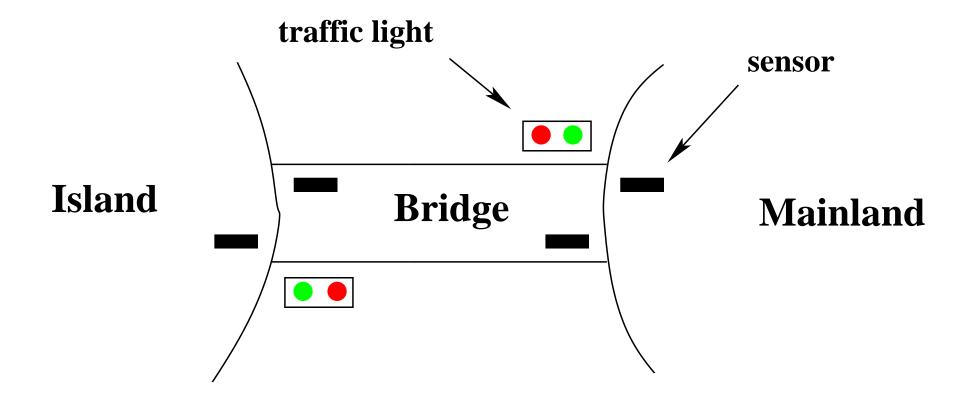
Event-B Course

2. Controlling Cars on a Bridge

(summary so far: 9-19-11)

Jean-Raymond Abrial

September-October-November 2011



The number of cars on the bridge and the island is limited

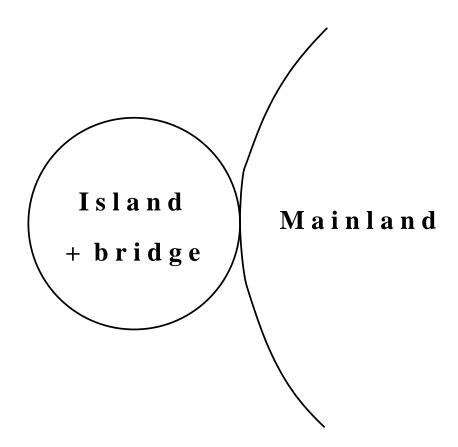
FUN-2

The bridge is one way or the other, not both at the same time

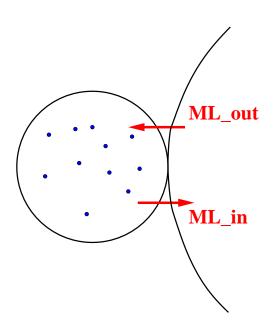
FUN-3

Initial Model

- We do not see the bridge



- We treat FUN-2 (limited number of cars)



- We have a single constant d: the maximum number of cars
- We have a single variable n: the number of cars
- We have the invariant: $n \leq d$

constant: d

variable: n

 $\mathsf{axm0}_{-}\mathsf{1}\colon d\in\mathbb{N}$

 $axm0_2: d > 0$

inv0_1: $n \in \mathbb{N}$

inv0_2: $n \leq d$

n := 0

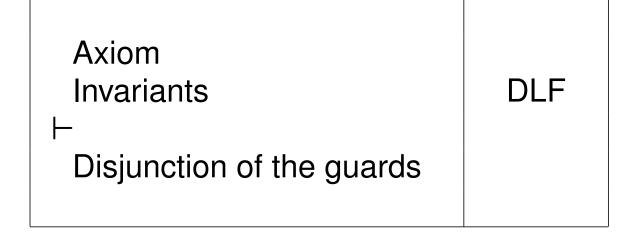
 $egin{aligned} \mathsf{ML_out} \ & \mathsf{when} \ & n < d \ & \mathsf{then} \ & n := n+1 \ & \mathsf{end} \end{aligned}$

 $egin{array}{ll} \mathsf{ML_in} \\ \mathsf{when} \\ 0 < n \\ \mathsf{then} \\ n := n-1 \\ \mathsf{end} \end{array}$

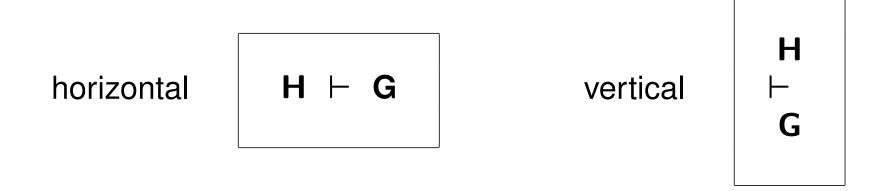
- We have seen three kinds of proof obligations (PO):
 - The Invariant Establishment PO: INV (for initialisation)
 - The Invariant Preservation PO: INV (for other events)
 - The Deadlock Freedom PO (optional): DLF

Axioms
Invariants
Guard of the event

Modified Invariant



- A sequent is a formal statement of the following shape:



- H denotes a set of predicates: the hypotheses (or assumptions)
- G denotes a predicate: the goal (or conclusion)
- The symbol "⊢", called the turnstyle, stands for provability.

It is read: "Assumptions **H** yield conclusion **G**"

- Inference rules are used to prove sequents

- Above horizontal line: n sequents called antecedents ($n \geq 0$)
- Below horizontal line: exactly one sequent called consequent
- To prove the consequent, it is sufficient to prove the antecedents
- A rule with no antecedent (n=0) is called an axiom

- The rule that removes hypotheses can be stated as follows:

$$\frac{\mathsf{H} \; \vdash \; \mathsf{G}}{\mathsf{H}, \mathsf{H}' \; \vdash \; \mathsf{G}} \quad \mathsf{MON}$$

- In order to prove **H**, **H**' ⊢ **G** it is sufficient to prove **H** ⊢ **G**
- It expresses the monotonicity of the hypotheses

- The Second Peano Axiom

$$n \in \mathbb{N} \vdash n+1 \in \mathbb{N}$$
 P2

$$\frac{}{0 < \mathsf{n} \vdash \mathsf{n} - 1 \in \mathbb{N}}$$
 P2'

- Axioms about ordering relations on the integers

$$\frac{}{\mathsf{n} \; < \; \mathsf{m} \; \vdash \; \mathsf{n} + 1 \; \leq \; \mathsf{m}}$$
 INC

$$\frac{}{\mathsf{n} \ \leq \ \mathsf{m} \ \vdash \ \mathsf{n} - 1 \ \leq \ \mathsf{m}} \quad \mathsf{DEC}$$

- First Peano Axiom

- Third Peano Axiom (slightly modified)

$$n \in \mathbb{N} \vdash 0 \leq n$$
 P3

- The identity axiom (conclusion holds by hypothesis)

- Rewriting an equality (EQ_LR) and reflexivity of equality (EQL)

$$rac{ extsf{H(F), E = F} \; dash \; extsf{P(F)}}{ extsf{H(E), E = F} \; dash \; extsf{P(E)}} \; extsf{EQ_LR}$$

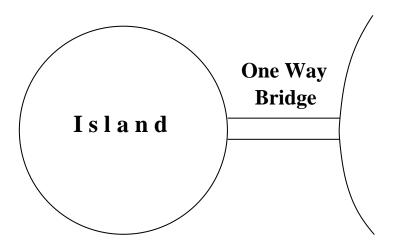
Proof by case analysis

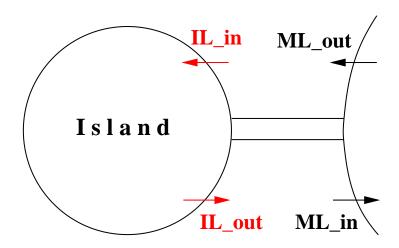
$$\frac{\mathsf{H},\mathsf{P}\;\vdash\;\mathsf{R}}{\mathsf{H},\;\mathsf{P}\;\vee\;\mathsf{Q}\;\vdash\;\mathsf{R}}\quad\mathsf{OR}_{_}\mathsf{L}$$

- Choice for proving a disjunctive goal

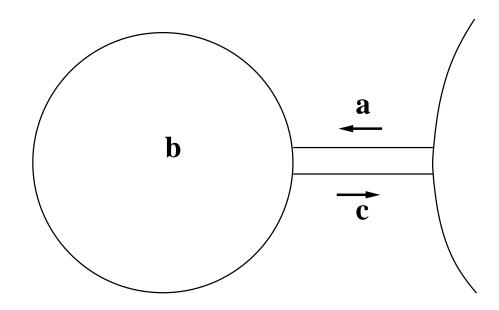
$$\frac{\mathbf{H} \ \vdash \ \mathbf{Q}}{\mathbf{H} \ \vdash \ \mathbf{P} \lor \mathbf{Q}} \quad \mathsf{OR}_{\mathsf{R}} \mathsf{R} \mathsf{2}$$

- A proof is a tree of sequents with axioms at the leaves.
- The rules applied to the leaves are axioms.
- Each sequent is labeled with (name of) proof rule applied to it.
- The sequent at the root of the tree is called the root sequent.
- The purpose of a proof is to establish the truth of its root sequent.





- We treat FUN-3 (one way bridge)



- We have the following invariant (one way bridge): $a = 0 \lor b = 0$
- And also the gluing invariant: a + b + c = n
- It links the concrete variables a, b, and c to the abstract one n.

constants: d

variables: a, b, c

inv1_1: $a \in \mathbb{N}$

inv1_2: $b \in \mathbb{N}$

inv1_3: $c \in \mathbb{N}$

inv1_4: a + b + c = n

inv1_5: $a = 0 \lor c = 0$

```
\begin{array}{c} \text{init} \\ a := 0 \\ b := 0 \\ c := 0 \end{array}
```

```
egin{aligned} \mathsf{ML\_in} \\ \mathsf{when} \\ 0 < c \\ \mathsf{then} \\ c := c - 1 \\ \mathsf{end} \end{aligned}
```

```
egin{aligned} \mathsf{ML\_out} \ & \mathsf{when} \ & a+b < d \ & c = 0 \ & \mathsf{then} \ & a := a+1 \ & \mathsf{end} \end{aligned}
```