
Event-B Course

2. Controlling Cars on a Bridge

Jean-Raymond Abrial

September-October-November 2011

Purpose of this Lecture (1) 1

- To present an example of system development

- Our approach: a series of more and more accurate models

- This approach is called refinement

- The models formalize the view of an external observer

- With each refinement, the observer “zooms in” to see more details

1

Purpose of this Lecture (2) 2

- Each model will be analyzed and proved to be correct

- The aim is to obtain a system that will be correct by construction

- The correctness criteria are formulated as proof obligations

- Proofs will be performed by using the sequent calculus

- Inference rules used in the sequent calculus will be reviewed

2

What you will Learn 3

- The concepts of state and events for defining models

- Some principles of system development: invariants and refinement

- A refresher of classical logic and simple arithmetic foundations

- A refresher of formal proofs

3

Outline 4

1. Presentation of the requirement document

2. Defining the refinement strategy

3. Development of the initial model and the refinements

Remark: Theoretical background provided during development

4

1. The Requirements Document

5

Requirement Document (1) 5

- We show the embedding of the Explanations and the References

- Explanation:

- The function of this system is to control cars on a narrow bridge.

- This bridge is supposed to link the mainland to a small island.

6

Kinds of Requirements (labels) 6

- There are two kinds of requirements:

- the equipment (environment) labeled EQP,

- the function of the system, labeled FUN.

7

Requirement Document (2) 7

- Reference:

The system is controlling cars on a bridge
between the mainland and an island FUN-1

- Explanation: This can be illustrated as follows

Bridge MainlandIsland

8

Requirements Document (3) 8

- Explanation: The controller is equipped with two traffic lights.

- Reference:

The system has two traffic lights with two
colors: green and red EQP-1

9

Requirements Document (4) 9

- Explanation:

- One of the traffic lights is situated on the mainland.

- The other one on the island.

- This can be illustrated as follows:

Bridge MainlandIsland

10

Requirements Document (5) 10

- Reference:

The traffic lights control the entrance to the
bridge at both ends of it EQP-2

- Explanation: Drivers are supposed to obey the traffic light

- Reference:

Cars are not supposed to pass on a red traffic
light, only on a green one EQP-3

11

Requirements Document (6) 11

- Explanation:

- There are also four car sensors

- These sensors are situated at both ends of the bridge.

- They are supposed to detect the presence of cars

- Reference:

The system is equipped with four car sensors
each with two states: on or off EQP-4

12

Requirements Document (8) 12

- Reference:

The sensors are used to detect the presence
of cars entering or leaving the bridge EQP-5

- Explanation: The pieces of equipment can be illustrated as follows:

BridgeIsland Mainland

traffic light
sensor

13

Requirements Document (9) 13

- Explanation: This system has two main constraints:

- the number of cars on the bridge and the island is limited

- the bridge is one way.

14

Requirements Document (10) 14

- Reference:

The number of cars on the bridge and the island
is limited FUN-2

The bridge is one way or the other, not both at the
same time FUN-3

15

Summary of the References (1) 15

The system is controlling cars on a bridge
between the mainland and an island FUN-1

The number of cars on the bridge and the island
is limited FUN-2

The bridge is one way or the other, not both at the
same time FUN-3

16

Summary of the References (2) 16

The system has two traffic lights with two
colors: green and red EQP-1

The traffic lights control the entrance to the
bridge at both ends of it EQP-2

Cars are not supposed to pass on a red traffic
light, only on a green one EQP-3

17

Summary of the References (3) 17

The system is equipped with four car sensors
each with two states: on or off EQP-4

The sensors are used to detect the presence
of cars entering or leaving the bridge EQP-5

18

2. The Refinement Strategy

19

Role of the Refinement Strategy 18

- Defining a priori the various refinement steps

- Linking these steps with the requirements

- Goal: starting the traceability of the requirements

- Might be modified during the formal development

20

Our Refinement Strategy (1) 19

- Initial model: Limiting the number of cars (FUN-2)

The number of cars on the bridge and the island
is limited FUN-2

- First refinement: Introducing the one way bridge (FUN-3)

The bridge is one way or the other, not both at the
same time FUN-3

21

Our Refinement Strategy (2) 20

- Second refinement: Introducing the traffic lights (EQP-1,2,3)

- Third refinement: Introducing the sensors (EQP-4,5)

22

3. The Formal Development

23

Our Refinement Strategy 21

- Initial model: Limiting the number of cars (FUN-2)

- First refinement: Introducing the one way bridge (FUN-3)

- Second refinement: Introducing the traffic lights (EQP-1,2,3)

- Third refinement: Introducing the sensors (EQP-4,5)

24

Initial Model 22

- It is very simple

- We completely ignore the equipment: traffic lights and sensors

- We do not even consider the bridge

- We are just interested in the pair “island-bridge”

- We are focusing FUN-2: limited number of cars on island-bridge

25

A Situation as Seen from the Sky 23

M a i n l a n d
I s l a n d

+ b r i d g e

26

Two Events that may be Observed 24

ML_out

ML_in

27

Formalizing the State: Constants and Axioms 25

- STATIC PART of the state: constant d with axiom axm0 1

constant: d axm0 1: d ∈ N

- d is the maximum number of cars allowed on the Island-Bridge

- axm0 1 states that d is a natural number

- Constant d is a member of the set N = {0, 1, 2, , . . .}

28

Formalizing the State: variable 26

- DYNAMIC PART: variable n with invariants inv0 1 and inv0 2

variable: n
inv0 1: n ∈ N

inv0 2: n ≤ d

- n is the effective number of cars on the Island-Bridge

- n is a natural number (inv0 1)

- n is always smaller than or equal to d (inv0 2): this is FUN 2

29

Naming Conventions 27

- Labels axm0 1, inv0 1, ... are chosen systematically

- The label axm or inv recalls the purpose:

axiom of constants or invariant of variables

- The 0 as in inv0 1 stands for the initial model.

- Later we will have inv1 1 for an invariant of refinement 1, etc.

- The 1 like in inv0 1 is a serial number

- Any convention is valid as long as it is systematic

30

Event ML out 28

- This is the first transition (or event) that can be observed

- A car is leaving the mainland and entering the Island-Bridge

Before After

ML_out

- The number of cars in the Island-Bridge is incremented

31

Event ML in 29

- We can also observe a second transition (or event)

- A car leaving the Island-Bridge and re-entering the mainland

Before

ML_in

After

- The number of cars in the Island-Bridge is decremented

32

Formalizing the two Events: an Approximation 30

- Event ML out increments the number of cars

ML out
n := n + 1

- Event ML in decrements the number of cars

ML in
n := n− 1

- An event is denoted by its name and its action (an assignment)

33

Why an Approximation? 31

These events are approximations for two reasons:

1. They might be refined (made more precise) later

2. They might be insufficient at this stage because not consistent

with the invariant

We have to perform a proof in order to verify this consistency.

34

Invariants 32

- An invariant is a constraint on the allowed values of the variables

- An invariant must hold on all reachable states of a model

- To verify that this holds we must show that

1. the invariant holds for initial states (later), and

2. the invariant is preserved by all events (following slides)

- We will formalize these two statements as proof obligations (POs)

- We need a rigorous proof showing that these POs indeed hold

35

Towards the Proof: Before-after Predicates 33

- To each event can be associated a before-after predicate

- It describes the relation between the values of the variable(s)

just before and just after the event occurrence

- The before-value is denoted by the variable name, say n

- The after-value is denoted by the primed variable name, say n′

36

Before-after Predicate Examples 34

The Events

ML out
n := n + 1

ML in
n := n− 1

The corresponding before-after predicates

n′ = n + 1 n′ = n− 1

These representations are equivalent.

37

About the Shape of the Before-after Predicates 35

- The before-after predicates we have shown are very simple

n′ = n + 1 n′ = n− 1

- The after-value n′ is defined as a function of the before-value n

- This is because the corresponding events are deterministic

- In later lectures, we shall consider some non-deterministic events:

n′ ∈ {n + 1, n + 2}

38

Intuition about Invariant Preservation 36

- Let us consider invariant inv0 1

n ∈ N

- And let us consider event ML out with before-after predicate

n′ = n + 1

- Preservation of inv0 1 means that we have (just after ML out):

n′ ∈ N that is n + 1 ∈ N

39

Being more Precise 37

- Under hypothesis n ∈ N the conclusion n+1 ∈ N holds

- This can be written as follows

n ∈ N ` n+1 ∈ N

- This type of statement is called a sequent (next slide)

- Sequent above: invariant preservation proof obligation for inv0 1

- More General form of this PO will be introduced shortly

40

Sequents 38

- A sequent is a formal statement of the following shape

H ` G

- H denotes a set of predicates: the hypotheses (or assumptions)

- G denotes a predicate: the goal (or conclusion)

- The symbol "`", called the turnstyle, stands for provability.

It is read: "Assumptions H yield conclusion G"

41

Proof Obligation: Invariant Preservation (1) 39

- We collectively denote our set of constants by c

- We denote our set of axiomss by A(c): A1(c), A2(c), . . .

- We collectively denote our set of variables by v

- We denote our set of invariants by I(c, v): I1(c, v), I2(c, v), . . .

42

Proof Obligation: Invariant Preservation (2) 40

- We are given an event with before-after predicate v′ = E(c, v)

- The following sequent expresses preservation of invariant Ii(c, v):

A(c), I(c, v) ` Ii(c, E(c, v)) INV

- It says: Ii(c, E(c, v)) provable under hypotheses A(c) and I(c, v)

- We have given the name INV to this proof obligation

43

Explanation of the Proof Obligation 41

A(c), I(c, v) ` Ii(c, E(c, v)) INV

- We assume that A(c) as well as I(c, v) hold just before the

occurrence of the event represented by v′ = E(c, v)

- Just after the occurrence, invariant Ii(c, v) becomes Ii(c, v
′),

that is, Ii(c, E(c, v))

- The predicate Ii(c, E(c, v)) must then hold for Ii(c, v) to be

an invariant

44

Vertical Layout of Proof Obligations 42

- The proof obligation

A(c), I(c, v) ` Ii(c, E(c, v)) INV

can be re-written vertically as follows:

Axioms
Invariants
`

Modified Invariant

A(c)
I(c, v) INV
`
Ii(c, E(c, v))

45

Back to our Example 43

- We have two events

ML out
n := n + 1

ML in
n := n− 1

- And two invariants

inv0 1: n ∈ N inv0 2: n ≤ d

- Thus, we need to prove four proof obligations

46

Proof obligation for ML out and inv0 1 44

ML out
n := n + 1

(n′ = n + 1)

Axiom axm0 1
Invariant inv0 1
Invariant inv0 2
`

Modified Invariant inv0 1

d ∈ N
n ∈ N
n ≤ d
`
n + 1 ∈ N

- This proof obligation is named: ML out / inv0 1 / INV

47

Proof obligation for ML out and inv0 2 45

ML out
n := n + 1

(n′ = n + 1)

Axiom axm0 1
Invariant inv0 1
Invariant inv0 2
`

Modified Invariant inv0 2

d ∈ N
n ∈ N
n ≤ d
`
n + 1 ≤ d

- This proof obligation is named: ML out / inv0 2 / INV

48

Proof obligation for ML in and inv0 1 46

ML in
n := n− 1

(n′ = n− 1)

Axiom axm0 1
Invariant inv0 1
Invariant inv0 2
`

Modified Invariant inv0 1

d ∈ N
n ∈ N
n ≤ d
`
n− 1 ∈ N

- This proof obligation is named: ML in / inv0 1 / INV

49

Proof obligation for ML in and inv0 2 47

ML in
n := n− 1

(n′ = n− 1)

Axiom axm0 1
Invariant inv0 1
Invariant inv0 2
`

Modified Invariant inv0 2

d ∈ N
n ∈ N
n ≤ d
`
n− 1 ≤ d

- This proof obligation is named: ML in / inv0 2 / INV

50

Summary of Proof Obligations 48

ML out / inv0 1 / INV ML out / inv0 2 / INV

d ∈ N
n ∈ N
n ≤ d
`
n + 1 ∈ N

d ∈ N
n ∈ N
n ≤ d
`
n + 1 ≤ d

ML in / inv0 1 / INV ML in / inv0 2 / INV

d ∈ N
n ∈ N
n ≤ d
`
n− 1 ∈ N

d ∈ N
n ∈ N
n ≤ d
`
n− 1 ≤ d

51

Informal Proof of ML out / inv0 1 / INV 49

d ∈ N
n ∈ N
n ≤ d
`
n + 1 ∈ N

remove
−→

hypotheses

n ∈ N
`
n + 1 ∈ N

obvious

- In the first step, we remove some irrelevant hypotheses

- In the second and final step, we accept the sequent as it is

- We have implicitly applied inference rules

- For rigorous reasoning we will make these rules explicit

52

Inference Rules 50

H1 ` G1 · · · Hn ` Gn

H ` G
RULE NAME

- Above horizontal line: n sequents called antecedents (n ≥ 0)

- Below horizontal line: exactly one sequent called consequent

- To prove the consequent, it is sufficient to prove the antecedents

- A rule with no antecedent (n = 0) is called an axiom

53

Inference Rule: Monotonicity of Hypotheses 51

- The rule that removes hypotheses can be stated as follows:

H ` G

H,H’ ` G
MON

- It expresses the monotonicity of the hypotheses

54

Some Arithmetic Rules of Inference 52

- The Second Peano Axiom

n ∈ N ` n + 1 ∈ N
P2

0 < n ` n− 1 ∈ N
P2′

55

More Arithmetic Rules of Inference 53

- Axioms about ordering relations on the integers

n < m ` n + 1 ≤ m
INC

n ≤ m ` n− 1 ≤ m
DEC

56

Application of Inference Rules 54

- Consider again the 2nd Peano axiom:

n ∈ N ` n + 1 ∈ N
P2

- It is a rule schema where n is called a meta-variable

- It can be applied to following sequent by matching a + b with n:

a + b ∈ N ` a + b + 1 ∈ N

57

Proofs 55

- A proof is a tree of sequents with axioms at the leaves.

- The rules applied to the leaves are axioms.

- Each sequent is labeled with (name of) proof rule applied to it.

- The sequent at the root of the tree is called the root sequent.

- The purpose of a proof is to establish the truth of its root sequent.

58

A Formal Proof of: ML out / inv0 1 / INV 56

d ∈ N
n ∈ N
n ≤ d
`
n + 1 ∈ N

MON
n ∈ N
`
n + 1 ∈ N

P2

- Proof requires only application of two rules: MON and P2

59

A Failed Proof Attempt: ML out / inv0 2 / INV 57

d ∈ N
n ∈ N
n ≤ d
`
n + 1 ≤ d

MON
n ≤ d
`
n + 1 ≤ d

?

- We put a ? to indicate that we have no rule to apply

- The proof fails: we cannot conclude with rule INC (n < d needed)

n < m ` n + 1 ≤ m
INC

60

A Failed Proof Attempt: ML in / inv0 1 / INV 58

d ∈ N
n ∈ N
n ≤ d
`
n− 1 ∈ N

MON
n ∈ N
`
n− 1 ∈ N

?

- The proof fails: we cannot conclude with rule P2′ (0 < n needed)

0 < n ` n− 1 ∈ N
P2′

61

A Formal Proof of: ML in / inv0 2 / INV 59

d ∈ N
n ∈ N
n ≤ d
`
n− 1 ≤ d

MON
n ≤ d
`
n− 1 ≤ d

DEC

n ≤ m ` n− 1 ≤ m
DEC

62

Reasons for Proof Failure 60

- We needed hypothesis n < d to prove ML out / inv0 2 / INV

- We needed hypothesis 0 < n to prove ML in / inv0 1 / INV

ML out
n := n + 1

ML in
n := n− 1

- We are going to add n < d as a guard to event ML out

- We are going to add 0 < n as a guard to event ML in

63

Improving the Events: Introducing Guards 61

ML out
when
n < d

then
n := n + 1

end

ML in
when
0 < n

then
n := n− 1

end

- We are adding guards to the events

- The guard is the necessary condition for an event to “occur”

64

Proof Obligation: General Invariant Preservation 62

- Given c with axioms A(c) and v with invariants I(c, v)

- Given an event with guard G(c, v) and b-a predicate v′ = E(c, v)

- We modify the Invariant Preservation PO as follows:

Axioms
Invariants
Guard of the event
`

Modified Invariant

A(c)
I(c, v)
G(c, v) INV
`
Ii(c, E(c, v))

65

A Formal Proof of: ML out / inv0 1 / INV 63

d ∈ N
n ∈ N
n ≤ d
n < d
`
n + 1 ∈ N

MON
n ∈ N
`
n + 1 ∈ N

P2

- Adding new assumptions to a sequent does not affect its provability

66

A Formal Proof of: ML out / inv0 2 / INV 64

d ∈ N
n ∈ N
n ≤ d
n < d
`
n + 1 ≤ d

MON
n < d
`
n + 1 ≤ d

INC

- Now we can conclude the proof using rule INC

n < m ` n + 1 ≤ m
INC

67

A Formal Proof of: ML in / inv0 1 / INV 65

d ∈ N
n ∈ N
n ≤ d
0 < n
`
n− 1 ∈ N

MON
0 < n
`
n− 1 ∈ N

P2’

- Now we can conclude the proof using rule P2′

0 < n ` n− 1 ∈ N
P2′

68

A Formal Proof of: ML in / inv0 2 / INV 66

d ∈ N
n ∈ N
n ≤ d
n < d
`
n− 1 ≤ d

MON
n ≤ d
`
n− 1 ≤ d

DEC

- Again, the proof still works after the addition of a new assumption

69

Re-proving the Events: No Proofs Fail 67

d ∈ N
n ∈ N
n ≤ d
n < d
`
n + 1 ∈ N

d ∈ N
n ∈ N
n ≤ d
n < d
`
n + 1 ≤ d

d ∈ N
n ∈ N
n ≤ d
0 < n
`
n− 1 ∈ N

d ∈ N
n ∈ N
n ≤ d
0 < n
`
n− 1 ≤ d

70

Initialization 68

- Our system must be initialized (with no car in the island-bridge)

- The initialization event is never guarded

- It does not mention any variable on the right hand side of :=

-Its before-after predicate is just an after predicate

init
n := 0

After predicate n′ = 0

71

Proof Obligation: Invariant Establishment 69

- Given c with axioms A(c) and v with invariants I(c, v)

- Given an init event with after predicate v′ = K(c)

- The Invariant Establishment PO is the following:

Axioms
`

Modified Invariant

A(c)
` INV
Ii(c,K(c))

72

Applying the Invariant Establishment PO 70

axm0 1
`

Modified inv0 1

d ∈ N
`
0 ∈ N

inv0 1 / INV

axm0 1
`

Modified inv0 2

d ∈ N
`
0 ≤ d

inv0 2 / INV

73

More Arithmetic Inference Rules 71

- First Peano Axiom

` 0 ∈ N
P1

- Third Peano Axiom (slightly modified)

n ∈ N ` 0 ≤ n
P3

74

Proofs of Invariant Establishment 72

d ∈ N
`
0 ∈ N

MON `
0 ∈ N

P1

d ∈ N
`
0 ≤ d

P3

75

A Missing Requirement 73

- It is possible for the system to be blocked if both guards are false

- We do not want this to happen

- We figure out that one important requirement was missing

Once started, the system should work for ever FUN-4

76

Proof Obligation: Deadlock Freedom 74

- Given c with axioms A(c) and v with invariants I(c, v)

- Given the guards G1(c, v), . . . , Gm(c, v) of the events

- We have to prove the following:

A(c)
I(c, v)
` DLF
G1(c, v) ∨ . . . ∨ Gm(c, v)

77

Applying the Deadlock Freedom PO 75

axm0 1
inv0 1
inv0 2
`

Disjunction of guards

d ∈ N
n ∈ N
n ≤ d
`
n < d ∨ 0 < n

- This cannot be proved with the inference rules we have so far

- n ≤ d can be replaced by n = d ∨ n < d

- We continue our proof by a case analysis:

- case 1: n = d

- case 2: n < d

78

Inference Rules for Disjunction 76

- Proof by case analysis

H,P ` R H,Q ` R

H, P ∨ Q ` R
OR L

- Choice for proving a disjunctive goal

H ` P

H ` P ∨ Q
OR R1

H ` Q

H ` P ∨ Q
OR R2

79

Proof of Deadlock Freedom 77

d ∈ N
n ∈ N
n ≤ d
`
n < d ∨ 0 < n

MON
n ≤ d
`
n < d ∨ 0 < n

. . .

80

Proof of Deadlock Freedom (cont’d) 78

n ≤ d
`
n < d ∨ 0 < n

OR L



n < d
`
n < d ∨ 0 < n

. . .

n = d
`
n < d ∨ 0 < n

. . .

81

Proof of Deadlock Freedom (cont’d) 79



n < d
`
n < d ∨ 0 < n

OR R1 n < d ` n < d ?

n = d
`
n < d ∨ 0 < n

?

- The first ? seems to be obvious

- The second ? can be (partially) solved by applying the equality

82

More Inference Rules: Identity and Equality 80

- The identity axiom (conclusion holds by hypothesis)

P ` P
HYP

- Rewriting an equality (EQ LR) and reflexivity of equality (EQL)

H(F), E = F ` P(F)

H(E), E = F ` P(E)
EQ LR

` E = E
EQL

83

Proof of Deadlock Freedom (end) 81



n < d
`
n < d ∨ 0 < n

OR R1 n < d ` n < d HYP

n = d
`
n < d ∨ 0 < n

EQ LR ` d < d ∨ 0 < d OR R2

OR R2 ` 0 < d ?

- We still have a problem: d must be positive!

84

Adding the Forgotten Axiom 82

- If d is equal to 0, then no car can ever enter the Island-Bridge

axm0 2: 0 < d

85

Initial Model: Conclusion 83

- Thanks to the proofs, we discovered 3 errors

- They were corrected by:

- adding guards to both events

- adding an axiom

- The interaction of modeling and proving is an essential element

of Formal Methods with Proofs

86

Proof Obligations for Initial Model 84

- We have seen three kinds of proof obligations:

- The Invariant Establishment PO: INV

- The Invariant Preservation PO: INV

- The Deadlock Freedom PO (optional): DLF

87

Proof Obligations for Initial Model (cont’d) 85

Axioms
` INV

Modified Invariant

Axioms
Invariants
Guard of the event INV
`

Modified Invariant

Axiom
Invariants DLF
`

Disjunction of the guards

88

Summary of Initial Model 86

constant: d

variable: n

axm0 1: d ∈ N

axm0 2: d > 0

inv0 1: n ∈ N

inv0 2: n ≤ d

init
n := 0

ML out
when
n < d

then
n := n + 1

end

ML in
when
0 < n

then
n := n− 1

end

89

Our Refinement Strategy 87

- Initial model: Limiting the number of cars (FUN-2)

- First refinement: Introducing the one way bridge (FUN-3)

- Second refinement: Introducing the traffic lights (EQP-1,2,3)

- Third refinement: Introducing the sensors (EQP-4,5)

90

Reminder of the physical system 88

BridgeIsland Mainland

traffic light
sensor

91

First Refinement: Introducing a One-Way Bridge 89

- We go down with our parachute

- Our view of the system gets more accurate

- We introduce the bridge and separate it from the island

- We refine the state and the events

- We also add two new events: IL in and IL out

- We are focusing on FUN-3: one-way bridge

92

First Refinement: Introducing a one Way Bridge 90

IL_in

I s l a n d

I s l a n d

One Way
Bridge

ML_out

IL_out ML_in

93

Introducing Three New Variables: a, b, and c 91

b

a

c

- a denotes the number of cars on bridge going to island

- b denotes the number of cars on island

- c denotes the number of cars on bridge going to mainland

- a, b, and c are the concrete variables

- They replace the abstract variable n

94

Refining the State: Formalizing Variables a, b,and c 92

- Variables a, b, and c denote natural numbers

a ∈ N

b ∈ N

c ∈ N

95

Refining the State: Introducing New Invariants 93

- Relating the concrete state (a, b, c) to the abstract state (n)

a + b + c = n

- Formalizing the new invariant: one way bridge (this is FUN-3)

a = 0 ∨ c = 0

96

Refining the State: Summary 94

constants: d

variables: a, b, c

inv1 1: a ∈ N

inv1 2: b ∈ N

inv1 3: c ∈ N

inv1 4: a + b + c = n

inv1 5: a = 0 ∨ c = 0

- Invariants inv1 1 to inv1 5 are called the concrete invariants

- inv1 4 glues the abstract state, n, to the concrete state, a, b, c

97

Proposal for Refining Event ML out 95

ML_out

a

ML out
when
a + b < d
c = 0

then
a := a + 1

end

98

Proposal for Refining Event ML in 96

ML_in

c

ML in
when
0 < c

then
c := c− 1

end

99

B-A Predicates: Preserved Variables 97

ML out
when
a + b < d
c = 0

then
a := a + 1

end

ML in
when
0 < c

then
c := c− 1

end

Before-after predicates showing the unmodified variables:

a′ = a + 1 ∧ b′ = b ∧ c′ = c a′ = a ∧ b′ = b ∧ c′ = c− 1

100

Intuition about Refinement 98

The concrete model behaves as specified by the abstract model

(i.e., concrete model does not exhibit any new behaviors)

To show this we have to prove that

1. every concrete event is simulated by its abstract counterpart

(event refinement: following slides)

2. to every concrete initial state corresponds an abstract one

(initial state refinement: later)

We will make these two conditions more precise and formalize

them as proof obligations.

101

Intuition about refinement (1) 99

(abstract)ML out
when
n < d

then
n := n + 1

end

(concrete)ML out
when
a + b < d
c = 0

then
a := a + 1

end

- The concrete version is not contradictory with the abstract one

- When the concrete version is enabled then so is the abstract one

- Executions seem to be compatible

102

Intuition about refinement (2) 100

(abstract)ML in
when
0 < n

then
n := n− 1

end

(concrete)ML in
when
0 < c

then
c := c− 1

end

- Same remarks as in the previous slide

- But this has to be confirmed by well-defined proof obligations

103

Proof Obligations for Refinement 101

- The concrete guard is stronger than the abstract one

- Each concrete action is compatible with its abstract counterpart

104

Proving Correct Refinement: the Situation 102

Constants c with axioms A(c)

Abstract variables v with abstract invariant I(c, v)

Concrete variables w with concrete invariant J(c, v, w)

Abstract event with guards G(c, v): G1(c, v), G2(c, v), . . .

Abstract event with before-after predicate v′ = E(c, v)

Concrete event with guards H(c, w) and b-a predicate w′ = F (c, w)

105

Correctness of Event Refinement 103

v

w

Abstract Event

Concrete Event

J(c,v,w)

I(v) I(v’)

J(c,v’,w’)

v’=E(c,v)

w’=F(c,w)H(c,w)

G(c,v)

1. The concrete guard is stronger than the abstract one
(Guard Strengthening, following slides)

2. Each concrete action is simulated by its abstract counterpart
(Concrete Invariant Preservation, later)

106

Proof Obligation: Guard Strengthening 104

Axioms
Abstract Invariant
Concrete Invariant
Concrete Guard
`

Abstract Guard

A(c)
I(c, v)
J(c, v, w) GRD
H(c, w)
`
Gi(c, v)

107

Proof Obligations for Guard Strengthening 105

- ML out / GRD

- ML in / GRD

108

Applying Guard Strengthening to Event ML out 106

axm0 1
axm0 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
Concrete guards of ML out

`
Abstract guard of ML out

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a + b < d
c = 0
`
n < d

ML out / GRD

(abstract-)ML out
when

n < d
then

n := n + 1
end

(concrete-)ML out
when

a + b < d
c = 0

then
a := a + 1

end

109

Proof of ML out / GRD 107

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0

a + b < d

c = 0
`
n < d

MON

a + b + c = n
a + b < d
c = 0
`
n < d

EQ LR
a + b + 0 = n
a + b < d
`
n < d

ARITH . . .

. . .

a + b = n
a + b < d
`
n < d

EQ LR
n < d
`
n < d

HYP

The "rule" name ARITH stands for simple arithmetic simplifications.

110

Applying Guard Strengthening to Event ML in 108

axm0 1
axm0 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
Concrete guard of ML in
`

Abstract guard of ML in

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < c
`
0 < n

ML in / GRD

(abstract-)ML in
when

0 < n
then

n := n− 1
end

(concrete-)ML in
when

0 < c
then

c := c− 1
end

111

Proof of ML in / GRD 109

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n

a = 0 ∨ c = 0

0 < c
`
0 < n

MON

b ∈ N
a + b + c = n

a = 0 ∨ c = 0
0 < c
`
0 < n

OR L



b ∈ N
a + b + c = n

a = 0
0 < c
`
0 < n

EQ LR . . .

b ∈ N
a + b + c = n

c = 0
0 < c
`
0 < n

EQ LR . . .

112

Proof of ML in / GRD 110

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n

a = 0 ∨ c = 0

0 < c
`
0 < n

MON

b ∈ N
a + b + c = n

a = 0 ∨ c = 0
0 < c
`
0 < n

OR L



b ∈ N
a + b + c = n

a = 0
0 < c
`
0 < n

EQ LR . . .

b ∈ N
a + b + c = n

c = 0
0 < c
`
0 < n

EQ LR . . .



. . .

b ∈ N
0 + b + c = n
0 < c
`
0 < n

ARITH

b ∈ N
b + c = n
0 < c
`
0 < n

ARITH

c ≤ n

0 < c
`
0 < n

ARITH
0 < n
`
0 < n

HYP

. . .

b ∈ N
a + b + 0 = n
0 < 0
`
0 < n

ARITH

b ∈ N
a + b = n

0 < 0
`
0 < n

MON
0 < 0
`
0 < n

ARITH
⊥
`
0 < n

CNTR

113

An Additional Rule: the Contradiction Rule 111

- In the previous proof, we have used and additional inference rule

- It says that a false hypothesis entails any goal

⊥ ` P
CNTR

114

Correctness of Invariant Refinement 112

v

w

Abstract Event

Concrete Event

J(c,v,w)

I(v) I(v’)

J(c,v’,w’)

v’=E(c,v)

w’=F(c,w)H(c,w)

G(c,v)

115

Proof Obligation: Invariant Refinement 113

Axioms
Abstract Invariants
Concrete Invariants
Concrete Guards
`
Modified Concrete Invariant

A(c)
I(c, v)
J(c, v, w)
H(c, w) INV
`
Jj(c, E(c, v), F (c, w))

116

Overview of Proof Obligations 114

- ML out / GRD done

- ML in / GRD done

- ML out / inv1 4 / INV

- ML out / inv1 5 / INV

- ML in / inv1 4 / INV

- ML in / inv1 5 / INV

117

Applying Invariant Refinement to Event ML out 115

axm0 1
axm0 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
Concrete guards of ML out

`
Modified Invariant inv1 4

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a + b < d
c = 0
`
a + 1 + b + c = n + 1

ML out / inv1 4 / INV

(abstract-)ML out
when
n < d

then
n := n + 1

end

(concrete-)ML out
when
a + b < d
c = 0

then
a := a + 1

end

118

Proof of ML out / inv1 4 / INV 116

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a + b < d
c = 0
`
a + 1 + b + c = n + 1

MON
a + b + c = n
`
a + 1 + b + c = n + 1

ARITH . . .

. . .
a + b + c = n
`
a + b + c + 1 = n + 1

EQ LR ` n + 1 = n + 1 EQL

119

Applying Invariant Refinement to Event ML out 117

axm0 1
axm0 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
Concrete guards of ML out

`
Modified Invariant inv1 5

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a + b < d
c = 0
`
a + 1 = 0 ∨ c = 0

ML out / inv1 5 / INV

(abstract-)ML out
when
n < d

then
n := n + 1

end

(concrete-)ML out
when
a + b < d
c = 0

then
a := a + 1

end

120

Proof of ML out / inv1 5 / INV 118

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
a + b < d
c = 0
`
a + 1 = 0 ∨ c = 0

MON
c = 0
`
a + 1 = 0 ∨ c = 0

OR R2
c = 0
`
c = 0

HYP

121

Applying Invariant Refinement to Event ML in 119

axm0 1
axm0 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
Concrete guards of ML in
`

Modified Invariant inv1 4

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < c
`
a + b + c− 1 = n− 1

ML in / inv1 4 / INV

(abstract-)ML in
when

0 < n
then

n := n− 1
end

(concrte-)ML in
when

0 < c
then

c := c− 1
end

122

Proof of ML in / inv1 4 / INV 120

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < c
`
a + b + c− 1 = n− 1

MON
a + b + c = n
`
a + b + c− 1 = n− 1

EQ LR ` n− 1 = n− 1 EQL

123

Applying Invariant Refinement to Event ML in 121

axm0 1
axm0 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
Concrete guards of ML in
`

Modified Invariant inv1 5

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < c
`
a = 0 ∨ c− 1 = 0

ML in / inv1 5 / INV

(abstract-)ML in
when

0 < n
then

n := n− 1
end

(concrete-)ML in
when

0 < c
then

c := c− 1
end

124

Proof of ML in / inv1 5 / INV 122

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n

a = 0 ∨ c = 0

0 < c
`
a = 0 ∨ c− 1 = 0

MON
a = 0 ∨ c = 0
0 < c
`
a = 0 ∨ c− 1 = 0

OR L



a = 0
0 < c
`
a = 0 ∨ c− 1 = 0

MON · · ·

c = 0
0 < c
`
a = 0 ∨ c− 1 = 0

EQ LR · · ·

125

Proof of ML in / inv1 5 / INV 123

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n

a = 0 ∨ c = 0

0 < c
`
a = 0 ∨ c− 1 = 0

MON
a = 0 ∨ c = 0
0 < c
`
a = 0 ∨ c− 1 = 0

OR L



a = 0
0 < c
`
a = 0 ∨ c− 1 = 0

MON · · ·

c = 0
0 < c
`
a = 0 ∨ c− 1 = 0

EQ LR · · ·



· · ·
a = 0
`
a = 0 ∨ c− 1 = 0

OR R1 a = 0 ` a = 0 HYP

· · · 0 < 0 ` a = 0 ∨ −1 = 0 ARITH ⊥ ` a = 0 ∨ −1 = 0 CNTR

126

Refining the Initialization Event init 124

- Concrete initialization

init
a := 0
b := 0
c := 0

- Corresponding after predicate

a′ = 0 ∧ b′ = 0 ∧ c′ = 0

127

Proof Obligation: Initialization Refinement 125

Constants c with axioms A(c)

Concrete invariant J(c, v, w)

Abstract initialization with after predicate v′ = K(c)

Concrete initialization with after predicate w′ = L(c)

Axioms
`
Modified concrete invariants

A(c)
` INV
Jj(c,K(c), L(c))

128

Overview of Proof Obligations 126

- ML out / GRD done

- ML in / GRD done

- ML out / inv1 4 / INV done

- ML out / inv1 5 / INV done

- ML in / inv1 4 / INV done

- ML in / inv1 5 / INV done

- inv1 4 / INV

- inv1 5 / INV

129

Applying the Initialization Refinement PO 127

axm0 1
axm0 2
`

Modified concrete invariant inv1 4
(a + b + c = n)

d ∈ N
d > 0
`
0 + 0 + 0 = 0

axm0 1
axm0 2
`

Modified concrete invariant inv1 5
(a = 0 ∨ c = 0)

d ∈ N
d > 0
`
0 = 0 ∨ 0 = 0

130

Adding New Events 128

- new events add transitions that have no abstract counterpart

- can be seen as a kind of internal steps (w.r.t. abstract model)

- can only be seen by an observer who is “zooming in”

- temporal refinement: refined model has a finer time granularity

131

New Event IL in 129

IL_in

ab

IL in
when
0 < a

then
a := a− 1
b := b + 1

end

132

New Event IL out 130

IL_out

b c

IL out
when
0 < b
a = 0

then
b := b− 1
c := c + 1

end

133

Several Actions Done Together 131

IL in
when
0 < a

then
a := a− 1
b := b + 1

end

IL out
when
0 < b
a = 0

then
b := b− 1
c := c + 1

end

Before-after predicates

a′ = a + 1 ∧ b′ = b + 1 ∧ c′ = c

a′ = a ∧ b′ = b− 1 ∧ c′ = c + 1

134

The empty assignment: skip 132

The before-after predicate of skip in the initial model

n′ = n

The before-after predicate of skip in the first refinement

a′ = a ∧ b′ = b ∧ c′ = c

The guard of the skip event is true.

135

Refinement Proof Obligations for New Events 133

(1) A new event must refine an implicit event, made of a skip action

- Guard strengthening is trivial

- Need to prove invariant refinement

(2) The new events must not diverge

- To prove this we have to exhibit a variant

- The variant yields a natural number (could be more complex)

- Each new event must decrease this variant

136

Overview of Proof Obligations 134

- ML out / GRD done

- ML in / GRD done

- ML out / inv1 4 / INV done

- ML out / inv1 5 / INV done

- ML in / inv1 4 / INV done

- ML in / inv1 5 / INV done

- inv1 4 / INV done

- inv1 5 / INV done

- IL in / inv1 4 / INV

- IL in / inv1 5 / INV

- IL out / inv1 4 / INV

- IL out / inv1 5 / INV

137

Event IL in Refines skip (1) 135

axm0 1
axm0 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
Concrete guards of IL in
`

Modified Invariant inv1 4

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < a
`
a− 1 + b + 1 + c = n

IL in / inv1 4 / INV

IL in
when

0 < a
then

a := a− 1
b := b + 1

end

138

Proof of IL in / inv1 4 / INV 136

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < a
`
a− 1 + b + 1 + c = n

MON
a + b + c = n
`
a− 1 + b + 1 + c = n

ARITH
a + b + c = n
`
a + b + c = n

HYP

139

Event IL in Refines skip (2) 137

axm0 1
axm0 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
Concrete guards of IL in
`

Modified Invariant inv1 5

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < a
`
a− 1 = 0 ∨ c = 0

IL in / inv1 5 / INV

IL in
when

0 < a
then

a := a− 1
b := b + 1

end

140

Proof of IL in / inv1 5 / INV 138

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n

a = 0 ∨ c = 0

0 < a
`
a− 1 = 0 ∨ c = 0

MON
a = 0 ∨ c = 0
0 < a
`
a− 1 = 0 ∨ c = 0

OR L · · ·

141

Proof of IL in / inv1 5 / INV 139

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n

a = 0 ∨ c = 0

0 < a
`
a− 1 = 0 ∨ c = 0

MON
a = 0 ∨ c = 0
0 < a
`
a− 1 = 0 ∨ c = 0

OR L · · ·

· · ·



a = 0
0 < a
`
a− 1 = 0 ∨ c = 0

EQ LR
0 < 0
`
−1 = 0 ∨ c = 0

ARITH
⊥
`
−1 = 0 ∨ c = 0

CNTR

c = 0
0 < a
`
a− 1 = 0 ∨ c = 0

MON
c = 0
`
a− 1 = 0 ∨ c = 0

OR R2 c = 0 ` c = 0 HYP

142

Proof Obligation: Convergence of New Events (1) 140

Axioms A(c), invariants I(c, v), concrete invariant J(c, v, w)

New event with guard H(c, w)

Variant V (c, w)

Axioms
Abstract invariants
Concrete invariants
Concrete guard of a new event
`

Variant ∈ N

A(c)
I(c, v)
J(c, v, w)
H(c, w) NAT
`
V (c, w) ∈ N

143

Proof Obligation: Convergence of New Events (2) 141

Axioms A(c), invariants I(c, v), concrete invariant J(c, v, w)

New event with guard H(c, w) and b-a predicate w′ = F (c, w)

Variant V (c, w)

Axioms
Abstract invariants
Concrete invariants
Concrete guard
`
Modified Var. < Var.

A(c)
I(c, v)
J(c, v, w)
H(c, w) VAR
`
V (c, F (c, w)) < V (c, w)

144

Proposed Variant 142

variant 1: 2 ∗ a + b

- Weighted sum of a and b

145

Overview of Proof Obligations 143

−ML out / GRD done −IL in / NAT

−ML in / GRD done −IL out / NAT

−ML out / inv1 4 / INV done −IL in / VAR

−ML out / inv1 5 / INV done −IL out / VAR

−ML in / inv1 4 / INV done

−ML in / inv1 5 / INV done

−inv1 4 / INV done

−inv1 5 / INV done

−IL in / inv1 4 / INV done

−IL in / inv1 5 / INV done

−IL out / inv1 4 / INV done

−IL out / inv1 5 / INV done

146

Decreasing of the Variant by Event IL in 144

axm0 1
axm0 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
Concrete guard of IL in
`

Modified variant < Variant

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < a
`
2 ∗ (a− 1) + b + 1 < 2 ∗ a + b

IL in / VAR

IL in
when
0 < a

then
a := a− 1
b := b + 1

end

147

Decreasing of the Variant by Event IL out 145

axm0 1
axm0 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
Concrete guards of IL out

`
Modified variant < Variant

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < b
a = 0
`
2 ∗ a + b− 1 < 2 ∗ a + b

IL out / VAR

IL out
when
0 < b
a = 0

then
b := b− 1
c := c + 1

end

148

Relative Deadlock Freedom 146

There a no new deadlocks in the concrete model, that is, all dead-

locks of the concrete model are already present in the abstract model.

Proof obligation requires that whenever some abstract event is

enabled then so is some concrete event.

This proof obligaiton is optional (depending on system under study).

149

Proof Obligation: Relative Deadlock Freedom 147

The Gi(c, v) are the abstract guards

The Hi(c, v) are the concrete guards

If some abstract guard is true then so is some concrete guard:

A(c)
I(c, v)
J(c, v, w)
G1(c, v) ∨ . . . ∨ Gm(c, v) DLF
`
H1(c, w) ∨ . . . ∨ Hn(c, w)

150

Applying the Relative Deadlock Freedom PO 148

axm0 1
axm0 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
Disjunction of abstract guards
`

Disjunction of concrete guards

d ∈ N
0 < d
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
0 < n ∨ n < d
`
(a + b < d ∧ c = 0) ∨
c > 0 ∨ a > 0
(b > 0 ∧ a = 0)

DLF

ML out
when

a + b < d
c = 0

then
a := a + 1

end

ML in
when

c > 0
then

c := c− 1
end

IL in
when

a > 0
then

a := a− 1
b := b + 1

end

IL out
when

b > 0
a = 0

then
b := b− 1
c := c + 1

end

151

More Inference Rules: Negation and Conjunction 149

H,¬P ` Q
H ` P ∨ Q

NEG

H,P,Q ` R
H, P ∧ Q ` R

AND L
H ` P H ` Q

H ` P ∧ Q
AND R

152

Proof of DLF 150

d ∈ N
0 < d
n ∈ N
n ≤ d

a ∈ N
b ∈ N
c ∈ N
a + b + c = n

a = 0 ∨ c = 0

n > 0 ∨ n < d

`
(a + b < d ∧ c = 0) ∨
c > 0 ∨
a > 0 ∨
(b > 0 ∧ a = 0)

MON

a ∈ N
c ∈ N
a + b + c = n
n > 0 ∨ n < d
`
(a + b < d ∧ c = 0) ∨
c > 0 ∨
a > 0 ∨
(b > 0 ∧ a = 0)

NEG

a ∈ N
c ∈ N
a + b + c = n
n > 0 ∨ n < d

¬ (c > 0)

`
(a + b < d ∧ c = 0) ∨
a > 0 ∨
(b > 0 ∧ a = 0)

ARITH · · ·

153

Proof of DLF 151

d ∈ N
0 < d
n ∈ N
n ≤ d

a ∈ N
b ∈ N
c ∈ N
a + b + c = n

a = 0 ∨ c = 0

n > 0 ∨ n < d

`
(a + b < d ∧ c = 0) ∨
c > 0 ∨
a > 0 ∨
(b > 0 ∧ a = 0)

MON

a ∈ N
c ∈ N
a + b + c = n
n > 0 ∨ n < d
`
(a + b < d ∧ c = 0) ∨
c > 0 ∨
a > 0 ∨
(b > 0 ∧ a = 0)

NEG

a ∈ N
c ∈ N
a + b + c = n
n > 0 ∨ n < d

¬ (c > 0)

`
(a + b < d ∧ c = 0) ∨
a > 0 ∨
(b > 0 ∧ a = 0)

ARITH · · ·

· · ·

a ∈ N
a + b + c = n
n > 0 ∨ n < d

c = 0
`
(a + b < d ∧ c = 0) ∨
a > 0 ∨
(b > 0 ∧ a = 0)

EQ LR

a ∈ N
a + b + 0 = n
n > 0 ∨ n < d
`
(a + b < d ∧ 0 = 0) ∨
a > 0 ∨
(b > 0 ∧ a = 0)

NEG

a ∈ N
a + b + 0 = n
n > 0 ∨ n < d

¬ (a > 0)

`
(a + b < d ∧ 0 = 0) ∨
(b > 0 ∧ a = 0)

ARITH · · ·

154

Proof of DLF (cont’d) 152

· · ·

a + b + 0 = n
n > 0 ∨ n < d

a = 0
`
(a + b < d ∧ 0 = 0) ∨
(b > 0 ∧ a = 0)

EQ LR

0 + b + 0 = n

n > 0 ∨ n < d
`
(0 + b < d ∧ 0 = 0) ∨
(b > 0 ∧ 0 = 0)

ARITH

b = n
n > 0 ∨ n < d
`
(b < d ∧ 0 = 0) ∨
(b > 0 ∧ 0 = 0)

EQ LR · · ·

155

Proof of DLF (cont’d) 153

· · ·

a + b + 0 = n
n > 0 ∨ n < d

a = 0
`
(a + b < d ∧ 0 = 0) ∨
(b > 0 ∧ a = 0)

EQ LR

0 + b + 0 = n

n > 0 ∨ n < d
`
(0 + b < d ∧ 0 = 0) ∨
(b > 0 ∧ 0 = 0)

ARITH

b = n
n > 0 ∨ n < d
`
(b < d ∧ 0 = 0) ∨
(b > 0 ∧ 0 = 0)

EQ LR · · ·

· · ·
n > 0 ∨ n < d

`
(n < d ∧ 0 = 0) ∨
(n > 0 ∧ 0 = 0)

OR L



n > 0
`
(n < d ∧ 0 = 0) ∨
(n > 0 ∧ 0 = 0)

OR R2
n > 0
`
n > 0 ∧ 0 = 0

AND R



n > 0
`
n > 0

HYP

n > 0
`
0 = 0

EQL

n < d
`
(n < d ∧ 0 = 0) ∨
(n > 0 ∧ 0 = 0)

OR R1
n < d
`
n < d ∧ 0 = 0

AND R



n < d
`
n < d

HYP

n < d
`
0 = 0

EQL

156

Overview of Proof Obligations 154

−ML out / GRD done −IL in / NAT done

−ML in / GRD done −IL out / NAT done

−ML out / inv1 4 / INV done −IL in / VAR done

−ML out / inv1 5 / INV done −IL out / VAR done

−ML in / inv1 4 / INV done −DLF done

−ML in / inv1 5 / INV done

−inv1 4 / INV done

−inv1 5 / INV done

−IL in / inv1 4 / INV done

−IL in / inv1 5 / INV done

−IL out / inv1 4 / INV done

−IL out / inv1 5 / INV done

157

Summary of Refinement POs 155

- For old events:

- Strengthening of guards: GRD

- Concrete invariant preservation: INV

- For new events:

- Refining the implicit skip event: INV

- Absence of divergence: NAT and VAR

- For all events:

- Relative deadlock freedom: DLF

158

Proof Obligations for Refinement (1/2) 156

Axioms
Abstract invariants
Concrete invariants GRD
Concrete guards
`

Abstract guard

Axioms
Abstract invariants
Concrete invariants
Concrete guard INV
`

Modified concrete invariant

Axioms
` INV

Modified concrete invariant

159

Proof Obligations for Refinement (2/2) 157

Axioms
Abstract invariants
Concrete invariants
Concrete guards of a new event NAT
`

Variant ∈ N

Axioms
Abstract invariants
Concrete invariants
Concrete guards of a new event VAR
`

Modified variant < Variant

Axioms
Abstract invariants
Concrete invariants
Disjunction of abstract events guards DLF
`

Disjunction of concrete events guards

160

State of the First Refinement 158

constants: d

variables: a, b, c

inv1 1: a ∈ N

inv1 2: b ∈ N

inv1 3: c ∈ N

inv1 4: a + b + c = n

inv1 5: a = 0 ∨ c = 0

variant1: 2 ∗ a + b

161

Events of the First Refinement 159

init
a := 0
b := 0
c := 0

ML in
when
0 < c

then
c := c− 1

end

ML out
when
a + b < d
c = 0

then
a := a + 1

end

IL in
when
0 < a

then
a := a− 1
b := b + 1

end

IL out
when
0 < b
a = 0

then
b := b− 1
c := c + 1

end

162

Our Refinement Strategy 160

- Initial model: Limiting the number of cars (FUN-2)

- First refinement: Introducing the one way bridge (FUN-3)

- Second refinement: Introducing the traffic lights (EQP-1,2,3)

- Third refinement: Introducing the sensors (EQP-4,5)

163

Second Refinement: Introducing Traffic Lights 161

M A I N L A N D

il_tl

ml_tl

I S L A N D

ML_out

IL_out

164

Extending the Constants 162

set: COLOR

constants: red, green

axm2 1: COLOR = {green, red}

axm2 2: green 6= red

165

Extending the Variables 163

il tl ∈ COLOR ml tl ∈ COLOR

Remark: Events IL in and ML in are not modified in this refinement

166

Extending the Invariant (1) 164

ml_tl

c

b

a

- A green mainland traffic light implies safe access to the bridge

167

Extending the Invariant (1) 165

ml_tl

c

b

a

- A green mainland traffic light implies safe access to the bridge

ml tl = green ⇒ c = 0 ∧ a + b < d

168

Refining Event ML out 166

a

ML_out

(abstract)ML out
when
c = 0
a + b < d

then
a := a + 1

end

169

Refining Event ML out 167

a

ML_out

(abstract)ML out
when
c = 0
a + b < d

then
a := a + 1

end

(concrete)ML out
when
ml tl = green

then
a := a + 1

end

170

Extending the Invariant (2) 168

c

b

a

il_tl

- A green island traffic light implies safe access to the bridge

171

Extending the Invariant (2) 169

c

b

a

il_tl

- A green island traffic light implies safe access to the bridge

il tl = green ⇒ a = 0 ∧ 0 < b

172

Refining Event IL out 170

c

IL_out

b

(abstract)IL out
when
a = 0
0 < b

then
b, c := b− 1, c + 1

end

173

Refining Event IL out 171

c

IL_out

b

(abstract)IL out
when
a = 0
0 < b

then
b, c := b− 1, c + 1

end

(concrete)IL out
when
il tl = green

then
b, c := b− 1, c + 1

end

174

New Events ML tl green and IL tl green 172

ML tl green
when
ml tl = red
c = 0
a + b < d

then
ml tl := green

end

IL tl green
when
il tl = red
a = 0
0 < b

then
il tl := green

end

- Turning lights to green when proper conditions hold

175

Summary of State Refinement (so far) 173

variables: a, b, c,ml tl, il tl

inv2 1: ml tl ∈ COLOR

inv2 2: il tl ∈ COLOR

inv2 3: ml tl = green ⇒ a + b < d ∧ c = 0

inv2 4: il tl = green ⇒ 0 < b ∧ a = 0

176

Summary of Old Events (so far) 174

ML out
when

ml tl = green
then

a := a + 1
end

IL out
when

il tl = green
then

b := b− 1
c := c + 1

end

Events ML in and IL in are unchanged

ML in
when

0 < c
then

c := c− 1
end

IL in
when

0 < a
then

a := a− 1
b := b + 1

end

177

Superposition 175

variables: a, b, c,ml tl, il tl

- Variables a, b, and c were present in the previous refinement

- Variables ml tl and il tl are superposed to a, b, and c

- We have thus to extend rule INV

178

Superposition: Introduction of a new Rule 176

Abstract Event
when

G(c, u, v)
then

u := E(c, u, v)
v := M(c, u, v)

end

Concrete Event
when

H(c, v, w)
then

v := N(c, v, w)
w := F (c, v, w)

end

Axioms
Abstract invariants
Concrete invariants
Concrete guards
⇒

Same actions on
common variables

A(c)
I(c, u, v)
J(c, u, v, w)
H(c, v, w) SIM
⇒
M(c, u, v) = N(c, v, w)

179

Proving the Refinement of the Four Old Events 177

- We have to apply 3 Proof Obligations:

- GRD,

- SIM,

- INV

- On 4 events: ML out, IL out, ML in, IL in

- And 2 main invariants:

inv2 3: ml tl = green ⇒ a + b < d ∧ c = 0

inv2 4: il tl = green ⇒ 0 < b ∧ a = 0

180

Proving the Refinement of the Four Old Events 178

(abstract-)ML out
when

c = 0
a + b < d

then
a := a + 1

end

(abstract-)IL out
when

a = 0
0 < b

then
b := b− 1
c := c + 1

end

(abstract-)ML in
when

0 < c
then

c := c− 1
end

(abstract-)IL in
when

0 < a
then

a := a− 1
b := b + 1

end

(concrete-)ML out
when

ml tl = green
then

a := a + 1
end

(concrete-)IL out
when

il tl = green
then

b := b− 1
c := c + 1

end

(concrete-)ML in
when

0 < c
then

c := c− 1
end

(concrete-)IL in
when

0 < a
then

a := a− 1
b := b + 1

end

- SIM is completely trivial since the actions are the same

181

Proving the Refinement of the Four Old Events 179

(abstract-)ML out
when

c = 0
a + b < d

then
a := a + 1

end

(abstract-)IL out
when

a = 0
0 < b

then
b := b− 1
c := c + 1

end

(abstract-)ML in
when

0 < c
then

c := c− 1
end

(abstract-)IL in
when

0 < a
then

a := a− 1
b := b + 1

end

(concrete-)ML out
when

ml tl = green
then

a := a + 1
end

(concrete-)IL out
when

il tl = green
then

b := b− 1
c := c + 1

end

(concrete-)ML in
when

0 < c
then

c := c− 1
end

(concrete-)IL in
when

0 < a
then

a := a− 1
b := b + 1

end

- GRD is also trivial

inv2 3: ml tl = green ⇒ a + b < d ∧ c = 0

inv2 4: il tl = green ⇒ 0 < b ∧ a = 0

182

Proving the Refinement of the Four Old Events 180

(abstract-)ML out
when

c = 0
a + b < d

then
a := a + 1

end

(abstract-)IL out
when

a = 0
0 < b

then
b := b− 1
c := c + 1

end

(abstract-)ML in
when

0 < c
then

c := c− 1
end

(abstract-)IL in
when

0 < a
then

a := a− 1
b := b + 1

end

(concrete-)ML out
when

ml tl = green
then

a := a + 1
end

(concrete-)IL out
when

il tl = green
then

b := b− 1
c := c + 1

end

(concrete-)ML in
when

0 < c
then

c := c− 1
end

(concrete-)IL in
when

0 < a
then

a := a− 1
b := b + 1

end

- INV applied to ML in and IL in holds trivially

inv2 3: ml tl = green ⇒ a + b < d ∧ c = 0

inv2 4: il tl = green ⇒ 0 < b ∧ a = 0

183

Proving the Refinement of the Four Old Events 181

(abstract-)ML out
when

c = 0
a + b < d

then
a := a + 1

end

(abstract-)IL out
when

a = 0
0 < b

then
b := b− 1
c := c + 1

end

(abstract-)ML in
when

0 < c
then

c := c− 1
end

(abstract-)IL in
when

0 < a
then

a := a− 1
b := b + 1

end

(concrete-)ML out
when

ml tl = green
then

a := a + 1
end

(concrete-)IL out
when

il tl = green
then

b := b− 1
c := c + 1

end

(concrete-)ML in
when

0 < c
then

c := c− 1
end

(concrete-)IL in
when

0 < a
then

a := a− 1
b := b + 1

end

- INV applied to ML out and IL out raise some difficulties

184

What we Have to Prove 182

- ML out / inv2 4 / INV

- IL out / inv2 3 / INV

- ML out / inv2 3 / INV

- IL out / inv2 4 / INV

185

More Logical Rules of Inferences 183

- Rules about implication

H,P,Q ` R
H, P, P⇒ Q ` R

IMP L
H,P ` Q

H ` P⇒ Q
IMP R

- Rules about negation

H ` P
H, ¬P ` Q

NOT L
H,P ` Q H,P ` ¬Q

H ` ¬P
NOT R

186

Proving Preservation of inv2 4 by Event ML out 184

axm0 1
axm0 2
axm2 1
axm2 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
inv2 1
inv2 2
inv2 3
inv2 4
Guard of event ML out
`
Modified invariant inv2 4

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
ml tl = green
`
il tl = green ⇒ 0 < b ∧ a + 1 = 0

ML out / inv2 4 / INV

ML out
when
ml tl = green

then
a := a + 1

end

187

Tentative Proof 185

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
ml tl = green
`
il tl = green ⇒ 0 < b ∧ a + 1 = 0

MON

green 6= red
il tl = green ⇒ 0 < b ∧ a = 0
ml tl = green
`
il tl = green ⇒ 0 < b ∧ a + 1 = 0

IMP R · · ·

188

Tentative Proof 186

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
ml tl = green
`
il tl = green ⇒ 0 < b ∧ a + 1 = 0

MON

green 6= red
il tl = green ⇒ 0 < b ∧ a = 0
ml tl = green
`
il tl = green ⇒ 0 < b ∧ a + 1 = 0

IMP R · · ·

· · ·

green 6= red
il tl = green ⇒ 0 < b ∧ a = 0
ml tl = green
il tl = green
`
0 < b ∧ a + 1 = 0

IMP L

green 6= red
0 < b ∧ a = 0
ml tl = green
il tl = green
`
0 < b ∧ a + 1 = 0

AND L · · ·

189

Tentative Proof (cont’d) 187

· · ·

green 6= red
0 < b
a = 0
ml tl = green
il tl = green
`
0 < b ∧ a + 1 = 0

AND R



green 6= red
0 < b
a = 0
ml tl = green
il tl = green
`
0 < b

MON 0 < b ` 0 < b HYP

green 6= red
0 < b
a = 0
ml tl = green
il tl = green
`
a + 1 = 0

EQ LR

green 6= red
ml tl = green
il tl = green
`
0 + 1 = 0

ARITH

green 6= red
ml tl = green
il tl = green
`
1 = 0

?

190

Proving Preservation of inv2 3 by Event IL out 188

axm0 1
axm0 2
axm2 1
axm2 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
inv2 1
inv2 2
inv2 3
inv2 4
Guard of IL out
`
Modified inv2 3

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
il tl = green
`
ml tl = green ⇒ a + b− 1 < d ∧ c + 1 = 0

IL out / inv2 3 / INV

IL out
when
il tl = green

then
b := b− 1
c := c + 1

end

191

Tentative Proof 189

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
il tl = green
`
ml tl = green ⇒ a + b− 1 < d ∧ c + 1 = 0

MON

green 6= red
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green
`
ml tl = green ⇒ a + b− 1 < d ∧

c + 1 = 0

IMP R · · ·

192

Tentative Proof 190

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
il tl = green
`
ml tl = green ⇒ a + b− 1 < d ∧ c + 1 = 0

MON

green 6= red
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green
`
ml tl = green ⇒ a + b− 1 < d ∧

c + 1 = 0

IMP R · · ·

· · ·

green 6= red
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green
ml tl = green
`
a + b− 1 < d ∧ c + 1 = 0

IMP L

green 6= red
a + b < d ∧ c = 0
il tl = green
ml tl = green
`
a + b− 1 < d ∧
c + 1 = 0

AND L · · ·

193

Tentative Proof (cont’d) 191

· · ·

green 6= red
a + b < d
c = 0
il tl = green
ml tl = green
`
a + b− 1 < d ∧
c + 1 = 0

AND R



green 6= red
a + b < d
c = 0
il tl = green
ml tl = green
`
a + b− 1 < d

MON a + b < d ` a + b− 1 < d DEC

green 6= red
c = 0
il tl = green
ml tl = green
`
c + 1 = 0

EQ LR

green 6= red
il tl = green
ml tl = green
`
0 + 1 = 0

ARITH

green 6= red
il tl = green
ml tl = green
`
1 = 0

?

194

The Solution 192

- In both cases, we were stopped by attempting to prove the following

green 6= red
il tl = green
ml tl = green
`
1 = 0

Both traffic lights are
assumed to be green!

- This indicates that an "obvious" invariant was missing

- In fact, at least one of the two traffic lights must be red

inv2 5: ml tl = red ∨ il tl = red

195

Completing the Proof 193

green 6= red
ml tl = red ∨ il tl = red
il tl = green
ml tl = green
`
1 = 0

OR L



green 6= red
ml tl = red
il tl = green
ml tl = green
`
1 = 0

EQ LR

green 6= red
green = red
il tl = green
`
1 = 0

NOT L · · ·

green 6= red
il tl = red
il tl = green
ml tl = green
`
1 = 0

EQ LR

green 6= red
green = red
ml tl = green
`
1 = 0

NOT L · · ·



· · ·
green = red
il tl = green
`
green = red

MON green = red ` green = red HYP

· · ·
green = red
ml tl = green
`
green = red

MON green = red ` green = red HYP

196

Going back to the Requirements Document 194

inv2 5: ml tl = red ∨ il tl = red

This could have been deduced from these requirements

The bridge is one way or the other, not both at the
same time FUN-3

Cars are not supposed to pass on a red traffic
light, only on a green one EQP-3

197

What we Have to Prove 195

- ML out / inv2 4 / INV done

- IL out / inv2 3 / INV done

- ML out / inv2 3 / INV

- IL out / inv2 4 / INV

- ML tl green / inv2 5 / INV

- IL tl green / inv2 5 / INV

198

Proving Preservation of inv2 3 by Event ML out 196

axm0 1
axm0 2
axm2 1
axm2 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
inv2 1
inv2 2
inv2 3
inv2 4
Guard of ML out
`
Modified inv2 3

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
ml tl = green
`
ml tl = green ⇒ a + 1 + b < d ∧ c = 0

ML out / inv2 3 / INV

ML out
when
ml tl = green

then
a := a + 1

end

199

Tentative Proof 197

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
ml tl = green
`
ml tl = green ⇒ a + 1 + b < d ∧

c = 0

MON
ml tl = green ⇒ a + b < d ∧ c = 0
`
ml tl = green ⇒ a + 1 + b < d ∧ c = 0

IMP R · · ·

200

Tentative Proof 198

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
ml tl = green
`
ml tl = green ⇒ a + 1 + b < d ∧

c = 0

MON
ml tl = green ⇒ a + b < d ∧ c = 0
`
ml tl = green ⇒ a + 1 + b < d ∧ c = 0

IMP R · · ·

· · ·
ml tl = green ⇒ a + b < d ∧ c = 0
ml tl = green
`
a + 1 + b < d ∧ c = 0

IMP L

a + b < d ∧ c = 0
ml tl = green
`
a + 1 + b < d ∧ c = 0

AND L · · ·

201

Tentative Proof (cont’d) 199

· · ·

a + b < d
c = 0
ml tl = green
`
a + 1 + b < d ∧ c = 0

AND R



a + b < d
c = 0
ml tl = green
`
a + 1 + b < d

MON

a + b < d
ml tl = green
`
a + 1 + b < d

?

a + b < d
c = 0
ml tl = green
`
c = 0

MON c = 0 ` c = 0 HYP

- This requires splitting the ML out in two separate events ML out 1 and ML out 2

ML out 1
when

ml tl = green
a + 1 + b < d

then
a := a + 1

end

ML out 2
when

ml tl = green
a + 1 + b = d

then
a := a + 1
ml tl := red

end

202

Intuitive Explanation 200

ML out 1
when
ml tl = green
a + 1 + b < d

then
a := a + 1

end

ML out 2
when
ml tl = green
a + 1 + b = d

then
a := a + 1
ml tl := red

end

- When a+1+ b = d then only one more car can enter the island

- Consequently, the traffic light ml tl must be turned red

(while the car enters the bridge)

203

Proving Preservation of inv2 3 by Event ML out 1 201

axm0 1
axm0 2
axm2 1
axm2 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
inv2 1
inv2 2
inv2 3
inv2 4
Guard of ML out 1

`
Modified inv2 3

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
ml tl = green
a + 1 + b < d
`
ml tl = green ⇒ a + 1 + b < d ∧ c = 0

ML out 1 / inv2 3 / INV

ML out 1
when
ml tl = green
a + 1 + b < d

then
a := a + 1

end

204

Proof 202

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
ml tl = green
a + 1 + b < d
`
ml tl = green ⇒ a + 1 + b < d ∧

c = 0

MON

ml tl = green ⇒ a + b < d ∧ c = 0
a + 1 + b < d
`
ml tl = green ⇒ a + 1 + b < d ∧ c = 0

IMP R · · ·

205

Proof 203

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
ml tl = green
a + 1 + b < d
`
ml tl = green ⇒ a + 1 + b < d ∧

c = 0

MON

ml tl = green ⇒ a + b < d ∧ c = 0
a + 1 + b < d
`
ml tl = green ⇒ a + 1 + b < d ∧ c = 0

IMP R · · ·

· · ·

ml tl = green ⇒ a + b < d ∧ c = 0
ml tl = green
a + 1 + b < d
`
a + 1 + b < d ∧ c = 0

IMP L

a + b < d ∧ c = 0
ml tl = green
a + 1 + b < d
`
a + 1 + b < d ∧ c = 0

AND L · · ·

206

Proof (cont’d) 204

· · ·

a + b < d
c = 0
ml tl = green
a + 1 + b < d
`
a + 1 + b < d ∧ c = 0

AND R



a + b < d
c = 0
ml tl = green
a + 1 + b < d
`
a + 1 + b < d

MON
a + 1 + b < d
`
a + 1 + b < d

HYP

a + b < d
c = 0
ml tl = green
a + 1 + b < d
`
c = 0

MON c = 0 ` c = 0 HYP

207

Proving Preservation of inv2 3 by Event ML out 2 205

axm0 1
axm0 2
axm2 1
axm2 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
inv2 1
inv2 2
inv2 3
inv2 4
Guard of ML out 2

`
Modified inv2 3

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
ml tl = green
a + 1 + b = d
`
red = green ⇒ a + 1 + b < d ∧ c = 0

ML out 2 / inv2 3 / INV

ML out 2
when

ml tl = green
a + 1 + b = d

then
a := a + 1
ml tl := red

end

208

Proof 206

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
ml tl = green
a + 1 + b = d
`
red = green ⇒ a + 1 + b < d ∧

c = 0

MON
green 6= red
`
red = green ⇒ a + 1 + b < d ∧ c = 0

IMP R

209

Proof 207

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
ml tl = green
a + 1 + b = d
`
red = green ⇒ a + 1 + b < d ∧

c = 0

MON
green 6= red
`
red = green ⇒ a + 1 + b < d ∧ c = 0

IMP R

· · ·
green 6= red
red = green
`
a + 1 + b < d ∧ c = 0

EQ LR
green 6= green
`
a + 1 + b < d ∧ c = 0

NOT L `
green = green

EQL

210

What we Have to Prove 208

- ML out / inv2 4 / INV done

- IL out / inv2 3 / INV done

- ML out / inv2 3 / INV done

- IL out / inv2 4 / INV

- ML tl green / inv2 5 / INV

- IL tl green / inv2 5 / INV

211

Proving Preservation of inv2 4 by Event IL out 209

axm0 1
axm0 2
axm2 1
axm2 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
inv2 1
inv2 2
inv2 3
inv2 4
Guard of event IL out
`
Modified invariant inv2 4

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
il tl = green
`
il tl = green ⇒ 0 < b− 1 ∧ a = 0

IL out / inv2 4 / INV

IL out
when
il tl = green

then
b := b− 1
c := c + 1

end

212

Tentative Proof 210

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
il tl = green
`
il tl = green ⇒ 0 < b− 1 ∧ a = 0

MON

il tl = green ⇒ 0 < b ∧ a = 0
il tl = green
`
il tl = green ⇒ 0 < b− 1 ∧

a = 0

IMP R

. . .

il tl = green ⇒ 0 < b ∧ a = 0
il tl = green
`
0 < b− 1 ∧ a = 0

IMP L
0 < b ∧ a = 0
`
0 < b− 1 ∧ a = 0

AND L

213

Tentative Proof (cont’d) 211

. . .

0 < b
a = 0
`
0 < b− 1 ∧ a = 0

AND R



0 < b
a = 0
`
0 < b− 1

MON
0 < b
`
0 < b− 1

?

0 < b
a = 0
`
a = 0

MON
a = 0
`
a = 0

HYP

- This requires splitting the concrete IL out in two separate events IL out 1 and IL out 2

IL out 1
when

il tl = green
b 6= 1

then
b, c := b− 1, c + 1

end

IL out 2
when

il tl = green
b = 1

then
b, c := b− 1, c + 1
il tl := red

end

214

Intuitive Explanation 212

IL out 1
when
il tl = green
b 6= 1

then
b, c := b− 1, c + 1

end

IL out 2
when
il tl = green
b = 1

then
b, c := b− 1, c + 1
il tl := red

end

- When b=1, then only one car remains in the island

- Consequently, the traffic light il tl can be turned red

(after this car has left)

215

Proving Preservation of inv2 4 by Event IL out 1 213

axm0 1
axm0 2
axm2 1
axm2 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
inv2 1
inv2 2
inv2 3
inv2 4
Guard of event IL out 1

`
Modified invariant inv2 4

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
il tl = green
b 6= 1
`
il tl = green ⇒ 0 < b− 1 ∧ a = 0

IL out 1 / inv2 4 / INV

IL out 1
when
il tl = green
b 6= 1

then
b, c := b− 1, c + 1

end

216

Proof 214

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
il tl = green
b 6= 1
`
il tl = green ⇒ 0 < b− 1 ∧ a = 0

MON

il tl = green ⇒ 0 < b ∧ a = 0
il tl = green
b 6= 1
`
il tl = green ⇒ 0 < b− 1 ∧

a = 0

IMP R

. . .

il tl = green ⇒ 0 < b ∧ a = 0
il tl = green
b 6= 1
`
0 < b− 1 ∧ a = 0

IMP L

0 < b ∧ a = 0
b 6= 1
`
0 < b− 1 ∧ a = 0

AND L

217

Proof (cont’d) 215

. . .

0 < b
a = 0
b 6= 1
`
0 < b− 1 ∧ a = 0

AND R



0 < b
a = 0
b 6= 1
`
0 < b− 1

MON
0 < b
b 6= 1
`
0 < b− 1

ARITH
0 < b− 1
`
0 < b− 1

HYP

0 < b
a = 0
b 6= 1 `
a = 0

MON
a = 0
`
a = 0

HYP

218

Proving Preservation of inv2 4 by Event IL out 2 216

axm0 1
axm0 2
axm2 1
axm2 2
inv0 1
inv0 2
inv1 1
inv1 2
inv1 3
inv1 4
inv1 5
inv2 1
inv2 2
inv2 3
inv2 4
Guard of event IL out 2

`
Modified invariant inv2 4

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
il tl = green
b = 1
`
red = green ⇒ 0 < b− 1 ∧ a = 0

IL out 1 / inv2 4 / INV

IL out 2
when
il tl = green
b = 1

then
b, c, il tl := b− 1, c + 1, red

end

219

Proof 217

d ∈ N
0 < d
COLOR = {green, red}
green 6= red
n ∈ N
n ≤ d
a ∈ N
b ∈ N
c ∈ N
a + b + c = n
a = 0 ∨ c = 0
ml tl ∈ COLOR
il tl ∈ COLOR
ml tl = green ⇒ a + b < d ∧ c = 0
il tl = green ⇒ 0 < b ∧ a = 0
il tl = green
b = 1
`
red = green ⇒ 0 < b− 1 ∧ a = 0

MON

green 6= red
`
red = green ⇒ 0 < b− 1 ∧

a = 0

IMP R

. . .

green 6= red
red = green
`
0 < b− 1 ∧ a = 0

EQ LR

green 6= green
`
0 < b− 1 ∧
a = 0

NOT L `
green = green

EQL

220

What we Have to Prove 218

- ML out / inv2 4 / INV done

- IL out / inv2 3 / INV done

- ML out / inv2 3 / INV done

- IL out / inv2 4 / INV done

- ML tl green / inv2 5 / INV

- IL tl green / inv2 5 / INV

221

Correcting the New Events 219

But the new invariant inv2 5 is not preserved by the new events

inv2 5: ml tl = red ∨ il tl = red

Unless we correct them as follows:

ML tl green
when

ml tl = red
a + b < d
c = 0

then
ml tl := green
il tl := red

end

IL tl green
when

il tl = red
0 < b
a = 0

then
il tl := green
ml tl := red

end

222

Summary of the Proof Situation 220

- Correct event refinement: OK

- Absence of divergence of new events: FAILURE

- Absence of deadlock: ?

223

Divergence of the New Events 221

ML tl green
when
ml tl = red
a + b < d
c = 0

then
ml tl := green
il tl := red

end

IL tl green
when
il tl = red
0 < b
a = 0

then
il tl := green
ml tl := red

end

When a and c are both equal to 0 and b is positive, then both events

are always alternatively enabled

The lights can change colors very rapidly

224

ML tl green and IL tl green can run for ever 222

IL ML

ml_tl

il_tl

a=0

c=0

225

ML tl green and IL tl green can run for ever 223

IL ML

ml_tl

il_tl

a=0

c=0

226

ML tl green and IL tl green can run for ever 224

IL ML

ml_tl

il_tl

a=0

c=0

227

ML tl green and IL tl green can run for ever 225

IL ML

ml_tl

il_tl

a=0

c=0

228

ML tl green and IL tl green can run for ever 226

IL ML

ml_tl

il_tl

a=0

c=0

229

ML tl green and IL tl green can run for ever 227

IL ML

ml_tl

il_tl

a=0

c=0

230

Solution 228

- Allowing each light to turn green only when at least one car

has passed in the other direction

- For this, we introduce two additional variables:

inv2 6: ml pass ∈ {0, 1}

inv2 7: il pass ∈ {0, 1}

231

Modifying Events ML out 1 and ML out 2 229

ML out 1
when
ml tl = green
a + 1 + b < d

then
a := a + 1
ml pass := 1

end

ML out 2
when
ml tl = green
a + 1 + b = d

then
a := a + 1
ml tl := red
ml pass := 1

end

232

Modifying Events ML out 1 and ML out 2 230

IL out 1
when
il tl = green
b 6= 1

then
b := b− 1
c := c + 1
il pass := 1

end

IL out 2
when
il tl = green
b = 1

then
b := b− 1
c := c + 1
il tl := red
il pass := 1

end

233

Modifying Events ML tl gree and IL tl green 231

ML tl green
when
ml tl = red
a + b < d
c = 0
il pass = 1

then
ml tl := green
il tl := red
ml pass := 0

end

IL tl green
when
il tl = red
0 < b
a = 0
ml pass = 1

then
il tl := green
ml tl := red
il pass := 0

end

234

Proving Absence of Divergence 232

We exhibit the following variant

variant 2: ml pass + il pass

235

To be Proved 233

ml tl = red
a + b < d
c = 0
il pass = 1
⇒
il pass + 0 <
ml pass + il pass

il tl = red
b > 0
a = 0
ml pass = 1
⇒
ml pass + 0 <
ml pass + il pass

This cannot be proved. This suggests the following invariants:

inv2 8: ml tl = red ⇒ ml pass = 1

inv2 9: il tl = red ⇒ il pass = 1

236

No Deadlock (1) 234

0 < d
ml tl ∈ {red, green}
il tl ∈ {red, green}
ml pass ∈ {0, 1}
il pass ∈ {0, 1}
a ∈ N
b ∈ N
c ∈ N
ml tl = red ⇒ ml pass = 1
il tl = red ⇒ il pass = 1
⇒
(ml tl = red ∧ a + b < d ∧ c = 0 ∧ il pass = 1) ∨
(il tl = red ∧ a = 0 ∧ b > 0 ∧ ml pass = 1) ∨
ml tl = green ∨ il tl = green ∨ a > 0 ∨ c > 0

237

No Deadlock (2) 235

The previous statement reduces to the following, which is true

0 < d
a ∈ N
b ∈ N
c ∈ N
⇒
(a + b < d ∧ c = 0) ∨
(a = 0 ∧ b > 0) ∨
a > 0 ∨
c > 0

;

0 < d
b ∈ N
⇒
b < d ∨ b > 0

238

Second Refinement: Conclusion 236

- Thanks to the proofs:

- We discovered 4 errors

- We introduced several additional invariants

- We corrected 4 events

- We introduced 2 more variables

239

Conclusion: we Introduced the Superposition Rule
237

Axioms
Abstract invariants
Concrete invariants SIM
Concrete guards
`

Same actions on common variables

240

Summary of Second Refinement: the State (1) 238

variables: a, b, c,
ml tl, il tl,ml pass, il pass

inv2 1: ml tl ∈ {red, green}

inv2 2: il tl ∈ {red, green}

inv2 3: ml tl = 1 ⇒ a + b < d ∧ c = 0

inv2 4: il tl = 1 ⇒ 0 < b ∧ a = 0

241

Summary of Second Refinement: the State (2) 239

inv2 5: ml tl = red ∨ il tl = red

inv2 6: ml pass ∈ {0, 1}

inv2 7: il pass ∈ {0, 1}

inv2 8: ml tl = red ⇒ ml pass = 1

inv2 9: il tl = red ⇒ il pass = 1

variant2: ml pass + il pass

242

Summary of Second Refinement: the Event (1) 240

ML out 1
when
ml tl = green
a + 1 + b < d

then
a := a + 1
ml pass := 1

end

ML out 2
when
ml tl = green
a + 1 + b = d

then
a := a + 1
ml pass := 1
ml tl := red

end

243

Summary of Second Refinement: the Event (2) 241

IL out 1
when
il tl = green
b 6= 1

then
b := b− 1
c := c + 1
il pass := 1

end

IL out 2
when
il tl = green
b = 1

then
b := b− 1
c := c + 1
il pass := 1
il tl := red

end

244

Summary of Second Refinement: the Event (3) 242

ML tl green
when
ml tl = red
a + b < d
c = 0
il pass = 1

then
ml tl := green
il tl := red
ml pass := 0

end

IL tl green
when
il tl = red
0 < b
a = 0
ml pass = 1

then
il tl := green
ml tl := red
il pass := 0

end

245

Summary of Second Refinement: the Event (4) 243

- These events are identical to their abstract versions

ML in
when
0 < c

then
c := c− 1

end

IL in
when
0 < a

then
a := a− 1
b := b + 1

end

246

Our Refinement Strategy 244

- Initial model: Limiting the number of cars (FUN 2)

- First refinement: Introducing the one way bridge (FUN 3)

- Second refinement: Introducing the traffic lights (EQP 1,2,3)

- Third refinement: Introducing the sensors (EQP 4,5)

247

Third Refinement: Adding Car Sensors 245

Reminder of the physical system

BridgeIsland Mainland

traffic light
sensor

248

Closed Model 246

-We want to clearly identify in our model:

- The controller

- The environment

- The communication channels between the two

CONTROLLER

software

ENVIRONMENT

traffic lights sensors

cars

 sensor

 light

from the

to the traffic

249

Controller Variables 247

Contoller variables: a,

b,

c,

ml pass,

il pass

250

Environment Variables 248

These new variables denote physical objects

Environment variables: A,

B,

C,

ML OUT SR,

ML IN SR,

IL OUT SR,

IL IN SR

251

Output Channel Variables 249

Output channels: ml tl,

il tl

252

Output Channel Variables 250

Input channels: ml out 10,

ml in 10,

il in 10,

il out 10

A message is sent when a sensor moves from "on" to "off":

off

on

off

sending a message
to the controller

253

Summary 251

ml_pass il_pass
a b c

ENVIRONMENT
A B C

ml_in_10

il_out_10
il_in_10

ml_tl

il_tl

ml_out_10

ML_OUT_SR ML_IN_SR

IL_OUT_SR IL_IN_SR

CONTROLLER

254

Constants 252

carrier sets: . . . , SENSOR

constants: . . . , on, off

axm3 1: SENSOR = {on, off}

axm3 2: on 6= off

255

Variables (1) 253

inv3 1 : ML OUT SR ∈ SENSOR

inv3 2 : ML IN SR ∈ SENSOR

inv3 3 : IL OUT SR ∈ SENSOR

inv3 4 : IL IN SR ∈ SENSOR

256

Variables (2) 254

inv3 5 : A ∈ N

inv3 6 : B ∈ N

inv3 7 : C ∈ N

inv3 8 : ml out 10 ∈ BOOL

inv3 9 : ml in 10 ∈ BOOL

inv3 10 : il out 10 ∈ BOOL

inv3 11 : il in 10 ∈ BOOL

257

Invariants (1) 255

When sensors are on, there are cars on them

inv3 12 : IL IN SR = on ⇒ A > 0

inv3 13 : IL OUT SR = on ⇒ B > 0

inv3 14 : ML IN SR = on ⇒ C > 0

The sensors are used to detect the presence
of cars entering or leaving the bridge EQP-5

258

Invariants (2) 256

Drivers obey the traffic lights

inv3 15 : ml out 10 = TRUE ⇒ ml tl = green

inv3 16 : il out 10 = TRUE ⇒ il tl = green

Cars are not supposed to pass on a red traffic
light, only on a green one EQP-3

259

Invariants (3) 257

When a sensor is "on", the previous information is treated

inv3 17 : IL IN SR = on ⇒ il in 10 = FALSE

inv3 18 : IL OUT SR = on ⇒ il out 10 = FALSE

inv3 19 : ML IN SR = on ⇒ ml in 10 = FALSE

inv3 20 : ML OUT SR = on ⇒ ml out 10 = FALSE

The controller must be fast enough so as to be able to FUN-5
treat all the information coming from the environment

260

Invariants (4) 258

Linking the physical and logical cars (1)

inv3 21 : il in 10 = TRUE ∧ ml out 10 = TRUE ⇒ A = a

inv3 22 : il in 10 = FALSE ∧ ml out 10 = TRUE ⇒ A = a + 1

inv3 23 : il in 10 = TRUE ∧ ml out 10 = FALSE ⇒ A = a− 1

inv3 24 : il in 10 = FALSE ∧ ml out 10 = FALSE ⇒ A = a

261

Invariants (5) 259

Linking the physical and logical cars (2)

inv3 25 : il in 10 = TRUE ∧ il out 10 = TRUE ⇒ B = b

inv3 26 : il in 10 = TRUE ∧ il out 10 = FALSE ⇒ B = b + 1

inv3 27 : il in 10 = FALSE ∧ il out 10 = TRUE ⇒ B = b− 1

inv3 28 : il in 10 = FALSE ∧ il out 10 = FALSE ⇒ B = b

inv3 29 : il out 10 = TRUE ∧ ml out 10 = TRUE ⇒ C = c

inv3 30 : il out 10 = TRUE ∧ ml out 10 = FALSE ⇒ C = c + 1

inv3 31 : il out 10 = FALSE ∧ ml out 10 = TRUE ⇒ C = c− 1

inv3 32 : il out 10 = FALSE ∧ ml out 10 = FALSE ⇒ C = c

262

Invariants (6) 260

The basic properties hold for the physical cars

inv3 33 : A = 0 ∨ C = 0

inv3 34 : A + B + C ≤ d

The number of cars on the bridge and the island
is limited FUN-2

The bridge is one way or the other, not both at the
same time FUN-3

263

Refining Abstract Events (1) 261

ML out 1
when
ml out 10 = TRUE
a + b + 1 6= d

then
a := a + 1
ml pass := 1
ml out 10 := FALSE

end

ML out 2
when
ml out 10 = TRUE
a + b + 1 = d

then
a := a + 1
ml tl := red
ml pass := 1
ml out 10 := FALSE

end

(abstract-)ML out 1
when
ml tl = green
a + b + 1 6= d

then
a := a + 1
ml pass := 1

end

(abstract-)ML out 2
when
ml tl = green
a + b + 1 = d

then
a := a + 1
ml pass := 1
ml tl := red

end

264

Refining Abstract Events (2) 262

IL out 1
when

il out 10 = TRUE
b 6= 1

then
b := b− 1
c := c + 1
il pass := 1
il out 10 := FALSE

end

IL out 2
when

il out 10 = TRUE
b = 1

then
b := b− 1
c := c + 1
il tl := red
il pass := 1
il out 10 := FALSE

end

(abstract-)IL out 1
when

il tl = green
b 6= 1

then
b := b− 1
c := c + 1
il pass := 1

end

(abstract-)IL out 2
when

il tl = green
b = 1

then
b := b− 1
c := c + 1
il pass := 1
il tl := red

end

265

Refining Abstract Events (3) 263

ML in
when

ml in 10 = TRUE
0 < c

then
c := c− 1
ml in 10 := FALSE

end

IL in
when

il in 10 = TRUE
0 < a

then
a := a− 1
b := b + 1
il in 10 := FALSE

end

(abstract-)ML in
when

0 < c
then

c := c− 1
end

(abstract-)IL in
when

0 < a
then

a := a− 1
b := b + 1

end

266

Refining Abstract Events (4) 264

ML tl green
when
ml tl = red
a + b < d
c = 0
il pass = 1
il out 10 = FALSE

then
ml tl := green
il tl := red
ml pass := FALSE

end

IL tl green
when
il tl = red
a = 0
ml pass = 1
ml out 10 = FALSE

then
il tl := green
ml tl := red
il pass := FALSE

end

(abstract-)ML tl green
when
ml tl = red
a + b < d
c = 0
il pass = 1

then
ml tl := green
il tl := red
ml pass := 0

end

(abstract-)IL tl green
when
il tl = red
0 < b
a = 0
ml pass = 1

then
il tl := green
ml tl := red
il pass := 0

end

267

Adding New PHYSICAL Events (1) 265

ML out arr
when
ML OUT SR = off
ml out 10 = FALSE

then
ML OUT SR := on

end

ML in arr
when
ML IN SR = off
ml in 10 = FALSE
C > 0

then
ML IN SR := on

end

IL in arr
when
IL IN SR = off
il in 10 = FALSE
A > 0

then
IL IN SR := on

end

IL out arr
when
IL OUT SR = off
il out 10 = FALSE
B > 0

then
IL OUT SR := on

end

268

Adding New PHYSICAL Events (2) 266

ML out dep
when
ML OUT SR = on
ml tl = green

then
ML OUT SR := off
ml out 10 := TRUE
A := A + 1

end

ML in dep
when
ML IN SR = on

then
ML IN SR := off
ml in 10 := TRUE
C := C − 1

end

IL in dep
when
IL IN SR = on

then
IL IN SR := off
il in 10 := TRUE
A := A− 1
B := B + 1

end

IL out dep
when
IL OUT SR = on
il tl = green

then
IL OUT SR := off
il out 10 := TRUE
B := B − 1
C := C + 1

end

269

Final Structure of the Controller 267

Constant: d
Variables: a, b, c,

il_pass, ml_pass

ml_in_10

ml_out_10

il_in_10

il_out_10
IL_OUT_SR

IL_IN_SR

ML_IN_SR

ML_OUT_SR

A,B,C

8 physical Events

8 logical Events

il_tl ml_tl

270

Questions on Proving 268

- What is to be systematically proved?

- Invariant preservation

- Correct refinements of transitions

- No divergence of new transitions

- No deadlock introduced in refinements

- When are these proofs done?

271

Questions on Proving (cont’d) 269

- Who states what is to be proved?

- An automatic tool: the Proof Obligation Generator

- Who is going to perform these proofs?

- An automatic tool: the Prover

- Sometimes helped by the Engineer (interactive proving)

272

About Tools 270

- Three basic tools:

- Proof Obligation Generator

- Prover

- Model translators into Hardware or Software languages

- These tools are embedded into a Development Data Base

- Such tools already exist in the Rodin Platform

273

Summary of Proofs on Example 271

- This development required 252 proofs

- Initial model: 6 (0)

- 1st refinement: 27 (0)

- 2nd refinement: 81 (1)

- 3rd refinement: 138 (3)

- All proved automatically (except 4) by the Rodin Platform

274

Summary of Mathematical Notations (1) 272

P ∧ Q conjunction

P ∨ Q disjunction

P ⇒ Q implication

¬P negation

x ∈ S set membership operator

275

Summary of Mathematical Notations (2) 273

N set of Natural Numbers: {0, 1, 2, 3, . . .}

Z set of Integers: {0, 1,−1, 2,−2, . . .}

{a, b, . . .} set defined in extension

a + b addition of a and b

a− b subtraction of a and b

276

Summary of Mathematical Notations (3) 274

a ∗ b product of a and b

a = b equality relation

a ≤ b smaller than or equal relation

a < b smaller than relation

277

Invariant Establishment Proof Rule 275

- For the init event in the initial model

Axioms of the constants
⇒ INV

Modified Invariants

278

Invariant Preservation Proof Rule 276

- For other events in the initial model

Axioms of the constants
Invariants
Guard of the event INV
⇒

Modified Invariants

279

Deadlock Freeness Rule 277

- This rule is not mandatory

Axiom of the constant
Invariants DLF
⇒

Disjunction of the guards

280

Refinement Rules (1): Guard Strengthening 278

- For old events only

Axioms of the constants
Abstract invariants
Concrete invariants GRD
Concrete guards
⇒

Abstract guards

281

Refinement Rules (2): Invariant Establishment 279

- For init event only

Axioms of the constants
⇒ INV

Modified concrete invariants

282

Refinement Rules (3): Invariant Preservation 280

- For all events (except init)

- New events refine an implicit non-guarded event with skip action

Axioms of the constants
Abstract invariant
Concrete invariant
Concrete guard INV
⇒

Modified concrete invariant

283

Refinement Rules (4): Non-divergence of New Events
281

- For new events only

Axioms of the constants
Abstract invariants
Concrete invariants
Concrete guard of a new event NAT
⇒

Variant ∈ N

284

Refinement Rules (5): Non-divergence of New Events
282

- For new events only

Axioms
Abstract invariants
Concrete invariants
Concrete guard
`
Modified Var. < Var.

285

Refinement Rules (6): Relative Deadlock Freeness
283

- Global proof rule

Axioms of the constants
Abstract invariants
Concrete invariants
Disjunction of abstract guards DLF
⇒

Disjunction of concrete guards

286

Refinement Rules (7) 284

- For old events (in case of superposition)

Axioms of constants
Abstract invariants
Concrete invariants SIM
Concrete guards
⇒

Same actions on common variables

287

