUSE

OFF_RED

HARDWARE SOFTWARE

ACKN

RCV_OFF_RED

RCV_PASS

RCV_OFF_GRN off_grn

pass

off_red

CARD rcv_card
mCard

mRefuse

mAccept

mOff_red

mOff_grn

mPass

mAckn

mAckn

mAckn

PASS

OFF_GRN

ACCEPT

101

Conclusion (1) 99

- Functional Requirements: 9

- Safety Requirements: 3

- Equipment Requirements: 5

- Constants: 6

- Variables: 12 (2 Software, 3 Hardware, 7 channels)

- Axioms: 13

102

Conclusion (2) 100

- Invariants: 29

- Events: 12 (5 Software, 7 Hardware)

- Refinements: 4

- Design Decisions: 4

- Possible Card Readers obstruction

- Automatic physical blocking of Card Readers

- Automatic physical blocking of Doors

- Setting up of clocks on Doors

- Proofs: 103 (1easy interactive)
103

