
Event-B Course

5. Bounded Retransmission Protocol

Jean-Raymond Abrial

September-October-November 2011

Purpose of this Lecture 1

- The Bounded Re-transmission Protocol is a file transfer protocol

- This is a problem dealing with fault tolerance

- We suppose that the transfer channels are unreliable

- We present classical solutions to handle that problem: timers.

- We would like to see how we can formalize such timers

1

The Bounded Retransmission Protocol 2

- A sequential file is transmitted from a Sender to a Receiver

- The file is transmitted piece by piece through a Data Channel

- After receiving some data, the Receiver sends an acknowledgment

- After receiving it, the Sender sends the next piece of data, etc.

ReceiverSender

Acknowledgment

Data Channel

Channel

- Messages can be lost in the Data or Acknowledgment channels
2

Requirements (1) 3

The goal of the BRP is to totally or partially
transfer a certain non-empty original sequential
file from one site to another.

FUN 1

A total transfer means that the transmitted file is
a copy of the original one. FUN 2

A partial transfer means that the transmitted file is
a genuine prefix of the original one. FUN 3

3

Unreliability of the Communications (1) 4

- Messages can be lost in the Data or Acknowledgment channels

- The Sender starts a timer before sending a piece of data

- The timer wakes up the Sender after a delay dl

- This occurs if the Sender has not received an acknowledgment

in the meantime

4

Unreliability of the Communications (2) 5

- dl is guaranteed to be greater than twice the transmission time

- When waken up, the Sender is then sure that the data or the

acknowledgment has been lost

- When waken up, the Sender re-transmits the previous data

- The Sender sends an alternating bit together with a new data

- This ensures that the Receiver does not confuse (?) a new data

with a retransmitted one.

5

Abortion of Protocol at the Sender Site 6

- The Sender can transmit the same data at most MAX + 1 times

- After this, the Sender decides to abort

- How does the Receiver know that the Sender aborted?

6

Abortion of Protocol at the Receiver Site 7

- Each time the Receiver receives a new piece of data, it starts a timer

- The timer wakes up the Receiver after a delay (MAX + 1)× dl

- This occurs if the Sender has not received a new data in the

meantime.

- After this delay, the Receiver is certain that the Sender has aborted

- Then the Receiver aborts too.

7

Final Situation of the Protocol 8

- At the end of the protocol, we might be in one of the three situations:

(1) The file has been transmitted entirely and the Sender

has received the last acknowledgment

(2) The file has been transmitted entirely but the Sender

has not received the last acknowledgment

(3) The file has not been transmitted entirely

8

Requirements (2) 9

Each site may end up in any of the two situations:

- either it believes that the protocol has terminated
successfully,

- or it believes that the protocol has aborted

FUN 4

When the Sender believes that the protocol has
terminated successfully then the Receiver
believes so too.

FUN 5

9

Requirements (3) 10

However, it is possible for the Sender to
believe that the protocol has aborted
while the Receiver believes that it has
terminated successfully.

FUN 6

When the Receiver believes that the protocol
has terminated successfully, this is because
the original file has been entirely copied on
the Receiver’s site.

FUN 7

When the Receiver believes that the protocol has
aborted, this is because the original file has
not been copied entirely on the Receiver’s site.

FUN 8

10

Pseudo-code for the Protocol 11

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

11

The Sender sends Data 12

SND snd
when

SND snd is waken up
then

Acquire data from Sender’s file;
Store acquired data on Data Channel;
Store Sender’s bit on Data Channel;
Start Sender’s timer;
Activate Data Channel;

end

12

The Receiver Receives Data 13

RCV rcv
when

Data Channel interrupt occurs
then

Acquire Sender’s bit from Data Channel;
if Sender’s bit = Receiver’s bit then

Acquire Data from Data Channel;
Store data on Receiver’s file;
Modify Receiver’s bit;
if data is not the last one then

Start Receiver’s timer;
end

end
Reset Data Channel Interrupt;
Wake up RCV snd;

end

13

The Receiver sends Acknowledgment 14

RCV snd
when

RCV snd is waken up
then

Activate Acknowledgment Channel;
end

14

The Sender Receives Acknowledgment 15

SND rcv
when

Acknowledgment Channel interrupt occurs
then

Remove Data from Sender’s file;
Reset retry counter;
Modify Sender’s bit;
Wake up event SND snd;
Reset Acknowledgment Channel interrupt;
if Sender’s file is not empty then

Wake up event SND snd
end

end

15

Timer Interrupt Occurs at Sender’s Site 16

SND timer
when

Sender’s timer interrupt occurs
then

if retry counter is equal to MAX+1 then
Abort protocol on Sender’s site;

else
Increment retry counter;
Wake up event SND snd;

end
end

16

Timer Interrupt occurs at Receiver’s Site 17

RCV timer
when

Receiver’s timer interrupt occurs
then

Abort protocol on Receiver’s site
end

17

About the Pseudo-code 18

- Quite often, protocols are "specified" by such pseudo-codes

- In fact, such a pseudo-code raises a number of questions:

- Are we sure that this description is correct?

- Are we sure that this protocol terminates?

- What kinds of properties should this protocol maintain?

- Hence the formal development which is presented now

18

Refinement Strategy 19

(0) The status (Success or Failure): FUN 4

(1) (2) Connections between the status: FUN 5 and FUN 6

(3) Partial transmission of the file in one shot: FUN 1, FUN 2, FUN 3

(4) Each participant has access to the other: FUN 7,FUN 8

(5) Introducing unreliable channels and timers.

(6) Optimize protocol

19

Reminder (1) 20

The goal of the BRP is to totally or partially
transfer a certain non-empty original sequential
file from one site to another.

FUN 1

A total transfer means that the transmitted file is
a copy of the original one. FUN 2

A partial transfer means that the transmitted file is
a genuine prefix of the original one. FUN 3

20

Reminder (2) 21

Each site may end up in any of the two situations:

- either it believes that the protocol has terminated
successfully,

- or it believes that the protocol has aborted

FUN 4

When the Sender believes that the protocol has
terminated successfully then the Receiver
believes so too.

FUN 5

21

Reminder (3) 22

However, it is possible for the Sender to
believe that the protocol has aborted
while the Receiver believes that it has
terminated successfully.

FUN 6

When the Receiver believes that the protocol
has terminated successfully, this is because
the original file has been entirely copied on
the Receiver’s site.

FUN 7

When the Receiver believes that the protocol has
aborted, this is because the original file has
not been copied entirely on the Receiver’s site.

FUN 8

22

Initial Model 23

- This model deals with a very abstract partial requirement: FUN-4.

Each site may end up in any of the two situations:

- either it believes that the protocol has terminated
successfully,

- or it believes that the protocol has aborted

FUN 4

23

Initial Model: the Constants 24

We introduce the concept of status.

sets: STATUS
constants: working

success
failure

axm1 1: partition(STATUS, {working}, {success}, {failure})

- Mind the way enumerated sets are defined

24

Initial Model: the State 25

- There are two variables s st and r st

- They define the status of the two participants:

variables: s st
r st

inv0 1: s st ∈ STATUS

inv0 2: r st ∈ STATUS

25

Initial Model: the Events 26

- Initially, the participants are both working.

- We have then an observer event named brp.

- It is fired when both participants are not working any more.

init
s st := working
r st := working

brp
when
s st 6= working
r st 6= working

then
skip

end

26

Initial Model: the Anticipated Events 27

In what follows, we use the technique of anticipated events

SND progress
status

anticipated
when

s st = working
then

s st :∈ {success, failure}
end

RCV progress
status

anticipated
when

r st = working
then

r st :∈ {success, failure}
end

27

First and Second Refinements 28

- Taking account of requirement FUN-5 and FUN-6

When the Sender believes that the protocol has
terminated successfully then the Receiver
believes so too.

FUN 5

However, it is possible for the Sender to
believe that the protocol has aborted
while the Receiver believes that it has
terminated successfully.

FUN 6

inv1 1: s st = success ⇒ r st = success

- It makes more precise what is meant by the previous anticipated event.

28

Events of First Refinement 29

- We split now event SND progress into success and failure events.

- Notice that event SND success is cheating

- It contains the status of the other participant in its guards

SND success
refines
SND progress

status
convergent

when
s st = working
r st = success

then
s st := success

end

SND failure
refines
SND progress

status
convergent

when
s st = working

then
s st := failure

end

variant1: {success, failure} \ {s st}

29

Events of Second Refinement 30

- We split now events RCV progress into success and failure events.

- Notice that event RCV failure is cheating

- It contains the status of the other participant in its guards

RCV success
refines
RCV progress

status
convergent

when
r st = working

then
r st := success

end

RCV failure
refines
RCV progress

status
convergent

when
r st = working
s st = failure

then
r st := failure

end

variant2: {success, failure} \ {r st}

30

Third Refinement: a Global View 31

SENDER

INITIAL SITUATION FINAL SITUATION

RECEIVER

SENDER

RECEIVER

i

x

y

z

x

y

z

x

y

n n

f f

g g

31

Third Refinement 32

- In this refinement, we consider requirements FUN-1 to FUN-3

The goal of the BRP is to totally or partially
transfer a certain non-empty original sequential
file from one site to another.

FUN 1

A total transfer means that the transmitted file is
a copy of the original one. FUN 2

A partial transfer means that the transmitted file is
a genuine prefix of the original one. FUN 3

- We also take account of requirement FUN-7 and FUN-8

32

The State (1) 33

- First, we define sequential file f to be transmitted

sets: D
constants: n

f

axm0 1: 0 < n

axm0 2: f ∈ 1 .. n→D

33

The State (2) 34

- The transmitted file is denoted by a variable g of length r.

- Invariant inv3 2 states that the transmitted file is a prefix of f .

- Invariant inv3 3 states when the receiver succeeds.

variables: r
g

inv3 1: r ∈ 0 .. n

inv3 2: g = 1 .. r � f

inv3 3: r st = success ⇔ r = n

34

Refresher: The Domain Restriction Operator 35

A B

a3
a2

a6

a7

b1

F

b3

b4

b5

b6

b2

a5

a1

a4

{a3, a7} � F

35

The Events 36

- New Event RCV rcv current data and refined event RCV success both cheat

- They access the original file f and its length n (situated on the sender site)

RCV rcv current data
status
convergent

when
r st = working
r + 1 < n

then
r := r + 1
g := g ∪ {r + 1 7→ f(r + 1)}

end

RCV success
when
r st = working
r + 1 = n

then
r st := success
r := r + 1
g := g ∪ {r + 1 7→ f(n)}

end

variant3: n− r

36

Synchronization of the Events 37

RCV_success

RCV_failure

SND_success brp

SND_failure

RCV_rcv_current_data

init

37

Fourth Refinement: the State 38

- The state is first enlarged with an activation bit w.

- When w is TRUE, it means that the sender event can be activated.

- The state is also enlarged with the sender pointer s

- It is such that s + 1 points the next item to be sent, f(s + 1)

- The state is further enlarged with the data container d

- d is equal to f(s + 1) when the data channel is active (w = FALSE)

variables: . . .
w
s
d

inv4 1: s ∈ 0 .. n− 1

inv4 2: r ∈ s .. s + 1

inv4 3: w = FALSE ⇒ d = f(s + 1)

38

Fourth Refinement: the Initialisation Event 39

Events brp, SND failure, and RCV failure are not modified.

init
r := 0
g := ∅
r st := working
s st := working
w := TRUE
s := 0
d :∈ D

39

Fourth Refinement: a New Event 40

- The next event SND snd data is new.

- It corresponds to the main action of the sender,

- It prepares the information to be sent through: d and s.

SND snd data
when
s st = working
w = TRUE

then
d := f(s + 1)
w := FALSE

end

40

Fourth Refinement: Events on the Receiver Side 41

RCV rcv current data
when
r st = working
w = FALSE
r = s
r + 1 < n

then
r := r + 1
g := g ∪ {r + 1 7→ d}

end

RCV success
when
r st = working
w = FALSE
r = s
r + 1 = n

then
r st := success
r := r + 1
g := g ∪ {r + 1 7→ d}

end

Notice that the receiver is still cheating: it accesses n and w

41

Fourth Refinement: Events on the Sender side 42

- SND rcv current ack is a new event

SND rcv current ack
when
s st = working
w = FALSE
s + 1 < n
r = s + 1

then
w := TRUE
s := s + 1

end

SND success
when
s st = working
w = FALSE
s + 1 = n
r = s + 1

then
s st := success

end

42

Fourth Refinement: a Special Event 43

- This event will receive an explanation in the next refinement

SND time out current
when
s st = working
w = FALSE

then
w := TRUE

end

43

Fourth Refinement: Synchronization of the Events 44

RCV_success

RCV_failure

SND_failure

RCV_rcv_current_data

SND_success brp

SND_time_out_current

SND_rcv_current_ack

SND_snd_data

init

44

Fifth Refinement: Introducing more Activation Bits 45

- We introduce more activation bits: db, ab, v.

- At most one activation bit is TRUE at a time

variables: . . .
db
ab
v

inv3 1: w = TRUE ⇒ db = FALSE

inv3 2: w = TRUE ⇒ ab = FALSE

inv3 3: w = TRUE ⇒ v = FALSE

inv3 4: db = TRUE ⇒ ab = FALSE

inv3 5: db = TRUE ⇒ v = FALSE

inv3 6: ab = TRUE ⇒ v = FALSE

45

Activation bits at work 46

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

db

ab
w v

46

Activation bits at work 47

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

db

ab
vw

47

Activation bits at work 48

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

db

ab
vw

48

Activation bits at work 49

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

db

ab
vw

49

Activation bits at work 50

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

db

ab
w v

50

Activation bits at work 51

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

db

ab
vw

51

Activation bits at work 52

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

db

ab
vw

52

Activation bits at work 53

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

db

ab
vw

53

Fifth Refinement: Introducing the Last Item Indicator 54

- We introduce the last data indicator

variables: . . .
l

- Together with these invariants (more explanation to come):

inv3 7: db = TRUE ∧ r = s ∧ l = FALSE ⇒ r + 1 < n

inv3 8: db = TRUE ∧ r = s ∧ l = TRUE ⇒ r + 1 = n

- This bit is sent by the Sender to the Receiver

- When equal to TRUE, this bit indicates that the sent item is the last one

54

Fifth Refinement: Introducing the Retry Counter c 55

- Constant MAX denotes the maximum number of retries

- The sender fails iff the retry counter c exceeds MAX (inv3 10)

constants: . . .
MAX

variables: . . .
c

axm3 1: MAX ∈ N

inv3 9: c ∈ 0 .. MAX + 1

inv3 10: c = MAX + 1 ⇔ s st = failure

55

Fifth Refinement: the Events (1) 56

init
r := 0
g := ∅
r st := working
s st := working
s := 0
d :∈ D
w := TRUE
db := FALSE
ab := FALSE
v := FALSE
l := FALSE
c := 0

brp
when
r 6= working
s 6= working

then
skip

end

56

Fifth Refinement: the Events (2) 57

SND snd current data
when
s st = working
w = TRUE
s + 1 < n

then
d := f(s + 1)
w := FALSE
db := TRUE
l := FALSE

end

SND snd last data
when
s st = working
w = TRUE
s + 1 = n

then
d := f(s + 1)
w := FALSE
db := TRUE
l := TRUE

end

57

Fifth Refinement: New Events 58

- Daemons are breaking the channels

DMN data channel
when
db = TRUE

then
db = FALSE

end

DMN ack channel
when
ab = TRUE

then
ab = FALSE

end

- A failure is characterized by all activation bits being FALSE

58

Fifth Refinement: the Events (3) 59

SND time out current
when
s st = working
w = FALSE
ab = FALSE
db = FALSE
v = FALSE
c < MAX

then
w := TRUE
c := c + 1

end

SND failure
when
s st = working
w = FALSE
ab = FALSE
db = FALSE
v = FALSE
c = MAX

then
s st := failure
c := c + 1

end

- Sender aborts after MAX + 1 tries

59

Fifth Refinement: the Events (4) 60

RCV rcv current data
when

r st = working
db = TRUE
r = s
l = FALSE

then
r := r + 1
g := g ∪ {r + 1 7→ d}
db := FALSE
v := TRUE

end

RCV success
when

r st = working
db = TRUE
r = s
l = TRUE

then
r st := success
r := r + 1
g := g ∪ {r + 1 7→ d}
db := FALSE
v := TRUE

end

Reminder: l is the last data indicator

60

Fifth Refinement: Guard Srengthening (1) 61

(abstract-)RCV rcv current data
when

r st = working
w = FALSE
r = s
r + 1 < n

then
r := r + 1
g := g ∪ {r + 1 7→ d}

end

(concrete-)RCV rcv current data
when

r st = working
db = TRUE
r = s
l = FALSE

then
r := r + 1
g := g ∪ {r + 1 7→ d}
db := FALSE
v := TRUE

end

inv3 1’: db = TRUE ⇒ w = FALSE

inv3 7: db = TRUE ∧ r = s ∧ l = FALSE ⇒ r + 1 < n

61

Fifth Refinement: Guard Srengthening (2) 62

(abstract-)RCV success
when

r st = working
w = FALSE
r = s
r + 1 = n

then
r := r + 1
g := g ∪ {r + 1 7→ d}

end

(concrete-)RCV success
when

r st = working
db = TRUE
r = s
l = TRUE

then
r st := success
r := r + 1
g := g ∪ {r + 1 7→ d}
db := FALSE
v := TRUE

end

inv3 1’: db = TRUE ⇒ w = FALSE

inv3 8: db = TRUE ∧ r = s ∧ l = TRUE ⇒ r + 1 = n

62

Fifth Refinement: the Events (5) 63

RCV rcv retry
when
db = TRUE
r 6= s

then
db := FALSE
v := TRUE

end

RCV snd ack
when
v = TRUE

then
v := FALSE
ab := TRUE

end

RCV failure
when
r st = working
c = MAX + 1

then
r st := failure

end

63

Fifth Refinement: the Events (6) 64

SND rcv current ack
when
s st = working
ab = TRUE
s + 1 < n

then
w := TRUE
s := s + 1
c := 0
ab := FALSE

end

SND success
when
s st = working
ab = TRUE
s + 1 = n

then
s st := success
c := 0
ab := FALSE

end

64

Fifth Refinement: Guard Strengthening (1) 65

(abstract-)SND rcv current ack
when
s st = working
w = FALSE
s + 1 < n
r = s + 1

then
w := TRUE
s := s + 1

end

(concrete-)SND rcv current ack
when
s st = working
ab = TRUE
s + 1 < n

then
w := TRUE
s := s + 1
c := 0
ab := FALSE

end

inv3 2’: ab = TRUE ⇒ w = FALSE

- In order to prove guard strengthening we need invariant inv3 11

inv3 11: ab = TRUE ⇒ r = s + 1

inv3 12: v = TRUE ⇒ r = s + 1

- Invariant inv3 12 is needed to prove inv3 11

65

Fifth Refinement: Guard Strengthening (2) 66

(abstract-)SND success
when
s st = working
w = FALSE
s + 1 = n
r = s + 1

then
s st := success

end

(concrete-)SND success
when
s st = working
ab = TRUE
s + 1 = n

then
s st := success
c := 0
ab := FALSE

end

inv3 2’: ab = TRUE ⇒ w = FALSE

- In order to prove guard strengthening we need invariant inv3 11

inv3 11: ab = TRUE ⇒ r = s + 1

inv3 12: v = TRUE ⇒ r = s + 1

- Invariant inv3 12 is needed to prove inv3 11

66

Final Synchronization of the Events 67

SND_snd_current_data SND_snd_last_data

SND_success brp

init

RCV_success

DMN_ack_channel DMN_data_channel

RCV_retry

RCV_snd_ack

RCV_rcv_current_data

SND_rcv_current_ack

SND_failure

RCV_failure

SND_time_out_current

67

Computing Probabilities 68

Acknowledgment
Channel

RCV_rcv

RCV_snd

Data Channel

SND_rcv

SND_snd

probability of failure: p

probability of failure: p

- We would like to compute the probability of success

- It is a function of:

- p: probability of failure for one channel

- n: size of the file

- MAX + 1: number of re-tries

68

Computing Probabilities 69

Failure on one channel p

69

Computing Probabilities 70

Failure on one channel p

Success on one channel 1− p

70

Computing Probabilities 71

Failure on one channel p

Success on one channel 1− p

Success on both channels (1− p)2

71

Computing Probabilities 72

Failure on one channel p

Success on one channel 1− p

Success on both channels (1− p)2

Fails on one try 1− (1− p)2

72

Computing Probabilities 73

Failure on one channel p

Success on one channel 1− p

Success on both channels (1− p)2

Fails on one try 1− (1− p)2

Fails on MAX + 1 tries (1− (1− p)2)MAX+1

73

Computing Probabilities 74

Failure on one channel p

Success on one channel 1− p

Success on both channels (1− p)2

Fails on one try 1− (1− p)2

Fails on MAX + 1 tries (1− (1− p)2)MAX+1

Succ. on MAX + 1 tries 1− (1− (1− p)2)MAX+1

74

Computing Probabilities 75

Failure on one channel p

Success on one channel 1− p

Success on both channels (1− p)2

Fails on one try 1− (1− p)2

Fails on MAX + 1 tries (1− (1− p)2)MAX+1

Succ. on MAX + 1 tries 1− (1− (1− p)2)MAX+1

Success for n data (1− (1− (1− p)2)MAX+1)n

75

Computing Probabilities 76

Failure on one channel p

Success on one channel 1− p

Success on both channels (1− p)2

Fails on one try 1− (1− p)2

Fails on MAX + 1 tries (1− (1− p)2)MAX+1

Succ. on MAX + 1 tries 1− (1− (1− p)2)MAX+1

Success for n data (1− (1− (1− p)2)MAX+1)n

p = .1
MAX = 5
n = 100 .995

76

