
Event-B Course

2. Controlling Cars on a Bridge

(summary so far: 9-19-11)

Jean-Raymond Abrial

September-October-November 2011

Environment 1

BridgeIsland Mainland

traffic light
sensor

1

Main Functionalities 2

The number of cars on the bridge and the island
is limited FUN-2

The bridge is one way or the other, not both at the
same time FUN-3

2

Initial Model 3

- We do not see the bridge

M a i n l a n d
I s l a n d

+ b r i d g e

- We treat FUN-2 (limited number of cars)

3

Two Events that may be Observed 4

ML_out

ML_in

- We have a single constant d: the maximum number of cars

- We have a single variable n: the number of cars

- We have the invariant: n ≤ d

4

Summary of Initial Model 5

constant: d

variable: n

axm0 1: d ∈ N

axm0 2: d > 0

inv0 1: n ∈ N

inv0 2: n ≤ d

init
n := 0

ML out
when
n < d

then
n := n + 1

end

ML in
when
0 < n

then
n := n− 1

end

5

Proof Obligations for Initial Model 6

- We have seen three kinds of proof obligations (PO):

- The Invariant Establishment PO: INV (for initialisation)

- The Invariant Preservation PO: INV (for other events)

- The Deadlock Freedom PO (optional): DLF

6

Proof Obligations for Initial Model (cont’d) 7

Axioms
` INV

Modified Invariant

Axioms
Invariants
Guard of the event INV
`

Modified Invariant

Axiom
Invariants DLF
`

Disjunction of the guards

7

Sequents 8

- A sequent is a formal statement of the following shape:

horizontal H ` G vertical
H
`
G

- H denotes a set of predicates: the hypotheses (or assumptions)

- G denotes a predicate: the goal (or conclusion)

- The symbol "`", called the turnstyle, stands for provability.

It is read: "Assumptions H yield conclusion G"

8

Inference Rules 9

- Inference rules are used to prove sequents

H1 ` G1 · · · Hn ` Gn

H ` G
RULE NAME

- Above horizontal line: n sequents called antecedents (n ≥ 0)

- Below horizontal line: exactly one sequent called consequent

- To prove the consequent, it is sufficient to prove the antecedents

- A rule with no antecedent (n = 0) is called an axiom

9

Example of Inference Rule: Monotonicity 10

- The rule that removes hypotheses can be stated as follows:

H ` G

H,H’ ` G
MON

- In order to prove H,H’ ` G it is sufficient to prove H ` G

- It expresses the monotonicity of the hypotheses

10

Some Arithmetic Rules of Inference 11

- The Second Peano Axiom

n ∈ N ` n + 1 ∈ N
P2

0 < n ` n− 1 ∈ N
P2′

11

More Arithmetic Rules of Inference 12

- Axioms about ordering relations on the integers

n < m ` n + 1 ≤ m
INC

n ≤ m ` n− 1 ≤ m
DEC

12

More Arithmetic Inference Rules (cont’d) 13

- First Peano Axiom

` 0 ∈ N
P1

- Third Peano Axiom (slightly modified)

n ∈ N ` 0 ≤ n
P3

13

More Inference Rules: Identity and Equality 14

- The identity axiom (conclusion holds by hypothesis)

P ` P
HYP

- Rewriting an equality (EQ LR) and reflexivity of equality (EQL)

H(F), E = F ` P(F)

H(E), E = F ` P(E)
EQ LR

` E = E
EQL

14

Other examples of Inference Rules: for Disjunction 15

- Proof by case analysis

H,P ` R H,Q ` R

H, P ∨ Q ` R
OR L

- Choice for proving a disjunctive goal

H ` P

H ` P ∨ Q
OR R1

H ` Q

H ` P ∨ Q
OR R2

15

Proofs 16

- A proof is a tree of sequents with axioms at the leaves.

- The rules applied to the leaves are axioms.

- Each sequent is labeled with (name of) proof rule applied to it.

- The sequent at the root of the tree is called the root sequent.

- The purpose of a proof is to establish the truth of its root sequent.

16

First Refinement: Introducing the one Way Bridge 17

IL_in

I s l a n d

I s l a n d

One Way
Bridge

ML_out

IL_out ML_in

- We treat FUN-3 (one way bridge)

17

Introducing Three New Variables: a, b, and c 18

b

a

c

- We have the following invariant (one way bridge): a = 0 ∨ b = 0

- And also the gluing invariant: a + b + c = n

- It links the concrete variables a, b, and c to the abstract one n.

18

State of the First Refinement 19

constants: d

variables: a, b, c

inv1 1: a ∈ N

inv1 2: b ∈ N

inv1 3: c ∈ N

inv1 4: a + b + c = n

inv1 5: a = 0 ∨ c = 0

19

Events of the First Refinement (so far) 20

init
a := 0
b := 0
c := 0

ML in
when
0 < c

then
c := c− 1

end

ML out
when
a + b < d
c = 0

then
a := a + 1

end

20

